EL:

Computers and Chemistry 24 (2000) 43-55

Computers
& Chemistry

www.elsevier.com/locate/compchem

Sequence complexity for biological sequence analysis

L. Allison #*, L. Stern ®, T. Edgoose 2, T.I. Dix 2

& School of Computer Science and Software Engineering, Monash University, Melbourne, 3168 Australia
® Department of Computer Science and Software Engineering, The University of Melbourne, Melbourne, 3052 Australia

Received 7 August 1998; accepted 18 February 1999

Abstract

A new statistical model for DNA considers a sequence to be a mixture of regions with little structure and regions
that are approximate repeats of other subsequences, i.e. instances of repeats do not need to match each other exactly.
Both forward- and reverse-complementary repeats are allowed. The model has a small number of parameters which
are fitted to the data. In general there are many explanations for a given sequence and how to compute the total
probability of the data given the model is shown. Computer algorithms are described for these tasks. The model can
be used to compute the information content of a sequence, either in total or base by base. This amounts to looking
at sequences from a data-compression point of view and it is argued that this is a good way to tackle intelligent
sequence analysis in general. © 2000 Elsevier Science Ltd. All rights reserved.

Keywords: Algorithm; DNA; Complexity; Entropy; Pattern discovery; Sequence analysis

1. Introduction

This paper describes a new statistical model for DNA
sequences which considers a sequence to be a mixture
of two kinds of region. Firstly there are regions with
little or no structure which are generated in the ‘base
state’ in the model. Secondly there are regions which
are approximate repeats of other substrings of the
sequence, as controlled by a small number of ‘repeat
states’ in the model. Repeats need only match each
other approximately and can occur in both the forward
and reverse directions in the complementary strand in
the case of DNA. The model gives good results when
used for computing the information content of DNA,
giving better data-compression than other models. It
has a small number of parameters which are fitted to
the data and which can be related to biological pro-
cesses. An O(n?) computer algorithm is described and

* Corresponding author. Tel.: 4+ 61-3-9905-5200; fax:
+ 61-3-9905-5146; http://www.cs.monash.edu.au/ ~ lloyd/tilde
Strings/.

visualizations based on its results show patterns and
structure in sequences. A faster approximation al-
gorithm is available for long sequences.

More generally, the paper describes a family of mod-
els for DNA sequences and explores a small number of
instances of models from this family. It argues that
data-compression is a good viewpoint for studying the
intelligent analysis of sequences, and that compression
provides a natural criterion for comparing competing
hypotheses and a natural significance test for the ac-
ceptability of hypotheses. There has been a certain
amount of interest in the compressibility of biological
sequences, not for the most part to save data transmis-
sion time or computer storage space as such, but rather
to understand sequence structure. Agarwal and States
(1994), Grumbach and Tahi (1994) and others have
recognized the importance of compression to pattern
discovery in biological sequences.

Using compression as the criterion for what is vari-
ously known as inductive inference or machine learning
dates back to the work of Solomonoff (1964), Kol-
mogorov (1965), Chaitin (1966). It is believed that

0097-8485/00/$ - see front matter © 2000 Elsevier Science Ltd. All rights reserved.

PII: S0097-8485(99)00046-7

44 L. Allison et al. / Computers & Chemistry 24 (2000) 43-55

Wallace and Boulton (1968) gave the first major appli-
cation of this idea in the form of a computer program
for what is variously called classification, clustering,
mixture modeling or numerical taxonomy. For a hy-
pothesis, H, and data, D, Bayes theorem (Bayes, 1763)
gives the following relationship between the
probabilities:

P(H&D) = P(H)-P(D |H) = P(D)-P(H | D),
which rearranges to give:
P(H|D)= P(H)-P(D|H)/P(D).

Intuitively, an efficient code will allocate its shortest
codewords to events of higher probability. Shannon’s
theory of communication (Shannon, 1949) shows
that, in a message using an optimal code, an event,
E, of probability P(E), has a code-word of length
—log,(P(E)) bits. Writing msgLen(E) for — log,(P(E))
we have:

msgLen(H&D) = msgLen(H) + msgLen(D | H).

If one imagines a transmitter communicating some
data D in a message to a distant receiver using an
optimal code, the above equation gives the length of a
two-part message that first specifies a hypothesis H and
then specifies the data given H. It can be seen that the
most interesting hypothesis with the greatest posterior
probability, P(H |D), is the one that minimizes the
length of such a two-part message. In data-compression
terms, the first part, msglen(H), can be thought of as
the header of the message (or compressed file).

Interestingly, common file-compression programs
perform poorly on DNA sequences, often failing to get
below the level of two bits per base that the simplest
uniform code achieves, i.e. failing to compress the
DNA at all. Milosavljevic and Jurka (1993) applied a
Lempel—Ziv (LZ) type of model to DNA and Powell et
al. (1998b) examined the compression that could be
extracted from variations on that work. Wootton
(1997) defined the notion of the ‘compositional com-
plexity’ of a sequence as the complexity of the multi-
state distribution (Boulton and Wallace 1969) of
characters in a sliding window. He stopped short of
providing a figure for the total information content of a
complete sequence, the application being to mask-out
regions of low complexity because they bias searches of
genomic databases. In passing, an alternative method is
not to mask such regions out but rather to give them
their appropriate (low) weight during matching, see
Powell et al. (1998a). Rivals and Dauchet (1997) pre-
sented a DNA compression program which can join
exact repeats that are close together into clusters or
runs, hence it can make some allowance for differences
within (approximate) repeats. Loewenstern and Yi-
anilos (1997) described a modification of popular file-
compression methods to cater for the special properties

of DNA sequences: their program considers short pre-
viously seen ‘contexts’ that match the most recent bases
of the sequence. These matches need not be exact and
can contain mismatches, but not insertions or deletions.
Predictions of the next base by the selected contexts are
blended by several dozen ‘weights’ which are fitted to
the data but do not have any direct biological interpre-
tation. Their results contained the best overall compres-
sion on a range of DNA at that time. The new model
of sequences (Allison et al., 1998) directly describes the
ability of DNA to duplicate substrings, either in the
forward direction or in the reverse direction from the
complementary strand. Once a sequence contains two
or more copies of a substring, the copies can diverge by
the usual processes of mutation and this is also mod-
eled. The new model gives improved compression
figures for DNA. It has a small number of parameters,
which are fitted to the data, and have a biological
interpretation. The associated computer algorithm take
O(n?) time for sequences of length n. A faster approxi-
mation algorithm is available for long sequences.

2. Compression

There are generally two aspects to an inductive infer-
ence problem: (i) assigning a cost (or conversely a
score) to a hypothesis so that one can compare two or
more hypotheses fairly, and (ii) searching for the best
hypothesis, or at least a good one, under this criterion.
Recalling from Section 1 that the hypothesis with the
greatest posterior probability, P(H | D), minimizes the
length of a two-part message, H followed by D | H, we
argue that message length is therefore a good cost
criterion for use in inference. It can be objected that
such considerations simply replace probabilities with
their negative logarithms, but using this framework has
several practical advantages:

e It keeps us ‘honest’ in that any information that has
not been agreed to beforehand must be properly
costed in msglen(H): The transmitter and receiver
can cooperate to design a code before any data are
transmitted but the code can only be optimal ‘in
expectation’. They are separated before the particu-
lar data are given to the transmitter who must send
them to the receiver.

e This matter includes stating any parameters that
have continuous values to optimum accuracy and
describing any variable parts of a hypothesis.

e All the heuristics, algorithms and techniques of cod-
ing theory can be used to find the length of a
‘reasonable’ code if probabilities cannot be calcu-
lated exactly; a sub-optimal code can never be
shorter than an optimal one so this is safe and
conservative, in that it cannot make a hypothesis
appear more attractive than it should be.

L. Allison et al. / Computers & Chemistry 24 (2000) 43-55 45

e There is frequently a natural null-hypothesis, in the
case of DNA costing 2 bits per base, and any
hypothesis that cannot deliver better compression
than this is not acceptable.

The aim here is to use compression as a criterion for
evaluating models, and we do not usually carry out the
actual compression step, rather calculating what the
compressed lengths would be. DNA is not very com-
pressible in any case, it being very difficult to compress
‘typical DNA’ below 1.8 bits per character, if it makes
sense to speak of typical DNA. Any savings in commu-
nication costs or disc space would therefore be small,
the exception being if we had multiple similar sequences
to deal with (Allison and Yee 1990). The trend in
data-compression is to separate compression into pre-
diction and coding: a predictor makes predictions to the
(arithmetic) coder at the transmitter end and a similar
predictor makes predictions to the decoder at the re-
ceiver end. It is considered that data modeling is the
hard part of data-compression and that the best model
leads to the greatest compression. Arithmetic coders
(Langdon 1984) are quite capable of encoding an event
(in a sequence) in a non-integer number of bits and of
approaching the calculated lengths arbitrarily closely.

Over-fitting is a well-known problem in inference: a
complex model will often fit data better than a simpler
model and the problem is to decide if the added com-
plexity is justified or if it is just fitting noise in the data.
Including the term msglen(H) in the total complexity
helps prevent over-fitting by forcing a complex model
to pay for its added complications. The message length
of the model is the —log, of the prior probability of
the hypothesis, P(H), and is a characteristic of mini-
mum message length (MML) theory when used for
inference purposes (Wallace and Freeman 1987). If
there is problem-specific prior knowledge, it should be
used, and costed appropriately. In contrast, Rissanen’s
minimum description length (MDL) (Rissanen, 1987),
and stochastic complexity methodologies argue for uni-
versal priors, discarding prior knowledge. Note that if
inference is not the aim then a one-part message, its
length derived by integrating over all possible H, will
give slightly better compression than a two-part mes-
sage. For example, the improvement is a fraction of a

Table 1
Analysis of 100 random bases under 4 models.

bit in the case of the multi-state distribution discussed
in the next section.

Table 1 shows results from a sequence of 100 random
DNA bases generated from a uniform model (no struc-
ture) and analyzed under competing models of varying
complexity. The uniform model itself requires 200 bits
to transmit the data. The zero-order Markov model
finds a chance bias in the frequency of the bases, as
revealed by (D | M) costing 197 bits, but is not signifi-
cant, i.e. does not pay for the model’s parameters (H).
The first-order Markov model and the new model of
approximate repeats (described later) also find some
insignificant, chance patterns. The conclusion is that
the uniform model best describes this sequence. In
contrast, Table 2 shows a similar analysis for a low
information content sequence used by Milosavljevic
and Jurka (1993) for illustrative purposes. Here the
more complex models do find structures which are
significant, i.e. they pay for the costs of their parame-
ters and result in compression better than 2 bits per
character. The new model performed best on this se-
quence. Note that a zero-order Markov model for
DNA consists of a four-state distribution, a first-order
model consists of four such distributions, and the new
approximate repeats model embodies several multi-state
distributions.

3. Multi-state distribution

The multi-state distribution was analyzed by Boulton
and Wallace (1969). This distribution is very useful in
sequence analysis because it applies to finite alphabets
such as DNA {A,C,G,T}, the protein alphabet of 20
amino acids, and to other situations containing discrete
choices, e.g. hidden Markov models, probabilistic finite
state machines and so on. Its main points are summa-
rized below because it is not widely known and because
it is important to the models discussed in later sections.
A random variable can take any one of M values. A
uniform prior is assumed for the probabilities of the M
values. The random variable is sampled N times, giving
values v1, v2, ...vN. There are at least three ‘obvious’
ways to encode these data:

Bits

Hypoth Data Total Bits/char
Uniform model 0.0 200.0 200.0 2.00
Order-0 Markov model 8.2 197.4 205.6 2.05
Order-1 Markov model 21.1 191.0 212.1 2.12
Approximate repeat model 31.6 191.1 222.7 2.22

46 L. Allison et al. / Computers & Chemistry 24 (2000) 43-55

Table 2
Analysis of a low information content sequence

Bits
Hypoth Data Total Bits/char
(a) Analysis
Uniform model 0.0 256.0 256.0 2.00
Order-0 Markov model 10.0 211.0 221.0 1.72
Order-1 Markov model 30.0 152.1 182.2 1.42
Approximate repeat model 49.5 128.5 178.0 1.39
(b) Sequence used
1 TGATAGGTGA TAGATAGATT GATAGATGAT AGAAGATTGA TAGATGATAG
51 ATACATAGGT GATAGTAGAT GTAAGATGAT AGATGATAGA TAGATAGATG
101 ATAGACAGAT TGATAGATGA TAGAGAGA 128 bp

1. Fixed code: state the probabilities of the M possible
values, P1, P2, ..., PM, and base a code on these
probabilities. coding vi in — log,(P(vi)) bits. The
transmitter can compute the probabilities by exami-
nation of the data and must transmit the probabili-
ties, at some finite accuracy, to the receiver before
the receiver can decode the data.

2. Adaptive code: initialize M counters cl,c2, ...,cM
to 1, say. At step 7, encode vi in — log,(c[vi]/(i — 1+
M)) bits and then increment c[vi]. The code thus
adapts in the light of successive observations vi.
Both transmitter and receiver can compute this
adaptive code. The counters do not start at zero or
it would be impossible to encode the first instance of
a value.

3. Factorial method: first, state the number of times
each possible value actually occurs in vl, ... VN, i.e.
specify an M-way partition of N. Second, state the
particular combination, i.e. order in which the val-
ues occur. All such combinations are equally likely.

Boulton and Wallace (1969) proved that methods (2)
and (3) give exactly the same message lengths and that
method (1) requires only M(In(n/6) 4+ 1)/2 nits (they
worked in natural bits) more, assuming N> M. It is
satisfying that these lengths are (nearly) equal because
otherwise it would make little sense to talk about the
information content of the data. The slight extra cost of
method (1) is explained by its being the only method to
make an explicit inference of a hypothesis, i.e. a state-
ment of the probability values P1, ..., PM. The values
stated are close to the maximum likelihood estimate but
are given to an optimum and finite degree of accuracy.

Note that even values far from the maximum likelihood

estimate for P1, ..., PM could in principle be used with

method (1) and the data could still be transmitted,
albeit inefficiently. The small, but non-zero, probability
of such possibilities accounts for the slight excess cost
of (1) over (2) and (3). Alternatively, integrating over

all possible values for P1, ..., PM would lead to a
one-part message with the same message length as (2)
and (3) but then no inference would have been made.

Wootton (1997) defined ‘compositional complexity’
as the information content, under the multi-state distri-
bution, within a sliding window along a sequence. The
sliding window effectively performs a moving average
on the complexity under the multi-state distribution.
One application is to mask-out low-information con-
tent regions of biological sequences so that they do not
bias searches of genomic databases.

The multi-state distribution also applies to Markov
models of order k because the events that follow each
‘context’ of length k form a multi-state distribution. A
zero-order Markov model over protein is specified by a
20-state distribution. A first-order Markov model over
DNA is specified by a quartet of four-state distribu-
tions etc. Probabilistic finite-state machines and other
hidden Markov models have a multi-state distribution
over the transitions out of each state.

4. Repeats

The previous sections have argued that to analyze
DNA (or other) sequences requires a good model of
sequences, that the best model will give the greatest
compression, i.e. shortest two-part message, and that
problem-specific prior knowledge should be used, care-
fully. Computer algorithms for sequence analysis
should also be reasonably efficient, although there is
less pressure for them to be as efficient as typical
file-compression programs which must run in near lin-
ear time with a small constant of proportionality. We
now start to consider models that might fulfill these
aims. This section recalls the LZ model of sequences, its
properties and its relation to biological sequences. The
following section describes a new model of DNA in-
spired by it.

L. Allison et al. / Computers & Chemistry 24 (2000) 43-55 47

The LZ model (Lempel and Ziv, 1976) has inspired
many file-compression programs. It considers a se-
quence to be a mixture of random characters and
repeated substrings. For example, ATACGTG-
CACGTTA can be coded as ATACGTGC(3,4)TA
where (3,4) denotes ‘repeat 4 characters starting from
position 3’. To use the LZ model to encode sequences,
there must be a codeword for ‘repeat’, in addition to
codewords for the characters. There will also be code-
words for the start and the length of a repeat, and their
lengths will depend on the probability distributions of
start positions and lengths. A uniform distribution is
the simplest model for start positions and gives a code
length of log,(x — 1) for a repeat into target position x,
there being x — 1 alternatives for the source location.
One can easily use other distributions, e.g. giving a bias
to close repeats. The form of the distribution on the
lengths of repeats has implications for the speed of the
algorithms and is discussed later. Parameters of the
model, such as the probability of repeats, might be
fixed or might be fitted to the data, in which case they
must be included in the total cost. Note that if there are
no significant repeats, only chance ones, the model will
fail to compress sequences, on average, because the
mere possibility of stating ‘repeat’, i.e. a finite probabil-
ity of a repeat, reduces the combined probabilities of
the characters, and their codewords are correspondingly
longer.

There are many ways to encode a sequence under the
LZ model and one can search for a single optimal
explanation. But imagine that there were two optimal
ways, each giving probability P for the data. These two
ways are two exclusive hypotheses for generating the
data under the model; if one is ‘true’ the other cannot
be. This means their probabilities can be added, giving
probability 2P for the data, i.e. saving one bit in
message length when the —log, is taken. There are
generally a great many sub-optimal ways to encode the
data. Even if each of these gives the data a probability
much less than the optimal probability P, their sheer
number may mean that collectively they contribute a
great deal towards P(D|LZ). It is quite possible to
devise a code that realizes this saving, e.g. see Wallace
and Freeman (1987). Now, it is a legitimate question to
ask what is a single optimal explanation of a sequence
under the model, and this is what Milosavljevic and
Jurka (1993) did (while declining to give a figure for the
compression). However, the answer to this question
becomes a ‘nuisance parameter’, and may lead to bias,
if the objective is more general, e.g. to calculate the
probability of the data under the model or to estimate
model parameters. It has a characteristic typical of
nuisance parameters in that the number of choices in an
explanation grows in proportion to the length of the
data. If an optimal explanation really is what is wanted,
it is not a nuisance parameter, of course.

Ziv and Lempel (1977) showed that their model
asymptotically achieves the same compression as a
great variety of other models of sequences. It can
therefore claim to be a good model to use when the true
nature of the source is unknown. Unfortunately the
convergence is slow. Nevertheless this model has in-
spired a great many file-compression programs. Re-
search has tended to concentrate on clever algorithms
and data structures (Cleary and Teahan 1997), such as
hash-tables and suffix-trees of ‘contexts’, to make the
programs fast, as this is crucial in the areas of data
communications and file-compression.

As noted before, typical file-compression programs
do not compress DNA well. The reasons are probably
the small alphabet, the lack of any obvious ‘punctua-
tion’, and the subtle (weak) nature of any pattern and
structure that is present. The LZ model’s repeats do
roughly correspond to the observed duplication of seg-
ments of DNA, but the model’s repeats must be exact
while DNA’s can contain mutations, gaps, and rear-
rangements. A number of workers have tried to address
this discrepancy. Rivals and Dauchet (1997) searched
for exact repeats but employed a heuristic to join
neighboring repeats together. Loewenstern and Yi-
anilos (1997) extended a file-compression algorithm to
consider approximate matches on past contexts. These
approximate matches can contain mismatches but not
insertions or deletions. Several dozen weights blend the
predictions from the approximate matches. The present
work explicitly models the duplication and subsequent
mutation of sections of a sequence.

5. Approximate repeats

The new model considers a sequence to be a mixture
of random characters and repeated substrings in either
the forward- or reverse-complementary senses; in-
stances of repeats may differ by change, insertion and
deletion. Fig. 1 shows the model’s generating machine
which can be used to generate random sequences ac-
cording to the model. Starting in the base state, B, the
machine can generate a character and return to the base
state. Alternatively, it can ‘start’ a repeat (specifying a
source origin) and jump to state R. Presuming repeats
are common, it is likely to ‘copy’ a character and jump
to state R2 where it can ‘continue’ (state R3) to ‘copy’
more characters and eventually ‘end’ the repeat return-
ing to state B. The possibility of changes, insertions and
deletions in a repeat allow instances to differ. In
essence, states R, R2 and R3 embody a simple muta-
tion machine, as can be used in the sequence alignment
problem (Allison et al., 1992), here used to allow local
alignments of the sequence with itself. For the analysis
of DNA, approximate reverse complementary repeats
are allowed by a further set of states R’, R2" and R3’

48 L. Allison et al. / Computers & Chemistry 24 (2000) 43-55

and corresponding operations, not shown. Finally, the
base state of the machine can be replaced by some
other sub-model. A first-order Markov model works
well here for naturally occurring DNA, giving a small
but significant overall improvement, even when its extra
parameters are considered.

The precise architecture of the machine and the
organization of states R, R2 and R3 is arbitrary to a
certain extent. The current design prevents invisible
repeats, i.e. where all characters are deleted, and this
simplifies the algorithm design. But it is quite possible
that some variation on the architecture might perform
slightly better and a few variations have already been
investigated. The important points are that the current
model is simple, and that its complexity is determined
by multi-state distributions (see Section 3) on the tran-
sitions out of each state and by the probability distribu-
tion on the source locations of repeats. More generally
we advocate the family of such finite-state models. For
example, linear costs for gaps (indels) within repeats
can be modeled by states and operations for start-insert
and continue-insert etc. as in the sequence alignment
problem (Allison et al., 1992). One can even envisage a
systematic search through simple machines to complex
machines.

Note that probabilistic finite state machines, such as
that above, are hidden Markov models (HMM) in
mathematical terms. However, HMM has largely come
to mean a generalization of profiles in molecular biol-
ogy, see Eddy (1998) for example. The latter usually
contains an explicit representation of the characters of
a type of sequence. The machine discussed here con-

A delete
C)
G ’
T
start
B \R
copy,
end change,
insert
R2
copy,
continue c.hange,
insert,

delete

Fig. 1. Generating finite-state machine.

tains no such representation of characters. Instead it
contains general statistics on the relationship between
parts of the sequence. The machine could be made to
match or recognize a particular family of sequences but
only if it were given one or more examples prepended
to the data to be searched. To an extent, it models the
process by which a sequence could be generated and it
is natural to use the term machine for this reason, and
also because it is common in compression, makes a
distinction with the other kind of HMM and is consis-
tent with earlier work (Allison et al., 1992).

Given probabilities for the machine’s operations in
its various states, it is possible to generate random
sequences from the model. The machine can also be
used as the basis of inference algorithms to analyze a
given sequence. The repeat graph (Fig. 2) represents all
possible sequences of operations the machine might
have gone through in generating a particular sequence,
here one beginning ACA... A node in the graph repre-
sents the machine in some state at some position in the
sequence. State R3 has been collapsed into state R2 for
simplicity. Note that the graph is acyclic. There are
many explanations for the sequence. One possibility is
to generate all characters, ACA..., in the machine’s
base state. Another is to generate AC in the base state
and then start a repeat which copies a character, A, and
so on. The probability of each such explanation is the
product of its individual steps. Any two explanations
are exclusive hypotheses for the sequence so it is legiti-
mate to add all of their probabilities together. Doing so
gives the total probability of the sequence under the
model, P(D | H) where H now represents the machine,
because there is no other way in which the machine
could generate it. This sum can be calculated in O(n?)
time by an algorithm that scans the graph row by row,
there being O(n2) nodes in the graph. O(n) space is
sufficient because a row of the graph can be computed
given just the previous row.

The algorithm also calculates the contribution of
each of the paths to a node towards the probability of
the sequence up to the current position, and uses this
information to produce a grey-scale plot which shows
the positions of repeated substrings and their fidelity.
Fig. 3 shows such a repeat plot for the human beta
globin cluster HUMHBB. For short sequences one can
perform a second backwards pass through the repeat
graph and thus calculate the probability of the true
path going through each node. This is analogous to the
forward—backward dynamic programming algorithm
which yields alignment density plots in sequence align-
ment (Allison et al., 1992). However, it requires either
O(n?) space or greater time-complexity and is impracti-
cal for long sequences. In practice, the plot derived
from the forward pass alone gives adequate indication
of repeats.

L. Allison et al. / Computers & Chemistry 24 (2000) 43-55 49

C change(C)

R2

--Row 1

end \

/

B,) N ~
copy
~
A ins(A) Lopy
S ")
@ . %/

=
T~ T N

Fig. 2. Repeat graph.

The length of a repeat is coded by stating that it
continues base by base until it finally ends. This
amounts to a unary code which corresponds to a
geometric probability distribution on lengths. It is un-
likely that repeat lengths are drawn from a geometric
distribution. The issue of repeat lengths is similar to
that of indel (gap) costs in sequence alignment (Gotoh
1982). The incremental cost of extending a repeat by
one base is a constant, — log,(P(continue)). So ignor-
ing the start and any mutations, the overall cost of a
repeat is linear in its length. This is what allows the

probabilities of all explanations to be summed in O(n?)
time; in effect all of the paths through a node are
extended simultaneously. In fact, piece-wise linear costs
for repeat lengths have the same property and corre-
spond to a ‘mixture’ of geometric distributions, e.g.
short, probable repeats and long, less probable repeats.
They are implemented by adding extra states to the
generating machine and still lead to an O(n?) time
algorithm, although one with a larger constant of pro-
portionality. If one wanted a single optimal explanation
under the model it would be possible to use other

50 L. Allison et al. / Computers & Chemistry 24 (2000) 43-55

probability distributions for repeat lengths, provided
they give concave (down) cost functions when the nega-
tive log, is taken, by adapting the technique of Miller
and Myers (Miller and Myers, 1988) from alignment.
This would give an O(n?) or O(n?logn) algorithm
depending on the properties of the cost function.

6. Parameter estimation

The previous discussion of the sequence analysis
algorithm assumed that the machine’s parameters were
known in advance, but usually they are not. Parameters
are estimated by an expectation maximization (EM)
process (Baum and Eagon 1967; Baum et al., 1970;
Dempster et al., 1977). Initial parameter values are
assumed and the algorithm makes a pass through the
repeat graph. As it does so it computes the frequencies
of the machine operations up to each node in the
graph. When two or more paths meet, the weighted
averages of their frequency counters are formed,

weighted by the relative probabilities of the paths. The
node representing the final base state gives overall
operation frequencies and these yield parameter esti-
mates for the next iteration. The process is stopped
when the overall message length improves by less than
some small limit; a few iterations are generally suffi-
cient. Convergence is guaranteed; it could be conver-
gence to a local optimum but this is not a problem in
practice. (Also note that more complex machines which
realize mixtures of different types of repeats effectively
accommodate multiple local optima of simpler
machines.)

The parameters of the model are P(repeat) the prob-
ability of starting a repeat, P(continue) the probability
of continuing a repeat, P(end) the probability of ending
a repeat, P(copy) the probability of a copy, P(change)
the probability of a change, P(insert) the probability of
an insertion and P(delete) the probability of a deletion
within a repeat; the last four sum to one. Test runs were
performed by generating data from the model with
known parameter settings and then attempting to re-

Fig. 3. Grey-scale repeat plot of HUMHBB (73 kb).

L. Allison et al. / Computers & Chemistry 24 (2000) 43-55 51

estimated P(start) (P(copy)=0.9,P(end)=0.02,size=500)

0.2 | ‘ '
0.18 |-
0.16
0.14
0.12

0.1
0.08
0.06
- *

002%

' ' I 10270 —
90% ---%---
median ---%---

0.02 0.03 0.04 0.05

0.06 0.07 0.08 0.09 0.1
P(start)

Fig. 4. Real vs. inferred values of P(start).

cover these values by the EM process described above.
Any inference program must be able to perform well in
this situation. One parameter at a time was varied
systematically while the others were held constant. We
generated and tested 100 sequences of length 500 for
each parameter setting. For example, Fig. 4 shows a
graph of actual versus inferred values of P(start). The
median shows good agreement across the likely range
of this parameter. Similar tests for other parameters
also gave good results.

7. DNA

We can look at the compression of a DNA sequence
in three different ways. First, we can calculate a num-
ber for the overall compression of a DNA sequence
under a given model, in bits per character. Second, we
can calculate and plot the information content of the
sequence under the model, base by base. Finally, we
can generate the grey-scale repeat plot mentioned previ-
ously, which shows the location of repeats, with the
location and contribution of the preceding similar sub-
sequences. The repeat plot looks superficially like the
traditional dot-plot, but does not require the user to
guess at parameters such as window-size and strin-
gency. The three different representations of the com-
pression of a sequence under the model, yield different
information and complement each other.

The single figure for compression is, as mentioned
previously, a natural way to compare competing mod-
els of the sequence. Table 3 gives the (compressed)
message lengths of Drosophila melanogaster mastermind
cDNA (DMMASTER), human beta globin region
(HUMHBB), tobacco chloroplast genome DNA (CHT-
NTXX), and yeast chromosome III (SCCHRIII) under
Biocompress2 (Grumbach and Tahi 1994), CDNA-
compress, and our approximate repeat model. As noted
in the table, the long sequences were processed by a
faster approximation algorithm, which is described in
the next section. While giving no detail about the
structure of a sequence other than its complexity under
models, we believe that if a single figure of merit is
needed then the total message length figure is the
natural one to use when comparing competing models
of sequences, as was argued before.

The Drosophila mastermind protein is repetitive. Not
surprisingly its cDNA is also repetitive. Looking at the
parameter estimates, the algorithm finds numerous for-
ward repeats (P(start)=0.015) that are short
(P(end) = 0.06) with few differences (P(copy) = 0.94),
which is consistent with what is known about this gene.
Tobacco chloroplast DNA contains a 25 kb reverse
complementary repeat which dominates the results:
P(start) = 0.00005 and P(copy)=0.9999. Yeast chro-
mosome III was included as an example of a long
sequence, and overall is less compressible than the other
sequences shown here.

52 L. Allison et al. / Computers & Chemistry 24 (2000) 43-55

Table 3
Compression of real DNA Sequences *°

Sequence Length Compressed (bits/base) by three methods
Biocompress2 CDNAcompress Approx. repeat model
DMMASTER 6.3 K — - 1.853 ¢
HUMHBB 73 K 1.88 1.77 1.728 ¢
CHNTXX 155 K 1.62 1.65 1.6144
SCCHRIII 315K 1.92 1.94 1.913¢

Sequences are listed using their GenBank identification and are: Drosophila melanogaster neurogenic locus mastermind cDNA
(DMMASTER), human beta globin gene cluster (HUMHBB), tobacco chloroplast genomic DNA (CHNTXX), and Saccharomyces

cerevisiae chromosome III (SCCHRIII).

® Figures for Biocompress2 and CDNAcompress from Loewenstern and Yianilos (1997).

¢ Full O(n?) algorithm.
d Faster approximation algorithm.

We used the single figure for compressibility to test
an extension to the model. As mentioned above, the
new model can be extended to allow a mixture of types
of repeats. In fact a whole family of such models based
on different ‘machines’ is possible. A model distinguish-
ing two types of forward repeats and two types of
reverse complementary repeats, was tried on the human
beta globin gene cluster. This model gave a small
improvement in compression, from 1.728 bits/base to
1.725 bits/base, even when the costs of stating its extra
parameters were accounted for. Low fidelity
(P(copy) =0.78) forward repeats occur most often
(P(start) = 0.0006). High fidelity (P(copy) = 0.96) for-
ward repeats occur less often and are shortest on
average (P(end) = 0.006). Low fidelity (P(copy) = 0.70)
reverse complementary repeats occur rarely (P(start) =
0.0002). Medium fidelity (P(copy) = 0.86) reverse com-
plementary repeats occur rarely and are longest on
average (P(end)=0.003). Point mutations are about
ten times more probable than insertions and deletions.

Plotting the information content, base by base, al-
lows the immediate detection of repeats and areas of
low information content in the sequence. Fig. 5 shows
a moving average of information content over a win-
dow of 100 bases for the human beta globin cluster
(HUMHBB). This gene cluster contains five transcribed
genes and one pseudogene, in the following order:
5'-epsilon-G-gamma-A-gamma-pseudobeta-delta-beta-
3" (Collins and Weissman, 1984). Two large areas of
low information content are immediately apparent in
the figure and signal large areas of repeated sequence.
In the grey-scale repeat plot (Fig. 3), it can be seen that
the long repeat starting around position 40000 origi-
nates from the region around positions 34 000—38 000.
This corresponds to the known close relationship of the
gamma-A gene (39432-41000 bp) to the upstream
gamma-G gene (34396-36087 bp) (Slightom et al.,
1980). Also in the grey-scale plot, the long repeat at the

3" end of the gene can be seen to originate from the
region 25000-29000, inverted and rearranged, and
corresponds to the known copy and rearrangement of
an element belonging to the L-1 family of long inter-
spersed repeats (Rogan et al., 1987).

The moving average plot (Fig. 5) also shows several
sharp troughs of low information content that are less
readily seen on the repeat plot (Fig. 3). Repeated Alu
elements bring the information content down to 0.8—
1.2 bits per character, seen in the sharp troughs at
positions 1987, 5624, 8038, 10630, 16910, 17945,
32408, 37343, 50933, 51944, 65531 and 66 794 (Bara-
belle et al., 1980; Collins and Weissman 1984; Li et al.,
1985; Poncz et al., 1983). These regions show up as
small diagonals on the repeat plot. When printed on a
large scale, it can be seen that some of the Alu elements
are more closely related than others, and that some are
in an inverted orientation. The first instance of an Alu
sequence in HUMHBB is at position 175 (Li et al.,
1985), and cannot be seen on the base-by-base plot. It
is barely visible on the repeat plot, as a contributor to
the second Alu at position 1987. The base by base plot
of information content also shows similarities among
the various genes in this cluster, particularly at their 5’
ends, detected as dips around 34 000, 45000, 55000 and
62000 bp. While these can also be seen on the repeat
plot, they do not stand out as clearly as the longer
repeats, so the dip in the information content plot
serves as a useful locator.

The base-by-base plot of information content also
shows up small repeats, such as the small inverted RY6
repeat at position 9050 and direct repeats at positions
9745 and 12916 (Li et al., 1985), as well as areas of low
information content, such as a region of poly(GT)
around position 58 000, a region of (ATTTT)n around
59500, and a region of (T(A|G))n around position
60500 (Collins and Weissman 1984). Both of these
kinds of repeats decrease the local information content

L. Allison et al. / Computers & Chemistry 24 (2000) 43-55

53

DNA compression plot

2.2 T T T

1.6 |

14

bits/obs

0.8

0.6 |-

04

0'2 1 1 1

\

T T T
average comprepsion

ik

1 1 1 1

0 10000 20000 30000

40000

50000 60000 70000 80000

symbol

Fig. 5. Information content plot of HUMHBB.

significantly less than the Alu sequences, to only 1.6—
1.7 bits per character, and are too small or too distantly
related to show clearly on the grey-scale repeat plot of
the entire gene cluster.

8. Faster approximation algorithm

The inference algorithm described above takes O(n?)
time per EM iteration. This amounts to 30 min per
iteration for DMMASTER (6 kb) and 2 days per
iteration for HUMHBB (73 kb) on a Silicon Graphics
‘Indy’ workstation. A faster algorithm is necessary for
long sequences and an approximation algorithm was
created for this reason. The idea is to investigate only
the most important regions of the repeat graph (Fig. 2).
Ignoring parts of the repeat graph only results in lost
probability from P(D | H), and gives a lower bound on
the true probability, thus giving an upper bound on
message length, and so is a conservative approximation.
This is effected by using a hash-table which contains
k-tuples and their locations in the sequence, where k is
a constant, typically in the range 6—14. It is assumed
that most approximate repeats will contain at least one
exact match on a k-tuple, hopefully one near the start
of the repeat. Such a match ‘turns on’ a region of the
repeat graph +5 cells around the hit. The region
remains turned on while it is contributing more than a
‘threshold” of (—log,) probability to the sequence,
currently at least as much as the base state, minus the

repeat start-up cost, plus 4 bits. Regions can grow,
shrink, merge or be turned off. Adjusting the threshold
and the value of k allows the algorithm to process long
sequences quickly, at some loss of accuracy. Fig. 6
shows a plot of — log, probability, in bits per base, and
of running time as k is varied, the data being 6000 bases
of HUMHBB from position 23 000 which contains one
long approximate repeat. Alternative methods of speed-
ing up the full O(n?) algorithm are being investigated.

9. Related models

The new sequence model explicitly describes approxi-
mate repeats. These include both short ‘self similar’
repeats such as TATAATATTA which might be classed
as low-order Markov model patterns and long repeats
such as gene duplication events. As presented above,
the model does not contain any library of predefined
patterns but it is straightforward to prepend one or
more library patterns, e.g. a consensus Alu, to a se-
quence and run the algorithm on the result. This also
suggests that two (or more) sequences, S1 and S2, can
be compared by running the algorithm on S1, on S2,
and on their concatenation, S1+ +S2 or S2+ +S1, to
give an information measure for (S1 | S2) or for
(S2 | S1): If S1 and S2 are unrelated then S1 gives no
information about S2. However, if the compressed
length of S1+4 +S2 is less than the compressed length
of S1 plus the compressed length of S2 then this shows

54 L. Allison et al. / Computers & Chemistry 24 (2000) 43-55

that S1 gives significant information about S2. In this
case the repeat plot gives a non-order-preserving align-
ment of S1 and S2. This could be useful for comparing
S1 and S2 when the individual sequences are repetitive
or have a low information content.

The above idea can be related to Tichy (1984) edit-
distance based on ‘block-moves’, the application being
in revision control of documents. The object is to create
a ‘target sequence’, S2, from a ‘source sequence’, Sl.
The atomic operation is to copy a block of some length
from the source sequence, and the target sequence is
built up by a sequence of these block-moves. The
objective is to use the minimum number of block-
moves. If all block-moves have the same cost (same
probability) then the result is a most probable explana-
tion for S2 given S1. This holds if the source addresses
of blocks and if block lengths are drawn from uniform
distributions. Tichy’s model can be seen as a kind of
LZ model between two sequences. It can be imple-
mented by an algorithm for LZ compression by con-
catenating S1 and S2 and restricting repeats to be from
S1 into S2. In the new model defined in this paper, the
blocks can be approximate copies.

The approximate repeats model can be applied to
alphabets other than DNA, compressing text rather
well, for example. It can be applied to protein se-
quences as is, but ideally should have an amino-acid
substitution matrix incorporated to deal with mis-
matches in that case.

10. Conclusions

Sequence analysis is carried out for a variety of
purposes, e.g. to find common subsequences (low infor-
mation) or surprising subsequences (high information),
to find repetition, signals, motifs, pattern or structure
(low information), all against a background of chance
matches, natural variation, evolution and mutation. It
has been argued that information content, as realized in
the compression or message length criterion, captures
an important aspect of these intuitions. Only by having
a good statistical model of sequences is it possible to
quantify ‘common’ and ‘surprising’. Even if this is done
subject to a number of simplifying assumptions then at
least those assumptions, i.e. the design and parameters
of a model, are explicit and are open to challenge and
objective improvement. Including the cost of the model
itself prevents overfitting and allows simple and com-
plex models to be compared fairly. We suggest that
models based on finite-state machines have many prac-
tical advantages: their complexity is easy to quantify,
the resulting inference algorithms are feasible, i.e. have
reasonable complexity, and one can envisage a system-
atic search through at least the smaller finite-state
machines.

We have presented a new model of biological se-
quences (and more generally a family of such models)
which explicitly models the duplication of substrings, in
the forward and reverse-complementary senses, and

Model Accuracy and Speed Comparison

2 T T T

T T T 60
msgLen —+—
cputime ---x---
- 50
1.8 e
" 4 — |
g‘_‘~ h 40
16 X i
® \\ 7]
Q \ Q
S \ 438 3
3 E
14 F .
420
\X\
1.2 | 1
410
_—
1 1 1 T , Sttt K. & 0
0 2 4 6 8 10 12 14
k-tuple size

Fig. 6. Model accuracy and speed for the approximation algorithm.

L. Allison et al. / Computers & Chemistry 24 (2000) 43-55 55

their subsequent mutation. An O(n?) algorithm calcu-
lates the information content of sequences and identifies
interesting regions. It is practical for sequences of thou-
sands of characters. A faster approximation algorithm
with near-linear running time exists for longer se-
quences. The algorithms give good compression on real
DNA sequences. Their outputs include the base by base
information content of a sequence, useful for locating
repetitive areas, and a grey-scale repeat plot showing
the origin of approximate repeats.

References

Agarwal, P., States, D.J., 1994. The repeat pattern toolkit
(RPT): analyzing the structure and evolution of the C.
elegans genome, Proceedings of the Second Conference on
Intelligent Systems, Mol. Biol., pp. 1-9.

Allison, L., Edgoose, T., Dix, T.I., 1998. Compression of
strings with approximate repeats, Intelligent Systems in
Molecular Biology, ISMB 98, Montreal, pp. 8—16.

Allison, L., Wallace, C.S., Yee, C.N., 1992. Finite-state models
in the alignment of macro-molecules. J. Mol. Evol. 35 (1),
77-89.

Allison, L., Yee, C.N., 1990. Minimum message length encod-
ing and the comparison of macromolecules. Bull. Math.
Biol. 52 (3), 431-453.

Barabelle, F.E., Shoulders, C.C., Goodbourn, S., Jeffreys, A.,
Proudfoot, N.J., 1980. The 5" flanking region of human
epsilon-globin gene. Nucleic Acids Res. 8, 4393-4404.

Baum, L.E., Eagon, J.E., 1967. An inequality with applica-
tions to statistical estimation for probabilistic functions of
Markov processes and to a model of ecology. Bull. AMS
73, 360-363.

Baum, L.E., Petrie, T., Soules, G., Weiss, N., 1970. A maxi-
mization technique occurring in the statistical analysis of
probabilistic functions of Markov chains. Ann. Math. Stat.
41, 164-171.

Bayes, T., 1763. An essay towards solving a problem in the
doctrine of chances. Phil. Trans. Royal Soc. Lond., 53,
370-418; reprinted in Biometrika 45, 296-315 (1958).

Boulton, D.M., Wallace, C.S., 1969. The information content
of a multistate distribution. J. Theor. Biol. 23, 269-278.

Chaitin, G.J., 1966. On the length of programs for computing
finite binary sequences. J. Assoc. Comp. Mach. 13 (4),
547-569.

Cleary, J., Teahan, W.J., 1997. Unbounded length contexts for
PPM. Comp. J. 40 (2/3), 67-75.

Collins, F.S., Weissman, S.M., 1984. The molecular genetics of
hemoglobin. Prog. Nucleic Acids Res. Mol. Biol. 31, 315-
462.

Dempster, A.P., Laird, N.M., Rubin, D.B., 1977. Maximum
likelihood from incomplete data via the EM algorithm. J.
Royal Stat. Soc. B 39, 1-38.

Eddy, S.R., 1998. Profile hidden Markov models (review).
Bioinformatics 14 (9), 755-763.

Gotoh, O., 1982. An improved algorithm for matching biolog-
ical sequences. J. Mol. Biol. 162, 705-708.

Grumbach, S., Tahi, F., 1994. A new challenge for compres-

sion algorithms: genetic sequences. Inf. Proc. Manag. 30
(6), 875-886.

Kolmogorov, A.N., 1965. Three approaches to the quantita-
tive definition of information. Probl. Inf. Transm. 1 (1),
1-7.

Langdon, G.G., 1984. An introduction to arithmetic coding.
IBM J. Res. Dev. 28 (2), 135-149.

Lempel, A., Ziv, J., 1976. On the complexity of finite se-
quences. IEEE Trans. Inf. Theory 1T-22, 783-795.

Li, Q., Powers, P.A., Smithies, O., 1985. Nucleotide sequence
of 16-kilobase pairs of DNA 5 to the human epsilon-
globin gene. J. Biol. Chem. 260, 14901-14910.

Loewenstern, D.M., Yianilos, P.N., 1997. Significantly lower
entropy estimates for natural DNA sequences. IEEE Data
Compress. Conf. DCC97 C97, 151-160.

Miller, W., Myers, E.W., 1988. Sequence comparison with
concave weighting functions. Bull. Math. Biol. 50 (2),
97-120.

Milosavljevic, A., Jurka, J., 1993. Discovering simple DNA
sequences by the algorithmic significance method. Comp.
Appl. BioSci. 9 (4), 407-411.

Poncz, M., Schwartz, E., Ballantine, M., Surrey, S., 1983.
Nucleotide sequence analysis of the delta-beta globin gene
region in humans. J. Biol. Chem. 258, 11599-11609.

Powell, D.R., Allison, L., Dix, T.I, Dowe, D.L., 1998a. Align-
ment of low information sequences, Australian Computer
Science Theory Symposium, CATS 98, Perth, Springer
Verlag, ISBN 981-3083-92-1, pp. 215-230.

Powell, D.R., Dowe, D.L., Allison, L., Dix, T.I. 1998b. Dis-
covering simple DNA sequences by compression, Pacific
Symposium on Biocomputing, Hawaii, pp. 597-608.

Rissanen, J. 1987. Stochastic complexity. J. Royal Stat. Soc. B
49(3) 223-239 and 252-265.

Rivals, E., Dauchet, M. 1997. Fast discerning repeats in DNA
sequences with a compression algorithm, Proceedings of
the Genome Informatics Workshop, Tokyo, pp. 215-226.

Rogan, P.K., Pan, J., Weissman, S.M., 1987. L1 repeat ele-
ments in the human epsilon-G-gamma-globin gene inter-
genic region: sequence analysis and concerted evolution
within this family. Mol. Biol. Evol. 4, 327-342.

Shannon, C.E., 1949. The Mathematical Theory of Communi-
cation. U. Illinois Press, USA.

Slightom, J.L., Blechl, A.E., Smithies, O., 1980. Human fetal
G-gamma- and A-gamma globin genes. Cell 21, 627-638.

Solomonoff, R., 1964. A formal theory of inductive inference,
I and II. Inf. Control 7, 1-22; 224-254.

Tichy, W.F., 1984. The string-to-string correction problem
with block moves. ACM Trans. Comp. Sys. 2 (4), 309—
321.

Wallace, C.S., Boulton, D.M., 1968. An information measure
for classification. Comp. J. 11 (2), 185-194.

Wallace, C.S., Freeman, P.R., 1987. Estimation and inference
by compact coding. J. Royal Stat. Soc. Series B. 49 (3),
240-265.

Wootton, J.C., 1997. Simple sequences of protein and DNA,
In: Bishop, M.J., Rawlings, C.J. (Eds.), DNA and Protein
Sequence Analysis, A Practical Approach, IRL Press, pp.
169-183.

Ziv, J., Lempel, A., 1977. A universal algorithm for sequential
data-compression. IEEE Trans. Inf. Theory 1T-23, 337-
343.

