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Abstract

This thesis addresses the problem of autonomous object segmentation. To do so

the proposed segementation method uses some prior information, namely that the

image to be segmented will have a low depth of field and that the object of interest

will be more in focus than the background. To differentiate the object from the

background scene, a multiscale wavelet based assessment is proposed. The focus

assessment is used to generate a focus intensity map, and a sparse fields level set

implementation of active contours is used to segment the object of interest. The

initial contour is generated using a grid based technique.

The method is extended to segment low depth of field video sequences with

each successive initialisation for the active contours generated from the binary di-

lation of the previous frame’s segmentation. Experimental results show good seg-

mentations can be achieved with a variety of different images, video sequences, and

objects, with no user interaction or input.

The method is applied to two different areas. In the first the segmentations

are used to automatically generate trimaps for use with matting algorithms. In the

second, the method is used as part of a shape from silhouettes 3D object recon-

struction system, replacing the need for a constrained background when generating

silhouettes. In addition, not using a thresholding to perform the silhouette segmen-

tation allows for objects with dark components or areas to be segmented accurately.

Some examples of 3D models generated using silhouettes are shown.
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Chapter 1

Introduction

Being able to extract an object of interest (OoI) from an image (referred to as ob-

ject segmentation in this thesis) is important in a wide variety of computer vision

applications, such as object recognition, but to do so without any user input is diffi-

cult due to wide varying scenes and image characteristics. Whilst an edge detection

method can successfully extract contours from images, additional processing is re-

quired to determine which are object contours, which are background contours and

which are caused by other image features such as textures or colour changes in an

object or background.

Image segmentation methods aim to divide images into regions where pix-

els contain similar characteristics such as colour, intensity or texture. To aid this,

several methods also utilise human annotations to the image. In the specific case

of object segmentation, the objective is to produce a binary segmentation, i.e., the

image is divided into two types of regions, background and object. Image segmen-

tation is a popular field of research and numerous object segmentation algorithms

have been proposed, many of which require some user input or a priori knowledge

about the object to be segmented. It is widely accepted that it is difficult to pro-

duce a general autonomous algorithm suitable for all image types, but methods that

require no user input can be applied to specific scenarios or scenes. For this thesis,

the case of images with a low depth of field (DoF) is investigated, allowing the cue

to be taken from the focus of pixels rather than relying on texture or colour.

DoF is the zone, or range of distances, in a given scene that appear to be

in acceptably sharp focus. Although a camera lens will only be in critical focus for

one point in the scene, a range of points behind and in front of this point will also

appear sharp depending on the DoF. Thus in an image captured by a camera with a

large DoF most of the scene will appear to be sharp (in focus), whereas in a low DoF
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image parts of the scene closer to, or further away from, the lens than the point the

camera has focused on will appear blurred (out of focus). Capturing images with a

low DoF is a commonly used technique in photography as it emphasises the subject

of a photograph, as well helping viewers understand the depth of particular objects

in a scene.

To address the problem of autonomous object segmentation, this thesis pro-

poses a method which combines a focus assessment of image pixels and an active

contours algorithm to segment an OoI. The premise behind the proposed method

is that the image background will not be as sharp as the OoI the camera has fo-

cused on. A focus assessment enables the method to differentiate between object

and background contours, and thus extract the OoI.

Increasingly a low DoF is also being used in video sequences, in a range

of situations from adverts and news broadcasting, to film and television programs.

Using a low DoF emphasises the important part of a frame and prevents a cluttered

background from detracting from the focus of a scene. The linked nature of video

frames is utilised to expand the object segmentation method to provide fast and

accurate segmentations for low DoF video sequences.

Digital matting addresses the problem of foreground estimation in images.

Matting methods determine an opacity or alpha value for mixed or ambiguous pix-

els along an object’s boundary. This allows for complex natural objects, the most

difficult cases being those with hair or fur, to be composited onto new background.

Typically matting methods make use of a user defined trimap - where the original

scene is split into 3 segments; object, background and ambiguous. Object pixels are

given an alpha value of 1 (opaque) and background pixels 0 (transparent). The mat-

ting method chosen then calculates the opacity within the ambiguous region based

on a series of probabilities. The foreground element can then be composited into a

new scene. The enveloping properties of the active contours algorithm used in the

proposed object segmentation method mean that it can be adapted to automatically

generate accurate trimaps for use in matting algorithms.

There are two general categories of 3-dimensional (3D) object reconstruction,

active methods and passive methods. Active methods involve some form of interac-

tion or scanning of the OoI whereas passive methods use only sensors (typically one

or two image sensors in the visible range). Passive techniques have the advantage

of being unintrusive to the OoI and the equipment involved is relatively inexpensive

when compared to active methods. 3D object reconstruction from 2-dimensional

(2D) images is intrinsically problematic as the information in one dimension is lost

when a 3D scene is projected onto a 2D image. One passive 3D object reconstruction
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technique is known as the shape from silhouettes (SfS) method. Images of the OoI

are captured by a camera at numerous viewpoints. By segmenting the images and

backprojecting the resulting silhouettes of the object, a visual hull representing the

object’s volume is created. The proposed object segmentation method is integrated

into an existing SfS-based 3D object reconstruction system, removing the need for

a bulky background in the image capture stage, and the need for user input to

generate the silhouettes.

1.1 Contributions and Thesis Structure

The principal contributions of this thesis are as follows:

1. Evaluation and comparison of focus assessment methods;

2. Multiscale focus assessment of image pixels;

3. Unsupervised object segmentation from low depth of field images;

4. Unsupervised object segmentation from low depth of field video sequences;

5. Automatic trimap generation for matting algorithms and scene composition;

6. Automatic silhouette generation for 3D object reconstruction.

This thesis is concerned with an autonomous object segmentation algorithm and its

applications, in particular to digital matting, and silhouette generation for an auto-

matic 3D object reconstruction system. It focuses on the required image processing

techniques of focus assessment and object segmentation. The thesis is organised

into 8 Chapters. In each chapter, a review of related techniques are presented. The

individual chapters of this thesis are structured as follows:

Chapter 2 provides an introduction to the concept of focus and its relation-

ship with DoF. The problem of object segmentation is introduced and an overview

of popular methods and techniques given.

Chapter 3 covers a range of existing techniques for assessing the focus values

of image pixels. The performance of these techniques are evaluated and a modified

multiscale focus assessment algorithm proposed.

Chapter 4 presents a new autonomous object segmentation method for use

with low DoF images. Experimental results of this method are presented and the

performance of this method is compared with other popular object segmentation

algorithms.
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Chapter 5 expands upon the algorithm presented in Chapter 4, and extracts

the OoI from low DoF video sequences. Experimental results of this algorithm are

presented, and the performance of this algorithm is compared with another related

method.

Chapter 6 presents an application of the object segmentation method, apply-

ing it to automatically generate trimaps for use in matting algorithms to perform

scene compositions, both in images and video sequences. Experimental results of

the methods on a number of realistic scene superimpositions are presented.

Chapter 7 applies the object segmentation method to automatically generate

silhouettes for use in an existing 3D object reconstruction system. A variety of 3D

models generated using this method are shown. Finally, Chapter 8 concludes the

thesis.
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Chapter 2

Overview of Background

Fundamentals

2.1 Introduction

The object segmentation method presented in this thesis is designed to work without

user input on low depth of field (DoF) images, i.e., images where there is a focus

differential between the object and background. This overview chapter looks at some

of the fundamental topics involved in this area of research. The concept of focus

and how it relates to low DoF images are explained. The fundamentals of image

segmentation are also discussed and some of the main approaches and methods

reviewed.

This overview chapter is organised as follows: Section 2.2 provides a defini-

tion of focus. The derivation of the Thin Lens Law and how this relates to defocused

regions of an image are presented. The amount of image blurring is shown to be

related to the distance in depth from the critical focus point. DoF is defined and

the factors affecting it are discussed. Finally, some of the applications and uses

of low DoF images are demonstrated. Section 2.3 provides a definition of image

segmentation, whilst Section 2.4 discusses the specific case of object segmentation

with Section 2.5 giving an overview of the popular methods and techniques.

2.2 Focus and Depth of Field

2.2.1 Focus

From a human perspective, focus is generally associated with sharpness - if an object

or area is sharp it is considered to be in-focus, whilst if a region is blurred or fuzzy
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it is considered to be out of focus, or defocused. In optics, focus is defined as the

point at which light rays originating from a point on an object converge. Thus, if

an image point is in-focus, light from the point will be well converged on the image

plane, whereas light from defocused image points will not. This is illustrated in

Figure 2.1, where the object point that is perfectly in focus is known as the point

of critical focus (B).

Figure 2.1: Light rays from a focused point in a given scene (B) converge on the
image plane to form a point, whereas light rays from defocused points (A and C)
do not converge and thus form a spot on the image plane.

2.2.2 Thin Lens Law

Modelling a camera as an image plane and a thin convex lens with a focal length f ,

the relationship between a focused point in a scene and the position of its focused

point on the image plane can be derived by using the optical geometry shown in

Figure 2.2. Two pairs triangles are identified as shown in Figure 2.3.

Using the law of similar triangles gives the following equations

I

O
=
v

u
, (2.1)

and
I

O
=
v − f
f

, (2.2)

where f is the focal length, I is the the image size, O is the object size and u and v
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Figure 2.2: Lens system showing central, parallel and focal rays from focused object
point and corresponding image, where f is the focal length, I is the the image size,
O is the object size, u the distance from the lens to the object and v the distance
from the lens to the image.

(a) (b)

Figure 2.3: Two similar triangles within the lens system shown in Figure 2.2.

are the distances from the lens to the object and image, respectively. Substituting

Equation 2.1 in Equation 2.2 gives

u

v
=

f

v − f
. (2.3)

thus giving the well known thin lens formula for a focused point:

1

f
=

1

u
+

1

v
. (2.4)

2.2.3 Circle of Confusion

Consider the cases where an object point is either shallower or deeper than the

distance u. As shown in Figure 2.1 the light will not converge to a single point on
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the image plane, but instead upon an optical spot. This spot is known by a variety

of names including ‘circle of indistinctness’, ‘blur circle’, ‘blur spot’ and ‘circle of

confusion’. For the purposes of this thesis it will be referred to as the the circle of

confusion (CoC). The relationship between the diameter of the CoC and the depth

is shown by [Pentland, 1987]. Rearranging the thin lens law (i.e., Equation 2.4) in

terms of u gives

u =
vf

v − f
. (2.5)

For a particular lens system, the focal length f is constant. Assuming that

the distance between the lens and the image plane is fixed at v = v0, and the distance

at which a point will be in perfect focus is at u = u0, gives

u0 =
fv0

v0 − f
. (2.6)

Figure 2.4 illustrates the case when the distance of the object from the lens, u, is

greater than the critical point of focus, uo with a lens of radius r. This gives a CoC

with radius σ.

Figure 2.4: Lens system with fixed values v0, u0 and f , when the distance of the
object from the lens, u, is greater than the critical point of focus, u0. This gives the
resultant circle of confusion of radius σ.

Using the law of similar triangles, it can be shown that

r

v
=

σ

v0 − v
. (2.7)

Substituting v = r(v0 − v)/σ into Equation 2.5 gives
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u =
frv0

rv0 − fr + fσ
. (2.8)

It can equally be shown that for objects closer to the lens than the critical focus

point

u =
frv0

rv0 − fr − fσ
, (2.9)

which gives the general equation

u =
frv0

rv0 − fr ± fσ
=

{
+ if u > u0

− if u < u0

, (2.10)

or

u =
fv0

v0 − f ± σFN
=

{
+ if u > u0

− if u < u0

, (2.11)

where FN is the f-number of the lens. This shows depth to be an indicator for

defocus. Lai [Lai et al., 1992] rewrites the equation to more clearly show the rela-

tionship. Assuming that for a given lens system f , v0 and FN are all constant, then

Equation 2.11 can be written as:

u =
P

Q± σ
. (2.12)

where P = fv0/FN , Q = (v0−f)/FN , and P and Q are constant for a given camera

system. When a point is in perfect focus at the critical focus point, the amount of

defocus, σ, will be zero (u0 = P/Q). The formula shows that the CoC gradually

increases as the object point moves either deeper (i.e., further away) or shallower

(i.e., nearer) to the lens than the critical focus point u0.

2.2.4 Depth of Field

It has been shown that the diameter of the CoC increases with the distance (either

shallower or deeper) of the point from the point of critical focus. If the diameter of

the CoC is less than the resolution of the human eye (or of the display medium),

then the image point will still appear to be in focus. The region for which this

holds true is known as the DoF. Note that the resolution of the human eye and

display medium are likely to be different, thus an image might have a different DoF

in a human visual system (HVS) as opposed to a machine vision system (MVS). An

alternative qualitative definition for DoF is the distance between the deepest and

shallowest points in a given scene that appears acceptably sharp in the image of the

9



scene. Figure 2.5 shows an example whereby an identical scene is captured twice by

a camera. The DoF of image (b) is lower than that of (a), and thus the background

and parts of the object further from the lens appear blurred.

(a) (b)

Figure 2.5: Images of an identical scene captured using lens systems with a different
DoF: (a) with an aperture of f/32 and (b) with a relatively large aperture of f/5.

It can be seen from Equation 2.11 that a number of variables can be altered

to produce an image with a low DoF, i.e. a larger CoC for a given distance from

the critical focus point. Photographers will usually either use a larger aperture or

lens with a longer focal length in order to achieve the effect. Figure 2.6 (a) and (b)

respectively show the effect of using a large and a small aperture. It can be seen

that a smaller aperture results in smaller CoCs, and thus a greater DoF, and vice

versa.

2.2.5 Low Depth of Field Photography

Depending on the desired effect, a photographer or cameraman can use a low or

high DoF. A low DoF is standard in many television or film productions as it directs

the viewer’s attention to the important part of the scene. Background objects are

blurred and thus do not provide a distraction to the viewer. Whilst the HVS system

is normally very good at determining depth in an image, using a low DoF also

helps to convey this information more clearly. An example of a low DoF used in

a film production is shown in Figure 2.7(a). Similarly a photographer will use a

shallow DoF in fields such as portrait or flowers/animal photography to emphasise

the subject of the photograph, such as in Figure 2.7(b). Using a low DoF is also

common in scientific applications. For example in microscopy, by panning through

different planes of focus, a user can get an idea of the relative depths and heights of

very small structures.
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Figure 2.6: The effect of aperture size on depth of field. Lens system (A) shows the
effect of a larger aperture on CoC size (and thus DoF) whilst (B) shows that of a
smaller aperture.

2.3 Image Segmentation

In computer vision, image segmentation is the process of dividing a digital image

into multiple parts or segments. This is typically to simplify or change the appear-

ance of the image to allow meaningful data to be more more easily extracted or

analysed. Pixels are grouped into non-overlapping segments which share a similar

characteristic or property, such as colour, intensity or texture. The union of these

segments forms the entire image, and no two adjacent segments will have the same

property. Segmentation is more formally defined in [Pal and Pal, 1993].

For a segmentation method where F is the set of all pixels and P ( ) is a

characteristic value assigned to a group of similar connected pixels if they fulfil

a logical criteria (known as the uniformity predicate), then segmentation is the

partitioning of the set F into a set of connected subsets or regions (S1, S2, S3, ..., Sn)

such that
n⋃
i=1

Si = F with Si ∩ Sj = ∅, i 6= j . (2.13)

The uniformity predicate P (Si) = true for all regions Si, and when Si is

adjacent to Sj then P (Si ∪ Sj) = false. This remains true for all types of images,

not just those representing the visible light domain.
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(a) (b)

Figure 2.7: Use of low DoF: (a) in film production, and (b) in portrait photography.

2.4 Object Segmentation

Object segmentation is a specific case of image segmentation whereby the aim is

to divide the image into two different areas, the object of interest (OoI) and the

background. This is known as a binary segmentation. Some algorithms also generate

a third ambiguous region along object boundaries. Object segmentation can be

more problematic than image segmentation as a given object may have different

properties such as colour or texture across its surface. It my also contain multiple

internal contours (e.g., edges within an object) making object segmentation via edge

detection a difficult task.

Segmentations can be divided into three different categories: those that are

performed entirely by the user (i.e., manual segmentations); those that deal with a

specific type of image or object, thus reducing the unknowns and allowing for au-

tonomous segmentation methods (i.e., unsupervised segmentations); and those that

use human input to guide or refine a segmentation (i.e., supervised segmentations)

and thus can function with a wider or general range of objects and scenes.

2.4.1 Manual Segmentation

Manual segmentations involve the user identifying which regions have a similar char-

acteristic and marking them manually to form a segmented image. Such segmenta-

tions can be very time consuming with large images and rely on a certain degree of

skill from the user. Which areas belong to which segments can also be subjective,

meaning two users could end up with significantly different segmentations. Other

methods involve marking object contours and potentially making use of geometrical

shapes such as ellipses to approximate the boundaries of objects, thus saving time

but at the cost of accuracy.
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2.4.2 Unsupervised Segmentation

Creating a general unsupervised segmentation method is notoriously difficult due

to the sheer range and variation in image characteristics and is considered to be

an unsolved problem. Autonomous segmentation methods therefore require some

form of a priori knowledge about the image. This could be information about the

background, or the object to be segmented, or even more general image properties.

For example, the method this thesis presents in Chapter 4 uses the fact that input

images will have a low DoF, and that the OoI will be in clear focus, in order to

perform autonomous segmentations.

By limiting the potential variations from image to image, unsupervised seg-

mentations can form part of larger autonomous systems. For example, one well

documented application is in automated-picking robots.

2.4.3 Supervised Segmentation

Supervised segmentations combine the most efficient parts of manual and automatic

segmentations. A HVS can identify very quickly which parts of an image are of

interest and this additional information allows a segmentation algorithm to function

quickly and accurately. The user input in supervised methods is generally given in

one of the following three ways:

1. Specification of an initial boundary, or parts of a boundary. This initial con-

tour then evolves to the desired object boundary and is used in segmentation

methods based on the active contours algorithm [Kass et al., 1988].

2. Denotation of a small set or sets of pixels that belong to the object or segment

of interest, this is sometimes known as a ‘seed’. In some methods the user will

also specify a set of pixels that belong to the background of the image. Well

known techniques such as GraphCuts [Boykov and Jolly, 2001] and seeded

region growing methods often use this kind of user input.

3. Specification of points along an OoI’s boundary. These points are connected

to form a contour which then ‘snaps’ to the desired object’s boundary. This

form of input is used in methods such as intelligent scissors [Mortensen and

Barrett, 1995].

Feedback can also play a significant part in supervised segmentations, for

example in the GrabCut method [Rother et al., 2004]. After an initial supervised

segmentation is formed, the user is given the option to add in foreground or back-

ground seeds to refine the segmentation until satisfied. Such methods mean that
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given enough time, a user can repeatedly refine the segmentation until a ‘perfect’

result is obtained.

2.5 Segmentation Methods

Image segmentation is a popular and well researched field, and thousands of segmen-

tation methods have been presented in literature [McGuiness and O’Conor, 2010].

Aside from being categorised on levels of user input, methods can be further subdi-

vided into two areas: edge based and region based methods.

Edge detection is an entire field of image processing in itself, but can form

the basis of segmentation techniques. Edge-based segmentation methods generally

use some form of edge operator or filter followed by a thresholding to obtain the

contours in an image. Enclosed regions are considered to be separate segments

as they lack continuity with adjacent regions and can be identified by simple ‘fill’

operations. Broken contour lines, for example caused by blurring, will result in

failed segmentations and thus such methods tend to involve some form of line-linking

operation.

For the task of binary object segmentation, region based techniques are more

applicable. This is because edge detection methods cannot produce binary segmen-

tations of objects with multiple internal contours. This section discusses some of

the broad concepts that are the basis for many segmentation methods.

2.5.1 Thresholding

Thresholding is one of the simplest methods for image segmentation. In its most

basic form it assigns all pixels with intensity values (F ) above a certain level as

object and those below this threshold, α, as background, i.e.,

if F (x, y) ≥ α F (x, y) = 1 (object)

else F (x, y) = 0 (background)
. (2.14)

The threshold can be given manually or calculated automatically. For example

Otsu’s method [Otsu, 1979] automatically generates a threshold for a binary seg-

mentation by minimising the intra-class variance, as shown in Figure 2.8.

Thresholds can be applied either globally (as in Equation 2.15) or locally.

Using different thresholds for individual pixels in an image is known as adaptive

thresholding. Adaptive methods tend to take one of two approaches: windowing,

or local thresholding. A windowing thresholding method, such as that proposed by

Chow [Chow and Kaneko, 1972], divides the image into a number of overlapping
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(a) (b)

Figure 2.8: Segmentation of an initial image (a) using a threshold automatically
generated via Otsu’s Method to produce a binary segmentation (b).

subimages. These are considered separately and optimal thresholds for each subim-

age are found. These calculated thresholds are used to interpolate the threshold for

each individual image pixel. More current approaches use a less computationally in-

tensive local thresholding approach, where the threshold for a pixel is determined by

the values of pixels in its neighbourhood. For a example, a simple local thresholding

could use the mean of neighbouring pixels to calculate a threshold:

if F (i, j) ≥M − C F (i, j) = 1 (object)

else F (i, j) = 0 (background)
. (2.15)

where C is a constant and M is the mean of pixels belonging to the neighbourhood

of size (2N + 1)× (2N + 1) given by

M =
1

(2N + 1)2

i+N∑
x=i−N

j+N∑
y=j−N

F (x, y). (2.16)

The size of the neighbourhood used greatly impacts on the performance of the

segmentation method.

2.5.2 Histograms

Grey level histograms can also be used to determine thresholds for binary segmen-

tations. Once peaks in a histogram have been identified, a threshold can be set at

the minima between them, as shown in Figure 2.9.

A segmentation method can also apply many different level thresholds to an

image, dividing it into multiple segments. This is known as multi-thresholding. A
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Figure 2.9: Histogram of the intensity/grey level in a image. The selected threshold,
T1, corresponds to the minimum between the two peaks.

histogram is computed from all image pixels, and peaks and troughs are identified

to group similar pixels, for example as shown in Figure 2.10. Such a method can

easily be extended to grouping pixels with similar colours rather than grey levels.

Figure 2.10: Histogram of the intensity level in a image with three groupings of
pixels. Threshold levels correspond to the minima between peaks.

Compared to some other segmentation techniques, a histogram is computa-

tionally very efficient, requiring only a single pass of the image. If the groupings

of pixels are not very distinctive then difficulties can arise in selecting appropriate

thresholds. More complex methods use further histograms to recursively break down

clusters of similar pixels into smaller groupings. Whilst effective at grouping similar

colour pixels, a binary object segmentation via histogram may not be possible if an

object is not of a uniform colour.

2.5.3 Clustering

The K-means algorithm is a popular cluster analysis method that is commonly

applied to the problem of image segmentation. It was proposed concurrently by a

number of scientists under various different guises [Bock, 2008]. In its basic form the

algorithm segments an image into K clusters. The Initial cluster centres can either
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be picked randomly or seeded. The algorithm then follows the following iterative

process:

1. Each pixel is assigned to a cluster which minimises the distance between the

cluster centre and the pixel.

2. Cluster centres are re-calculated by averaging all the pixels within the cluster.

These two steps are repeated until there are no further changes in the mem-

bership of the clusters. The distance is commonly defined as either the square or

absolute difference between a pixel and the cluster centre, and can be based on

colour, intensity, texture, or a weighted combination of these factors. Figure 2.11

shows an image segmented using a K-means algorithm with K = 16.

(a) (b)

Figure 2.11: Colour segmentation of an image (a) using a K-means algorithm with
16 clusters to produce a colour segmentation (b).

2.5.4 Region Growing

Region growing algorithms often make use of user defined seeds [Adams and Bischof,

1994]. In its simplest form, a seed is placed in each object or region to be segmented.

From these starting points, regions are grown iteratively from all unallocated neigh-

bouring pixels. The intensity or hue of the neighbouring pixel that is most similar

to the mean of the region being grown is allocated to that region. This is repeated

until all pixels are allocated to a region.

Seedless region growing methods can also produce successful segmentations.

Starting from a random pixel, an initial region is created. The difference in intensity

or hue of neighbouring pixels is calculated. If the difference is below a certain

threshold then the pixel is added to a region. If it is greater, a new region is created

with this pixel. The process is repeated until all pixels are assigned to a region.
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Adjacent regions can be merged under some criteria, for example sharpness of

region boundaries. A harsh criterion can create a fragmented segmentation whereas

a lenient one could overlook blurred boundaries and oversimplify the segmentation.

2.5.5 Split and Merge Algorithms

Region merging methods address the problem of image segmentation from the bot-

tom up. Every pixel is considered to be a seed. If two neighbouring pixels are the

same, or similar enough according to some criterion, then they are merged into a

single region. Likewise, if properties of two adjacent regions are similar enough to

each other, they will be merged. This process continues until no further merging

is possible. These kinds of algorithms are computationally very intense. Split and

merge algorithms, proposed by Horowitz [Horowtiz and Pavlidis, 1974], are much

more efficient and start from the top downwards.

A quadtree structure is generally used for the splitting process. The entire

image is considered to be a single region. If this region is uniform (or if all pixels

within the region have sufficient similarity) then the region is left as it is. If the

pixels in the region are non-homogeneous (or outside of some range or threshold

of conformity) it is then subdivided into four quadrants, i.e., the child regions.

The process is then repeated for each of these child regions, i.e., the conformity

of the pixels is checked which determines whether the region will be split again.

These subdivisions are continued until no further splits occur or the resolution of

the quadtree is reached. The merging algorithm can then proceed, merging regions

from the bottom up. Starting with these small regions rather than single pixels

means that split-merge methods are significantly more efficient than pure merge

algorithms.

2.5.6 Watershed Transformation

The watershed transform, first proposed by Digabel [Digabel and Lantuejoul, 1977]

is a popular segmentation method. It takes its inspiration from geography. Wa-

tershed transformation methods treat an image as a topographical map, where the

intensity of a pixel is interpreted as its altitude, e.g., high value regions appear as

peaks or ‘mountains’ and low values as troughs or ‘valleys’. This topographical map

is then flooded from local minima. ‘Water basins’ fill up from these minima and

where two basins converge a ‘dam’ is formed. The flooding process is stopped once

the water reaches the level of the highest peak. The resulting image is segmented

into regions (or basins) separated by the dams known as watershed lines.

18



In practice watershed transform tends to be performed on the morphological

gradient of the image, not the greyscale image. This generates watershed lines along

the points of intensity discontinuity, most likely edges, meaning the regions or basins

will correspond to objects, or object regions within an image.

2.5.7 Active Contours

The general principle behind an active contours algorithm is that an initial curve or

snake evolves to try and minimise an energy function, drawing it towards an object

boundary [Kass et al., 1988]. Representing the snake parametrically by v(s) =

(x(s), y(s)), the energy function can be written as

E∗snake =

∫ 1

0
Esnake(v(s)) ds

=

∫ 1

0
[Einternal(v(s)) + Eimage(v(s)) + Econstraints(v(s))] ds (2.17)

where Einternal is the internal energy of the curve due to bending, Eimage is the

force pulling the contour towards salient image features and Econstraints are external

constraints imposed upon the curve by the user.

Active contours models can either be parametric snakes or geometric snakes.

Parametric snakes are represented by splines and the contour evolution is only per-

formed on specific points along the contour. They have the disadvantage of not

being able to split the contour to detect multiple objects without manual interven-

tion and, unless the initial curve is close to the object boundary, can converge on

non-object points [Hou and Han, 2005].

Geometric, or level set methods, represent the contour of an object as the

zero-level set of a higher dimensional function. With an image, the contour of an

object on the 2D image plane is updated when its 3D surface is evolved as illustrated

in Figure 2.12. The advantages of level set methods are that they allow for complex

curve behaviour, namely the merging and splitting of the contour is an easy process.

There are many different implementations for the energy function which can

be used depending on the desired application of the active contours. These can either

be implicit or explicit methods. Explicit or edge based active contours mainly use

image gradient information to find object boundaries. Implicit or region based active

contours utilise other information such as texture and localised grey level intensity.

A popular implicit model is proposed by Chan [Chan and Vese, 2001]. Based on the

Mumford-Shah functional [Mumford and Shah, 1989] for segmentation the method

can detect objects within a given scene whose boundaries are not necessarily defined
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Figure 2.12: Level set method: (bottom row) the evolving level set function of a
3D dark grey object and a 2D light grey image plane; (top row) the corresponding
contour curves of the object regions on a 2D image plane are the zero-level set values
of the evolving object surface.

by a gradient and is very robust to noise.

One of the main criticisms of active contour algorithms is that they are

computationally intensive, especially when dealing with large images. This is par-

ticularly true of level set methods. A number of implementations can be used to

increase speed. The sparse field method [Whitaker, 1998] is a narrow band level-set

implementation which substantially reduces the number of computations required

per iteration by only performing calculations near the zero level set. Other criti-

cisms of active contours are that methods tend to be very dependent on having a

good initial contour, which is why they are commonly defined by the user. In some

implementations there are also risks of the evolving boundary becoming stuck in

local minima.

2.5.8 Graph Partitioning Methods

Graph partitioning methods model an image as a weighted undirected graph. Pixels

form the nodes of the graph and edge weights represent the difference or similarity

between neighbouring pixels. All the nodes in the graph are grouped into two or

more partitions based on certain criteria. For example, in the graph cuts method

[Boykov and Jolly, 2001] the user specifies some initial object and background seeds.

A graph is created with two terminals. The edge weights or costs for t-links (node

to node links) are defined by a regional term, and the costs for n-links (node to

terminal) by a boundary term, with both taking the user defined seeds into account.
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A min-cut algorithm (aiming to minimise the cost of links cut) categorises pixels as

either object or background, thus segmenting the image. This process is illustrated

in Figure 2.13.

Figure 2.13: Example of a simple segmentation of a 3x3 image where T is the
background terminal and S the object terminal. ‘B’ and ‘O’ denote background and
object seeds, respectively. Figure is adapted from [Boykov and Jolly, 2001].

2.5.9 Conclusion

In this chapter the concept of focus is introduced and the thin lens formula is derived

for a focused point. It is shown that light from shallower or deeper object points

will not converge to a single point on the image plane, but instead upon an optical

spot, known as the CoC. The size of the CoC is dependant on the distance from

the point of critical focus, thus depth is shown to be an indicator for defocus. DoF

and the use of a low DoF in the media is described. Image and object segmentation

are defined and a number of popular methods and techniques covered. In order

to produce an autonomous object segmentation method the number of unknowns

must first be reduced. Thus, this thesis concerns itself with unsupervised object

segmentation from low DoF images and video sequences.
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Chapter 3

Focus Assessment

3.1 Introduction

Research into the focus of an image is not an uncommon theme. This can vary from

assessing the focus of an entire image to identifying regions of different focus within

a given image. However, the objective is the same, namely to determine whether

the image, or parts of the image, have undergone some kind of blurring operation

as a result of being outside of the DoF, as discussed in Chapter 2. Assessments of

whole images can be used to determine whether images of a given scene are focused

more or less than each other, for example when the distance of the image plane from

the lens is changed. Focus assessment of the regions within an image can be used to

obtain further information about a scene, e.g., to identify objects, or estimate the

depth of regions within a calibrated image. The most common way of determining a

focus value of a pixel is by determining how much it contrasts with its neighbouring

pixels, i.e., how blurred the section of the image is.

Focus assessments are used in a wide variety of applications and research

areas. They are an integral part of autofocusing algorithms, for example within

the field of computer microscopy [Sun et al., 2004b], where autofocusing is used

to automatically determine the best scope settings to view a slide. Autofocusing

functions of some digital cameras also make use of a focus assessment in its simplest

form to perform a contrast detection. A camera using a contrast detection method

will pan through a range of lens settings to select the optimal. This is where the

intensity difference between neighbouring pixels is at its maximum, i.e., where there

is the least amount of blur. The use of a focus assessment is also common in

iris recognition systems [Jang et al., 2008], where obtaining the clearest and most

focused image is of the upmost importance if reliable results are to be consistently
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produced.

Other applications include image fusion [Huang and Jing, 2007], where focus

assessments are used to merge two images that focus on different parts of a scene

in order to create one fully focused composite image. This can also be applied in

microscopy so that structures at different levels are in focus in the composite image.

Defocus can also be used to estimate the depth of pixels in an image [Pentland,

1987] which in turn can be used to perform 3D reconstruction of surfaces [Nayar

and Nakagawa, 1994].

The premise behind the object segmentation method presented in this thesis

is that by limiting the type of image to be processed to those with a low DoF, an

autonomous method can be created. Assuming that an image generated from a

camera system has focused on the OoI within a given scene, the background pixels

of the image will be less sharp when compared to object pixels. A focus assessment

allows the different regions, e.g., background and object, to be differentiated by some

segmentation method. This chapter is primarily concerned with the selection of a

suitable assessment to create a focus map, and is organised as follows: Section 3.2

briefly describes the most common way of modelling defocus. Section 3.3 provides

an overview of the seminal focus assessment methods, dividing them into three

different categories; statistical, derivative, and wavelet based methods. Example

focus maps are shown for a number of different assessments. Section 3.4 evaluates

the suitability of a range of different focus assessment methods for the problem of

object segmentation from low DoF images. Section 3.5 considers the effects of image

resolution on the performance of the focus assessment methods. Finally, Section 3.6

proposes a multiscale variation of a wavelet based focus assessment. Some focus

maps generated using this method are shown in Section 3.7. In Section 3.8, the

chapter is concluded.

3.2 Modelling Defocus

The point spread function (PSF) describes how an imaging system will respond to an

object point, i.e., the blurring operation an object point undergoes when an image

is formed. The relationship between the actual or original scene f(x, y) and the

corresponding captured image g(x, y) can be described by the following convolution

[Jain, 1998]:

g(x, y) = (f ∗ h)(x, y), (3.1)
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where h(x, y) is the PSF of blurring and has the characteristics of a low-pass filter.

Autofocusing algorithms seek to minimise blur such that g(x, y) ≈ f(x, y). As the

blurring caused by defocus is modelled as a low-pass filter, most focus assessments

measure high-frequency components in an image, to detect areas less affected by

blurring.

3.3 Focus Assessment Methods

The basic premise behind most focus assessment methods is that focused images will

contain more information, or detail, than defocused or blurred images. Detecting

the presence of this detail, shown as high frequency components, is key to assessing

an image’s level of focus. As such, it is common for methods to rely on edge

information, where the contrast between neighbouring pixels will be greatest. As

focused images will have sharp edges, they will contain more high frequency content

than their equivalent in a defocused image.

This premise leads to a number of issues. If the focus differential between

the background and foreground is small, then some background contours may have

higher frequency components than internal parts of the focused OoI. This is partic-

ularly true of objects which are mostly homogeneous, or have weak textures. This

is because despite being within the DoF, if there is no contrast between adjacent

pixels (for example in a mono-colour plastic object where the illumination is equal

on all parts) then the object will behave the same as a defocused region, having no

high frequency components. Only the region boundaries can be differentiated.

Other potential problems in assessing the focus of an image include artefacts

such as light glare or flash reflections. These can potentially create artificial high

frequency components in the otherwise less sharp background.

The size or resolution of an image will also have an effect on focus assessment.

Whilst in images of a small size (which is defined in this thesis as having height and

width in the order of hundreds, not thousands of pixels), or low resolution, edges are

likely to be the most prominent and useful factor in determining focus. For larger

scales or higher resolution images, the internal contours and texture have significant

effect.

This section presents some of the seminal focus assessment methods, many

of which are evaluated in Section 3.4. The methods are grouped into the following

areas: statistical methods, derivative and kernel based methods, and wavelet based

methods.
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3.3.1 Statisical Methods

Statistical methods are generally applied to automatic focusing problems. They

work on the basis that focused images will have more information than defocused

images. Rather than assessing focus on pixel level, they assess the whole image.

Thus they are useful in determining the comparative focus between images of the

same scene, hence their use in autofocusing algorithms. They tend to be more robust

to image noise than other types of focus assessment methods.

Variance

The variance algorithm [Groenand et al., 1985; Yeo et al., 1993], sums the square in

the difference in pixel intensities i(x, y) from the mean intensity. The focus value is

Fvariance =
1

H.W

∑
Height

∑
Width

(i(x, y)− µ)2 , (3.2)

where H is the image height, W is the image width and µ is the mean pixel intensity.

Squaring the difference amplifies larger difference in pixel intensities from the mean.

Normalised Variance

The normalised variance algorithm [Groenand et al., 1985; Yeo et al., 1993] factors

the mean intensity into the final focus value. This allows the focus of images of dif-

ferent scenes to be compared as changes in average image intensity are compensated

for. The focus value is

Fvariance =
1

H.W.µ

∑
Height

∑
Width

(i(x, y)− µ)2 , (3.3)

where H is the image height, W is the image width and µ is the mean pixel intensity.

As with the variance method, squaring the difference amplifies larger difference in

pixel intensities from the mean.

Figure 3.1 shows an example of the normalised variance method being applied

to (a), a low DoF image of a wizard against a forest background, and (b) the same

image having undergone a Gaussian blurring operation. The focus values calculated

using the normalised variance for the images are 0.0657 and 0.0594, respectively,

showing the unblurred image to have a higher focus value as would be expected.
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(a) (b)

Figure 3.1: Low DoF image taken from video footage (a), and the same image
having undergone a blurring operation (b). The focus values calculated using the
normalised variance for the images are 0.0657 and 0.0594, respectively.

Range Algorithm

Other statistical algorithms make use of histograms, h(i), to analyse the distribu-

tions of intensities within an image. The range algorithm [Firestone et al., 1991]

computes the difference between the highest and lowest intensity levels, i.e., the

focus value is

Frange = maxi(h(i) > 0)−mini(h(i) > 0) . (3.4)

The premise being that blurring will attenuate any extreme values in pixel intensity.

Entropy

The entropy algorithm [Firestone et al., 1991], as with all the statistical methods,

assumes that images that are in focus contain more information than those that are

not. Utilising a histogram the focus value is

Fentropy = −
∑

intensities

pi.log2(pi) , (3.5)

where pi = h(i)/(height× width) is the probability that a pixel has an intensity of

i, and height and width are the dimensions of the image.

3.3.2 Derivative Methods

Derivative methods assume that focused images have more high frequency compo-

nents than blurred images. Based on this premise, neighbouring pixels will have

larger differences in intensity in focused images. Derivative methods apply some
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from of convolution mask to apply a high pass filter and obtain a map of the deriva-

tives, giving an indication of the focused areas in the image.

The derivative methods in this section sum the results of the convolution

to obtain a focus value for the image. In order to produce a pixel based focus

assessment of the image, the summing is not performed and instead the results of

the convolution are used as a focus intensity map. This makes such methods more

suitable as an initial stage in a segmentation method than the statistical methods

in Section 3.3.1.

Tenengrad

The Tenengrad focus operator [Tenenbaum, 1970] applies vertical and horizontal

Sobel operators to the image. In order to compute the focus value of a pixel, the

square of the results of the convolution are summed within an (2N + 1)× (2N + 1)

window centred around the pixel to be assessed, i.e.,

FTenengrad(i, j) =
i+N∑

x=i−N

j+N∑
y=j−N

Sx(x, y)2 + Sy(x, y)2, (3.6)

where Sx(x, y) and Sy(x, y) are the results of the convolution of the image with

the horizontal and vertical Sobel operators, respectively (i.e., along the x and y

directions, respectively).

Figure 3.2 shows an example of the Tenengrad method being applied to a DoF

image of a wizard against a forest background. The corresponding focus intensity

map generated is shown in Figure 3.2(b).

(a) (b)

Figure 3.2: Low DoF image taken from video footage (a), and the corresponding
focus intensity map generated using the Tenengrad method (b). The image has had
its intensity enhanced by a factor of 3 for clarity.
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Modified Laplacian

Designed to cope with weakly textured images, the modified Laplacian (ML) oper-

ator [Nayar and Nakagawa, 1994] sums the absolute values of the convolution of the

image with the Laplacian operators, giving the focus value

FML(i, j) = |Lx(x, y)|+ |Ly(x, y)|, (3.7)

where Lx(x, y) and Ly(x, y) are the results of the convolution of the image with

the horizontal and vertical Laplacian operators (Lapx and Lapy), respectively (i.e.,

along the x and y directions, respectively), with

Lapx =
[

1 −2 1
]
, Lapy =

 1

−2

1

 .
The Laplacian methods were developed to measure focus at each image point in

order to estimate depth as part of a shape from focus system. Figure 3.3 shows the

ML method being applied to the image of the wizard.

(a) (b)

Figure 3.3: Low DoF image taken from video footage (a), and the corresponding
focus intensity map generated using the ML method (b). The image has had its
intensity enhanced by a factor of 3 for clarity.

Sum Modified Laplacian

The sum modified Laplacian (SML) method sums the results of the ML method

within a local window to obtain the focus value

FSML(i, j) =
i+N∑

x=i−N

j+N∑
y=j−N

FML(x, y), (3.8)
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where FML(x, y) is the convolution of the image with the modified Laplacian oper-

ator.

(a) (b)

Figure 3.4: Low DoF image taken from video footage (a), and the corresponding
focus intensity map generated using the SML method (b). The image has had its
intensity enhanced by a factor of 3 for clarity.

Energy Laplace

The Energy Laplace method [Subbarao et al., 1993] is another kernel based focus

assessment. It was proposed as a recommended measure for camera autofocusing

systems. It uses the operator

L =

 −1 −4 −1

−4 20 −4

−1 −4 −1


to give the focus value

FEL(i, j) =

i+N∑
x=i−N

j+N∑
y=j−N

C(x, y)2, (3.9)

where C(x, y) is the convolution of the image with operator L. Again, results of the

convolutions are summed within a (2N + 1)× (2N + 1) window to obtain the final

focus value of the pixel. Figure 3.5 shows the Energy Laplace method being applied

to the image of the wizard.
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(a) (b)

Figure 3.5: Low DoF image taken from video footage (a), and the corresponding
focus intensity map generated using the Energy Laplace method (b). The image
has had its intensity enhanced by a factor of 3 for clarity.

Daugman

Originally applied in the the field of iris recognition to select optimal images, Daug-

man’s method [Daugman, 2004] uses the following 8× 8 focus assessment kernel:

D =



−1 −1 −1 −1 −1 −1 −1 −1

−1 −1 −1 −1 −1 −1 −1 −1

−1 −1 3 3 3 3 −1 −1

−1 −1 3 3 3 3 −1 −1

−1 −1 3 3 3 3 −1 −1

−1 −1 3 3 3 3 −1 −1

−1 −1 −1 −1 −1 −1 −1 −1

−1 −1 −1 −1 −1 −1 −1 −1


.

Its convolution with the image gives the focus value

FDaugman(i, j) = C(x, y), (3.10)

where C(x, y) is the convolution of the image with kernel D. An example of Daug-

man’s kernel being applied a low DoF image is shown in Figure 3.6.
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(a) (b)

Figure 3.6: Low DoF image taken from video footage (a), and the corresponding
focus intensity map generated using Daugman method (b). The image has had its
intensity enhanced by a factor of 3 for clarity.

Wei

Wei presents an improved focus assessment [Wei et al., 2006] over Daugman’s method,

using a smaller 5× 5 kernel to improve computational efficiency, i.e.,

W =


−1 −1 −1 −1 −1

−1 2 2 2 −1

−1 2 0 2 −1

−1 2 2 2 −1

−1 −1 −1 −1 −1

 .

Its convolution with the image gives the focus value

FWei(i, j) = C(x, y), (3.11)

where C(x, y) is the convolution of the image with kernel W . An example of Wei’s

kernel being convolved with a low DoF image of a wizard is shown by Figure 3.7.
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(a) (b)

Figure 3.7: Low DoF image taken from video footage (a), and the corresponding
focus intensity map generated using Wei’s focus assessment kernel (b). The image
has had its intensity enhanced by a factor of 3 for clarity.

Kang

Kang’s focus assessment kernel [Kang and Park, 2005; Kang, 2006] is another 5× 5

operator, i.e.,

K =


−1 −1 −1 −1 −1

−1 −1 4 −1 −1

−1 4 4 4 −1

−1 −1 4 −1 −1

−1 −1 −1 −1 −1

 .

It is again proposed for use within the field of iris recognition. Its convolution with

the image gives the focus value

FKang(i, j) = C(x, y), (3.12)

where C(x, y) is the convolution of the image with operator K. Figure 3.8 shows

the result of Kang’s kernel being applied to a low DoF image.

3.3.3 Wavelet Methods

A series of focus measures utilising wavelets is proposed in [Yang and Nelson,

2003a,b]. The focus value is used as a cue for the segmentation of low DoF mi-

croscopic images via a graph partitioning method. The Daubechies 6 wavelet filter

is used to divide the image into four subband images WLL, WHL, WLH and WHH ,

where L denotes lowpass filtered, H denotes highpass filtered, and their order de-

notes the order of the filtering applied, e.g., WHL is a subband image obtained by
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(a) (b)

Figure 3.8: Low DoF image taken from video footage (a), and the corresponding
focus intensity map generated using Kang’s focus assessment kernel (b). The image
has had its intensity enhanced by a factor of 3 for clarity.

highpass filtering followed by lowpass filtering. The focus measures are as follows:

Wavelet 1

Fwavelet1 = |WHL(x, y)|+ |WLH(x, y)|+ |WHH(x, y)| (3.13)

Wavelet 2

Fwavelet2 = (|WHL(x, y)| − µHL)2 + (|WLH(x, y)| − µLH)2 + (|WHH(x, y)| − µHH)2

(3.14)

where µ is the mean of a subband image computed using absolute values.

Wavelet 3

Fwavelet3 = (WHL(x, y)−µ̄HL)2+(WLH(x, y)−µ̄LH)2+(WHH(x, y)−µ̄HH)2 (3.15)

where µ̄ is the mean of a subband image computed without using absolute values.

Figure 3.9 shows the three methods being applied to a low DoF image of a

wizard against a wooded background.

3.4 Evaluation of Focus Measures

A robust measure for the focus values of the image pixels is required for the first

stage of the proposed segmentation method which incorporates the active contours

algorithm. To determine which measure would be appropriate, the performance of

the focus assessment methods presented in Section 3.3 are evaluated. Eight high
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(a) (b)

(c) (d)

Figure 3.9: Low DoF image taken from video footage (a), and the corresponding
focus intensity map generated by the wavelet 1 method (b), the wavelet 2 method
(c) and the wavelet 3 method (d). The images have been contrast-enhanced by a
factor of 3 for clarity.

resolution (HR) test images as shown in Figure 3.10 and eight lower resolution

(LR) test images as shown in Figure 3.11 with clear focus differentials between the

background and in-focus objects (i.e., the OoIs) are manually segmented to obtain

their ground truth. The number of pixels along each of the dimensions of a HR

image and a LR image is of the order of thousands and hundreds, respectively.

The focus assessment methods are applied to the images, and the properties

of the resulting range of focus values for the object and background regions recorded.

The following two criteria are used to determine the best measure:

F̄background � F̄object (3.16)

σbackground � σimage (3.17)

where F̄background and F̄object are respectively the mean focus value of the background

and in-focus object, and σbackground and σimage are respectively the standard devi-
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Figure 3.10: High resolution test images with focus differentials between OoI and
background.

Figure 3.11: Low resolution images with focus differentials between OoI and back-
ground.

ation of the background and image focus values. The value of F̄background should

be low compared to F̄object, thus the higher the ratio F̄object/F̄background the better

the measure. σbackground should be as small as possible when compared to σimage,

as the background should be relatively homogeneous. The lower σbackground is, the

less likely the active contours algorithm will result in an incorrect segmentation due
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to focus values of anomalous background pixels. The focus measures are ranked

against each other for both criteria and given a score (the sum of the ranking for

the two criteria) for each of the test images, i.e.,

Score = RankingF̄object/F̄bkgnd
+Rankingσbkgnd/σimage

(3.18)

where a subscript denotes the criterion used for the ranking. The average score for

each focus measure is obtained allowing the overall ranks to be calculated. This is

performed separately for the HR and LR images, as summarised in Table 3.1.

Method ScoreHR RankHR ScoreLR RankLR
Daugman 7.500 4 19.625 10

Energy Laplace 6.500 3 3.000 1

Kang 13.375 7 15.000 8

ML 17.125 9 11.875 6

SML 16.375 8 12.375 7

Tenengrad 2.125 1 7.500 4

Wavelet 1 19.875 10 11.750 5

Wavelet 2 6.125 2 6.875 3

Wavelet 3 9.875 5 4.625 2

Wei 11.125 6 17.375 9

Table 3.1: Evaluation of focus assessment methods, where the subscripts denote the
types of images processed.

Table 3.1 shows that the focus assessment method which gives the most

suitable focus measure for the HR images is the Tenengrad method, followed by the

wavelet 2 method and the Energy Laplace method. For the LR images the highest

ranked focus assessment method is the Energy Laplace, followed by Wavelet 3 and

Wavelet 2. Thus, there is no focus assessment method that is best for both sets of

images.

The Tenengrad method being based on the Sobel edge detection kernels

means that often background edges generate fairly high focus values and the small

kernel size results in some discontinuities along object boundaries. The Energy

Laplace method is also ranked highly for both sets of images, but again the small

kernel size and squaring of the function places a very high emphasis on edges. All

of the focus assessment methods that involve a squaring of values rank better than

those that do not. This is because the squaring of focus values increases the ratio

between the high and low focus regions, and reduces the standard deviation of the

background pixel values. However this also creates a greater variance in the focus

values of the object pixels that can result in discontinuities in the object boundary
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as well as weaker values for the areas within an object boundary, i.e., object edges

are amplified while most other areas are attenuated. This makes the segmentation

of the OoI a more challenging prospect.

The Wavelet 3 method is ranked highly in the focus assessments for the LR

images and the nature of the wavelet transform means that the method can be

adapted for HR images. We therefore propose in Section 3.6 a focus assessment

based on the Wavelet 3 method that provides a measure suitable for use with active

contours on any image resolution.

3.5 Focus Assessment and Image Resolution

It is important to note the effect that image resolution, or image size, has on focus

assessments. In Chapter 2, DoF is defined as the region for which the diameter of the

CoC is less than the resolution of the display medium - in this case the resolution

of the image. By reducing the resolution of the image, the diameter of the CoC

becomes smaller when compared to pixel size. This means that lower resolution

images are likely to return higher values when their focus is assessed.

The effect of reducing the resolution of the image on focus assessments is

shown in Figure 3.12. As an example, Wei’s focus assessment method is used on

this low DoF image. The distance between the background and the OoI is relatively

small. The focus assessment has been performed on the original 2816× 2112 image,

and then on a half scale (1408 × 1056), a quarter scale (704 × 528) and an eighth

scale (352× 264) version of the image. As the resolution of the image is decreased,

it can be seen that the background foliage gradually becomes more prominent in the

focus assessments, until it is impossible to distinguish the OoI from the background.

Magnifying a portion of the image allows us to see more clearly the effect that

reducing resolution has on background contours. Figure 3.13 shows a portion of the

image that has been magnified. One magnification is of the image at full scale (as

shown in Figure 3.13(a)) whilst another is the same section, but magnified from an

image an eighth the size of the original (as shown in Figure 3.13(b)). It can been seen

that what was once a smooth part of the background has become a high frequency

feature. The resolution has been reduced to such an extent that instead of the edge

transitioning smoothly, there is now a significant contrast between adjacent pixels.

Background edges will thus be picked up in the focus assessment and will make it

difficult or impossible to segment the OoI. It should also be noted that too high a

resolution can also be problematic as textures and object contours can also be very

smooth, transitioning across many pixels. By selecting a wavelet based method, a
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Figure 3.12: Effects of image resolution on focus assessments.
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level of decomposition can be chosen that suits the image to be segmented.

(a) (b)

Figure 3.13: The effect of a reduction in image resolution on background contours.

3.6 Proposed Focus Assessment Method

A wavelet based focus measure which reflects the strength of the high frequency

details is proposed in [Yang and Nelson, 2003a]. The method considers the first

level of wavelet decomposition only and is given by (3.15). To extend the method

for use with images of any resolution, (3.15) is modified to

F (x, y) = |DH(x, y)− µDH |+ |DV (x, y)− µDV |+ |DD(x, y)− µDD|, (3.19)

where DH, DV, and DD are the reconstructed detail coefficients (horizontal, vertical

and diagonal) for the wavelet decomposition of the image at a levelN , and µDH , µDV

and µDD are the mean values of each reconstructed subband. The modulus is taken

as opposed to squaring the value as in Equation 3.15 to avoid object boundaries

from becoming too dominant in the focus map.

For very high resolution images, taking the detail coefficients from further

levels of decomposition aids in segmentation. This is because texture changes and

contours of focused OoIs in high resolutions will transition over a number of pixels.

Pixels will therefore contrast significantly less with their neighbours than if the

image scale were smaller, leading to smaller values being returned in the focus

assessment. By taking the detail coefficients from a lower level where this is the

case, the performance of segmentation algorithms can be improved as it will be

significantly easier to differentiate the object from the background.

The focus assessment method and the subsequent segmentation method are
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intrinsically linked. The segmentation method was therefore developed simultane-

ously with the focus assessment method. This allowed the methods to be somewhat

tailored to each other. An initial version of the object segmentation method pre-

sented in Chapter 4 based on the active contours algorithm was utilised to help

determine the appropriate level of wavelet decomposition.

The focus assessment using (3.19) is first performed at level 1, i.e, N = 1.

If the standard deviation (Std) of the image’s focus values is below a threshold T ,

i.e., there is no significant difference between the background and object pixels, the

process is then repeated at N = 2. If the Std is also below T at this level, the detail

coefficients will be taken from the level 3 wavelet decomposition. This is unlikely

to occur in images that are not of high resolution. If the standard deviation of the

focus map is still beneath the threshold it is assumed that the OoI is either weakly

textured or has a very small area and the values at N = 3 are used. Table 3.2

shows data used to determine the optimum value for the threshold, i.e., T = 0.0105.

Comparing the Std of focus values with the percentage of correctly segmented pixels

(found using manually generated ground truths) using the active contours algorithm

enables the threshold to be chosen experimentally.

Image Level Image Std Correctly Segmented

Flower 1 0.0069 35.7

2 0.0119 98.7

3 0.0165 97.3

4 0.0249 91.9

Soft Toy 1 0.0074 95.5

2 0.013 98.9

3 0.0138 98.8

4 0.0142 97.2

Watch 1 0.0047 34.6

2 0.0100 91.2

3 0.0150 99.3

4 0.0209 97.4

Plant 1 0.0057 28.1

2 0.0085 36.1

3 0.0105 98.9

4 0.0173 98.1

Table 3.2: Percentage of pixels correctly segmented compared to level of wavelet
decomposition and Std of focus values for the four HR test images.
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3.7 Results

In this section a few example focus assessments are performed using the proposed

method. More detailed results and analysis of the overall object segmentation

method are given in Chapter 4. Figure 3.14 shows four example low DoF images and

the focus intensity maps generated using the multiscale wavelet based method. The

high intensity parts of the image correspond to areas of the original image that are

in focus, with the highest responses (corresponding to the brightest points) being

due to the focused edges or strong textures. It can be seen from these examples

that background objects have been attenuated and are not prominent in the focus

intensity map. This creates a strong starting point for segmentation techniques.

3.8 Conclusion

In this chapter a number of focus assessment methods have been presented and their

suitability for differentiating a focused OoI from a defocused background evaluated.

They are compared on two measures. One, that the methods should return a higher

average intensity for object regions than background regions, and two, that the

background regions should be relatively homogeneous. It is shown that no single

method is suitable for performing focus assessments for all image resolutions. Thus,

a multiscale wavelet method is proposed which takes its cue for which level of wavelet

decomposition to use from the Std of the pixels’ focus intensities. The method is

shown to be capable of differentiating focused and defocused regions from a variety

of test images.
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(a) (b)

Figure 3.14: Focus assessment of example images with a flower, a soft toy, a sus-
pended watch and a wizard as the OoIs: (a) the image; and (b) focus values of
individual pixels, i.e., focus energy map, where the brightness of a point in the map
is proportional to its focus value (the images have their intensity enhanced by a
factor of three for clarity in the display).
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Chapter 4

Object Segmentation

4.1 Introduction

Object segmentation is the process of separating an image into two areas, the back-

ground and the OoI to form a binary segmentation. This is a difficult task as image

properties can vary hugely from scene to scene. The previous chapter constrains the

type of image to be segmented to those with a low DoF, a focus assessment method

is used to generate a focus map, the goal being to provide some way to differentiate

the focused OoI from the defocused background. This chapter presents the selected

method for performing the binary segmentation on the focus map.

For this purpose an active contours algorithm is selected, and a narrow-

band level sets implementation of the Active Contours without Edges [Chan and

Vese, 2001] is implemented. The rationale being that given a suitable initialisation

contour, the algorithm will be able to detect the focused regions without being

reliant on sharp contrasts in edges and continuous boundaries. Adopting a narrow

band method is not only more computationally efficient, but it also prevents interior

contours from being generated spontaneously, thus allowing OoI with weak textures

or homogeneous regions to still be segmented successfully. The focus map is used

to generate a robust initial contour using a grid based method.

The remainder of this chapter is organised as follows. In Section 4.2 some

of the related work in segmenting low DoF images is discussed. Three interactive

segmentation algorithms that are used as the basis of a comparison in the results

section of this chapter are described. Section 4.3 provides a detailed description

of the classical active contours model and its level set representation. The Active

Contours without Edges model is introduced and its level set representation and

relation to the Mumford-Shah function presented. Also, regularisation, numerical
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approximation, and discretization of the model is introduced. Section 4.4 presents

the chosen implementation of active contours (the Sparse Field Method implemen-

tation of Active Contours without Edges). The implementation is applied to the

segmentation of focus maps in Section 4.5 and finally results of the proposed seg-

mentation method are shown in Section 4.6. The Chapter is concluded in Section

4.7.

4.2 Related Work

4.2.1 Low Depth of Field Methods

A number of methods for segmenting objects from defocused backgrounds in images

with low DoF have been proposed and a brief overview of them is provided in this

section.

Tsai’s Method

An unsupervised method for segmenting in-focus objects in complex backgrounds is

proposed in [Tsai and Wang, 1998]. The defocus of edge pixels is measured using

a moment-preserving principle, and a three-stage edge linking process consisting of

dilation, thinning and line linking, bounds the pixels corresponding to the object in

focus. This is followed by a region filling procedure which eliminates all background

pixels and retains the regions of in-focus objects defined by the boundaries. The

method produces jagged segmentations due to the use of straight line segments to

connect broken edges.

Wang’s Method

A multiscale approach using high-frequency wavelet coefficients and their statistics

to classify blocks in an image is proposed in [Wang et al., 2001]. This method

has the advantages of fast processing time and does not rely on connecting object

boundaries. However the segmentation results are not smooth due to the use of

blocks and have a significant percentage of misclassified pixels.

Kim’s Methods

A method which segments an image into two regions based on their higher order

statistics is proposed in [Kim, 2005]. A higher order statistics map is first created

and then simplified using a morphological filter. Image segmentation is obtained

by region merging and thresholding. This method is fast but produces incorrect
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segmentation if a large in-focus smooth region is present in the image. The method

is improved in [Kim et al., 2007], where again a higher order statistics map is created.

An approximate block based segmentation is then performed and used as a basis

for a more accurate pixel-level segmentation. The method is also extended for the

segmentation of an object in a video sequence. The method performs well on test

images with blurred or relatively simple backgrounds.

Li’s Method

The three-stage method in [Li and Ngan, 2007] first generates a saliency map using

a reblurring model. The salient regions are then smoothed and accentuated using

morphological filtering. This allows a trimap of object, background and ambiguous

regions to be created. In the third stage the object boundaries are extracted using

an adaptive error control matting scheme. The method can segment complex shapes

such as text, but most of the backgrounds are relatively simple or have large focus

differentials to the object.

Liu’s Method

An automated segmentation method which uses a focus energy map estimated by

measuring the differences in high frequency components between the focused object

and un-focused background to create a region and boundary saliency map is pro-

posed in [Liu et al., 2010]. A boundary linking algorithm is applied to obtain closed

region and boundary masks. This is followed by image matting on the generated

trimap to obtain the line segmented object. The method performs well with images

that have a large focus differential or uniform background, but poorly with cluttered

backgrounds.

4.2.2 Methods for Comparison

In this section, three interactive segmentation methods are discussed. These tech-

niques are used to compare the results of the proposed algorithm with some of the

most prominent image segmentation methods. The first two methods are selected

as they have been shown to be the most robust and accurate in an evaluation of var-

ious different interactive segmentation techniques [McGuiness and O’Conor, 2010].

Finally, as the proposed method is completely autonomous, the Grabcut algorithm

is chosen to provide a method that has as little user interaction as possible for

comparison.
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Binary Partition Trees

Interactive segmentation using binary partition trees (BPTs) was first proposed in

[Salembier and Garrido, 2000] and further improved upon in [Adamek, 2006]. The

method transforms a hierarchical region based segmentation into a segmentation of

object and background by using user interaction to separate and merge regions in

the tree. Any automatic algorithm which performs segmentation with the output in

the from of a BPT can be used. The user assigns pixels in the image as object and

background, which in turn labels the corresponding leaf nodes in the tree. These

labels are propagated up the tree, assigning the same value to each node until a

conflict occurs, i.e., a node with differently labelled children. The node is marked

as conflicting and the algorithm moves on to the next leaf node. This is repeated

for every user-marked leaf in the tree. In the next step, the algorithm passes every

non-conflicting node and gives its label to its children. It is proposed in [Adamek,

2006] that unclassified regions are assigned the labels of adjacent regions. In cases

where two or more regions are adjacent, the one with the shortest distance is chosen.

Interactive Graph Cuts

The graph cuts method considers an image to be a graph with each pixel being

a node [Boykov and Jolly, 2001]. The user specifies some initial object and back-

ground seeds, and the method categorises the rest of the pixels as either object or

background using max-flow/min-cut algorithms. The method has the advantage of

providing robust segmentation even if the foreground and background colour distri-

butions are not well separated.

GrabCut

GrabCut [Rother et al., 2004] extends the graph cuts method. With this method

the user draws an initial area around the OoI to indicate which pixels are object and

which are background. Colour information is then obtained, the graph reweighted

and graph cuts is used to obtain a refined segmentation. This is repeated and after

a specified number of iterations the user can re-define the foreground or background

pixels to refine the segmentation. This method improves the results of the graph

cuts method whilst reducing the amount of user input required.
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4.3 Active Contours

In Chapter 2 the basics of active contours were described, introducing the concepts

of an evolving curve and its level set representation. In this section the details of

active contours are presented by first describing the classical snakes model and its

level set implementation. The reliance on a clear gradient change on the object

boundaries is noted and Chan-Vese’s Active Contours without Edges [Chan and

Vese, 2001] is introduced to counter this. Active contours’ relation to a specific

case of the Mumford-Shah functional [Mumford and Shah, 1989] is shown and then

its level set implementation is given. This is followed by the regularisation, nu-

merical implementation and discretization of the model and the framework of the

algorithm. Finally in order to improve computational efficiency, Whitaker’s Sparse

Field implementation of active contours is utilised [Whitaker, 1998].

4.3.1 Basic Active Contour Model

The general principle behind the classical active contours model, often referred to

as ‘snakes’, is to evolve a curve to detect objects within an image u0 by minimising

an energy function. The curve evolves based on both user imposed constraints and

constraints imposed by u0. An initial curve will move towards an object, stopping

on the object boundary. In the traditional active contours model an edge detector

is used as part of the model to prevent the curve from further evolving once it has

reached the object boundary [Kass et al., 1988; Caselles et al., 1993, 1997].

Consider 2D space, R2, with Ω as a bounded open subset of R2, with a

boundary denoted by ∂Ω. The map u0 : Ω̄ → R takes a point in the region Ω̄

(the region including the boundary) to a corresponding single value in R. This is

illustrated in Figure 4.1. The model is infCJ1(C), which is the minimum value of

J1(C) considered for all possible curves C, i.e.,

J1(C) = α

∫ 1

0
|C ′(s)|2ds+ β

∫ 1

0
|C ′′(s)|ds− λ

∫ 1

0
|∇u0(C(s))|2ds, (4.1)

where α, β and λ are positive parameters. The first two terms of Equation 4.1

represent the internal energy of the contour and control its smoothness. The third

represents the external energy and acts as the edge detector which draws the curve

towards the object boundary/edge. The 2D gradient (i.e., in both x and y directions)

of the image u0 is denoted by ∇u0. As we are trying to minimise the energy function

J1(C), this will be when the negative term −λ
∫ 1

0 |∇u0(C(s))|2ds is large. This

corresponds to the points with the largest gradient, i.e., at the object boundary. The
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first two terms help maintain smoothness in the curve, preventing it from becoming

too jagged.

Figure 4.1: Framework of the classical snakes model.

A general edge detector is a positive decreasing function g, which depends

on the gradient of the image, i.e., g returns increasingly small values as the gradient

gets bigger, i.e.,

lim
z→∞

g(z) = 0 (4.2)

One example of an edge detector is

g(|∇u0(x, y)|) =
1

1 + |∇Gω(x, y) ∗ u0(x, y)|p
, p ≥ 1, (4.3)

where Gω ∗u0 is a smoothed version of u0, obtained by convolving the image u0 with

the Gaussian Gω(x, y) = ω−1/2e−|x
2+y2|/4ω. The edge detection function g(|∇u0|) is

positive in homogeneous regions and zero at edges.

4.3.2 Level Set Formulation of the Active Contours Model

Instead of being represented as a parametrised curve, C can be represented as the

zero level set of a Lipschitz (continuous) function φ, i.e., C = {(x, y)|φ(x, y) = 0},
and the evolution of the curve is given by the zero-level set of the function φ(t, x, y),

where t is time. The evolving curve can be found by solving the differential equation

∂φ

∂t
= |∇φ|S (4.4)

where S is the speed at which C is evolving in in the normal direction with the

initial condition φ0(x, y) = φ(0, x, y). If the speed S and the initial contour are

known, then the solution of the differential equation is φ(t, x, y) for all values of t.
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An example of a particular case of curve evolution is motion by mean curva-

ture [Osher and Sethian, 1988]. In this case the speed S is defined as the curvature

of the zero level set curve φ passing through (x, y), i.e., S = div∇φ(x, y)/|∇φ(x, y)|.
Thus Equation 4.4 becomes

∂φ
∂t = |∇φ|div

(
∇φ
|∇φ|

)
, t ∈ (0,∞), x ∈ R2

φ(0, x, y) = φ0(x, y), x ∈ R2

}
(4.5)

To form a geometric active contours model, an edge stopping term is introduced to

the curve evolution by mean curvature so that the motion tends to 0 on an object’s

boundary [Caselles et al., 1993]. The model is therefore

δφ
δt = g(|∇u0|)|∇φ

(
div
(
∇φ
|∇φ|

)
+ ν
)

in (0,∞)× R2

φ(0, x, y) = φ0(x, y) in R2

}
, (4.6)

where g(|∇u0|) is the edge function with p = 2, ν ≥ 0 is constant, and φ0 is the

initial level set function. The term ν is used so that ∂φ/∂t is only 0 when the edge

function g(|∇u0|) is 0.

4.3.3 Active Contours Without Edges

In this section the basis for the model used in this thesis is discussed. As stated

in Sections 4.3.1 and 4.3.2 the classical snakes model depends on a edge function

g to stop the curve from further evolving when it is on an object boundary, due

to large image gradient |∇u0|. These models can only detect objects with edges

clearly defined by a gradient which can lead to the curve passing through the object

boundary if it is relatively weak.

Chan and Vese propose a model which is not based on the gradient of the

image [Chan and Vese, 2001], but instead is based on the Mumford-Shah Functional

[Mumford and Shah, 1989]. This allows their method, called Active Contours with-

out Edges, to detect objects with smooth boundaries or even discontinuities. This

is a significant advantage when the algorithm is used in this thesis to segment focus

maps.

Consider the framework as shown in Figure 4.2, where C is the evolving con-

tour in Ω, defined as the boundary ∂ω of the open subset ω of Ω, i.e., ω ⊂ Ω and

C = ∂ω. In the following notation, inside(C), the region within the curve, corre-

sponds to the region ω and outside(C) represents the region outside the contour,

denoted by Ω \ ω̄.

A basic case is assumed whereby the image u0 has two fairly homogeneous re-
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Figure 4.2: Framework for Active Contours without Edges.

gions of distinct values ui0 and uo0. The region with value ui0 is assumed to correspond

to the object to be segmented and whose boundary is denoted by C0. Therefore,

u0 ≈ ui0 inside the object boundary C0, and u0 ≈ uo0 outside of C0. The fitting

function is

F1(C) + F2(C) =

∫
inside(C)

|u0(x, y)− c1|2dxdy +

∫
outside(C)

|u0(x, y)− c2|2dxdy,

(4.7)

where C is the varying contour/curve, and c1 and c2 are the average values of u0

inside and outside of the curve C, respectively. It can be seen that when C = C0,

i.e., when the curve is on the object boundary, then the fitting function is minimised.

Figure 4.3 illustrates all the possible cases in fitting a curve onto an object. If the

curve C is outside of the object then F1(C) > 0 and F2(C) ≈ 0. If the curve is

inside the object then F1(C) ≈ 0 and F2(C) > 0. If the curve goes through both

object and background then F1(C) > 0 and F2(C) > 0. Finally if the curve is on

the object boundary then C = C0. In this case F1(C) ≈ 0 and F2(C) ≈ 0, therefore

F1(C) + F2(C) is minimised, i.e., the fitting function is only minimised when the

curve is on the object boundary.

In the Active Contours without Edges model, the goal is to minimise the

fitting term given by 4.7 with some added regularising terms, which add weights to

the importance of the length of the curve (C) and the area within the curve. The
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(a) (b) (c) (d)

Figure 4.3: All possible cases in fitting a curve onto an object: (a) the curve is
outside of the object; (b) the curve is inside the object; (c) the curve contains both
object and background; (d) the curve is on the object boundary.

following energy functional is therefore introduced

F (c1, c2, C) = +µ · length(C) + ν · area(inside(C)) (4.8)

+λ1

∫
inside(C)

|u0(x, y)− c1|2dxdy

+λ2

∫
outside(C)

|u0(x, y)− c2|2dxdy,

where µ, ν, λ1 and λ2 are fixed parameters with µ ≥ 0, ν ≥ 0, λ1 > 0 and

λ2 > 0. The standard implementation of the model sets λ1 = λ2 = 1 and ν = 0,

thus removing the area component from the model. The minimisation problem

considered is hence

inf
c1,c2,C

F (c1, c2, C). (4.9)

4.3.4 Relation with the Mumford-Shah Functional

The active contours can be shown to be a reduced form of the Mumford-Shah

functional, known as the minimal partition problem, assuming the same basic case

as previously stated in Section 4.3.3. The Mumford-Shah function for segmentation

is given by

FMS(u,C) = µ · Length(C) (4.10)

+λ1

∫
Ω
|u0(x, y)− u(x, y)|2dxdy

+

∫
Ω\C
|∇u(x, y)|2dxdy,

where, as with the active contour model, u0 : Ω̄ → R and µ and λ are positive

constants. The function u is a solution image, which is found by minimising the
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Mumford-Shah Functional and is formed by smooth regions with distinct boundaries

defined by C. The minimal partition problem is to restrict FMS to the piecewise

constant function u. This means that the regions inside and outside of C in the

solution image u will be constant, i.e.,

u =

{
average(u0) inside C

average(u0) outside C
(4.11)

As the standard implementation of the Active Contours without Edges model re-

moves the area term by setting ν = 0 and sets λ1 = λ2 = 1 , this shows the model

to be a particular case of the minimum partition problem.

4.3.5 Level Set Formulation of the Method

As with classical snakes, Active Contours without Edges can be formulated as a

level set method [Osher and Sethian, 1988]. The contour C is again represented by

the zero level set of a Lipschitz function φ. Positive values above the zero level set

correspond to points inside the curve C, whereas negative values are outside C, i.e.,

C = ∂ω = {(x, y) ∈ Ω : φ(x, y) = 0}
inside(C) = ω = {(x, y) ∈ Ω : φ(x, y) > 0}
outside(C) = Ω \ ω̄ = {(x, y) ∈ Ω : φ(x, y) < 0}.

 (4.12)

The Heavyside function H(z) allows the reformulation of Equation 4.8 to perform

the integral over the whole of Ω rather than the two seperate regions outside and

inside the contour C [Zhao et al., 1996]. The Heavyside function H and its derivative

the Dirac measure (equivalent to a perfect impulse) δ0 are given by

H(z) =

{
1 if z ≥ 0

0 if z < 0
, δ0(z) =

d

dz
H(z). (4.13)

The length and area are

Length{φ = 0} =

∫
Ω
|∇H(φ(x, y))|dxdy (4.14)

=

∫
Ω
δ0(φ(x, y))|∇φ(x, y)dxdy,

Area{φ ≥ 0} =

∫
Ω
H(φ(x, y))dxdy,
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and the other terms in Equation 4.8 are rewritten as∫
φ≥0
|u0(x, y)− c1|2dxdy =

∫
Ω
|u0(x, y)− c1|2H(φ(x, y))dxdy, (4.15)∫

φ<0
|u0(x, y)− c2|2dxdy =

∫
Ω
|u0(x, y)− c2|2(1−H(φ(x, y)))dxdy.

Note that ∫
φ≥0
|u0(x, y)− c1|2dxdy =

∫
φ>0
|u0(x, y)− c1|2dxdy. (4.16)

This is because∫
φ≥0
|u0(x, y)− c1|2dxdy =

∫
φ>0
|u0(x, y)− c1|2dxdy +

∫
φ=0
|u0(x, y)− c1|2dxdy

(4.17)

and the second term of the right hand side of the equation is 0 since the contour itself

has a Lebesgue measure of 0. The energy F (c1, c2, φ) can therefore be expressed as

F (c1, c2, φ) = µ

∫
Ω
δ(φ(x, y))|∇φ(x, y)|dxdy (4.18)

+ν

∫
Ω
H(φ(x, y))dxdy

+λ1

∫
Ω
|u0(x, y)− c1|2H(φ(x, y))dxdy

+λ2

∫
Ω
|u0(x, y)− c2|2(1−H(φ(x, y)))dxdy.

In the particular case of the minimum partition problem as described in Section

4.3.4, the solution image u can also be described using the Heavyside function and

a level set formulation as

u(x, y) = c1H(φ(x, y)) + c2(1−H(φ(x, y))), (x, y) ∈ Ω̄. (4.19)

For a given φ and assuming that both the contour interior and exterior are non-

empty, the average values of u0 inside and outside of the curve, denoted by c1 and

c2 respectively, are computed using

c1(φ) =

∫
Ω u0(x, y)H(φ(x, y))dxdy∫

ΩH(φ(x, y))dxdy
(4.20)

and

c2(φ) =

∫
Ω u0(x, y)(1−H(φ(x, y)))dxdy∫

Ω(1−H(φ(x, y)))dxdy
(4.21)
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I.e, the values c1 and c2 for a given φ are{
c1(φ) = average(u0) in {φ ≥ 0}
c2(φ) = average(u0) in {φ < 0}

(4.22)

It should be noted that the existence of a solution to the minimisation of the energy

F (c1, c2, C) is expected, and has been proven to exist [Mumford and Shah, 1989;

Maso et al., 1992].

4.3.6 Regularisation of the Model

In order to make the Euler-Lagrange equation for the unknown function φ com-

putationally possible, regularised versions of the Heavyside Function and a Dirac

measure must be used. The functions H and δ0 are thus replaced by Hε and δε

which respectively tend to H and δ0 as ε tends to 0. Any regularisation of H must

be differentiable as δε = H ′ε. The new energy, Fε is therefore represented by the

regularised functional

Fε(c1, c2, φ) = µ

∫
Ω
δε(φ(x, y))|∇φ(x, y)|dxdy (4.23)

+ν

∫
Ω
Hε(φ(x, y))dxdy

+λ1

∫
Ω
|u0(x, y)− c1|2Hε(φ(x, y))dxdy

+λ2

∫
Ω
|u0(x, y)− c2|2(1−Hε(φ(x, y)))dxdy.

Fixing c1 and c2, and minimising Fε with respect to φ allows the Euler-Lagrange

equation for φ to be found. The solution of the Euler-Lagrange equation is φ in

terms of x, y and t, i.e., φ can be found for any given time t by solving

∂φ

∂t
= δε(φ)

[
µdiv

(
∇φ
|∇φ|

)
− ν − λ1(u0 − c1)2 + λ2(u0 − c2)2

]
= 0 (4.24)

in (0,∞)× Ω,

φ(0, x, y) = φ0(x, y) in Ω,

δε(φ)

|∇φ|
∂φ

∂~n
= 0 on ∂Ω,

where ~n is the exterior normal to the boundary ∂ω and ∂φ/∂~n denotes the derivative

of φ at the boundary in the normal direction.
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4.3.7 Numerical Approximation of the Model

There are a number of possible regularisations for the Heavyside function H when

implementing the model. One such function is [Zhao et al., 1996]

H1,ε(z) =


1 if z > ε

0 if z < −ε
1
2

[
1 + z

ε + 1
π sin

(
π
ε

)]
if |z| ≤ ε.

(4.25)

Chan and Vese propose a different regularisation given by

H2,ε(z) =
1

2

(
1 +

2

π
arctan

(z
ε

))
. (4.26)

Taking the Dirac measure as δε = H ′ε, using H1,ε and δ1,ε can sometimes result in

the method finding a local minimiser the of the energy whereas using H2,ε and its

corresponding Dirac measure δ2,ε obtains a global minimiser, regardless of the initial

contour. This allows the method to automatically detect interior contours.

4.3.8 Discretization of the model

Having made a numerical approximation of the model, the next step is to perform a

discretization of the model to make it suitable for implementation. A finite difference

scheme is used to discretize the model. For an image ofM×M pixels, the spatial step

is denoted by h and the time step by ∆t. Thus the grid points are (xi, yj) = (ih, jh)

for 1 ≤ i, j ≤ M . The function φ(t, x, y) is approximated by its discrete equivalent

φni,j = φ(n∆t, xi, yj), with n ≥ 0. The initial contours are the same on all grid

points, i.e., φ0 = φ0. The finite differences are defined as the difference between a

given pixel and its four direct neighbours. Thus

∆x
− = φi,j − φi−1,j , (4.27)

∆x
+ = φi,j − φi+1,j ,

∆y
− = φi,j − φi,j−1,

∆y
+ = φi,j − φi,j+1.

The method adopts the discretization of the divergence operator utilised in [Rudin

et al., 1992] and the iterative algorithm from [Aubert and Vese, 1997]. For a given

φn the average values inside and outside of the contour (i.e., respectively c1(φn)

and c2(φn)) are first computed using Equations 4.20 and 4.21. The differential in
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Equation 4.24 to compute φn+1 from φn can then be solved using

φn+1
i,j − φni,j

∆t
= δh(φni,j)

[
µ

h2
∆x
− ·

 ∆x
+φ

n+1
i,j√

(∆x
+φ

n
i,j)

2/(h2) + (φni,j+1 − φni,j−1)2/(2h)2


+
µ

h2
∆y
− ·

 ∆y
+φ

n+1
i,j√

(φni+1,j − φni−1,j)
2/(2h)2 + (∆y

+φ
n
i,j)

2/(h2)


−ν − λ1(u0,i,j − c1(φn))2 +−λ2(u0,i,j − c2(φn))2

]
(4.28)

Iteration

The model is implemented iteratively as follows:

1. Initialise φ0 using the initial contour, φ0, n = 0.

2. Compute c1(φn) and c2(φn) using Equations 4.20 and 4.21.

3. Solve Equation 4.28 to get φn+1.

4. Check the solution to see if it is stationary. If not then n = n+ 1 and repeat

the steps from 2.

4.4 Sparse Field Implementation

One of the main disadvantages of level set active contour methods is that they are

computationally intensive - a large amount of computations are needed to maintain

φ as the contour C changes. In order to improve the speed with which level set

methods run, a variety of narrow band algorithms have been proposed (for example,

[Shi and Karl, 2005]). These methods reduce the computational complexity by

only performing calculations near the zero level set since only the area of φ where

φ(x, y) ≈ 0 are required to maintain φ as the contour changes. One such narrow band

method is Whitaker’s sparse field method (SFM) [Whitaker, 1998]. The method is

chosen as it allows for an efficient yet accurate representation of φ.

One of the main disadvantages of narrow band methods is that new contours

are only searched for in the vicinity of the level set, and so it is not possible for

interior contours, or indeed new contours, to spontaneously appear. This does

not prevent the initial contour from the usual operations of splitting, growing and

merging to obtain a final solution. Whilst for many applications this may be a

strong incentive not to use a narrow band method, it is actually considered an
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advantage for the implementation proposed as, assuming a good initialisation for

the active contours, it allows focused objects which are weakly textured or have

large homogeneous regions which would not normally return high focus values in

the focus assessment to be segmented successfully. This is because new contours are

unable to spontaneously appear within the object boundary. The implementation

of the SFM is described in this section and follows that given by [Lankton, 2009].

The implementation makes use of five doubly-linked-lists which list all the

points (by giving the x and y location) that belong to the zero level set and the two

sets on either side, i.e.,

L0 → [ −0.5 , 0.5 ]

L−1 → [ −1.5 , −0.5 ]

L1 → [ 0.5 , 1.5 ]

L−2 → [ −2.5 , −1.5 ]

L2 → [ 1.5 , 2.5 ].

(4.29)

Two arrays are also used and set to the size of the image. One is the φ ar-

ray and the other a label array. The label array can only take one of 7 values,

{−3,−2,−1, 0, 1, 2, 3}, and provides information on the status of each point, i.e.,

−3 Object pixel, not in any level set lists.

−2 Object pixel, L−2 level set.

−1 Object pixel, L−1 level set.

0 0 level set, L0.

1 Background pixel, L1 level set.

2 Background pixel, L2 level set.

3 Background pixel, not in any level set lists.

(4.30)

Note that in the implementation of the model the sign for φ has been swapped, i.e.,

on the interior of the contour φ < 0 and on the exterior φ > 0. This is to ensure the

first and second derivatives can be computed about the contour more easily.

4.4.1 SFM Initialisation

The initialisation is the first stage of the SFM. Given a binary image the initialisation

process returns full arrays for the label map φ and the five lists representing the

zero level set and the two sets on either side. The binary input image has values

of 0 to represent the background, and 1 to represent the foreground/object. The

initialisation process is as follows:
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1. Each point in the label map is given the value -3 if it is object and 3 if not,

similarly the values of φ are also set to -3 or 3.

2. For each object point which has a background point as an immediate neighbour

(i.e., adjacent horizontal or vertical pixel) with label 0, the corresponding point

on the φ array is set to 0, and the point is added to the list representing the

zero level set.

3. The +1 and -1 sets are then created. For each point in the zero level set, any

immediate neighbours with label 3 are given the label 1, φ is set to 1, and

these points are added to the +1 set. Any immediate neighbours with value

-3 have the label replaced with -1, φ is set to -1, and the points are added to

the -1 set list.

4. The same process is used with all the points in the -1 and +1 level sets to

label the -2 and +2 level sets, set the corresponding points on the φ array and

add the points to the +2 and -2 level set lists.

4.4.2 SFM Contour Evolution

Chan-Vese’s energy proposed in the Active Contours without Edges method is then

implemented (see Equation 4.18.) This gives the evolution equation

F = (u0 − c1)2 − (u0 − c2)2, (4.31)

where u0 is the image intensity at a specific point, and c1 and c2 are the average

values inside and outside of the contour respectively. This is only computed along

the zero level set (L0) and is normalised such that −0.5 < F < 0.5 using

F =
F

|Fmax| × 0.4
. (4.32)

The length constraint, determined by µ is then added to this to obtain F2.

As with Chan-Vese’s implementation, an area constraint (ν) is not used. The array

φ is then updated as follows. Five temporary lists are first defined which hold points

with changing label, i.e.

S0 → points moving to L0

S−1 → points moving to L−1

S1 → points moving to L1

S−2 → points moving to L−2

S2 → points moving to L2

(4.33)
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The following steps are then taken:

1. For each point in the zero level set, F2 is added to the corresponding value in

the φ array.

2. Any point whose value of φ is now outside of the range of the zero level set

L0 [-0.5 0.5] is moved from the set to one of two temporary lists, S1 or S−1 to

indicate whether the point will be changed to L1 or L−1.

3. The first level sets, L1 and L−1, are updated such that their φ values are 1

unit from their nearest neighbour in the zero level set. If no neighbour exists

then the point is added to one of S2 or S−2, respectively.

4. Points with φ values that now fall outside of the ranges specified in Equation

4.29 for L1 and L−1 are moved to either S0, S1 or S−1 depending on which

range their new value falls into.

5. The above steps are repeated for the 2nd level sets. The values of φ are updated

for points in L2 and L−2 so that they are 1 unit from their nearest neighbour

in the zero level set. If no neighbour exists then the point is removed from the

list and φ, and the value in the label map is changed to 3 or -3, respectively.

6. Points with φ values that now fall outside of the ranges specified in Equation

4.29 for L2 and L−2 are moved to either S1 or S−1 if their value is too low. If

their value is too high then the point is removed from the list and φ, and the

value in the label map is changed to 3 or -3 accordingly.

The temporary lists are then used to change the status of the points within them

as follows:

1. All the points in S0 are added to L0 and their corresponding values on the

label map updated to 0.

2. All the points in S1 and S−1 are respectively added to L1 and L−1, and their

labels updated. The neighbours of these points are checked, and if any have

neighbours with φ values of 3 or -3 then the neighbours are added to S2 or S−2

as appropriate. Their φ values are changed to be one unit apart from that of

the neighbouring point.

3. Finally all the points in S2 and S−2 are respectively added to L2 and L−2,

and their labels updated.
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This completes one iteration of the algorithm. The process is repeated with F2 values

calculated on the new contour position. The method is iterated until a convergence

is reached. The SFM implementation also has the benefit of being able to update

the image statistics, i.e., the values c1 and c2 used in calculating F , efficiently. This

is achieved by tracking when points cross the zero level set, either becoming part of

the background or the object, and assigning them to two lists, ‘in to out’, or ‘out

to in’, respectively. The two lists are processed in order to update the interior and

exterior average values. This is significantly more efficient than calculating the new

means from scratch for each iteration.

4.5 Proposed Method for Image Segmentation

The proposed object segmentation method comprises three stages. In the first stage

the image is prepared and the focus value map generated. The second stage performs

an initialisation for the active contours. In the third stage, the segmentation of the

OoI is performed using Whitaker’s SFM described in Section 4.4. The second and

third stage of method are presented in this section. For the first stage, the focus

assessment, the user is referred to the method described in Chapter 3.

4.5.1 Contour Initialisation

A good initial boundary (i.e., an initialisation mask) for the active contours algo-

rithm not only helps speed up the segmentation process, it is also of vital importance

for the accuracy of the segmentation. As the SFM only looks for new contours in the

vicinity of the previous iteration, the final segmentation is dependant on the initial

one. Ideally an initialisation should encompass the entire OoI whilst excluding as

much background as possible. A grid based approach is adopted to generate the

binary initialisation mask, used in the SFM. The focus map is first split into boxes,

the height and width of which are determined by the size of the image to determine

the best initialisation mask, i.e.,

box size (pixels) =


300 if (HeightImage + WidthImage) ≥ 3000

200 if 3000 > (HeightImage + WidthImage) ≥ 2000

100 if 2000 > (HeightImage + WidthImage) ≥ 1000

30 if (HeightImage + WidthImage) < 1000.

(4.34)

The maximum focus value in each box of the grid is assigned to all pixels within

that particular grid square. Otsu’s thresholding method [Otsu, 1979] is then applied
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to this grid, and blocks with a value above 0.5 of Otsu’s threshold are assigned a

value of 1 (denoted by white) and those otherwise assigned 0 (denoted by black).

This is to ensure that that OoI lies within initial contour. The initialisation process

is illustrated in Figure 4.4.

(a) (b) (c) (d)

Figure 4.4: Focus assessment and contour initialisation of an image with a watch as
the OoI: (a) image; (b) focus energy map; (c) maximum values are assigned to each
square in the grid; and (d) the corresponding initialisation mask after thresholding.

4.5.2 Object Segmentation

The automatically generated binary segmentation mask is used to create the initial

condition for an active contours algorithm. An implicit level set active contours

method is adopted, using the energy function defined by Chan-Vese [Chan and

Vese, 2001]. The energy of the contour, C, is repeated here for clarity, i.e.,

E(C) = λ1

∫
inside

|I(x, y)− c1|2 dxdy + λ2

∫
outside

|I(x, y)− c2|2 dxdy

+µ · length(C) + ν · area(inside(C)), (4.35)

where the contour C is represented by the zero-level set of a continuous Lipschitz

function, I is the image, c1 and c2 are respectively the average pixel values inside

and outside of contour C, length(.) and area(.) respectively impose length and area

constraints on the contour, and λ1 , λ2, ν and µ are fixed parameters with λ1, λ2 > 0

and v, µ ≥ 0. In the proposed implementation λ1 = λ2 = 1, ν = 0, as in [Chan

and Vese, 2001], and µ = 0.4 as the goal is to segment large objects and reduce the

likelihood of the contour leaking into object boundaries. Using the Active Contours

with Edges model means that areas in focus can be segmented, even if there is not

a well defined boundary in the focus energy map. To speed up the active contours

algorithm, Whitaker’s sparse field method [Whitaker, 1998] (see Section 4.4) is used

so that calculations are performed only around the zero level set, thus improving

the algorithm efficiency.

A disadvantage of the method is that new contours cannot spontaneously
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appear. This means that holes within an object, e.g., as with a donut, are consid-

ered parts of the object. However, this is an advantage when segmenting weakly

textured objects since the object pixels only return small focus values, but as they

are contained within more dominant object edges they are still segmented correctly.

The active contours algorithm is applied using the initialisation mask to a

downsampled focus energy map for 200 iterations. The downsampling increases the

segmentation speed for larger images and is performed with a factor of 2n, where n

is determined by the image size to obtain the best segmentation, i.e.,

n =


3 if (HeightImage + WidthImage) ≥ 3000

2 if 3000 > (HeightImage + WidthImage) ≥ 2000

1 if 2000 > (HeightImage + WidthImage) ≥ 1000

0 if (HeightImage + WidthImage) < 1000.

(4.36)

A binary segmentation is obtained with interior pixels being assigned the value 1

and exterior 0. The binary segmentation is then used as the initialisation mask for

a further 200 iterations. The reinitialisation prevents the level set function from

becoming too flat as in [Chan and Vese, 2001]. This 2-stage process is repeated

until the method converges on a solution to give an initial scaled down binary

segmentation Si(x, y). This is then upscaled by interpolation by a factor of 2n to

the size of the original image with non-zero values being assigned the value 1, thus

giving the final binary segmentation S(x, y).

The final segmentation can then be used to obtain a view of the segmented

object using a simple method. An object segmented image I(x, y) is generated with

pixels of value 0 being the background, i.e.,

I(x, y) =

{
G(x, y) if S(x, y) = 1

0 if S(x, y) = 0
(4.37)

where G is the original greyscale image. This is illustrated in Figure 4.5.

4.6 Experimental Results and Discussion

The performance of the proposed object segmentation method is evaluated on a

variety of test images as shown in Figures 4.6 and 4.7. Some of these images are

generated for the purposes of this thesis or taken from personal collections, whilst

others are taken from the Berkeley Segmentation Dataset [Martin et al., 2001] and

screen captures of video footage. This gives a good variety of image resolutions,
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(a) (b)

Figure 4.5: Object segmentation: (a) binary segmentation S(x, y); and (b) object
segmentation I(x, y).

scene compositions and objects to be segmented. The test images are as follows: a

flower with other foliage in the background; a soft toy on a desk; a watch suspended

in a living room; a plant with other foliage and a house in the background; a boy

model on a cluttered desk; a model house on a turntable in an office; a goose with a

background of other geese and reeds; a wizard against a forest background; a lizard

on a rock; a bird sitting on a branch against a clear sky; an ostrich against a distant

background; a soldier with snow falling in a wood; a ranger against a wall of ice

with various background features; and a mercenary against a textured wall.

The segmentation of the test images using the proposed method are shown

in column (b) of Figures 4.6 and 4.7. The results show that the proposed method

generates good segmentations with a variety of different objects and scenes where

there is a focus differential between the in-focus object (i.e., the OoI) and the back-

ground. The segmentation of the soft toy illustrates a shortcoming of the method,

namely it cannot exclude the background hole (the region under the ear).

The performance of the proposed method is compared with that of the in-

teractive segmentation methods, Grabcut, BPT, and interactive graph cuts (IGC),

respectively shown in columns (c), (d) and (e) of Figures 4.6 and 4.7. An overview

of these methods is provided in Section 4.2.2. The Grabcut method is implemented

with just the initial bounding box with no further user refinement, to enable it

to be compared with a method that uses very little human input. BPT and IGC

are chosen as they are ranked the best two methods by McGuiness and O’Conor

[McGuiness and O’Conor, 2010]. They both involve a significant amount of user

interaction and refinement. The implementations of these interactive segmentation

methods are as in [McGuiness and O’Conor, 2010].

To enable a quantitative comparison of the performances of the four methods,
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(a) (b) (c) (d) (e)

Figure 4.6: Segmentation of an OoI: (a) original images; and results using (b)
proposed method; (c) GrabCut; (d) BPT and (e) IGC.
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(a) (b) (c) (d) (e)

Figure 4.7: Segmentation of an OoI: (a) original images; and results using (b)
proposed method; (c) GrabCut; (d) BPT and (e) IGC.
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the test images were manually segmented to obtain their segmented ground truth

of the OoI. This enables the segmentation error rate, as proposed in [Wollborn and

Mech, 1998] to be calculated as

p(Mseg,Mgt) =

∑
(height,width)Mseg(x, y)⊗Mgt(x, y)∑

(height,width)Mgt(x, y)
, (4.38)

where Mseg is the binary segmentation generated by the method being evaluated,

Mgt is the manually segmented ground truth of the OoI and ⊗ is the exclusive

OR logical operator. The error rates for the segmentations in Table 4.1 show that

the proposed method performs very favourably when compared to the Grabcut

algorithm and competes well with the interactive BPT and IGC algorithms, despite

the proposed method being completely autonomous. It also has the additional

advantage of being able to operate on greyscale images.

Image Proposed GrabCut BPT IGC
Method

Flower 1 0.0585 0.162 0.0356 0.0272

Soft Toy 0.0323 0.085 0.0173 0.0188

Watch 0.0439 0.198 0.015 0.0128

Plant 0.1509 1.161 0.109 0.0904

Model 0.1842 0.632 0.0335 0.0191

House 0.0246 0.084 0.0214 0.0122

Goose 0.0184 0.448 0.0115 0.0245

Wizard 0.0219 0.096 0.0467 0.052

Lizard 0.0607 0.501 0.045 0.058

Bird 1 0.1502 1.466 0.193 0.194

Bird2 0.0765 0.263 0.094 0.131

Soldier 0.0373 0.1113 0.0118 0.0151

Ranger 0.0286 0.1420 0.0360 0.0465

Mercenary 0.0213 0.0468 0.0448 0.0394

Table 4.1: Segmentation error rates of the proposed method and three comparison
segmentation methods.

Using test images from [Liu et al., 2010] the proposed method is also com-

pared with the focus based segmentation methods of Kim [Kim, 2005] and Liu [Liu

et al., 2010]. The results of the segmentation using the proposed method are shown

in Figure 4.8. It should be noted that the ground truths were generated for the

purpose of this thesis and thus will not be identical to the ground truth used by

Kim and Liu. Therefore a direct comparison with these two results cannot be made.

The error rates in Table 4.2 show that the proposed method performs better
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than Kim’s Method for the images of the bird, butterfly and cheetah, and matches

the performance of Liu’s for the images of the cheetah, butterfly and bird, thus

showing its performance to be comparable to these methods.

(a) (b) (c) (d)

Figure 4.8: Segmentation of test images from Liu et al. [2010] using the proposed
method.

Image Method Kim2005 Liu2010

Cheetah 0.056 0.079 0.085

Butterfly 0.087 0.187 0.102

Footballers 0.230 0.133 0.111

Bird 0.194 0.219 0.177

Table 4.2: Segmentation error rates of test images from [Liu et al., 2010] using
the proposed method and two low DoF comparison methods . The error rates for
Kim’s and Liu’s Methods were obtained from [Kim, 2005] and [Liu et al., 2010],
respectively.

4.7 Conclusion

This chapter addresses the problem of autonomous object segmentation by restrict-

ing input images to be those with a low DoF. The method takes focus maps generated

as in Chapter 3 and uses a narrow band level sets implementation of Active Con-

tours without Edges to segment the focused regions. The robust initial contour is

provided through a grid based method. The proposed object segmentation method

is shown to work on a variety of different test objects and background scenes, and

produces favourable results when compared to other low DoF segmentation meth-
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ods. It is limited by its inability segment internal holes if the initial contour does

not include them, however this does enable the method to segment weakly textured

objects, or those with largely homogeneous regions.
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Chapter 5

Object Segmentation from Low

DoF Video Footage

5.1 Introduction

An application of an image segmentation method is to see whether it can be adapted

to perform object segmentation from a sequence of images, i.e., video footage. As

with image segmentation, video segmentation is an increasingly popular area of

research with a huge range of methods and applications being presented in the

literature [Ngan and Li, 2011]. The increasing prevalence of mobile phones and

other hand-held devices able to capture video footage makes this a very important

and relevant area of research.

The applications of video segmentations are extensive and often form the

first low level stage of more complex computer vision systems. For example, video

segmentation algorithms can form part of a video monitoring system [Gentile et al.,

2004] whereby a segmentation allows a system to detect the presence of an intruder

or unusual occurrence and thus trigger the appropriate alert. As with image seg-

mentation, video segmentations can also form part of object recognition [Todorovic

and Ahuja, 2008] and content based retrieval systems [Ko and Byun, 2005].

Identifying the OoI in a scene via video segmentation also results in improved

data compression and is important for various video coding formats [Meier and Ngan,

1999]. Segmenting each frame means that the areas of interest can be kept at a high

quality whilst the background regions are compressed.

As videos and images are intrinsically linked to each other, video segmen-

tation methods are often based on image segmentation methods. For example, the

Interactive Video Cutout method [Wang et al., 2005] is based on the principles of
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the Graph Cuts method [Boykov and Jolly, 2001]. Rather than painting seeds on

each individual frame, which would be a laborious process, the method presents a

novel interface which allows the user to paint on surfaces within the spatio-temporal

video volume to indicate the background and foreground regions. Other methods,

such as Active Graph Cuts [Juan and Boykov, 2006], can even operate in real time

with live video feeds rather than recorded footage.

This chapter presents a low DoF video segmentation method based on the

method presented in Chapter 4 and is organised as follows. Section 5.2 covers

related work: two existing low DoF object segmentation methods that have been

extended for video segmentation. Section 5.3 proposes changes to the initialisation

process, both for the the first frame and then for subsequent frames, to the image

segmentation method presented in Chapter 4 in order to efficiently segment video

sequences. Finally, Section 5.4 presents the results of the proposed method, showing

the segmentation of video sequences and making a comparison to related work. The

chapter is concluded in Section 5.5

5.2 Related Work

Whilst other low DoF object segmentation methods could be applied to each image

frame in a video sequence independently, there are currently only two main methods

which make use of the relationship between frames in a video sequence. This section

presents the two methods in detail.

5.2.1 Kim’s Method

Kim et al. [Kim et al., 2007] propose a method for extracting objects from low

DoF images which is extended and modified to extract an object from a sequence of

images. The method is split into 3 parts. In the first a higher-order statistics (HOS)

map is generated from the input image to find the high frequency (i.e., in focus)

regions of the image. The fourth-order moments are calculated for all pixels within

the red, green and blue channels of the input image. When generating the HOS

map, only the maximum moment value across all 3 channels is used. The values in

the map are then scaled to give each pixel a value between 0 and 255.

In the second stage a block-based OoI is extracted. Firstly the HOS map

is partitioned into blocks. For each block the maximal value is found and assigned

to all pixels within the block. The coordinate corresponding to the maximum HOS

block value is used as the seed point. Starting at the seed point, all neighbouring

blocks with values of 255 are extracted. This process is repeated for each connected
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block with a value of 255 until no more are found. Finally a hole filling algorithm

is used to obtain the final block based OoI.

In the third section the final segmentation is performed. The block based

OoI serves as a mask which contains the final locations of the OoI inside it. A filling

technique [Kim et al., 2001] obtains a vertically filled OoI and a horizontally filled

OoI. An AND operation generates the final segmentation of the object. Cascaded

opening and closing morphological operations can be used to smooth the object

boundaries.

To extend the algorithm to video sequences the block based OoI from the

previous frame is dilated and the HOS for the new frame is only calculated within

this region, as due to correlation between video frames, the OoI is unlikely to have

moved significantly. This reduces computational complexity and reduces processing

time significantly.

5.2.2 Li’s Method

Li and Ngan [Li and Ngan, 2007] adopt a different approach that consists of three

stages. In the first a saliency map of a video frame is generated using a reblurring

model to identify focused regions. The salient regions are then smoothed and ac-

centuated using morphological filtering. This allows a trimap of object, background

and ambiguous regions to be created. In the third stage the object boundaries are

extracted using an adaptive error-control matting scheme. The method achieves

good segmentation for a variety of different scenes where large focus differentials

are present. For the remaining frames of the video sequence a motion estimation

algorithm is used to identify the region containing the focused object in the current

frame from information in the previous frame. Morphological erosion and dilation

are performed on the projected region separately and used to create the trimap (the

difference in the two regions being labelled ambiguous). The adaptive error-control

matting method is then used to segment the image into object, background and

mixed pixels.

5.3 Proposed Video Segmentation Method

Whilst an image segmentation method can be applied consecutively to each image

frame of a video, and thus obtain a segmentation for the whole sequence, this ignores

the correlation between frames and thus misses the opportunity of using additional

information to either obtain a more accurate, or computationally efficient, segmen-

tation. Two assumptions are made when addressing the problem of low DoF object

71



segmentation from video footage.

1. There is no change of scene in the video sequence, i.e., the OoI remains the

subject of the entire video sequence.

2. The video frame rate is sufficiently high such that there are no large discrep-

ancies in image composition from one frame to another.

The method proposed is nominally the same as that described in Chapter 4,

with the exception of the contour initialisation process. For the initial contour of

the first frame of the video sequence, a more robust initialisation is proposed to

ensure that the the OoI is within the initial contour. For subsequent frames, the

initialisation is based on the results of the segmentation of the previous frame. A

block diagram is presented in Figure 5.1 to aid in the visualisation of the stages of

the method.

5.3.1 First Frame Initialisation

If a method is utilising the previous frame’s segmentation result as a factor in

acquiring the current one, then this means that the first result, i.e., for frame n = 1,

must be as accurate as possible, as all future segmentations will stem from it. The

linked nature of frames (i.e., scene composition changes very little over a few frames)

is exploited to obtain a more robust initial initialisation for the first frame of the

video sequence.

The goal is to ensure that the OoI is entirely encompassed by the initial

contour. Thus, focus intensity maps are generated from frames n = 1, 3, 5. The

maximum focus value from across all three maps for each pixel is then used to

generate a different focus intensity map, i.e.,

Mapmax(x, y) = max(Mapn=1(x, y),Mapn=3(x, y),Mapn=5(x, y)). (5.1)

As the OoI interest will have moved little during only five frames, there will

be a strong overlap in object pixels between the three frames. This focus map,

Mapmax, is then used in the grid process described in Section 4.5.1 to generate the

initial contour for use with the active contours algorithm on Mapn=1 Taking the

maximum values from across the three frames ensures that the initial contour will

envelop the OoI, thus making the method more robust.

Figure 5.2 shows frames n = 1, 3, 5 and their corresponding focus assess-

ments. The maximum focus values from across these three frames is then shown in
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Figure 5.1: First, third and fifth frame of a video sequence of a swimming fish,
and corresponding focus assessments used to produce a first initial contour. Subse-
quent initial contours are produced from the binary dilation of the previous frame’s
segmentation.
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Figure 5.3 as well as the corresponding grid which is generated and thresholded in

the usual manner as described in Section 4.5.1 to produce the initial contour, ready

for the sparse fields active contour algorithm to produce the segmentation.

Figure 5.2: First, third and fifth frame of a video sequence of a swimming fish, and
corresponding focus assessments.

(a) (b) (c)

Figure 5.3: Maximum focus values across frames n = 1, 3, 5 (a), block based focus
assessment (b), and initialisation for active contours (c).

5.3.2 Further Frame Initialisations

To improve the computation efficiency of the segmentation method, further ini-

tialisation masks for the nth frame are generated from the binary dilation of the

segmentation of the n− 1th frame by a 50× 50 square structuring element of ones.

This can be scaled accordingly for higher resolution video squences. This allows for
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all frames subsequent to the initial one to be segmented efficiently, with a suitable

initial contour. As with the proposed image segmentation method, the proposed

video segmentation method is fully automatic and requires no user input.

Figure 5.4 shows the result of a segmentation of a frame of the video sequence

(a). The dilation of this segmentation to produce an initial contour is shown by (b).

This is used to produce the segmentation (c).

(a) (b) (c)

Figure 5.4: Segmentation result of a frame n − 1 of the image (a), dilation of seg-
mentation result (b), segmentation of frame n using the dilation as an initialisation
for the active contours (c).

5.4 Video Segmentation Results

The performance of the proposed video segmentation method is evaluated on several

low DoF video sequences used in Kim et al. [2007]. The dimensions of a video frame

in all video sequences is 352x288 pixels. The first sequence is that of a swimming

fish. The second and third sequences are of blooming flowers. Experimental results

from a selection of consecutive video frames are shown in Figures 5.5, 5.6 and 5.7.

The segmentation error as proposed in Wollborn and Mech [1998] is again used as

a measure of sucess of the video segmentations:

p(Mseg,Mgt) =

∑
x,yMseg(x, y)⊗Mgt(x, y)∑

(x,y)Mgt(x, y)
, (5.2)

where Mseg is the binary segmentation generated by the method being evaluated,

Mgt is the manually segmented ground truth of the OoI and ⊗ is the exclusive OR

logical operator.

It can be seen from Figure 5.5 that good segmentations of the fish are

achieved, despite low video quality and non-rigid motion of the OoI. The mean

segmentation error was calculated to be 0.0573, showing a good degree of accu-
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racy. The segmentation accuracy of Kim’s method for the swimming fish sequence

is given in Kim et al. [2007] as 94.3%. Although a direct comparison cannot be

made due to the use of a different frame range and potentially different manual

segmentations, the mean accuracy of the segmentations obtained by the proposed

video segmentation method is 98.9%.

The mean segmentation error for the first sequence of a blooming flower as

shown in Figure 5.6 is 0.128. Relatively good segmentations are achieved but due

to the low resolution of the videos, the algorithm had some difficulty in segmenting

the areas between the flower’s petals. The second video sequence of a flower shown

in Figure 5.7 gives a mean segmentation error of 0.0593, again showing that an ac-

curate segmentation has been achieved. Segmentation error rates for the percentage

correctly segmented were not given by Kim for the flower sequences.

5.5 Conclusion

This chapter expands upon the low DoF object segmentation method presented in

Chapter 4, enabling it to segment video sequences accurately and efficiently. For

the first frame, a robust initialisation process is proposed, making use of the linked

nature of video frames. Active contour initialisations for further frames are based

on the dilation of the previous frame’s binary segmentation. The method is tested

on a number of video sequences, and is shown to compare favourably to another low

DoF video segmentation method.
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Figure 5.5: Segmentation of swimming fish video sequence: original image frames
on odd rows and segmented OoI on even rows. Mean segmentation error = 0.0573.
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Figure 5.6: Segmentation of blooming flower 1 video sequence: original image frames
on odd rows and segmented OoI on even rows. Mean segmentation error = 0.128.
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Figure 5.7: Segmentation of blooming flower 2 video sequence: original image frames
on odd rows and segmented OoI on even rows. Mean segmentation error = 0.0593.
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Chapter 6

Automatic Trimap Generation

for Matting Algorithms

6.1 Introduction

Whilst a binary segmentation is a desirable result for many tasks, for applications

in image and video editing such as image compositing (i.e., combining one image

with another, usually a foreground onto a new background), a ‘softer’ approach is

required. Image matting addresses the problem of foreground estimation in images

- in the case of this thesis, the focused OoI. Matting determines which pixels are

foreground (pixels with value 1), which are background (pixels with value 0), and

also determines an alpha value between 0 and 1 for those that are a mixture of

both. The alpha value is a measure of how much a mixed pixel belongs to the

background or the foreground. It is used as a measure of the transparency of the

pixel when compositing two images together. Matting is sometimes referred to as a

soft segmentation - as opposed to a hard binary segmentation where pixels must only

belong to one of two classes. It is particularly useful when applied to boundaries

that have very fine details or textures such as hair or fur.

Most modern matting algorithms make use of a user defined trimap. This

splits the image into areas of one of the following type: foreground, background

and ambiguous/mixed. The ambiguous regions are then processed by a variety of

methods to form a matte. These methods can generally be divided into two cate-

gories: sampling based and propagation based. In this chapter the image and video

segmentation methods presented in Chapters 4 and 5 are applied to the problem of

autonomous image matting. By adapting the segmentation method proposed in this

thesis, trimaps can be automatically generated, thus removing the need for human
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input in the matting process. The generated trimaps are used in conjunction with

the Robust Matting method [Wang and Cohen, 2007] to produce alpha mattes and

perform image and video compositions.

The rest of the chapter is organised as follows. Section 6.2 provides an

overview of the basic fundamentals of image matting, whilst Section 6.3 covers some

of the more prominent methods for extracting a matte. In Section 6.4 the Robust

Matting method is described in detail. The automatic tripmap generation method

is proposed in Section 6.5. This is used in conjunction with the Robust Matting

method to generate the results in Sections 6.6 and 6.7. The chapter is concluded in

Section 6.8.

6.2 Matting Fundamentals

Digital matting is the process of separating a foreground element or object from

a background, determining which pixels both fully belong to the object group and

which partially belong to the group. It is closely associated with image compositing

- the process of rendering a foreground over a given background which was initially

developed for use in film and video production [Fielding, 1972]. The problem was

first described mathematically by Porter and Duff [Porter and Duff, 1984], where

the alpha channel to control the linear interpolation of foreground and background

colours was introduced. The alpha channel, or alpha matte, is an extra attribute

assigned to each pixel, with a value between 0 and 1. An image I is modelled as

the combination of the image background B, and the image foreground F using the

alpha matte α. A pixel in I is given by

I(x,y) = α(x,y)F(x,y) + (1− α(x,y))B(x,y). (6.1)

If αx,y = 1 then the pixel Ix,y is definite object/foreground. Conversely if αx,y = 0

then the pixel is definite background, otherwise the pixel is a combination of the two.

For example, Figure 6.1 shows an image of a ranger against an icy background (a),

and the corresponding alpha matte (b). The black pixels (with value 0) represent

the background of the image, the white pixels (with value 1) the foreground or

object, and the pixels with grey values between 0 and 1 the mixed regions.

For image compositing, once the foreground F has been determined, the

background B can simply be replaced with a new background, for example B′, to

form the new composite image J , i.e.,

J(x,y) = α(x,y)F(x,y) + (1− α(x,y))B
′
(x,y). (6.2)
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(a) (b)

Figure 6.1: Image of a ranger against an icy background (a) and the corresponding
alpha matte (b). The matte is produced using a user generated trimap and with
Wang’s Robust Matting Method [Wang and Cohen, 2007].

An example of this image compositing, sometimes called scene superimposition, is

shown in Figure 6.2. The extracted matte shown in Figure 6.1 is used to composite

the image of the ranger onto a plain background (a), and a forest background (b).

It can be seen that the character looks like a natural part of the image, despite the

background having been changed.

(a) (b)

Figure 6.2: Image of a ranger superimposed on a plain background (a) and a forest
background (b). The original image and matte are taken from Figure 6.1.

Considering Equation 6.1, it can be see that for each pixel in a colour image

there are three known variables, I(r, g, b) but seven unknown variables, α, F (r, g, b)

and B(r, g, b). This makes the the equation under constrained, i.e., more information

is required in order to solve the problem or to estimate a solution. For this reason

photos or videos are often traditionally taken in front of a blue or green scene

if a composite image is desired. By using a background of a known colour and

making assumptions about the foreground colours then there is enough information

to estimate the matte and create a composite image [Smith and Blinn, 1996]

Extracting a matte from natural scenes with uncontrolled backgrounds is a
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more difficult task. To do so, some form of prior information is required. This is

usually some user input which takes the form of a trimap. In a trimap, the user

segments the image into three areas: regions of the image that are definitely back-

ground, regions of the image that are definitely foreground, and unknown regions.

This reduces the matting problem to only estimating F , B and α in this third am-

biguous region of the image. These variables can be estimated based on known

foreground and background pixels to produce the alpha matte. An example of a

trimap painted using a user interface is shown by Figure 6.3, (a). The red regions

correspond to the foreground or object, the blue the background, and the green

the mixed or ambiguous regions. This produces the trimap used for the matting

algorithm (b).

(a) (b)

Figure 6.3: Superimposed user painted trimap (a) and corresponding trimap used
by matting algorithm (b).

The accuracy of the trimap is extremely important to the matting process.

A perfectly accurate trimap’s ambiguous region will only contain mixed pixels, thus

reducing the number of unknown variables that need to be estimated. A small

boundary region also increases the amount of background and foreground infor-

mation that is available. Identifying the regions accurately requires a significant

amount of user effort and skill, thus there is a trade off between the performance of

the matting algorithm and the extent of the user interaction. Figure 6.4 illustrates

this trade off. Column (a) shows an accurately painted trimap and its correspond-

ing alpha matte, generated using the Robust Matting method. Whilst column (b)

shows a trimap painted using a much bigger brush, thus saving time at the cost of

accuracy. It can be seen that the matte generated from the roughly painted trimap

assigns false transparencies to areas of the cloak, and includes some background

objects.

The mattes are then used to form composite images with a plain background,

allowing for the inaccuracies to been seen more clearly as illustrated in Figure 6.5.
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(a) (b)

Figure 6.4: Trade off in accuracy between high level of user input (a) and faster user
generation of tripmaps (b).

(a) (b)

Figure 6.5: Composite images of mattes generated in Figure 6.4. Inaccuracies in (b)
can be seen along the edges of the cloak and in the background object appearing
near the face.

6.3 Matting Techniques

Methods which extract (also known as pulling) alpha mattes can generally be divided

into two approaches: sampling-based approaches and propagation-based approaches.

6.3.1 Sampling Methods

Sampling methods estimate the background and foreground components of a pixel

by examining nearby pixels that have been specified as foreground or background by
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the user. The colour of these sample pixels can be used directly to gain an estimate

of the alpha value. Substituting z for (x, y) into Equation 6.1 for clarity, gives

Iz = αzFz + (1− αz)Bz. (6.3)

For a pixel within the mixed region, Iz, it can be assumed that nearby background

and foreground samples are close in colour space to the unknown foreground, Fz,

and background, Bz, colours. The matting method will then obtain a good estimate

of Fz and Bz from these nearby samples. These estimates can then be used in the

matting equation, Equation 6.3, to determine the value of αz. Colour sampling

methods vary in the way in which samples are selected for the the estimation of Fz

and Bz, and also in how these samples are used to obtain the estimates. A few of

the more popular methods are reviewed in this section.

KnockOut

One example of a colour sampling method is the Knock Out technique [Berman

et al., 2000a,b], one of the first successful matting methods for natural images. The

method takes a user defined trimap and for a point Iz within the mixed region, Fz

is calculated as the weighted sum of pixels along the boundary of the user defined

foreground region. The weight of the nearest pixel is 1 which decreases linearly

with distance (spatially) to 0 for pixels which are twice the distance from Iz as the

nearest foreground pixel. The same process is used to estimate an initial value of

the background component B′z. This is refined to calculate Bz by considering the

relative position of Iz and Fz. The alpha value is calculated for each different colour

channel and the final value αz is estimated via a weighted summation.

Parametric Sampling Methods

Some of the more successful colour sampling methods are based on statistical mod-

elling and are sometimes grouped under the label of parametric sampling methods.

Once samples have been collected for a particular pixel, Iz, these methods fit low

order parametric statistical models to them, typically Gaussians. The distances be-

tween the unknown mixed pixel Iz and the foreground and background distributions

are used to estimate the alpha value αz.

In Ruzon and Tomasi’s method [Ruzon and Tomasi, 2000] the boundary area

is partitioned into subregions. For each subregion a local window is constructed

that contains some of the user defined foreground and background regions. Pixels

from these regions are treated as samples from a foreground and background colour
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distribution respectively. Foreground and background pixels are split into clusters

and unoriented Gaussians are fitted to each. All foreground clusters are linked

to all background clusters and then some pairings are rejected based on a series

of angle and intersection criteria. The observed colour of the pixel Iz is treated

as a distribution in between the foreground and background distributions. This

distribution is also defined as the sum of Gaussians, where each Gaussian is centred

on the line between each linked foreground and background cluster. The fractional

distance along which each Gaussian is centred is determined by the value of α. The

optimal α is chosen such that the distribution for the observed colour of pixel Iz

has maximum probability. Fz and Bz can be computed as a post process to satisfy

Equation 6.3.

Baysian Matting [Chuang et al., 2001] is another statistical based method

which improves upon Ruzon and Tomasi’s method. The method also estimates the

distributions for foreground and background regions in a similar fashion. However

the windowing system used travels from the edge of the boundary region towards

the region centre and incorporates calculated values for F , B and α for pixels in

the neighbourhood when constructing oriented Gaussians, not just the user defined

definite foreground and background regions. The matting problem is formulated in

a well-defined Bayesian framework and is solved using the maximum a posteriori

technique.

Parametric sampling methods do not generate satisfactory results if the re-

gions are not smooth or their colour distributions are non-Gaussian. Trying to pull a

matte from complex natural images without clear foreground and background colour

distributions is problematic.

6.3.2 Propagation Methods

Propagation based methods make the assumption that in a given area, foreground

or background pixels will not have sharp transitions, i.e., they are locally smooth.

Colours can be modelled as either constant or transitioning in a linear fashion.

Foreground and background colours an be eliminated from an optimisation process,

allowing the matte problem to be solved.

Poisson Matting

The Poisson matting method [Sun et al., 2004a] assumes that intensity changes

in the foreground and background are smooth in the immediate neighbourhood.

This allows an approximation to show the matte gradient to be proportional to the
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image gradient. Fz and Bz are chosen as the nearest (spatially) foreground and

background pixels to Iz respectively. The final matte is produced by solving the

Poisson equations on the image lattice. As with all propagation algorithms, the

matte will tend to be smooth and not suffer from discontinuities.

Random Walks

The Random Walker algorithm for image matting [Grady et al., 2005] is based

on the image segmentation method of the same name [Grady, 2006]. The image is

modelled as a weighted graph with each pixel corresponding to a node. Edge weights

are determined by the similarities between pixels. Taking user defined foreground

and background pixels, for each unknown pixel the probability that a random walker

will hit a foreground pixel is computed first, taking into account the weights between

nodes. Based on these probabilities an alpha value is determined for each unclassified

pixel.

6.4 Robust Matting

The Robust Matting method [Wang and Cohen, 2007] is selected for the purpose

of evaluating the trimaps automatically generated by the segmentation algorithm.

The method is shown by the authors to produce more accurate alpha mattes when

compared to the other prominent matting algorithms. In the comparison, a variety

of trimaps of differing quality are used to generate alpha mattes which are compared

to a manually created ground truth to generate the mean squared error. Thus a

quantitative evaluation is performed.

The matting method falls under the colour sampling area, which the authors

argue is more robust than propagation based approaches for natural images, but

also contains elements of a propagation method in the matte optimisation stage.

6.4.1 Limitations of Conventional Matting Algorithms

In order to understand the benefits of Robust Matting, two main problems with

conventional matting extraction methods are first discussed. These are as follows:

1. Not fitting the linear model. Figure 6.6 illustrates this problem. Two clus-

ters, a foreground and a background are shown in colour space, along with

a horizontal interpolation line joining the cluster centres. Two pixels, A and

B, defined as mixed by the user generated trimap are also shown. Point A

is suitable for the linear model as it is close to the interpolation line. Point
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B however is not, i.e., a linear combination of the two clusters is unlikely to

estimate the correct foreground and background components, and such a pixel

may not even be mixed but part of the background or foreground.

Figure 6.6: Illustration of an estimation problem involving two clusters correspond-
ing to the blue dots and the red dots, and two pixels A and B. Pixel A fits the linear
model represented by the horizontal line, whereas pixel B does not.

2. Non-uniformity of colour distribution. This problem occurs when the fore-

ground and backgrounds are very complex and local regions do not have a

uniformity of colour. As a result the assumption that propagation based al-

gorithms make - that the background and foreground colours are smooth in

the mixed/ambiguous band of the trimap - is not valid. Thus the resultant

matte will not be accurate. Sampling based approaches will also produce an

erroneous alpha matte if each sample is treated with equal weight.

The Robust Matting algorithm addresses these problems by calculating a confidence

factor for each pair of samples. This is discussed in the next section.

6.4.2 Initial Matte Generation

The Robust Matting method makes the assumption that for an ambiguous pixel

with colour C, Iz the true foreground (Fz) and background (Bz) colours will be

close to (in colour space) some of the foreground and background samples taken. A

good pair of samples will be able to describe a mixed pixel as a linear combination

of the two samples. For a given pair of samples, F i and Bj , the estimated alpha

value is given by

α̂ =
(C −Bj)(F i −Bj)

‖ F i −Bj ‖2
. (6.4)

The goodness of the sample pair is evaluated by a distance ratio, Rd(F
i, Bj) which

measures the ratio of the distances between the pixel colour, C, and the value it
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would have been if predicated by the matte equation (Equation 6.3). This is given

by

Rd(F
i, Bj) =

‖ C − (α̂F i + (1− α̂)Bj) ‖
‖ F i −Bj ‖

. (6.5)

This distance ratio favours samples pairs that have very different colours as ‖ F i −
Bj ‖ will be large and thus the distance ratio smaller.

Since pixels that are close in colour space to pixels that are definite foreground

or background are considered to be more likely to belong wholly to the background

or foreground than be truly mixed. The following weights are also used:

w(F i) = exp{− ‖ F i − C ‖2 /D2
F }, (6.6)

and

w(Bj) = exp{− ‖ Bj − C ‖2 /D2
B}, (6.7)

where DF and DB are the minimum distance in colour space between the foreground

or background sample and the current pixel, respectively mini(‖ F i − C ‖) and

minj(‖ Bj −C ‖). This allows a final confidence value, f(F i, Bj), for a given same

pair to be calculated using the weights and the distance ratio, i.e.,

f(F i, Bj) = exp

{
−Rd(F

i, Bj)2.w(F i).w(Bj)

σ2

}
, (6.8)

where σ is a constant and fixed at a value of 0.1. From every foreground and

background sample pair, the three samples with the highest confidence are selected

and the average of the estimated alpha values taken to generate an initial alpha

matte. This average value, as well as the average of the confidence values are then

taken into the next stage of the method.

6.4.3 Matte Optimisation

The previous stage of the algorithm obtains an initial estimate of alpha for each pixel,

along with an associated confidence value. This initial estimation is taken into the

next stage of the method where two assumptions are made to further improve the

matte. The first assumption is that the matte is expected to be locally smooth. The

second is that alpha values of 1 or 0 will be more common than truly mixed pixels,

i.e., pixels in the ambiguous region are still more likely to be wholly background

or wholly foreground than a mixture of the two. This type of pixel often have the

lowest confidence scores.

Based on these assumptions, there are two constraints for the final matte -
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a data constraint and a neighbourhood constraint. The data constraint is that the

initial alpha generated should be respected, especially if the associated confidence

value is high. The neighbourhood constraint is that the final matte should be

relatively smooth and robust to image noise.

In order to generate an optimal matte subject to the constraints, the method

considers the optimisation to be a graph labelling problem, which is later solved

using a Random Walk. The alpha matte is treated as a graph, with each pixel being

represented by a node and joined to its neighbours in the horizontal and vertical

directions, i.e, a lattice. In addition, source and sink nodes, i.e., ΩF and ΩB, are

virtual nodes respectively representing pure foreground and pure background. To

satisfy the data constraint, a data weight is defined between each pixel and a virtual

node. An edge weight defined between neighbouring pixels is used to satisfy the

neighbourhood constraint.

Data Constraint

The relative probabilities that a node belongs to the background or the foreground

are represented by the data weights. For nodes with high confidence values, f̂i, the

initial alpha generated, α̂, is primarily used. Conversely, if the confidence is low,

from the assumptions stated previously it is expected that the node is more likely

to be fully background or foreground than a mixed pixel. Depending on the initial

alpha estimate, the alpha of the node is biased towards foreground or background.

For a pixel in the ambiguous region i, the data weights, W (i, F ) and W (i, B),

between the pixel and respectively the two virtual nodes ΩF and ΩB are defined as

W (i, F ) = γ[f̂iα̂i + (1− f̂i)δ(α̂i > 0.5)] (6.9)

and

W (i, B) = γ[f̂i(1− α̂i) + (1− f̂i)δ(α̂i < 0.5)] (6.10)

where δ is a boolean function returning either 1 or 0, and γ is a parameter which

balances the edge and data weights, set to be γ = 0.1. Setting γ too high gives a

noisy matte whilst too low a setting will result in the matte being overly smooth.

Neighbourhood Constraint

The edge weight between node i and j, W(i, j), is specified to maintain the as-

sumption that the alpha matte should be locally smooth. The weights between

neighbouring pixels are based on the differences in their local colour distributions.
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The same settings for the weights is used in the Closed Form Matting system [Levin

et al., 2008].

The edge weight, W(i,j), is defined by a sum of all the 3×3 windows containing

the nodes/pixels i and j, i.e.,

Wij =

(i,j)∈wk∑
k

1

9
(1 + (Ci − µk)(Σk +

ε

9
I)−1(Cj − µk)), (6.11)

where wk represents the set of 3 × 3 pixels containing i and j, which k iterates

over. µk and Σk are the colour mean and variance in each window, whilst ε is a

regularisation coefficient, set at 10−5, again using the same values and justification

as Levin et al.’s method. I is the 3× 3 identity matrix.

Solving the Problem for Optimal Alphas

The graph labelling problem is solved using a Random Walk as follows. For a given

pixel i, the probability that a random walk starting at the pixel and reaching a

foreground labelled pixel first is determined by solving a system of linear equation

using the Conjugate Gradient (CG) method [Hestenes and Stiefel, 1952]. These

linear equations are based on a Laplacian matrix containing the edge weights W

between neighbouring pixels. The method is briefly outlined here.

A Laplacian matrix for the graph is first constructed as

Lij =


Wii : if i = j

−Wij : if i and j are neighbours,

0 : otherwise,

(6.12)

where Wii =
∑

jWij . L is therefore a sparse, symmetric, positive-definite N × N
matrix, where N is the total number of nodes comprising of all the image pixels and

the virtual nodes ΩB and ΩF .

L is then decomposed into blocks corresponding to known nodes Pk (user

labelled pixels and the virtual nodes) and unknown nodes Pu, i.e.,

L =

[
Lk R

RT Lu

]
, (6.13)

where Lk is the matrix of the interactions between the known nodes, Lu between

unknown nodes and R the mixed interactions, i.e., between known and unknown

nodes.
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It is shown by Grady [Grady, 2006] that the probability of an unknown pixel

belonging to the foreground is the solution to

LuAu = −RTAk, (6.14)

where Au is the vector of unknown alphas to be solved and Ak is the vector encoding

the boundary conditions (the known alphas and virtual nodes). The solution Au is

unique and guaranteed to exist, with entries of Au each lying between 0 and 1. CG

is used to solve the linear system.

6.5 Automatic Trimap Generation

In the previous chapters of this thesis an object segmentation method is proposed

and extended to additionally segment video footage. In order to adapt the results to

solve the matting problem the hard segmentations must be converted into trimaps.

Given a binary segmentation Sb, the common approach [Li et al., 2005; Wang et al.,

2005; Bai et al., 2009] is to perform an erosion and dilation of Sb by a fixed number

of pixels to create the unknown region around the object’s boundary. This band

is given by the exclusive OR operation of the dilated image with the eroded im-

age, i.e., the unknown band, Su, corresponds to the difference between the eroded

segmentation Se and the dilated segmentation Sd, i.e.,

Su = Se ⊕ Sd. (6.15)

This process is illustrated in Figure 6.7.

(a) (b) (c) (d) (e) (f)

Figure 6.7: The process of automatically generating a trimap from a binary seg-
mentation: (a) the original image; (b) the binary segmentation; (c) the dilation of
the binary segmentation; (d) the erosion of the segmentation image; (e) the matting
band or ambiguous region; and (f) the generated trimap (f).

As demonstrated earlier by Figure 6.4, the accuracy of the trimap is very
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important if a good matte is to be obtained. An ideal trimap will only contain

mixed pixels but in practice this is impossible. The nature of the active contours

being an enveloping algorithm and stopping just before the object boundary allows

for the removal of the dilation from the trimap generation process. Instead, in this

thesis the matting band is generated from the difference in the eroded image and

the original binary segmentation, i.e.,

Su = Sb ⊕ Se. (6.16)

This is illustrated in Figure 6.8.

(a) (b) (c) (d) (e) (f)

Figure 6.8: The process of automatically generating a trimap from a binary seg-
mentation, without a dilation operation: (a) the original image; (b) the binary
segmentation; (c) the erosion of the segmentation image; (d) the matting band or
ambiguous region; and (e) the generated trimap; and (f) the trimap superimposed
on the original image.

Removing the dilation of the binary segmentation allows for a narrower,

and thus more accurate matting band. A smaller ambiguous region also results in

improvements in the computational efficiency of the algorithm as there are fewer

unknown alphas to compute. The size of the N ×N pixel structuring element used

for the erosion is proportional to the size of the image and is determined by the

following rule-of-thumb:

N = 2lp + 10, (6.17)

where lp is 1% of the larger dimension (height or width) of the image. This prevents

any discrimination between landscape and portrait photographs. N is then rounded

to the nearest integer as the size of the structuring element must be in whole pixels.

Figure 6.9 shows a series of images, and the trimaps generated for them.

93



(a) (b) (c) (d)

Figure 6.9: Automatic generation of trimaps from binary segmentations: (a) original
image; (b) segmented object; (c) automatically generated trimap; and (d) an overlay
of the trimap onto the image, where green represents the matting band, red the
object and blue the background.

94



6.6 Image Matting Results

The Robust Matting Algorithm is then applied to the automatically generated

trimaps to produce corresponding alpha mattes and new image composites. A series

of the results are shown in Figure 6.10. It can be seen that good alpha mattes are

obtained, allowing for the objects to composite well with new backgrounds.

(a) (b) (c) (d) (e)

Figure 6.10: Automatic generation of trimaps from binary segmentations and corre-
sponding alpha mattes and image composites: (a) original image; (b) automatically
generated trimap; (c) alpha matte; (d) and (e) are respectively the object compos-
ited with a plain and detailed background.

6.6.1 Limitations

As with most automatic methods, there will be some cases for which the method of

automatic trimap generation is not ideal. In this case, the method will not function
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as intended for objects with long or varying lengths of mixed pixels. Additionally if

the segmentation of the the OoI is not accurate, then it is unlikely that the resultant

matte will be accurate. These two cases are illustrated in Figure 6.11. The first

row shows an example where large portions of the character’s hair are mixed or

background, but are contained within the object region of the trimap. This results

in composite images where part of the old background is still visible. The second

row shows an example where the segmentation process failed to segment the hole in

the soft toy (between the left ear and the body), and thus the trimap produced is

inaccurate.

(a) (b) (c) (d) (e)

Figure 6.11: Limitations of automatically generating trimaps: (a) Original images;
(b) the trimaps; (c) the resultant matt; and (d) and (e) are two composites.

The generation of such a trimap is not without merit as it provides a good

foundation which can then be easily altered by the user. Most recent matting

algorithms have some form of refinement procedure to enable user input to be per-

formed if the user is unhappy with the initial matte. Figure 6.12 shows the effect

of a limited amount of user input in modifying the initial matte by painting over

some regions, and the resultant improvement in alpha mattes and composite images.

These changes result in the improved mattes which in turn produce good composites

shown in columns (d) and (e). Trimaps created in this fashion are still substantially

quicker than if the user painted the different regions themselves.

6.7 Video Matting Results

For video sequence matting, the task of manually specifying a trimap for each indi-

vidual frame becomes infeasible due the amount of effort and time required. Even a

short video sequence may have hundreds of frames. Video matting methods typically

require the user to generate trimaps for a few key frames and then automatically

propagate these maps to other frames. In our case, having obtained binary segmen-
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(a) (b) (c) (d) (e)

Figure 6.12: Limitations of automatic trimap generation overcome by a small
amount of user input: (a) initial automatically generated trimap; (b) trimap modi-
fied by a user; (c) improved mattes; and (d) and (e) are the two resulting composites.

tations from each frame, the trimap generation method can simply be applied to

generate trimaps automatically for each frame.

As an example, the automatic trimap generation process is applied to the

video sequence of the swimming fish used in Chapter 5. Figure 6.13 shows the results

of the method. This allows for the object, in this case a fish, to be composited onto

a plain background in column (d) and then to be made to swim in outer space in

column (e). It can be seen that good mattes are obtained from the automatically

generated trimaps, and that the fish fits seamlessly in with the new background.

6.8 Conclusion

The method presented in this Chapter addresses the problem of unsupervised image

matting. The methods presented in Chapters 4 and 5 are used to gain a binary

segmentation of the OoI. The enveloping nature of the active contours algorithm

is exploited, and erosions of the binary segmentations performed to automatically

generate the matting band. This allows trimaps to be input into the Robust Matting

algorithm to generate accurate alpha maps. A variety of mattes are extracted from

natural images and video footage, and shown to produce good composites. The

unsupervised method does not produce ideal trimaps for all cases and thus if a user

is unhappy with a matte generated from a trimap, the trimap can be easily refined

to produce a better result.
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(a) (b) (c) (d) (e)

Figure 6.13: Automatic generation of trimaps for alpha matte generation to allow
an object (i.e., a fish) to be composited onto a new background: (a) original video
frame; (b) trimap; (c) alpha matte; and (d) and (e) are respectively the object
composited onto a plain background and outer space.

98



Chapter 7

Silhouette Generation for 3D

Object Reconstruction

7.1 Introduction

3D object reconstruction is a scientific discipline concerned with the generation of

3D models from sensor data. Whilst humans can very easily gain a lot of information

from what they see, whether it be recognising a face or perceiving distance, it is

significantly more difficult for machines to do so. Reconstructing depth information

from images is intrinsically problematic as information in one dimension is lost when

a 3D scene is projected onto a 2D image. Recovering this information has been a

popular theme of research in the field of computer vision.

There are many different approaches to reconstructing a 3D object. Methods

can generally be divided into one of two areas: active methods and passive methods.

Active methods involve some form of interaction with the object to be reconstructed.

This usually either involves a laser or the projection of a light pattern onto the

object together with a sensor. The high accuracy required for the laser or projector

often means that such methods are prohibitively expensive, and thus tend to be

only practical for industrial applications where the accuracy and detail of the 3D

reconstructions is highly desirable.

Passive methods do not interact with the object and typically comprise of

one or two cameras, sensitive to visible light, which are used to capture images of the

object and infer its 3D volume via some method. Techniques involving two cameras

are known as stereo methods and use a triangulation approach to determine the

depth of 2D points [Seitz et al., 2006]. Other reconstruction techniques use visual

cues such as shading or texture to perform the reconstruction [Trucco and Verri,
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1998]. The shape from silhouettes method (SfS) [Laurentini, 1994] is another passive

method which captures silhouettes of an object from multiple different camera view

points and backprojects them to create a visual hull (VH) to represent the object’s

volume. It is a particularly good approach if only simple 3D representation is

required.

An existing system [Shin, 2008] consists of a black velvet turntable sur-

rounded by a black velvet background, to prevent any cluttering of the background.

A fixed camera, aimed at the turntable, is then calibrated using a calibration pat-

tern before an object is placed on the turntable and a series of images captured at

different angles. These are segmented using interactive thresholding techniques to

obtain the silhouettes from each angle. The SfS method is then used to obtain a

VH whose information is stored in an octree format. A surface can then extracted

using a variety of methods.

This chapter is concerned with adapting the object segmentation method

presented in this thesis to automatically generate silhouettes for use with an exist-

ing 3D object reconstruction system, rather than rely on manual thresholding and

the use of a bulky backdrop as its background. The remainder of the chapter is

organised as follows. In Section 7.2 the 3D object reconstruction system is briefly

described. Section 7.3 presents the modifications to the system in the data acquisi-

tion and silhouette generation stages of the process. Finally in Section 7.4 a sample

of automatically generated silhouettes and the subsequent 3D models created are

shown. The Chapter is concluded in Section 7.5.

7.2 Silhouette Based 3D Object Reconstruction System

The SfS-based 3D object reconstruction system [Shin, 2008] consists of five phases

which are described briefly in this section to provide the context for which the

proposed automatic silhouette generation method is operating in:

• Data Acquisition;

• Camera Calibration;

• Silhouette Extraction;

• Octree Generation;

• Surface Generation.

The SfS method requires images to be captured from multiple camera views

around an object. Silhouettes (i.e., binary segmentations of the object) can then
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Figure 7.1: SfS-based 3D object reconstruction method. VH is created via the
intersection of cones generated from several camera views. This figure has been
adapted from [Shin, 2008].

be extracted from each of these view points. The premise is that the volume of an

object can be approximated by the intersection of cones from the back projection

of rays along the silhouette boundary. This is illustrated in Figure 7.1.

To obtain the images the object is placed on a turntable. To simplify the

task of silhouette extraction, the turntable and the backdrop of the scene are covered

with black velvet cloth as shown in Figure 7.2. The camera is fixed in place and the

turntable is rotated 6 degrees between images, to make datasets of 60 views over a

complete 360 degree view of the object.

A camera calibration pattern, consisting of a known geometric entity of two

grids of black and white squares, orthogonal to each other (as shown in Figure 7.2),

is used to obtain the camera parameters. A calibration matrix is computed for one

view and extrapolated to produce calibration estimates for the other 59 view points.

The next stage of the reconstruction method is to extract the silhouettes

from the captured data. This is the same as obtaining the binary OoI segmentation

for each image. To achieve this an interactive thresholding program is used. The

background surrounding the object is entirely black which makes this is a relatively
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(a) (b)

Figure 7.2: The 3D object reconstruction system: (a) the camera and background
setup; and (b) the camera calibration pattern.

straight forward process. A variety of thresholding techniques can be used based

on the judgement of the user, and applied to all of the image dataset. Operations

include various thresholds, and pre and post processes including blurring, hole filling,

histogram equalisation, adaptive thresholding and the ability to allow for internal

holes. As such, the quality of the resulting silhouettes is partially determined by the

skill of the operator, and one threshold setting might not be suitable for all images

in the dataset. Additionally, if parts of the object are very dark then a thresholding

process might produce erroneous silhouettes.

Having obtained the silhouettes and calibrations for each view point, the SfS

method can be used to construct the VH of the OoI. The 3D object is stored in the

form of an octree, a hierarchical tree data structure used to partition 3D space by

repeatedly subdividing it into 8 child octants. Using the octree representation of

the object, various algorithms can be used to extract a surface. For the purposes of

this thesis an implementation of the marching cubes algorithm [Lorensen and Cline,

1987] is used to generate the example surfaces in the results section.

7.3 Automatic Silhouette Generation

The 3D object reconstruction system is modified in two ways to create a more

accessible and faster method for reconstructing 3D objects. Firstly in the data

acquisition phase the need for a bulky black velvet background is removed. Secondly,

the silhouette extraction process is automated. These changes are presented in this

section.
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(a) (b) (c)

Figure 7.3: Difficulties associated with segmenting a focused OoI from a focused
turntable: (a) Presence of strong contrasting edges; (b) both the turntable and OoI
are sufficiently in focus; and (c) texture on turntable.

7.3.1 Image Acquisition

The image acquisition process is the same as described in Section 7.2, with the

exception that the need for the bulky black velvet background is removed. The

camera is set up pointing at an object placed on the centre of the turntable. In our

examples the camera used is a DSLR Cannon 450D and is set to aperture priority

with an F value of 5.6. This enables images with a relatively low DoF to be captured.

The camera is autofocused to the object on the turntable and then the autofocus

is turned off, i.e., the camera parameters are fixed. An image of the calibration

pattern is then captured using the fixed camera parameters to calibrate the camera.

This is followed by capturing the 60 images of the object to generate the dataset for

one object, with the turntable being rotated by approximately 6 degrees between

two image captures. The direction of the rotation is noted for calibration purposes.

The main difficulty with using the low DoF segmentation method to generate

the silhouettes is that regions of the turntable will also be within the DoF. Figure

7.3 illustrates this problem. In column (a) part of the strongly contrasting turntable

edge is included in the segmentation. In column (b) both the turntable and the OoI

have been segmented because they are both sufficiently in focus when compared to

the background. Finally in column (c) dust on the turntable has given it sufficient

texture that it returns a focus value within the DoF and thus is segmented along

with the model house.

In order to address the above mentioned difficulty, the system is set up such

that the turntable is considered out of focus. This is relatively easy to achieve as

the turntable is fairly homogeneous, being made entirely of black velvet. Making
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sure the DoF is sufficiently low, a relatively flat (in relation to the OoI and the

horizontal place) perspective is used during the image capture. This counters the

dust effect. To counter the other two effects, the camera is positioned and zoomed

in sufficiently such that the front edge of the turntable is not included in the image.

The flat angle and the low DoF ensure that the homogeneous turntable does not

return high enough focus values to be segmented and ensures that the rear edge of

the turntable is out of focus and not sharp enough to return a high focus value.

7.3.2 Image Segmentation

For the low DoF video object segmentation method presented in Chapter 5, two

assumptions were made; that there was no change of scene within the video sequence;

and that there were no large discrepancies in image composition from one frame to

another. Both these assumptions are valid for the sequence of images captured every

6 degrees of the OoI on the turntable. Thus, the 60 sequential images of the OoI are

treated as a video sequence of 60 frames and segmented in exactly the same way as

described in Chapter 5, namely the active contour for the first frame (or in this case,

first image in the sequence) is initialised using the focus intensity maps generated

from the first, third and fifth image, and subsequent initial contours are generated

from the binary dilation of the previous frame’s final segmentation. This allows for

a fast and robust segmentation of the dataset of 60 images to give the silhouettes

of the object. The remainder of the 3D object reconstruction process is followed as

described in Section 7.2.

7.4 Results

Some examples of automatically generated silhouettes and the reconstructed 3D

models are presented in this section. The first object for which a 3D object recon-

struction is performed is that of a model house. Figure 7.4 shows the dataset from

which the 3D reconstruction is performed. Figure 7.5 shows the automatically gen-

erated binary segmentations for each of the 60 view points. To provide some context

for the binary segmentations, the segmented object from each of the different view

points is shown in Figure 7.6.
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Figure 7.4: Greyscale images of a model house, taken every 6 degrees of rotation of
the turntable.
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Figure 7.5: Binary segmentations of a model house generated for every 6 degrees of
rotation of the turntable.
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Figure 7.6: Segmentations of a model house generated for every 6 degrees of rotation
of the turntable.
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(a) (b)

(c) (d)

Figure 7.7: 3D reconstruction of a model house: (a) the octree representation; (b)
the reconstructed 3D surface; (c) the octree representation with the estimated object
surface colour (d); and the 3D surface model with added colour.

The binary segmentations shown in Figure 7.5 are then used in the SfS

method to generate a 3D model of the house. This is illustrated in Figure 7.7, where

(a) is the octree representation of the object, (b) shows the 3D surface extracted

from the octree representation, and (c) and (d) respectively show the octree and

surface representations with colours from the original image projected onto them.

Two more examples of object reconstructions are presented, with a sample of

original images and segmentations. Figure 7.8 shows the reconstruction of a model

tank, whilst Figure 7.9 shows that of another model house. The reconstructed object

models are represented in octree format.
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(a) (b) (c) (d)

Figure 7.8: Segmentation and 3D reconstruction of a model tank: (a) the acquired
data; (b) the binary segmentations; (c) the segmented objects,;and (d) the resultant
octree and coloured octree.

(a) (b) (c) (d)

Figure 7.9: Segmentation and 3D reconstruction of a model house: (a) the acquired
data; (b) the binary segmentations; (c) the segmented objects; and (d) the resultant
octree representation.
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7.5 Conclusion

In this chapter an existing SfS based 3D object reconstruction system has been

modified to remove the need for human input. In addition a bulky black backdrop

is no longer needed for the silhouette generation process. The method treats the

dataset of 60 images, taken every 6 degree rotation of the turntable, as frames in a

video sequence and applies the unsupervised video segmentation method presented

in Chapter 5 to automatically generate a binary segmentation for each view point.

The silhouettes generated are shown to be accurate and are used to construct 3D

models of a variety of objects.
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Chapter 8

Conclusion and Further Work

8.1 Conclusions

This thesis addresses the problem of autonomous object segmentation and presents

a method which allows for the automatic extraction of an OoI from a background

scene in low DoF images. To achieve this goal, various focus assessment algorithms

are studied and compared (Chapter 3). A multiscale wavelet based focus assess-

ment method is proposed and used to generate focus intensity maps which allow

the focused foreground and defocused background to be differentiated. In order to

segment the regions of the focus map with a high intensity (i.e., the foreground) an

active contours model is adopted (Chapter 4). A grid based method is proposed to

generate the initial contour, and Whitaker’s narrow band level sets implementation

of Active Contours without Edges is used to separate the OoI from the background.

This provides a relatively fast and robust method of segmenting objects from low

DoF images. In Chapter 5 the image segmentation method is expanded to work

with low DoF video sequences. A robust initial initialisation for the first frame is

proposed, and subsequent initial contours are generated from the dilation of the pre-

vious frame’s binary segmentation, thus improving the computational efficiency of

the video segmentation method. The thesis then looks at two potential applications

for the image and video segmentation methods. The first (Chapter 6) applies the

segmentation method to the problem of autonomous image matting. The method

generates trimaps automatically using the enveloping nature of the active contours

algorithm and an erosion operation to automatically generate trimaps for use with

the Robust Matting method. This allows for OoIs from both image and video se-

quences to be composited onto new backgrounds. The second application (Chapter

7) adapts the video segmentation method to segment a sequence of images of objects
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rotated on a turntable. These extracted binary segmentations are then input into

an existing 3D reconstruction system and used to reconstruct 3D models of objects

via the SfS method.

In Chapter 2 the concepts of focus and DoF are introduced to provide an

overview of the themes explored by this thesis. Image segmentation and the specific

case of object segmentation are also explored, and several popular techniques and

methods described.

A series of focus assessment methods are evaluated in Chapter 3 for their

suitability in differentiating a focused OoI from a cluttered background. They can

be classified under three categories, derivative and kernel based methods, statistical

methods, and wavelet based methods. They are compared based on two desir-

able qualities, namely that the average intensity of the OoI should be higher when

compared to the background, and the background region should return relatively

homogeneous focus intensities. It is found that no particular method is suitable for

all image resolutions and thus a multiscale wavelet based method is proposed to

identify high frequency regions. This is based on a method proposed by Yang and

Nelson [Yang and Nelson, 2003b] and uses the standard deviation of the focus val-

ues as an indication of whether the level of wavelet decomposition is suitable to be

able to differentiate the focused OoI from the defocused background. The method

produces a focus intensity map of the image which enables to the focused OoI to be

differentiated from the background.

The method used to segment the focused regions from the focus intensity

map is introduced in Chapter 4. A level set representation of the Active Contours

without Edges model is chosen as it enables segmentations even when there is not a

clearly defined gradient or when there are discontinuities in the object’s boundaries.

This is a desirable feature for segmenting the focus map. The SFM (a narrow

band implementation) is used to implement the active contours. This dramatically

improves computational efficiency by only performing calculations near the zero level

set. It also has the added benefit of internal contours not being able to spontaneously

appear, meaning that given a good initial contour the segmentation method can still

segment OoIs with weak textures and largely homogeneous regions. To generate the

initial contour, a grid based approach is proposed. The intensity map is divided

into squares and each square assigned the value of its pixels’ maximum focus value.

Thresholding is then used to generate the initial contour. The method compares

favourably to other low DoF segmentation methods and also produces results of

a similar quality to some of the most accurate interactive general segmentation

methods. The method is limited by its inability to segment holes within objects,
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unless the hole is not part of the ‘object’ of the initial contour. There are also a

number of limitations associated with all low DoF methods - namely that there must

be a focus differential present within the image, and that with a low DoF the OoI

may encompass regions both inside and outside of the DoF and is thus difficult to

be wholly segmented.

Chapter 5 of this thesis expands the image segmentation method to work

with low DoF video footage. For the first frame in a video sequence, the initial

contour is given using the grid based method, but taking the maximum from across

the n = 1, 3, 5 frames, not just the first frame. This increases the robustness of the

method, making sure that the OoI is encompassed by the initial contour. Subse-

quent initialisations are generated from the dilation of the previous frame’s binary

segmentation, thus providing a fast and robust way of segmenting video footage.

In Chapter 6 the segmentation method is applied to the problem of image and

video matting. Due to the enveloping nature of the active contours algorithm the

matting band is obtained through the difference between the binary segmentation

of the object and an eroded version of the segmentation. Pixels in this region are

considered to be ambiguous and may contain mixed elements of both the foreground

and the background. The Robust Matting algorithm is used to estimate the alphas

in this region and a variety of accurately produced alpha mattes are shown, even

for the difficult cases of hair and fur along an object’s boundary. The mattes are

used to perform several realistic looking scene composites. For cases where an initial

matte has some inaccuracies, the user can refine the trimap which still saves time

when compared with a user manually painting the entire trimap. The method is

also shown to be successful when automatically applied to a video sequence and is

used to perform a scene composition from video frames.

Finally in Chapter 7 the video segmentation method is expanded to auto-

matically extract silhouettes as part of an existing 3D object reconstruction system,

replacing the need for a bulky black velvet backdrop and an interactive thresholding

process. Silhouettes (binary segmentations of the OoI) are extracted from datasets

of 60 images of an object which is rotated on a turntable in 6 degree increments.

As the dataset will be sequential in nature, this is exploited and rather than seg-

menting each image as an isolated case, the video segmentation method is applied

to improve speed and accuracy. A 3D model is reconstructed using the SfS method

and represented as an octree. The object surface can subsequently be extracted

and its colour estimated. Several examples are shown for 3D models successfully

reconstructed using the automatic silhouette generation process.
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8.2 Further Work

In this section some potential avenues for further research and refinement of the

methods presented in this thesis are discussed.

8.2.1 Focus Assessment using Colour Channels

The focus assessment method in Chapter 3 takes a greyscale image and performs

the wavelet based focus assessment on it. It is considered an advantage being able

to operate on greyscale images as they require less storage space. However, it also

means that the algorithm is not making full use of the information available if colour

images are used as its inputs. The method could be potentially improved by making

use of all three colour channels instead of just the greyscale image.

This could be investigated by performing the focus assessment on each of the

colour channels (r,g,b) separately, and either taking the mean,

F(x,y) =
1

3
(Fr(x,y) + Fg(x,y) + Fb(x,y)) (8.1)

or the maximum,

F(x,y) = max(Fr(x,y) + Fg(x,y) + Fb(x,y)) (8.2)

from across the colour channels. This could result in improved and more robust focus

assessments, although it could increase the prominence of focus values of edges (as

this is where the most pronounced colour change will be).

8.2.2 Multi-channel Active Contours

The use of active contours for multi-channel segmentations has been proposed pre-

viously [Sandberg and Chan, 2005; Estellers et al., 2011] and could be particularly

applicable to the segmentation method proposed in this thesis. The basic premise

is that active contours are run concurrently on a variety of different image chan-

nels and some logical framework used to determine the final segmentation. Not

only could all the focus assessments of the different colour channels be used in the

segmentation process, but the use of the different levels of wavelet decomposition

in the focus assessment could be investigated, as well as the use of various logi-

cal frameworks. This could potentially improve the robustness and quality of the

segmentations obtained.

114



8.2.3 Adaptive Trimap Creation for Image Matting

One of the weaknesses of the automatic trimap generation method proposed in

Chapter 6 is that currently it uses a ‘one size fits all’ approach to erode the binary

segmentation to form the matting band of the trimap from the difference between

the original binary segmentation and the eroded segmentation. Obviously this will

not be suited to all images and whilst the user can refine the trimap afterwards, a

fully autonomous method is desirable.

There is the potential to develop some form of adaptive trimap generation

method. Strong textures such as hair and fur are often the most important areas

where image matting is concerned and thus it might be possible to identify these

regions as they will return the highest focus values due to their high frequency

components. A different approach could look at the boundary regions which do

have a clearly defined boundary. The matting band could be made narrow in these

regions and wider elsewhere in the more ‘busy’ regions where pixels are more likely

to be a combination of both foreground and background.

8.2.4 Matting for 3D Object Reconstruction

Due to the focus assessment returning high values for focus where there are large

changes in image intensity, this means that the pixels on either side of an object

boundary will return high focus values. Thus the active contour is likely to stop just

before the object boundary. Whilst this makes sure the entire object is enveloped

by the contour, and is indeed useful in the automatic trimap generation, it does

mean the silhouettes generated for 3D object reconstruction are not as accurate as

they could be.

There is the potential to investigate the use of a matting algorithm (followed

by a thresholding) to generate silhouettes that are more accurate for 3D object

reconstruction purposes. In addition the Robust Matting algorithm used in this

thesis generates a confidence value associated with each alpha value in the alpha

map. Both the confidence value and alpha value could be utilised when constructing

surfaces for 3D models.
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