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Abstract The effect of subcutaneous (SC) peginterferon

b-1a exposure on reduction of gadolinium-enhanced (Gd?)

lesion count over time was evaluated in patients with

relapsing-remitting multiple sclerosis (RRMS) in a Phase 3

study (ADVANCE). Patients were randomized to receive

SC injections of placebo (n = 500), 125 mcg every-2-

weeks (n = 512), or 125 mcg every-4-weeks (n = 500) for

1 year, and then active treatment in the second year. Steady

state 4-week AUC (AUCss) was derived for each individ-

ual based on sparse pharmacokinetic (PK) sample and a

population PK model. Several longitudinal count models,

including marginal, mixed effect, and mixture models,

were compared to explore the relationship between AUCss

and Gd? lesion count (or T2 lesion count). A mixture

model which divided subjects into two subpopulations by

low and high baseline lesion activity was found to yield

best goodness-of-fit for the data. In this model, the point

estimate and 95 % CI for drug effect slope on log(k) are
-0.0256 (-0.0304, -0.0216) for Gd? lesion and -0.0147

(-0.0170, -0.0124) for T2 lesion. This suggested that

reduction of Gd? lesion (or T2 lesion) count over time is

significantly related to SC peginterferon b-1a exposure,

and that the increased reduction lesion count with the

every-2-week regimen versus the every-4-week regimen

was driven by the higher exposure achieved in that

treatment arm (mean Gd? lesion count 0.2 and 0.7 at Year

2, respectively). The every-2-week regimen produced an

exposure range that was close to the plateau range of the

exposure–response curve, supporting its selection as the

regulatory approved dosage.
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Introduction

Multiple sclerosis (MS) is a chronic disease of the central

nervous system. It is predominantly a disease of young

adults, primarily women, with disease onset typically

occurring between the ages of 20 and 40. MS primarily

affects myelinated fiber tracts. Histologically, it is char-

acterized by focal areas of demyelination, astrogliosis, the

relative preservation of axons, and varying degrees of

inflammation [1].

Peginterferon b-1a, a PEGylated form of interferon b-1a
(IFN b-1a), has been approved for the treatment of

relapsing multiple sclerosis (RMS). Treatment with IFN b-
1a 30 mcg intramuscular (IM) injection weekly has proven

to be effective in delaying the progression of disability and

in reducing the rate of clinical relapses in MS. Peginter-

feron b-1a has a longer half-life and greater exposure

compared to IFN b-1a; therefore, with a reduced admin-

istration frequency, it potentially reduces side effects (e.g.

flu-like symptoms) while increasing convenience and

improving treatment compliance [2, 3].

In the ADVANCE study, a pivotal Phase 3 study, after

1 year of treatment, SC peginterferon b-1a every-2-weeks

reduced annualized relapse rate (ARR; primary endpoint)

ClinicalTrials.gov: NCT00906399

Electronic supplementary material The online version of this
article (doi:10.1007/s10928-016-9477-x) contains supplementary
material, which is available to authorized users.

& Yaming Hang

yaming.hang@biogen.com

1 Biogen, Cambridge, MA, USA

123

J Pharmacokinet Pharmacodyn (2016) 43:371–383

DOI 10.1007/s10928-016-9477-x

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/192183432?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1007/s10928-016-9477-x
http://crossmark.crossref.org/dialog/?doi=10.1007/s10928-016-9477-x&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s10928-016-9477-x&amp;domain=pdf


by 36 %. Risk of relapse, risk of disability progression, and

the number of new or newly enlarging T2 lesions (sec-

ondary endpoints), together with gadolinium-enhanced

(Gd?) lesions (tertiary endpoint), were also reduced when

compared with placebo. The safety profile reflected that of

established IFN b-1a therapies [4]. The 2-year results

showed that peginterferon b-1a efficacy was maintained

beyond 1 year, with greater effects observed with every-2-

week versus every-4-week dosing, and a similar safety

profile to Year 1 results [5].

Gd? lesions (also called enhancing lesions), T2-hyper-

intense lesions, and T1-hypointense lesions (T1 black

holes) are the basis for the three classic measures of MS

pathology visible by conventional magnetic resonance

imaging (MRI), and are the cornerstone of MRI-based

outcomes in MS clinical trials [6]. Gadolinium (Gd) che-

lates are widely used as contrast agents in MRIs of the

brain and spinal cord. Data from animal studies and from

MS brain biopsy studies have demonstrated that Gd

enhancement is associated with histopathological evidence

of blood–brain barrier breakdown and inflammation.

Studies indicate that enhancement occurs in almost all the

new lesions from patients with relapsing-remitting or sec-

ondary progressive MS. Generally speaking, the enhance-

ment of a new lesion lasts 2–3 weeks in most cases [7, 8].

T2-hyperintense lesions (T2 lesions) provide a comple-

mentary set of measures to enhancing lesions in both

clinical trials (counts or volumetrics) and in clinic (prin-

cipally counts). New T2 lesion counts in most circum-

stances are strongly correlated with enhancing lesion

counts in high-frequency serial studies. While enhancing

lesions provide a measure of inflammation only around the

time of the MRI, new T2 lesions represent a measure of

disease activity over the interval.

The objectives of the current analyses were to explore

and evaluate the relationship between the population phar-

macokinetic (PK) exposure predicted for peginterferon b-1a
and the observed Gd? lesion count over time in the

ADVANCE study. Similar analyses were performed for T2

lesion count, except that instead of assuming the mean count

of new or newly enlarged lesions declined over time, it was

assumed to be proportional to duration of observation. To

avoid redundancy, this paper will focus on the method and

results for the analysis of Gd? lesion count, and the mod-

eling outcome for T2 lesion count will be briefly mentioned.

Methods

Study design and patients

ADVANCE was a 2-year, Phase 3, multicenter, random-

ized, double-blind, parallel-group study with a 1-year,

placebo-controlled period. The full methods from the

ADVANCE study have been published previously [4, 5].

During Year 1 of the study, patients were randomized

(1:1:1) to receive SC injections of placebo (n = 500),

peginterferon b-1a at a dose of 125 mcg every-2-weeks

(n = 512), or peginterferon b-1a at a dose of 125 mcg

every-4-weeks (n = 500). At the end of Year 1, patients on

placebo were re-randomized to either peginterferon b-1a
125 mcg every 2 or 4 weeks, while patients on peginter-

feron b-1a during Year 1 continued their treatment. During

the first year of the study, 44, 62, and 74 subjects dropped

out of the study in the placebo, every-4-weeks and every-2-

weeks arms, respectively. Among the subjects who con-

tinued into the Year 2 portion of the study, 75 and 59

subjects dropped out of the study in the every-4-weeks and

every-2-weeks arms, respectively. Key eligibility criteria

were a diagnosis of RRMS as defined by the McDonald

criteria, age 18–65 years, a score of between 0 and 5 on the

expanded disability status scale (EDSS; with higher scores

indicating greater disability [9]), and at least two clinically

documented relapses in the previous 3 years, with at least

one of these relapses having occurred within the 12 months

prior to randomization. Patients who had progressive forms

of MS, pre-specified laboratory abnormalities, and prior

interferon treatment for MS exceeding 4 weeks or dis-

continuation less than 6 months prior to baseline were

excluded. The protocol was approved by each site’s insti-

tutional review board and was conducted according to the

International Conference on Harmonization Guidelines for

Good Clinical Practice and the Declaration of Helsinki.

Every patient provided written informed consent prior to

study entry [4, 5].

Pharmacodynamic (PD) measurements

MRI scans for detection of Gd? lesions and T2 lesions

were conducted at baseline, Week 24, Week 48, and Week

96. The number of Gd? lesions was recorded for each

individual at these visits. The number of new or newly

enlarging T2 hyperintense lesions was recorded at Week

24, Week 48, and Week 96.

Population PK modeling

The population PK analysis was carried out using a non-

linear mixed-effect model approach with NONMEM soft-

ware (ICON plc, Dublin, Ireland, version 7.2). The final PK

parameter estimates used in this analysis were based on

nonparametric bootstrapping results using the final popu-

lation PK model developed elsewhere [10]. One thousand

data sets were generated by repeatedly sampling with

replacement stratified by intensive and sparse sampling

type from the Phase 3 ADVANCE study PK data set. The
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median values of these bootstrapped parameters were used

as model population parameters, and post hoc PK param-

eters for all subjects were obtained by setting MAX-

EVAL = 0 in NONMEM.

Modeling of longitudinal count data

Analysis of longitudinal Gd? lesion count data is abundant

in the literature. Albert et al. [11] described Gd? lesion

count data collected at monthly intervals for approximately

30 months with two types of models: a Poisson time series

in which the mean changes as a function of sinusoidal trend

and past observations, and a Poisson time series with the

mean fluctuating according to a hidden Markov chain.

Altman et al. [12] extended the hidden Markov model in

[11], and also proposed a more efficient algorithm for

model parameter estimation. Both [11] and [12] focused on

the within-subject change of mean lesion count over time,

and the models were fitted to data at individual level.

Recognizing the interpatient heterogeneity in disease

activity, MacKay Altman et al. [13] further extended the

hidden Markov model to a mixed hidden Markov model

and the model was fit to data from a group of patients

simultaneously. While not analyzing lesion count data,

Trocóniz et al. [14] compared Poisson, zero-inflated Pois-

son (ZIP), negative binomial, and zero-inflated negative

binomial model for daily seizure count data, which dis-

played a common feature with the Gd? lesion count data:

overdispersion and Markovian properties. Velez de Men-

dizabal et al. [15] also compared several discrete distri-

bution models for monthly Gd? lesion count over

48 months in nine MS patients; these models incorporated

different distribution families (Poisson, ZIP, generalized

Poisson, negative binomial, and zero-inflated negative

binomial) with or without Markovian element.

With this analysis, we established the relationship

between the change in mean lesion count over time and the

peginterferon b-1a exposure. In addition, other than

exploring the models described in the literature, we

extended the models used in the literature by introducing a

two-population mixture model to describe the interpatient

heterogeneity observed in the ADVANCE study.

Exposure–response modeling

Spagatti plot by individual (as in Fig. 1 for Gd? lesion

count) suggested that the distribution of lesion count is

similar across different visits when patients were on pla-

cebo. This was also confirmed by comparison of empirical

cumulative distribution function curves and summary

statistics (data shown). These analyses suggested that dis-

ease activity for both type of lesions are stable with

1 year placebo treatment; therefore, it was assumed that

underlying distribution for lesion count did not change

when subjects were on placebo treatment.

The half-life of peginterferon b-1a was previously

reported to be *78 h in RRMS patients with no accumu-

lation in either the every-2-week or every-4-week treat-

ment regimens [16]. Since change in the Gd? lesion

formation process is gradual, it was deemed unlikely that

the Gd? lesion count would change in response to change

in instantaneous peginterferon b-1a concentration. A more

likely indirect response model, while potentially suit-

able for describing the underlying relationship, was not

appropriate given the limited number of lesion count

observations available per individual. As a result, we

estimated individual AUCss as the exposure parameter and

the temporal pattern for drug effect onset was described by

an empirical first-order exponential function as suggested

by the data. The AUCss was derived according to Eq. (1)

where DOSE equals 125 mcg, N represents the total

number of doses received over 4 weeks (N = 2 for sub-

jects in the every-2-week group; N = 1 for subjects in the

every-4-week group), and CL represents post hoc clearance

estimate for each subject:

AUCss ¼
DOSE � N

CL
ð1Þ

We also explored Poisson distribution and negative

binomial distribution for our response data.

In order to account for the excess zeros observed in the

data set, the ZIP distribution was also tested. The ZIP

distribution is defined as in Eq. (2):

P x ¼ kð Þ ¼
P0 þ 1� P0ð Þ � exp �kð Þ; if k ¼ 0

1� P0ð Þ � kk

k!
� exp �kð Þ; if k[ 0

8
<

:
ð2Þ

where x is the random variable for lesion count, k is an

observed outcome, P0 is the inflated proportion of zero

counts, and k is the mean parameter. This model assumes

that the observations of lesion count are coming from two

processes: one process for the excess zeros and the other

process that behaves as a regular Poisson. The Negative

Binomial distribution allows a flexible relationship

between mean and variance. Its probability mass function

is given in Eq. (3):

P x ¼ kð Þ ¼
C kþ 1

OVDP

� �

C kþ 1ð Þ � C 1
OVDP

� �

� 1

1þ OVDP � k

� � 1
OVDP

� k

kþ 1
OVDP

 !k

;

k� 0

ð3Þ

where x is the random variable for lesion count, k is an

observed outcome, k is the mean parameter, and OVDP is a
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parameter reflecting over-dispersion. Similarly, the Nega-

tive Binomial distribution can be modified to accommodate

an excess proportion of zeros.

Emax and log-linear function forms were explored to

describe the effect of AUCss on Gd? lesion count:

kij ¼ ki0 � 1� Emax �
AUCij

EC50 þ AUCij

� �

ð4Þ

kij ¼ ki0 � exp b� AUCij

� �
ð5Þ

In Eqs. (4) and (5), kij is the mean parameter of dis-

tribution for subject i at time j (days since first dose of

active dose), ki0 is the baseline k, AUCij is the AUCss

value for subject i at time j (it is either 0 for subjects on

placebo treatment or at baseline, or the estimated steady

state level, if at time j the subject was on peginterferon b-
1a treatment). In the Emax model, parameter Emax rep-

resents the maximal proportional change in baseline k,
and EC50 stands for the AUCss at which 50 % of the

maximum reduction can be achieved. In the log-linear

model, parameter b is the slope of AUCss effect in log

scale.

In the case of a zero-inflated distribution, the drug effect

can not only influence parameters k, but also parameter P0,

where the relationship can be expressed as:

log
P0;ij

1� P0;ij

� �

¼ P0 þ c� AUCij; ð6Þ

In Eq. (6), P0,ij stands for the inflated proportion of 0

lesion count at time j for subject i, P0 is the inflated pro-

portion of 0 count at baseline or when receiving placebo

treatment, and c is the slope parameter for drug effect.

Marginal (naı̈ve pooled) model and mixed-effect model

were tested initially. With the mixed-effect model, random

effect on baseline ki0 was assumed to follow a log-normal

distribution. Given the observed large proportion of sub-

jects with zero lesion count during the entire study, a

mixture model was further tested. With the mixture model,

random effect on baseline ki0 was assumed to come from

two sub-populations: a sub-population with low lesion

activity and a sub-population with relatively higher lesion

activity (Eq. (7)). Two different over-dispersion parame-

ters, OVDP1 and OVDP2, were used for the two sub-

groups. Since each individual only contributed one AUCss

value, random effects on slope parameter were considered

non-identifiable and therefore were not included.

ki0 ¼ ki0;1 � I Y ¼ 1f g þ ki0;2 � I Y ¼ 0f g ð7Þ

where Y �Bernoullið1; hÞ, ki0;1 � LogNormalðl1;x2
1Þ, ki0;2

� LogNormalðl2;x2
2Þ, and l2 = R 9 l1.
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Fig. 1 Observed Gd? lesion count over time for each individual were

overlaid and grouped by initial treatment assignment. Each line

represents one subject. The data displayed large between-subject as

well as within-subject variation. In addition, the shift of distribution of

lesion count toward zero is apparent after treatment with SC

peginterferon b-1a, and is more pronounced with the every-2-week arm
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Preliminary visual inspection suggested peginterferon

b-1a treatment gradually decreases Gd? lesion count over

time and the maximum effect was observed at Week 54 or

beyond; therefore, a first-order exponential function was

adopted to describe the time course of drug effect onset,

which is described in Eq. (8) for the log-linear model case.

In Eq. (8), tij is the day after first dose of active dose

(would be 0 at baseline or for placebo treatment) and t1/2 is

the pharmacologic half-life effect parameter to be esti-

mated. The term is a multiplicative factor added on the

exposure effect; therefore, as tij increases, the value of this

term goes to 1 and maximum drug effect (or steady state

effect) is achieved.

kij ¼ ki0 � exp b� AUCij � 1� exp � 0:69

t1
2

� tij

 !" # !

ð8Þ

The same models were applied to the longitudinal new

or newly enlarged T2 lesion count data, except that instead

of assuming a first-order exponential decline for the onset

of drug effect, the mean lesion count observed in each time

interval is assumed to be proportional to the length of the

observation interval.

Model evaluation

To evaluate the goodness-of-fit for the model, the marginal

proportion of each observed outcome is compared to either

population-predicted marginal probabilities or the average

of individual predicted probabilities.

An alternative approach of model evaluation was a

simulation-based visual predictive check (VPC). Five

hundred data sets were simulated using the final model and

corresponding parameter estimates. The data were first

binned according to the value of AUCss. Data were divided

into 21 subgroups: one subgroup for zero AUC and another

20 subgroups for positive AUC such that an approximately

equal number of subjects are in each subgroup. Within

each bin, for any pre-specified grouping of outcomes (e.g.

lesion count = 0, lesion count = 1, 2 B lesion count B 4,

and lesion count[ 4), the observed marginal proportion

was overlaid with the corresponding 90 % prediction

interval based on simulation. In addition, to evaluate

whether the variability described by the model reflects the

variability in observed data, the mean and variance of

lesion count in each bin in each simulated data set were

obtained and compared to that of the observed data.

Finally, a non-parametric bootstrap was used to evaluate

the uncertainty of the model parameter estimation [17].

One thousand bootstrap data sets were generated; each

contained the same number of subjects as the original data

set and they were randomly drawn with replacement. For

each of the 1000 bootstrap data sets, the model parameters

were estimated. The mean and the 95 % confidence inter-

val (CI) for all the parameters based on the bootstrap

replicates were compared to the estimates from the original

data set.

Statistical analysis software

Data sets for Gd? lesion count were assembled using SAS

(SAS Institute Inc., Cary, NC, USA, version 9.3). Both

estimation of individual AUCss and the PK/PD analysis

were carried out in NONMEM (ICON plc, Dublin, Ireland,

version 7.2). Laplacian approximation method was used for

parameter estimation. VPC and bootstrap procedure were

implemented with PsN version 4.4.0. [18, 19]) and plotted

with Xpose 4.5.3 [20, 21]. Data plotting was implemented

with R software (R Foundation for Statistical Computing,

Vienna, Austria, version 3.1.1).

Results

Patient demographics

A full description of participant flow in the ADVANCE

study, and details of baseline demographic and clinical

characteristics in each treatment group, have been pub-

lished previously [4]. The population enrolled in this study

was consistent with a general multiple sclerosis population.

A total of 1505 subjects were included in this analysis

(497, 510, and 498 subjects enrolled to placebo, peginter-

feron b-1a 125 mcg every-2-weeks, and peginterferon b-1a
125 mcg every-4-weeks at baseline, respectively).

Gd1 lesion count

At Year 2, relative to the peginterferon b-1a every-4-week
group, the number of Gd? lesions was reduced by 71 %

(p\ 0.0001) in the peginterferon b-1a every-2-weeks

group (0.2 and 0.7 for the every-2-week and every-4-week

respectively). Individual Gd? lesion counts across visits

are displayed in Fig. 1 by treatment assignment for the

2 year period. The data revealed large between-subject as

well as within-subject variation. In addition, the shift in the

distribution of lesion count toward zero is apparent after

treatment with peginterferon b-1a, and it is more pro-

nounced within the every-2-week arm.

Another characteristic of this data set is the high pro-

portion of zero count. Across the three treatment arms, 38,

57, and 43 % of subjects had no Gd? lesions over all four

MRI scans in the placebo, the every-2-week, and the every-

4-week arms, respectively. At the same time, there was a

small proportion of lesion counts that were C30 in each

J Pharmacokinet Pharmacodyn (2016) 43:371–383 375
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arm. This indicated that the distribution of lesion counts is

heavily skewed toward zero; however, there is also a heavy

tail toward the large counts. As a result, high over-dis-

persion is a feature of the data (in Supplementary Fig. S2,

marginal mean of Gd? lesion count was plotted against the

variance of Gd? lesion count for subgroups defined by

AUCss, which suggested high over-dispersion).

Model comparison

A comparison of the different models tested in the analysis

of Gd? lesion counts is summarized in Table 1.

With the marginal Poisson model (Model 1, Table 1),

the minimum objective function value (OFV) was 23,223.8

and the estimated slope parameter for exposure effect was

-0.0254. As shown in Fig. 3, this model did a poor job

predicting the probability of either small counts (0, 1, 2,

and 3) or large counts (C10).

The marginal ZIP model (Model 2, Table 1) was then

fitted to the data, where a parameter to reflect extra pro-

portion of zeros was added to a regular Poisson distribution

(parameter P0 in Eq. (2)). The OFV for this model was

16,840.5, which corresponded to a reduction of 6383.3

points compared to the marginal Poisson model. The

parameter P0 is estimated to be 0.596. As the effect of

peginterferon b-1a exposure is parameterized to both

reduce the mean of regular Poisson component (parameter

k in Eq. (2)) as well as increase the extra proportion of zero

(parameter P0 in Eq. (2)), two drug effect parameters were

required and their estimates were -0.0116 and 0.0163,

respectively.

The marginal negative binomial model (Model 3,

Table 1) yielded an OFV of 11,960.8, which was a further

reduction of 4879.7 from the marginal ZIP model. The

estimated drug effect slope was -0.0209. The estimated

OVDP parameter was 13.4, indicating the variability of

data is much larger than the mean of data. Figure 3a, b

suggested a much improved fit in both ends of the distri-

bution curve, although slight over-estimation for the

probability of zero count was apparent. However, the

marginal zero-inflated negative binomial model appeared

to be over-parameterized, and it failed to converge.

The marginal models assume that all the subjects share a

common baseline level of k. However, in-depth review of

the individual profiles revealed that, although within-sub-

ject variability across different visits could be large, in

general, subjects with more active disease tend to have

more lesions observed in multiple visits, or in the contrast,

consistently low lesion counts were observed across mul-

tiple visits. This is an indication that different subjects have

different inherent disease activity levels. Therefore, adding

a random effect into the model to account for between-

subject variability in baseline disease activity would be a

natural next step to explore. As it was apparent from prior

tested models that negative binomial models are more

suitable for such over-dispersed data, only negative bino-

mial models were further evaluated.

In the mixed effect negative binomial model (Model 4,

Table 1), the individual baseline mean count ki0, which
reflects underlying Gd? lesion disease activity prior to

treatment with peginterferon b-1a, was assumed to follow a

log-normal distribution. The model also converged suc-

cessfully and all parameters were estimated with relative

standard error (RSE) less than 19 %. The OFV for this

model was 11,310.1, reflecting a reduction of 650.7 from

the marginal negative binomial model. The estimated drug

effect slope was -0.0267. The omega parameter (variance

for gk) was estimated to be 1.712, which translated into a

coefficient of variation of 131 % in the between-subject

variation in baseline disease activity. Interestingly, the

OVDP parameter estimation was reduced to 0.788; this

suggests that, once the large between-subject variation in

the baseline disease activity was accounted for, the vari-

ability of observations at individual level was much

Table 1 Comparison of different models tested for Gd? lesion count

Model Description OFV Estimated slope of

AUC effect

Model 1 Naı̈ve pooled poisson model 23,223.8 -0.0254

Model 2 Naı̈ve pooled zero-inflated Poisson model, log-linear model for AUC effect on k, and logistic

model for AUC effect on P0

16,840.5 -0.0116 on k

0.0163 on P0

Model 3 Naı̈ve pooled negative binomial model, time effect was removed to allow convergence 11,960.8 -0.0209

Model 4 Mixed effect negative binomial model, random effect on baseline rate parameter ki0 (assuming

log-normal distribution), over-dispersion parameter OVDP assumed constant

11,310.1 -0.0267

Model 5 Mixture model on baseline rate parameter ki0 with two log-normally distributed sub-populations,

OVDP assumed to be different for each sub-population

10,971.4 -0.0256

In all models, the AUC effect on mean Gd? lesion count was assumed to follow a log-linear model, and drug-effect onset was described by a

first-order exponential function
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reduced. This is in contrast to the large value of estimated

OVDP parameter in the marginal negative model, where it

groups together both the between- and within-subject

variation. A further evaluation of the distribution of

Empirical Bayesian Estimates of gk indicates that its dis-

tribution is highly skewed and substantially deviated from

normal distribution (Fig. 2); many subjects had small

yet almost identical values of estimated gk. This indicates
that the log-normal distribution is not appropriate for the

random effect of baseline mean Gd? lesion count.

The final model was a mixture negative binomial model

(Model 5, Table 1) with two subpopulations for the

between-subject variation on baseline mean parameter ki0,
which reflects that 40–60 % of the subjects had no recor-

ded Gd? lesions across all four MRI scans. Again, the

model converged successfully and the OFV was 10,971.4.

Although visually the improvement on the marginal prob-

ability in Fig. 3a, b is quite subtle, there appears to be

better fitting, especially in the tail part of the distribution

curve, with the mixture negative binomial model. The

parameter estimates, together with the RSEs, are given in

Table 2. The median as well as the 95 % CI based on the

bootstrap for each parameter are listed in Table 2, con-

firming that all parameters were estimated with good

precision.

The model suggests that approximately 60 % of the

subjects fall into the lower baseline lesion activity sub-

population (see also Supplementary Fig. S1). The typical

values of ki0 are estimated to be 0.48 and 1.69 for the lower

baseline lesion activity and higher baseline lesion activity

sub-populations, respectively. This was a sizeable separa-

tion between these two groups. The model estimated the

between-subject variability on ki0 for the lower baseline

lesion activity group to be very small; therefore, it was set

to zero. The between-subject random effect on ki0 for the

higher lesion activity sub-population was estimated to have

a 112 % coefficient of variation, which implied large

heterogeneity in disease activity among patients. Different

OVDP parameters were needed for the two sub-populations

and they were estimated to be 44.8 and 0.5 for the low

lesion activity and high lesion activity groups, respectively.

At first inspection, this appeared to be counter-intuitive.

However, since the OVDP value for the lower lesion

activity group encompasses both between- and within-

subject variation and mean lesion count was smaller in this

group, the ratio between variance and mean was indeed

large.

The estimated slope of AUCss effect on log(k) is

-0.0256; this implied that, with each additional increase of

27 ng/mL h in AUCss, k was reduced by an additional

50 %. Across the every-2-week AUCss range, the range of

decline was much narrower than that across the every-4-

week AUCss range; in addition, the mean decline for the

every-2-week group was greater than that of the every-4-

week group.

Figure 4 displays the observed proportion of different

lesion counts (0, 1, 2, 3, 4, 5, 6, 7, and[7 counts) in each

AUCss bin, with the corresponding 95 % CI based on 1000

simulation runs. The clear trend of increased proportion of

zero count with increasing AUCss, or decreased proportion

of one or more lesion counts with increasing AUCss, gen-

erally lies inside the confidence band. This is also true for

large count numbers and the observed proportions fall well

within the 95 % CI. In addition, the observed variance and

mean for each subgroup defined by AUCss were similar to

those from 20 simulated data sets (see also Supplementary

Fig. S3). The greater-than-proportional increase in the

variance relative to mean in the observed data was well

reflected in the simulated data sets. This implies that the

model not only captured the central tendency of the data

well, but that it also represented the variability of the data

well.

In Fig. 5, observed marginal mean Gd? lesion counts

by AUCss subgroup were overlaid with mean and 95 % CI

based on 1000 simulations. Boxplots for the population-

PK-model-estimated AUCss in every-2-week and every-4-

week arms are also shown. The simulation-based mean

curve is aligned with the central tendency of the observed

data. In addition, the observed mean lesion counts lie

within the simulation-based 95 % CI. Similar marginal

mean lesion count was observed across the range of AUCss

resulting from the every-2-week regimen. However, in the

range of AUCss resulting from the every-4-week regimen, a
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Fig. 2 Quantile–quantile plot for empirical Bayes estimate of gk0 in
the mixed effect negative binomial model (Model 4). The random

effect on baseline k was assumed to follow a log-normal distribution;

therefore, gk0 should follow a normal distribution. However, the lower

end of the distribution significantly deviated from the Normal

distribution. This part of the distribution comprised predominantly

subjects with no lesions observed during the trial and their g estimate

would be different only when the corresponding AUCss is different.

This graph indicates that the individual level k cannot be differen-

tiated for these subjects; therefore, grouping them into a sub-

population was performed
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substantial difference in marginal mean lesion count was

either observed in the data or predicted by the model

among the low AUC subgroup and high AUC subgroup.

T2 lesion count

Similar models were tested on the longitudinal T2 lesion

count data, and the relative performance of these models in

terms of goodness-of-fit are in the same order as for Gd?

lesion count data (model comparison was presented in

Table 3; estimates of parameters in the final model pre-

sented in Table 4). The final model selected to describe T2

lesion count data was also a mixture negative binomial

model with two sub-populations for the between-subject

variation on baseline mean parameter ki0. The effect of

AUCss on log(k) is estimated to be -0.0147, with a stan-

dard error (SE) of 0.0011. This suggested that AUCss is a

highly significant covariate on T2 lesion count and

increased AUCss led to a greater reduction of T2 lesion

count. Figure 6 suggests that the model fits the data well
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Fig. 3 Goodness-of-fit for

marginal probability of

observed count in the entire data

set across different models.

a count B10; b count[10.

Observed marginal probabilities

(diamonds) were overlaid with

model-predicted marginal

probabilities (lines) for different

models. For each unique lesion

count observed in the data set,

the marginal probability is

defined as the ratio between the

total number of the count and

the total number of observations

in the data set. To calculate the

model-predicted marginal

probability for a particular

count, the probability of

observing this count at each

visit for each individual is first

obtained based on individual

empirical Bayes estimates of

parameters and then averaged
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Table 2 Non-parametric bootstrap analysis and parameter estimates of the final model for Gd? lesion count (Model 5 mixture negative

binomial model)

Model

parameter

Description Point

estimate

Non-parametric

bootstrap (500

replicates)

Median 95 % CI

l1 Baseline mean Gd? lesion count for a typical subject in the lower baseline lesion activity

sub-population

0.48 0.474 (0.382,

0.609)

R Ratio of the mean Gd? lesion count for a typical subject in higher baseline lesion activity

group to lower baseline lesion activity group

3.53 3.58 (2.58, 4.73)

l2 Baseline mean Gd? lesion count for a typical subject in the higher baseline lesion activity

sub-population

1.69 1.70

r1 Dispersion parameter for baseline k in the lower baseline lesion activity sub-population 44.8 44.7 (39.6, 50.8)

r2 Dispersion parameter for baseline k in the higher baseline lesion activity sub-population 0.499 0.496 (0.398,

0.586)

h Proportion of subjects with lower baseline lesion activity 0.602 0.602 (0.561,

0.651)

b Slope of AUC effect on log(k) -0.0256 -0.0257 (-0.0304,

-0.0216)

t1/2 Half-life of drug effect onset time (days) 115 113.8 (73.8, 179.6)

r2 Variance of random effect on baseline k in log scale for the higher baseline lesion activity

sub-population

1.25 1.22 (1.00, 1.46)
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Fig. 4 Visual predictive check

for marginal probability of

different lesion count categories

(0, 1, 2, 3, 4, 5, 6, 7, and[7

counts) based on 1000

simulations with Model 5 the

mixture negative binomial

model. The Gd? lesion count

observations were divided into

21 groups according to

associated AUCss (one group for

zero AUCss and 20 groups for

all positive AUCss). The dots

connected by a line were the

observed proportion for

different lesion count categories

and the shaded region were the

corresponding 90 % CI based

on simulation. The dots along

the x-axis are the boundary

value of each AUC bin
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and a smaller difference in T2 lesion count was observed

among subjects receiving the every-2-week regimen com-

pared to the every-4-week regimen.

Discussion

Since Gd? lesions represent acute blood–brain barrier

disruption, the number of Gd? lesions is highly unpre-

dictable at different time points within a subject. There was

one subject in the placebo arm who had 6 Gd? lesions at

the baseline visit but 40 and 33 lesions at Week 24 and

Week 48, respectively; lesion count reduced to zero after

switching to the every-2-weeks regimen for 1 year. Nev-

ertheless, subjects with very few lesions at baseline tend to

have a small number of lesions across all scans, while

subjects with a relatively greater number of lesions at

baseline are more likely to record larger lesion counts. This

indicates that both between- and within-subject variation in

counts are high and an appropriate model should be able to

reflect these features simultaneously.

Multiple models were tested in this study, including

marginal models with regular Poisson, zero-inflated Pois-

son, regular negative binomial, zero-inflated negative

binomial, mixed effect negative binomial, and mixture

negative binomial. Not surprisingly, none of the marginal

models can adequately reflect such an irregular distribution

of count data. Both the mixed effect negative binomial

model and the mixture negative binomial model with two

sub-populations performed significantly better than the

marginal models. Judging from multiple factors, including

the precision in parameter estimation, the value of the

estimated parameter, goodness-of-fit for either marginal

probability of each observed count or variance versus mean

plot by subgroups of AUCss, or VPC on the proportion of

different counts binned by AUCss, the mixture negative

binomial model appeared to be the most robust model.

Compared to the paper by Velez de Mendizabal et al.,

the Gd? lesion count data displayed similar features,

which are high between-subject and within-subject vari-

ability, over-dispersion, and large proportion of zero count.

Their data were monthly observations from nine individ-

uals, and the data set we analysed here are much more

sparse at an individual level but have a larger sample size.

While incorporating a Markovian feature in the model

would not be supported by the data due to long interval

between MRI acquisitions, the lesion count data never-

theless indicated correlation within individuals and large

sample size allowed us to divide the subjects into two sub-

populations with different levels of lesion activity. Both

analyses found negative binomial model fits the data better

than Poisson model (even with a zero-inflated component).

For the selected model in their paper, which is a negative
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Fig. 5 Observed marginal mean Gd? lesion count by AUCss

subgroup, overlaid with mean and 95 % CI based on 1000 simula-

tions. Boxplot of the population PK model estimated AUCss in the

every-2-week and every-4-week arms. The simulation-based mean

curve is aligned with the central tendency of the observed data. In

addition, the observed mean lies within the simulation-based 95 %

CI. Across the range of AUCss resulting from the every-2-week

regimen, marginal mean Gd? lesion count had little change.

However, in the range of AUCss resulting from the every-4-week

regimen, a substantial difference in marginal mean Gd? lesion count

was either observed in the data or predicted by the model

Table 3 Comparison of different models tested for new or newly enlarged T2 lesion count

Model Description OFV Estimated slope of

AUC effect

Model 1 Naı̈ve pooled poisson model 45,024.1 -0.017

Model 2 Naı̈ve pooled zero-inflated Poisson model, log-linear model for AUC effect on k, and logistic

model for AUC effect on P0

33,561.6 -0.0117 on k

0.011 on P0

Model 3 Naı̈ve pooled negative binomial model 18,267.5 -0.0143

Model 4 Mixed effect negative binomial model, random effect on baseline rate parameter ki0 (assuming

log-normal distribution), over-dispersion parameter OVDP assumed constant

17,021.6 -0.0157

Model 5 Mixture model on baseline rate parameter ki0 with two log-normally distributed sub-populations,

OVDP assumed to be different for each sub-population

16,726.9 -0.0147

In all models, the AUC effect on mean T2 lesion count was assumed to follow a log-linear model, and mean parameter k is assumed to be

proportional to the duration of observation for which new or newly enlarged T2 lesion were recorded

380 J Pharmacokinet Pharmacodyn (2016) 43:371–383

123



binomial model with first and second order Markov factors,

the estimated underlying mean lesion count was 0.94.

Interestingly, this number is very similar to the weighted

mean baseline lesion count for the two sub-populations

(0.96) observed in our analysis, which suggests that

reduced MRI acquisition frequency did not undermine the

estimation of underlying lesion activity. This suggests that

for a large-scale clinical study, the increased cost associ-

ated with more frequent MRI scans does not provide much

additional value in terms of estimating the treatment effect.

The estimated between-subject variability on k was 66 %

in the de Velez de Mendizabal et al. paper, and the estimate

was 112 % for the high disease activity sub-group in our

analysis, but it is foreseeable that for the entire population,

it would be smaller and closer to their estimate.

The large heterogeneity in lesion activity among the MS

patients enrolled in clinical studies is very common; similar

phenomenon have been observed in clinical studies for

several other MS treatments (data not shown). Apparently,

it is difficult to show treatment effect in subjects with low

lesion activity; therefore, for future clinical studies in MS

patients where Gd? or T2 lesion count serves as a primary

endpoint (e.g. Phase 2 dose-ranging studies), it is a plau-

sible idea to enrich patient population by selecting subjects

with at least one lesion at baseline in order to improve the

sensitivity of a study to detect drug effect.

Conclusions

We tested multiple models to describe the relationship

between longitudinally collected Gd? (and T2) lesion count

and steady state peginterferon b-1a AUC. A mixture nega-

tive binomial model with two sub-populations adequately

Table 4 Non-parametric bootstrap analysis and parameter estimates of the final model for new or newly enlarged T2 lesion count (Model 5

mixture negative binomial model)

Model

parameter

Description Point

estimate

Non-parametric

bootstrap (500

replicates)

Median 95 % CI

l1 Baseline mean T2 lesion count for a typical subject in the lower baseline lesion activity

sub-population

0.0066 0.0065 (0.0049,

0.0089)

R Ratio of the mean T2 lesion count for a typical subject in higher baseline lesion activity

group to lower baseline lesion activity group

4.71 4.81 (3.48, 6.25)

l2 Baseline mean T2 lesion count for a typical subject in the higher baseline lesion activity

sub-population

0.031 0.031

r1 Dispersion parameter for baseline k in the lower baseline lesion activity sub-population 35.7 35.5 (30.6, 40.6)

r2 Dispersion parameter for baseline k in the higher baseline lesion activity sub-population 0.459 0.454 (0.396,

0.518)

h Proportion of subjects with lower baseline lesion activity 0.354 0.353 (0.315,

0.394)

b Slope of AUC effect on log(k) -0.0147 -0.0147 (-0.0170,

-0.0124)

r2 Variance of random effect on baseline k in log scale for the higher baseline lesion activity

sub-population

1.21 1.22 (1.05, 1.39)
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Fig. 6 Observed marginal mean new or newly enlarged T2 lesion

count by AUCss subgroup, overlaid with mean and 95 % CI based on

1000 simulations. Boxplot of the population PK model estimated

AUCss in the every-2-week and every-4-week arms. The simulation-

based mean curve is aligned with the central tendency of the observed

data. In addition, the observed mean lies within the simulation-based

95 % CI. Across the range of AUCss resulting from the every-2-week

regimen, marginal mean T2 lesion count had little change. However,

in the range of AUCss resulting from the every-4-week regimen, a

substantial difference in marginal mean T2 lesion count was either

observed in the data or predicted by the model
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captured the important features of the data, including an

excessive proportion of zero counts, over dispersion, pro-

portion of large counts greater than that implied by the

typical count models, and heterogeneity in within-subject

variation. This analysis suggested that SC peginterferon b-
1a exposure is significantly related to the reduction in

Gd? (and T2) lesion count over time, and that the

increased reduction in Gd? and new or newly enlarged

T2 lesion count with the every-2-week regimen compared

with the every-4-week regimen was related to the higher

exposure. The every-2-week regimen produced an expo-

sure range that is close to the plateau range of the

exposure–response curve, while the every-4-week regimen

could lead to a substantial proportion of subjects with

suboptimal exposure to SC peginterferon b-1a. Since the

safety profiles are similar among the two regimens, and

the every-2-week regimen provided superior efficacy, this

regimen was the one proposed to and recommended by

the FDA and EMA labels [22, 23].
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