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Abstract

We review some properties of N=8 gauged supergravity in four dimensions
with modified, but AdS invariant boundary conditions on the m2 = −2 scalars.
There is a one-parameter class of asymptotic conditions on these fields and the
metric components, for which the full AdS symmetry group is preserved. The
generators of the asymptotic symmetries are finite, but acquire a contribution
from the scalar fields. For a large class of such boundary conditions, we find
there exist black holes with scalar hair that are specified by a single conserved
charge. Since Schwarschild-AdS is a solution too for all boundary conditions,
this provides an example of black hole non-uniqueness. We also show there
exist solutions where smooth initial data evolve to a big crunch singularity.
This opens up the possibility of using the dual conformal field theory to obtain
a fully quantum description of the cosmological singularity, and we report on a
preliminary study of this.
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1 Introduction

One of the main goals of quantum gravity is to provide a better understanding of

the big bang or big crunch singularities in cosmology. An issue that immediately

comes to mind is whether cosmological singularities represent a true beginning or

end of evolution. If this is the case it would raise the question what determines the

boundary conditions at the singularity. A truly unified theory should then, besides

specifying the dynamics, also include a principle that specifies the universe’s quantum

state. An appealing proposal in this context is the quantum state given by the no

boundary wave function [1]. This describes the creation of an ensemble of universes

with diverse properties. The no boundary proposal asserts that all information about

a possible phase before the big bang that is in principle accessible to an observer in

a given member of this ensemble is encoded in the no boundary instanton. But there

is no real sense in which evolution continues through the singularity: the instanton

describes the beginning of a new, disconnected universe that has a self-contained

physical description. Because there is no boundary in the past, the no boundary

condition naturally leads to a top down approach to cosmology [2]. In this approach,

one first specifies a number of properties (as few as necessary, of course) of the universe

at late times, which are then used to compute conditional probabilities predicting

other features. The set of a posteriori conditons essentially select the histories that

contribute to the path integral for a given member of the ensemble of universes.

Alternatively, it is possible that evolution continues through the singularity and

that string theory itself determines the conditions at cosmological singularities. There

may be some type of bounce, as envisioned by the pre-big bang [3] and cyclic universe

models [4], or the transition could be chaotic, in which case one presumably needs

to resort again to a top down approach to explain our observed universe. Even if

evolution continues through the singularity the quantum state at the singularity may

contain certain universal features. Perhaps the correct answer will turn out to be a

combination of both scenarios: cosmological singularities could represent an endpoint

of evolution only in certain situations, depending on the approach to the singularity.

This would raise the interesting possibility that only certain ‘special’ cosmologies

could be created from a pre-big bang phase.

Since our usual notions of space and time are likely to break down near cosmolog-
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ical singularities, a particularly promising approach to study this issue might be to

find a dual description in terms of more fundamental variables. In string theory we

do not yet have a dual description of real cosmologies, but we do have the celebrated

AdS/CFT correspondence [5] which provides a non-perturbative definition of string

theory on asymptotically anti-de Sitter (AdS) spacetimes in terms of a conformal

field theory (CFT). The dual CFT description has been used to study the singularity

inside black holes [6], which is analogous to a cosmological singularity. Although

some progress in this direction has been made, the fact that the singularity is hidden

behind an event horizon clearly complicates the problem. This is because the CFT

evolution is dual to bulk evolution in Schwarzschild time so the CFT never directly

‘sees’ the singularity.

It would be better to have examples of solutions in a low energy supergravity

limit of string theory where smooth, asymptotically AdS initial data evolve to a big

crunch singularity. Then AdS/CFT should provide a precise framework in which the

quantum nature of cosmological singularities could be understood, at least with AdS

boundary conditions. In this context, a big crunch singularity is simply any spacelike

singularity which extends to infinity and reaches the boundary in finite time.

In this lecture we present examples of such solutions in the abelian truncation

of gauged N = 8, D = 4 supergravity in which one focuses on the U(1)4 Cartan

subgroup of SO(8). Gauged N = 8 supergravity arises as the massless sector of

eleven dimensional supergravity compactified on S7. The truncation to the U(1)4

sector contains three scalar fields with m2 = −2 in units of the AdS radius. We

begin by reviewing the class of asymptotic conditions on these fields (and the metric

components) that are invariant under the full AdS symmetry group. For each scalar

we find (in addition to the standard ‘Dirichlet’ boundary conditions) there is a one

parameter family of boundary conditions, labelled by f , that preserve the full set of

AdS symmetries. When f vanishes, the dual CFT is the usual 2 + 1 theory on a

stack of M2-branes. Nonzero values of the parameter f correspond to modifying this

theory by a triple trace operator. On the bulk side, the generators of the asymptotic

symmetries are finite for all f , but acquire a contribution from the scalar fields.

For f 6= 0 we find there are static spherical black holes with scalar hair. These solu-

tions are specified by a single conserved charge, namely their mass. Since Schwarschild-

AdS is a solution too for all boundary conditions, this provides an example of black
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hole non-uniqueness. We then show there are also static solitons. We explain that

the existence of solitons indicates AdS is nonlinearly unstable for these generalized

AdS invariant boundary conditions. A particular manifestation of this is that for all

nonzero f , there are bulk solutions where smooth, finite mass initial data evolve to a

big crunch. We conclude this lecture with a preliminary discussion of the dual field

theory description of the formation of a big crunch.

All this work was done in collaboration with G. Horowitz and K. Maeda, and the

reader is referred to the original papers for more details [7, 8, 9].

2 AdS Invariant Boundary Conditions

We first consider gravity in d + 1 (d ≥ 2) dimensions coupled to a single scalar field

with a potential V that has a negative maximum at φ = 0. This theory admits a

pure AdSd+1 solution, with metric

ds20 = ḡµνdx
µdxν = −(1 +

r2

l2
)dt2 +

dr2

1 + r2/l2
+ r2dΩd−1 (2.1)

where the AdS radius is given by

l2 = −d(d− 1)

2V (0)
(2.2)

Since we are assuming that the scalar mass m2 is less than zero, solutions to the

linearized wave equation ∇2φ − m2φ = 0 with harmonic time dependence e−iωt all

fall off asymptotically like

φ =
α

rλ−

+
β

rλ+
(2.3)

with

λ± =
d±

√
d2 + 4l2m2

2
(2.4)

where we are assuming m2 ≥ − d2

4l2
= m2

BF . For fields that saturate the Breitenlohner-

Freedman (BF) bound [10], λ+ = λ− ≡ λ and the second solution asymptotically

behaves like ln r/rλ.

We are interested in this lecture in nonlinear perturbations of (2.1) where the scalar

asymptotically behaves as (2.3). Asymptotically anti-de Sitter spacetimes are defined

by a set of boundary conditions at spacelike infinity which satisfy the requirements
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set out in [11]. The standard set of boundary conditions on the metric components

[11] that are left invariant under SO(d− 1, 2) are

grr =
l2

r2
− l4

r4
+O(1/rd+1) gtt = − r2

l2
− 1 +O(1/rd−3)

gtr = O(1/rd) gra = O(1/rd)

gat = O(1/rd−3) gab = ḡab +O(1/rd−3) (2.5)

These boundary conditions go together with (and indeed require) the standard ‘Dirich-

let’ boundary conditions on the scalar field, which amount to taking α = 0 in (2.3). It

is well known that with these boundary conditions, a scalar field with negative mass

squared does not cause an instability in anti de Sitter space. For boundary conditions

of this form there is a positive energy theorem [12, 13, 14] which ensures that the

total energy cannot be negative as long as the scalar does not violate the BF bound.

Recall that the energy, and more generally, conserved charges associated with

asymptotic symmetries ξµ can be defined as follows [11]. One starts with the Hamil-

tonian (we have set 8πG = 1)

H [ξ] =
∫

ddxξµHµ =
∫

ddx(ξ⊥H⊥(x) + ξiHi(x)) (2.6)

where Hµ are the usual Hamiltonian and momentum constraints,

H⊥ =
2√
g
(πijπij −

π2

d− 1
+

p2

4
) +

√
g
[

−R

2
+

1

2
(Dφ)2 + V (φ)

]

,

Hi = −2
√
gDj

(

πj
i√
g

)

+ pDiφ (2.7)

and πij and p are the momenta conjugate to gij and φ. One then adds surface terms

so that H has well defined functional derivatives, and one subtracts the analogous

expression for the AdSd+1 background. For α = 0 boundary conditions on the scalar

field (together with (2.5)), this procedure yields the standard ‘gravitational’ surface

term,

QG[ξ] =
1

2

∮

dSiḠ
ijkl(ξ⊥D̄jhkl − hklD̄jξ

⊥) + 2
∮

dSi
ξjπi

j√
ḡ

(2.8)

where Gijkl = 1
2
g1/2(gikgjl + gilgjk − 2gijgkl), hij = gij − ḡij is the deviation from the

spatial metric ḡij of pure AdS, D̄i denotes covariant differentiation with respect to ḡij

and ξ⊥ = ξµnµ with nµ the unit normal to the surface.
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However, for scalar fields with m2 in the range m2
BF +1 > m2 > m2

BF we have re-

cently found there exists an additional one-parameter family of AdS invariant bound-

ary conditions on the scalar field and the metric components [8]. More precisely, we

find that the asymptotic AdS symmetries are also preserved in solutions that belong

to the following class,

φ(r, t, xa) =
α(t, xa)

rλ−

+
fαλ+/λ

−(t, xa)

rλ+
(2.9)

grr =
l2

r2
− l4

r4
− α2l2λ−

(d− 1)r2+2λ
−

+O(1/rd+2) gtt = − r2

l2
− 1 +O(1/rd−2)

gtr = O(1/rd−1) gab = ḡab +O(1/rd−2)

gra = O(1/rd−1) gta = O(1/rd−2) (2.10)

where xa labels the coordinates on Sd−1 and f is an arbitrary constant that labels the

different boundary conditions. Notice that the boundary conditions on some of the

metric components are relaxed compared to the standard set. For f = 0 we recover

boundary conditions on the scalar corresponding to β = 0 in (2.3), which have been

considered previously in the context of AdS/CFT [15]. Remarkably, however, the full

AdS symmetry group is preserved for all values of f . In particular, it is easy to see

that rescaling r leaves f unchanged. Since α depends on the particular solution and

can vanish, each of these boundary conditions admits AdSd+1 as a solution.

For these more general boundary conditions, the usual energy (2.8) diverges as

rd−2λ
− . However, the purely gravitational surface term (2.8) no longer equals the

conserved charge associated with the asymptotic symmetry ξ = ∂t. Instead, by

repeating the above procedure, one finds the conserved charges acquire an additional

contribution from the scalar field. The conserved charges now read [8]

Q[ξ] = QG[ξ] +
1

2d

∮

ξ⊥
[

(∇φ)2 −m2φ2
]

. (2.11)

For all finite f (including f = 0!) the scalar and gravitational terms separately di-

verge. The divergences, however, exactly cancel out yielding finite total charges Q[ξ].

By contrast, the scalar charges Qφ vanish for the standard α = 0 scalar boundary

conditions. For the case f = 0 the scalar surface term is equivalent to the surface

term −1
2

∮

φ∇iφdS
i introduced by Klebanov and Witten in D = 4 supergravity, to

regularize the action of the α/r modes of the m2 = −2 scalar [15].
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For spherical solutions that are asymptotically of the form (2.9)-(2.10), it is easy

to compute the total mass M . One obtains

M = Q[∂t] = Vol(Sd−1)

(

d− 1

2
M0 −

2fm2αd/∆
−

d

)

, (2.12)

where M0 is the coefficient of the O(1/rd+2) correction to the grr component of the

AdS metric. We emphasize again that in the theory defined by f = 0 boundary

conditions, which is often used in AdS/CFT, the backreaction of the scalar relaxes

the asymptotic falloff of some metric components, while preserving the asymptotic

AdS symmetry group. Although there is no residual finite scalar contribution to the

total mass M in this case, it is only the variation of the sum of both charges that is

well defined.

Finally we briefly mention the case of a scalar saturating the BF bound, which

generically behaves as ln r/rλ near the boundary. One finds there is again a one-

parameter family of boundary conditions, involving the logarithmic branch, that pre-

serves the AdS symmetries [8, 16]. For all finite values of the parameter f that labels

the different asymptotic conditions, the gravitational and scalar surface terms are

logarithmically divergent. The divergences again cancel out, however, rendering the

total charges (2.11) finite.

3 D = 4 Gauged Supergravity

We now consider the low energy limit of string theory with AdS4 × S7 boundary

conditions. The massless sector of the compactification of D = 11 supergravity on

S7 is N = 8 gauged supergravity in four dimensions [17]. The bosonic part of this

theory involves the graviton, 28 gauge bosons in the adjoint of SO(8), 70 real scalars,

and it admits AdS4 as a vacuum solution. It is possible to consistently truncate this

theory to its abelian U(1)4 sector [18]. The resulting action is given by

S =
∫

d4x
√−g

(

1

2
R − 1

2

3
∑

i=1

[(∇φi)
2 − 2 cosh(

√
2φi)]

)

+ ... (3.1)

where the dots refer to gauge field terms that will be set to zero in this paper. Here

we have chosen the gauge coupling so that the AdS radius is equal to one. Notice
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that the potential is unbounded from below, and the scalars have mass

m2
i = −2 . (3.2)

The BF bound in four dimensions is m2
BF = −9/4. Therefore, in addition to the

standard Dirichlet boundary conditions where asymptotically φi ∼ βi/r
2, there is a

class of asymptotically AdS solutions of the form

φi(r, t, x
a) =

αi(t, x
a)

r
+

fα2
i (t, x

a)

r2
(3.3)

and

grr =
1

r2
−

3
∑

i=1

(1 + α2
i /2)

r4
+O(1/r5) gtt = −r2 − 1 +O(1/r)

gtr = O(1/r2) gab = ḡab + O(1/r)

gra = O(1/r2) gta = O(1/r) (3.4)

where xa = θ, φ and f is an arbitrary constant labelling the different theories. The

conserved charges for these boundary conditions acquire a scalar contribution and

take the form

Q[ξ] = QG[ξ] +
1

6

3
∑

i=1

∮

ξ⊥
[

(∇φi)
2 + 2φ2

i

]

. (3.5)

We now turn to a more detailed analysis of this theory, with boundary conditions

specified by (3.3)-(3.4). To simplify the analysis we concentrate on solutions with

only one nontrivial scalar φ.

4 Black Holes with Scalar Hair

First we look for static, spherically symmetric AdS black hole solutions with scalar

hair. The original no hair theorem of Bekenstein [19] proves there are no asymp-

totically flat black hole solutions with scalar hair for minimally coupled scalar fields

with convex potentials. This result was generalized to the case of minimally coupled

scalar fields with arbitrary positive potentials in [20]. Later it was shown [21] there

are no hairy, asymptotically AdS black holes where the scalar field asymptotically

tends to the true minimum of the potential. In [22], however, an example was given
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of a hairy black hole where the scalar field asymptotically goes to a negative maxi-

mum of the potential. It is, however, not clear this solution can be regarded as being

asymptotically AdS in a meaningful way, because its mass diverges.

More recently, however, a one-parameter family of AdS black holes with scalar hair

was found in three dimensions [23]. Asymptotically the scalar field again tends to a

negative maximum, but the potential satisfies the BF bound and the solutions belong

to the class (2.9)-(2.10) in three dimensions. This raises the question if AdS black

holes with scalar hair also exist in supergravity in four dimensions. In particular, it

is possible that Bekenstein’s no hair theorem applies to supergravity with some AdS

invariant boundary conditions, but not with others.

Writing the metric as

ds24 = −h(r)e−2δ(r)dt2 + h−1(r)dr2 + r2dΩ2
2 (4.1)

the field equations read

hφ,rr +

(

2h

r
+

r

2
φ2
,rh + h,r

)

φ,r = V,φ (4.2)

1− h− rh,r −
r2

2
φ2
,rh = r2V (φ) (4.3)

δ,r = −rφ2
,r

2
(4.4)

Regularity at the event horizon Re requires

φ′(Re) =
ReV,φ

1−R2
eV

(4.5)

Asymptotic AdS invariance requires φ asymptotically decays as

φ(r) =
α

r
+

fα2

r2
, (4.6)

where f is a given constant that is determined by the choice of boundary conditions.

Hence asymptotically

h(r) = r2 + 1 + α2/2− M0

r
, (4.7)

where M0 is an integration constant.
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Figure 1: The value of the scalar field, φe, at the horizon of a hairy black hole as
a function of horizon size Re. The two curves show two one-parameter family of
solutions of D = 4 N = 8 supergravity, with two different AdS invariant boundary
conditions, namely f = −1 (bottom) and f = −1/4 (top).

The Schwarschild-AdS black hole with φ = 0 everywhere outside the horizon is a

solution for all AdS invariant boundary conditions. Its mass (3.5) is given by

Ms = Q[∂t] = 4πM0 = 4π(R3
e + Re), (4.8)

which is the standard Schwarschild-AdS mass. However, numerical integration of the

field equations (4.2)-(4.3) shows that for a large class of boundary conditions there is

in addition a one-parameter family of static spherically symmetric black hole solutions

with scalar hair outside the horizon [8].

The value φe of the field at the horizon as a function of horizon size Re is plotted

in Figure 1. The two curves correspond to solutions with two different AdS invariant

boundary conditions, namely f = −1 (bottom) and f = −1/4 (top). Generically, we

obtain φe > 0 if f < 0 and φe < 0 for f > 0. Only for f = 0 and f → ∞ there exist

no regular hairy black hole solutions.

The integration constant M0 in (4.7) is proportional to the finite gravitational

9



Mh/4π

Re

Mh/Ms

Re
2 4 6 8 10

200

400

600

800

1000
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1
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4

Figure 2: left: The total mass Mh/4π of hairy black holes as a function of horizon
size Re, in D = 4 N = 8 supergravity with two different AdS invariant boundary
conditions f = −1/4 (top) and f = −1 (bottom). right: The ratio Mh/Ms as a
function of horizon size Re, where Ms is the mass of a Schwarschild-AdS black hole
of the same size Re

contribution to the mass. It is, however, of little physical significance. Indeed the

total gravitational mass diverges. The relevant quantity is the conserved charge Q[∂t],

which is given by

Mh = Q[∂t] = 4π
(

M0 +
4

3
fα3

)

. (4.9)

The total mass Mh is shown in Figure 2 as a function of horizon size Re and for two

different boundary conditions f = −1/4 (top) and f = −1 (bottom). We find Mh > 0

for all Re and for all boundary conditions we have considered. For large Re one has

Mh ∼ R3
e . The mass is also compared with the mass Ms of a Schwarschild-AdS black

hole of the same size Re. We find Mh/Ms > 1 for all Re and Mh/Ms → 1 for large

Re.

For given AdS invariant boundary conditions, there is at most one hairy black

hole solution for a given total mass Q[∂t], so the horizon size as well as the value

of the scalar field at the horizon are uniquely determined by Q[∂t]. Thus we have

found a one-parameter family of black holes with scalar hair, in a class of theories

parameterized by f . Because Schwarschild-AdS is a solution too for all boundary

conditions we have two very different black hole solutions for a given total mass, one

with φ = 0 everywhere and one with nontrivial hair. The scalar no hair theorem,

therefore, does not in general hold in D = 4 N = 8 supergravity with asymptotically

anti-de Sitter boundary conditions. Uniqueness is restored only in theories with f = 0
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or for f → ∞. The stability and thermodynamic properties of these hairy black hole

solutions is currently under investigation [24].

5 Solitons

The existence of hairy black holes suggests there should also be regular static, spheri-

cally symmetric solitons that obey the same boundary conditions (3.3)-(3.4). Soliton

solutions can similarly be found by numerically solving eqs (4.2-4.4). Regularity at

the origin now requires h = 1, h,r = 0 and φ,r = 0 at r = 0.

φ

r
2 4 6 8 10

0.2

0.4

0.6

0.8

1

1.2

1.4

Figure 3: Soliton solution φ(r) in D = 4 supergravity with boundary conditions
specified by f = −1/4.

For every nonzero φ0 at the origin, the solution to (4.2) is asymptotically of the

form (3.3) for some value of f . The staticity and spherical symmetry of the soliton

mean α(t, xa) is simply a constant. The scalar field value φ0 at the origin uniquely

determines f and vice versa: there is at most one static spherical soliton solution in

each theory. We find [9] there is a regular soliton solution for all finite f 6= 0. When

|f | → 0 one finds |φ0| → ∞ and for |f | → ∞ one has |φ0| → 0 so the nontrivial
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soliton solution ceases to exist in this limit. As an example, in Figure 3 we show the

soliton solution for f = −1/4 boundary conditions, which has φ0 ≈ 1.5.

Most importantly, the existence of soliton solutions for a large class of AdS invari-

ant boundary conditions implies supergravity with these boundary conditions does

not admit a positive mass theorem [9]. This can be seen as follows. For the spher-

ical solitons the constraint equation (4.3) can be integrated, which yields a formal

expression for the gravitational surface term (2.8)

QG[∂t] = 2π lim
r→∞

∫ r

0
e−

1

2

∫

r

r̃
dr̂ r̂(φ,r)

2

[

2(V (φ)− Λ) +

(

1 +
r̃2

ℓ2

)

φ2
,r̃

]

r̃2dr̃. (5.1)

One must add to this the scalar surface term to obtain the mass (3.5). Now consider

a family of configurations φλ(r) = φ0(λr) with mass Mλ where φ0(r) is the static

soliton profile. From (5.1) and the form of the scalar contribution one sees that the

soliton mass M consists of the sum of a finite term M1 (which includes the scalar

contribution) that scales as the volume under rescalings r → λr and a finite term M2

that scales linearly in r. The latter comes from the gradient terms φ′2
,r in (5.1) and is

manifestly positive. Therefore, one has

Mλ = λ−3M1 + λ−1M2 (5.2)

Since the soliton extremizes the mass it follows that

dMλ

dλ
= −3M1 −M2 = 0 (5.3)

Hence M1 must be negative for the soliton. But this means rescaled configurations

φλ(r) = φ0(λr) with sufficiently small λ have negative mass. The AdS solution is

unstable, therefore, with generalized boundary conditions (3.3) on the negative m2

scalar.

Usually one discards unstable theories, saying they are not of physical interest.

But here there should be a field theory dual to these bulk theories even if they are

unstable. By studying the dual field theory description of various manifestations of

the instability in the bulk, one can hope to gain insight into the quantum nature of

such phenomena. Supergravity with generalized AdS invariant boundary conditions

together with AdS/CFT thus provides a controlled setting to explore string theory

away from the supersymmetric moduli space, where the theory is stable. In the
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next sections we further explore this instability, concentrating on applications to

cosmology. Finally in section 8 we turn to the dual field theory description of this

theory.

6 Instantons

The existence of negative mass solutions means there must also be nontrivial zero mass

solutions. The best known examples of such solutions are obtained from Euclidean

instanton solutions which are usually interpreted as describing the decay of a false

vacuum. An O(4)-invariant instanton solution takes the form

ds2 =
dρ2

b2(ρ)
+ ρ2dΩ3 (6.1)

and φ = φ(ρ). The field equations determine b in terms of φ

b2(ρ) =
2V ρ2 − 6

ρ2φ′2 − 6
(6.2)

and the scalar field φ itself obeys

b2φ′′ +

(

3b2

ρ
+ bb′

)

φ′ − V,φ = 0 (6.3)

where prime denotes ∂ρ. Regularity again requires φ′(0) = 0.

From (6.3) it follows that asymptotically φ(ρ) has the same behavior as the

Lorentzian scalar field solutions considered above,

φ =
α

ρ
+

fα2

ρ2
. (6.4)

We find that all boundary conditions that admit a spherical soliton solution also

admit an O(4)-invariant instanton solution. As for the solitons, f is determined by

the field φ(0) at the origin. In Figure 4, the profile φ(ρ) is shown of the instanton

with f = −1/4 boundary conditions.

The instanton also defines a Lorentzian solution which is obtained by analytical

continuation across the equator of the three sphere. The fields on this slice of the

instanton define time symmetric initial data for a Lorentzian solution. The Euclidean

radial distance ρ simply becomes the radial distance r in the Lorentzian solution. The
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φ

ρ

2 4 6 8 10

0.5

1

1.5

2

Figure 4: Instanton solution φ(ρ) in D = 4 supergravity with boundary conditions
specified by f = −1/4.

total mass (3.5) of this initial data can be computed from the instanton geometry.

Substituting (6.4) into (6.2) yields asymptotically

b2(ρ) = ρ2 + 1 +
α2

2
+

4fα3

3ρ
(6.5)

This is of the form (3.4) required to have finite conserved charges. In fact, we see that

M0 = −4fα3/3 and hence (3.5) implies that the total mass is zero! This is consistent

with the interpretation of the instanton as the solution AdS4 decays into.

The quantum decay rate is determined in a semiclassical approximation by the

Euclidean action of instanton. The action is given by

I =
∫

[−1

2
R +

1

2
(∇φ)2 + V (φ)]−

∮

K +
1

6

∮

[

(∇φ)2 −m2φ2
]

(6.6)

where the first surface term is the usual Gibbons-Hawking term, and the second is

the surface term required so that the Hamiltonian constructed from this action (after

subtracting the background) agrees with (3.5).
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The relevant quantity for computing the rate of vacuum decay is the difference

between the instanton action and the action for pure AdS: ∆I = I−IAdS . Subtracting

IAdS removes the leading divergences in I, but since φ goes to zero so slowly, there

are two subleading divergences. If the coefficients of these terms were not exactly

zero, ∆I would be infinite and there would be no probability for the vacuum to

decay. We have shown [9] that both coefficients miraculously vanish. This involves

nontrivial cancellations among the volume term and both surface terms in the action.

Furthermore, the difference ∆I becomes small for large |f | and goes to zero when

|f | → ∞.

7 Big Crunch Instability

We now turn to the evolution of the state AdS decays into. This is in light of

the AdS/CFT correspondence potentially the most interesting manifestation of the

supergravity instability. We will show that with generalized AdS invariant boundary

conditions, there are supergravity solutions where regular initial data evolve to a big

crunch singularity.

First let us return to the class of configurations φλ(r) = φ0(λr), where φ0 is the

soliton profile discussed in section 5. The rescaled configurations φλ(r) specify initial

data for time-dependent solutions in the same theory (i.e. with the same value of

f). For large λ, the initial bubble is smaller than the soliton and probably collapses.

On the other hand, by taking λ small one can arrange to have initially an arbitrarily

large central region where φ is essentially constant and away from the maximum of

the potential. It follows that the field must evolve to a spacelike singularity [25]. But

the singularity that develops cannot be hidden behind an event horizon, because all

spherically symmetric black holes have positive mass3 [8] while the total mass of the

rescaled initial data is negative. Hence there is simply not enough mass to form a

black hole, which encloses the singular region. Instead, one expects the singularity to

continue to spread, cutting off all space4. Boundary conditions that admit a soliton

solution, therefore, also admit solutions where finite mass configurations produce a

3We have demonstrated this for the f = −1/4 and f = −1 theories in section 4, but this is true
in general.

4If V were bounded from below, it has been shown that the singularity cannot end or become
timelike [26]. The same is likely to be true here.
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big crunch.

A particular example of such a solution where the evolution is known explicitly is

provided by the Euclidean instanton. The evolution of initial data defined by slicing

the instanton across the three sphere is simply obtained by analytic continuation.

This is discussed in detail in [27], but the basic idea is the following. The origin of

the Euclidean instanton becomes the lightcone of the Lorentzian solution. Outside

the lightcone, the solution is given by (6.1) with dΩ3 replaced by three dimensional de

Sitter space. The scalar field φ remains bounded in this region. Inside the lightcone,

the SO(3, 1) symmetry ensures that the solution evolves like an open FRW universe,

ds2 = −dt2 + a2(t)dσ3 (7.1)

where dσ3 is the metric on the three dimensional unit hyperboloid. The field equations

are
ä

a
=

1

3
[V (φ)− φ̇2] (7.2)

φ̈+
3ȧ

a
φ̇+ V,φ = 0 (7.3)

and the constraint equation is

ȧ2 − a2

3

[

1

2
φ̇2 + V (φ)

]

= 1 , (7.4)

where ȧ = ∂ta. On the light cone, φ = φ(0) and φ̇ = 0 (since φ,ρ = 0 at the origin

in the instanton). Under evolution φ rolls down the negative potential, so the right

hand side of (7.2) decreases. This ensures that a(t) vanishes in finite time producing

a big crunch singularity. For the purpose of understanding cosmological singularities

in string theory, one can forget the origin of this solution as the analytic continuation

of an instanton. We have simply found an explicit example of asymptotically AdS

initial data which evolves to a big crunch.

We close this section with some comments on possible generalizations. In section

2 we have shown that one can generalize the boundary conditions while preserving

the asymptotic AdS symmetries whenever one has a scalar field with m2
BF ≤ m2 <

m2
BF + 1 which decouples from the rest of the matter. In particular, this includes

N = 8 supergravity in five dimensions, which involves a scalar field saturating the BF

bound. In all cases one can construct similar solutions where a big crunch is produced
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from smooth finite mass initial data [9]. The simplest solutions of this kind that we

have presented here are constructed from time symmetric initial data, so they have a

big bang singularity in the past as well. It would be interesting to construct solutions

with only one singularity, in the future or the past.

8 Dual CFT description

Having shown that the bulk theory admits solutions which evolve to a big crunch,

we now turn to the dual CFT description of this theory. The dual to string theory

on AdS4 × S7 can be obtained by starting with the field theory on a stack of N D2-

branes. This is a SU(N) gauge theory with seven adjoint scalars ϕi. One then takes

the infrared (strongly coupled) limit to obtain the CFT. In the process, one obtains

an SO(8) symmetry. In the abelian case, N = 1, this can be understood by dualizing

the three dimensional gauge field to obtain another scalar. But in general, it is not

well understood.

This theory has dimension one operators OT = TrTijϕ
iϕj where Tij is symmetric

and traceless [28].5 One of these, O, is dual to the bulk field we have been considering

with the boundary conditions that φ = α/r + O(r−3) for physical states. The field

theory dual to the “standard” quantization, where physical states are described by

modes with φ = β/r2 asymptotically, can be obtained by adding the double trace

term f
2

∫ O2 to the action [29, 30]. This is a relevant perturbation and the infrared

limit is another CFT in which O has dimension two.

The AdS invariant boundary conditions we have considered here correspond in-

stead to adding a triple trace term to the action

S = S0 +
f

3

∫

O3 (8.1)

This follows from Witten’s treatment of multi-trace operators in AdS/CFT [29]. The

extra term in (8.1) has dimension three, and hence is marginal and preserves conformal

invariance, at least to leading order. One might wonder if this symmetry is exact, or

whether the operator O3 has an anomalous dimension. The anomalous dimension can

receive contributions proportional to 1/N or f . Since the large N limit corresponds

5Since there are only seven ϕ’s and the theory has SO(8) symmetry, there are other operators
involving the gauge field which complete the SO(8) representation.
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to supergravity in the bulk with AdS invariant boundary conditions, and for every f

there is a bulk solution corresponding to pure AdS, it seems likely that the theory

remains conformally invariant for finite f (at least for large N).

More generally, Witten’s procedure says that all AdS invariant boundary condi-

tions discussed in Section 2 are dual to field theories that differ from each other by

multi-trace deformations preserving conformal invariance. Thus one obtains a line of

conformal fixed points in each case6.

We now turn to the dual field theory evolution of the big crunch solutions con-

sidered above. The Lorentzian solution obtained from the instanton takes the form

(6.1) with dΩ3 replaced by three dimensional de Sitter space, dS3. So one might think

that the natural dual would correspond to the CFT on dS3. This field theory cer-

tainly allows evolution for infinite time and is nonsingular. But this only corresponds

to evolution for finite global time. We want to conformally rescale dS3 to (part of)

the cylinder R × S2. This is equivalent to a coordinate transformation in the bulk.

The relation between the usual static coordinates (2.1) for AdS4 and the SO(3, 1)

invariant coordinates

ds2 =
dρ2

1 + ρ2
+ ρ2(−dτ 2 + cosh2 τdΩ2) (8.2)

is

ρ2 = r2 cos2 t− sin2 t (8.3)

Since our bulk solution asymptotically has

φ(ρ) =
α

ρ
+

fα2

ρ2
+O(ρ−3) (8.4)

This becomes

φ(r) =
α̃

r
+

fα̃2

r2
+O(r−3) (8.5)

where α̃ = α/ cos t. Notice that f is unchanged. Hence the evolution of the initial

data defined by the instanton preserves the AdS invariant boundary conditions (3.3)-

(3.4). The fact that α̃ blows up as t → π/2 is consistent with the fact that this is

the time that the big crunch singularity hits the boundary. The coefficient of 1/r

6In supergravity theories with more than one scalar with m2

BF
≤ m2 < m2

BF
+ 1 the different

lines of conformal fixed points are parameterized by several dimensionless constants fi.
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is usually interpreted as the expectation value of O in the CFT. Hence AdS/CFT

predicts that in the large N approximation the latter diverges too.

A qualitative explanation for this is the following. The term we have added to

the action is not positive definite. Since the energy associated with the asymptotic

time translation in the bulk can be negative, the dual field should also admit negative

energy states. This strongly suggests that the usual vacuum is unstable. It might

decay via the (nongravitational) decay of the false vacuum. Perhaps a useful analogy

is a scalar field theory with potential V = m2ϕ2 − fϕ6. The quadratic term is

analogous to the coupling of ϕ to the curvature of S2, which is needed for conformal

invariance. The second term is analogous to the second term in (8.1). Qualitatively

this theory has the same behavior as the bulk. There are instantons which describe

the semiclassical decay of the usual vacuum at ϕ = 0. For small f , the potential

barrier is large, and the instanton action is large. So tunneling is suppressed. For

large f , the barrier is small and tunneling is not suppressed. Classically one finds that

after the tunneling the field rolls down the potential and becomes infinite in finite

time. This means that in the semiclassical description of this analogous field theory,

evolution ends in finite time. The fact that the field becomes infinite in this scalar

field theory is analogous to the divergence of the expectation value of O in the theory

(8.1). Whether this means that evolution ends in the full quantum description of the

CFT remains a fascinating open question, which we are currently investigating. If so,

one could conclude that there is no bounce through the big crunch singularity in the

bulk.

9 Conclusion

We have studied solutions of N = 8, D = 4 supergravity where the m2 = −2

scalar is the only excited matter field. Since its mass lies in the range m2
BF ≤ m2 <

m2
BF+1, there is a one-parameter family of boundary conditions on the scalar (and the

metric components) that preserve the full AdS symmetry group. When the parameter

vanishes, the dual CFT is the usual 2 + 1 theory on a stack of M2-branes. Nonzero

values of the parameter correspond to modifying this theory by a triple trace operator.

We find that for all nonzero values, there exists a family of AdS black holes with scalar

hair. Both the horizon size of the hairy black hole solutions and the value of the
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scalar at the horizon are uniquely determined by a single conserved charge, namely

the mass. Since Schwarschild-AdS is a solution too for all boundary conditions, one

has two very different black hole solutions for a given total mass. The uniqueness

or no scalar hair theorem, therefore, does not hold in supergravity with generalized

AdS invariant boundary conditions. It would be interesting to see how a microscopic

string theory description distinguishes between both classes of black hole solutions.

Although the modified boundary conditions preserve the full set of asymptotic

AdS symmetries and allow a finite conserved energy to be defined, we have shown this

energy can be negative. Thus the AdS solution in supergravity with these boundary

conditions is nonlinearly unstable. A particular manifestation of this is that there are

asymptotically AdS solutions describing the evolution of regular finite mass initial

data to a big crunch.

Our motivation to study supergravity in this regime is that there should be a dual

CFT description of these bulk theories even if they are unstable. Most interestingly,

the field theory should provide a complete quantum description of the big crunch

singularity. If states in the CFT have a well defined evolution for all time, and one

can reconstruct from it a semiclassical bulk metric at late time, then there must

be a bounce through the singularity in the full string theory. However, if the CFT

evolution ends after finite time, or a semiclassical metric cannot be constructed, then

the bulk evolution would end at the big crunch.

As we mentioned, modifying the bulk boundary conditions corresponds to modi-

fying the usual dual field theory on a stack of M2-branes by a triple trace operator.

Since this term is not positive definite, it appears possible there will be certain CFT

states which do not have well defined evolution for all time. We have seen this hap-

pening at the semiclassical level in the deformed 2+ 1 theory for states that are dual

to our big crunch supergravity solutions.

Moreover, we have good evidence that there are no bulk solutions that produce

a big crunch in supergravity theories that are dual to stable CFT’s. This is because

solutions of this type would violate7 cosmic censorship [31], which is believed to hold

in theories with a positive mass theorem, even in anti-de Sitter space [32, 33] (see

also [34, 35]. Taken together, these results indicate that producing a big crunch

7There is no naked singularity, but one does not have well defined evolution for all time in the
asymptotic region.
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in AdS from smooth initial data requires boundary conditions that correspond to

an unstable dual CFT. Therefore, the fact that the dual classical evolution ends in

finite time and that the expectation value of the operator O dual to the bulk scalar

field diverges in the large N limit are, presumably, generic properties of a dual field

theory description of a big crunch in the bulk, at least with AdS boundary conditions.

Whether this means the big crunch is an endpoint of evolution in the full string theory

remains a fascinating open question, which we are currently investigating. If it is

an endpoint, that would raise the issue what determines the boundary conditions at

cosmological singularities. Perhaps the AdS/CFT correspondence and the toy models

of cosmologies we have constructed here could be useful to study this question further.
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