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The relationship between simulated and judged depth separations for pairs of probe dots on 
planar surface patches was examined in a series of 6 experiments. The simulated slant of the 
patches was varied without varying the simulated depth separation of the probe dots by 
varying the depth gradient orthogonal to the direction determined by the probe dots on the 
image plane. Judged depth separation varied with mean slant for constant simulated depth 
separations. When observers judged depth separations along a closed path, the integral of the 
signed depths did not sum to zero, as would be required in Euclidean geometry. These results 
are inconsistent with the view that the mapping between simulated and perceived 3-D 
structure is alfme and indicate that, in general, the perceived structure cannot be represented in 
either a Euclidean space or an affine space. Moreover, these results are consistent with a 
first-order temporal analysis of the optic flow. 

A pattern of moving two-dimensional (2-D) features on a 
flat screen can give rise to a compelling impression of 
three-dimensionality. This phenomenon has been called the 
kinetic depth effect (Wallach & O'Connell, 1953) or struc- 
ture from motion (Uliman, 1979). Numerous attempts have 
been made to understand the underlying perceptual process 
and to answer the question of how the three-dimensional 
(3-D) properties of the perceived object are related to 
characteristics of the moving pattern. Much of the research 
on this topic has been influenced by the computational 
approach to vision (Marr, 1982) and has sought algorithms 
that could recover the real structure of the distal objects from 
moving patterns. Indeed, the main issue has been to find the 
minimal conditions and constraints that are sufficient for an 
ideal observer to recover the 3-D Euclidean structure of an 
object from 2-D moving images and to investigate the 
psychological validity of the theoretical findings (see Braun- 
stein, Hoffman, Shapiro, Andersen, & Bennett, 1987, for a 
discussion). 

Recently, the view that the structure derived by the 
perceptual system has the same Euclidean properties as the 
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projected 3-D object has been questioned by a number of 
investigators. Empirical findings show that Euclidean quan- 
rifles such as slant (Braunstein, Liter, & Tittle, 1993; 
Domini, Caudek, & Gerbino, 1995), angles (Todd & Bres- 
san, 1990), and depth (Caudek & Proffitt, 1993) are misper- 
ceived by human observers. These findings are inconsistent 
with mathematical models that recover the 3-D Euclidean 
structure from moving images. Furthermore, evidence has 
been provided that two orthographic views of a moving 
object are sufficient for human observers to perceive a 3-D 
structure and that adding views does not substantially 
influence observers' performance in judgments about the 
structure (Liter, Braunstein, & Hoffman, 1993; Todd, Aker- 
strom, Reichel, & Hayes, 1988; Todd & Bressan, 1990; Todd 
& Norman, 1991). l Two orthographic views of a rigid object 
are compatible with a one-parameter family of 3-D rigid 
interpretations (Bennett, Hoffman, Nicola, & Prakash, 1989; 
Koenderink & van Doom, 1991; Todd & Bressan, 1990). 
Because the perceptual system uses this mathematically 
ambiguous information to derive a 3-D structure, some 
researchers have pointed out that more general properties, 
rather than the specific 3-D Euclidean relationships, may be 
preserved in the percept. Moreover, it has been proposed that 
the derived object is related to the projected object by means 
of a linear scaling in the depth dimension (Todd & Norman, 
1991). A linear scaling preserves the affine properties of an 
object, such as the ordinal relationships and the parallelisms, 
but in general does not preserve Euclidean properties such as 
angles and distances (Koenderink & van Doom, 1991). 

Representat ional  Space and Mapping 

Euclidean models as well as affine models that describe 
the perceptual derivation of 3-D structure from optic flow 

1 Adding views may influence performance if the mount of 
rotation (degrees of angular rotation) displayed increases with an 
increase in the number of views (Hfldreth, Grzywacz, Adelson, & 
Inada, 1990; Husain, Treue, & Andersen, 1989). 

1273 



1274 o o 1 ~ a  AND SRAUNSTF.IN 

make very precise predictions about the relationships be- 
tween the 3-D properties of the perceived object and the 
moving projections. Such models can be characterized by 
two important features: the representational space and the 
mapping between the 3-D object and this space. 

The representational space of the Euclidean algorithms 
(Ullman, 1979) is the 3-D Euclidean space, and the mapping 
associates the projected 3-D features to elements of the 
perceived object by preserving the same Euclidean structure 
of the projected object. Because the sequence of 2-D images 
is inherently ambiguous with regard to 3-D structure, 
assumptions about the nature of the motion and the projec- 
tion must be introduced in the mapping process. For 
example, it is possible to derive the 3-D Euclidean structure 
of an object from three views of four points if we assume 
rigid motion and orthographic projection (Ullman, 1979). 

Koenderink and van Doom (1991) proved that it is 
possible to derive the 3-D affine structure from two ortho- 
graphic projections of four points. The constraint of rigidity 
is not necessary, but a 3-D affane transformation is assumed. 
The representational space of Koenderink and van Doorn's 
algorithm is a 3-D afline space, that is, a space where two 
objects that are linear transformations of each other are not 
discriminable. If the visual space is affine, therefore, only 
alfme judgments are possible within this space. For example, 
it is possible to discriminate between parallel and nonparal- 
lel lines, compare segment lengths along parallel directions, 
and judge the coplanarity of points (Todd & Bressan, 1990; 
Tittle, Todd, Perotti, & Norman, 1995), but it is impossible 
to discriminate between 3-D structures that are related by 
linear stretching along the line of sight (Todd & Norman, 
1991) and to make accurate metric judgments of. such 
quantities as absolute length and angles (Todd & Bressan, 
1990). Moreover, Todd, Tittle, and Norman (1995) and Tittle 
et al. (1995) suggested that if the intrinsic structure of 
perceived space were Euclidean, whereas its extrinsic struc- 
ture relative to the environment was not, then we should 
expect rotating objects to appear, in general, nonrigid. 

In the current article we focus on the mapping as well as 
on the representational space that characterizes the structure- 
from-motion process. 2 We show, in general, (a) that the 
mapping between the simulated structure and the perceived 
object is not linear and therefore that the perceived and the 
simulated objects are not aflinely related, Co) that depth 
judgments are internally inconsistent and therefore cannot 
be represented in Euclidean space, and (c) that direct 
comparisons of depth separations along the same direction 
are inaccurate, which indicates that the representational 
space is not affme. 

Domini et al. (1995) recently suggested that perceived 
slant is a nonlinear function of a first-order temporal 
property of the optic flow, the deformation, and that the 
perceived tilt is accurately recovered. As shown below, and 
in Appendix A, this model predicts that the mapping 
between simulated depth and perceived depth will be 
nonlinear and that judgments of perceived depth will not be 
internally consistent. 

The Model 

The expectation that varying the slant of a surface patch 
will result in a nonlinear relationship between simulated and 
perceived depth is based on a model in which a heuristic 
procedure derives the slant of a planar surface that rotates in 
depth from two orthographic projections of the points on the 
surface. The orientation of a planar patch in 3-D space can 
be described in terms of its slant (or) and tilt 0"). Slant is 
defined as the angle between the line of sight (i.e., the z-axis) 
and the normal to the patch. This angle varies over a range of 
90 ° , with slant equal to zero if the patch lies perpendicular to 
the line of sight (i.e., parallel to the x-y plane). Tilt is defined 
as the angle between the projection of the normal to the 
patch and the x-axis. 

Let us consider the optic flow produced by the ortho- 
graphic projection of a patch having slant or and tilt a" and 
undergoing a generic 3-D rigid motion. The differential of 
the optic flow can be decomposed into four components (the 
differential invariants): curl, div, dell and def2. The curl 
component describes a pure rigid rotation in the image 
plane; the div component describes an isotropic contraction 
and expansion; the defl and def2 components describe two 
orthogonal shears (Koenderink & van Doom, 1986; 
Todorovic, 1993). It is easy to show that the square root of 
the sum of the squared defl and def2 is equal to the product of 
the slant (expressed as a tangent) of the planar patch (or) and 
its component of angular velocity (to) parallel to the image 
plane. This quantity is the deformation (def, see also 
Domini, Caudek, & Proffitt, 1997; Koenderink, 1986; Koen- 
derink & van Doom, 1976, 1986): 

def = ~/def 2 + def 2 = tan orto. (1) 

From the first-order optic flow (i.e., from two views), it is 
possible to derive, up to a reflection, the tilt of the surface 
and the component of angular velocity perpendicular to the 
image plane (Hoffman, 1982). However, the slant of the 
surface (or) and the component of angular velocity (to) 
parallel to the image plane are undetermined. As can be seen 
in Equation 1, there are infinite pairs of or and to that produce 
the same def. Domini et al. (1995) found that the perceived 
slant from multiple orthographic projections of a surface 
undergoing a 3-D rotation (or') is a monotonically increasing 
function of defand that the tilt "r' is correctly derived: 

or' = f(def) (2) 

"r' = ~. (3) 

2 An extensive literature exists on the intrinsic geometry of the 
perceptual space for stereopsis (see Indow, 1991, for a review). 
Moreover, experiments have been presented assessing internal 
consistency of the metric judgments in shape from shading 
(Koenderik, van Doom, & Kappers, 1992) and full cues environ- 
merits (F. N. Norman, Todd, Perotti, & Tittle, 1996). This issue has 
been addressed only recently for structure-from-motion (SFM) 
displays by Werkhoven and van Veen (1995), who found that 
observers are inaccurate in making depth relief judgments. 
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Figure 1. Prediction of the nonlinear model. The left panel shows a curved surface and two pairs of 
dots, Po,PI and Pz,Ps, on two patches having different slants. The two pairs have the same simulated 
depth separations. The derived depth separations (right panel) are different, because the projected 
deformations produced by the two patches are different. 

It can be shown (see Appendix A for a derivation) that if 
Equations 2 and 3 are true, then the derived relative depth 
between two points on the surface is 

f ( d e f )  
z '  = z ~ o -  (4) de./'' 

where z is the simulated relative depth between the two 
points.3 Equation 4 does not allow us to make a prediction 
about the function that relates the derived depth to defuuless 
we make an assumption about the nature of the function 
f (def) .  However, we can consider two categories of func- 
tions: (a)f (def)  is proportional to def, or (b)f(def)  is not 
proportional to def. We call the first model a~ne  and the 
second model nonlinear. 

If the model is aJJine, then f (def) = k* def and 

z' = (kco)z. (5) 

Therefore, the derived depth is proportional to the simulated 
depth and does not depend on def. 

If the model is nonlinear, then f (def) ldef  = F(def) is not 
constant, and 

z'  = [o~F(def)]z. (6) 

In this case the proportional factor between the derived and 
the simulated depth changes with def. Because 

z '  = [toF(tan o't~)]z, (7) 

we can vary the expected z' for constant values of simulated 
z by varying tan cr while maintaining a constant value of co. 

The atone and nonlinear models describe very different 
processes of structure-from-motion derivation. To character- 
ize these processes, let us consider a surface rigidly rotating 
about a generic axis. In Equations 5 and 6, oJ can be 
considered constant, because we simulated a constant angu- 
lar velocity. The afline model derives a structure that is 
affinely related to the simulated one, because the derived 
depth separation of every pair of points is related to the 
simulated depth separation by a linear stretching in depth 
(Equation 5). On the other hand, the structure derived by the 
nonlinear model is, in general, not atfanely related to the 
simulated structure. Moreover, it cannot be represented in 
Euclidean space. Let us consider the surface depicted in 
Figure 1. The left panel shows the simulated surface. The 
pairs of points P0,Pl and P2,Ps have the same relative depth. 
However, they lie on patches that have different slants. 
Therefore, the values of def produced by the projection of 
the 3-D motion of the two patches are different, because they 
are the product of different slants and the same component of 
angular velocity co. It follows, in general, that the derived 
depth separations of the two pairs of points are different and, 
therefore, that the mapping is not linear (see Equation 6 and 
the right panel of Figure 1). On the other hand, the pairs of 
point P0,Ps and PI,P2 have the same relative depth and lie on 
patches that have the same slant. The derived depth separa- 
tions of the two pairs are therefore the same. The algebraic 
sum of the derived depth separations along the closed path 
Po,PI,P2,P3 does not vanish, because POP~ - P2P~ is 
different from zero and PoP~ - P~P~ is equal to 0. This 

3 Equation 4 does not describe the process that derives a 
structure from moving images, because z and o~ are properties of 
the distal stimulus. Such a process is described in Appendix A. 
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property is called internal inconsistency and is not a 
property of  Euclidean space. Euclidean geometry is there- 
fore inappropriate to describe the representational space of  a 
nonlinear mapping. 

The experiments described in the present article were 
designed to investigate the effect of  the slant of  surface 
patches passing through pairs of  probe dots on the percep- 
tion of  the depth separation (i.e., the distance between the 
two dots along the line of  sight) of  the dots in each pair. The 
nonlinear model predicts a nonlinear relationship between 
simulated depth and perceived depth when slant is varied. 4 
In the first five experiments the observers matched the 
perceived depth separation of  two probe dots with the length 
of  a line that appeared on a separate monitor. In the first, 
second, and third experiments, the two probe dots were 
positioned on a planar surface, at the intersection of  two 
planar surfaces, and in a cloud of  dots, respectively. It is 
important to note that if the nonlinear model predicts the 
results of  the first three experiments, an affine mapping is not 
necessarily ruled out. We could speculate that the slant of  the 
surfaces on which the probe dots are located leads to 
different scale factors for the affine mapping for different 
displays. This issue was directly addressed in the fourth and 
fifth experiments, in which the two probe dots were posi- 
tioned in different regions of  a single curved or planar 
surface. It can be argued, however, that the method of  
adjusting a line to make absolute depth judgments could be 
inappropriate for investigating whether or not the intrinsic 
structure of  the perceived space is affine, because this 
particular task might require the observers to mentally rotate 
the perceived depth. Therefore, we used a different method 
in the sixth experiment in which observers directly com- 
pared the depth separations for two pairs of  probe dots 
positioned on two planar surfaces rotating rigidly about the 
same axis. The observer's task was to adjust the simulated 
distance in depth between the dots in one pair so that it 
matched the perceived separation in depth of  the dots in the 
other pair. 

Exper imen t  1: A Single  Surface  

The affme model predicts that the perceived depth separa- 
tion of  two probe dots will be proportional to the simulated 
depth separation (see Equation 5). The nonlinear model 
predicts that the derived depth separation will also be a 
function of  the slant of  the planar surface that passes through 
the dots (when simulated slant is varied independently of  the 
simulated depth separation of  the probe dots; see Equation 
7). The purpose of  the first experiment was to investigate 
which of  these two models predicts human performance. 

We simulated an orthographic projection of  a planar 
surface rigidly rotating about the vertical axis with two 
identifiable points positioned on the surface. The observer's 
task was to adjust a line that appeared on a separate monitor 
in order to match the perceived depth separation of  the two 
points. 

M e ~ o d  

Observers. The observers were 6 graduate students at the 
University of California, Irvine. They were paid for their participa- 
tion and were naive to the purposes of the experiments. Only 2 of 
them were familiar with structure-from-motion (SFM) displays. All 
had normal or corrected-to-normal vision (20/40 on the Snellen eye 
chart). 

Design. Three independent variables were examined: the simu- 
lated distance between the two probe dots along the line of sight 
(9.98 cm or 19.96 cm), the slant of the planar surface that passed 
through the two probe dots (0.5, 0.81, 1.24, or 2.0 for the depth 
separation of 9.98 cm; I, 1.44, 2.21, or 4.0 for the depth separation 
of 19.96 cm), and the initial direction of 3-D rotation (to the right or 
to the left). (Unless otherwise specified, slant values reported here 
are the tangents of the slant angle cr.) All of the variables were run 
within observers. 

Apparatus. The stimulus displays were presented on a Xytron 
19-in. (48-cm) color display scope with a Tucker-Davis six-channel 
digital-to-analog interface controlled by a Dell Pentium 90 com- 
puter. Dots were displayed at a rate of 60 frames/s. Plotting 
accuracy was 16 bits in X and Y. The monitor was viewed 
monocnlarly through a viewing tube from a distance of approxi- 
mately 200 cm. The viewing tube limited the visible portion to a 
circular region 27.9 cm in diameter (8* of visual angle). The 
response display was presented on a separate 14-in. (36-cm) 
monitor to the observer's right. The response device consisted of a 
joystick that the observer could use to adjust a line on the response 
display from a minimum length of 0 cm to a maximum length of 
27.5 cm. The direction of the line on the response display was 
parallel to the line of sight for the stimulus display. 

Stimuli. The displays were composed of light red dots on a 
black background. The two probe dots were light green dots. For 
each display, I00 dots were positioned randomly in a circular 
region 27.9 cm in diameter. The motion of the dots simulated the 
orthographic projection of points rotating rigidly in 3-D space 
about the vertical axis through -+6*. The simulated surface 
extended beyond the visible region of the screen so that the 
bounding contours did not become visible during the rotation. One 
entire cycle of rotation took 2 s. Figure 2 shows the simulated 
structure (left panel) and the projection on the image plane (right 
panel). The two probe dots P0 and PI were separated vertically by 
19.96 cm (Ay). The simulated depth separation of the probe dots 
was either 9.98 cm or 19.96 cm (~z). The simulated depth 
separation varied by only 0.6% of the maximum value during the 
rotation. The axis of rotation was 19.96 cm from the midpoint of an 
imaginary segment connecting the two dots and was placed behind 
them to minimize the likelihood of depth reversals (Braunstein et 
al., 1993). When the depth separation was 19.96 cm, points P0 and 
PI projected maximum displacements of 0.60* and 1.79" of visual 
angle, respectively, corresponding to mean velocities on the image 
plane of 0.60*Is and 1.79°/s. When the depth separation was 9.98 
cm, the projected maximum displacements were 0.90 ° and 1.50" of 
visual angle, corresponding to mean velocities of 0.90*Is and 
1.50*Is. For each depth separation, four different slanted planar 
surfaces passing through the two probe dots were simulated. Let us 
indicate with Crmt, the minimum value of slant that a planar surface 
passing through two probe dots can take (see the left panel of 
Figure 2). We selected a second slant, ¢rmax, such that tan trm,x = 
4 tan trmi,. On the basis of pilot studies, we divided the interval 

4 The present experiments are not intended as a general test of 
the nonlinear model; only the relationship between simulated slant 
and judged depth is examined. 
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Figure 2. The simulated structure in Experiment 1 (left panel) and the projection on the image 
plane (tight panel). The two probe dots Po and Pi were separated vertically by Ay and along the line 
of sight by ~.. The axis of rotation was behind the probe dots (to indicates the simulated angular 
velocity). Crmm represents the minimum value of slant that a planar surface passing through two probe 
dots can take. The surface that has the minimum value of slant is depicted with a filled line. We 
selected a maximum slant, ¢rmax, such that tan (rmax = 4 tan Grmin. The dashed line represents the 
surface with slant ~r~. 

between (rmi~ and (rmax into three equal-angle (rather than equal- 
tangent) intervals. For the depth separation of 9.98 cm, this resulted 
in slant angles of 26.6 ° , 39.0 ° , 51.1 ° , and 63.4 ° (tangents of 0.5, 
0.81, 1.24, and 2.0). For the depth separation of 19.96 cm, the slant 
angles were 45.0 °, 55.3 °, 65.6 °, and 76.0 ° (tangents of 1.0, 1.44, 
2.21, and 4.0). 

A generic planar surface can be described by the two compo- 
nents of depth gradient along the x and y axes: gi and g2 (see 
Appendix A). The vertical component (g2) was the same for every 
surface that passed through the simulated probe dots and was 
calculated as the ratio between the depth separation and the vertical 
displacement. The value of this component was 1 for the 19.96-cm 
depth separation and 0.5 for the 9.98-cm depth separation. Because 
slant is defined as the square root of the sum of the squares of the 
two components of the depth gradient, the genetic surface passing 
through the two probe dots took the minimum value of slant when 
the horizontal component of the depth gradient (gl) was null. 
Therefore, the slant was increased by increasing the horizontal 
component of the depth gradient of the planar surfaces. The 
horizontal component of the depth gradient was 0, 1.04, 1.97, or 
3.87 for the 19.96-cm depth separation and 0, 0.64, 1.13, or 1.94 for 
the 9.98-cm depth separation. 

Procedure. The observers were instructed to judge the depth 
separation of the two green dots on the simulated planar surface. 
They were told that depth separation means the distance between 
the two dots along the line of sight. A drawing was used to illustrate 
this concept. They were instructed to use a joystick to adjust the 
length of a white line that appeared on the computer screen 
positioned to their right in order to match the perceived relative 
depth. They were told that the direction of the depicted line was 
exactly the direction along which they had to judge the relative 
depth between the two green dots. When they were satisfied with 
the length of the comparison line, they pressed the trigger of the 
joystick to initiate the next t r i a l .  The responses were not timed. The 
observers participated individually in two sessions of 48 trials each, 
presented in random order. A training session of 16 trials preceded 
the actual experiment. 

Results and Discussion 

A 2 (session) x 2 (depth) x 4 (slant) x 2 (rotation) 
within-subjects analysis of  variance (ANOVA) was per- 
formed on the judged depths. There were significant effects 
of  depth, F(1, 15) = 9.79, p < .05, and slant, F(3, 15) = 
8.29, p < .01, and a significant interaction, F(3, 15) = 5.92, 
p < .01. No other main effects or interactions reached 
significance. 

Mean judged depth for each level of  simulated depth and 
slant is shown in Figure 3. Figure 4 shows the plots for 
individual observers. Five observers showed the same 
trends; only Observer T.L. showed a nonmonotonic relation- 
ship between simulated slant and judged depth. This ob- 
server reported in the debriefing session that he perceived 
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Figure 3. Mean judged depth for each level of simulated depth as 
a function of the simulated slant in Experiment 1. 
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Figure 4. Mean judged depth for each level of simulated depth as a function of the simulated slant 
for individual observers in Experiment 1. 

the least slanted surfaces for both simulated depth separa- 
tions as undergoing a nonrigid horizontal stretching in the 
image plane. Though the observers showed similar trends, 
the depth sealings were very different. These differences 
may be attributable to differences in the perceived distance 
of the object from the observer. Observers reported perceived 
distances ranging from 30 cm to 200 cm, and these were in 
general related to observers' average depth judgments. 

In an additional analysis we calculated for each observer 
the "reliability" of the judgments in each condition ex- 
pressed as the standard deviation of the adjustments relative 
to the mean (F. N. Norman et al., 1996). A 2 (depth) × 4 
(slant) within-subjects ANOVA was performed on the reli- 
abilities. There was a significant effect of depth, F(1, 15) = 
52.092, p < .01, but not of slant. The "reliabih'ty" was 42% for 
the smaller simulated depth and 30% for the larger simulated 
depth. These values, however, should be compared with the 

magnitude of the effect of the slant variable. For a simulated 
depth of 9.98 cm, the mean perceived depth for the 
minimum slant was 401% of the mean perceived depth for 
the maximum slant; for a simulated depth of 19.96 cm, the 
mean perceived depth for the minimum slant was 350% of 
the mean perceived depth for the maximum slant. Appendix 
B presents the "reliability" measures averaged among 
observers in each condition of Experiments 1 through 6. 

There are two important aspects in the present results: (a)  
The slant of the simulated planar surface that passed through 
the two probe dots influenced the judgments of the observ- 
ers. The mean judged depth decreased as the simulated slant 
increased. It dropped to 30% of the maximum judged depth 
for the simulated depth of 19.96 cm and to 25% of the 
maximum value for the simulated depth of 9.98 cm. The 
different ratios between the maximum and minimum values 
for the two simulated depth separations explain the signifi- 
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cant interaction between slant and simulated depth separa- 
tion in determining judged depth separation. (b) Depending 
on the relative surface slants, the judged depth separation of 
the probe dots could be greater for the smaller simulated 
depth separation than for the larger simulated depth separa- 
tion (see Figure 3). This result is especially surprising if we 
consider that one simulated depth separation was twice the 
other one. 

Our motivation for the present experiment was to test the 
validity of two mutually exclusive models that derive the 
depth separation of two probe dots from the first-order 
temporal properties of the optic flow. These results suggest 
that the affine model has to be rejected, because the judged 
depth separation of two probe dots is influenced not only by 
the simulated depth separation but also by the slant of the 
planar surface that passes through the points. When the same 
depth separation was simulated, the judged depth separation 
was a monotonically decreasing function of the simulated 
slant. 

Experiment  2: Two Surfaces 

In Experiment 2 we investigated the effect of the simu- 
lated slants of two transparent planar surfaces passing 
through the probe dots on the judged depth separation of the 
dots. Our purpose was to determine whether judged depth 
can be influenced by the slant of more than one surface and, 
if so, whether the judgments are related to the average slant 
of the surfaces. 

told that two transparent surfaces would be simulated on half of the 
trials. 

Results and Discussion 

A 2 (session) × 6 (surface slants) × 2 (rotation direction) 
within-subjects ANOVA was performed on the judged 
depths. There was a significant effect of surface slant 
condition, F(5, 20) = 23.9, p < .001, and of rotation 
direction, F(1, 4) = 12.6, p < .05. None of the other factors 
or interactions reached significance. In an additional analy- 
sis we calculated the "reliability" of the judgments in each 
condition of Experiment 2 (see Appendix B). 

Mean judged depth is plotted in Figure 5 as a function of 
the mean slant of the surfaces passing through the probe 
dots. (For the single-surface conditions the mean slant is the 
slant of that surface.) When one surface was simulated, 
judged depth was a decreasing function of slant. When two 
surfaces were simulated, judged depth was a decreasing 
function of the mean slant. 

The results of Experiment 1 indicated that judged depth 
separation of two points is influenced by the slant of the 
planar surface passing through the points. These results can 
be predicted by the nonlinear model, which derives the depth 
separation as a function of the slant of a surface that passes 
through the points. In Experiment 1 this function was a 
monotonically decreasing function of the slant. The results 
of Experiment 2 indicate that the perceived depth is a 
monotonically decreasing function of the mean slant of the 
planar surfaces that pass through the probe dots. 

Method 

Observers. Five of the observers who participated in Experi- 
ment 1 participated in this experiment. 

Design. Two independent variables were examined: the slants 
of the surfaces passing through the probe dots and the initial 
direction of 3-D rotation (to the right or to the left). The slant 
variable had six levels: Either a single surface passed through the 
probe dots with slants of 1.0, 1.44, or 2.21, or two surfaces passed 
through the probe dots with slants of 1.0 and 1.44, 1.0 and 2.21, or 
1.44 and 2.21. The first three conditions were equivalent to the 
single-surface conditions in Experiment 1. All of the variables were 
run within observers. 

Apparatus. The ~ was tbe same as that in Experiment 1. 
Stimuli. The displays were similar to those in Experiment 1 

except that 200 dots were positioned randomly in the circular 
region and the two probe dots were always separated vertically by 
19.96 cm. The simulated depth separation of the two probe dots 
was also 19.96 cm, and the axis of rotation was 19.96 cm from the 
midpoint of an imaginary segment connecting the two dots. We 
used the three least slanted surfaces from the greater depth 
separation condition of Experiment 1. The slants expressed as 
angles were 45.0*, 55.3", or 65.6", with corresponding tangents of 
1.0, 1.44, or 2.21. In the three single-slant conditions, 200 dots 
were assigned to one surface, as in Experiment 1. In the three 
two-slant conditions, 100 dots were assigned randomly to each 
surface. 

Procedure. The procedure was the same as that in Experiment 
1 except that the observers participated individually in two sessions 
of 60 trials presented in random order, and a training session of 12 
trials preceded the actual experiment. Furthermore, observers were 

Experiment  3: A Cloud of  Dots 

The results of Experiment 2 indicated that judged depth 
separation of two probe dots is a decreasing function of the 
mean slant of the planar surfaces passing through the dots. 
Our purpose in Experiment 3 was to determine whether 
placing the probe dots on clearly defined smooth surfaces 
was required to obtain an effect of simulated slant on judged 
depth. In this experiment we tested the influence of mean 
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Figure 5. Mean judged depth for two structures (two surfaces and 
one surface) as a function of the mean slant in Experiment 2. 
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slant on judged depth separation for dots randomly posi- 
tioned in a region of 3-D space. 

Me&od 

Observers. The same 5 observers who participated in Experi- 
ment 2 participated in this experiment. 

Design. Three independent variables were examined: the pos- 
sible combinations of three planar surfaces (slants of 1.0 and 1.44, 
1.0 and 2.21, and 1.44 and 2.21), the structure (two surfaces vs. a 
cloud), and the initial direction of 3-D rotation (to the right or to the 
left). All of the variables were run within observers. 

Apparatus. The appatalm was the same as that in Experiment 1. 
Stimuli. The stimuli in the two-surface conditions were the 

same as those in Experiment 2. In the "cloud" condition we 
replaced the two surfaces with a cloud of dots randomly distributed 
in the region delimited by the two surfaces. The procedure we used 
to generate the cloud of dots was to place every dot on a different 
planar surface passing through the probe dots. The slants of these 
planar surfaces were randomly selected from a uniform distribution 
(in degrees) over a range defined by the slant values of the two 
delimiting surfaces. 

Procedure. The procedure was the same as that in Experiment 
2 except that the observers were told that on half of the trials a 
cloud of random dots was simulated. " 

Results and Discussion 

A 3 (surface combination) x 2 (cloud vs. surfaces) x 2 
(rotation direction) within-subjects ANOVA was performed 
on the judged depths. There was a significant effect of 
surface combination, F(2, 8) = 19.67, p < .01, and of the 
structure (cloud vs. surfaces), F(1, 4) = 25.58, p < .01. 
None of the other factors or interactions reached signifi- 
cance. In an additional analysis we calculated the "reliabil- 
ity" of the judgments in each condition of Experiment 3 (see 
Appendix B). 

Mean judged depths for each surface combination and for 
the two structures (surfaces and cloud) are plotted in Figure 
6 as a function of the mean slant of the surfaces passing 
through the probe dots. (The mean slant of the two surfaces 
delimiting the cloud of dots was used in the cloud condi- 
tion.) In the surfaces condition we replicated the results of 
Experiment 2. In the cloud condition the combinations of 
slants of the two surfaces delimiting the random dot region 
also influenced the judged depth separation of the probe 
dots. Furthermore, the mean perceived depth separation was 
greater for the cloud condition than for the surfaces condi- 
tion. Let us consider, however, the plot of Figure 6. The 
mean judged depth separations in the cloud condition are 
plotted as a function of the mean slant of the surfaces 
delimiting the region of the 3-D random dots. This is an 
arbitrary choice, however. Alternatively, we could consider 
an average measure of the slants of the planar surfaces 
passing through the probe dots and each of the randomly 
generated dots in the cloud. In Figure 7 we replotted the 
mean judged depths in the cloud condition as a function of 
the mean slant of the planar surfaces passing through the two 
probe dots and each dot in the cloud. When plotted in this 
way, judged depth is a monotonically decreasing function of 
the mean slant. 
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Figure 6. Mean judged depths for two structures (surfaces and 
cloud) as a function of the mean slant in Experiment 3. The mean 
slant of the two surfaces delimiting the cloud of dots was used in 
the cloud condition. 

The results of Experiment 3 suggest that the judged depth 
separation between two probe dots is influenced by the 
average slant of the surfaces that pass through the points. 
These results also indicate that the effects of simulated slant 
on judged depth are not limited to displays in which the 
points are located on smooth surfaces. 

Experiment 4: Consistency of  Depth Judgments 

The results of the three experiments previously described 
indicate that the slant or the pattern of slants of the planar 
surfaces that pass through two probe dots influences their 
perceived depth separation. The judged depth separation is, 
in general, a decreasing function of the mean of the slants of 
planar surfaces passing through the two probe dots and each 
additional dot in the display. Our purpose in Experiment 4 
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cloud) as a function of the mean slant in Experiment 3. The mean 
slant of the planar surfaces passing through each dot and the two 
probe dots was used in the cloud condition. 
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was twofold. First, it was to extend the previous findings to 
the general case of  two probe dots lying on different patches 
of  the same curved surface. Second, it was to study the 
internal consistency of  metric judgments. Consider the left 
panel of  Figure 8. It shows a curved surface and two pairs of  
probe dots lying on different regions of  this surface. The two 
pairs of  dots have the same depth separation but lie on two 
patches that have different slants. The pair Po,P~ in the figure 
lies on a patch having a slant or0,1 that is smaller than the 
slant cr2.3 of  the patch that contains the pair Pz,P3. If  the 
results of  the previous experiments are replicated, we would 
expect the perceived depth separations of  the two pairs of  
dots to be different. Furthermore, we would expect the 
perceived depth separations of  the pairs Po,P3 and P1,P2 to 
be the same, because both pairs lie on regions of  the curved 
surface with identical slants. We should expect, therefore, 
that the sum Z~,I + Z'~,2 is not equal to Z~.3 + Z '  3,0, because, 

r in this example, Zb, 1 > Z~, 3 and Z'1,2 = Z3,0. If  this 
happened, the judgments would be internally inconsistent 
because different paths o f  integration would give different 
results and the algebraic sum of  the judgments along a 
closed path would not be zero. 

M e & o d  

Observers. The 5 observers who participated in Experiments 2 
and 3 participated in this experiment. 

Design. Three independent variables were examined: shape 
(nine curved surfaces), probe pair positions (four positions), and 
the position of the axis of rotation (behind or in front of the 
simulated surface). All of the variables were run within observers. 

Apparatus. The apparatus was the same as that in Experiment 1. 
Stimuli. The displays were similar to those in Experiments 2 

and 3 except that a single smoothly curved surface was simulated. 
The horizontal diameter of the projected surface was divided into 

three equal regions (see Figure 8). The two lateral regions 
simulated planar patches. These were connected by a central 
cylindrical patch. Each of the lateral regions had a slant value of 
1.0, 1.44, or 2.21. As in Experiments 2 and 3, the vertical 
component of the depth gradient for each of these regions was 1, 
and different values of slant were obtained by changing the value of 
the horizontal component. The depth gradient of the cylindrical 
patch was 1. The horizontal gradient of the cylindrical patch varied 
smoothly between the two values of the horizontal gradient of the 
two lateral planar patchesl The whole surface was, therefore, a 
smooth cylindrical surface (see the left panel of Figure 8). The 
intersection of the simulated surface with a generic horizontal plane 
was a smooth curve that had exactly the same shape for every 
vertical position of the horizontal plane. Figure 9 shows the nine 
surfaces obtained by combining the three possible slants on the left 
region with the three possible slants on the right region. 

On half of the trials, the axis of rotation was behind the surface at 
a distance of 14.0 cm from the center, and on half of the trials it was 
in front at the same distance from the center. We manipulated the 
position of the axis of rotation in order to control the mean 
projected velocities of the probe dots positioned on the lateral 
surfaces. For the asymmetric surfaces rotating in front of the axis of 
rotation, for example, the mean projected velocity of the probe dots 
lying on the less slanted lateral surface was smaller than the mean 
projected velocity of the probe dots lying on the more slanted 
lateral surface. 

The right panel of Figure 8 shows the projection on the image 
plane of the probe dots at the midpoint of the rotation cycle. The 
vertical separation of probe dot pairs Po,PI and P2,Ps was 9.3 cm, 
and the horizontal separation of the probe dot pairs Pc,P3 and P1 ,P2 
was 18.7 cm. Only two probe dots were shown on each trial. The 
simulated depth separations of the pairs of probe dots Pc,P1 and 
P2,P3 were the same in all the displays and corresponded to 9.3 era. 
The depth separations of the pairs Po,Ps and P1,Pz depended on the 
simulated slants of the lateral surfaces. When the lateral surfaces 
had the same slant (see the top panel of Figure 9), their depth 
separation was null. When the lateral surfaces were different, the 
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Figure 8. The simulated cylindrical structure in Experiment 4 (left panel) and the projection on the 
image plane (right panel), tr0,1 and tr2,3 indicate the slants of the two lateral patches; ~kZij indicates the 
simulated depth separation for each possible pair of probe dots (PI,PJ); and size indicates the diameter 
of the visible circular region of the stimulus display. 
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simulated cylindrical structures in F.~Iminmnt 4. ero, or I, and o2 
indicate the possible slants of the two lateral patches; size indicates 
the diameter of the visible circular region of the stimulus display. 

depth separations were 14.9, 8.8, and 5.7 cm for pairs of surfaces 
with slants of 1.0 and 2.21, 1.0 and 1.44, and 1.44 and 2.21, 
respectively. 

Procedure. The procedure was the same as that in the previous 
expe, riments except that the observers were told that the pair of 
probe dots could appear in four different positions on the simulated 
smoothly curved surfaces in the stimulus display. Furthermore, 
they were asked to judge the depth separation of the probe dots at 
the midpoint of the rotation cycle. The observers participated 
individually in four sessions of 72 trials presented in random order. 

Results and Discussion 

Our first goal in Experiment 4 was to investigate the effect 
of the slant of a local planar patch of a smoothly curved 
surface on the judged depth separation of two probe dots 
lying on the patch. Therefore, a separate analysis of the 
depth judgments of the probe pairs Ps,Pl and P2,P3 was 
performed. A 3 (slant) × 2 (probes Ps,Pl or probes P2,P3) × 
2 (axis position) within-subjects ANOVA was performed on 
the judged depths. There was a significant effect of slant, 
F(2, 8) = 4.599, p < .05. None of the other factors or 
interactions reached significance. In an additional analysis 
we calculated the "reliability" of the judgments in each 
condition of Experiment 4 (see Appendix B). 

Mean judged depths for each simulated slant and for the 

two simulated axes of rotation are plotted in Figure 10 as a 
function of the slant of the surface passing through the probe 
dots. Though the interaction of the slant with the axis of 
rotation did not reach significance, F(2, 8) -- 2.97, the plot 
suggests that the effect of surface slant was mainly due to the 
axis-behind conditions. When the axis of rotation was 
behind the surface, the judged depth decreased as the slant of 
the patch on which the probe dots were located increased. 
However, this effect was substantially reduced when the axis 
of rotation was in front. We chose to manipulate the position 
of the axis of rotation in order to control the mean velocity of 
the probe dots, which had been heldconstant in Experiments 
1, 2, and 3. The difference between the maximum and the 
minimum velocity of the probe dots P. ,Pl  and Pz,P3 was the 
same for each simulated surface. Therefore, the mean 
velocity covaried with the ratio between the maximum and 
the minimum velocity--the greater the mean velocity, the 
smaller the ratio. We calculated for each simulated slant the 
mean of the ratios between the maximum and the minimum 
velocities of the probe dots. Figure 11 shows the mean ratios 
as a function of the slant and the axis position. As we can 
see, the mean ratio increases when the slant increases if the 
axis of rotation is behind the surface, and the mean ratio 
decreases when the slant increases if the axis of rotation is in 
front. Let us assume that the ratio between the maximum and 
minimum velocities of the probe dots influenced the per- 
ceived depth separation. The positive correlation between 
ratio and judged depth separation when the axis of rotation 
was behind the surface would produce an effect of ratio in 
the same direction as that of the effect of slant in that 
condition. The negative correlation when the axis was in 
front of the surface would produce an effect of ratio in a 
direction opposite to that of the effect of slant in that 
condition. This would explain the reduced effect of slant 
when the axis of rotation was in front of the simulated 
surfaces. The relationship between ratio and judged depth 
separation was examined directly in Experiment 5. 

Our second goal in Experiment 4 was to investigate the 
ability of human observers to make metric judgments that 
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Figure 10. Mean judged depth for the two simulated axes of 
rotation as a function of the slant of the lateral patch on which the 
pair of probe dots was located in Experiment 4. 
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are internally consistent. Observers, on separate trials, 
judged depth separations for each of the four probe dot 
locations, for each combination of surface and axis position. 
This provided a set of four depth judgments along a closed 
path (see the right panel of Figure 8) for each of the nine 
s imula ted  surfaces  and  the twO positions of the axis of 
rotation. We collected a complete set of these judgments in 
each of the four sessions. We calculated the integral, I ' ,  of 
the judged depth separation for each observer and each 
session for each of the 18 combinations of surface and axis 
position, where I '  = Z~.I - Z~.3 + Z~,0 - Z'l,2. The 
calculated integrals were analyzed in a within-subjects 
ANOVA with slant difference (the difference between the 
slant of the planar patch on the right and the slant of the 
planar patch on the left of the simulated surface; 7 levels) 
and axis position (2 levels) as the independent variables. The 
slant differences were 0 for the asymmetric surfaces (see the 
top panel of Figure 9) and 0.44, 0.76, 1.2, -0.44, -0.76, and 
- 1.2 for the asymmetric surfaces (see the bottom panel of 
Figure 9). Slant difference did not reach significance, F(6, 
24) = 1.793, ns. There were a significant effect of the axis 
position, F(1, 4) = 31.024, p < .01, and a significant 
interaction between slant difference and axis position, F(6, 
24) = 5.916, p < .01 (see Figure 12). None of the other 
factors or interactions reached significance. 

The top panels of Figure 13 show the judged depth 
differences as functions of the slant difference for each 
simulated axis of rotation. The plot on the left, for the two 
vertical probe dot distances (Z~.] - Z ~ )  indicates that when 
the axis of rotation was behind the surface, the difference 
between the judged depth separations was an increasing 
function of the slant difference. This result agrees with our 
predictions. Because we hypothesized that perceived depth 
separation is a decreasing function of slant, we expected that 
a greater difference between the slants of the two patches 
would result in a greater difference between the judged 
depths. However, when the axis of rotation was in front, the 
effect disappeared. This result can be explained by taking 
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Figure 11. Mean ratio between the maximum and minimum 
projected velocities of the probe dots for the two simulated axes of 
rotation as a function of the slant of the lateral patch on which the 
pair of probe dots was located in Experiment 4. 
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Figure 12. Mean integral of the depth judgments on a closed path 
for each simulated axis of rotation as a function of the signed 
difference between the slants of the lateral patches in Experiment 4. 

into account the difference between the 2-D velocity ratios 
of the pair of probe dots Po,PI and P2,P3. The ratio between 
the 2-D velocities of a pair of probe dots was calculated by 
dividing the maximum velocity by the minimum velocity. 
The bottom left panel of Figure 13 shows the difference in 
velocity ratio as a function of the slant-difference for each 
axis position, for probe dots Po,PI and 1)2,1)3. When the axis 
of rotation was behind the surface, the velocity ratio of the 
probe dots on the less slanted planar patch was greater than 
the velocity ratio of the probe dots on the more slanted 
planar patch. As a consequence, the difference between the 
velocity ratios was an increasing function of the slant 
difference. The situation was reversed when the axis of 
rotation was in front. If perceived depth separation increases 
with velocity ratio, as well as with slant difference, the 
effects of these two variables would be in the same direction 
when the axis is behind the surface and opposite in direction 
when the axis is in front. This could result in an increased 
effect of slant difference in the former condition and a 
disappearance of that effect in the latter condition, account- 
ing for the significant interaction shown in the upper left 
panel of Figure 13. 

Let us consider the plot of the mean difference Z~a - 
Z~l ,2  . If we hypothesize that only the pattern of slants of the 
surface on which two probe dots are located influences their 
perceived depth separation, we would expect that the  
differences between the perceived depth separations of the 
probe dots Pc,P3 and PI,P2 are null and do not depend on the 
position of the axis of rotation. However, the results plotted 
on the top right panel of Figure 13 indicate that this was not 
the case. When the axis of rotation was behind the surface, 
the mean difference between the judged depth separations 
was significantly greater. However, the effect of the position 
of the axis of rotation can also be explained by considering 
the plot of the velocity ratio difference (see the bottom right 
panel of Figure 13). 

In conclusion, the results regarding the integral of the 
depth judgments along closed paths can be explained by 
considering the effects of two variables: the slant difference 
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Figure 13. The top panels show the judged depth differences of opposite pairs of probe dots as a 
function of the signed difference between the slants of the lateral patches in Experiment 4. The 
bottom panels show the difference in velocity ratio of opposite pairs of probe dots as a function of the 
signed difference between the slants of the lateral patches. 

between the lateral planar patches and the velocity ratio of 
the probe dots. When the two variables cooperated, the 
integral of the depth judgments along closed paths increased 
as the asymmetry of the simulated surface increased. When 
the two variables were in conflict, the effect almost van- 
ished. It is important to note that when the two variables 
cooperated, the depth judgments were inconsistent with a 
Euclidean model. When the two planar patches had slants of 
0 and 2, for example, the mean integral was 1.0 cm. This 
error should be considered large, because the mean of the 
depth judgments of the four pairs was 2.2 cm. 

The consistency of metric judgments has recently been 
studied by Koenderink et al. (1992) for surfaces of objects 
depicted in photographs. Observers in their study adjusted a 
gauge figure to fit the perceived local attitudes at a large 
number of positions sampled across a surface. Their results, 
unlike ours, suggest that local settings are internally consis- 
tent. We cannot compare our results with the results of 
Koenderink et al. directly, however, because their stimuli 
involved shape from shading and contours and not structure 
from motion. We cannot rule out the possibility that the 
perceptual system adopts different processes for global 

integration of local 3-D structure measurements when it is 
provided with different depth cues. The results of Norman et 
al. (1996), obtained with a procedure similar to the proce- 
dure used in the present experiment, support this possibility. 
Indeed, their results provide evidence that in a nearly full 
cue environment, the intrinsic structure of the perceptual 
space may be non-Euclidean. 

Experiment  5: Effect  of  Velocity Ratio 

The results of Experiment 4 indicate that the ratio 
between the 2-D velocities of two probe dots can influence 
their perceived depth separation. This variable, however, 
was not controlled in that experiment. Our purpose in 
Experiment 5 was to study directly the influence of the 2-D 
velocity ratio. Consider a planar surface rotating about the 
vertical axis and two pairs of probe dots on this surface that 
have the same simulated depth separations. If the two pairs 
project the same differences between the 2-D velocities, the 
ratios are, in general, different and depend on the distance of 
the pairs of dots from the axis of rotation: The greater the 
distance, the smaller the ratio. We should therefore expect 
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that the perceived depth separations of  the two pairs of  probe 
dots will be different when the dots are at different distances 
from the axis of  rotation, even when the same planar surface 
passes through the two points and the simulated slant (and 
def) is thus constant. 

Method 

Observers. The 5 observers who participated in Experiments 2 
through 4 participated in this experiment. 

Design. Two independent variables were examined: the slant 
of the planar surface (1.0, 1.44, and 2.21) and the position of the 
two probe dots (four positions). The variables were run within 
observers. 

Apparatus. The apparatus was the same as lhat in Experiment 1. 
Stimuli. The displays were similar to those in Experiment 4 

except that planar surfaces were simulated and the axis of rotation 
was behind the surface in all conditions. The vertical gradient of the 
simulated planar surfaces was 1 in all the conditions. The slant of 
the planar surfaces was manipulated by changing the horizontal 
gradient, the slant could take the values of 1.0, 1.44, and 2.21. To 
describe the possible positions of the probe dots on the image 
plane, we can refer to the right panel of Figure 8. The only 
difference is that the vertical separation of the dots Po,PI and P2,P3 
was 14.4 cm in the present experiment. The simulated depth 
separation of the pairs of probe dots Pc,P1 and P2,P 3 was 14.0 cm in 
all the conditions. The simulated depth separation of the pairs of 
probe dots Po,P3 and PbPz depended on the slant of the simulated 
planar surface on which the probe dots were positioned and could 
take values of 0, 19.4, and 36.7 cm for slants of I, 1.44, and 2.21, 
respectively (see Figure 14). The probe dots Po and PI were 
simulated at the same distances from the axis of rotation in all the 
conditions and projected the same 2-D velocities (v0 = 0.980/s, 
vl = 0.14°Is, ratio = 7). The ratio between the projected 2-D 
velocities of the dots Pz and 1)3 depended on the slant of the 
simulated planar surface and could take values of 7, 1.64, and 1.35 
for slants of 1, 1.44, and 2.21, respectively. The ratio between the 

projected 2-D velocities of the other two pairs of dots also 
depended on the slant of the simulated planar surface. For the Po,P3 
pairs, the ratio could take on values of 1.0, 9.34, or 16.76 for slants 
of 1, 1.44, and 2,21, respectively. For the PI,P2 pairs the correspond- 
ing ratio values were 1.0, 2.19, or 3.25. 

Procedure. The procedure was the same as that in Experiment 
4. The observers participated individually in two sessions of 48 
trials presented in random order. 

Results and Discussion 

We conducted two separate ANOVAs on the judged depth 
separations for the pair o f  probe dots Pc,P1 and 1)2,1)3 and the 
pair 1)0,1)3 and P1,P2. Both were 3 (slant) × 2 (probe pair) 
within-subjects ANOVAs. For the probe pairs Po,PI and 
Pz,P3, there was a significant effect of  slant, F(2, 8) = 9.401, 
p < .05, and of  probe pair, F(1, 4) = 13.624, p < .05. The 
interaction was also significant, F(2, 8) = 15.494, p < .01. 
For the probe pairs Pc,P3 and Pl,Pz, there was a significant 
effect of  slant, F(2, 8) = 17.107, p < .01, and of  probe pair, 
F(1, 4) = 9.686, p < .05. Their interaction also reached 
significance, F(2, 8) = 11.622, p < .01. In an additional 
analysis we calculated the "reliability" o f  the judgments in 
each condition of  Experiment 5 (see Appendix B). 

Mean judged depth for each slant and for each pair o f  
probe dots is plotted in Figure 15 as a function of  slant. The 
left and right panels show the plots for the pair 1)0,1)1 and 
1)2,1)3 and the pair Ps,P3 and PI,P2, respectively. Consider 
first the judged depth separations for the pairs of  probe dots 
Pc,P1 and Pz,P3 (see the left panel of  Figure 15). The 
hypothesis that motivated the present experiment was con- 
firmed: The ratio between the velocities of two probe dots 
influenced the judged depth separation. Indeed, when the 
slant of  the planar surface was 1.44 or 2.21, the mean judged 
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Figure 14. View from above of the simulated planar surfaces and probe dots in each condition of 
Experiment 5. The depth separations of the pairs of probe dots Pe,Pl and P2,P3 are the same and do 
not change across conditions. The distances of Pe and 1)3 from the axis of rotation are the same and 
also do not vary across conditions. The distances of P2 and P3 from the axis of rotation increase with 
the slant ~ of the simulated planar surface. The slant cr is varied by varying the horizontal component 
of the depth gradient (gl) while keeping the vertical component of the depth gradient (g2) equal to 1. 
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Figure 15. Mean judged depth for each pair of probe dots as a function of the simulated slant in 
Experiment 5. 

depth separation of the pair P2,P3 was half the mean judged 
depth separation of the pair P0,P1. Because the simulated 
depth separation and, therefore, the difference between the 
2-D velocities was the same for both pairs of probe dots, the 
difference between the judged depth separations on the same 
simulated planar surface can only be attributed to the greater 
velocity ratio of the pair P0,P1- 

We also replicated the results of Experiment 1, because 
the judged depth separation of the probe dots P0,P1 de- 
creased as the simulated slant increased across surfaces. In 
this case, only the slant of the surface varied, because the 
2-D velocities of the dots P0 and P~ were the same in all the 
conditions. 

The judged depth separations for the pairs of probe dots 
P0,P3 and P1,P2 were also influenced by the ratio of the 2-D 
velocities (see the right panel of Figure 15). The mean 
judged depth separation of the pair of probe dots P1,1)2 was 
25% smaller than the mean judged depth separation of the 
pair of probe dots Po,P3 when the slant of the planar surface 
was 1.44 or 2.21. Because slant covaried with simulated 
depth separation, however, we cannot reach any conclusion 
about the effect of slant for these pairs of probe dots. 

The results of the present experiment confirmed the 
hypothesis that the velocity ratio influences the perception of 
depth separation of two probe dots. It is likely that the 
difference in results when the axis of rotation was in front 
and when it was behind the simulated curved surfaces in 
Experiment 4 was due to the effects of this variable. (It is 
important to note that these results do not affect the 
conclusions for the first three experiments on the influence 
of slant on the perceived depth separation, because for each 
simulated depth separation in those experiments, the veloc- 
ity ratio of the probe dots was kept constant.) 

Experiment  6: Depth Matching 

In Experiment 4 we found that the judged depth separa- 
tions of two pairs of probe dots lying on the same simulated 
curved surface and having the same simulated depth separa- 
tions could be different. These results indicate that, in 

general, perceived structure from motion is not a linear 
stretching along the line of sight of the simulated structure. 
In Experiment 4, however, two variables contributed to the 
results: the simulated slant of the planar surfaces on which 
the probe dots were positioned and their 2-D velocity ratio. 
In Experiment 5 we isolated the effect of the 2-D velocity 
ratio. Our purposes in Experiment 6 were to isolate the effect 
of the slant by keeping the velocity ratio constant and to test 
the same hypothesis that motivated Experiments 1, 2, 3, and 
4 with a different method. In Experiment 6, two pairs of 
probe dots were present in each display but were located on 
separate planar patches that rotated rigidly about a common 
vertical axis. The observer's task was to adjust the simulated 
relative depth between one pair of probe dots (the test pair) 
until the perceived depth separation was the same as the 
perceived depth separation of the other two probe dots (the 
comparison pair). If the slant of a planar surface that passes 
through two probe dots influences their perceived depth 
separation, as the results of Experiment 1 indicate, we 
should expect observers to be accurate when the slants of the 
comparison and test surfaces are equal and to make system- 
atic errors when the simulated slants are different. 

M e ~ o d  

Observers. The 5 observers who participated in Experiments 2 
through 5 participated in this experiment. 

Design. The horizontal component of the depth gradient was 
manipulated in four conditions: (0.0, 0.0), (0.0, 2.0), (2.0, 0.0) and 
(2.0, 2.0), where the two numbers in each pair are the horizontal 
components of depth gradient of the comparison and test patches, 
respectively. The conditions variable was varied within observers. 

Apparatus. The apparatus was the same as that in Experiments 
1 through 5 except that a separate response display was not used in 
the present experiment. Instead, the joystick was used to directly 
adjust the simulated depth separation of two probe dots in the 
stimulus display. 

Stimuli. The displays were comtx~ed of light red dots on a 
black background. The four probe dots were light green dots. For 
each display, 200 dots were positioned randomly in two circular 
regions having diameters of 10.5 cm and having centers separated 
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horizontally by 8.0 cm. The fight panel of Fignre 16 shows the two 
circular regions; the left panel shows a schematic representation of 
the simulated structure. The motion of the dots simulated the 
orthographic projection of a 3-D rigid structure composed of two 
planar surfaces rotating in 3-D space about the same vertical axis 
through +6 °. Unlike in Experiments 1 through 5, the boundaries 
did not extend beyond the viewing areas. The two simulated planar 
surfaces (the comparison and the test surface) projected to two 
circular regions at the midpoint of the rotation, and their projected 
contours deformed during the rotation. One entire cycle of rotation 
took 2 s. The horizontal component of the depth gradient of the 
comparison surface could be 0.0 or 2.0 (see Figure 17). When the 
horizontal component was 0.0, the vertical component was 0.5. 
When the horizontal component was 2.0, the vertical component 
was 1.0. The horizontal component of the depth gradient of the test 
surface also could be 0.0 or 2.0. The vertical component was 
randomly selected between 0.0 and 2.0. At the midpoint of the 
rotation cycle, the two pairs of probe dots were centered in the two 
circular regions and the vertical separation of the probe dots in each 
pair was 8.7 cm (see Figure 16). The simulated depth separations of 
the comparison probe dots were 4.3 cm and 8.7 cm when the 
comparison surface had a horizontal depth gradient equal to 0.0 and 
2.0, respectively. The simulated depth separation for each pair of 
probe dots on the test surface was random and depended on the 
simulated vertical component of the depth gradient of the test 
surface (the range of depths was from 0 to 17.4 cm). The velocities 
of the probe dots in each pair were equal in magnitude but opposite 
in sign (resulting in absolute velocity ratios of 1). Pressure on the 
joystick changed the vertical gradient of the test surface and, as a 
consequence, changed the simulated depth separation of the test 
probe dots and the slant of the surface (because the slant is the 
square root of the sum of squares of the vertical and horizontal 
gradients). Although this changed the velocities of the probe dots 
on the test surface, the velocities of the probe dots in each pair 
remained equal in magnitude, and the ratio of the absolute 
velocities of the probe dots in each pair remained equal to 1. 

Procedure. The observers were told that two planar surfaces 
rotating about a central vertical axis would be simulated. Their task 
was to adjust the relative depth between two test probe dots lying 
on one surface until their perceived depth separation was the same 
as the perceived depth separation of two comparison probe dots 
lying on the other surface. Observers were told that pushing the 

joystick forward (away from them) would increase the simulated 
depth of the test probe dots and that pulling the joystick backward 
(toward them) would decrease the simulated depth. Coarse changes 
in the simulated depth (I0 times the change produced by moving 
the joystick's handle) could be made by pushing one of the 
joystick's buttons. The joystick's trigger button was pressed to 
initiate the next trial. The observers participated individually in two 
sessions of 80 trials presented in random order. For 2 observers, the 
comparison surface was on the left, and for 3 observers, it was on 
the fight of the stimulus display. 

Results and Discussion 

A 2 (comparison surface) X 2 (test surface horizontal 
gradient) within-subjects ANOVA was performed on the 
ratio between the adjusted depth separation of  the test pair 
of  probe dots and the simulated depth separation o f  
the comparison pair of  probe dots. There were significant 
effects of  the comparison surface, F(1, 4) = 13.309,p < .05, 
and of  the test surface horizontal gradient, F(1, 4) = 10.104, 
p < .05. Their interaction did not reach significance. In 
an additional analysis we calculated the "reliability" of  
the judgments in each condition of  Experiment 6 (see 
Appendix B). 

Table 1 shows the ratios between the adjusted depths of  
the test pair of  probe dots and the simulated depths of  the 
comparison pair of  probe dots in the four experimental 
conditions, where g u  and g2,~ are the horizontal components 
of  the depth gradients of  the comparison and test surfaces 
and Sl and s2 are the slants of  the comparison and test  
surfaces. Because the slant of  the test surface was randomly 
selected at the beginning of  each trial and changed during 
each trial as the observer adjusted the depth separation of  the 
two probe dots, we report the slant that the surface would 
have when the adjusted depth separation was the same as the 
simulated depth separation of  the comparison pair. Az is the 
simulated depth separation of  the comparison probe dots. 

Let us consider the conditions in which the horizontal 
components of  the depth gradient were different for the 
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Figure 16. The shnulated structure in Experiment 6 (left panel) and the projected circular regions of 
the two simulated planar surfaces (the comparison and the test surface) at the midpoint of the rotation 
cycle (fight panel). 
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Figure 1Z View from above of the simulated planar surfaces and 
probe dots in each condition of Experiment 6. The filled circles 
represent the comparison pair, whereas the open circles represent 
the test pair. The dashed lines represent the horizontal component 
of the depth gradient of the comparison (gtA) and test (g2.1) 
surfaces. 

comparison and test surfaces, when the horizontal gradient 
of the comparison surface was smaller than that of the test 
surface, the adjusted depth separation of the test probe dots 
was more then twice the simulated depth separation of the 
comparison pair of probe dots (ratio = 2.51). This result 
agrees with the results of Experiment 1: The greater the 
simulated slant of the surface that passes through two probe 
dots, the smaller the perceived depth separation of the probe 
dots. Because the horizontal gradients of the test and 
comparison surfaces were different (0.0 and 2.0; see Table 
1), the same simulated depths for the test and comparison 
pairs corresponded to different slants (0.5 and 2.06; see 
Table 1). From the results of Experiment 1 we would expect 
that when the two simulated depths were equal, the per- 
ceived depth of the test pair would be smaller than the 
perceived depth of the comparison pair, because the slant of 
the test pair was greater than the slant of the comparison pair. 
We can therefore infer that the observer adjusted a greater 
depth for the test pair in order to perceive the same depth for 
the two pairs of probe dots. 

When the horizontal gradient of the comparison surface 
was greater than the horizontal gradient of the test surface, 
the adjusted depth of the test pair was smaller than the 
simulated depth of the comparison pair (ratio = 0.62; see 
Table 1). In this case, the same simulated depths corre- 
sponded to slants of 2.23 and 1.0 for the comparison and test 
pairs, respectively (see Table 1). The same simulated depths 
would therefore correspond to a perceived depth of the test 
pair greater than the perceived depth of the comparison pair, 
because the slant of the test pair is smaller than the slant of 
the comparison pair. We can therefore conclude that in order 

to perceive the same depth separation for the two pairs of 
probe dots, the observers adjusted the depth separation of the 
test pair to be smaller than the Simulated depth separation of 
the comparison pair. These results confirm the hypothesis 
that motivated the present experiment: The derived structure 
from orthographic projections of a moving rigid object is not 
a linear stretching of the simulated structure. When the 
slants of the surfaces that passed through the two pairs of 
probe dots were different, the observers adjusted the simu- 
lated depth separation of the test pair to be 251% greater or 
38% smaller than the simulated depth separation of the 
comparison pair, in order to perceive the same depth 
separation. It is important to note that metric knowledge was 
not required to perform the task. Indeed, it would have been 
sufficient to adjust the test pair until the two imaginary lines 
that passed through the two pairs of probe dots were 
perceived as parallel. It is also important to point out that a 
rigidity assumption is not necessary to perform the task 
required of observers in the present experiment. In fact, 
algorithms for the affine derivation of structure from motion 
assume only that the projected structure undergoes a 3-D 
a t ~ e  transformation (see Koenderink & van Doom, 1991). 

When the horizontal gradients of the comparison and test 
surfaces were the same, however, we expected that the 
observers would correctly match the depth separations (i.e., 
the ratio would be 1.0). In these conditions, if the adjusted 
depth was the same as the comparison depth, the slants of the 
two surfaces would also be the same. The observers were 
almost correct in the condition in which the two horizontal 
gradients were 2.0 (ratio = 1.09). This was not the case, 
however, when the two horizontal gradients were 0.5. In this 
condition, the ratio of the adjusted depth to the comparison 
depth was 1.44. One possible explanation of the deviation of 
the obtained result from the expected result in the 0.5 
condition is that the responses in this condition were biased 
by a range effect. The initial depth separation of the test 
probe dots was selected randomly on each trial within a 
range from 0 to 17.4 cm. This range was used for all 
conditions. A correct match when the horizontal gradients 
were 0.5 would be 4.3 cm. It is possible that a bias toward 
the center of the range could have led to the higher-than- 
expected mean response (6.2 cm). Indeed, when the horizon- 
tal gradient was 2.0 and the correct adjusted depth was near 
the center of the range (8.7 cm), observers were nearly 
correct. 

Control Experiment 

Our purpose in conducting the control experiment was to 
investigate whether the biases in the results of Experiment 6 

Table 1 
Experiment 6 Stimulus Conditions and Results 

gl,l g2., Az sl s2 Ratio 

0.0 0.0 4.3 cm 0.50 0.50 1.44 
0.0 2.0 4.3 cm 0.50 2.06 2.51 
2.0 0.0 8.7 cm 2.23 1.00 0.62 
2.0 2.0 8.7 cm 2.23 2.23 1.09 
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could be attributed to the specific adjustment method used in 
that experiment. Observers responded to stimulus conditions 
selected on the basis of the results of Experiment 6 in a 
paired comparison design. 

Three observers who had participated in Experiment 6 
participated in the control experiment. Three independent 
variables were examined: horizontal gradients (same or 
differen0, depth separations (same or different), and surface 
position (left or right). The stimuli were a subset of the 
stimuli in Experiment 6. The simulated gradients of the two 
surfaces and the depth separations of the two pairs of probe 
dots are shown in Table 2. gLt and g2,2 and Sl and s2 indicate 
the horizontal depth gradients and the slants, respectively, of 
the two surfaces. AZl and Az2 are the simulated depth 
separations of the two pairs of probe dots. 

As indicated in Table 2, one surface (the comparison 
surface) had the same slant and the same depth separation 
between the probe dots in all the conditions. In two 
experimental conditions, the simulated depth separations of 
the probe dots on the test and comparison surfaces were the 
same. In these conditions, the slants of the test and compari- 
son surfaces could either be the same or different. When the 
simulated depth separations of probe dots on the test and 
comparison surfaces were different, the horizontal gradients 
could be the same or different. When the horizontal gradi- 
ents of the comparison and test surfaces were 0.0, we 
simulated a depth separation of the test probe dots that was 
40% greater than the simulated depth separation of the 
comparison probe dots, because in Experiment 6 the ad- 
justed mean test depth separation was 44% greater in the 
same condition. When the horizontal gradient of the test 
surface was 2.0, we simulated a depth separation of the test 
probe dots that was 200% of the simulated depth separation 
of the comparison probe dots. The observers were asked to 
judge which pair of probe dots had the greater depth 
separation. If the pair on the left was perceived as having the 
greater depth separation, observers were to press the left 
button; otherwise they were to press the right button. Each 
observer participated individually in four sessions of 80 
trials. 

In each condition we calculated the percentage of re- 
sponses in which the depth separation of the test probe dots 
was judged smaller than the depth separation of the compari- 
son probe dots. These percentages are indicated in Table 2. 
When the horizontal gradients were 0.0 and the simulated 
depth separations were the same, the observers were at 
chance in their responses. However, when the horizontal 
gradients were 0.0 and the simulated depth separations were 
different, observers indicated 67% of the time that the 

simulated depth separation was greater. Because the depth 
separation of the test pair was 40% greater than the depth 
separation of the comparison pair, it appears that observers' 
adjustment of the test pair to be 44% greater in Experiment 
6, when instructed to make the depth separations appear 
equal, was an artifact of the method used in that experiment. 
When the horizontal gradients of the two surfaces were 
different and the simulated depth separations of the two pairs 
of probe dots were the same, the observers judged the 
comparison pair depth separation to be greater than the test 
pair depth separation 94% of the time. This result confirms 
the results of Experiment 1: The greater the slant of a surface 
that passes through two probe dots, the smaller the perceived 
depth separation. When the horizontal gradients of the two 
surfaces and the simulated depth separations were different, 
the observers indicated 75% of the time that the comparison 
pair depth separation was greater even though the simulated 
depth separation of the comparison pair was half the 
simulated depth separation of the test pair. 

General  Discussion 

The results of the six experiments reported here lead to 
two general conclusions about the perception of 3-D struc- 
ture from motion: First, the mapping between a simulated 
3-D structure and a perceived 3-D structure is not, in 
general, affine. Second, the perceptual representation of a 
3-D structure derived from motion in a 2-D image is not, in 
general, Euclidean or affine. Evidence for the first conclu- 
sion is found in the results of the first three experiments, in 
which the judged depth separation of two probe dots varied 
with the slant of the surface passing through the probe dots 
or varied with the mean surface slant when more than one 
surface passed through the probe dots. If judged depth 
separation varies with surface slant, even when the simu- 
lated depth separation is held constant, judged depth cannot 
be modeled as a uniform stretching of simulated depth. 

An alternative interpretation of the results of Experiments 
1 through 3 is that a uniform scaling factor is applied to each 
display but that this factor changes from display to display. 
This possibility was disconfirmed in Experiment 6, in which 
surface patches with different slants, rotating together rig- 
idly, were presented simultaneously. Observers adjusted the 
simulated depth separation for a pair of probe dots on one 
surface patch until it appeared to match the simulated depth 
separation of probe dots on another patch. We found that two 
pairs of probe dots having different simulated depth separa- 
tions were judged as having the same depth separation, in 
accordance with the results of Experiments 1 through 3. We 

Table 2 
Control Experiment Stimulus Conditions and Results 

gl,l g2,1 Sl $2 AZl AZ2 % AZ~ < AZ~ 

0.0 0.0 0.5 0.50 4.3 cm 4.3 cm 51 
0.0 0.0 0.5 0.70 4.3 cm 6.1 cm 33 
0.0 2.0 0.5 2.06 4.3 cm 4.3 cm 94 
0.0 2.0 0.5 2.23 4.3 cm 8.7 cm 75 
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can conclude, therefore, that the scaling factor that relates 
perceived and simulated depth separation for a pair of points 
in a rotating rigid surface is a function of the local slant of 
the patch on which the pair lies. 

The influence of the slant of a planar surface on the 
perceived depth separation of two dots that are located on 
the surface is predicted by a model that derives the slant 
from a first-order temporal property of the optic flow called 
def(Domini et al., 1995, 1997). Defis a function of angular 
velocity and simulated slant. In the present article we 
investigated the nature of the function relating perceived 
slant to simulated slant, for a constant value of angular 
velocity. We showed that if the perceived slant is not linearly 
related to the simulated slant, the perceived depth separation 
is also a function of the simulated slant (see Equation 7 and 
Appendix A for a derivation). In Experiments 1, 2, and 3 and 
Experiment 6, defwas manipulated by changing the slant of 
the simulated surfaces with the angular velocity held con- 
stant (see Equation 1). The results are consistent with the 
hypothesis that the derived slant is a nonlinear function of 
def. Furthermore, they indicate that the ratio f(def)/def 
decreases with increasing defand, therefore, thatf(def) is a 
sublinear function of def. 

Our results relating judged depth separation to def are 
consistent with results from a recent study showing a 
relationship between judged shape of a dihedral angle and 
the velocity gradients in orthogonal directions (Liter & 
Braunstein, 1998). The simulated objects in that study were 
dihedral angles consisting of two planes slanted about a 
horizontal axis and meeting at a horizontal edge. Different 
combinations of motion and projection were studied, includ- 
ing perspective projections of translations with the dihedral 
edge either frontal parallel or rotated about the vertical axis 
and orthographic projections of rotations about a vertical 
axis. We computed deffor the slanted planes comprising the 
dihedral angles in each condition in that study. Mean values 
of def were used for the rotated translations and rotations, 
because def varies over views for these conditions. The 
value of def was greatest for the frontal translations and 
about the same for the other two conditions, though the 
mean def for rotations was greater than the mean def for 
rotated translations. In Appendix A of the present article we 
show mathematically that if the perceived slant is a sublinear 
function of def, then the judged dihedral angle is an 
increasing function of def. This theoretical finding is consis- 
tent with the results of Liter and Braunstein (1998), because 
observers judged the frontal translations as representing 
steeper angles (more depth relative to height) than the 
rotated translocations or rotations. Domini et al. (1997) also 
found that the perceived magnitude of angular displacement 
(i.e., the perceived amount of rotation) was an increasing 
function of def. These results are consistent with Liter and 
Braunstein's finding that the rotations and the rotated 
translations were judged as undergoing greater angular 
displacements than the frontal translations, although in fact 
the rotated translations, like the frontal parallel translations, 
displayed a null angular displacement. 

Further evidence for our first general conclusion, that the 
mapping is not affine, is found in the results of Experiments 

4 and 5. The results of Experiment 4 suggest that a second 
factor, the ratio of the velocities of the probe dots, affects 
judged depth separation when simulated depth separation is 
held constant. The effect of the velocity ratio was clearly 
demonstrated in Experiment 5 when def was held constant 
for pairs of probe dots differing in velocity ratio. The effect 
of velocity ratio on judged depth separation is inconsistent 
with an orthographic analysis that maps simulated depth 
onto judged depth through uniform scaling. The effect of 
velocity ratio is consistent with a perspective analysis of the 
image: In a rigid rotation, with the vertical separation in the 
image and the velocity difference in the image fixed for two 
pairs of probe dots, a geometric analysis based on parallel 
projection would yield the same depth separation for each 
pair, but if the velocity ratios differed between pairs an 
analysis based on perspective projection would indicate a 
greater depth separation between the points with the greater 
velocity ratio. The conclusion that a perspective analysis 
may be applied in the perception of orthographic projections 
was reached by Braunstein et al. (1993) and Liter and 
Braunstein (1998) with different stimuli and methods. 

Although the second general conclusion, that the represen- 
tation is not Euclidean or affine, might be derived theoreti- 
cally from the first conclusion, Experiment 4 provides direct 
evidence for the second conclusion. If the perceived 3-D 
structure could be represented in Euclidean space, or even in 
affine geometry, the algebraic sum of metric distances along 
a closed path in depth would have to vanish. In the 
axis-behind condition of Experiment 4 we found that 
judgments on closed paths on a curved surface were not 
internally consistent, because the integral of the judgments 
did not vanish when the structure was asymmetric, that is, 
when the two planar patches on the lateral regions of the 
curved surface had different slants. This was because the 
perceived depth separations of pairs of probe dots that were 
located on differently slanted regions were different. It 
should be noted that the derivation of the correct relative 
depth separations of the two pairs of probe dots does not 
require metric knowledge, because the directions along 
which the measurements had to be made are parallel 
(Koenderink & van Doom, 1991). In Experiment 4 not only 
were the required judgments in the same direction (along the 
line of sight) but also imaginary lines connecting the probe 
dots on the two lateral planar patches were parallel. 

Although the present results are inconsistent with affine 
mapping or representation in structure from motion, they are 
consistent with the view that a first-order temporal analysis 
of the optic flow is used by human observers in SFM tasks 
(Todd et al., 1988; Todd & Bressan, 1990; Todd & Norman, 
1991). In fact, both the nonlinear model and the velocity 
ratio computation require only the information available in 
two views. Although two views are not sufficient geometri- 
cally for a unique solution in structure from motion, they 
appear to be sufficient for a perception of depth separation 
that is directly predictable from the image properties but 
neither veridical nor internally consistent with respect to 
Euclidean geometry. Moreover, the results of the experi- 
ments described in this article indicate that the first-order 
temporal properties of the optic flow mainly influence 
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human performance even if the number  of  views are 
sufficient for a mathematically correct analysis of  the 
moving images. I f  the mapping of  physical 3-D space to 
perceived 3-D space is not Euclidean and is not affine, what 
is the mapping? It is not clear that postulating a particular 
higher order geometry or set of  geometries for either the 
mapping or the representation is necessary for an understand- 
ing of  the recovery of  3-D structure from motion. (See J. E 
Norman & Todd, 1992, for a discussion of  Klein's, 1893, 
hierarchy of  geometries.) This does not imply, however, that 
perceived structure is not predictable from image motion. 
On the contrary, the present results, together with the results 
of  Domini  et al. (1997), Liter and Braunstein (1998), and 
Liter et al. (1993), suggest that specific heuristic processes s 
relating image information to perceived depth and rigidity 
are used by the perceptual system to derive 3-D motion and 
shape f rom moving 2-D images. As we continue to develop 
an understanding of  these processes, we will also increase 
our understanding of  how perceived 3-D structure is related 
to image motion. 

5 See Bmunstein (1994) for a discussion of heuristic processes in 
perception. 
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Appendix A 

T h e  M o d e l  

Consider a Cartesian coordinate system (x, y, z) centered at the 
observer. A planar surface H can be described by 

f ( x , y )  = glx  + g2Y + d, (A1) 

where gl and g2 are tile two components of the depth gradient of the 
plane II  in the x and y directions, that is, the x and y components of 
a vector N orthogonal to the planar surface having the third 
component (the z component) equal to I, and intersecting the z-axis 
at d. The  tilt 09 of the plane II  is defined as 

g2 
"r = - -  (A2) 

gl 

and its slant (o) as 

To better grasp the geometrical meaning of Equations A2 and 
A3, consider a genetic plane H which intersects the z axis at d. If 
we project N on the x - y  plane, then we obtain a two-dimensional 
vector (N') whose components are g~ and g2- The tangent of the 
angle a (i.e., the angle between N'  and the x-axis) is the tilt of the 
plane II. Thus, the tilt is the inclination of the projection of the 
normal vector (N) on the x - y  plane. The modulus of N is the slant cr 
of II, that is, the inclination of II  with respect to the z-axis. If II  is 
parallel to the x - y  plane, then the vector N projects as a point. In 
this case the slant cr of II  is zero. When II  is perpendicular to the 
x-y plane, cr takes on its maximum value (infinity). The angle 
between the normal vector N and the z-axis is the arc tangent of or. 

Let us assume that the plane II  is undergoing a generic 3-D 
motion. The rotation components about the x, y, and z axes of the 
global rotation vector 11 are d 0, 0, and O; ~ and 0 define the rotation 
component of I I  in the x - y  plane. The modulus of this component, 
to, is given by 

to = ~ + dp2. (A4) 

The f i r  of the axis of rotation of H, % (i.e., the inclination of the 
projection of the axis of rotation on the x - y  plane), is 

6 
Tw~m (A5) 

If we let tx, ty, and tz represent the x, y, and z components of the 
translation velocity of II, then we can write the following matrix 
equation assigning a velocity vector V to every point Ix, y,f(x, y)] 
of H: 

[i ][][lx V = 0 t r . (A6) -dp Y + 

~b 0 ,Y) tz 

From Equation A6 it follows that the x and y velocity components 
of the points of H are 

Vx = tx - YP - (gl  x + g2Y + d)O 

Vy = ty -t- XO -- ( g l  x + g 2 Y  + d)~b. (A7) 

Equations A7 specify a linear vector field in the image plane. 
Hoffmann (1982) showed that the first-order properties of this 
velocity field are sufficient to determine (up to a reflection) the tilt 
of the axis of rotation of H, %, the rotatory component of the 
angular velocity 1"1 about the z axis 0, and the tilt x of II. 

The partial derivatives of the velocity field with respect to the x 
and y axis are 

M= (A8) 

In the case of the velocity field produced by the orthographic 
projection of the genetic 3-D motion of the plane H, the matrix M 
becomes 

M=[ -g'~ -0 - g20] 

LO - g,$ -g=~ J" 
(A9) 

This matrix can be decomposed into a sum of four orthogonal 
matrices (Mk) multiplied by four coefficients (Ck), the so-called 
differential invariants (Verri, Girosi, & Torte, 1990): 

1 4 
M = ~ ~_, CROCI k. 

Y=q 
(A10) 

The coefficients Ck characterize different types of 2-D elementary 
motions. The first one, div, identifies an isotropic expansion. The 
second one, curl, defines a local vorticity of the motion field. The 
last two coefficients, defl and def2, are the shear components along 
two orthogonal.directions: 

eiv = c ,  = - f f  + ~--7 

curl = C 2 - 8x 8y 

o] 
defl = C3 = ~x 8y 1 

~V~ ~V, M 4 = [  ~ 101 (Al l )  eef2 =(?4 = 8-7 + 8x 
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By substituting the entries of M (see Equation A9) in Equation 
A l l ,  we obtain 

div  = - 8 , o  - 8~4 

CUll = 2 0 -- 815 "}" 826 

def2 = - - g l $  -- g2 ~, (AI2)  

and by summing the squares of the last two equations, we obtain 

def 2 + def~ = (g~ + g~)(~2 + (~2). (AI3) 

Recalling Equations A3 and A4, we can rewrite Equation A13 as 

~/def 2 + def  2 = o'o.). (A14) 

The square mot of the sum of the squares of the shear components 
is called deformation (def). 

One can also calculate clef by considering three points and their 
2-D velocities (see Figure 8). Let us rewrite Equation A7 in the 
following manner: 

vx = - ( s t 0 ) x  - (s2o + 0)y + tx - d0 

Vy = --(81(~ -- 0)X -- (82~)Y "~ ty -- d~.  (AlS)  

If the velocity components Vx and Vy and the coordinates (x, y) of a 
point P are k n o w n ,  then Equations AI5 can be considered as a 
system of two linear equations with six unknowns (i.e., the four 
coefficients of x and y and the two constants). To solve for the six 
unknowns, three distinct points are needed. The solution of the 
system of six equations gives us the four entries of the matrix 
described by Equations A8 and A9. Therefore, we can calculate the 
dell and def2 components with Equation A l l .  Taking the square 
root of the sum of the squares of the two shear components, and 
rearranging the result, we can express defin the following manner: 

1 
d e f =  lsin al  

/ I p! ] ~ P2 / 
(A16) 

where V0, Vl, and V2 are the velocity vectors of the projected 
points, Pl and P2 am the distances of the points Pl and Pz from Pc, et 
is the angle between the line segments PeP1 and PEP2, and eta is the 
difference between the angles of the velocity vectors. 

There is empirical evidence that the perceived slant (~') of a 
rotating planar surface is a monotonically increasing function of 
def and that the tilt (¥)  is correctly derived (Domini, Candek, & 
Gerbino, 1995). We can therefore assume that 

~' = f (de f )  (A17) 

and 

T' = v. (AI8) 

Let us consider the implications that these hypotheses have on the 
derivation of the depth separation of two dots located on a planar 
surface. 

Without loss of generality, one point Po can be chosen as lying at 
the origin of a Cartesian system. Another point Pz has generic 
coordinates (x, y, z). 

The equation that determines the infinite family of planar 
surfaces passing through the points Pe and P1 is 

Z = gtx + g2Y. (A19) 

If we substitute Equation A2 in Equation A3 we can write 

= Ig, l ~ l  + ~2 (A20) 

and by combining Equations A2, A19, and A20 we obtain an 
expression for z (the separation in depth between the points Pe and 
Pl): 

O* 
z =  ~ . _ ~  (x + ~ ) .  (A2D 

Because we hypothesized that the derived slant is a function ofdef  
(Equation 2) we can rewrite Equation A21 as 

f(def) 
z' = (x + ~y). (A22) 

~/1 + ' r  2 

The ratio between Equations A22 and A21 gives a simple relation 
between the simulated depth and the derived depth: 

f(def) 
z' = z - -  (A23) 

Taking into account Equation A14, we can rewrite this as 

f(def) 
z' = z , o -  (A24) 

clef 

This equation shows the relationship between derived and simu- 
lated depth. It is possible, however, to relate the derived depth to 
the image characteristics directly. If we consider a rotation about an 
axis contained in the image plane, the depth separation (z) between 
two points is related to the projected 2-D velocities (Vl, V2) of the 
points as follows (see Equation A15 for a derivation): zto = 
(372 - Vl). Therefore, Equation A24 becomes 

z '  f (de f )  
= def  (vz - vl)" (A24a) 

Relationship to the results of Liter and Braunstein (1998): The 
purpose of the following derivation is to show that the derived ~ of 
a dihedral angle increases as the deformation projected by the two 
planar surfaces of the dihedral angle increases. 

(Appendixes continue) 



1 2 9 4  V O M ~  AND e R A U S S T ~  

The normal to the planar surface described by Equation AI is parallel to the x and z axes are null, the optic flow is horizontal: 

1 
N --ffi ~ (gt,  g2, - -  I) (A25) 

The normal to the plane xz (the horizontal plane) is 

N~ -- (0, 1, 0). (A27) 

The cosine of the angle between the horizontal plane and the planar 
surface is the inner product N~z. N of the two normals: 

v~ = (-g,O)x + (-g2o)y + (dO + t~). (A31) 

The horizontal gradient (4~h) of .the resulting flow field is -g l0 ,  and 
the vertical gradient (~b,) is -g20. In this simple case the tilt ~" of the 
surface can be derived by taking the ratio between the vertical and 
the horizontal gradients: 

~bv g2  
"r . . . .  (A32) 

g~ 

The deformation is simply the square root of the sum of the squares 
of the horizontal and vertical gradients. If the assumptions in 
Equations A17 and A18 are true, then the vertical gradient can be 
expressed by combining Equation A30 with Equations A17 and 
A32: 

g2 
cos 13 = (A28) 

+ + l 

Combining Equation A28 with Equation A3, we obtain 

g2 
= r - -  (A29) COS 

~/o a + 1 

One can express g2 in terms of tilt and slant by combining 
Equations A2 and A3: 

or 
g2 = - -  (A30) 

Let us consider the optic flow produced by a surface rotating about 
the vertical axis. Because the components of angular velocity 

f(def) 
g2 = ~ ~,,. (A33) 

Therefore we can express the angle 13 between the planar surface 
and the horizontal plane as a function of the deformation by 
substituting Equations A33 and A 17 in Equation A29: 

If(de f) ) 
~ = a r c  COS / - - - -  . 

l~/f(def) 2 + I 
(A34) 

If we consider that the ratio betweenf(def) and defis a decreasing 
function of def, as the results of Experiments 1, 2, 3, and 4 of the 
present article indicate, then the numerator of the term in brackets 
in Equation A34 decreases with the deformation. Sincef(def) is an 
increasing function of def (Domini et al., 1995), the whole term in 
brackets of Equation A34 decreases with the deformation. There- 
fore, considering that the arc cosine function is a decreasing 
function, the derived [3 increases as the deformation increases. 
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Reliability measures were calculated for each observer as the 
standard deviation of the adjustments relative to the mean (Nor- 
man, Todd, Perotti, & Tittle, 1996) and were averaged in each 
condition of Experiments 1 through 6. 

Experiment 1 

Slant 

Depth (cm) 1 2 3 4 

9.98 .38 .43 .44 .43 
19.96 .25 .30 .35 .30 

Experiment 2 

Mean slant 

1 1.22 1.44 1.60 1.82 2.22 

.18 .30 .30 .31 .29 .27 

Experiment 3 

Mean slant 

Condition 1.22 1.605 1.825 

Surface .26 .27 .25 
Cloud .22 .23 .24 

Experiment 4 

Slant d i f f ~  

Axis - 1.21 - .77  - . 44  0 .44 .77 1.21 

Behind .29 .32 .26 .37 .32 .40 .26 
Front .34 .29 .31 .37 .35 .27 .32 

Experiment 5 

Probe pair 

Slant O,1 2,3 0,3 1,2 

1 .16 .11 .32 .31 
1.44 .20 .16 .29 .32 
2.21 .20 .26 .20 .18 

Experiment 6 

gl,l 

g2,1 0.0. 2.0 

0.0 .39 .70 
2.0 .35 .20 
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