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Abstract

This thesis explores the application of functional programming in new areas and its

implementation using new technologies. We show how functional languages can be

used to implement solutions to problems in fuzzy logic using a number of languages:

Haskell, Ginger and Aladin. A compiler for the weakly-typed, lazy language Ginger

is developed using Java byte-code as its target code. This is used as the inspiration

for an implementation of Aladin, a simple functional language which has two novel

features: its primitives are designed to be written in any language, and evaluation

is controlled by declaring the strictness of all functions. Efficient denotational and

operational semantics are given for this machine and an implementation is devel-

oped using these semantics. We then show that by using the advantages of Aladin

(simplicity and strictness control) we can employ partial evaluation to achieve con-

siderable speed-ups in the running times of Aladin programs.
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Chapter 1

Introduction

Functional programming [15, 26, 40, 93] is, as its name suggests, programming with

functions, by defining them and applying them to arguments. Functions can be

passed as arguments to other functions and returned as the result of a function.

The definition of a function in functional programming is an expression rather than

a sequence of commands. Functional programming is declarative in that we say what

we want rather than how we get it. Functional languages have found applications

in theorem proving, telephone controllers, database management, expert systems,

control of distributed applications, workforce management and geometric modelling

amongst other things [97, 116].

Functional programming has its roots in the work of Alonzo Church, Haskell

Curry and Moses Schonfinkel into the A-calculus and combinatory logic in the 1920s

and 30s [13,42]. The first functional language, Lisp (List Processing), was invented

by John McCarthy in the early 60s [72, 73, 121] and found wide use in the field of

Artificial Intelligence. John Backus [12]called for a functional style of programming

to be used instead of the imperative (or von Neumann) style which he criticised in

scathing terms for the bloated size of its languages, dependency on 'one word at a

time' operations and historical state and the fact that its programs are not amenable
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to mathematical reasoning. He described a functional language called FP, similar

to the purely functional subset of Lisp, and gave an algebra which could be used to

reason about programs written in this language.

Robin Milner's work on strong polymorphic typing in the late seventies [80],

following on from earlier work by J. Roger Hindley [43], led to the Hindley-Milner

type-system, the basis for the type systems of most modern functional languages.

The first language to use this type system was ML (Meta Language) [81,112]. David

Turner showed how a functional language could be implemented using a fixed set of

basic functions known as combinators [109]and used this idea to implement Miranda

[45, 106, 110, 111]. Other functional languages such as Hope [18] and Orwell [113]

also appeared at this time.

The increasing proliferation of functional languages led in September 1987 to the

start of development of the language Haskell [14,85, 107]which aimed to concentrate

the work being done in a number of disparate (lazy) languages into a single one.

Haskell is a powerful language, with a sophisticated type and module system, yet

is surprisingly clean with few of the idiosyncrasies found in other languages, both

functional and imperative. This is due in part to its use of monads to cope with

side-effects and I/O in a purely functional manner [114, 115] and its use of type

classes to organise the overloading of function names in a systematic way [32, 88].

There are other functional languages in use today, notably Clean [91, 92] and Erlang

[4,5,6], and ML and Lisp in their many variants continue to have a strong following.

It is hard to quantify precisely what facilities a functional language should offer.

From the basic definition given above, an imperative language can be used func-

tionally (using pointers to functions) [38], though the syntax of C does tend to fight

against this. However, we shall attempt to enumerate the features and advantages

[46, 64] one might expect of a functional language, drawing the reader's attention

to the list of exceptions that follows the list.
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• Functional languages are pure in that they:

- are referentially transparent, that is the result of a function depends only

on its arguments;

- are side-effect free;

- do not allow the destructive update of variables. This means that a vari-

able in one part of a program can't have its value changed unexpectedly

in another.

This means that the various parts of a functional program can be executed

in any order. This is a great advantage when it comes to program optimi-

sation and makes it simpler to evaluate the various parts of a program in

parallel. The purity of functional languages also makes them more amenable

to mathematical reasoning.

• We can factor out commonly-used structures of function definitions into higher-

order functions (that is functions which take functions as arguments) leading

to greater modularity, abstraction and brevity of programs.

• Functional programs are polymorphic, that is functions can be defined to work

over many types rather than just one. One single function can be used in place

of many, essentially equivalent ones.

• It is commonly easier and neater to introduce new types into functional lan-

guages than their imperative equivalents, especially if we exploit polymor-

phism. Instances of such types can be cleanly and simply taken apart using

pattern matching.

• Functional programs are elegant and far clearer than their imperative coun-

terparts. They're usually far shorter, too.
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• Functional programs can be evaluated lazily, that is we only evaluate those

parts of a program that are actually needed and thus we only do the minimum

amount of work necessary. This laziness is transparent to the user.

• Functional programs are strongly typed and can never 'go wrong' [43, 80] in

the sense that any illegal operations can be caught at compile-time. Moreover,

the user doesn't have to provide the types of functions explicitly: typing can

be completely inferred by the implementation at compile-time.

• Functional languages offer automatic memory management. This is actually

a necessity in a functional language since the programmer's lack of control

means that they cannot insert manual memory (de)allocation operations into

their programs.

Different functional languages do not conform with all the points above, either due

to a philosophical viewpoint or due to reasons of efficiency. Standard ML, Erlang

and Lisp are all strict (though there is a lazy variant of ML [8]) and non-pure,

though in the former two the use of non-pure operations is discouraged and usually

only used to facilitate Input/Output. Lisp is also completely type-less.

Why, given all the above advantages, are functional languages not more preva-

lent? Philip Wadler recently addressed this problem [117]. Some reasons he gave

for the lack of adoption of functional languages are:

• It is hard to use functional languages in co-operation with other languages,

in particular C/C++ libraries and components. However, there are projects

currently being undertaken to solve this problem, such as Green Card [90]

which interfaces Haskell with C libraries, and HaskellScript which interfaces

Haskell with the COM/ ActiveX framework [63]

• Libraries for functional languages (in particular GUI ones) are still not fully
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developed.

• Implementations of functional languages are not available on many machines.

The ubiquitousness of C means that it is often preferred despite the fact that

it is hardly ever the best language for the job.

• Functional language implementations tend to be provided by universities and

are hard to install. They are also usually under active development and con-

tinually changing. Commercial users tend to prefer a stable system with plenty

of support. There are some commercial offerings such as Miranda [110, 111]

and implementations of ML [37]and Lisp [28, 36]. Ericsson also support Er-

lang [24]and efforts are being made to produce a stable version of Haskell-

Haskell 98 [39].

• Stand alone applications implemented using a functional language tend to have

an unacceptably large memory footprint caused by the need to incorporate the

entire runtime package for the library in the program.

• There is a lack of tools for functional languages, in particular debuggers, pro-

filers and integrated development environments.

• It is hard to train programmers used to imperative programming in some of

the aspects of functional programming [54].

Wadler also gave a couple of non-reasons:

• Functional programs are not as slow as they are perceived: modern compilers

can get performance that is as good as C in some cases and within a factor

of two slower on average. Besides, the popularity of Visual Basic [108] and

Java [7], neither of which has particularly fast implementations, shows that

performance is not everything.
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• Functional programming isn't hard for programmers used to other paradigms

to understand - it may take time but once they understand it they are usually

impressed with its clarity and elegance.

Much effort is being made to alleviate the disadvantages of functional programming

given above, and it is comforting to know that obtaining solutions to these problems

is probably only a matter of time. Indeed, given the fact that most implementations

are the work of a handful of individuals compared to the hundreds or even thousands

who work on the language products of Microsoft and Borland it is an achievement

.'that functional languages have come so far.

The above provides the motivation for our research in that we aim to tackle

some of the downsides of functional programming. First of all, we investigate a new

application field for functional programming - fuzzy logic, sets and systems - and

show how these concepts can be clearly and elegantly implemented in a functional

language, primarily Haskell, but we also implement fuzzy concepts in Ginger and

Aladin (Chapter 3).

We then address the problem of portability of functional programs in Chapter 4

and offer a solution in the form of a compiler for the functional language Ginger

[53, 78] which produces code for the Java Virtual Machine (JVM) [7, 79]. The prob-

lem of interfacing functional languages with other languages is tackled in Chapter 5

by means of Aladin [10, 76]. This a stripped-down functional language which offers

fine control over the strictness of functions. We develop an implementation of AI-

adin, which produces code for the JVM as in our Ginger compiler. Aladin has other

applications too, and we show in Chapter 6 how it can be used to partially evaluate

programs [51]and, coming full circle, how partially evaluating functional implemen-

tations of problems in fuzzy logic can yield substantial performance benefits.
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Chapter 2

Background

In this chapter we aim to give a brief introduction to some of the key concepts

of functional programming which we will encounter in the further chapters of this

thesis. We do not aim to give an introduction to functional programming itself;

instead the reader is directed to the excellent works by Bird and Wadler [14, 15]

or Thompson [106, 107]. Note that all examples will be given using Haskell syntax

unless stated otherwise.

2.1 Functions, The A-calculus and Supercombinators

A functional program normally consists of a list of function definitions. What hap-

pens when the program is executed depends on the language and implementation.

A functional language intepreter will allow the user to evaluate the application of

functions to arguments on demand in the interpretive enivronment. A compiler for

a functional language typically requires the definition of standard function which

takes no arguments, usually named main, which will be evaluated when the program

is executed.

The definition of a function is essentially a A-expression [13, 42], though the
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syntax of the particular language usually disguises this. A A-expression is either a

basic expression, such as a variable, constant or a primitive function (for example

addition), an application of one A-expression to another, or a A-abstraction. A A-

abstraction provides a way of defining a function without naming it. For example,

the function square defined as:

square x = x * x

is equivalent to the A-abstraction (Ax.x * x). Here the variable x is said to be

bound by the A-abstraction; variables which aren't bound are said to be free.

We do not consider the A-calculus in this thesis, however one particular class

of A-expression is important to us and that is the supercombinaior [86]. A su-

percombinator is a A-expression of the form Ax! ..... Axn'?o.E where E is not a

A-abstraction, no free variables occur in the expression, and any A-abstractions in

E are also supercombinators. For example, 2 + 5, Ax.x * x and Af.f (Ax.x * x)

are all supercombinators, whereas Ax.y, Ax.y - x and Af.f (A x.f x) are not. Su-

percombinators are important since they can be compiled into efficent code [25, 86]

and form the basis of our Ginger compiler (Chapter 4).

2.2 Strictness and Laziness

A function does not always need to know the value of some or all of its parameters

for it to be able to return a result. For example, the function:

forty_two x = 42

always returns 42 no matter what the value of x is. In particular, we would expect

the answer to be 42 even when x is undefined, for example, when it is the (undefined)

result of 1 / O. Less trivially, in the case of boolean conjunction defined as:

x && y = if x then y else False
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if we know that x has the value False then the result of the conjunction must also

be False no matter what the value of y is, even if it is undefined. Also, if the

value of y is the result of some, potentially expensive, computation then we would

expect to be able to obtain the result of the conjunction without performing this

computation when x is False.

Languages which do not evaluate their arguments before applying functions are

said to be lazy and use lazy evaluation; languages which do evaluate their arguments

are said to be strict and use strict evaluation. In a lazy language, we can expect

the result of forty_two (1 / of to be 42, since lazy languages only evaluate their
.'

arguments only when needed. In a strict language, the result of forty _two (1 /

0) gives an error, since the language implementation would attempt to first evaluate

1 / 0 which is undefined. See the next section for further details of strict and lazy

evaluation.

Formally, a function f is said to be strict in its argument if and only if:

f1.=1.

It is said to be non-strict or lazy otherwise. All functions can be thought of as having

1 (or 0) arguments via currying. Here 1. can be thought of as a non-terminating

computation or an undefined or error value. So, forty _two is lazy in its argument

since forty _two1. = 42 '" J..

A lazy language can take full advantage of laziness without any intervention by

the user; strict languages in general can't, though a particular language implemen-

tation might provide mechanisms where the user can simulate laziness. In addition,

strict languages might provide primitives which are in effect lazy in some of their

arguments. For example, the strict language Standard ML provides the operators

andalso and orelse which implement logical conjunction and disjunction respec-

tively, but which do not evaluate their second arguments unless necessary. This
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feature isn't restricted to functional languages: the &" and II operators of C and

its derivatives have the same effect as Standard ML's andalso and orelse. In C

parlance, the laziness is referred to as short-circuiting.

While lazy evaluation allows us to circumvent some evaluation and leads to more

general programs, strict evaluation is generally more efficient as lazy evaluation

can lead to the proliferation of unevaluated expressions (see Section 7.5 of [14], for

example) and a clever compiler can exploit strictness to produce more efficient code.

For this reason, strictness analysis (see Chapter 22 of [86],for example) is often used

to determine when the arguments of a function can be safely treated as strict. This

however is an undecidable problem, though good approximations can be obtained.

2.3 Graph Reduction

Graph reduction provides a way to implement functional languages [48, 86, 89]. The

evaluation of an expression involves the application of reduction rules, that is, the

definition of functions, until no more reduction rules are applicable, at which point

the expression is said to be in normal form. For instance, suppose we have the

definition:

square x = x * x

and we want to evaluate the expression square (3 + 4). This is stored as the

graph:

rib

spine "<>.
base of spine .. square @

/ "-@ 4
/ "-+ 3
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Note that we represent infix operators like + (which come between their arguments)

as prefix ones (which come before their arguments). Since values in pure functional

languages are immutable, we can share sub-expressions saving both time and mem-

ory. We can evaluate the expression by reducing the graph[14, 86]. For example, if

we reduce square (3 + 4) we get the graph:

ribs ---.....

\,/@)
/ "-base of spine ----i ..~ *@

/ "-@ 4
/ "-+ 3

The first time 3 + 4 is evaluated the graph reduces to:

Hence we only need to evaluate 3 + 4 once as the result is shared between the nodes

that point to it. Reduction of the multiplication yields the answer 49 which is the

normal form of square (3 + 4).

Usually when we are evaluating an expression there is more than one subexpres-

sion that can be reduced (each such subexpression is called a redex). Implementa-

tions of lazy functional languages choose to evaluate the outermost redex first; that

is apply the reduction rule of the function at the base of the spine of the graph as in

the example above. So we evaluate the function itself before its arguments. This is

lazy evaluation, also known as outermost graph reduction. For instance, we reduce

square (3 + 4) to (3 + 4) * (3 + 4) rather than square 7. Doing the latter is

strict evaluation (also known as innnermost graph reduction). Of course, eventu-

ally we may need to evaluate the arguments of a function, but such an operation is
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only usually done explicitly by primitives of the language, such as * in our square

example.

In a lazy functional language, a program is not usually evaluated to Normal

Form but instead only to Weak Head Normal Form (WHNF). An expression is said

to be in WHNF if it is of the form f el ... en where either n ~ 0 and f is either

a data object, such as an integer or a type constructor (see below) or is a function

which requires more than n arguments.

Lazy and strict evaluation will always reduce an expression to the same normal

form, however evaluating an expression using strict evaluation may not terminate

in some cases where lazy evaluation does. For example, consider the program:

from x = x : from (x + 1)

main = head (from 0)

Here: (cons) is the list constructor and head selects the head of the list, that is,

the expression to the left of the :. Note that the expression h : t is in normal

form no matter what h and t are (since cons does not evaluate its arguments). The

expression from x yields the list [x, x + 1, x + 2, ... ], and hence evaluating

the expression head (from 0) should give the answer O. With lazy evaluation, we

have the reduction sequence:

main ==} head (fromO)

==} head (0: from (0 + 1»

==} 0

Like *, head evaluates its argument (to normal form). The result of the evaluation

should be a cons, otherwise we have an error, at which point head selects the leftmost
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argument of the cons. Now suppose we evaluate the expression strictly:

main ====> head (from 0)

====> head (0 from (0 + 1))

====> head (0 from 1)

====> head (0 1 from (1 + 1))

====> head (0 1 from 2)

====> head (0 1 2 : from (2 + 1))

The recursion would never terminate as the innermost expression can always be

reduced.

2.4 Types, Polymorphism and Overloading

Every expression in a strongly-typed functional language, such as Haskell, ML or

Miranda, has a type which can be inferred at run-time [43, 80]. Using Haskell's

syntax, we can define a type as:

• A basic type, such as Int, Char or Bool. For instance, 1 + 3 has type Int
and 1 <= 3 has type Bool.

• A type variable, for example, a or b. These variables stand for any type with

repeated occurrences in a type standing for the same type.

• A function type, written as d -> r where d is the domain of the function

and r is the range. Functions are curried and -> associates to the right. For

instance, toUpper which converts characters into their upper case equivalents

has type Char -> Char.
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• A compound type, such as a list or a tuple. For instance, the list [1, 2, 3]

has type [Int] while (1, 'g') has the type (Int, Char).

A type which contains type variables is said to be polymorphic; otherwise it is said to

be monomorphic. Functions which have a polymorphic type are themselves referred

to as polymorphic. The simplest example of a polymorphic function is seen with

the identity function:

ident x = x

Clearly it does not matter what the type of x is, be it an integer a string or a

function, since all ident does is return it. We assign x the polymorphic type a and

therefore, since ident returns a value with the same type of its argument, we can

write the type of ident as a -> a. We can have more than one type variable in a

type, for instance, the function map defined as:

map f [] = []
map f (x:xs) = f x : map f xs

has type (a -> b) -> [a] -> [b]. So the expression map (+ 1) [1, 2, 3] has

the value [2, 3, 4] of type [Int] and the expression map toUpper IIgary II has

the value IIGARYII of type String which in Haskell is equivalent to [Char].

The above form of polymorphism is known as parametric polymorphism. In

parametric polymorphism, the same code for each function is used no matter what

the type of the arguments are. The other form of polymorphism is known as ad hoc

polymorphism. This form of polymorphism is used to enable function names to be

reused for arguments of different types, for example, to allow + to represent integer

and real addition, two operations which have fundamentally different implementa-

tions.

Haskell uses type classes [32] to organise the overloading in a systematic and

powerful way which retains the ability of programs to be strongly typed. A type
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class is a collection of types all of which provide implementations for the functions

defined by the class. For instance, consider the Eq class:

class Eq a where
(==), (/=) a -> a -> Bool
x 1= y = not (x==y)

This states that any type, a, which is a member of this class must implement the

functions == and 1= of the given type. A default implementation, which the user

is free to override, is provided for 1= in terms of not and ==. To make a type

a member of the class, we declare it as an instance of the class and provide any

necessary implementations. In the standard prelude (set of functions which are

automatically imported into a user program) of the Haskell interpreter Hugs [50],

the type Char is made an instance of the Eq class by the following declaration:

instance Eq Char where (==) = primEqChar

Here primEqChar is the Hugs primitive function which is used to compare two

characters for equality. Note that the default implementation for 1= is used. We are

not restricted to overloading on basic types, either. For instance, for any a which

is an instance of the Eq class we can make the type [a] an instance of the Eq class,

viz:

instance Eq a => Eq [a] where

[] == [] = True

(x:xs) == (y:ys) = x==y &:&: xs==ys

== = False

At compile time, the compiler substitutes all overloaded functions with their non-

overloaded definitions according to the types of the expressions in which they occur.

This is known as resolving the overloading. Sometimes the compiler may not have
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enough type information to resolve the overloading, in which case explicit types have

to be supplied.

Functions whose definitions contain overloaded functions have to have their types

constrained. For instance, consider the function member:

member x [] = False

member x (y:ys) = x == y I I member x ys

One would expect this function to have type a -> [a] -> Boo1. However since we

use the == operator to compare x and y the type a has to be an instance of the Eq

class and hence the type of member is written as Eq a => a -> [a] -> Boo1. Here

the Eq a restricts the types to which a can range over to precisely those which are

instances of Eq.

Haskell uses classes to overload a large number of functions. For instance, the

Ord class is used to overload the comparison operators, the Numclass to overload

the arithmetic operators, and the Show class is used to group all those types whose

members can be converted into strings (that is, shown on a terminal).

Other functional languages handle overloading in different ways. Miranda has a

single numeric type, thus it does not need to overload the arithmetic operators, and

treats the comparison operators as polymorphic operators, for example the operator

<= has the Miranda type * -> * -> bool (equivalent to the Haskell type a -> a

-> Bool). ML overloads its arithmetic and comparison operators but requires that

the overloading be resolved at compile time, by the user giving explicit monotypes

for the functions in which they are used if necessary. It however treats equality as

a special case and uses an equality type. In ML, polymorphic types are given by

preceeding the type variable by a single quote, for example' a, 'b, etc., but if the

type is expected to have equality defined over it then it preceeded by two quotes.

For example, the member function described above would have the type
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"a -> "a list -> bool

in ML, where' a list is ML's equivalent of Haskell's [a].

2.5 Abstract Machines

The traditional concept of compilation involves taking a source program and pro-

ducing a sequence of machine code instructions. However, since different processors

have different instruction sets this machine code will only run on the machine it

was compiled for; to run the program on another machine means we have to recom-

pile the source program. This difference between processor instruction sets is not a

trivial one, either [41, 122]. The CISC (Complex Instruction Set Computer) philos-

ophy of the Intel80x86 series (which includes the Pentium and its progeny) and the

Motorola M680xOseries has a large complex set of instructions some of which can

be quite large, measured in the number of bits they occupy on the machine, and

specialised. The alternative, known as rusc (Reduced Instruction Set Computer)

is to use a small, but fast, set of instructions and is used by Sun's SPARC, Acorn's

ARM and the PowerPC of IBM and Motorola. Processors are constantly evolving,

too: as a single example, in the past few years, the Pentium has been succeeded in

turn by the Pentium MMX, the Pentium II and the Pentium III, each of which has

more instructions than the last.

The above mitigates against producing a compiler which compiles a high-level

language straight down to the machine code suitable for a particular processor.

Instead, an intermediate abstract machine is typically used. An abstract machine

(AM) can be viewed as a simplified, and more importantly portable, version of a

processor, complete with its own instruction set and memory stores such as heaps,

stacks and registers.

The first step of an implementation of a high-level language that uses an abstract
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Figure 2.1: The steps taken by an Abstract Machine

machine is to compile the source code down to AM code (step 1 in Figure 2.1). This

step should be completely portable. There are then two ways we can run this AM

code: either using an interpreter (step 3) or by compiling the AM code to the

machine code for a particular machine (step 2). Since the AM code is simpler and

closer to the processor than the high-level source, this task is easier than producing a

compiler which produces concrete machine code directly from the source code. The

simplicity and platform-independence of abstract machines make them relatively

easy to implement, optimise and port to different machines. The downside is that

programs compiled using an abstract machine are generally slower than those which

do not.

The first successful abstract machine for a functional language was Landin's

SEeD machine [60]which provided a platform for evaluating strict functional pro-

grams. This consisted of four components:

• The Stack used to hold intermediate results.

• The Environment used to map variable names to values.

• The Control where the instructions to be executed are stored.

• The Dump used to store previous states while other expressions are being

evaluated, for example when a function calls another function.
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This inspired variations such as Krivine's machine [34] and lazy machines such as

the Categorical Abstract Machine [93]and the CASE machine [22].

TUrner [109] produced an abstract machine based on combinatory logic named

the SKI machine (the S, K and I combinators form the basis of combinatory logic).

The G-Machine [8, 86], which forms the basis for our implementations of Ginger and

Aladin (see Chapters 4 and 5), is an abstract machine based on graph reduction (see

above). It is similar to the SECD machine except that it evaluates expressions lazily

and the environment of the SECD is replaced by the graph of the expression being

evaluated.

Other abstract machines for functional languages include the Three Instruction

Machine (TIM) [25], the Spineless, Tagless G-Machine [87] and the lazy abstract

machine derived from Launchbury's semantics for a lazy functional language [61]by

Sestoft [99]. Abstract machines are not restricted to functional languages, either.

The first implementations of Pascal, for example, used an abstract code called p_

code, and today the Java Virtual Machine [79] provides a machine-independent

platform for the object-oriented language Java.
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Chapter 3

Fuzzy Functional Programming

Fuzzy logic, developed by Lotfi Zadeh [124, 125], is a form of multi-valued logic

which has its grounds in Lukasiewicz's work on such logics [66, 67]. It finds many

applications in expert systems (in particular control problems) [21, 68, 96, 120],

neural nets [23], formal reasoning [82, 104], decision making [21, 82, 126], database

enquiries [82]and many other areas. The use of fuzzy logic in such applications not

only makes their solutions simpler and more readable but can also make them more

efficient, stable and accurate (see, for example, Chapter 2 of [120], or Chapter 3 of

[123]).

Fuzzy logic has been applied to many languages - both in extending standard

languages such as Prolog [70], Fortran [44], APL [82] and Java [3], and in custom-

designed languages such as Fuzzy CLIPS [83], FIL [1,2], and FLINT [65]. However

no one, to the author's knowledge, has combined fuzziness with a functional lan-

guage.

In this chapter we aim to give an introduction to fuzzy logic using the language

Haskell [85] to implement our solutions. Throughout the chapter we shall give

examples of using the programs we develop using the Haskell interpreter Hugs [107].

We shall see how the high-level, declarative nature of a functional language allows
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us to implement easily and efficiently solutions to problems using fuzzy logic and,

in particular, how the presence of functions as first-class values allows us to model

the key concept of a fuzzy subset (see Section 3.2) in a natural way. We have chosen

Haskell for the implementation language because of its strong typing and its facilities

for overloading operators (in particular the logical ones). In later chapters, we will

show how fuzzy concepts can be implemented in the weakly-typed language, Ginger

(see Section 4.4.1), and how implementing fuzzy primitives in Aladin (see Sections

5.4.5 and 6.6.6) opens up the possibility for fuzzy programs to be partially evaluated

.' and how, by doing so, significant performance benefits can be achieved.

3.1 Fuzzy Logic

In fuzzy logic, the two-valued truth set of boolean logic is replaced by a multi-valued

one, usually the unit interval [0,1]. Truth sets taking values in this range are said

to be normalised. In this set, 0 represents absolute falsehood and 1 absolute truth,

with the values in between representing increasing degrees of truthness from 0 to 1.

So we can say that 0.9 is 'nearly true', 0.5 is 'as true as it is false' and 0.05 is 'very

nearly false'. The nearer a value is to 0 or 1 the crisper it is; the nearer it is to 0.5

(the middle value of the range) the fuzzier it is.

The standard connectives of boolean logic - 1\, V and ...,- are adapted so that

they work with the fuzzy truth set. There are many ways in which this can be done,

but whatever definition we choose we expect the following to hold [27, 126]:

1. 1\ and V should be associative and commutative.

2. 1\ and V should be monotonic. That is, if a, b, c E [0,1] and a < b then

a 1\ c ::; b 1\ c and similarly for V.

3. 1 and 0 are the identities of 1\ and V respectively. From this and monotonicity
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we deduce that 1 and ° are annihilators of V and /\ respectively.

4. -, should be anti-monotonic. That is if a, b E [0,1] and a ~ b then -,b ~ -,a.

In the majority of fuzzy logics this is strict monotonicity, that is if a < b then

-,b < -,a.

5. -, should be its own inverse, that is if a E [0,1] then -, -,a = a.

6. If we restrict the truth set to just °and 1, then our logic should behave exactly

as boolean logic.

Definitions of V and /\ that satisfy the above are also known as t-norms and t-

conorms (or s-norms) respectively. We would also expect the connectives to be

continuous and to satisfy DeMorgan's laws:

-,x /\ -,y = -,(x V y)

-,x V -,y = -,(x /\ y)

Two definitions which take values in the unit range [0,1] and which satisfy the above

conditions are Zadeh's original definition [124, 125] using minimum and maximum

operators:

x/\y = min(x,y)

xVy = max(x,y)

-,x = I-x

and an alternative using sum and product definitions:

x/\y = xy

xVy = x+y-xy

-,x = 1- x
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Note that p /\ -,p = 0 {::::::}P E {O,I} in both these and most other definitions of

fuzzy logic. For instance, 0.3/\ -,0.3 = 0.3/\ 0.7 = 0.3 using Zadeh's definition, and

0.21 if we use the product definition of /\.

This is only an elementary introduction to fuzzy logic, and we have not men-

tioned more esoteric connectives such as averaging operators. For more information

we refer the reader to [56], [126] and [27]. From now on we shall assume that all

fuzzy truth values lie in [0,1].

We shall now set about implementing these ideas in Haskell. We shall place all

.our definitions in a module called Fuzzy which will redefine some of the functions

defined in the Haskell prelude. This is done by shadowing the previous definitions

(see Section 5.3.2 of the Haskell report [85]). Thus the Fuzzy module and any

module which wishes to import it should contain the declaration:

import Prelude hiding «tt), (I I), not, and, or, any, all)

This forces an explicit import ofthe prelude (which is normally implicitly imported),

but hides the functions which we want to redefine. An example of the importing

procedure can be seen Section 3.2.5.

Fuzzy truth values are represented using the Haskell type Double. The connec-

tives are implemented by overloading the operators tt, 1 I ,etc. so that they work

on fuzzy values as well as boolean ones. This is done by shadowing the connectives

(see above) and placing the connectives in a class (see Section 2.4):

class Logic a where

true, false a

(tt), (I I) .. a -> a -> a

not a -> a

The functions and, or, any and all are then also overloaded so that they now

operate on instances of the Logic class, rather than just the Bool type as before:
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and, or :: Logic a => [a] -> a

and = foldr (.t.t) true

or = foldr (I I) false

any, all :: Logic b => (a -> b) -> [a] -> b

anyp

all p

= or . map p

= and . map p

We can then declare instances of this class. Bool is declared in the obvious way, with

"true = True, false = False, etc. For fuzzy truth values (values of type Double)

we have:

instance Logic Double where

true = 1

false = 0

(.t.t) = min

( II) = max

not x = 1 - x

Note that as with the Bool case, true is the identity of .t.t and false is the identity

of II (provided we stick with values in [0,1], of course). So, for example, 0.51\ (0.3V

...,0.8)can be evaluated in Hugs as:

Fuzzy> 0.5 .t.t (0.3 I I not 0.8)

0.3

Double

where 'Fuzzy>' is the Hugs prompt. The explicit typing is necessary to resolve the

overloading.
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3.2 Fuzzy Subsets

Given a set A and a subset of it, B say, we can define a characteristic (membership)

function J1.B : A -t {O,I} defined such that:

J1.B(X) = 1, if x E B

= 0, otherwise

This characteristic function determines which elements of A are in B and which are

not. Now suppose we replace the two-valued range of J1.B with the unit interval, just

"as we replaced the boolean truth set with this interval. Then membership of the

subset B of A is no longer an absolute but rather something which takes varying

degrees of truthness. For x E A, the closer J1.B(X) is to 1, the more we can regard x

as belonging to B, with J1.B(X) = 1 holding if x definitely is in B. Conversely, the

closer J1.B(X) is to 0, the more we can regard x as not belonging to B. The subset

B is no longer a crisp set but a Juzzy one.

A fuzzy subset B of a set A is a set of pairs with each element of A associated with

the degree to which it belongs to B (determined by J1.B). Formally, B c A x [0,1]

where B = {(x, J1.B(X)) I x E A}

Given the set-theoretic definition of a function, that is a set of domain-range

pairs, we note that the definition of B and its characteristic Junction are synony-

mous. This is the key fact that motivates our use of a functional language as an

implementation language - by representing a fuzzy subset by its membership func-

tion, a functional language allows us to manipulate such sets/functions with ease.

We shall thus use the notion of a fuzzy subset and that of a (fuzzy) characteristic

function interchangeably. In particular, if we have a fuzzy subset F of a set X then

we shall denote X as the domain of F.

To give a concrete example, consider the problem of determining whether a com-

pany is profitable based, say, on the profit expressed as a percentage of total costs.
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··Usingnormal set theory, given a set of percentages, P, we would have to determine

an arbitrary cut-off point at and above which we would consider profitable, 15% say

(see Figure 3.1). So we can define profitable ~ P as:

profitable = {p I pEP 1\P ~ 15}

This means however that a profit of 14.9% is not considered profitable, which is

somewhat counter-intuitive considering its proximity to the cut-off point.

Contrast this with a fuzzy definition of profitable (see Figure 3.2). As before,

profits above 15% are considered definitely profitable and those below 0% definitely

not profitable; however between these two figures the degree of profitability increases

linearly. For example, a profit of 10% can be regarded as profitable to a degree of

0.67 (that is, J1.profitable = 0.67) and a profit of 14.9% is profitable to a degree of

0.993, in other words, almost definitely profitable.

As functions and fuzzy subsets are synonymous, we represent a fuzzy subset in

Haskell as a function from some domain to the fuzzy truth value set. We define the

following type synonym:

type Fuzzy a = a -> Double

A number offunctions representing the shapes of common fuzzy subsets are provided

(see Figure 3.3). For instance, up has the following definition:
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up :: Double -> Double -> Fuzzy Double

up a b x
x < a

x < b

= 0.0
= (x - a) / (b - a)

otherwise = 1.0

The other subsets in Figure 3.3 can be defined similarly. We can now define the

fuzzy subset profitable as follows:

type Percentage = Double

profitable :: Fuzzy Percentage
profitable = up 0 15

Membership testing is then merely function application. For example:

Profit> profitable 10
0.666667
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3.2.1 The Domain, Support and Fuzziness of a Fuzzy Subset

Knowing the domain of a fuzzy subset is necessary when defuzzifying it (see Sec-

tion 3.2.4) and for evaluating its fuzziness (see below). We can also define fuzzy

numbers in terms of their fuzziness (see Section 3.2.3) for which again we need to

know the domain over which we are approximating.

Both discrete and continuous domains are represented using ordered lists (in the

latter case we only have an approximation). We introduce the type synonym:

t~pe Domain a = [a]

As the list is ordered, the upper and lower bounds of the domain are just the last

and first elements of the domain list respectively:

lb, ub :: Domain a -> a

lb = head
ub = last

The 'dot-dot' method of defining lists can be used to define domains in a compact

and easily-understandable way. So, for example, we can represent the domain of

profitable, which is the range [-10,30] as the list [-10 .. 30].

The support, which we shall denote as O'(B) (also written as supp(B)), of a fuzzy

subset B is the set of those members of its domain, A say, which are in the fuzzy

subset with non-zero truth value:

O'(B) = {/LB(X) ::J 0 I x E A}

For example, if we take the domain of profitable as [-10, 30] then its support is

(0,30] = {x I 0 < x :::;30}. This has a simple translation into Haskell:

supp :: Domain a -> Fuzzy a -> [a]
supp dom f = filter (\x -> f x > 0) dom
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For example, we can evaluate the support of profitable (defined above):

Profit> supp [-10 ..30] profitable

[1.0, 2.0, 3.0, 4.0, 5.0, S.O, 7.0, S.O, 9.0, 10.0, 11.0, 12.0,
13.0, 14.0, 15.0, 1S.0, 17.0, 1S.0, 19.0, 20.0, 21.0, 22.0, 23.0,
24.0, 25.0, 2S.0, 27.0, 2S.0, 29.0, 30.0]

The fuzziness, u, of a fuzzy subset is the degree to which the values of its membership

function cluster around 0.5. It is defined in terms of the function 15 measures the

distance of a truth value to the nearest extreme, 0 or 1:

t5(X) - X, if X < 0.5

= 1 - x, otherwise

For example 15(0.3) = 0.3, 15(0.8) = 0.2 and 15(0) = 15(1) = O. If the domain of our

fuzzy subset B is a continuous range, [a, b] say, then we can define v as:

2 1bv(B) = - t5(J1.B(X)) dx
b-a a

If the domain is a discrete set of points, Xl, ••. ,Xn say, then the integral becomes a

summation:

For example, the fuzziness of profitable (again over [-10,30)) is 0.1875. Note that

for any crisp set, A, in which the membership function returns only the values 0 or

1, v(A) = 0 as 'Vx EA. t5(J1.A(X)) = O. The maximum possible fuzziness of a fuzzy

subset is 1, which occurs when the membership function of a fuzzy subset always

returns 0.5.

Translating the above into Haskell yields the following function:

fuzziness :: Domain a -> Fuzzy a -> Double

fuzziness dom f = (2.0 / size_dom) * sum (map (delta. f) dom)
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Figure 3.4: Operations on fuzzy subsets.

where

size_dom = fromlnt (length dom)

delta x

x < 0.5 = x

otherwise = 1 - x

For example, we can calculate the fuzziness of profitable, viz:

Profit> fuzziness [-10 ..30J profitable

0.182114

The value that Haskell returns is only an approximation, of course. A better ap-

proximation can be obtained by using a domain with more elements, for example:

Profit> fuzziness [-10,-9.75 ..30J profitable

0.186335

3.2.2 Fuzzy Subset Operations

Standard set operations - such as union, intersection and complement - can be

used with fuzzy subsets. For fuzzy subsets, A, B of a set X, we have:

AUB = {(X,JtA(X)VJtB(X))!XEX}

An B = {(x, JtA(X) "JtB(X)) ! X E X}

AC = {(x, -'JLA(X)) I x E X}
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This can be seen graphically in Figure 3.4, where the logical connectives are defined

using Zadeh's method. A slightly unorthodox operation is addition defined as:

A +B = ((X,J.'A(X) + J.'B(X)) I X E X}

This leads to fuzzy subsets whose membership functions return values outside the

range [0,1]. This operation is generally only used in fuzzy systems (see below) where

the resultant set is only used as an intermediate value and will be defuzzified (see

Section 3.2.4) to yield a typical value.

If fuzzy subsets are Haskell functions, then the fuzzy subset operators are higher-

order functions. If we look at the definition of intersection, for example, we see that

we can regard it as a way of defining logical conjunction over sets. This concept

holds for both fuzzy and crisp sets. Taking this to its logical conclusion we have:

instance (Logic b) => Logic (a -> b) where

true
false
f tt g

f " g
not f

= \x -> true
= \x -> false

-- everything
empty

= \x -> f x tt g x -- intersection

= \x -> f x II g x -- union
= \x -> not (f x) -- complement

This instance represents a generalised set, where true represents the set that ev-

erything is a member of and false is the empty set. If true is an identity for the

t& over the type b then true it also an identity for tt over the type a -> b, and

similarly for false and II.

In the context of fuzzy subsets, that is the type Fuzzy a (which in turn is

the type a -> Double), true is the fuzzy subset, T say, with membership function

J.'T(X) = 1 and false is the fuzzy subset, F say, with membership function J.'F(X) = O.

The function true remains the identity of &&and false the identity of II. We also

need to be able to perform addition on fuzzy subsets. This is done by making the
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type a -> b, which remember is a generalisation of the type Fuzzy a a member of

the Numclass (which is used to overload the numeric operators +, -, etc.):

instance (Numb) => Num (a -> b) where

f + g = \x -> f x + g x

f * g = \x -> f x * g x

abs f = \x -> abs (f x)

signum f = \x -> signum (f x)

negate f = \x -> negate (f x)

fromlnteger i = \x -> fromlnteger i

We will also find it useful to use the operators of the Logic class over tuples, for

instance in the shower controller described in Section 3.4.1 which groups its output

variables in tuples. This is done pointwise, for example, for pairs we have:

instance (Logic a, Logic b) => Logic (a, b) where

true

false

(a, b) tt (a', b')

(a, b) II (a', b')

not (a, b)

= (true, true)

= (false, false)

= (a tt a', b tt b')

=(alla',bllb')

= (not a, not b)

We also declare tuples to be instances of the Numclass in a similar manner.

3.2.3 Hedges and Fuzzy Numbers

Just as adjectives such as profitable can be qualified by terms such as very and

somewhat, so can fuzzy subsets. Terms such as these, known as hedges, alter the

membership function by intensifying it (normally by raising it to a power greater

than 1) in the case of very and similar terms such as extremely, or diluting it
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(normally by raising it to a power between 0 and 1) in the case of somewhat. Usually

we have:

J-t"ery F(X) - J-tF(X)2

J-tsomewhat F(X) = J-tF(X)1/2

The effect of very and somewhat on profitable can be seen in Figure 3.5. We see

that a profit of 10% is profitable with truth value 0.67, very profitable by truth value

0.44, and somewhat profitable by degree 0.82.

In Haskell, we represent hedges as higher-order functions. We first define a

generic hedge which will raise the value of a function to a specified power:

hedge :: Double -) Fuzzy a -) Fuzzy a

hedge p f x = if fx == 0 then 0 else fx ** p

where fx = f x

Note that Hugs defines its power operator ** in terms of logarithms and hence

we need to check if f x is zero before attempting to raise it to the given power,

otherwise we will attempt to take the logarithm of zero. We can now define more

specific hedges as follows:

very, extremely, somewhat, slightly Fuzzy a -) Fuzzy a

0.82
!
iii 0.67
>
~ 0.44
I-

somewhat profitab/~· . profitable....................... : /

...... : /. : / veryprofitable. :/
: i............... ; ... i":
I :

-10 o 10 20 30
Profit (% of costs)

Figure 3.5: Very profitable and Somewhat profitable.
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very = hedge 2
extremely = hedge 3
somewhat = hedge 0.5
slightly = hedge (1 / 3)

The user is free to redefine these functions with different numbers if they want, of

course. An example of these in use, using the same sets and definitions in Figure 3.5:

Profit> very profitable 10

0.444444
Profit> somewhat profitable 10

0.816497

Hedges can also be used to approximate numbers by converting them into fuzzy

subsets (also known as fuzzy numbers in this context) using such terms as around

20, roughly 20 and nearly 20. One typical way of defining these subsets is by

symmetrical triangular fuzzy subsets, centred on the number, c say, that we are

approximating and with base of width 2w. The membership function of this set is

thus:

p,(x) _ l_lx~cl, ifc-w~x~c+w

= 0, otherwise

The tighter the approximation we want, the less fuzzy the fuzzy subset is, and hence

the smaller the base of the triangular fuzzy subset is. In general, roughly is a looser

approximation than around which in turn is looser than nearly.

For example, consider the fuzzy numbers in Figure 3.6, which approximate 20

over the domain [0,40J using triangular fuzzy subsets centred on 20. Here we see

that nearly 20 has a base of length 5 and a fuzziness of 0.125; around 20 has a base

of length 10 and a fuzziness of 0.25; and roughly 20 has a base of length 15 and a
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Figure 3.6: Fuzzy approximations to 20.

fuzziness of 0.375. So, for example, 17.5 is nearly 20 with truth value 0.5, around

20 with truth value 0.75 and roughly 20 with truth value 0.83.

As with hedges, to implement fuzzy numbers in Haskell we define a generic fuzzy

number function, which approximates a number on a specific domain by a triangular

fuzzy subset (see Figure 3.3) of specified fuzziness:

approximate :: Double -> Double -> Domain Double -> Fuzzy Double
approximate fuzziness n dom = tri (n - hw) (n + hw)

where hw = fuzziness * (ub dom - Ib dom)

We now define the fuzzy number generators near, around and roughly as:

near, around, roughly:: Double -> Domain Double -> Fuzzy Double
near = approximate 0.125
around = approximate 0.25
roughly = approximate 0.375

This leads to the same sets as in Figure 3.6 if we approximate 20 over the domain

[0,40]. For example:

Profit> near 20 [0..40] 17.5

0.5
Profit> roughly 20 [0..40] 17.5
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Profit> around 20 [0..40] 17.5
0.75

3.2.4 Defuzzification

In a real-world situation, we often need a concrete value rather than a fuzzy subset.

The process of extracting a typical value from a fuzzy subset is known as defuzzifica-

tion and there are many methods for doing this. Two such methods are finding the

centroid (or centre of gravity) of a fuzzy subset, or finding the maxima of a fuzzy

subset and returning a member of this set.

Ifwe have a fuzzy subset A with membership function /-lA over a domain X then

the centroid of A is defined as:

Ix X/-lA(X) dx
Ix /-lA(X) dx

if X is a continuous domain. If X is discrete then the centroid is defined as:

The latter is the definition we use in our implementation. We define the centroid
function as:
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centroid :: Domain Double -> Fuzzy Double -> Double
centroid dom f = (sum (zipWith (*) dom fdom)) / (sum fdom)

where fdom = map f dom

For example, the centroid of the trapezoid fuzzy subset in Figure 3.7can be evaluated
vzz

Profit> centroid [0, 0.5 .. 10] (trap 2 3 6 9)
5.06667

The maxima of a fuzzy subset A over a domain X are those elements m E X such

that Yx EX. J.LA(m) > J.LA(X). This can be implemented using the compare function

from the Haskell prelude:

maxima :: Domain a -> Fuzzy a -> [a]

maxima dom f = foldl m [] dom
where
m [] x = [x]

m ys x = case compare (f x) (f (head ys)) of

GT -> [x]

EQ -> x:ys
LT -> ys

We then typicallydefuzzifyA by returning the minimum, the median or the maxi-

mum of the maxima of A:

minmax, medmax, maxmax .. Ord a => Domain a -> Fuzzy a -> a

minmax dom f = minimum (maxima dom f)

maxmax dom f = maximum (maxima dom f)

medmax dom f = median (maxima dom f)

where
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-- N.B. Domains are represented by *ordered* lists
median ms = head (drop (length ms 'dive 2) ms)

Defuzzifying the fuzzy subset in Figure 3.7 using these three methods we get:

Profit> minmax [0, 0.5 .. 10] (trap 2 3 6 9)
3.0

Profit> medmax [0, 0.5 .. 10] (trap 2 369)
4.5

Profit> maxmax [0, 0.5 .. 10] (trap 2 3 6 9)
6.0

3.2.5 An Example - Fuzzy Database Queries

The linguistic nature of fuzzy subsets make them ideal in database enquiries. In

a functional language this is akin to applying a filter to a list of information. We

define a variant of the standard filter function, which takes a fuzzy predicate (that

is, a function which returns a fuzzy truth value) and returns those members of the

list that satisfy the predicate to a non-zero degree, along with the degree to which

they satisfy the predicate:

ffilter :: Fuzzy a -> [a] -> [(a, Double)]
ffilter p xs = filter «/=) 0 . snd) (map (\x -> (x, p x)) xs)

Referring back to our profit example, based originally on an example in [82J,Suppose

we have the following module:

module Profit where

import Prelude hiding «&&), (I I), not, and, or, any, all)
import Fuzzy
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type Percentage = Double
type Sales
type Company

= Double -- thousands of pounds
= (String, Sales, Percentage)

sales :: Company -> Sales
sales (_, s, _) = s

profit :: Company -> Percentage
profit (_, _, p) = p

percentages :: [Percentage]
percentages = [-10..30]

profitable :: Fuzzy Percentage

profitable = up ° 15

high :: Fuzzy Sales

high = up 600 1150

companies .. [Company]
companies = [("A", 500, 7) , ("B", 600, -9), ("C", 800, 17) ,

("0", 850, 12), ("E", 900, -11) , ("F", 1000, 15),
("G", 1100, 14), ("H", 1200, 1), ("1", 1300, -2) ,
(IIJII, 1400, -6), ("K" , 1500, 12)]
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So, we have a list of companies, functions to extract their profit and sales, and fuzzy

subsets profitable of Percentage (using the same definition as before) and high

of Sales. To extract all the profitable companies from companies, we first define

the fuzzy predicate pl:

pl co = profitable (profit co)

and ffilter it over companies, viz:

Profit> ffilter pl companies

[« IIA II , 500 .0 ,7 .0), 0 .466667), « IIC II ,800.0,17.0) ,1.0) ,

«"0" ,850.0,12.0), 0.8), «"F", 1000.0,15.0) ,1.0),
« "G",1100.0,14.0) ,0.933333), «"H", 1200.0,1.0) ,0.0666667) ,

«"K" ,1500.0,12.0) ,0.8)]

So, of the original 11 companies, 7 are considered profitable with Cand F being the

most profitable. Profitability by itself might not be enough - we may also want

high sales. Defining:

p2 co = profitable (profit co) && high (sales co)

we can then find all profitable companies with high sales:

Profit> ffilter p2 companies

[«IC",800.0,17.0),0.363636), «"0",850.0,12.0),0.454545),
«IF",1000.0,15.0),0.727273), «IG",1100.0,14.0),0.909091),

«IH",1200.0,1.0),0.0666667), «IK",1500.0,12.0),0.8)]

Six companies satisfy the predicate, with Gsatisfying it the most. We can use hedges

to tighten or loosen the conditions, for example, defining

p3 co = somewhat profitable (profit co) && very high (sales co)
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we can find those companies which have very high sales and are somewhat profitable:

Profit> ffilter p3 companies
[((IC",800.0,17.0),0.132231), ((ID",850.0,12.0),0.206612),

((IF",1000.0,15.0),0.528926), «IG",1100.0,14.0),0.826446),
(("H" ,1200.0,1.0) ,0.258199), (("K" ,1500.0,12.0) ,0.894427)]

Here the increased emphasis on sales, and decreased emphasis on profitability means

that company Know satisfies the predicate we pass to ffilter to the highest degree.

3.3 Fuzzy Systems

Expert Systems [98]are used to model real-world situations in many areas of exper-

tise. One common way of implementing these systems is as a set of rules and an

inference engine which manages these rules. Rules are composed of two parts: an

antecedent, which is a logical expression; and a consequent which is an action which

is performed when the antecedent is true. When this happens we say that the rule

fires.

As a simple example, consider predicting the shoe size, using British shoe sizes,

of a man given his height in metres. In a standard expert system we might have

rules like:

if 1.65 <= height & height <= 1.72 then shoe_size := 9

These rules are absolutes - if and only if the antecedent holds will the action be

fired and fired completely.

In a rule-based fuzzy system, the antecedent is a fuzzy logic expression the value

. of which dictates the degree to which the action fires, the action being the assignment

of a variable to a fuzzy subset. Ifwe have a rule such as if p then a := P then a is

assigned to the fuzzy subset F' where F' is linearly weighted by the value of p and has

41



o

if short then small

if medium then average

if tall then big

......
w . •..•.•. ., __ .~ .•. e •.... _ ..•..• , .• ~ •.. '_ _"_., •..•. _•. _".," __." _ .•.

1.5 1.65 1.8 1.95

Height (m)

Figure 3.8: The fuzzy rule base for the height -+ shoe size expert system
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membership function J.l pt (x) = pu F (x). This can be extended to multiple variable

assignments. Note that if the value of the antecedent is 0, then the membership

function of the consequent fuzzy subset will be constantly 0 (the empty set) and we

regard the rule as not having been fired. In our shoe size example, the rules are:

if height is short then shoe_size := small

if height is medium then shoe_size := average

if height is tall then shoe_size := tall

if height is very_tall then shoe_size := very_big

Here is serves as a membership test for height. These rules can be thought of as

forming patches (see Figure 3.8) with the larger the patch the fuzzier the rule [58].

More input variables require more dimensions to the patches.

As can be seen, these patches overlap, which in practical terms means that

more than one rule can fire, that is, we have more than one possible assignment

to shce.aaze. Rather than selecting one of the possible assignments to a we select

them all, combining the subsets into one set using an operation such as union or

addition. Addition has the property that, unlike union, when combining many sets

the membership function of the result does not approach the constant function 1.

Also all the sets that are part of the addition contribute to the final result, whereas

in the case of union, large sets (measured by both their support and their height

(truth values)) subsume smaller ones.

Once we have combined all the resultant sets, we then defuzzify them (see Sec-

tion 3.2.4) to obtain a final result. For instance, if we have a height of 1.75m then

this is tall to degree 0.6 and medium to degree 0.2. If we weight the relevant conse-

quents, sum the sets and defuzzify using the centroid method we obtain an estimated

shoe size of 9h while defuzzifying with any of the maxima methods yields a shoe

size of 10, since 10 is the only element of the resultant fuzzy subset which yields the
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Figure 3.9: Weighting, adding and defuzzifying the rules for a height of 1.75m

largest truth value, in this case 0.6 (see Figure 3.9). Of course, this is a very simple

example. More complex ones can be found in Section 3.4.

We introduce a new operator ==>,which has the leastmost binding, to the Logic

class:

infix 0 ==>

class Logic a where

(==» :: Double -> a -> a -- other defs as before

This operator linearly weights its right-hand side by the value on its left-hand side.

On fuzzy values, it is simply multiplication:

instance Logic Double where

w ==> x = if w == 0 then 0 else w * x

The conditional is there for efficiencypurposes (we can use it to avoid evaluating x,

see below). There are a number of definitions over Bool. One such definition is:

instance Logic Bool where

w ==> False = False

w ==> True = w > 0.5 -- other defs as before
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The ==> function used over fuzzy truth values is useful in its own right as a fuzzy

if-then function; an example of its use can be seen in Section 3.4.2. However its

major use is to represent a rule in a fuzzy rulebase, where we normally expect the

value on the RHS of the operator to be a fuzzy subset or a tuple of such sets. On

fuzzy subsets, this operator has the definition:

instance (Logic b) => Logic (a -> b) where
w ==> f = \x -> w ==> f x -- other defs as before

Note that by the definition of ==> on fuzzy values, and the fact that Haskell is a lazy

language, if w is zero then we know the result is zero without having to evaluate f x.

This can have a significant effect on run-time performance (roughly 20-25% fewer

reductions in the case of our shower example below) if f is a complicated expression.

On tuples we weight each element of the tuple individually. For pairs we have:

instance (Logic b) => Logic (a -> b) where
w ==> (a, b) = (w ==> a, w ==> b) -- other defs as before

The LHS of the ==> is thus the antecedent of the rule and the RHS of the rule is

the consequent. The result of the function is the consequent linearly weighted by

the antecedent, which will usually be the result of evaluating fuzzy logic expression.

To combine the weighted subsets we define a function which takes a list of subsets

and a function to combine (two of) them with, and returns the result of combining

all the weighted subsets. We thus just have:

rulebase :: Logic a => (a -> a -> a) -> [a] -> a

rulebase = foldrl

Note that we can not apply rulebase to the empty list, but this would imply we

had an empty set of rules. The resultant set can then be defuzzified using one the

defuzzifying functions from Section 3.2.4.
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Putting this all together, we have the followingHaskell module which implements

our shoe-size expert system from above:

module Shoe where

import Prelude hiding «&&), (II), not, and, or, any, all)

import Fuzzy

type Height = Double ~- Metres
type ShoeSize = Double -- British size

sizes :: Domain ShoeSize

sizes = [4,4.5 ..13]

short, medium, tall, very_tall Fuzzy Height

short = down 1.5 1.625
medium = tri 1.525 1.775
tall = tri 1.675 1.925
very_tall = up 1.825 1.95

small, average, big, very_big Fuzzy ShoeSize

small = down 4 6

average = tri 5 9

big = tri 8 12

very_big = up 11 13

-- calculate the shoe size from a given height
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shoe_size :: Height -> ShoeSize

shoe_size h = centroid sizes (

rulebase (+) [

short h

medium h

==> small,

==> average,

tall h ==> big,

very_tall h ==> very_big])

Consider the use of the rulebase function inside the shoe.arze function. Its first

argument is +, so we are using fuzzy subset addition to combine the weighted subsets.

Its second argument is the set of rules, written using the ==> operator. During

evaluation of the rulebase function, each of these rules will be evaluated, giving

the required weighted set, which will all then be combined, in this case using +. This

set is then defuzzified using the centroid function over the domain sizes.

3.4 Further Examples

We now give two further examples of problems solved using fuzzy logic: another

fuzzy system (more complex than our shoe size example), and a decision-making

exercise.

3.4.1 Controlling a Shower

Consider the problem of controlling a shower [83]. We wish to get the temperature

to between 34°C and 38°C and the flowof the water between Ill/min and 13 l/min.

To do this we have two taps, one hot and one cold, which take values between 0

,(fully off) and 1 (fully on). We divide the temperature into the fuzzy subsets hot,

ok and cold; the flow into the fuzzy subsets weak, right and strong; and the

possible tap changes (ranging from -0.2 to 0.2) into seven fuzzy subsets: pb (big
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Figure 3.10: Fuzzy subsets of temperature, flow and tap change

positive change), pm (medium positive change), ps (small positive change), z (zero

change), ns (small negative change), nm (medium negative change) and nb (big

negative change). These fuzzy subsets can be seen in Figure 3.10.

Unlike our shoe size example, the shower is not meant to be a one-use function

but rather to be continually iterated until the temperature and the flow are in the

correct range. So we are continually making changes (with suitable gaps in between

these changes to let the shower settle into its new settings) until the water becomes

acceptable. We have the following system (note that these are not the original sets

used in the Fuzzy CLIPS example, which used curved rather than polygonal fuzzy

sets, and hence we have adjusted the numbers to get a better performance):

module Shower where

import Prelude hiding ((&&), (II), not, and, or, any, all)

import Fuzzy
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type Temp = Double

type Flow = Double
type Change = Double

cold, ok, hot :: Fuzzy Temp
cold = down 15 36

ok = tri 32 40

hat = up 36 75

weak, right, strong :: Fuzzy Flow
weak = down 0 12
right = tri 9 15
strong = up 12 25

nb, run,ns, z, ps, pm, pb .. Fuzzy Change
nb = down (-0.2) (-0.05)
run = tri (-0.1) (-0.025)
ns = tri (-0.05) 0.0
z = tri (-0.025) 0.025
ps = tri 0.0 0.05
pm = tri 0.025 0.1
pb = up 0.05 0.2

~hange_valves :: (Temp, Flow) -> (Change, Change)

change_valves (temp, flow) = (defuz hv, defuz cv)
where
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defuz = centroid [-0.2, -0.195 ..0.2]
(hv, cv) = rulebase (+) [

cold temp && weak flow

cold temp && right flow

cold temp && strong flow

ok temp && weak flow

ok temp && strong flow

hot temp && weak flow

hot temp && right flow

hot temp && strong flow

==> (pm, z),

==> (pm, z),

==> (z, nb),

==> (ps, ps),

==> (ns, ns),

==> (z , pb),

==> (nm, z),

==> (nb, z)]

Normally such a system would be used in a real-word environment. However, for

testing purposes, we provide a simple simulation in Haskell. The simulation creates

a new shower, setting the temperatures of the hot and cold taps to a random value

in the ranges [67°C,77°e] and [lOOC,20°e] respectively and setting the flows of

both taps are set to a random value in the range [10 I/min, 14 l/min] using the

Randompackage from the Haskell 1.4 standard library. Note the use of the 10

Monad [114, 115] to allow printing as a side-effect and the generation of random

numbers using a system-dependent seed number. The total temperature and flowis

then calculated, assuming perfectly cylindrical pipes, and the changes to the valves

required calculated using the fuzzy rulebase above. These changes are then made,

the new temperature and flowcalculated and further changes made if necessary:

type Valve = Double -- should be in the range [0 .. 1]

Each tap contains the absolute temperature and flow of the water

it controls plus the tap setting

data Shower = Shower {hot_valve, cold_valve
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hot_temp, cOld_temp
hot_flow, cold_flow

deriving Show

Temp,
Flow}

Creates a new shower using the given settings of the hot
and cold valves

mkShower :: Valve -> Valve -> 10 Shower

mkShower hv cv =
., do rs <- randomIO (-100, 100)

return (Shower {hot_valve = hv,
cold_valve = cv,
hot_temp = 72 + dht rs,
cold_temp = 15 + dct rs,
hot_flow = 12 + dhf rs,

cold_flow = 12 + dcf rs})

where
dht rs = 5 * fromlnteger (rs !! 0) / 100.0

dct rs = 5 * fromlnteger (rs ! ! 1) / 100.0

dhf rs = 2 * fromlnteger (rs !! 2) / 100.0

dcf rs = 2 * fromlnteger (rs !! 3) / 100.0

-- Calculates the temperature and flow of the given shower

getTempFlow :: Shower -> (Temp, Flow)

getTempFlow shower
flow> 0 = (temp, flow)
otherwise = error nShower.getTempFlow: non-positive flown

where
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cf = propOpen (cold_valve shower) * cold_flow shower

hf = prop Open (hot_valve shower) * hot_flow shower
flow = hf + cf

temp = (hf / flow) * hot_temp shower +

(cf / flow) * cOld_temp shower

propOpen :: Valve -> Double
prop Open x

x < 0 = 0

x > 1 = 1

x <= 0.5 = (two_theta - sin (two_theta) ) / (2 * pi)
otherwise = 1 - prop Open (1 - x)

where two_theta = 2 * acos (1 - 2 * x)

-- applies the given changes to the shower
adjustValves :: (Change, Change) -> Shower -> 10 Shower

adjustValves (dh, dc) shower =
return (shower {cold_valve = restrict (cold_valve shower + dc),

hot_valve = restrict (hot_valve shower + dh)})

where
restrict x

x < 0.0 = 0.0

x > 1.0 = 1.0

otherwise = x

repeatedly adjusts the given shower until its temp and flow are

satisfactory
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adjustShower :: Shower -> 10 Shower
adjustShower shower =

do putStr (IIHot = II++ show (hot_valve shower) ++

", Cold = II++ show (cold_valve shower) ++

", Temp = II++ show t ++

", Flow = II++ show f ++

II\nHot change = II++ show dh ++

", Cold change = II++ show dc ++ "\n\n")
shower' <- adjustValves (dh, dc) shower

if satisfactory then return shower' else adjustShower shower'
where

(dh, dc) = change_valves (t, f)

(t, f) = getTempFlow shower
satisfactory = 34.0 <= t tt t <= 38.0 tt

11.0 <= f tt f <= 13.0

shower :: Valve -> Valve -> 10 ()
shower hv cv =

do shower <- mkShower hv cv
putStr (IIInitial shower: II++ show shower ++ "\n")

final_shower <- adjustShower shower
putStr (IIFinal shower: II++ show final_shower ++ "\n")

So, for example, if we have an initial valve setting of 0.2 and 0.4 for the hot and

cold valves respectively, then the adjustment sequence is:

Shower> shower 0.2 0.4
Initial shower: Shower{hot_valve=0.2, cold_valve=0.4,
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hot_temp=72.8, cOld_temp=19.65,
hot_flow=11.6, cold_flow=12.12}

Hot = 0.2, Cold = 0.4, Temp = 33.857, Flow = 6.17877
Hot change = 0.0342672, Cold change = 0.0204951

Hot = 0.234267, Cold = 0.420495, Temp = 35.5691, Flow = 6.90705
Hot change = 0.0275251, Cold change = 0.0238471

Hot = 0.261792, Cold = 0.444342, Temp = 36.5224, Flow = 7.62269

Hot change = 0.0241146, Cold change = 0.0368691

Hot = 0.285907, Cold = 0.481211, Temp = 36.7517, Flow = 8.50753
Hot change = 0.0234472, Cold change = 0.0448707

Hot = 0.309354, Cold = 0.526082, Temp = 36.7072, Flow = 9.51635
Hot change = 0.0138068, Cold change = 0.0467235

Hot = 0.323161, Cold = 0.572806, Temp = 36.1902, Flow = 10.4232
Hot change = 0.0197123, Cold change = 0.0357849

Hot = 0.342873, Cold = 0.60859, Temp = 36.285, Flow = 11.2405

Hot change = 0.0110444, Cold change = 0.0514842

Final shower: Shower{hot_valve=0.353918, cold_valve=0.660075,
hot_temp=72.8, cold_temp=19.65,
hot_flow=11.6, cold_flow=12.12}
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3.4.2 Pricing Goods

The fact that fuzzy logic is inherently contradictory, that is we have truth values

which are non-zero and whose negation is also non-zero, is useful in decision making

processes where the decisions we have to make are based on conflicting demands or

requirements. Fuzzy logic can be used to resolve these contradictions in a natural,

simple and efficient way.

Consider the problem of pricing goods [21]. The price should be as high as

possible to maximise takings but as low as possible to maximise sales. We also want

to make a healthy profit, say a 100% mark-up on the cost price. Then we have to

consider what the competition is charging. We can formalise these requirements as

rules:

1. Our price must be high.

2. Our price must be low.

3. Our price must be around 2 x manufacturing costs, in other words, a 100%

mark-up.

4. If the competition price is not very high then our price must be around the

competition price (we do not want to indulge in a price war).

A boolean system may have difficulties trying to resolve the requirements that the

price must be high and low, not to mention the other two requirements, but a fuzzy

system has no such difficulties.

Suppose possible prices are in the range £15 to £35. We define fuzzy subsets

high and low on this range, viz:

type Price = Double -- Pounds Sterling
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prices :: Domain Price
prices = [15.00, 15.50 .. 35.00]

high, low:: Fuzzy Price
high = up 15.00 35.00
low = not high

So if we want a price that is high and low (Rules 1 and 2) then we can calculate this

by taking the intersection of high and low and defuzzifying the resultant set to get

a typical value, viz:

our_price = centroid prices (high && low)

Evaluating our .price we get:

Prices> our_price
25.0

Rule 3 suggests that we can approximate the price by a fuzzy number centred on 2 x

manufacturing costs. Taking the manufacturing costs as a parameter to our .prLce
and combining this with what we have so far, we define

our_price' man_costs =
centroid prices (high && low &&

around (2.0 • man_costs) prices)

Assuming manufacturing costs of £13.25, say, we have:

Prices> our_price' 13.25
26.252

Rule 4 is a conditional rule. The more that the competition price is not very high,

the more it affects the calculation of our price. Using the ==> operator and taking

the competition price as another parameter, we get:
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our_price" man_costs comp_price =

centroid prices (high && low &&
around (2.0 * man_costs) prices &&
«not.very high) comp_price ==>

around comp_price prices))

Assuming the same manufacturing costs as before and a competition price of £29.99

we have:

P:z;.ices>our_price"13.25 29.99
28.5893

So our final retail price is £28.59.

3.5 Summary

We have introduced and explored the use of fuzzy logic in functional programming.

The natural equivalence between fuzzy subsets and their membership functions mo-

tivates our idea to use a single function to model them both. We have shown how a

functional language can be extended so that it provides facilities for the use of fuzzy

logic and fuzzy subsets, achieved by overloading pre-existing operators and func-

tions, and introducing new ones. We have also shown how fuzzy systems, used in a

variety of control and decision making problems, can be implemented in a functional

language in a natural and efficient way.
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Chapter 4

Compiling Lazy Functional

Programs to Java Byte-code

The Java Virtual Machine (JVM) [79] provides a machine-independent execution

environment which executes Java byte-code, which is essentially a machine code for

object-oriented programs. It was designed as the target of Java compilers, but there

is no reason why compilers of other languages cannot produce code that will run on

it. We are interested in using it to run functional programs, in particular pure lazy

ones. This approach has several advantages:

• Java bytecode will run on any machine for which an interpreter is available.

• Java programs can be run as applets in web-browsers, or in embedded systems.

• Java has a built-in garbage-collector, hence any language which targets Java

bytecode has no need to handle garbage collection itself.

Our aim is to create a compiler which will translate a functional program into byte-

code, with each function being translated into a static method of the generated

class file. If the functional program we are compiling is designed to be executed (as
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opposed to being a set of library functions, for example) then we also generate a

main method which will, when the class file is executed, perform any initialisation

necessary and evaluate the program which we have compiled. Our source language

is Ginger [53J, a simple, pure, lazy, weakly-typed functional language. We base our

evaluation methods on those of the G-machine (see Section 2.5). We assume that

the reader is familiar with programming in Java, and has some understanding of

how Java classes are structured, and also how to program using a lazy functional

language, but we assume no prior knowledge of the JVM (which we describe in

Section 4.1) itself or of implementing functional languages. Reference is made back

to Section 2.3 for an introduction to graph reduction.

4.1 The Java Virtual Machine

The JVM [79J provides an environment for executing object-oriented programs; that

is, for creating objects, invoking their methods, manipulating their fields, as well as

the usual basic operations, such as adding integers.

The format of the bytecode resembles that of Java programs [7J. For each new

class, there is a header declaring the class, its superclass and its package and the

declaration of the fields and methods. Each method provides a separate environment

consisting of a stack, which is used as a working space, and a set of local variables.

In the case of an instance method, register 0 holds a reference to the object that

the method was invoked on (the this reference), and variables 1, ... ,n hold the n

parameters of the method. Static methods are slightly different in that since there

is no object to invoke the method on, the n parameters of the method are stored

in variables 0, ... , n - 1. Each class also has a constant pool where all the symbolic

data used by the class - fields, methods, class, interfaces, etc. - is stored. For

example, consider the following class definition:
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public class ExampleClass {
public int value;

private static ExampleClass one = new ExampleClass(1);

public ExampleClass(int v) {
value = v;

}

public static ExampleClass getOne() {
return one;

}

public void add(ExampleClass e) {

value += e.value;
}

}

This classcan be compiled into a classfileof bytecodes using a Java compiler, javac
say. The class filecan then be examined using a disassembler, such as javap [103].
If we examine the output of javap, firstof allwe have the header of the filewhich
declares the class'ssuper-class and itsmembers:

Compiled from ExampleClass.java
public synchronized class ExampleClass extends java. lang. Object
{

public int value;
private static ExampleClass one;
public ExampleClass(int);
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public static ExampleClass getOne();

public void add(ExampleClass);

static static {};

}

We then have the bytecode for the constructor function:

Method ExampleClass(int)

o aload_O

1 invokespecial #3 <Method java.lang.Object(»

4 aload_O

5 iload_l

6 putfield #6 <Field int value>

9 return

A reference to the the object that is created by the constructor is held in register

O. This is placed on the stack by the aload_O instruction. The invoke special

#3 pops the top object off the stack (this) and invokes on it the zero-argument

constructor of its superclass which is Object (item number 3 in the constant pool).

When this has completed, this is again loaded onto the stack and then the integer

1 is loaded onto the stack by the iload_l instruction. The putfield #6 instruction

pops the top two values of the stack and stores the value that was held at the top

of the stack (the integer 1) in the value field (item number 6 in the constant pool)

of the object that was the second topmost item in the stack (this). The work is

now done, the stack is empty, and the constructor function returns to the method

that called it, with a void result, using the return instruction.

We then have the two method declarations. The method get Onemerely loads

the static field one onto the stack and returns it using the are turn instruction:

Method ExampleClass getOne()
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o get static #5 <Field ExampleClass one>
3 areturn

The add method is a little more complicated:

Method void add(ExampleClass)
o aload_O
1 dup

2 getfield #6 <Field int value>
. 5 aload_1

6 getfield #6 <Field int value>
9 iadd

10 putfield #6 <Field int value>
13 return

This first loads the this reference onto the stack and duplicates it using the dup
instruction, leaving the copy on the top of the stack. The getfield #6 instruction

pops the top of the stack and gets the value of its value field which it puts on top of

the stack. We then load the argument of the method (named e in the original code)

which is in register 1 and get the value of its value field. The top two items on the

stack are now the two integers equal to the value fields of the object the method

was invoked on and the argument of the method. These integers are popped off the

stack and added together using the iadd instruction which places the result on the

stack. This value is then stored in the value field of the object referenced by this
- recall the dup instruction - and the method returns to its caller, returning a

void value.

The final method is the class's static initialiser which is executed when the class

is loaded. This has the job of creating a new ExampleClass whose value field is set

to 1 and storing it in the static field one:
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Method static {}

o new #1 <Class ExampleClass>

3 dup

4 iconst_1

5 invokespecial #4 <Method ExampleClass(int»

8 put static #5 <Field ExampleClass one>

11 return

4:2 The Ginger Language

The Ginger language [53]was developed at the University of Warwick as a means

of investigating parallelism in functional languages (we do not consider the parallel

features of the language in this thesis). It is a simple, weakly-typed, pure lazy

functional language with no pattern-matching or user-defined types.

After parsing, our Ginger compiler transforms the source tree into a set of su-

percombinators (see Section 2.1) by lifting any A-abstractions into separate function

definitions [49]. Then dependency analysis [86]is performed, which transforms local

variable definitions into blocks of simple, non-recursive let expressions and blocks of

minimally mutually-recursive letrec blocks. The source at this stage is structured

as in Figure 4.1.

We have an optional package declaration in which the class we eventually create

will be placed. Then come a number of import declarations which deal with the

importing of Ginger functions (stored in Java classes) from other sources followed

by the definitions of the supercombinators, both those defined by the user and those

created by lambda-lifting.
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(program) .. - (package (package);)?
(import (class);) *
(definition) *

(definition) .. - (identifier) (identifier) * = (expr);

(expr) .. - (integer) I (boolean) I (float) I (character) I (string)
(identifier)
[] (empty list)
(( expr) : ( expr )) (list constructor)
( ( expr) (expr)) (application)
( ( expr). . . . • ( expr ) )
if (expr) then (expr) else (expr) endif
let (identifier) = (expr) in (expr) endlet
letrec

(identifier) = (expr)

(identifier) = (expr)
in (expr) endletrec

Figure 4.1: The EBNF of the Ginger language after lambda-lifting and dependency
analysis.

4.3 Representation of Graph Nodes

Since we are creating a Java class file, it makes sense to represent graph nodes by

Java objects. The five simple types - integers, floats, booleans, characters and

strings - are represented using the Java classes Long, Double, Character, Boolean

and String found in the java .lang package. The first four are the object equivalent

of the primitive Java types long, double, char and boolean respectively. Note that

we use the largest size possible for integers and floats and we do not represent strings

as list of characters.

Lists are represented using the List class, which is just an empty class which
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its two subclasses Cons (list constructor) and EmptyList subclass. The Cons class

has the followingskeleton definition:

public final class Cons extends List {

public Object head;

public Object tail;

II ...

}

The representation of functions utilises the java .lang .reflect packagewhich pro-

vides classes that 'reflect' the members of the class, in particular there is a Method

class the instances of which reflect a particular method of a particular class. This

class has an instance method invoke:

public Object invoke(Object obj, Object[] args)

This invokes the the method reflected by the instance on the object obj with the

arguments in the array args. If the method being reflected is static then obj is

ignored and can be null.

Our compiler will translate all the supercombinators in a file into static meth-

ods of the generated class file (see Section 4.5). This gives us a maximum of 255

arguments and local variables per function. We use static methods as these only

operate on their arguments whereas instance methods also require an instance of

the class of which they were defined in.

When we import a class file we thus store each of its methods (functions of the

original program) as Method objects which are held inside Func objects:

public class Func {

public final Method method;

65



public final int aritYj

public final boolean isCAFj

public Func(Method m) {

method = mj

arity = m.getParameterTypes().lengthj

isCAF = arity == OJ

}

II

}

Our representation of applications is guided by the type of the invoke method of

the Method class, which will be called every time we apply a function. Since this

method expects its arguments to be packed into an array, it makes sense to store

the arguments of an application in an array, rather than in some intermediate data

structure from which we make an array. In particular, we use multiple-argument

applications. The Appclass has the followingdefinition:

public final class App {

public Object functorj

public Object[] argsj

public boolean in_nf = falsej

public boolean total_app = falsej

II ...

}

66



This represents the application functor args [0] ... args [args .length-i]. The

field in...nf is set when the App is in normal form, that is when the functor is a

function and there are not enough arguments present, or the App is acting as an

indirection to a non-application (see Section 4.3.1). If functor is a function and it

is applied to exactly the right number of arguments then we set the totaLapp field.

The use of the in..nf and totaLapp fields prevents unnecessary work being done.

4.3.1 Updating

Aswe saw in the Section 2.3, we need to update the original application with the

result of the application. This is to prevent the unnecessary re-evaluation. For

instance, the application square « +) 3 4) becomes (*) « +) 3 4) « +) 3 4)

(with the instances of (+) 3 4 being shared} and (+) 3 4 becomes 7.

In the case where we update one application with another, we simply copy the

result field-by-field onto the original application. However, if the result is not an

application, as in the second case, then things are not so simple as we cannot copy

an object of one type onto an object of a different type. Instead, we turn the App

into an indirection by setting its args field to the null reference and setting its

functor field to the result in question. We can view any Appwith a null args

field as serving as an indirection or a wrapper to its actual argument. Note that

once the result of an application becomes a non-application it is in normal form and

thus no further evaluation is necessary and so we do not get chains of indirections.

Updating is done in the method App.update:

private void update(Object 0) {

if (0 instanceof App) {

II copy 0 onto this App

App a = (App) OJ
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functor = a.functor; args = a.args;

in_nf = a.in_nf; total_app = a.total_app;
}

else if (0 instanceof Func) {

functor = 0; args = empty;
if (((Func) o).isCAF) {

total_app = true; in_nf = false;
}

. else {

total_app = false; in_nf = true;
}

}

else { II we have an indirection

functor = 0; args = null;
in_nf = true; total_app = false;

}

}

Here empty isa fieldof App which isset to b an empty array of Objects.
Recalling our originalexample, square ((+) 3 4) reduces to the expression

(*) (( +) 3 4) ((+) 3 4). Before updating we have:
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Original Expression Reduction Expression

Bf1. .
* :.~.~.. ~.:

+ (3, 4)

Updating the original expression involves reassigning its functor and args fields

(ignoring the other two boolean fields for the moment):

Original Expression Reduction Expression

lOp? t ~JL
'-----------I~- * :(, ):

' '

+ (3, 4)

After the reduction of (*) (( +) 3 4) (( +) 3 4) our App becomes an indirection

to 49:

49 null

Applications are not the only graph nodes that can be updated, there is one other

case, namely CAFs, that is functions taking zero arguments. These can be treated

as applications of the CAF in question to zero arguments and we do just this by

storing all CAFs as Apps whose functor is the actual CAF in question and whose
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args is the empty array (note that if we wish to invoke a method that takes no

arguments then we need to pass an empty array to Method. invoke).

4.3.2 Evaluation

The evaluation of graph nodes is controlled by the method eval in the class Node

which contains various static methods used for the evaluation and printing of graph

nodes. The method only has to do something when it is called to evaluate an App,

otherwise it simply returns its argument .

.The instance method App.eval repeatedly evaluates and updates itself until it

is in normal form. Once it becomes so it returns its functor if it is an indirection,

or itself otherwise:

public Object eval() {

while (! in_nf) {

if (total_app)

II
else if (functor instanceof Func)

II
else

II
}

II if we have an indirection, return the functor,

II else return the whole App

return (args == null) ? functor this;

}

The App being evaluated forms the spine of the graph, with the functor being

the base of the spine and the args forming the ribs. If the Appis not in normal
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form then we have one of three cases, corresponding to the three branches of the

if-then-else ladder inside the while loop.

If we have a function applied to the exact number of arguments (that is when

totaLapp is true) we simply need to apply the function to its arguments and update

the App:

if (total_app)

update(((Func) functor).apply(args»j

The method Func .apply iswhere all the workis done. In this method weunpack any

indirections from Appsand then invoke the function on these unpacked arguments:

public Object apply(Object[] as) {

for (int i = OJ i < as.lengthj i++)

if (as[i] instanceof App) {

App a = (App) as[i]j

if (a.args == null) II N.B. we keep CAFSinside Apps

as[i] = a.functorj

}

return method.invoke(null, as}j

}

If we have a function applied to too many arguments, that is, the functor is a

function and both totaLapp and in..nf are false, we split the args array into two,

apply the functor to the number of arguments it needs and update the functor

and args fields appropriately:

else if (functor instanceof Func) {

II we must have more arguments than the function takes
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Func f = (Func) functorj

II split this array into two parts.

int unused = args.length - f.aritYj

Object[] first = new Object[f.aritY]j

Object[] rest = new Object[unused]j
split (args , f.arity, first, rest)j

II the functor becomes the result of apply f to the first
II arity arguments
functor = f.apply(first)j

II and the args become the rest of the args
args = restj

setType()j
}

The method App. set Type examines the functor and args fieldsof the App and sets
totaLapp and in..nfappropriately.

The lastcase iswhen the functor isanother App in which case we need to unwind
the App at the functor onto this one. If the functor is a function applied to the
correct number of arguments, then we do the application before unwinding:

else { II functor instanceof App
II need to unwind
App a = (App) functorj
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if (a.total_app)

II the functor contains a function applied to the correct
II number of arguments, so we apply it and continue unwinding
a.update«(Func) a.functor).apply(a.args»;

else {

functor = a.functor;

args = cat(a.args, args);
}

setType();
}

The static method App. cat joins together two arrays in a manner similar to list

concatenation in functional languages.

4.3.3 Printing

The evaluation of graph nodes is initially triggered by the Node. print method which

evaluates a node and prints it on standard output:

public final static void print(Object node) {
node = eval(node);

if (node instanceof Cons) {
System.out.print(II[II);

boolean not_at_end = true;
do {

Cons c = (Cons) node;
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c.head = eval(c.head)j II evaluate and update head

c.tail = eval(c.tail)j II and tail

printNoEval(c.head)j

if (c.tail instanceof Cons) {

System.out.print(", ") j

node = c.tailj

}

else

not_at_end = falsej

} while (not_at_end)j

System.out.print(IIJII)j

}

else if (node instanceof Evaluatable)

«Evaluatable) node).print()j

else

System.out.print(node)j

}

The method Node.printNoEval is similar to print except that it presumes that its

argument is in normal form and thus does not need to evaluate the object before

printing it.

If the node to be printed is a Cons then we iteratively print out each element

of the list. It is done this way, rather than farming it out to some method of Cons,

which would be the standard object-oriented way, as we do not wish to keep an

unnecessary reference to the head of the list (note that we repeatedly overwrite

the head in Node.print), which could lead us to keeping the whole of the list that

is being printed in memory when in reality it could be garbage and the memory
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it occupies could be freed. We also reassign c. head and c. tail after evaluating

them; this enables us to bypass any indirection introduced by any evaluation which

needed to be done since the eval method will return the evaluated object unpacked

from the application which is serving as an indirection.

The Evaluatable class is implemented by all Ginger classes which have compo-

nents which need to be evaluated before being printed, in particular it is implemented

by the various tuple classes. It specifies a print method which evaluates the compo-

nents of an object and prints them out on standard output. Note that the toString

method on these objects does not evaluate the components before printing (this is

used for debugging purposes). So, node is an instance of this interface, we print it

out using the print method.

Finally, if node is neither a Consobject or implements the Evaluatable inter-

face, we simply print out the node using the toString method (which is implicitly

called by the System.out. print method).

4.4 Primitives

Like user-defined functions we store primitives, such as arithmetic operators, com-

parison operators, list constructors and deconstructors, in Java class files. The prim-

itives are spread over a number of classes, which are all subclasses of the Nodeclass

which contains the top-level evaluation and print routines. The strict primitives are

kept in different classes to the lazy ones, thus giving us a simple, if restricted, way

of determining if a primitive is strict. We also ensure that the result of all strict

primitives is in normal form.

We allow overloading on primitives, for example, we use - for integer and real

subtraction, but this is done in an ad hoc way inside the primitive itself making use

of the Java instanceof operator rather than in any systematic kind of way such
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as the use of type classes in Haskell (see Section 2.4). For example, subtraction is

performed using the ..minusmethod in the class StrictPrimi ti ves:

public class StrictPrimitives extends Node {

public final static Class TYPE= StrictPrimitives.class;

public static Object _minus(Object lhs, Object rhs) {

lhs = eval(lhs);

rhs = eval(rhs);

if (lhs instanceof Long && rhs instanceof Long)

return new Long«(Long) lhs).longValue() -

«Long) rhs).longValue(»;

else

return new Double«(Number) lhs).doubleValue() -

«Number) rhs).doubleValue(»;

}

public final static Object _minus =
Function. make(TYPE, "_minus", 2);

II ...

}

The StrictPrimi ti ves class has a TYPEfieldwhich stores the Class representation

of itself which is used to construct the Object equivalent of each method.

The ..minus method first evaluates its two arguments and reassigns them (re-

member that the eval method unpacks any indirections). It then determines

whether it is integer or real subtraction is required by means of the instanceof

operator (integers are cast to reals if necessary), does the necessary subtraction and

returns a new object containing the result of the subtraction.
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The structure of the primitive classes and the classes created by the compiler

are identical and hence we can treat primitives exactly the same way as we do

user-defined functions except in the case of a tail recursion (see Section 4.5.5).

4.4.1 Fuzzy Primitives

As with our Haskell implementation, we overload the logical operators so that they

work on fuzzy values as well as boolean ones, and also so that they act as set

operators when used on functions. This is supplied as an optional extra with the

compiler since the increased overloading leads to a small performance penalty.

Since Ginger has no systematic method of overloading, the overloading is done

inside the primitive definition and overloading resolution done at run-time. For

instance, logical conjunction (set intersection) is defined in the method .and:

public static Object _and(Object lhs, Object rhs) {
lhs = eval(lhs);

if (lhs instanceof Boolean)
return (FALSE.equals(lhs)) ? FALSE rhs;

else if (lhs instanceof Number)

return nev Double(Math.min«(Number) Ihs).doubleValue(),
«Number) eval(rhs)).doubleValue()));

else if (lhsinstanceof Tuple)
return «Tuple) lhs).apply(_and, (Tuple) eval(rhs));

else

return nev App(nev Object[] {rhs, lhs, _and}, combine);
}

public static final Object _and = Function.make(TVPE, "_and", 2);
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The first two branches of the conditional should be fairly self-explanatory: they

implement boolean and fuzzy conjunction respectively. The next branch deals with

conjunction over tuples. The method Tuple. apply is used to combine two tuples of

the same size into a new one, combining corresponding elements with the supplied

function, here .and, The final case assumes we have a function, that is, a fuzzy

subset. The two sets and the primitive .and are joined together with the function

combine which is equivalent to the Si combinator defined as:

Si op f g x = op (f x) (g x)

We can define the other primitives, disjunction, negation and addition, similarly.

The rest of the definitions in Chapter 3 have the obvious translations from Haskell

into Ginger.

4.5 Compilation

In this section we shall deal with the creation of Java class files from our Ginger

source which has been lambda-lifted and had dependency analysis performed on

it (see Figure 4.1). Rather than creating the class files directly, or using the Java

language itself as a source (which would complicate matters viz local variables), we

target the Jasmin assembly language {79]. This language is very similar to the byte-

code used by the Java Virtual Machine, but is easier to program in as it deals with

such things as the Java constant pool (where all constants and object references

as such) and calculating offsets for jumps automatically. Our Ginger program, in

the file proq .g, is compiled into an intermediate Jasmin file proq . j (which may be

discarded after use), which is assembled into a Java class file prog. class by Jasmin.

Each supercombinator definition of our Ginger program is compiled into a static

method of the class file we are creating. Functions are not compiled by creating

code to create a new instance each time one occurs, but rather a single instance is
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created and is stored it as a static field of the class we are creating. These fields will

be set up in a static initialiser of the class we are creating. Therefore, whenever we

want a function we just access the relevant field. This method also applies when we

want to access a function defined in another class. The job of the various import

declarations is thus just to tell us in which class to find each function that we use.

There is a limit on the number of fields (in our case, functions) in a class (65,535)

but if this limit is reached then program can be split up into smaller segments (a

program which hit this limit must have been fairly big and unwieldy anyhow).

Our compilation schemes are based on those presented in [86, 89]. We view our

source as a triple (el,/s, ss) where el is the class we are to create, /s is the set of all

functions defined or imported and ss is the set of supercombinator definitions. Note

that although the JVM has shorter, more optimal versions of some instructions (the

instruction Lconsn.O is a more efficient way of loading the integer zero onto the

stack than ldc2_w 0, for example) for clarity we use the most general instruction

in our description of the compilation schemes, though we do use the most efficient

instruction in our actual implementation. Our primary compilation scheme, P,

starts off as:

P(el,/s, {SI, ... , sn}) =

. class public el

. super Object

This declares our class and its superclass. Note that Jasmin requires the full name

of all classes and members but for brevity we have omitted the package name where

this is obvious, indicating the omission by using italics for object names rather than

teletype. We then proceed by declaring the fields corresponding to each function

defined in the file:

.field public static ifJ(sd LObject;
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.field public static <!>(sn)LObjectj

The function <!> returns the name of the field that holds the supercombinator, which

is just its name of said supercombinator. Note that when an object name, obj say,

is used as a type it is written as Lobj j. Functions imported will be declared and

defined in the class that they are imported from. P progresses by setting each of

these fields to its appropriate value inside a static initialiser which is a method called

clinit which takes no arguments and returns void (indicated by the V):

.method <clinit>()V

new cl

dup

invokespecial cl/<init>()V

invokevirtual cl/getClass()LClassj

astore_O

V SI

VSn

return

.end method

The method first gets the Class object reflecting the class we are creating and stores

it in register O. This Class object is used when creating the Func object representing

each supercombinator (or Apps in the case of CAFs). V creates the code necessary

to create a new instance of its argument and store it in the relevant field. Ifwe have

80



a supercombinator, S say, then we have:

Vs = aload_O

ldc n(s)

ldc a(s)

invokestatic Function/make (LClass j LString j I)LObject j

putstatic </>(s)LObject j

This loads the Class object reflecting cl onto the stack, then the name of the

supercombinator (using the function n) and its arity (using a). This information is

then used by the method Function.make to create a Func object (non-CAFs) or an

App (CAFs) which is then stored in the appropriate field.

Returning to the P scheme, after declaring and defining our constants, we now

need to create the code for each of the supercombinators. This is done using the :F

scheme:

:F Is SI

:F Is Sn

The :F scheme is defined below. Finally, we need to determine if we need to create

a main method which will make the class file executable, using the java interpreter,

say. This is so if we have defined a function called main. The main method will print

the result of evaluating the Ginger function main which we rename ..main, so as to

separate the reduction rule from the code which does the evaluation and printing.

The code for this is:

.method public static main( [LString j)V
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getstatic ¢(...main)LObject;

invokestatic Node/print (LObject;)V

return

.end method

Here [LString; denotes an array of strings (the closing brace is not used) which in

the case of the arguments to the main method represent the command-line arguments

passed by the Java interpreter. If we do not create a main method then we can view

the generated class as a library of functions.

4.5.1 Compiling Supercombinators

We now need to give the definition of F which creates a method from a supercom-

binator. This method takes n arguments of type Object, where n is the arity of

the supercombinator in question, and returns an object of type Object. The return

object will be the object left on the top of the stack by the code generated by the R:

scheme, which compiles the expression on the right-hand side of a supercombinator

definition.

F(f Xl ... Xn = E] fs =

.method public static j(LObject; ... LObject; )LObject;

n times
nE [Xl = 0,... ,Xn = n -1] fs n

areturn

.end method

The scheme n takes as arguments the expression to compile, an environment de-

tailing which register each variable is in, the set of functions defined and imported,

and the next free variable register (used to store local variables).
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4.5.2 The R Compilation Scheme

The purpose of the 'R, scheme is to take an expression which forms the right-hand

side of a definition (the return expression) and compile it to code that will, when

executed, create the graph of the expression and leave a reference to it on top of the

stack.

If we have an integer, i say, then we have to create a new Long object to store

it in:

_ 'R, i p Is v = new Long

dup

Idc2_w i

invokespecial Long/<init>(J)V

The instruction Idc2_w is used to load a long or a double onto the stack (each stack

cell is 32 bits in size, but long integers and doubles take up 64 bits so they have to

be spread across two cells). A similar method is used to define the other types of

constants.

If the right-hand side of a super-combinator consists of a single variable then,

unless we evaluate it before returning, we risk doing extra work because some loss

of sharing occurs. Suppose we have an expression I Xl ..• Xn which reduces to an

expression 9 YI ... Yrn and further suppose that this latter expression is reducible.

These are represented as two Apps and recall that updating the original expression

involves copying the fields of the App representing the value of the reduction onto

the fields of the App representing the original expression.

If the App 9 YI ... Yrn was created during the evaluation of the reduction rule

for I then the Appobject g YI ... Yrn is never used again (in other words, it becomes

garbage), though its fields become the fields of the original expression. However, if

the Appwas not created by reduction rule then it must be referenced by some other
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part of the graph and hence we have two copies of the same application:

Original Expression Reduction Expression

Suppose that 9 Yl ... Ym evaluates to some expression E, say. Then if we continue

our evaluation we have:

g {YI' ...• y,J

Note that we have only reduced one of the Apps: by copying we have lost not only

the sharing of nodes but the sharing of work.

This situation occurs whenever we have a function whose return value is a single

variable or function (or, more specifically, a CAF). We can prevent the replication

of work by making sure that whenever we have such a function we first evaluate it

(to normal form) before returning it. Thus if such a function still returns an App

it will be in normal form and although we may still make an unnecessary copy of

it we cannot waste time by duplicating evaluation as there is no evaluation to do.
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The n scheme for variables and CAFs is thus:

n id p ]s v = C id p ]s v

invokestatie Node/eval(LObject; )LObject;

If id is a function of arity greater than zero, we have:

n id p]s v = getstatie ¢( id) LObject;

Before compiling applications we first unwind them, using the left-associativity of

function application, so they Me of the form ] el ... en where ] is an identifier

(anything else would be a type error). If] refers to a variable then we just compile

the arguments and functor of the application, packing the arguments into an array,

and construct the Appobject:

n (J el ... en) p]s v =

new App

dup

Ide n

anewarray Object
} Create an array of n objects

aastore

Set the oth element of the argument array

dup

Ide 0

eel p]s v

aastore

C] pis v

Set the (n - 1)th element of the argument array

dup

Ide (n -1)

C en p]s v
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invokespecial App/<init> ([LObject jLObject j)V

Here C is the generic scheme used to compile expressions (see Section 4.5.3).

If f is a function then we can provide a bit more information to the constructor.

If there are not enough arguments present then we can tell the App constructor to

set the in..nf field. If there are exactly enough arguments present then we tell the

constructor to set the totaLapp field. This is done by using a three-constructor of

Appwhich as well as taking the arguments and functor of the application takes an

additional boolean which if set to true sets the in...nf and the totaLapp to false

and vice versa. For these two cases we have:

R (f el ... en) p fs v =

new App

dup

nf

compile arguments and functor as before

invokespecial App/<init> (Z [LObject iLObject i)V

where

nf = Lconsn.f, if n < arity of f

= Lconsu.O, if n = arity of f

The JVM uses integers to represent booleans (the type of which is denoted by a

Z). The most efficient way to load these onto the stack are using the instructions

~const_1 for true and Lconst.D for false.

If there are too many arguments present then we split the application into two:

if f is of arity m and is applied to n arguments where n > m then we create
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the application of f applied to the first m arguments applied to the other n - m

arguments.

'R (f er ... em em+l ... en) p fs v =

new App

dup

lde (n - m)

anewarray Object

dup

lde 0

C em pfs v

aastore

dup

lde (n - m -1)

C en pfs v

aastore

C (f el ... em) p fs v

invokespecial App/<init>( [LObject;LObject;)V

Compiling if statements requires us to evaluate the antecedent and jump accord-

ingly.

'R (if a then t else f endif) p fs v =

ea pfs v

eheekeast Boolean

invokevirtual Boolean/booleanValue 0Z
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ifeq FALSE

'R t p Is v

goto ENDIF

FALSE:

'R I p Is v

ENDIF:

where FALSE and ENDIF are unique labels. The checkcast instruction makes sure

that we have a Boolean object after evaluating the antecedent. The scheme E is

used to compile an expression whose result is known to be needed (see Section 4.5.4).

Note that the 'R scheme is used to compile the two branches of the conditional.

Compiling a simple let requires us to compile the definition, store it in the next

free local variable, updating the environment accordingly, and compiling the body

with respect to this new environment.

'R (let x = d in b endlet) p Is v =

Cd p ]» v

as tore v

'R b p[v = n] Is (v + 1)

Compiling a letrec is more complex as each definition in the block will refer to at

least one other one and hence if we are not careful we could end up loading objects

from registers that have not yet been filled. We thus need to first of all put place-

holders in each of the registers that are to be defined by the letrec and update

them when each appropriate definition is compiled. These place-holders are Apps

whose functor and arg fields are null and they are updated using the same update

method used to update Apps that have been evaluated (see Section 4.3.1).

'R (letrec ds in b endletrec) p Is v =
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A ds v

CL ds p' Is v'

R b p' Is v'

where (p', v') = X ds p v

Here A allocates the place-holders, CL compiles the definitions and updates the

registers and X updates the environment and the next free variable. A is defined

as:

A (Xl = ej , ... , Xk = ek) v =

new App

dup

invokespecial App/<init>()V

astore v

new App

dup

invokespecial App/<init>()V

astore (v + k)

CL is defined as:

CL (Xl = el,"" Xk = ek) P Is v =

aload (v - k)

eel p Is v
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dup

invokevirtual App /update (LObject; )V

aload v

C ek P Is v

dup

invokevirtual App/update (LObject;)V

Finally, X is defined as

X [Xl = el"",Xk = ek] pv = (P[Xl =V"",Xk =v+k-l],v+k)

4.5.3 The C Compilation Scheme

The C scheme, for the most part, is similar to the 'R scheme. The major difference

is in the handling of variables. Since we do not have to worry about any loss of

sharing, the definition of C when compiling a single variable is:

C id P Is v = getstatic </>( id) LObject;, if id Eis

= aload p(id), otherwise

When compiling conditionals with the C scheme, the branches of the conditional are

also compiled with C scheme. Similarly, the body of local variable declarations are

compiled with the C scheme when let letrecs are compiled with the C scheme.

4.5.4 The £ Compilation Scheme

The e scheme is used when the we know that an expression is to be evaluated and is

not a tail call (this is handled by 'R). Later on, we shall see how we can optimise the
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code produced by this scheme, but for now we shall just add a call to Node. eval:

£ e pis v = C e pis v

invokestatic Node/eval(LObject; )LObject;

We can also use the £ scheme to compile the branches of conditionals and the body

of local variable declarations.

4.5.5 Tail Recursion

A tail recursion occurs when the result of one function is the result of applying

another function to the correct number of arguments. Any tail-recursive calls in our

program will be compiled using the R scheme. It is a property of graph reduction

that tail-recursive calls can be run in constant space no matter how deep the recur-

sion is [109], and our implementation preserves this property. This is because if we

have an expression I Xl . .. Xn that reduces to 9 YI ... Ym then the call to 9 is not

executed inside the code of I but the application is passed back to the eval method

which then calls g. Thus, if we have a chain of tail-recursive calls gl,'" ,gn with

gi calling gi+1 then instead of recursing down the chain of gis and back again, and

having a recursion that is O(n) levels deep, we instead 'bounce' between eval and

each gi and the recursion only 0(1) levels deep. Hence our implementation executes

tail-recursive functions in constant space.

4.5.6 Initial Results

Table 4.1 shows the running times of some programs compiled using our Ginger

compiler. Because the running times of Java programs can vary significantly, we

have averaged our times over three runs. All times include the time needed to

inialise the JVM, which is roughly 0.5-1.0 seconds. The programs were run on a
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Program Time (s)
take 500 primes 65.4
nfib 30 357.4
soda 11.5
cal 34.1
edigits 250 82.8
queens 8 107.2

Table 4.1: Initial running times of programs produced by the Ginger compiler

Sun Enterpise 3000 with two 168MHz processors and 512MB of memory running

Solaris 2.6 and using the Sun JDK 1.1.5. Descriptions of the programs are as follows:

• take 500 primes outputs the first 500 prime numbers using the sieve of Er-

atosthenes method.

• nfib 30 calculates the number of reductions used to calculate the 30th Fi-

bonacci number using the naive doubly-recursive method.

• soda performs a serial word-search on a 10 x 15 grid.

• cal outputs calendars for the years 1990-99.

• edigits 250 evaluates the first 250 digits of e (2.7182 ... ).

• queens 8 prints all 92 solutions to the eight queens problem.

4.6 Optimisations

In this section we shall detail two optimisations that can increase the performance

of the code produced by our compiler: the direct invocation of some function ap-

plications and the use of a single instance to represent each constant declared by a

program.
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4.6.1 Direct Function Invocations

Implementations of lazy functional languages use application nodes to store 'sus-

pended' function calls, that is function calls whose result mayor may not be needed.

However, in some cases it can be predicted that the result of the function call will be

needed, and we can avoid having to build the application representing the function

call and instead invoke the function directly.

The first place we can use this optimisation is in the e scheme, as we know that

we always need the result of an expression compiled using this scheme. If we have

a function, I, of arity n applied to the correct number of arguments, we have:

eel P Is v

C en P Is v

invokestatic I (LObject; ... LObject; )LObject;

n times
invokestatic Node/eval (LObject; )LObject;

If f is known to be strict then we can compile each of the arguments using the E

scheme rather than the Cone.

We can also use this technique with the R scheme, with one major caveat. It

is safe to evaluate all tail calls, which will be compiled using the R scheme, since

their result will eventually be needed. However if the method we invoke is itself

tail-recursive then we could have a long chain of recursions and evaluation will no

longer occur in constant space and we could be in danger of overflowing the stack

on which the JVM stores the return address for each method call. Although it is

possible to optimise tail calls by replacing a method call with a jump, many JVM

implementations do not do so. We cannot provide this optimisation manually either,
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Program Non-optimised Direct invocation % decrease
take 500 primes 65.4 38.2 42
nfib 30 357.4 140.2 61
soda 11.5 8.4 27
cal 34.1 25.6 25
edigits 250 82.8 49.1 41
queens 8 107.2 73.0 32

Table 4.2: Running times (s) of programs produced by the Ginger compiler with
and without direct function invocation.

as the JVM does not allow jumps between methods.

We thus only directly invoke tail calls involving functions that are not tail-

recursive, which for simplicity's sake we assume that is just our set of primitives,

none of which are tail-recursive. If we have a primitive p applied to the correct

number of arguments, we have:

eel P Is v

C en P Is v

invokestatic p( LObject; ... LObject; )LObject;
n times

If p is known to be strict then we can compile each of the arguments using the E

scheme rather than the C one. In all other cases, 'R remains as before. As can be

seen from Table 4.2, direct invocation is a very worthwhile optimisation.

4.6.2 Single-instance Constants

Since constants are immutable in a pure functional language, we can represent each

constant used by a pure functional program by a single instance, saving both the

time and space needed to create a new instance of a constant each time one is
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encountered. We shall store each constant as a static field of the class that our

functional program is compiled to (cf. how we store functions) and thus each time

we need an instance of a constant we just need to access the relevant field. This

is similar to a technique used by most Java implementations to implement strings

(which are immutable in Java).

It is required that the P scheme is modified to handle constants. Suppose that

Cl, ... , Crt form the set of constants that are program uses. Then P becomes:

• P(cl,/S,{C1, ... ,em},{Sl, ... ,Sn}} =

·class public cl

·super Object

·field public static </>(sd LObject;

.field public static </>(Sn) LObject;

.field public static </>(C1)LObject;

·field public static </>(em) LObject;

.method <clinit>()V

new cl

dup

invokespecial cl/<init>()V

invokevirtual cl/getClassOLClass;

asnore.O

'D SI
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return

.end method

where the other names are as in the original definition ofP. The function ¢has been

extended to return the field name of a constant as well as that of a supercombinator.

The scheme 1) is also extended to take constants as arguments. For example, if we

have an integer, i, we have:

1) i = new Long

dup

Idc2_w i

invokespecial Long/<init>(J)V

put static ¢(i) LObject;

A similar method is used to define the other types of constants. As we can see from

Table 4.3, this results in a modest, but significant speed-up in the running times of

our programs.

4.7 Results and Other Work

The only other work we are aware of in this area is that of Wakeling, one based on

the G-Machine [119], which translates the G-code produced by HBC (the Haskell

compiler developed at Chalmers) into Java bytecode; and one based on the (1I,G)
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Program Non-optimised Single-instance constants % decrease
take 500 primes 65.4 47.1 28
nfib 30 357.4 326.0 9
soda 11.5 U.4 1
cal 34.1 33.4 2
edigits 250 82.8 67.2 19
queens 8 107.2 103.1 4

Table 4.3: Running times (s) of programs produced by the Ginger compiler with
and without single-instance constants.

machine [U8] which compiles a core language into a set of (1I,G) instructions which

are then transformed in Java byte-code, again using HBC. Both versions use a sep-

arate class, and hence a separate file, for each junction, rather than each program as

with our compiler. There is also a compiler for Standard ML from Persimmon (now

being supported at Edinburgh Univesity at http://www.dcs.ed.ac.uk/home/mlj/)

which compiles stand-alone SML programs to Java bytecode [47], but as this is for

a strict language we do not include it in our comparisons. A different approach is

taken by Pizza [84]. Instead of using the JVM as the target of functional code in

instead introduces functional features - namely parametric polymorphism, higher-

order functions and algebraic data types - into Pizza which is a superset of Java.

This language is then transformed into pure Java which is then compiled to pro-

duce byte-code. A related issue is tackled by Claus Reinke [94] who investigated

the possibility of using Java components, in particular graphical ones, in Haskell

programs, with some success. Reinke's work utilised the Java Native Interface [30],

which we use to integrate C/C++ functions into our Aladin implementation (see

Section 5.4.2).

Table 4.4 gives the running times for several programs using our compiler with

both optimisations switched on, and using both Sun's JVM and the Kaffe Open

VM [105] to run the generated class files; Wakeling's compiler (the (1I, G)-Machine
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Program Gingerc Wakeling's Hugs GHC
Sun JDK Kaffe

take 500 primes 30.5 266.2 50.5 6.3 0.8
nfib 30 118.0 638.4 56.6 114.6 6.7
soda 8.7 43.9 4.2 0.9 0.1
cal 25.0 140.3 19.4 5.0 0.3
edigits 250 46.2 174.4 10.0 4.0 0.5
queens 8 72.6 369.6 46.9 16.2 0.9

Table 4.4: Comparisons of running times of various lazy functional language imple-
mentations

.
version [118]) using Sun's JDK; the Haskell interpreter Hugs (version 1.4); and the

Glasgow Haskell Compiler, GHC (version 2.10). The Haskell and Ginger sources

were made as close as possible, but all the Haskell programs compiled using Wakel-

ing's compiler have been explicitly mono-typed where appropriate. This is because

if the overloading used in the programs is not resolved at compile-time then the

running times can slow down by as much as a factor of 10 in extreme cases, because

of the need to pass around dictionaries to resolve the overloading at run-time.

Both the JVM-targeting compilers perform poorly when compared to Hugs, with

our compiler (using the JDK to execute the class files) being some 4-11 time slower

than Hugs, except in the case of nfib (which is a somewhat artificial benchmark

anyway) when performance matched that of Hugs. Why then is our compiler so

much slower than Hugs, when both are either interpreters or produce code that is

interpreted? First of all there are the deficiencies in our source language, Ginger,

when compared to the much more complex Haskell. In particular, the lack of static

type-checking and user-defined (algebraic) types and all but the crudest form of

strictness analysis will have an appreciable effect on run-time performance, but

Wakeling's compiler has these and it is not much faster than ours. There is also the

cost incurred by not being able to resolve overloading until runtime; if we could,

at least partially, then we could replace function calls to methods implementing
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basic primitives such as arithmetic and comparison operators to uses of basic JVM

instructions (see Section 7.2). There is also the cost of using a high-level language

(Java) as opposed to the lower-level C used to implement Hugs. For instance, Java

does bounds checking on array accesses and checks that casts are legal whereas C

does not, and both these operations occur frequently in our compiler.

Wakeling [119] ascribed the poor performance of his compiler when compared

to Hugs to the poor memory handling in the JVM, hypothesising that memory-

allocation in Java is an order of magnitude more expensive than in Hugs. Functional

programs certainly will create and destroy objects on a more frequent basis than

an imperative object-oriented one - both primes and edigits create something in

the order of 500,000 Appnodes and 130,000 Cons nodes, for example. Unfortunately,

using the -profile of the java interpreter to look at the cost of these allocations

is not useful as we can only look at the time taken by the code in the constructor

(around 2.5 seconds for all 500,000 Appobjects used by primes) and not the time

taken to allocate the memory, which is done before the constructor is invoked.

It is the allocation of objects which is probably the reason why running our

programs using the Kaffe VM is some 3-9 times slower than running them using the

Sun JVM, despite the fact that in some cases Kaffe can be around 2-3 times faster

than the Sun JVM. Consider the following segment of code, which we compile using

both the Kaffe and the Sun Java compiler:

Long 1;

for (int i = 0; i < 1000000; i++)

1 = new Long(i);

The Kaffe VM takes 44 seconds to run the code produced by both compilers, while

the Sun JVM takes only 3 seconds (both Virtual Machines take only half a second

to run the same loop with an empty body).
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Program 1MB 4MB % decrease
take 500 primes 30.5 28.0 8
nfib 30 118.0 119.2 -1
soda 8.7 7.8 10
cal 25.0 20.7 17
edigits 250 46.2 23.2 50
queens 8 72.6 64.2 12

Table 4.5: Running times (s) of programs produced by the Ginger compiler with
initial heap sizes of 1 and 4 megabytes

..The large amount of mutual recursion on our programs means that we can't use

the Java profiler to determine how long the JVM spends executing each method

call. We can however examine the overhead imposed by the garbage collector, using

the -profile or the -verbosegc options of the Java interpreter. This shows that

using the default initial heap size of 1 megabyte garbage collection (as in Table 4.4)

takes between from 10% of the total running time to 50% in the extreme cases like

edigits. If we increase the initial heap size to 4 megabytes then we get the running

times in Figure 4.5. The speed-up in running time is due to garbage collection being

run less frequently, but freeing more memory when it does.

4.8 Summary

We have succeeded in producing a compiler for a functional language which creates

Java class files as its object code, with a performance comparable to that of an

approach which used a fully-fledged compiler, with various optimisations not present

in our compiler, as its front end. However the performance of our compiler is poor

when compared to a conventional lazy functional language interpreter (Hugs). This

·leads us to suspect that we may have reached a point where we cannot achieve any

significant speed-ups no matter how we optimise our run-time architecture of the

graph reduction on the JVM, and that any major leaps in performance can only
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come from optimising the JVM itself.
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Chapter 5

The Aladin Abstract Machine

The Aladin Abstract Machine (AAM) [10]provides an abstract definition of a func-

tional language. There are no primitives built into Aladin, instead primitives are

intended to be programmed in any language, functional or imperative, and imported

into the AAM. These primitives could be simple functions like addition; more com-

plex higher-order ones like map or fold; or even complete programs such as grep or

wc.

As well as the lack of primitives, Aladin has two more major features not found

in the majority of functional languages: the ability to specify the strictness of a

function's arguments and results; and the use of streams for ordered I/O and real-

time operations (which we shall not consider further in this thesis).

Unlike the majority of other abstract machines for functional languages (see Sec-

tion 2.5), the AAM is concerned only with the evaluation of programs and not their

construction. Since Aladin is designed to import its primitives from any language, it

would be inappropriate to tie the abstract machine down to one particular method

of constructing programs.

It is this simplicity and the requirement for the user to specify the strictness of

functions that gives Aladin its advantages. In the next chapter, we shall see how
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these advantages can be used to enable Aladin programs to be partially evaluated

with only a small number of modifications to the machine described in this chapter.

The purity and simplicity of Aladin could also be used to investigate other areas,

such as parallel evaluation of functional programs and the effects of strictness on

the time/space requirements of functional programs.

In this chapter we shall develop an efficient operational semantics for the AAM,

starting from the original denotational semantics and going via a denotational se-

mantics which includes explicit sharing and updating. We then use this semantics to

develop an implementation of Aladin, using the Java language as with our Ginger

implementation. Our compiler lets the user write Aladin programs in an Aladin

scripting language that we develop, and to use primitives written in C [57], C++

[102], Java [7] and Ginger (see the previous chapter).

5.1 The Semantics of the AAM

An Aladin program is either a data object, a function or an application of one

program to another. Denoting our set of data objects as D and our set of functions

as F, our set of programs, P, is:

P::=D I F I PP

Multiple-arguments to functions are curried and applications are left-associative.

Hence for Pl,P2,P3 E P we have:

Functions may be written in any language of the user's choice. A function I of

'arity m is denoted as 1m. The meta-function @ is used to primitively apply I to its

arguments by executing the code associated with I. The expression Im@(Pl, ... ,Pm)

denotes the result of the primitive application.
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The user is required to specify the strictness of each of its argument (see Sec-

tion 2.2). Aladin uses this information to control evaluation: strict arguments are

evaluated before the function is applied; lazy ones are not. Expanding the definition

given in Section 2.2, we extend the concept of strictness to functions of any arity

(that is, without having to curry arguments). An Aladin function f of arity m is

strict in its ith argument, where 1 ~ i ~ rn, if:

f Xl •.. xi-l .L Xi+l ... xrn = .L

for. all possible values of Xj, 1 ~ j ~ rn, j f. i and non-strict or lazy otherwise. In

a slight abuse of notation, we also apply the terms strict and lazy to the result of

a function: a strict result does not need further evaluation; a lazy one does. For a

function of arity m we use the notation:

f ::0"1 x ... X O"rn --t p, O"i,pE {s, l}

to denote a function which is strict in its ith argument if O"i = s and lazy if O"i = l,

and strict in its result if p = s and lazy if p = l.

5.1.1 The Original Denotational Semantics

The original evaluation rules used a meta-function, Eval, to return the result of

evaluating a program. If we have a data object applied to any number of programs,

then Eval simply returns the original program:

Eval[ {dE D)Pl ... Pn] =dPl ... Pn (5.1)

If we have a function applied to too few arguments, then we return the original

expression, but we evaluate any strict arguments:

Eval[ (f :: 0"1 x ... X O"rn --t p) PI ... Pn<rn] = f ql ... qn

where

qi - Eval[ Pi ],
(5.2)

if ai = s

otherwise
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If we have a function applied to too many arguments, then we evaluate the inner

application, that is the function applied to the exact number of arguments it needs,

then apply the result of this to the remaining arguments.

Eval[ F" PI ... Pn>m ] = Eval[ rPm+! ... Pn ]

where r = Eval[ l'" PI ... Pm ]
(5.3)

Finally we have the case when we have a function applied to exactly the right number

of arguments. We have to do three things: evaluate any strict arguments; apply the

fu~ction using @; and evaluate the result if necessary.

Eval[ (f :: 0'1 X ... X O'm ~ p) PI ... Pm] = r where

r = e, if p = s

= Eval[ e], otherwise
(5.4)

e = j@{qI, ... ,qm)

qi = Eval[pi ], if a; = s

= Pi, otherwise

5.1.2 The Denotational Semantics with Explicit Updates

Implementations of functional languages use sharing and updating to avoid doing

repeated work (see Section 2.3). Our first step towards an efficient operational

semantics for the AAM is thus a denotational semantics of the AAM which makes

explicit sharing and updating.

We associate each program with a variable v E V, changing our syntax of Aladin

programs to accommodate this:

P ::= D I F I V I V V (5.5)

Applications now involve the application of one variable to another and a program

can also be a variable, that is, an indirection to the actual value. The explicit
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naming of all parts of a program, in particular functions, means we can implement

recursion directly.

These associations are defined in a mapping of variables to programs which we

shall call the heap. A heap provides the context for the evaluation of a program,

and thus a program evaluated with respect to one heap can yield a different result

to the same program evaluated with respect to a different heap. The expression

r(xo M PO,XI M PI, ... ,Xn M Pn]

denotes that in the heap r variable Xi maps to program Pi where i E 0, ... ,n. We

may occasionally use the heap as a lookup-function, that is:

r X = p, if r(x M p]

= .1, otherwise

Since a program could be a variable we could have a chain of indirections:

r(xo M XI,XI M X2,." ,Xn M P ~ V]

In such cases we allow ourselves to 'short-circuit' the chain and write r(xo Mp].

Note that the chain could in fact be a cycle:

Which is akin to writing something like:

foo = let
x = y; Y = Z; Z = X;

in

X

endlet;

in Ginger. The result of evaluating any program which tries to access a variable in

such a cycle will be .L.
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We will allow ourselves to abuse notation and let r uI" denote the heap r

updated with the mappings in heap I"with any clashes being resolved in the favour

of those defined in I":

(I' u I") x = p, if r'[x t--+ p]

= q, if I'[z t--+ q]

..L, otherwise

In particular, r u {x t--+ p} denotes a heap where x is associated with p and all

other variables are associated to the programs that they were in r. The design of

the semantics allows the heap to be represented as a global entity, which can be

destructively updated, in an actual implementation, and this is the approach we use

(see Section 5.3).

Since all programs are evaluated with respect to a heap, it follows that our

primitive application meta-function must also execute with respect to a heap. The

informal type of @ changes from:

Px ... xP-+P

to:

Heap x V x ... x V -+ (P x Heap) (5.6)

Note that while @ takes a heap and variables as arguments it returns a program and

a heap (we need to return a heap as the function may want to create new objects

in the heap).

Our evaluation philosophy changes from that used in the original semantics.

Whereas before we returned a new expression which represented the evaluation, we

.now evaluate a program by updating the heap which provides the context for the

program. The meta-function E provides the top-level interface to this procedure:

E p I']z t--+ p] = (U r x) x (5.7)
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root

spine

Figure 5.1: An generic unwound application

First we need to find a variable associated to the program we want to evaluate.

Since a heap is not injective, there could be any number of variables associated with

the same program but it doesn't matter which one we pick. Then we update the

heap with respect to this variable, and finally look up the value of the variable in

the updated heap.

The updating of the heap is done by the meta-function U which updates a

given heap by evaluating the program referred to by a given variable, which we shall

refer to as the root of the program. This evaluation is done by graph reduction as

described in Section 2.3. If the root refers to an application then we need to unwind

the spine of the application graph until we reach a non-application. In the heap

if Xn forms the root of the program then the Xi, i E 0, ... ,n form the spine and Xo

forms the base (see Figure 5.1).

The four rules for U (5.8-5.11) directly reflect those of Eva I (5.1-5.4). Suppose

we have a data object applied to a number of arguments. Then since no evaluation

needs to be done, no updating of the heap has to be done either:

U r[xo I-t d E D, Xl I-t Xo YI, ... ,Xn I-t Xn-l Ynl Xn = r (5.8)

Ifwe have a function applied to too few arguments then we just need to evaluate the
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@~xm+l

.................../ ~

@~Xm.: Ym+1

~ :

:.' @~Xl Ym.// ..............

.r -E---j Xo Y,
:\

................ ..-"' .

Figure 5.2: Application of a function to too many arguments

r -E---j Xm

Figure 5.3: Application of a function to too many arguments after evaluation of
inner application

strict ones. The A meta-function (see Rule 5.13) returns the heap resulting from

evaluating the strict arguments of a function.

(5.9)

If we have a function fm applied to too many arguments, XI,"" Xm say, where

n > m (see Figure 5.2), then we first obtain the heap resulting from evaluating the

inner application (the shaded part of the figure) the root of which is Xm. In this new

heap, Xm will refer to the evaluated version of fm Xl ... xm, r say (see Figure 5.3).

This result becomes the new base of our program (note that we may need to do

,some more unwinding if r is an application) and we continue updating.

(5.10)
where r' = u r Xm
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If we have a function j applied to the exact number of arguments, we first evaluate

any strict ones using A and primitively apply the function using @. The root of the

application then needs to be updated with the result of @ and finally we may need

to continue evaluation if j returns a lazy result.

[
Xo t-+ j ::al x ... x am -+ P 1ur ~=~
Xl t-+ XoYI,···, Xm t-+ Xm-l Ym

where

r4 = r3, if p = s

= U I's Xm, otherwise

r3 = update r2 Xm r

(r, r2) = j@(rl,YI,···,Ym)

rl = Arxm

(5.11)

For each of the applications that form the arguments of j, the argument component

is extracted and passed as the corresponding argument to @. The function update

takes care of the updating of a variable with a new value. First we define a couple

of auxiliary functions:

reducible r Xm = (,6 r Xi = Xi-l Y;) A r Xo = I"

and

value r p = p, if p fI. V

= r p, otherwise

We now define update as:

update r(x t-+ Xl, Xl t-+ X2, .•• ,Xn t-+ P fI. V] X r = I'U {Xn t-+ val}

where
(5.12)

val = r, if reducible (value r)

= value r, otherwise
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Note that it is the last variable in the indirection chain, Xn, that is updated, not

the first one, x. This allows the result of the update to be propagated to any other

variables which are referring to elements in this chain. Also, if r, the value we are

updating with, is also a variable and the ultimate value of r is not reducible, then

it is this value we use to update Xn, not r itself. The update value is also r if r is

not a variable. This allows us to circumvent any indirection chains, possibly freeing

the variables in this chain for garbage collection in an implementation. It is safe to

do this if the the value of r is not reducible since r cannot be further evaluated and
.

thus we cannot lose any shared work since there is no work to be done.

Finally we need to define the A meta-function which evaluates each argument.

This proceeds by updating each argument in turn and passing the heap obtained

by each evaluation into the recursive call to U used to evaluate the next argument.

Although the definition here implies that arguments are evaluated left to right, this

ordering is arbitrary and only adopted for syntactic convenience - any ordering

could be adopted in practice. Arguments could even be evaluated concurrently

provided appropriate care was taken.

[

Xo I---t f ::0"1 X ••. X O"m -+ P 1
A r Xl I---t Xo Yl, ... , Xn I---t Xn-l Yn

Xn~m = rn

where (5.13)

otherwise

5.1.3 The Operational Semantics

We represent the operational semantics as transition rules of the state of the AAM.

, This state is a quadruple:

(Control, Stack, Heap, Dump)

where
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• Control is a stack of instructions. These instructions are EVAL, EVALARGS,

EVALITH and APPLY.

• Stack is a stack of variables, used as a working space to store the spine of an

application when we are unwinding, with the head of the stack forming the

base and the last element in the stack the root.

• Heap is a mapping from variables to programs as in the denotational case.

• Dump is a stack of Control-Stack pairs, used to hold previous states while we

are evaluating a different part of the program.

Our machine is similar to the SECD machine and the G-Machine (see Section 2.5).

The Stack, Control and Dump used by Aladin serve similar functions as their coun-

terparts in the SECD and G machines. The Aladin Heap is more like the G-Machine

heap, which like Aladin's heap is a global object where the graph being evaluated is

held, than the SECD machine's Environment which serves a local mapping between

values and variables dependent on the expression being evaluated. The key differ-

ence between Aladin and the SECD machine and the G-Machine is that arguments

and the results of Aladin functions may be strict or lazy. In the SECD machine all

arguments are treated as strict and in the G-machine all arguments are lazy, and

neither of these machines has the concept of a strict or lazy result and must evaluate

the results of all functions.

The meta-function F evaluates a program using the state-transition rules (see

below) with respect to a given heap (cf. E):

Fp r[x Hp] = r'x

where ((), S, r-,()}= 1.' ((EVAL), (x), r, ()}

The meta-function T repeatedly applies the state-transition rules (Rules 5.15-5.23

(5.14)

below) to a state until no more apply, returning the final state. So, if we have a
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transition sequence:

and no rules apply to Sn then T Si = sn, i E 1, ... ,n.
We now have to give the transition rules for a state, starting from the initial

state used as the argument to T. If none of these rules applies then the machine

terminates.

The first case is when the head of the stack references a data object, that is,

when we have a data object applied to a number of arguments, cf. Rules 5.1 and

5.8. We need to make no changes and no further work can be done in this state. If

the dump is non-empty we restore it (by virtue of Rule 5.23), else we terminate as

no more rules apply.

(EVAL) 0
(xo, Xl,··· ,Xn) 0 (5.15)==}

r[xo 1-+ d E DJ r
~ ~

N.B. EVAL can only occur in the control stack as the sole element.

If the head of the stack is an application, we need to unwind and carryon

evaluating:

(EVAL) (EVAL)

Xo : Xl : S
(5.16)

If the head of the stack refers to a function of arity m and there are less than m other

elements on the stack, we have the case of a function applied to too few arguments,

cf. Rules 5.2 and 5.9. In this case, we need to trigger the evaluation of the strict
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arguments which is done using the EVALARGS n instruction (Rule 5.20), where n is

the number of other elements on the stack.

(EVAL) (EVALARGS n)

(5.17)
I'[Xo I---t 1m,Xi I---t Xi-l Yi] r
~ ~

Note that the arguments of the function are extracted from the applications in which

they reside.

If the head of the stack refers to a function of arity m and there are strictly more

than m other elements on the stack, we have the case of a function applied to too

many arguments, cf. Rules 5.3 and 5.10. We need to evaluate the inner application,

which is done in a new state. After this, we evaluate the result of evaluating the

inner application applied to the rest of the arguments. This is done by saving

the control-stack pair that represents this application on the dump. They will be

restored from the dump when evaluation of the outer application has completed.

(EVAL) (EVAL)

(5.18)
r

((EVAL), (xm, ... ,xn}) : ~

The final case for EVAL is when we have a function applied to exactly the right num-

ber of arguments (this, with Rule 5.22, reflects Rules 5.4 and 5.11 in the denotational

cases). We need to evaluate any strict arguments and apply the function.

(EVAL) (EVALARGS m, APPLY)

(Xo, Xl,··· ,Xm)

r[xo I---t 1m,Xi I---t Xi-l Yi]
(5.19)

r
~
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Note that as well as unpacking the arguments to the function, we keep Xrn, the root

of the program, as the last element of the stack. It is this variable that will be

updated with the result of applying f to its arguments. In particular, if m = 0, that

is f is a Constant Applicative Form (CAF), then it is the variable referring to the

function itself that will be updated with the result.

We now need to give the state transition rules for the other instructions. First

we have EVALARGS which triggers the evaluation of any strict arguments, cf. the A

meta-function (Rule 5.13).

EVALARGS n: C el ++ ++ en ++ C

Xo : YI : : Yn : S
==>

r
~ (5.20)

Xo : YI : ... : Yn$_rn : S

r[xo t--+ f ::0"1 X •.. X O"rn -+ p]

~

where

ei = (EVALITH i), if a; = s

= (), otherwise

The EVALITH i triggers the evaluation of the ith element of the stack (where the

head of the stack is the Oth element) in a new state:

EVALITH i: C (EVAL)

(5.21)
r
~

r

(C, Xo : Xl : ... : Xi : S) : ~

By evaluating each argument in its own state we open up the possibility of evaluating

all the arguments that need evaluating concurrently, a process which would be more

.difficult if we used the same state as the original application.
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The APPLYinstruction initiates the primitive application of a function to its

argument, updating the root of the application and evaluating the result if necessary.

(APPLY) c
(xo, Yl,··· ,Ym, root)

r[xo I---t f ::0"1 x ... X o-« -+ p]

~

(root)

update I" root r

(5.22)
where

a = 0,
= (EVAL),

if p = s

otherwise

where the function update is the one defined in equation 5.12.

The final rule concerns the case when the control stack is empty but we have

previous states on the dump. In this case, we restore the first previous state and

continue. This is similar to returning from a procedure call in an imperative Ian-

guage.

o c
8' 8

==} (5.23)
r r
(0,8): ~ ~

Note that by throwing away the old stack we do not in any way return a value.

5.1.4 An Example of the Operational Semantics

Consider again the expression square (3 + 4) first encountered in Section 2.3. Rep-

.resenting addition and multiplication as the prefix functions plus and times respec-
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tively, both of strictness s x s -+ s, we can define square as:

square :: 1 -+ 1

square@(r,x) = (r, I")

where (5.24)

I" = r u {v t-t t x, r t-t v x}

t = r times

where v and r are variables undefined in r. Note that we have made square lazy

in its argument for illustration. purposes - it could have safely been made strict

- and that the result of square is the application t x x and not the result of this

application. Assume that we have an initial heap I':

{
a t-t times, b t-t square, c t-t plus, d t-t 3, }r=
e t-t 4, f t-t c d, g t-t f e, h t-t b g

then we need to update this r by evaluating h. Our initial machine state (the one

passed to T) is: ((EVAL), (h),r, 0) giving us the transition sequence:

Control Stack

EVAL (h)

===> (by Rule 5.16)

EVAL (b, h)

===> (by Rule 5.19)

EVALARGS 1 (b,g, h)

APPLY

Heap Dump

r o

r o

r o

===> (by Rule 5.20 and strictness of r b = square)

APPLY (b,g, h) or

===> (by Rule 5.22 and definition of square)

EVAL (h) o
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where r1 = r U {v H a g,r H v g,h H r}

==} (by Rule 5.16)

EVAL (r, h) r1 0

==} (by Rule 5.16)

EVAL (v,r,h) r1 0

==} (by Rule 5.16)

EVAL (a,v,r,h) r1 0

==} (by Rule 5.19)

EVALARGS 2 (a,g,g,h) rl 0
APPLY

==} (by Rule 5.20 and strictness of r a = times)

EVALITH 1 (a,g,g,h) rl 0
EVALITH 2

APPLY

==} (by Rule 5.21)

EVAL (g) r1 (8)

where 8 = ((EVALITH 2,APPLY), (a,g,g,h))

==} (by Rule 5.16)

EVAL (f,g) r1 (8)

==} (by Rule 5.16)

EVAL (c, /,g) r1 (8)

, ==} (by Rule 5.19)

EVALARGS 2 (c, d, e,g) r1 (8)

APPLY
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===> (by Rule 5.20 and strictness of r c = plus)

EVALITH 1 (c,d,e,g) r1 (8)

EVALITH 2

APPLY

===> (by Rule 5.21)

EVAL (d) r1 (81,8)

where 81 = ((EVALITH 2,APPLY},(c,d,e,g})

===> (by Rule 5.15)

o o r1 (81. 8)

===> (by Rule 5.23)

EVALITH 2 (c, d, e, g) r1 (8)

APPLY

===> (by Rule 5.21)

EVAL (e) r1 (82,8)

where 82 = ((APPLY), (c, d, e, g})

===> (by Rule 5.15)

o o r1 (81,8)

===> (by Rule 5.23)

APPLY (c, d, e,g) r1 (8)

===> (by Rule 5.22 and definition of plus)

o (g) r2 (8)

where r2 = r1 U {g H- 7}

===> (by Rule 5.23)

EVALITH 2 (a,g,g,h) r2 o
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APPLY

===? (by Rule 5.21)

EVAL (g) r2
where 83 = (APPLY, (a,g,g,h))

===? (by Rule 5.15)

o (g)

===? (by Rule 5.23)

APPLY (a,g,g,h) o
===? (by Rule 5.22 and definition of times)

o (h) r3
where r3 = r2 U {h t-+ 49}

In the heap component of the final state, the variable which referred to the root of

o

the original application, h, now refers to 49, which is the result of square (plus 3 4).

5.2 A Scripting Language for Aladin

To enable us to write programs, we need a top-level language which we can program

in. This language should let us import primitives from a variety of sources and

combine them into programs. The syntax of this scripting language is closely tied

to our implementation of the AAM and choices in one will be reflected in each other.

We necessarily lose some of the purity of the abstract machine, but we shall keep

this to a minimum.

We choose to implement a version of the AAM, using the above semantic rules,

using Java. The approach is similar to the one we used for our Ginger compiler in

the previous chapter. Each Aladin script will be converted into a single Java class.

Choosing Java as our implementation language for Aladin has the same advantages
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as choosing it for Ginger with the additional benefit that Java can interface with

other languages, in particular C and C++, using the JNI [30].

For the syntax of the script, we adopt a subset of Ginger, omitting local func-

tion and lambda expressions, with added constructs for specifying the strictness of

functions and an enhanced syntax for importing primitives. The extended BNF of

this language is as follows:

(script) ::= (packagedec)? (decl)*

(packagedec) .. - package (package);

(decl) .. - (de!) I (import) I (id) (strictsig)

(import) .. - (im) ((id) (strictsig)?)* ; I import? (id)* ;

(im) .. - import (class) I importc II(filename) II I importg (class)

(strictsig) .. - :: (argstrict)? -> (strict)

(argstrict) .. - (strict) (* (strict))*

(strict) .. - s 11

(de!) ..- (id) (id)* = (prog);

(prog) ..- (let) I (simpleprog) +

(let) ..- let (id) = (prog) in (prog) endlet

(simpleprog) ..- (javaid) I (data) I «(prog)

(data) ..- (int) I (float) I (bool) I (char) I (string)
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(javaid)

(package)

(class)

((id) .) * (id)

(javaid)

((package) .)? (id)

where id is any valid Java identifier containing no period ('. ') separators, and file-

name is a legal file name, the syntax of which is dependent on the operating system

we are running under. An Aladin script is thus an optional package declaration

followed by a number of declarations. These declarations are:

Import declarations used to import primitives from a class.

Strictness declarations used to specify the strictness of a primitive.

Definitions used to specify a primitive function by giving a definition which con-

structs a graph from its arguments and other primitives.

Each script file will be appended with the suffix' .as'. As with our Ginger compiler,

we compile scripts written in this language into a Java class file, translating each

definition into a static Java method, and generating Java code to deal with the

importing of functions and the setting of their strictnesses.

5.2.1 Package Declarations

A package declaration, which must be the first statement of an Aladin script, follows

the same syntax as package declarations in Java and has the same meaning. All

primitives defined in this file will be placed inside a class with will be in the package

declared by the user. If no package declaration is made then the empty package is

used. For instance the declaration:
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package fp.aladinj

places all the following definitions in the package fp. aladin.

5.2.2 Import Declarations

The various import declarations allow the user to import primitives from various

classes or files. These declarations have an optional list of primitives we wish to

import from that source, along with optional strictness signatures (see Section 5.2.3

for an example). The import "declaration is used to import primitives from actual

Java classes and Java classes that were obtained from compiling Aladin scripts. The

importg declaration is used to import Java classes that resulted from compiling Gin-

ger programs and importc is used to import primitives from library files generated

by compiling C and C++ programs. Finally, the import? declaration is used to

declare primitives that the script expects the script importing this one to import

at some stage. This declaration is only used in library files which can use more

than one set of basic primitives, for example, either boolean or fuzzy primitives,

or partial or non-partial primitives. The mechanics of importing are discussed in

Section 5.4.6.

5.2.3 Strictness Signatures

A strictness declaration declares the strictness of a primitive function's arguments

and result. If the primitive in question is defined in the script, then this signature

can appear anywhere in the script but must be given; if the primitive is imported

then a strictness signature can be given in the import declaration in which case it

overrides the original signature (if there was one).

An argument or result is either strict, denoted by an s, or lazy, denoted by an 1.

The arguments of a primitive defined in a strictness signature are separated using the
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symbol *, and the arguments are separated from the result by the symbol->, which

is present even if the primitive in question takes no arguments. It is an error to give

a strictness signature to a non-function, or to a function which is neither imported

nor has no definition. As an example, we can give the strictness of the primitives

imported from the class fp. a1adin .lib.List, our standard representation of lists:

import fp.a1adin.1ib.List
_op_list_cons 1 * 1 -> s II

_op_list_empty ·. ->. s II []
_op_1ist_index ·. s * s -> s II

_op_1ist_1ength ·. s -> s II #

isEmpty
hd

tl

S -> S

S -> 1

S -> 1

Thus _op_list_cons takes two lazy arguments and returns a strict result; the func-

tion _op_1ist_empty takes no arguments and returns a strict result; _op-1ist_index

takes two strict arguments and returns a strict result; .op.Li.at.Length and isEmpty

take a strict result and return a strict result; and finally hd and t1 take a strict ar-

gument and return a lazy result.

The number of arguments referred to in a strictness signature refer to the number

of explicit arguments given, not to any implied by 1]-conversion. For instance, if we

define:

hdl = hdj

then the strictness signature of hdl is -> s (since it takes no arguments and returns

a function) and not that of hd (s -> 1).
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5.2.4 Definitions

Aladin definitions follow the normal syntactic style found in functional languages,

in particular the style of Ginger. The five basic data types - integers, reals, strings,

characters and booleans - follow the normal syntax. These types are the only ones

that are built into our compiler that are not in the Aladin semantics.

Applications are written using juxtaposition (and associate to the left) and we

allow the use of infix operators, standard functional list notation (see below) and

sjmple local variable definitions via the let declaration. The use of binary prefix

functions as infix ones can be achieved by surrounding the function in back-quotes as

in Haskell. We use the Ginger if-then-elsif-else-endif notation for conditionals

(again see below for more details). For example, the Fibonacci function can be

defined in Aladin as:

fib :: s -> 1

fib n =
if n == 0 then 1
else

let
f1 = fib (n - 1);
f2 = fib (n - 2);

in
f1 + f2;

endlet

endif;

See Section 5.2.3 for more details on strictness signatures.

This definition merely takes its arguments and produces the graph described in

its left-hand side, hence we have to return a lazy result as we want the graph
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I Prec. I Infix form I Prefix form I Method
0 ++ .op.Lfsc.cat; NjA

: _op_list_cons NjA
1 I .op.or Logical.or
2 &: .op.and Logical.and
3 == .op.eq Object.equals-= .op.ne Object.equals

< .op.Lt Orderable.lt
<= .op.Le Orderable.le
> .op.gt, Orderable.gt
>= .op.ge Orderable.ge

4 + .op.pl.us Num.plus
- .op.minua Num.minus

5 * _op_times Num.times
/ .op.ddvade Num.div
% .op.modul.us Num.mod

6 A .op.exp Num.exp
7 .op.compose NjA
8 ! _op_list_index NjA
9 - .op.not Logical.not

Table 5.1: Aladin infix operators and their prefix form

to be evaluated. No evaluation or compiler optimisations are performed, these

being handled by the evaluation mechanism defined in the previous section. The

construction and evaluation of programs are completely divorced in the scripting

language.

We allow the use of infix operators, though these are converted to prefix functions

during the parsing stage according to the precedence rules defined in Table 5.1 (we

include the already prefix not, -, for completion). Note that in the case of '.',

foo. bar, with spaces around the period, is function composition but foo. bar,

with no spaces, is a single identifier. Also, - is used for both binary minus and to

indicate a negative constant, but not for general unary minus: -3 is legal but -x is

not (we provide the primitive neg to negate a general program).

Some of these operators are overloaded, the resolution being done at runtime.
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In these cases, the prefix form only exists to unwrap the arguments and call the

interface method. Any user-defined class which implements the method specified

in the fourth column adds another overloading to the prefix form. For instance,

if we have a class Foo which implements the Orderable interface then we can use

the comparison operators on objects of that type. Overloading is explained in more

detail in Section 5.4.4.

As with infix operators, the Ginger style if syntax, which is adopted to reduce

excessive bracketing, is converted to a prefix function application. The expression:

if al then Cl elsif a2 then C2··· elsif an then en else d endif

is converted into the program:

_op_if al Cl (_op_if a2 C2 ( ..• (_op_if an en d) ... ))

Here _op_if is the boolean conditional. This isn't built into Aladin, instead the

user provides their own implementation. One such implementation can be seen in

Section 5.4.1.

We also allow the use of the standard square-bracket notation to denote lists,

with the list [Xl. ...• xn] being translated into multiple applications of the list

constructor function _op_list_cons:

.op.Li.st..cona Xl (... (_op_list_cons Xn _op_list_empty) ... )

We also allow the use ofthe 'dot-dot' notation, again converting to a prefix function

application defined in Table 5.2. The user can provide any implementation of lists

that they want, as long as they provide implementations of the list constructor and

deconstructor functions. We describe an implementation similar to the one normally

used in functional languages such as Ginger and Haskell in Section 5.3.2.

As with lists, tuples are converted into applications of a constructor function to

the components of the tuple. The tuple (Xl. . ..• xn) is converted to the appli-
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Dot-dot form Prefix form
[] _op_list_empty
[a .. ] from a
[ a .. b] fromTo a b
[a,b .. ] fromThen ab
[a,b .. c l fromThenTo abc

Table 5.2: Aladin 'dot-dot' lists and their prefix form

cation mkTuple_n Xl ••. Xn. Again, the user can provide their own implementation

and one such implementation is presented in in Section 5.3.2.

5.3 Representation and Evaluation of Aladin Programs

We first need a Java representation of the four components of the AAM defined in the

semantics. The Control is simply the code structure of the evaluation mechanism.

The Stack is implemented as an array which can grow on demand (we could use

a Java Stack or Vector but we use an array as it enables us to perform certain

operations more efficiently and avoids excessive casting). The Heap is a combination

of the object heap of the JVM plus a hash table in which we can look up functions by

their name. Finally, the Dump, which in the semantics is used to simulate function

calls and recursion, is implemented by actual functional calls and recursion in our

implementation.

The definition of programs as given in Section 5.5 suggests that we implement

programs as a class hierarchy as seen in Figure 5.4. Some of these classes are used

only by the compiler: Aladin is the class containing the parser; AladinCompiler

contains the top-level compilation methods; the classes CompileTimeFunction and

CompileTimeApp are compile-time representations of functions and applications

which need to contain more information than their run-time brethren; Ident is

a compile-time identifier (function or variable name); and Let and LocalBlock are
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used to store local variable declarations and will be disappear after compilation. In

addition, the class Unknownand the exception class UnknownValueException are

only used when partially evaluating programs (Chapter 6).

5.3.1 Aladin Programs

All programs are represented as subclasses of the abstract class Prog. Variables are

represented using the Var class:

public final class Var extends Prog {

public Prog value;

II ...

}

where the field value holds the value of the variable. Data objects are represented

by instances of subclasses of the abstract class Data. In particular, the five basic

types - integers, reals, characters, booleans and strings - are represented by the

classes Int, Real, Char, Bool and Str respectively. These classes have a field value

containing the actual value of the data object of type long, double, char, boolean

or String respectively. Unlike in our Ginger compiler we do not use the wrapper

classes provided in the package java .lang. This is slightly inefficient (especially in

the case of strings) but leads to a more elegant and object-oriented design. Functions

are represented by instances of subclasses of the Function class:

public abstract class Function extends Prog {

public String pack = "";

public String cl = 1111;

public String short_name = 1111 ••
public int arity = -1;
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public StrictnessSig strictness;

public final boolean strictln(int i) {
II ...

}

public final boolean hasStrictResult() {

II ...

}

public abstract Prog primApply(Var[] args);

II ...

}

Java naming conventions are used in naming Aladin functions: each function has a

short name (short..name),class (cl) and package (pack). In use, the short name

refers to the last such function with that short name that was loaded. This can be

qualified with the class and maybe the package name if necessary.

The other fields and methods of the Function class are fairly self-explanatory.

The field ari ty represents the arity arity of the function and strictness its strict-

ness signature. The method strictIn returns whether the function is strict in a

certain argument (indexing starting at 1) and hasStrictResult returns whether

the function has a strict result. Finally, primApply primitively applies the function

to the given arguments (cf. @).

Finally, applications are represented as instances of the App class:

public class App extends Prog {
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public Var functor;

public Var arg;

I I ...

}

5.3.2 Data Structures

In our implementation of Aladin, data structures are based on the sum-of-product

type used in ML, Miranda and Haskell and described in [86]. We introduce a class,

SumProd,which will be the superclass of our list, tuple and other similar classes:

public abstract class SumProd extends Data implements Comparable {

protected Var[] fields;

public abstract String getConstructorName();

II ...

}

The Comparable interface, used by Aladin to overload the equals and not equals

functions, is described in Section 5.4.4.

The array fields holds the fields of the structure, for example, in a cons object

the array would have length 2 with the first element holding the head and the second

the tail. The method getConstructorName returns the full name of the function

used to construct instances of that class. For instance, we can implement lists using

the followingclasses:

public abstract class List extends SumProd {

public static final Empty EMPTY = new Empty();
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public static Prog _op_list_empty() {
return EMPTY;

}

public static Prog _op_list_cons(Var h, Var t) {
return new Cons(h, t);

}

public static Var hd(Var 1) {

List list = (List) l.get();

if (list instanceof Empty)

throw new EvaluationException("Can't take hd of empty list");
else

return list.fields[O];
}

II ...

}

final class Empty extends List {
public Empty() {

fields = empty_fields;
}

public String getConstructorName() {
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return Ifp.aladin.lib.List._op_list_emptY"j

}

II ...

}

final class Cons extends List {

public Cons(Var head, 'Var tail) {

fields = new Var[] {head, tail};

}

public String getConstructorName() {

return Ifp.aladin.lib.List._op_list_cons";

}

II ...

}

Here empty...fields is a final static member of the SumProd class which is an array

of zero Var objects.

As well as acting as the superclass of Empty and Cons, the List class contains

the definition of primitives acting on lists. The method _op_list_empty is the

alphanumeric form of [] and _op_list_empty is the alphanumeric form of : (see

Section 5.2.4). These methods call the relevant constructor of the Empty and Cons

classes respectively. The method hd returns the head of a list; after casting the value

of its argument to a List it then determines whether the value is an instance of the

Empty class, in which case the head does not exist, or the only other alternative, the
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Cons class, in which case we just return the first component of the fields array.

Other list primitives can be defined similarly.

For tuples, we have a superclass Tuple from which we subclass specific tuples,

for example the Pair class represents pairs. The user is free to subclass the SumProd

class to create his or her own data structures, for example, trees and other container

types. Note that the creation and manipulation of the these types is done entirely

by function application: there is no equivalent of Haskell's data declaration and

pattern matching, for instance.

Relating this implementation back to the sum-of-product concept, we have the

fields array representing the 'product' part, the class itself as the constructor tag,

and sub classing used to sum types.

5.3.3 The Evaluation Mechanism

The main evaluation mechanism is contained in the VarStack class which is used

to represent the Aladin stack. The function-lookup table is held as a static field

of the AAMclass which, for convenience, will be sub classed by the classes where we

define our primitives. Each of these primitives is represented by a static method as

in our Ginger compiler. Again we use the java. lang. reflect package to reflect

these methods as as Method objects which are stored as a member of the Function

class (see above). These methods take a number of Var objects as arguments and

return a value of type Prog. Unlike in the semantics given in Section 5.1 the heap

is not passed or returned as an explicit parameter since it is a global object which

can be destructively updated.

The evaluation of a program is triggered by a call to the eval method of the Var

object that refers to the program we wish to evaluate. This method creates a new

stack and triggers the transformation of the stack (cf. the meta-function F defined

in equation 5.14) and is defined as follows:
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public Prog eval() throws UnknownValueException {

Prog p = getO;

if (p instanceof App I I

p instanceof Function && «Function) p).arity == 0) {

II only need to bother evaluating if this variable refers to an

II App or a CAF.

(new VarStack(this». transformO;

return get();

}

else

return p;

}

If it is possible to evaluate the value of the variable, that is if it is an application

or a CAF, then a new VarStack is created and we trigger the transformation of

the stack. Otherwise, no evaluation needs to be done. For convenience,the method

returns the final value of the variable using the method get (which short-circuits

chains of Var objects).

The method transform in the VarStack class repeatedly transforms the stack

using Rules 5.15-5.23 as a guide. This method starts as follows:

public void transform() throws EvaluationException {

for (;;) {

Var v = headO;

Object head = v.get();

Transformation of the stack will terminated by a return statement. The method
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head returns, without popping, the Var at the top of the stack. If the value of this

object is an Appthen we push its functor onto the stack and continue (cf. Rule 5.16):

if (head instanceof App)

push«(App) head).functor);

If the value is a function we have to determine its arity. Ifwe have enough arguments

we can trigger the application of the function to its arguments (cf. Rules 5.19 and

5.22):

else if (no_args < f.arity) {

II Not enough arguments, so just evaluate those we can

evalArgs(f);

return;

}

The final case if the head is a function is when we have too many arguments. In

this case (described in Rule 5.18) we evaluate the inner application by popping the

appropriate elements from the stack (the function itself and the correct number of

arguments) and forming these into a new stack which we then transform. Once this

new stack has been fully evaluated, we continue transforming the original one, the

head of which will be the result of evaluating the new one.

else { II too many arguments

VarStack inner = partition(f.arity);

inner.transform();

}

}

}
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The method partition does the job of splittingthe stack up. Itsdefinitionisgiven
below. If the head of the stack is a data object then we can just return from the

transform method:

}

else {
II head must be a data object or an unknown.

return;
}

}

}

The method evalArgs extracts the arguments from the stack and evaluates them

with respect to the strictnessof the passed function:

private YarE] evalArgs(Function f) {
II we need to preserve the ordering -- the stack is held reversed

II for efficiency when pushing
YarE] args = new Var[count - 1];
UnknownValueException unknown = null;

for (int i = 0; i < count - 1; i++) {

II get the argument part
args[i] = «App) elements[count - (i + 2)] .get()).arg;

if (f.strictln(i + 1))
args[i] .eval();

}
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return args;

}

The method parti tion splits the current stack in two, returning the stack represent-

ing the inner application and keeping the stack representing the outer application

on the original stack. Note that the root of the inner application is kept as the head

of the stack used in the outer application (thus, strictly speaking, we have not got

a partition since one element is in both halves):

private VarStack partition(int num_args) {

VarStack inner = new VarStack(num_args + 1);

int root_index = count - (num_args + 1);

inner.count = num_args + 1;

System.arraycopy(elements, root_index,

inner. elements , 0, inner.count);

count = root_index + 1;

return inner;

}

The method update of Var deals with the updating of variable with a new value

as in Equation 5.12. Note that for simplicity we assume that p is reducible if it is

an Appor a CAF, rather than a function applied to at least the correct number of

arguments as in Equation 5.12.

public final void update(Prog p) {

II find the end of the indirection chain

Var v = this;

while (v. value instanceof Var)
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v = (Var) v.yalue;

if (p instanceof Var) {

II might be able to short-circuit any chains
Prog p_value = «Var) p).get();

if (p_value instanceof App)

v.value = p_value;
else if (p_value instanceof Function)

v.value = «(Function) p_value).arity == 0) ? pp_value;
else

v.value = p_value;
}

else

v.value = p;
}

5.4 Primitives

As mentioned above, our basic mechanism for implementing primitives is the static

Java method. In this section we shall only deal with how the user writes such

primitives and how primitives in written in different languages are handled by Java.

The mechanism of importing primitives is handled in Section 5.4.6. Since Aladin

is essentially a pure functional language, it is expected that the user makes the

primitives defined referentially transparent, that is, depend only on the value of

their arguments.
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5.4.1 Java and Aladin Primitives

Each primitive that is written in Java (and also Aladin since we compile Aladin

definitions to Java methods - see Section 5.5) is represented by an instance of

the RunTimeFunction class a subclass of Function (see Section 5.3). This has a

field of type java. lang. reflect .Methodwhich reflects the (static) method where

the actual code is stored. To primitively apply such a function to a number of

arguments merely requires applying the invoke method from the Method class to

the arguments.

public class RunTimeFunction extends Function {

public Method app_rulej

public Prog primApply(Var[] args) {

return (Prog) app_rule.invoke(null, args)j

}

}

Note that primApply only returns the result rather than the updated heap as in

Rule 5.6 as any updates to the heap will be done globally. The actual writing of the

Java code can be split into three parts:

1. Extract some or all of the values from the Var objects.

2. Do the actual work involved.

3. Wrap the result in a Prog object if necessary and return.

For example, consider the method .op.Lf of strictness s x l x l -t l which does the

work of the conditional if:

public static Prog _op_if(Var a, Var t, Var f) {
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return (a.getBool()) ? t f;
}

We first extract the value of a using the method Var. getBool which presumes that

the ultimate value of the variable is a boolean and returns it as a Java boolean. This

method saves us doing the type cast and field access in the code of the primitive.

There are also methods getInt, getReal, getChar and getString for getting the

Java long, double, char and String values of a variable. If evaluation needs to be

done before the value is extracted than the related functions, evalBool, evaUnt,

etc. may be used.

Depending on the value of a, we either return the true branch of the condition,

t, or the false branch, f. Note that the evaluation of the result is left to Aladin's

evaluation mechanism since _op_if declares that it returns a lazy result. We could

declare _op_if to have a strict result, in which case the evaluation would have to be

done inside the primitive:

public static Prog _op_if(Var a, Var t, Var f) {
return (a.getBool()) ? t.eval() : f.eval();

}

Note that such an approach would have to create a new state (more specifically, a

VarStack object) in which to evaluate either t or fj the version which returns a

lazy result will evaluate t or f in the original state. The latter approach means that

not only do we avoid the work needed to create a new state, but we do not waste

memory by having two states in memory at the same time.

Of course, primitives can be more complex than this one-liner. Consider the

following function to compute factorials (of strictness s -t s):

public static Prog fac(Var v) {

long value = v.getlnt();
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II do the actual work

long f = 1;

for (long i = 2; i <= value; i++)

f *= i;

1* wrap the answer in an Int and return *1

return new Int(f);

}

We first extract the integer which we want to take the factorial of. The answer is

then generated in an iterative loop and packed into an Aladin Int before returning.

5.4.2 C Primitives

Implementing primitives in C relies heavily on the Java Native Interface [30]. Each

C function, which originates from some shared dynamic library, has a corresponding

Java method declaration which is used by Aladin to interface to that function, as

with the standard use of native methods in Java. Thus, to Aladin, a C primitive

is the same as a Java or Aladin one (there is a CFunction class for representing

primitives written in C, but this is only used at compile time).

The actual code for the primitives follows the pattern for writing primitives in

Java. For example, we can define the factorial function in C, analogous to the Java

one in Section 5.4.1, as follows:

JNIEXPORTjobject JNICALLJava_update_fac

(JNIEnv *env, jclass cl, jobject var)

{
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jlong value = getlnt(env, var);

1* do the actual work *1

jlong f = 1;

jlong i;

for (i = 2; i <= value; i++)

f *= i;

1* wrap the answer in an Int *1

return makelnt(env, f);

}

The somewhat involved-lookingprototype for each function is generated by Aladin

from its strictness signature using the j avah utility and placed in a C header file.

This can then be copied by cut and paste into the . c file where the code is to

maintain consistency and save typing a complicated expression.

The first argument of the function is a pointer to an environment representing

the JVM. This allows us to call Java methods, create Java objects, etc., from C

(similar to the necessity of passing the heap as the first parameter of primitives in

the semantics). The second argument is the class of the Java method which this

function provides the implementation for; it is not used by the function. The rest

of the arguments are the actual arguments of the function, in this case we have just

one.

The function getInt is the C equivalent of the Java getInt method (see Sec-

tion 5.4.1), in fact the former calls the latter during execution:

jlong getlnt(JNIEnv *env, jobject v) {
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jobject Var = getVar(env)j

jmethodID I = (*env)->GetMethodID(env, Var, "get Int "; IIOJ");

1* get the value of var *1

return (*env)->CallLongMethod(env, v, I);

}

This code has to find the Var class, get an ID for its getInt method and finally

call it. It is defined in a separate shared library (libAladin. so in UNIX) which

must be linked in when the user compiles their code. The other related methods,

getBool, evalInt etc., have similar definitions in C.

After computing the factorial weneed to wrap the result (a jlong) in an Aladin

Int object. This is done using the makeInt function:

jobject makeInt(JNIEnv *env, jlong val) {

jobject Var = getVar(env);

jmethodID ConsInt = (*env)->GetMethodID(env, Var,

"<init>", "(J)V");

1* Invoke and return *1

return (*env)->NewObject(env, Var, ConsInt, val);

}

The steps take are similar to the getInt function. We have a whole family of

functions to make Aladin programs from each primitive JavajC type. For example,

makeReal and makeAppconstruct reals and applications respectively.

5.4.3 Primitives in Ginger

Each primitive written in Ginger is represented by a GingerFunction object:
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public class GingerFunction extends Function {

private fp.gingerc.Func ginger_function:

II ...

}

Instead of the app..rule field found in the RunTimeFunction class we have an object

of the Func class (we explicitly qualify each class from the fp. gingerc package to

make it clear where methods and classes originate and because there are some name

clashes between packages) reflecting the Java method that the Ginger code has been

converted to (see Section 4.3). The primApply method is implemented to use this

field:

public Prog primApply(Var[] args) throws EvaluationException {

Object[] gargs = new Object[args.length];

for (int i = 0; i < gargs.length: i++)

gargs[i] = args[i].toGinger():

Object g_res = ginger_function.apply(gargs):

g_res = fp.gingerc.Node.eval(g_res);

return fromGinger(g_res):

}

Before calling the function with the given arguments, the arguments in question

must be converted to a format Ginger will recognise, and similarly we must convert

the result back into Aladin. Since Aladin and Ginger are both functional languages

this conversion is fairly straightforward, with a couple of caveats.
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As Ginger is lazy, it is possible that an argument, or a part of it, may pass

through a call to a Ginger function completely unaltered. Converting an Aladin

program to a Ginger object involves the creation of a new and distinct object,

similarly with the reverse process. Suppose we have an Aladin program a which

is passed to a Ginger function I; a will be converted to a Ginger function g, say.

Suppose now that 9 is passed back as part of the result of the Ginger function (for

instance as part of a list); it will be converted to an Aladin object a', say. So, a and

a' are really the same object, but during the conversion process they have become

"divorcedfrom each other. In particular, if we evaluate a then this evaluation is not

reflected in a' and vice versa. This can have a serious effect on performance. For

instance consider the followingGinger program.

lists x = [x .. J : lists (x + 1);

hdlists n =
let

ns = map hd (lists 0);

in

if n == 0 then

ns

else

take n ns

endif

endlet;

Although hdlists normally runs in linear time with respect to the parameter n,

if we import it into Aladin then the above conversion problem slows it down to

exponential time.
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The solution is to cache the Aladin-Ginger conversions so that when we wish to

convert an unchanged object back from Ginger we can retrieve the original Aladin

program, and vice versa, rather than creating a new one. This cache stores only the

most recent conversions created or referenced to prevent the machine being clogged

up with long-irrelevant conversions and to enable Aladin and Ginger objects to be

released for possible garbage collection. To minimise the conversion work done, we

make sure that the Ginger object is in WHNF, by calling the Node. eval method,

before conversion is done.

Although the conversion of Aladin objects to and from Ginger is for the most

part straightforward, converting Aladin functions to Ginger ones is slightly more

complex. To solve this problem we represent Aladin functions in Ginger using the

class AladinFunc, a subclass of the Ginger function class, Func.

public class AladinFunc extends Func {

protected Var al_func;

public Object apply(Object[] as) {

Var v = al_func;

for (int i = 0; i < as.length; i++)

v = new Var(v, Prog.fromGinger(as[i]»;

v.evalO;

return v.toGinger();

}

}
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This class stores as a member the original Aladin function (or rather, a Var object

which refers to it). When Ginger applies such a function, by calling its apply

method, we form a new Aladin application by converting the passed arguments from

Ginger to Aladin which are given as arguments to the original Aladin function. We

then evaluate this function using Aladin, convert the result back to Ginger and then

return. Again these conversions are cached.

5.4.4 Overloading

Our implementation of Aladin allows primitives to be overloaded in a manner that

is more systematic than Ginger's approach, though not as expressive and powerful

as Haskell's. This overloading is only known to the primitives and is in no way built

into our implementation.

We use Java interfaces to classify classes whose instances can be combined using

the methods of the interface. For instance, instances of the Comparable interface

must implement the eq (equals) and ne (not equals) methods (cf. Haskell's Eq class

described in Section 2.4) defined as:

public interface Comparable {

public Prog eq(Prog p);

public Prog ne(Prog p);

}

It is these methods that are called by the .op.aq (prefix variant of ==) and .op.ne

(prefix variant of -=) methods (see Section 5.2.4). For instance, _op_eq is defined

as:

public static Prog _op_eq(Var x, Var y) {

Prog a = x.get(), b = y.get();
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if (a instanceof Comparable)

return ((Comparable) a).eq(b)j

else

return (a.equals(b» ? Bool.TRUE Bool.FALSEj

}

This primitive (which is strict in both its arguments) first tests of it can compare

its two arguments using the Comparable. eq method; if not then it uses the equals

..method which all Java classes implement, either through inheritance or by over-

riding. Note that Comparable. eq is preferred as it returns a general Aladin program

rather than a boolean. This is preferred when partially evaluating programs as we

might not be able to calculate all of the result (see Section 6.5.1). So, the user

can overload the == and -= operators on any type they wish by implementing the

Comparable type in the type's class definition.

The interface Orderable is implemented by classes whose instances can be or-

dered (cf. Haskell's Ord class), while the Num interface is implemented by classes

whose instances can be used in arithmetic expressions (cf. Haskell's Num class and

its subclasses). Since we wish to use Aladin to implement solutions to problems in

fuzzy logic, we also introduce the Logical interface (cf. the Logic class introduced

in Section 3.1) which is implemented by classes whose instances can be combined in

logical expressions. See Section 5.4.5 for further details.

5.4.5 Fuzzy Primitives

As mentioned in Section 5.4.4 we overload the logical primitives so that they im-

plement both boolean and fuzzy logic. For fuzzy logic, we have to implement the

Logical interface in the Real class. This interface defines the methods and, or and

not which are called by our implementation of .op.and (&), .op.or (I) and .op.not
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(-) respectively. Fuzzy conjunction, using Zadeh's definition, is implemented using

the following method:

public Prog and(Var v) {

if (value == 0.0)

return ZERO;

else if (value -- 1.0)

return v;

else

return (value < v.evalReal(» ? (Prog) this

}

(Prog) v;

The instance field value is a double containing the value of the Real. ZEROis a

static field of Real containing the Real with the value O. Note that this primitive

is still lazy in its second argument as in the second case, since 0 and 1 are the

annihilator and identity of fuzzy conjunction and we test for these values first. The

methods .op.or and .op.not are implemented similarly.

Unlike in Ginger and Haskell, we do not overload the logical primitives so that

they also act as set operators since, because Aladin is untyped, this can lead to

complications when we partially evaluate fuzzy Aladin programs. Instead we in-

troduce the functions union, inter, add and comp to perform operations of union,

intersection, addition and complement of sets. These are defined using the a.dash

function (the S' combinator) and function composition:

s_dash :: 1 * 1 * 1 * 1 -> 1
s_dash op f g x = f x cop' g x;

union :: 1 * 1 -> 1
union x y = s_dash (I) x y;
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inter :: 1 * 1 -> 1
inter x y = s_dash (&)x Yj

add :: 1 * 1 -> 1
add x y = s_dash (+) x Yj

comp :: 1 -> 1

comp x = (-) Xj

We also need to define fuzzy set operations point-wise over tuples for use in fuzzy

systems which have more than one output variable. Again, because of complications

due to partial evaluation, this is done using separate functions rather than overload-

ing. The functions applyUn and applyBin map a unary function over a tuple and

combine two tuples with a binary function respectively (cf. the list functions map
and zipWith). These have the following behaviour:

applyUn f (Xl, ... ,Xn) = (f Xl, ... ,f Xn)

and

applyBin $ (Xl,··· ,Xn) (YI, ... ,Yn) = (Xl $ YI, ... ,Xn $ Yn)

The weighting operator (==> in Haskell and Ginger) becomes the function when in

Aladin:

when :: 1 * 1 * 1 -> 1
when w f x = if isZero w I isZero (f x) then 0 else w * f x endifj

The function isZero returns whether a program has the value 0; it is especially

useful if we are partially evaluating (see Section 6.6.6). All other fuzzy functions

have obvious translations from their Haskell counterparts.
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We can now implement our shower controller from Section 3.4.1 in Aladin. Given

the domain changedom = [-0.2, -0. 175 .. 0 .2] over which we defuzzify the

changes to the hot and cold taps, and the fuzzy subsets of temperature, flow and

change, we can define the fuzzy rule base function, change_valves as:

change_valves :: s * s -> 1
change_valves temp flow =

let
defuz = centroid changedom;
changes = rulebase (applyBin add) [

applyUn (when (cold temp & weak flow)) (pm, z),

applyUn (when (cold temp & right flow)) (pm, z),

applyUn (when (cold temp & strong flow)) ( z, nb) ,

applyUn (when (ok temp & weak flow)) (ps, ps),

applyUn (when (ok temp & strong flow)) (ns, ns),

applyUn (when (hot temp & weak flow)) ( z, pb),

applyUn (when (hot temp & right flow)) (nm, z) ,

applyUn (when (hot temp & strong flow)) (nb, z)] ;

in
(defuz (fst changes), defuz (snd changes))

endlet;

While this may not be as elegant as the Haskell version it is very amenable to partial

evaluation (see Sections 6.6.6 and 6.6.7) and, as we shall see in the next chapter,

partially evaluating it leads to a residual program which is an order of magnitude

faster than the original.
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5.4.6 Importing Primitives

As we shall see in Section 5.5, we shall compile Aladin definitions into static Java

methods, so the import procedure for primitives defined in Aladin and Java is

the same. The import declarations are converted into method calls and placed in

the static method __ini tialise_class_ that is created for each compiled Aladin

script. This method is called when the class is loaded, either by the class's main

method or by the import mechanism depending on whether the class is the one being

run to evaluate programs or has been imported respectively (see Section 5.5.4).

The first section of code in __initialise_class_ creates the function, setting

its strictness signature and inserting it into the heap, but for the moment leaving

its app...rule (see Section 5.4.1) null for the moment. As an example, we have

the following from stdlib.java - the code generated from stdlib.as where the

arithmetic functions, amongst others, are defined:

public static void __initialise __class __() throws Exception {

put("fp.aladin.lib", "Operators", "_op_plus", CONST_O);

put("fp.aladin.lib", "Operators", "_op_minus", CONST_O);

put ("fp.aladin. lib" , "Operators", "_op_times", CONST_O);

put("fp.aladin.lib", "Operators", "_op_divide", CONST_O);

/ / ...
}

The static put method (inherited from the AAMclass which is the superclass of all

classes created by the compiler) creates a new function from its arguments and

inserts it into the heap. The first three arguments represent the package, class and

name of the function to be created. The last argument is the strictness signature,

which is created only once and stored as a private field of the generated class (see
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Section 5.5.2}. Here CONSLOrepresents the strictness signature s x s -+ s.

After setting the functions up, we have to fill in their app...rule field. This is

done by going through each class, including the class that is doing its importing since

any functions it defines itself are held in that class, using the getDeclaredMethods

method from the java .lang .Class class and filling in each function with its appro-

priate Method object. If we end up with any functions which we have a strictness

signature for but no corresponding Method then an error has occurred.

Each primitive that is written in C and directly imported will have had a corre-

sponding Java method header created in the generated class file, hence these primi-

tives will be imported by the same mechanism that imports Java and Aladin prim-

itives. However, we also need to load in the libraries where the actual object code

can be found. This is done by loading each library using the System.loadLibrary

method.

Importing Ginger primitives is done similarly to importing Aladin and Java

primitives, except that as each Ginger function is stored as a fp. gingerc .Func

field of the Ginger class generated by the Ginger compiler from each Ginger script

(see Section 4.5.2) we have to examine the fields of each Ginger class rather than

the methods.

5.5 Compilation

The aim of the compiler is to take an Aladin script and translate it into a Java

program which will then be compiled by a Java compiler into a Java class file. Our

compiler has three jobs:

1. To provide a static Java method for each primitive defined in the script.

2. To set the strictness of each function defined in the script and any imported

function whose strictness is redefined in the script.
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3. To import all the functions specified in the script.

The latter two jobs will be accomplished by putting the code that achieves their ob-

ject in the method __ini tialise_class_ of the created class, which will be called

by Aladin when that class is loaded. The whole import procedure is triggered when

a class is run using the Java interpreter by placing a call to __ini tialise_class_

in the main method of each created class file.

5.5.1 Compiling Scripts

To compile a script we need the following parameters:

• c, the class to create (derived from the name of the script);

• p, the package to place the created class in, declared using package (if no such

declaration the p is set to the empty string);

• ss, the set of distinct strictness signatures used in a script;

• cs, the set of distinct constants used in a script;

• fs, the set of functions defined in the script with those imported into the script

who have their strictness signature set or over-ridden;

• cls, the classes containing primitives defined in Java and Aladin directly im-

ported into a script;

• gs, the classes containing primitives defined in Ginger directly imported into

a script;

• Is, the shared object libraries containing primitives defined in C/C++ directly

imported into a script;

• ds, the functions defined in the script (with their definitions) plus any primi-

tives defined in C which are directly imported.
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The compilation scheme P creates a Java program using these parameters

P p c ss cs Is cls gs Is ds

= package pj

import fp.aladin.*j

public final class c extends AAM {

S ss cs Is cls gs Is ds

public static void main(String[] args) throws Exception {

__initialise_class_O j

parseAndEval(args)j

}

}

If no package has been given then we omit the package declaration. The S scheme

creates the code used to initialise the class and creates the method definitions for

each function defined in the script.

The main method will be called if we run the created class using the java

interpreter or some other way of executing Java classes. It first initialises the class,

by importing all the required classes and functions and setting any required strictness

signatures. It then parses the command line arguments. Some of these are used to

set options, for instance, whether to pretty print, whether to partially evaluate and

how many decimal places to use when printing real numbers. The rest are assumed

to form an expression to be evaluated. If there is no such expression then Aladin

attempts to evaluate the main CAF defined in the class (if there is one). Note

that Java allows us to overload the main method, so there is no conflict between

main(String[]), the method called by the Java interpeter when the class is run,
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and main 0, the compiled form of the main CAF.

5.5.2 Compiling Constants and Strictness Signatures

We do not create a separate object representing all the constants and strictness

signatures in a class. Rather, for each distinct constant we create just one instance

and store it as a private field of the class we are creating and read this field whenever

we want an instance of the particular constant or strictness signature.

S (Sl,"" Sm) (Cl, ••• ; en) Is cls gs Is ds

= CC 1Cl

CC n en

cs (n+ 1) SI

cs (n + m) Sm

public static void __initialise_class_O throws Exception {

Vis cls gs Is ds p

where

[

Cl t-+ CaNST _i, ... ,en t-+ CaNST _n, 1
p = SI t-+ CONST_(n + 1), ... , Sm t-+ CONST_(n + m)

The function cc compiles a constant and places it in a static private field of the class

being created:

CC i c = private static Var CONST_i = new Var(c);

The Var class has a constructors to construct variables which point to the appro-

priate program for each basic type. The function cs is similar to cc but it compiles
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a strictness signature instead.

cs i (0"1 X ••• X O"n -+ p)

= private static StrictnessSig CaNST_i =
new StrictnessSig(as, r);

where

as new boolean [] {a1' ... , an}

ai = true, if a; = S

= false, otherwise

r = true, if p = S

= false, otherwise

5.5.3 Compiling Strictness Declarations

The V scheme declares the strictness signature of each function. The final parameter

is an environment detailing which constant or strictness signature corresponds to

each field. For a constant or strictness signature, c its corresponding field is p( c).

V (11, ... ,im) cls gs Is ds p

put(Pm, Cm, nm, sm) ;

Ids gs Is ds p

where

Pi = package (Ji)

Ci = dass(Ji)

ni name(Ji)

Si = p( strictness (Ji) )
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5.5.4 Compiling Imports

The I scheme deals with creating the code needed to import the various classes and

libraries.

I(Cl, ... ,en) (gl, ... ,gm) (h, ... ,h) ds p

= importClass(lIc11l);

importClass (lien II) ;

importGinger(lIg11l);

import Ginger( IIgm II) ;

System.loadLibrary(lIh") ;

System .1oadLibrary (1I1k II) ;

}

1£ ds p

Note the terminating brace for the definition of __ini tialise_class_ started by

the S scheme.

5.5.5 Compiling and Optimising Local Blocks

Our Aladin compiler contains a facility to eliminate common subprograms in a

definition. Consider the following definition of the function subseqs which returns

all the subsequences of a list:

subseqs S -> 1

subseqs xs =
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if iSEmpty xs then [[]]

else subseqs (tl xs) ++ map «:) (hd xs» (subseqs (tl xs»

endif;

Evaluation of this function applied to an argument has to evaluate the subseqs

(t.L xs) and tl xs twice. We would expect the user to recognise this and lift the

repeated applications into a let. Howeverthere is no reason why we cannot let the

compiler do it instead.

For each program definition, we examine its definition for any repeated non-

trivial subprograms. For our purposes, a non-trivial subprogram is an application

or a function, the latter because the code to construct a function is done using a

hash table lookup and it is quicker if we only have to do this lookup once. So, for

example, the above definition of subseqs is optimised to:

subseqs xs =
let

v5 = _op_list_empty;

v3 = (subseqs (tl xs»;

vO = _op_list_cons;

in

«(_op_if (isEmpty xs» «vO v5) v5»

«_op_list_cat v3) «map (vO (hd xs») v3»)

endlet

Since both the functions _op_list_empty and _op_list_cons occur more than once

in the definition of subseqs they are lifted into a local definition, similarly with the

application subseqs (tl xs). Note that by lifting the recursive call to subseqs into

a local definition we now only have one occurrence of tl xs and so this does not

have to be lifted out into a separate definition. This is ensured by a complimentary
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optimisation: eliminating redundant lets, that is local definitions whose variable

occurs only once in the entire definition.

While these optimisations are not critically important in normal Aladin pro-

grams, since an experienced programmer should be able to spot when to introduce

local definitions, they are important when we partially evaluate Aladin programs.

This is because all knowledge of local definitions is lost after compilation and so

the definition of any residual programs may contain repeated subprograms. See the

next chapter for further details.

Before compilation all local variables are 'floated' to the top level using the ft

function. This function splits a program into a list of declarations and a program

containing no lets:

ft ((let v = D in B endlet) C) = ((v, D') : ds ++ es, P)

where

(ds,P) = ft (B C)

(es,D') = ft D

ft (C (let v = D in B endlet)) = ((v, D') : ds ++ es, P)

where

(ds,P) = ft (C B)

(es, D') = ftD

ft (BC) (ds ++ es, B' C')

where

(ds, B') = ftB

(es,C') = ftC

ftP = (0, P)

In a conventional compiler we would have to be careful about how far outwards

we floated local variable declarations as we might end up unnecessarily building

the graph of programs that could otherwise be avoided. For instance, in a condi-
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tional expression a conventional compiler can exploit its knowledge of the conditional

primitive to build only the graph related to the 'true' branch of the conditional and

ignoring all the rest. Since Aladin knows very little about how its primitives work

we can perform no such optimisation, but this does mean we do not have to be as

careful about where we place our local variable declarations as in a conventional

compiler.

The 11 scheme compiles all the definitions in a script plus creates headers for

any primitives written in C into the script:

1l(!1, ... ,In)P = :F!1 P

:F In P

The scheme :F compiles an individual function. If the function is written in C or

C++ we just need to declare a native method:

:F In P = public final native static Prog I(Var x.L, ... , Var x_n);

where x_i are dummy parameter names and n is the arity of the function. Each

definition first has all its variables renamed so that they are all distinct and then

compiled using the :F scheme:

:F (f Xl . .. Xn = E) P

- public final static Prog I (Var Xl, ... , Var Xn) {

Var VI = CDl P VS;

Var Vm = C Dm P VS;

return n E' P vs;

}
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where

(((VI, Dd,.·· (vm, Dm)), E') = ft E

5.5.6 Compiling Simple Programs

The nand C schemes compile a simple program. They differ only in how they treat

the outermost part of a program when that part is an application. If we have a

constant then we simply have to load the relevant field:

C c p vs = n c p = p( c)

If we have an identifier then we either have a function or a variable. We can tell the

difference by seeing if the identifier is in the set of variables passed to C:

Cid p vs = id, if id E vs

= get (id) , otherwise

If we have a variable then the code to compile is thus that variable, otherwise we

presume it is a function name and look it up in the heap using the get function

inherited from the AAMsuperclass.

If we have an application, then the C scheme compiles the functor and the

argument using the C scheme and then forms then into an App which is pointed to

by a Var (achieved using the two-argument constructor of Var):

C (f a) p vs = new Var(C f p vs, Cap vs)

If we are compiling the outermost application then we do not need to create the

Var. Hence R: is defined as:

n (f a) p vs = new App(C f P vs, Cap vs)
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5.5.7 Compiling the Target Code and Using the Resultant Classes

The code created by the compiler is placed in a .java file which is compiled into

a class file using the javac compiler. If the script directly imports any CjC++

functions then j avah is run over the generated class to create the header filedefining

the prototypes for the imported CjC++ functions. For example, suppose we have

the followingdefinitions in the script foo. as:

import fp.aladin.stdlib;

.import fp.aladin.gstdlib;

importg bar

lists

hdlists

s _) 1

s _) 1;

main:: _) 1

main = hdlists 10;

where lists and hdlists are as defined in Section 5.4.3. Then this script is com-

piled into the Java file foo.java (the indenting has been added by hand):

import fp.aladin.*;

public class foo extends AAM{

private static fp.aladin.Var CONST_2= new fp.aladin.Var(10)j

private static fp.aladin.StrictnessSig CONST_O=
new fp.aladin.StrictnessSig(new boolean[] {true}, false);

private static fp.aladin.StrictnessSig CONST_1=
new fp.aladin.StrictnessSig(new boolean[] {}, false);
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public static void __initialise __class __() throws Exception {

importClass(lfp.aladin.stdlib");

importClass(lfp.aladin.gstdlib");

putGinger(IIII, "bar", "lists", CONST_O);

putGinger("I, "bar", "hdlists", CONST_O);

importGinger(lbar");

System.loadLibrary(IAladin");

put (" II, IfoO", "main", CONST_i);

importClass(lfoo");

}

public static void main(String[] args) throws Exception {

__initialise __class __();

parseAndEval(args);

}

public static Prog maine) {

return new fp.aladin.App(get(lbar.hdlists"), CONST_2);

}

}

This is then compiledinto the class foo. class. The class fp. aladin. stdlib con-

tains various standard functions,while fp.aladin.gstdlib contains import decla-

rations and strictness signatures for Ginger primitives and functions in its standard

prelude.

We can now evaluate programs. To evaluate main we simply pass foo as an

argument to java with the -pp2 argument to specify that wewant to pretty-print
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lists using the square bracket notation:

gem: - /Aladin/progs> java foo -pp2

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

We can also apply hdlists to a different argument:

gem:-/Aladin/progs> java foo -pp2 hdlists 20

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9,

10, 11, 12, 13, 14, 15, 16, 17, 18, 19]

Since we import stdlib into our script, we have access to standard functions such

as arithmetic and comparison operators, and hence we can evaluate programs using

these functions via the foo class:

gem:-/Aladin/progs> java foo '(3 < 2) I (2 >= 8 + 5)'

false

As well as command-line evaluation, we provide a graphical environment in which

the user can interactively load, discard and evaluate programs. Figure 5.5 shows an

example of the above three programs being evaluated in the graphical environment.

Further examples of running Aladin programs can be found in the next chapter.

5.6 Summary

The Aladin Abstract Machine is a useful tool for investigating aspects of functional

programming, since its simplicity allows us to concentrate on the vital issues. Its

control over strictness allows the user to specify when and if parts of a program

should be evaluated, useful when importing primitives from a variety of languages,

each with differing evaluation strategies. We have given the semantics of the Aladin

Abstract Machine and an implementation of the machine, written in Java and cre-

ating a Java class. At present, our implementation is able to import primitives from
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hdllsts 20
1,2,3,4,5,6,7,8,9,10,11,12,13,14, 15, 16, 17, 18, '19)

n> (3 c 2) I (2 ;>= 8 ...5)

Figure 5.5: A GUI for Aladin

programs written in Java, C/C++, Ginger and the simple Aladin scripting language

that we have defined in this chapter, using the fact that there are compilers available

that target Java class files for all three of these languages.

Since the semantics of Aladin concern only the evaluation of programs, the

construction of data structures and other such entities can only be done by means

of function applications. However, since functions can be written in any language

of the user's choice, there is no fixed template that the user must adhere to, and

they have the freedom to implement the structures that their programs use in any

way they see fit. The Aladin scripting language which we developed in Section 5.2,

while outwardly resembling Ginger, is in fact a sugared way of constructing Aladin

programs (as graphs of functions applied to arguments). Data structures such as

lists and tuples are reduced to function applications and it is expected that the user

provide suitable implementations of these functions.

Ginger, on the other hand, has a fixed set of data structures which are built

into the language and which the language's compiler is aware of. This allows the
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Ginger compiler to generate code which will directly construct data structures in

some cases (such as lists - see Section 4.5.2) and also to directly call functions. In

effect, the compiler is doing some evaluation of the program to be compiled in order

to achieve these optimisations.

Another area where Aladin differs from other Ginger and other functional lan-

guages is in its use of strictness. In a conventional functional language compiler,

whatever strictness information there is - obtained by strictness analysis, for exam-

ple, or by defining a known set of primitives to be strict as in Ginger (see Section 4.4)

- is used by the compiler to optimise code and is discarded at run-time. Strictness

information is an integral part of Aladin, however, and is used to control every step

of the evaluation process at run-time and, as we shall see in the next chapter, to

control partial evaluation.

In essence, Aladin offers simplicity and flexibility at the cost of slower running

times when compared to Ginger and other functional languages, a familiar trade-off

in all branches of programming.
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Chapter 6

Partial Evaluation in Aladin

In the previous chapter, we mentioned that Aladin could be used for partial evalua-

tion and designed some of the primitives so that they could be more effectively used

in partially-evaluated programs. In this chapter we shall make good on our earlier

promises and show how partial evaluation can be done in Aladin.

Partial Evaluation [29, 51] is a means by which specialised programs can be

obtained from more general ones by evaluating the general one with only some of its

arguments instantiated. The specialised programs are typically considerably faster

than the more general ones - an order of magnitude faster is not untypical.

The simplicity of Aladin, and its control over strictness, make this a suitable

vehicle for partial evaluation, as first noted in [11]. Simplicity is advantageous when

partially evaluating as it keeps to a minimum the cases when partial evaluation is

different from non-partial evaluation, and makes these differences easier to deter-

mine. The advantage of strictness control when partially evaluating is that we know

exactly what parts of a program it is safe to try to partially evaluate and which are

not. We shall also see that because Aladin has no fixed set of primitives, the user

can implement the primitives that their program uses so that they exploit partial

evaluation to the full.
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6.1 The Denotational Semantics

Partially evaluating a program involves evaluating it when some of its inputs are

not known, the result being a residual program which will yield the same result as

the original program when the rest on the inputs are provided. In the context of

an Aladin program, this means that some of the variables occurring in the program

have no value in the heap the program is being evaluated with respect to. That is,

the program is being evaluated in a heap I' and contains some variable x such that

.I'x = .L. We will refer to such a variable as an unknown variable. In the literature,

if a parameter to a function contains unknown variables it is classed as dynamic,

otherwise it is classed as static.

Our denotational semantics require a few modifications to handle partial eval-

uation. First, if we have an unknown variable applied to a number of arguments

(possibly none) then we just return the original heap, as in the case when we have

a data object applied to a number of arguments:

u r[xo t--+ pE DU {l_},Xl t--+ Xo Yl,··· ,Xn t--+ Xn-l Yn] Xn = I' (6.1)

If we have a function applied to too few or too many arguments, then the rules

are the same as in the non-partial evaluation case and given in Rules 5.9 and 5.10

respectively.

Ifwe have a function applied to the exact number of arguments we first evaluate

any strict arguments - using A which retains the same definition as that given

in Rule 5.13 - and then see if it is possible to apply the function. This is the

case each argument contains no unknowns (in other words, is static) or the function

being applied is lazy in that argument (and hence the value of the argument may
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not be needed).

[

Xo t-+ f ::0"1 x ... X o-. -+ p 1Uf ~=~
Xl t-+ Xo Yl,'" ,Xrn t-+ Xrn-l Yrn

where

I'" = P I" Xrn, if N[::'l(static I" Yi) V (O"i = I)
(6.2)

r-, otherwise

I" = A I' Xrn

The function static returns whether a program contains no unknowns:

static I' X = static I' f 1\ static I' a, if I' X = f a

= I' X #..1., otherwise

The P meta-function deals with the job of triggering the actual application of the

program (using the @meta-function):

[

Xo t-+ f ::0"1 x ... X O"rn -+ p, 1
Pf ~=F

Xl t-+ Xo Yl,"" Xrn t-+ Xrn-l Yrn

where

flff = U I'" Xrn, if p = I

= f" otherwise,

f" = update I" Xrn r, if r # ..1.

= f' otherwise,

(r, I") = f@(f,Yl,···,Yrn)

(6.3)

The 'answer' part of the result (r in the above definition) of@ can be ..1. if either an

error occurs or the value of an unknown variable is required.

6.2 The Operational Semantics

The changes in the operational semantics to handle partial evaluation mirror those

made in the denotational semantics. In the first case, if we have an unknown as well
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as a data object at the top of the stack, then no further work can be done and we

need to make no changes. If the dump is non-empty we restore it (which remains

the same as described in Rule 5.23), else we terminate as no more rules apply.

(EVAL) 0
(XO, Xl, ... ,Xn) 0 (6.4)~
r(xo r+ pE DU {J.}] r

A A

The rules for unwinding an application at the head of the stack and, when we have a

function applied to too few or too many arguments at the head of the stack, remain

the same as described in Rules 5.16, 5.17 and 5.18 respectively.

If we have a function of arity m at the top of the stack and m other elements at

the top of the stack then we first evaluate the necessary arguments and then see if

it is possible to trigger the application (as in equation 6.2):

(EVAL)
(EVALARGSm) ++ C

(Xo, XI,···, Xm)

r [ Xo r+ f ::0"1 X ••• X O"m ~ p, 1
Xi r+ Xi-l Yi

(Xo, Yl,"" Ym) ++ S

r
A (6.5)

where

= ((),O), otherwise

The rules for the EVALARGSand EVALITHstay the same as in the non-partial case

and defined in Rules 5.20 and 5.21 respectively. The APPLYinstruction triggers the
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primitive application as in equation 6.3:

(APPLY) c
(xo, Yl,··· ,Yrn, root) (root)

r[xo t-+ j ::al x ... x arn -+ p] I'"

A A

where

C 0, if p = s Vr = .l (6.6)
=
= (EVAL), otherwise

r" = update I" root r, if r # .l

= r' otherwise,

(r, r') = j@(r,Yl,···,Yrn)

6.3 Implementation

To represent unknowns, we introduce the following class to our Aladin implementa-

tion described in the previous chapter:

public final class Unknown extends Prog {

private String name;

II ...

}

We store the identifier used to refer to the unknown inside the Unknown object

since identifier names are otherwise lost at compile time. To signify that an un-

known value has been encountered where one was not expected, we create the

UnknownValueException class, instances of which will be thrown in such cases.

We now need to adapt the evaluation mechanism to deal with unknown values.

First of all, we have the eval method of the Var class. This checks to see if the
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Var object being evaluated is an unknown and ifso throws an exception, ifnot it
continues as before.

public Prog eval() throws UnknownValueException {

if (p instanceof App I I

p instance of Function it «Function) p).arity == 0)
II only need to bother evaluating if this variable refers to an

II App or a CAF.
(new VarStack(this». transformO;

else if (p instanceof Unknown)

II Can't evaluate this var further; use the exception to notify
II the caller that an Unknown was encountered.
throw new UnknownValueException();

return get();
}

The only required change to the transform method, firstintroduced in Section 5.3.3,
is a check to make sure that after any strictarguments have been evaluated no
strictargument contains unknowns. This isdone by the checkForStrictUnknowns

method:

private void checkForStrictUnknowns(Function f. Var[] args) {
for (int i = 0; i < args.length;i++)

if (f.strictln(i + 1) it args[i].containsUnknowns(»
throw new UnknownValueException();

}

and transform now becomes:
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public void transform() throws EvaluationException {
for (;;) {

Var v = head Oj

Object head = v.get();

if (head instanceof App)
push « (App) head). functor) ;

else if (head instanceof Function) {
Function f = (Function) head;
int no_args = count _ 1;

if (no_args == f.arity) {
Var[] args = evalArgs(f);
clearAllButRoot(); II root is elements[O]

if (AAM.partial)
checkForStrictUnknowns(f, args);

Prog res = f.primApply(args);

elements[O] .update(res);

II stop evaluation if f has a strict result

if (f.hasStrictResult())

return;
}

II as before
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}

II as before
}

}

The evalArgs method must alsobe modified to deal with unknowns:

private Var[] evalArgs(Function f) {
II we need to preserve the ordering -- the stack is held reversed

II for efficiency when pushing
Var[] args = new Var[count - 1];

UnknownValueException unknown = null;

for (int i = 0; i < count - 1; i++) {

II get the argument part
args[i] = «App) elements[count - (i + 2)].get(».arg;

if (f.strictln(i + 1» {

try {
args[i] .eval();

}

catch (UnknownValueException e) {
II don't want to throw the exception until we have

II attempted to evaluate all arguments, so just make

II a note of its existence for now

unknown = e;
}

}
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}

if (unknown != null)

throw unknown;

return args;

}

_Since we need to evaluate every strict argument of the function being applied, we

catch any UnknownValueExceptions and only throw one at the end of the method

when we have attempted to evaluate all strict arguments.

6.4 Partially Evaluating Programs

Recall that our Aladin implementation takes programs written in the Aladin script-

ing language and compiles them to Java class files. Suppose we have the following

function defined in the file power. as:

power :: 1 * s -> 1

power x n = if n == 0 then 1 else x * power x (n - 1) endif;

Compiling this function yields a Java class file, power. class. We can then use this

class file along with the java interpreter to evaluate Aladin programs. For example:

> java power 'power 12 3'

1728

We can also supply an unknown value as the first argument of power and obtain a

specialisation. For instance, we can specialise power to a cube function viz:

> java power -p -pp -n cube 'power x 3'
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cube :: 1 -> 1

cube x = x * (x * (x * 1));

The -p option denotes that we wish to do partial evaluation (any undefined iden-

tifiers are treated as unknowns rather than errors); -pp indicates that we wish to

'pretty' print the result (in this case, write the multiplication as an infix function

using the * symbol, rather than as the alpha-numeric prefix version as would be

the normal case); and the -n option supplies the name of the residual function .

..The result of the partial evaluation is an Aladin function, with all unknown values

becoming arguments of that function, which can be redirected to a file and compiled.

It is the fact that power is lazy in its first argument which allows us to specialise

the function like this; if it were strict then no evaluation could be done. This

suggests a general rule of thumb when it comes to strictness and partial evaluation:

if a parameter at a control point, for example the antecedent part of an if expression,

then that parameter is strict and cannot have an unknown value; otherwise it is lazy

and can have an unknown value. This correspondence was noted by Launchbury

[62], who showed that doing strictness analysis and binding-time analysis - a pre-

evaluation process which determines which expression in a program can be partially

evaluated given the limited amount of data that will be present - at the same time

could prove useful.

So far, we have only described how to use Aladin to partially evaluate programs

at the command line. The residual function must then be put manually into a

program file. This has several advantages, for instance, it makes testing easier

and printing a program forces all of its components to be (partially) evaluated (for

example, every element of a list will be evaluated and printed, rather than just

leaving the list in its initial cons form). However, this restricts us to partially

evaluating one function at a time and requires the intervention of a human user.
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We therefore allow the user to specify that some partial evaluation be done at

compile time, by allowing the user to denote that the body of a function is the result

of partially evaluating another. For instance, we can define the cube function from

above as:

cube :: s -> 1

cube x => power x 3;

Here we use the => in place of = to indicate that we want to partially evaluate the

- RHS of the definition, regarding the parameters of the LHS as unknowns, before

assigning it as the definition of cube. We could legitimately partially evaluate the

RHS of all function definitions - which would give us such compiler enhancements

as constant folding (see Section 14.7.1 of [86] for example), and function unfolding

[17,16]. However, partially evaluating programs may not terminate or doing so may

take so much time that the compiler becomes unfeasibly slow.

Compile-time partial evaluation has other advantages. For example, in the above

we have specified that cube is strict in its argument, whereas producing the function

at the command line makes cube lazy in its argument by default.

Since our implementation can only evaluate compiled functions (compiled by

both Aladin and the Java compiler) any functions which appear on the RHS offunc-

tion definitions which we wish to partially evaluate must have been pre-compiled,

in other words, they cannot appear in the same file as the function being partially

evaluated. This is only a minor inconvenience and does not affect our analysis.

Partially evaluating a program may lead to a residual program that is less space

efficient than the original one. This is because the original function(s) may have

been implemented to use space-saving devices such as accumulating parameters and

tail recursion which might be expanded in the definition of the residual function(s).

It is hard to predict in advance when this might occur to a detrimental effect since
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predicting the space behaviour of functional programs is notoriously difficult [15,

86, 97], and it is up to the user whether the the speed-up due to partial evaluation

is outweighed by any additional space used. We are only concerned with the time

behaviour of partially-evaluated programs in this chapter, and will not consider

space behaviour further. However, we have not yet encountered any problems caused

by space inefficiency during our investigations into partial evaluation.

6.5 Primitives and Partial Evaluation

Some primitives can be rewritten to more comprehensively handle partial evaluation.

For instance, consider the comparison operations. For an unknown x, we know the

following:

x == x ==? TRUE

x -= x ==? FALSE

x <= x ==? TRUE

x < x ==? FALSE

x >= x ==? TRUE

x > x ==? FALSE

The above equations can be incorporated into the code for the primitives, at the

cost of a little more programming effort and making the operators lazy in both their

arguments. For example, we can rewrite the method .op.eq (the prefix form of the

equality operator ==) defined in Section 5.4.4 as:

public final static Prog _op_eq(Var v, Var w) {

Prog a = v.eval_nu()j
Prog b = w.eval_nu()j
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if (a.containsUnknowns() I I b.containsUnknowns(» {

if (a instanceof Unknown tt b instanceof Unknown tt a.equals(b»

return Bool. TRUE;

else

II one or both of v or w contains an unknown and they are not

II the same unknown, hence we can't complete the equality

throw new UnknownValueException();

}

else if (a instanceof Comparable)

return ((Comparable) a).eq(b);

else

return (a.equals(b» ? Bool.TRUE Bool.FALSE;

}

The evaLnu method is similar to the eval method except that it catches and

discards any UnknownValueExceptions. The containsUnknowns method returns

whether the program it was invoked upon contains any unknowns.

The method first of all evaluates its arguments (and does not have to worry

about any UnknownValueExceptions) and then checks to see if either contains any

unknown values. If so, it checks to see if they are in fact the same single unknown. If

so we know they have to be equal, despite not knowing their actual values, otherwise

we cannot complete the inequality and throw the exception to indicate this.

As an example, consider the function min which returns the minimum of its two

arguments (and stored in the script power. as):

min :: 1 * 1 -> 1

min x y = if x <= y then x else y endif;

Partially evaluating this with two unknown, but equal, arguments gives:
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> java power -p -pp -n min_xx 'min x x'
min_xx :: 1 -> 1
min_xx x = Xj

Using such an implementation of the comparison operators can have an effect on

the termination properties of residual functions, in that the residual function can

terminate in more cases than the original function when restricted to the same

arguments as the residual. For example, consider the simple function:

foo :: 1 * 1 -) 1
foo a b = if a == b then 1 else 0 endifj

Partially evaluating this with two unknown, but equal, arguments gives:

> java foo -p -pp -n fool 'foo x x'

fool :: 1 -> 1
fool x = lj

Now fool 1. = 1, but the equivalent call to foo, foo 1. 1., returns 1., since

1. == 1. =.l.. This is a beneficial side-effect of partial evaluation, analogous to

the fact that lazy functional programs can terminate in more cases than their strict

equivalents [15]. Note that the reverse situation cannot be true, since the set of

individial evaluations done during partial evaluating a program then evaluating the

residual function is a subset of the set of individual evaluations done during full

evaluation of the same program. If the result of a program is 1. then the result of at

least one of these individual evaluations must be 1. and vice versa - hence if the

residual function returns 1. when applied to some particular arguments, then the

original function must also return 1. when applied to the equivalent arguments.

The comparison operators are not the only functions which can be re-coded to

exploit partial evaluation. We can also re-implement the binary logical primitives
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to take advantage of the following rules:

x .t true true .t x = x

x .t false = false.t x = false

x I true = true I x = true

x I false = false I x = x

Note this holds true in the fuzzy as well as the boolean case. The standard imple-

mentation of these primitives have the strictness s x 1 -t l. Logical conjunction is

performed by the .op.and method defined as:

public static Prog _op_and(Var x, Var y) {

Prog a = x.get()j

if (a instanceof Logical)

return «Logical) a).and(y)j

else

throw new EvaluationException("Can't take the logical II +

"conjunction of II + a +

II and II + y)j

}

}

with logical disjunction (_op_or) being defined similarly. Rewriting the definitions of

these primitives to take advantage of partial evaluation first requires us to to make

them lazy in both arguments as with the comparison operators. Also (exploiting

commutativity) if the first argument contains unknowns we switch the order of the

arguments and see if we can obtain a result by treating the second argument as the

first and vice versa:

public static Prog _op_and(Var x, Var y) {
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Prog a = x.eval_nu()j

if (a instanceof Logical)
return ((Logical) a).and(y)j

else {

Prog b = y.eval_nu()j

if (b instanceof Logical)
return ((Logical) b).and(x)j

else if (a.containsUnknowns() I I b.containsUnknowns())
throw new UnknownValueException()j

else
throw new EvaluationException("Can't take the logical II +

"conjunction of II + a +

II and II + y)j
}

}

The definitionof the and method can stay the same as in the non-partial case in
whatever classimplements it.For instance,in the Bool classwe have:

public Prog and(Var v) {
return (value) ? (Prog) v (Prog) Bool.FALSEj

}

where value isthe boolean value of the Bool object. As an example, we have:

> java power -pp -p -n prog 'x <= 3 & (y < 2 I 13 > (5 + 6))'

prog :: 1 * 1 -> 1
prog x y = x <= 3j
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This strategy is not only useful for partially evaluating binary logical primitives: it

can be used on any commutative primitive which can be made lazy in one of its

arguments. It is especially effective if the operator has an annihilator since it can

be used to avoid evaluating one of the arguments altogether. For instance, from

above we see that true is an annihilator of logical disjunction and false one of

conjunction, but also 0 is an annihilator of multiplication and division. This is used

to great effect in Section 6.6

. 6.5.1 Partial Data Structures

Aladin treats data objects as indivisible entities, in particular, as far as it is con-

cerned the list [1, y, 3, x , 5] does not contain any unknowns, since by default

data objects do not. This means that such a list can be used as a strict argument

of a function and still allow some useful partial evaluation to be done. For instance,

given the following definition of reverse:

reverse .. s -> I

reverse xs = rev xs [];

rev .. s * S -> I
rev xs ys =

if isEmpty xs then ys

else rev (tL xs) (hd xs ys)

endif;

partially evaluating reverse [1, y, 3, x, 5] yields:

> java power -p -pp2 -n rev1 'reverse [1, y. 3, x, 5]'

rev1 :: I * I -> I
rev1 y x = [5, x, 3, y, 1];
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To be able to do more useful partial evaluation on lists and other data structures

it is useful if we can do (in)equality tests on them. For instance, we could partially

evaluate [x, y, z] == [1, 2, 3] to x == 1 II; Y == 2 II; z == 3. This requires

us to alter the implementation of the Comparable interface (see Section 5.4.4) in the

SumP rod class so that it can handle unknown values. For the eq method we have:

public Prog eq(Prog p) {
if (this.getClass().equals(p.getClass(») {

SumProd sp =(SumProd) p;

Prog result = Bool.TRUE;
Var and = AAM.get(l_op_and");
Var eq = AAM.get(l_op_eq");

for (int i = 0; i < fields.length; i++) {
Prog e = (new Var(eq, fields[i], sp.fields[i]».eval_nu();

if (e instanceof Bool) {
II equality went to completion
if (e.equals(Bool.FALSE»
II found fields that don't correspond, so can return now

return Bool.FALSE;
}

else
II must have unknowns so add to list of conjunctions
result = (result == Bool.TRUE) ? e : new App(and, e, result);

}
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return result;
}

II If we've got here then can't be equal
return Bool.FALSE;

}

This method first checks that the two objects to be compared are of the same class

and then steps through each of the fields, seeing if they are equal. If it finds two

that do not match, then it immediately returns false; else it builds the result into a

conjunction (eliminating any redundant trues). We can define ne similarly. So, for

example, we have:

> java power -p -pp -n eq3 '[x,y,z] == [1,2,3]'

eq3 :: I * I * I -> I
eq3 x y z = (z == 3 t Y == 2) t x == 1;

and:

> java power -p -pp -n neq2 "(x , y, 'a') = (false, 2, 'a,)n

neq2 :: I * I -> I
neq2 x y = Y N= 2 I x N= false;

As a further example, consider the function palindrome in power. as:

palindrome .. s -> I

palindrome xs =
let

n = #xs I 2;

in
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take n xs == take n (reverse xs)
endletj

We can specialise this to a function which checks if a list of length 5 is a palindrome:

> java power -p -pp -n pal5 'palindrome [a,b,c,d,e]'

pal5 :: I * I * I * I * I -> I
pal5 abc d e = b == d & a == ej

This partial evaluation leads to arity raising which is normally considered a good

thing since we avoid having to construct and deconstruct data structures [35, 95].

However it may be preferable to have the residual function take a single list as its

only argument. For this to work, we have to either have an alternative form of

palindrome which takes the length of the list as a parameter, or some other way

of deconstructing the list into its (here 5) constituent parts. We choose the latter,

using the function decons to deconstruct a list into a specified number of elements:

decons :: S * I -> I
decons n xs = if n == 0 then []

else hd xs : decons (n - 1) (tl xs)

endifj

Note that by making the second (list) argument lazy, we can use an unknown in its

place. So, for instance:

> java power -p -pp2 -n list5 decons 5 xs

list5 I -> I
list5 xs = [hd xs, hd (tl xS), hd (tl (tl xS»,

hd (tl (tl (tl xS»),
hd (tl (tl (tl (tl xS»»]j
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Note that the common subprograms here will be lifted out by the compiler as de-

scribed in Section 5.5.5. So, the above functions is optimised to:

list5 xs =
let

v2 = hd:

vi = tl:

v4 = (vi xs):

vS = (vi v4);

v3 = (vi vS):

vO = ( :) ;

in

(vO (v2 xs)

(vO (v2 v4)

(vO (v2 vS)

(vO (v2 v3)

(vO (v2 (vi v3»

_op_Iist_empty»»)

endlet;

However, for purposes of readability, all future examples of residual functions will

be given in non-optimised form.

We can now produce a specialisation of palindrome which takes a single argu-

ment:

> java power -p -pp2 -n palS 'palindrome (decons S xs)'

palS :: I -> I

palS xs = hd (tl xs) == hd (tl (tl (tl xs») &
hd xs == hd (tl (tl (tl (tl xs»»
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The above data structures are lazy in that the evaluation of their components is not

done until required, which might not be until the printing stage. This can prevent

some useful partial evaluation being done at compile time if the components of a

data structure can be evaluated but evaluation has stopped because Aladin does

not evaluate the components of data structures. For instance, [(1 + 2) .. 10]

evaluates to 1 + 2: [«1 + 2) + 1) .. 10]. If we evaluated this program

at the command line then we would not notice this, since printing the list forces

its evaluation, but if the list was evaluated at compile time then it would only

be evaluated to the first cons. To alleviate this problem, we provide the primitive

force, as in Miranda and Ginger, which forces evaluation of all parts of its argument

in the exact same way as printing it would. Care must be taken not to use force

on infinite data structures.

For instance, the specialisation of matrix multiplication to 2 x 2 matrices used

in Section 6.6.1 is coded as:

mult_2x2 :: 1 _> 1

mult_2x2 p =>

let

m1 = dedecons 2 2 (fst p);

m2 = dedecons 2 2 (snd p);

in

force (mult m1 m2)

endlet;

Here dedecons n m deconstructs a list of lists into a list of n elements each of which

is a list of m elements.
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6.5.2 Partial Evaluation and C Primitives

To be able to partially evaluate CjC++ primitives we need to be able to deal with

UnknownValueExceptions. Also, being able to detect unknown values is also useful

if we wish to do something other than abort evaluation when unknown values occur

(see below). First of all, the following macro will abort a function if any exception

occurs:

#define abortlfException(env) \

. if ((*(env»->ExceptionOccurred(env» return 0

The result of the function in which the exception occurred will be null and the

exception is thrown back up to the JVM. For example, consider the following power

function, which will be imported into an Aladin script update. as. This function is

declared to have strictness l x s -t s and its implementation is:

JNIEXPORTjobject JNICALLJava_update_power

(JNIEnv *env, jclass cl, jobject x, jobject y)

{

jint power = getlnt(env, y);

if (power == 0)

return makelnt(env, 1);

else {

jint base = evallnt(env, x), result = base;

II abort execution if any exceptions have occurred

abortlfException(env);

for (; power> 1; power--)
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result *= base;

return makelnt(env, result);
}

}

This gets the value of y and if it is zero immediately returns 1. Otherwise it

evaluates x and extracts its integer result. At this point, if x contains unknowns

an UnknownValueException will have been thrown. This will be detected by the

abortIfException macro and evaluation will be immediately aborted. If things

went well, we just compute the power using an iterative method and return.

An alternative way is to evaluate x and explicitly test to see if it contains un-

knowns. In this case, we can unfold the exponentiation into multiple application of

the multiplication function, .op.tames. We provide a containsUnknowns function

analogous to its Java namesake and functions and macros which will create and

throw the appropriate exceptions. So, we can rewrite power as:

JNIEXPORT jobject JNICALL Java_update_power

(JNIEnv *env, jclass cl, jobject x, jobject y)

{

jint power = getlnt(env, y);

if (power == 0)
return makelnt(env, 1);

else {
eval(env, x);

if (containsUnknowns(env, x)) {
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1* return multiple applications of '*' *1

jobject timesx = makeApp(env,
getFunction(env, lI_op_timesll), x);

jobject mult = x;

for (; power> 1; power--)
mult = makeApp(env, timesx, mult);

return multi
}

else {
1* can work out the full answer *1

jint base = getlnt(env, x);

jint result = base;

for (; power> 1; power--)

result *= base;

return makelnt(env, result);

}

}

}

6.5.3 Partial Evaluation and Ginger Primitives

As our Ginger compiler produces Java byte-code (Chapter 4), we do not have to

worry about explicitly detecting and throwing exceptions since this is handled by

the JVM. We do, however, have to worry about Unknown objects since there is no
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equivalent in Ginger and we need to convert all Aladin programs into Ginger ones

before applying the Ginger primitive. To deal with this we introduce the GingerProg
class which represents a 'suspended' conversion:

public final class GingerProg extends fp.gingerc.App {

protected Var aladin;

public GingerProg(Var v) {

aladin = v;

args = empty;
total_app = true;
in_whnf = false;

}

public Object eval() {

aladin.eval();

return aladin.toGinger();
}

}

All lazy arguments of a Ginger primitive will be converted to the above class; strict

arguments cannot contain unknowns (since otherwise we would not be applying the

primitive) and so can be safely converted. When (and only when) Ginger attempts

to evaluate an object, the Aladin program is evaluated and then converted to its

Ginger representation. This means that if a lazy argument of a Ginger primitive con-

tains unknowns, we can still execute the Ginger primitive and only if the argument

contains unknowns after it has been evaluated (which may not be required) will an
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exception be thrown, since trying to convert an Unknownto a Ginger representation

will raise an UnknownValueException. This has the added benefit that if a lazy

argument is part of the result of a Ginger primitive and is unevaluated throughout

then no conversion from Aladin to Ginger and vice versa has to be done: we can

simply extract the value of the aladin field.

6.6 Further Examples and Results

. One question needs to be asked: does partially evaluating Aladin programs have

any benefit? In this section we shall present five further, more substantial examples

of programs where some partial evaluation can be done and then compare perfor-

mances. Note that we have given the results of partial evaluation at the command

line since this is the most readable form, but all partial evaluation described below is

done at the compile time for the purposes of obtaining results. Note that for display

purposes we have split the answer Aladin returns into separate lines and indented

appropriately, but no other manipulation of the answers has been done.

6.6.1 Matrix Multiplication

Consider the following program to multiply two matrices together, where a matrix

is represented by a list of lists:

row:: s * s -> 1

row n xss = xss ! nj

col :: s * s -> 1

col n xss = map (flip (!) n) XSSj

no_rows .. s -> 1
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no_rows xss = # xss;

no_cols :: s -> 1

no_cols xss = # (hd xss);

mprod :: s * S * S * S -> 1

mprod xss yss r c =
if r == no_rows xss then []
elsif c == no_cols yss then [] mprod xss yss (r + 1) 0

else
let

m = mprod xss yss r (c + 1);

v = sum (zipWith (*) (row r xss) (col c yss»;

in
(v (hd m» (tI m)

endlet
endif;

mult :: s * S -> 1
mult xss yss = mprod xss yss 0 0;

Matrix multplication has many uses. One such use is the rotation of points about

some origin in an n-dimensional space. For example, the result of rotating a two-

dimensional point (x, y) clockwise about the origin by (J radians is given by the result

of the matrix multiplication:

(-:: ::) (:)
This can be coded as the following Aladin function:
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II coords as a pair, theta in radians

rotate :: 1 * 1 -> 1
rotate theta coords =

let
x = fst coords;

y = snd coords;
rcoords = mult [[cos theta, sin theta],

[neg (sin theta), cos theta]]
[[x], [y]];

in
(hd (rcoords 0), hd (rcoords 1»

endlet;

The application of mul t used in the definition of rotate is fixed to matrices of a
specificsize,namely a 2 x 2 matrix multipled by a 2 x 1 matrix, and hence we have

scope for partial evaluation:

> java matrix -p -pp2 'rotate theta (x, y)'
rotate :: 1 * 1 * 1 -> 1
rotate theta x y = (cos theta * x + (sin theta * y + 0),

neg (sin theta) * x + (cos theta * y + 0»;

All listoperations, conditionals and recursive callshave disappeared and allwe are

leftwith are simple mathematical operations.
More partial evaluation can be done by fixing theta to be a specifc angle, for

example 1r/2:

> java matrix -p -pp2 -n quarter 'rotate (pi I 2) (x, y)'
quarter :: 1 * 1 -> 1
quarter x y = (0 * x + (1 * Y + 0), -1 * x + (0 * y + 0»;
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These residual programs contain some redundant operations, namely the addition

of zero and multiplication by one and zero. We can eliminate this by providing

alternative definitions of .op.plus and .op.timea. Rather than re-implementing the

functions from scratch, we can provide wrapper functions to the original functions

to do the job. First of all we define the functions isZero and isOne of strictness

I -+ s which tests if a value is definitely zero or definitely one. We can implement

isZero viz:

public static Prog isZero(Var x) {

try {
Prog p = x.eval()j

if (p instanceof Int)
return ((Int) p).value == 0 ? Bool.TRUE Bool.FALSEj

else if (p instanceof Real) {
double d = ((Real) p).valuej

return (-1.0E-7 < d ii d < 1.0E-7) ? Bool.TRUE Bool.FALSEj
}

else
return Bool.FALSE;

}

catch (UnknownValueException e) {

return Bool.FALSEj

}

}
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If x contains unknowns then it cannot definitely be zero, hence we return false. Note

that if x refers to a real we return true if the value is in the range (-1 x 10-7, 1X 10-7)

so as to cope with rounding errors. The function isOne is defined similarly. We can

now define our wrapper functions, for example, .op.t tmes viz:

_op_times :: 1 * 1 -> 1
_op_times x y =

if isZero x I isOne y then x

elsif isZero y I isOne x then y

else Operators._op_times x y

endif;

where the method Operators. _op_times is the original definition of multiplication

defined in Aladin. Note that if either x or y contain unknowns then we default to

the standard definition and so do not drag the graph of the if statement around

while evaluating the rest of the program. Our specialisation of rotation for an

angle of 7r/2 is now:

> java matrix -p -pp2 -n quarter 'rotate (pi / 2) (x, y)'
quarter :: 1 * 1 -> 1
quarter x y = (y, -1 * x);

In the tests which we obtain results for, we shall specialise rotate to angles of 7r/2,

7rand 37r/2 and rotate 256 points by these angles.

6.6.2 Gaussian Elimination

Gaussian Elimination (see [59], for example) is a systematic way of solving systems

of linear equations. Ifwe have a system:
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Then we can form the augmented matrix:

all ain bi

amI amn bm

and by a combination of forward elimination and back substitution we can obtain

. a solution, if one exists. This is a problem ripe for partial evaluation, especially if

the aij are known and our matrix is sparse (that it, has a lot of zero entries). This

was first recognised in [31] though not described as partial evaluation, as such. The

Aladin program implementin Gaussian elimination is:

II augment an m x nl matrix with an m x n2 one

augment .. -> s
augment = zipWith snoc;

II add an element onto the end of a list

snoc .. s * I -> I
snoc xs x = xs ++ [x];

II partition xs into a pair of lists. the first element of which
II is all those elements of xs satisfies the predicate p. the

II second one all those that don't

splitWith :: s * s -> I
splitWith p xs =

if isEmpty xs then ([]. [])

else
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let

ps = splitWith p (tl xs);
x = hd xs;

in

if P x then (x : fst ps, snd ps)
else (fst ps, x : snd ps)
endif

endlet
endif;

II reorder xs, s.t. all those elements of xs which satisfy p
II come before those that don't

reorder :: s * s -> I
reorder p xs =

let

ps = splitWith p xs;
in

fst ps ++ snd ps
endlet;

II returns whether the kth element of xs is not zero
nonZeroKth :: s * s -> I
nonZeroKth k xs = (xs ! k) -= 0.0;

II pivotlreorder the rows of the matrix xss s.t. all the rows of
II xss with a non-zero kth element come before those that don't

pivot :: s * s -> I
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pivot xss k =
let

p = nonZeroKth k;
yss = reorder p xSS;

in
if P (hd yss) then yss else error "Singular Matrix" endif

endlet;

II subtract a constant multiple of the first row of the given matrix
II from all proceeding rows so that in the result matrix all bar the
II first row have a zero element in the kth position (forward

II elimation) the resultant matrix will be in triangular form

forwardElim :: s * s -> I
forwardElim k xss =

if isEmpty xss then []

else
let

pss = pivot xss k;
first = hd pss;
rest = tl pss;
factor = first! k; II Non-zero

rows = map (subtractRows first k) rest;

in
first

endlet

endif;

forwardElim (k + 1) rows
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// auxiliary function for forwardElim: performs the actual
// multiplication/subtraction
subtractRows .. s * s * S -> 1
subtractRows xs k ys =

let
m = (ys k) / (xs k);

in
zipWith (-) ys (map «*) m) xs)

endlet;

// back substitutes the values obtained for each column of the
// matrix (i.e., variable when the matrix is considered as a system

II of equatiuons) starting from the last row, which should have
// only one non-zero column in the unaugmented part.

backSub .. s -> 1

backSub rs =
if isEmpty rs then []

else
let

xs = backSub (map tl (tl rs»;
r = hd rs;

a = hd r;
as = tl r;

b = last r;

in
«b - sum (zipWith (*) as xs» / a) xs

endlet
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endif;

II reduce a given augmented matrix to triangular form and use back

II subsitition to solve the underlying simultaneous equations

solve :: _> s

solve = backSub . forvardElim 0;

Now, suppose we have the followingsystem of equations:

3XI - 2X2 = 1

2XI + 5X2 = 26

Then we can include the followingmatrix in our program:

tvo_x_tvo :: ->l

tvo_x_tvo = [[3.0, -2.0], [2.0,5.0]];

The above system of equations can be solved by augmenting this matrix with the

values of the RHSs of the above equations and using this augmented matrix as the

argument to the solve function:

> java gauss_npe -pp2 _p 'solve (augment tvo_x_tvo [1, 26])'

[3.0, 4.0]

That is, Xl = 3 and X2 = 4. Alternatively we can choose to leave the RHSs of the

system of equations unknown:

3XI - 2X2 = bl

2XI + 5X2 = ~

and augment the matrix with these unknown values. Partial evaluation can then

give us values for Xl and X2 in terms of these unknowns:
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) java gauss_pe -pp2 -p -dp 3 'solve (augment two_x_two [bl, b2])'
solve :: 1 * 1 -) 1

solve bl b2 = [(bl - -2 * «b2 - 0.667 * bl) I 6.333» I 3,

(b2 - 0.667 * bl) I 6.333];

where the value of Xl is the first element of the list on the RHS of the function

definition, and X2 the second element.

In the tests we shall give times for, we have the following system of equations

. (from [31]):

7XI -3X3 -Xs = bl

2XI +8X2 = ~

+X3 = b3

-3XI +5X4 = b4

-X2 +4xs = bs

-2X4 +6X6 = b6

which we solve for {bl, ... ,b6} E permutations {1, ... , 6}.

6.6.3 Exponentiation

We can use the definition of eX (where e = 2.718 ... ):

to obtain an exponential function in Aladin:

II return the exponential of z, using n iterations

exp :: s * 1 -) 1
exp n z =

if n == 0 then 1.0
else expl n z 1.0 1.0 1.0 1

206



endif;

II return the exponential of z, using n interations; e_z is the
II current approximation; num the current numerator and denom the

II current denominator of the term of the power series; and i the
II current power of the power series
expl :: s * 1 * 1 * 1 * s * s _> 1
expl n z e_z num denom i =

if i == n then e_z

else

let
new_num = z * num;
new_denom = i * denom;
new_e_z = e_z + new_num I new_denom;

in
expl n z new_e_z new_num new_denom (i + 1)

endlet
endif;

This can be specialised for a specific n, for example:

> java exp _p -pp2 -n exp6 'exp 6 z'
exp6 :: 1 _> 1

exp6 z =
««1.0 + z) + (z * z) I 2) + (z * (z * z)) I 6) +

(z * (z * (z * z))) I 24) + (z * (z * (z * (z * z)))) I 120;

In the tests we shall do, we shall specialise n to 20 and use it to work out eX for

x E {O,71"/720,... ,7r}.
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6.6.4 Polynomials

Polynomials can be represented as lists of their coefficients. For example, ao+al x +

... +anxn can be represented as the list [ao, al , ... an]. Evaluation of a polynomial

for a specific value of x can be coded in Aladin as:

eval :: s * 1 -> 1
eval p x =

if isEmpty p then 0
else hd p + x * eval (tl p) x
endif;

It is fairly simple to add two polynomials together:

add :: s * s -> 1
add p q =

if isEmpty p then q
elsif isEmpty q then p
else hd p + hd q : add (tl p) (tl q)

endif;

Once we have defined addition of polynomails, we can define multiplication:

mult :: 1 * 1 -> 1
mult p q = foldr add [] (summands 0 P q);

II return a list of the summands in the sum; each summand is the

II product of the polynomial q with each element of q; ord is the

II current power

summands :: s * s * 1 -> 1
summands ord p q =

208



if isEmpty p then []
else

let
s = rep ord 0 ++ map «.) (hd p» q;

in
s : summands (ord + 1) (tl p) q

endlet

endif;

These functions can be specialised for polynomials of a certain degree, or even for

polynomials for fixed coefficients. For example, we can obtain a specialised function

which multiplies two quadratics together:

> java poly -pp2 -p -n mult2 'mult [aO,al,a2] [bO,bl,b2]'
mult2 :: 1 • 1 • 1 • 1 • 1 • 1 -> 1
mult2 aO al a2 bO bl b2 = [aO • bO,

aO • bl + al • bO,

aO • b2 + (al. bl + a2 • bO),
al • b2 + a2 • bl,
a2 • b2];

In the tests we shall do, we perform 720 quadratic multiplications.

6.6.5 Integration by Simpson's Rule

Simpson's rule for integration of a function f over the range [a, b] over 2n sub

intervals is given as:

[b hla f(x) dx ~ "3(/0 + 411 + 212+ 4/3 + ...2hn-2 + 4hn-l + hn)

where h = (b - a)/2n and Ii = f(a + hi). This can be encoded as the following

Aladin program:
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II integrate f over the range [a, b] which is split into 2n intervals

integrate :: s * 1 * 1 * 1 -> 1
integrate nab f =

let
h = (b - a) I (2.0 * n); II force real division

in
(h I 3) * (sumlnt (2 * n - 1) f h (a + h) (f a + f b»

endlet;

II returns the sum of integrating the f over m intervals, where

II each interval starts at x and is h wide; sub_total is the

II cumulative total

sumlnt :: s * 1 * 1 * 1 * 1 -> 1
sumlnt m f h x sub_total =

if m == 0 then sub_total

else
let

c = if m Y. 2 == 0 then 2 else 4 endif;

in
sumlnt (m - 1) f h (x + h) (sub_total + c * f x)

endlet

endif;

There is much scope for partial evaluation here. We can specialise integrate on a

fixed number of sub-intervals, 4 for example:

> java integrate -p -pp2 -n integrate2 'integrate 2 a b f'

integrate2 :: 1 * 1 * 1 -> 1
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integrate2 a b f =
«(b - a) / 4.0) / 3) *
««f a + f b) +

4 * f (a + (b - a) / 4.0» +

2 * f «a + (b - a) / 4.0) + (b - a) / 4.0» +

4 * f «(a + (b - a) / 4.0) + (b - a) / 4.0) +

(b - a) / 4.0);

There is also the possibility of specialising for a fixed interval too, [0,1], say:

> java integrate -p -pp2 -dp 4 -n int2_01 'integrate 2 0.0 1.0 f'

int2_01 :: 1 -> 1
int2_01 f =

0.0833 * ««f 0 + f 1) +

4 * f (0 + 0.25» +

2 * f «0 + 0.25) + 0.25» +

4 * f «(0 + 0.25) + 0.25) + 0.25»;

Note that the argument to the occurrences of f in the sum have not been evaluated,

even though they could have been. This is because sumlnt is lazy in its third and

fourth arguments (the width of the interval, h, and the current value x) to allow

partial evaluation to be done when the range is not known. If the range is known,

we can change the strictness of sumlnt to s x I x s x s x I -7 I and do more partial

evaluation:

> java integrate -p -pp2 -dp 4 -n int2_01 'integrate 2 0.0 1.0 f'

int2_01 :: 1 -> 1

int2_01 f =
0.0833 * ««f 0 + f 1) + 4 * f 0.25) + 2 * f 0.5) + 4 * f 0.75);
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In the tests we shall do, we shall use the above to calculate values for the standardised

normal distribution, that is evaluate <p(z) for z E {-4, -3.99, ... ,4} where:

<p(z) = !:: r e-x2/2 dx
v211" 100

This is encoded in Aladin as:

e_minus_half_x2 :: 1 -> 1

e_minus_half_x2 x = MathPrimitives.exp «x * x) / -2.0);

phi :: S -> 1

phi z =
let

f = 1 / sqrt (2 * pi);

in
f * integrate 8 -6.0 z e_minus_half_x2

endlet;

This uses a lower bound of -6 (the integral over (-00, -6) is sufficiently small to

be ignored) and 16 sub-intervals. We can partially evaluate this function simply by

replacing phi z = with phi z => and letting the compiler do the work.

6.6.6 Fuzzy Systems

Recall from Section 5.4.5 the definition in Aladin of the shower controller:

change_valves :: S * S -> 1
change_valves temp flow =

let
defuz = centroid changedom;
changes = rulebase (applyBin add) [
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applyUn (when (cold temp t weak flow» (pm, z),

applyUn (when (cold temp t right flow» (pm, z) ,

applyUn (when (cold temp t strong flow» ( z, nb),

applyUn (when (ok temp t weak flow» (ps, ps),

applyUn (when (ok temp t strong flow» (ns, ns),

applyUn (when (hot temp t weak flow» ( z, pb),

applyUn (when (hot temp t right flow» (nm, z),

applyUn (when (hot temp t strong flow» (nb, z)] ;

in

(defuz (fst changes), defuz (snd changes»

endlet;

where changedom is the list [-0.2, -0. 175 .. 0 .2]. The function centroid is

defined as:

centroid :: S * 1 -> 1

centroid dom f =
let

fdom = map f dom;

in

sum (zipWith (*) dom fdom) / sum fdom

endlet;

Naturally, we would expect do be able to partially evaluate centroid by fixing dom

to be changedom and indeed we can do so to beneficial effect. We would not expect

to be able to fix either of the arguments of cbange.vafves since it is expected

that the function is to be used in a dynamic situation where the parameters are

constantly changing. However, there is a somewhat surprising scope for partial

evaluation arising from the fact that our fuzzy subsets may overlap, but not to any
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great extent.

Consider the calculation needed to compute the change in the hot valve (the

first element of the pair in the rule base). We weight and sum the fuzzy subsets

and pass this as the f parameter to centroid. This has then to work out the

degree to which each element of changedom is in this sum, amongst other things.

Now, the way that fuzzy sets are normally arranged in a fuzzy system means that

a value usually occurs in at most two different fuzzy subsets to a non-zero degree.

For instance, -0.2 is only in the fuzzy subset nb to a non-zero degree. This means

that for each element of changedom only a limited amount of rules can possibly

contribute to the weighted sum, in the case of -0.2 only the last rule contributes.

For each element of changedom and we can partially evaluate the weighted sum of

eight fuzzy subsets down to the weighted sum of one or two. For the changes to

the hot valve (the changes to the cold valve partial are similar) over changedom the

weighted sum reduces to:

[(-0.2, up 36 75 temp & up 12 25 flow),

(-0.175, (up 36 75 temp & up 12 25 flow) * 0.833),
(-0.15, (up 36 75 temp & up 12 25 flow) * 0.667),
(-0.125, (up 36 75 temp & up 12 25 flow) * 0.5),
(-0.1, (up 36 75 temp & up 12 25 flow) * 0.333),

(-0.075, (up 36 75 temp & atri 9 «9 + 15) / 2) 15 flow) * 0.667 +

(up 36 75 temp & up 12 25 flow) * 0.167),
(-0.05, (up 36 75 temp & atri 9 ·«9 + 15) / 2) 15 flow) * 0.667),
(-0.025, atri 32 «32 + 40) / 2) 40 temp & up 12 25 flow),

(0, (down 15 36 temp & up 12 25 flow) +

(up 36 75 temp t down 0 12 flow»,

(0.025, atri 32 «32 + 40) / 2) 40 temp & down 0 12 flow),
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(0.050, (down 15 36 temp & down 0 12 flow) * 0.667 +

(down 15 36 temp & atri 9 ((9 + 15) / 2) 15 flow) * 0.667),

(0.075, (down 15 36 temp & down 0 12 flow) * 0.667 +

(down 15 36 temp & atri 9 ((9 + 15) / 2) 15 flow) * 0.667),
(0.100, 0),
(0.125, 0),

(0.150, 0) ,
(0.175, 0)];

We use the definitions of multiplication and addition in Section 6.6.1 to eliminate

any redundant arithmetic operations. Note that the definitions of hot, strong, etc.

have been evaluated down to their representations as standard fuzzy subsets and

also that atri is lazy in its second argument (the value at which the membership

function hits the value 1) and hence (9 + 15) / 2 and (32 + 40) / 2 remain

unevaluated.

We can now partially evaluate change_valves, though we have to make it lazy

in both its arguments and use a force to force evaluation of the two fields of the

resultant pair. In the tests we give results for, we calculate how long it takes the

shower to come to a satisfactory temperature and flow for hot and cold valves set

to the values 0.0,0.2, ... ,1.0 (that is, 36 runs of the shower program).

6.6.7 Results

Table 6.1 gives running times for evaluating Aladin programs with and without

partial evaluation, using the same machine as was used to obtain the results for

Ginger in Section 4.5.6. As with our Ginger compiler, we also have the overhead

of initialising the JVM (roughly 0.5-1.0 seconds). Partially evaluating programs

can result in a significant decrease in running times, with a decrease of an order of
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Running times (s) Speed up Factor
No Part. Eval. Part. Eval. due to Part. Eval.

Matrix Multiplication 13.0 2.3 5.7
Gaussian Elimination 318.6 12.1 26.1
Exponentiation 12.0 5.1 2.4
Polynomials 24.0 8.8 2.7
Integration 17.3 8.6 2.0
Shower Controller 92.5 6.4 14.5

Table 6.1: Comparisons of running times of Aladin programs with and without
partial evaluation

magnitude in the case of the Gaussian elimination and shower controller programs.

Our results suggest two classes of speed-ups that can be obtained from partially

evaluating Aladin programs. The first comes from simply unfolding the definition

of a function so that control structures are replaced by combining lots of simple

function applications in one single program. This was observed in the exponential,

polynomial and integration programs and results in a speed-up factor of 2-3. The

second class arises when, after or during unfolding, many of the simple function

applications can be eliminated by exploiting the algebraic rules of the functions

involved (implementing the functions involved accordingly). This was seen in the

matrix multiplication, Gaussian elimination and shower controller programs and

the speed-up factor was typically an order of magnitude. The extremes of this can

be seen with the Gaussian Elimination test - because the matrix is sparse, many

operations (and hence heap allocations) can be avoided entirely by exploiting the

arithmetic rule Vx.x x 0 = 0 x x = 0 - and with the fuzzy shower controller which

fixes the domain over which our weighted sum is defuzzified and hence many fuzzy

membership tests are eliminated.

The results in Table 6.1 do not include the time taken to do any partial eval-

uation, just the time taken to evaluate the original or residual program. In an
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Compile + Run times (s)
No Part. Eval. Part. Eval.

Matrix Multiplication 5.8 + 13.0 = 18.8 6.1 + 2.3 = 8.4
Gaussian Elimination 5.4 + 318.6 = 324.0 8.8 +12.1 = 20.9
Exponentiation 5.7 + 12.0 = 17.7 6.1 + 5.1 = 11.2
Polynomials 4.6 + 24.0 = 28.6 5.6 + 8.8 = 14.4
Integration 5.3 + 17.3 = 22.6 8.8 + 8.6 = 17.4
Shower Controller 7.0 + 92.5 = 99.5 12.2 + 6.4 = 18.6

Table 6.2: Compile + Run times of Aladin programs with and without partial
evaluation

environment where the resiudal program is used many times, the cost of partially

evaluating the original program can be amortized over each evaluation of the resid-

ual program and become negligible. However, in a situation where the residual

program is only run one or two times, the cost of the partial evaluation becomes

more significant and, if too high, negates the argument for using partial evaluation

in the first place. Since all partial evaluation is done at compile time, the cost of

partial evaluation can be calculated by examining the compile times of the programs

with and without partial evaluation.

Table 6.2 gives the times for compiling and running a single time each of our

example programs. Compiling involves compiling the Aladin code into Java and

then compiling the Java code into Java byte-code, as well as partially evaluating

when necessary.

It turns out that compiling and running a program which does some partial eval-

uation during compilation is faster than compiling and running a program without

partial evaluation, at least in these cases. This was noted by Jones et al [51]among

others, and is analogous to the situation that compiling and running a program is

often faster than interpreting it.

Since Aladin uses the same syntax as Ginger, it is not too difficult to use Ginger

to evaluate the results of partially evaluating an Aladin program, giving us a way of
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partially evaluating Ginger programs. (A summary of the differencesbetween Aladin

and Ginger can be found in Section 5.6.) This involves partially evaluating the

required Aladin functions at the command line and manually cutting-and-pasting

the results into Ginger programs (the automation of this process is discussed in

Section 7.1). For instance, in our test of the matrix multiplication program we use

the followingfunctions:

quarter, half, three_quarters :: -> s

quarter

half

= rotate (pi / 2);

= rotate pi;

three_quarters = rotate (3 * pi / 2);

rotations :: 1 * 1 -> 1

rotations x y = (quarter (x, y), half (x, y), three_quarters (x, y»;

The function rotations is partially evaluated at the command line using Aladin:

> java matrix -pp2 -dp 0 -p -og 'rotations x y'
rotations :: 1 * 1 -> 1

rotations x y =

let

v2 = (*) -i;

vi = (v2 y);
vO = (v2 x);

in

mkTuple_3 (mkTuple_2 y vO) (mkTuple_2 vO vi) (mkTuple_2 vi x)

endlet;

Here the -og option tells Aladin to optimise the residual function for pasting into a

Ginger program. This eliminates common subprograms and redundant local defini-
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Running times (s) Speed up Factor
No Part. Eval. Part. Eval. due to Part. Eval.

Matrix Multiplication 4.4 1.3 3.4
Gaussian Elimination 57.7 4.4 13.1
Exponentiation 3.6 1.6 2.3
Polynomials 5.7 2.8 2.0
Integration 4.4 3.6 1.2
Shower Controller 15.3 2.1 7.3

Table 6.3: Comparisons of Running times of Ginger programs with and without
partial evaluation

tions on the residual program but, unlike when optimising Aladin programs, func-

tions are not treated as individual subprograms since Ginger functions are compiled

to field accesses and in some cases may be directly applied (see Sections 4.5.2 and

4.6.1).

This new definition of rotations can then be manually cut-and-pasted into

the Ginger program and used instead of the old one. Definitions of mkTuple..2 and

mkTuple...3also have to be supplied. Table 6.3 shows the running times of evaluating

these partially-evaluated programs. The time required by partial evaluation remains

the same as that in Table 6.2. Again, we achieve considerable speed-ups, but notice

they aren't quite as big as those achieved by Aladin. This is because Aladin, or at

least out particular implementation of it, can benefit more from partial evaluation

than other languages since nearly everything has to be done via heap allocation and,

as we saw in Section 4.7, Java is not particularly fast at heap allocation when com-

pared to a dedicated functional engine like the Haskell interpreter Hugs [50]. Hence,

the more heap allocation we can avoid doing, the proportionally better performance

becomes.
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6.7 Summary

We have shown that Aladin is a suitable machine for partial evaluation, by giving

the denotational and operational semantics for a version of the AAM with unknown

values, and then producing an implementation based on these semantics. By using

the fact that Aladin's primitives may be implemented in any language and none are

built in to the language, we have produced a set of primitives and data structures

which exploit partial evaluation to the full. We have shown that using strictness

declarations not only allows us to make lazy arguments strict for efficiency purposes,

but strict arguments (or at least arguments that can be made strict without affecting

the termination properties of the program) lazy for partial evaluation purposes.

Another advantage of using Aladin to partially evaluate programs is the fact

that it has no built-in primitives, letting the user supply their own. This means

that the primitives can be adapted to exploit partial evaluation to the full. A good

example of this is with the multiplication function: by using the arithmetic rule

Vx.x x 0 = 0 x x = 0 and partially evaluating programs in which this rule could be

exploited, we could circumvent large amounts of evaluation and reduce run times

by an order of magnitude.

In general, partially evaluating Aladin programs results in a significant decrease

in running times, and in some cases these running times are shorter than those of

the equivalent programs in Ginger. The results of partially evaluating programs can

also be evaluated using Ginger, albeit with a little manual intervention on the user's

part.
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Chapter 7

Conclusion and Further Work

Our stated aim of this thesis, back in Chapter 1, was to tackle the downsides of

functional programming, by expanding the range of applications in which functional

programming could be used, increasing the portability of functional programs, en-

abling functional languages to be interfaced with other languages, and using novel

evaluation strategies to increase the performance of functional language implemen-

tations. Have we achieved these aims?

Our implementation of fuzzy logic in a number of functional languages is elegant

and concise. Once the synonymity of functions and fuzzy subsets is recognised,

applications involving fuzzy logic become programs involving higher-order functions,

and such programs are most easily expressed in a functional language since this is

one of the raisons d'etre of functional programming. While we only gave a couple

of small examples of the applications of fuzzy logic in a functional language, Jan

Skibinski at Numeric Quest Inc. [100] has developed larger Haskell programs which

utilise our original work on fuzzy logic.

We then tackled the problem of portability of functional programs by producing

a compiler for the functional language Ginger which compiles programs that run

on the Java Virtual Machine (JVM). While this gave us the desired portability,
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since many machines have an implementation of the JVM, and also a way of using

Java methods in functional programs, since we represented functions as static Java

methods, performance was disappointing with programs running an order of mag-

nitude slower than the equivalent ones using the Haskell interpreter Hugs. This was

due to the expense of heap allocation in both the Java implementations tried when

compared to the allocator used by Hugs (written in C). This level of performance

was noted by David Wakeling who produced a Haskell compiler which targetted the

JVM.

Our experience with Ginger led us to develop an implementation for Aladin

which was designed to integrate many languages, functional and imperative, into a

pure, lazy functional machine. This first required us to develop a reasonably efficient

denotational and operational semantics for Aladin, which was used as the basis for

the implementation. The implementation allowed us to define primitives in Aladin

itself, Ginger, Java and C/C++, and combine them into Aladin programs.

The purity and simplicity of Aladin has other applications, too, and one we

examined was the use of Aladin to partially evaluate programs. This was greatly

aided by the requirement that the user specify the strictness of all Aladin functions.

The implementation used these strictnesses to find out which parts of a program

it could attempt to safely evaluate. The ability of the user to define all primitives

used by Aladin programs was also beneficial where partial evaluation was concerned,

since their definitions could be fine-tuned by the user to exploit partial evaluation to

the full. This led to significant performance benefits, in particular with the sample

fuzzy system we encoded in a functional style in Chapter 3 (a shower controller) we

were rewarded by a speed up of an order of magnitude when we converted the code

into Aladin and partially evaluated it.

In summary, we have found a new application area for functional programming,

developed a system for making functional programs more portable, developed a
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machine that integrates many languages into a functional context, and used this

machine to increase the efficiency of functional programs by means of partial eval-

uation.

We have thus accomplished what we set out to do - what possibilities are there

for future development of our work?

7.1 Integrating Aladin and Ginger

We have already seen in Section 6.6.7 how we can use the results of partially evalu-

ating an Aladin program in a Ginger program, albeit in a manner which requires a

manual cut-and-paste by the user, and obtain significant speed ups in running time

by doing so. It is thus reasonable to ask if and how we can automate this process.

Integrating Aladin into Ginger would allow us to integrate partial evaluation,

strictness signatures and the inclusion of primitives written in a number of languages

into Ginger. The AAM would be used as a secondary evaluation mechanism, used

by Ginger to partially evaluate programs and to apply non-Ginger primitives, while

Ginger's evaluation mechanism would be used in all other cases. Aladin's strictness

signatures could also be used by Ginger to compile more efficient code, for instance,

by being able to use the E scheme in more places.

7.2 Ginger and Type Systems

One of the downsides of Ginger being weakly-typed is that all overloading must be

resolved at runtime. This means that even simple operations such as arithmetic,

comparison and logical operations must be done via method calls even though the

JVM provides instructions to perform these operations directly on the stack. This

approach would be faster and allow us to avoid having to construct some objects

in the heap. It would be fairly simple to encode fuzzy logic operations using a
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combination of stack operations. Making Ginger a strongly typed language also has

the correctness benefits described in Section 2.4.

This leaves the question of how we resolve the overloading. Haskell's type classes

are certainly powerful and flexible, but perhaps too large and complex for a small

and simple language like Ginger, and Miranda's type system ignores overloading all

together. A similar approach to that of ML (see Section 2.4) would thus seem to be

best for Ginger, since all overloading is resolved at compile time. As well as allowing

us to do simple operations on the stack in some cases, this method would allow us

. to remove run-time resolution of overloading in the function definitions.

As an example, consider the operator - (subtraction) which is used to subtract

integer and real arguments. In Ginger this is achieved by means of a single method,

..minus (see Section 4.4). If we had the application of - to two integer arguments

then we could adapt the E compilation scheme to produce more efficient code than

before:

£ (- il i2) P Is v =

new Long

dup

E il P Is v

invokevirtual Long.getLong()J

E i2 P Is v
invoke virtual Long.getLong()J

I sub

invokespecial Long/<init>(J)V

This scheme compiles the two arguments and extracts their long values. The sub-

traction is then performed and the result put into a Long object. This method not
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only avoids run-time type checking and type casting, but also avoids a method call.

A similar strategy can be used to subtract two real (double) arguments. This is

just an outline of how such a scheme would precede - Peyton Jones [86] describes

the B scheme which compiles such expressions much more efficiently.

We may not be able to directly apply the overloaded primitive in code, for in-

stance in the expression map « -) x) xs the subtraction is not applied until the

elements of the list are required and thus must be done by a generic function appli-

cation. However, if we adopt ML's system of overloading resolution we must specify

. whether the x and xs are integers or reals and the compiler can use this information

to compile the occurrence of - here to a call to the correct function: either one

that subtract integers or one that subtracts reals. So, instead of the single method

definition as in Section 4.4 we need two:

public class StrictPrimitives extends Node {

public final static Class TYPE = StrictPrimitives.class;
public static Object _minus_int(Object lhs. Object rhs) {
return new Long«(Long) eval(lhs».longValue() -

«Long) eval(rhs».longValue(»;

}

public final static Object _minus_int =
Function.make(TYPE, lI_minusll, 2);

public static Object _minus_real(Object lhs, Object rhs) {
return new Double«(Number) lhs).doubleValue() -

«Number) rhs).doubleValue(»;

}

public final static Object _minus_real =
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Function.make(TYPE, lI_minusll, 2);

II ...

}

The compiler then has to decide whether to compile - to code which loads the value

of the field .mdnus.ant; or .minua.rea'l.

7.3 Parallel Aladin

.. The strictness of function arguments in Aladin is used to determine which arguments

can be safely evaluated, and those that we wish to leave unevaluated. This was used

to great effect when we partially evaluated Aladin programs; this information can

also be used to evaluate the various parts of an Aladin program in parallel.

Parallelism has long interested researchers into functional programming [33, 91].

The purity of a functional language means that evaluation order doesn't matter and

hence it is safe to evaluate the various parts of a functional program in parallel. This

can be done in a variety of ways. The user can create individual processes which will

evaluate different parts of a program concurrently, with communication being done

by passing messages. This approach is used by Erlang [6]. Alternatively, an attempt

can be made to evaluate the various parts of the graph representing the program in

parallel. This approach is taken by GAML [69] and the original version of Ginger

[52], and parallel abstract machines such as GRIP [20] and the (1/, G) machine [9].

The latter approach raises the question of how to discover which parts of a pro-

gram can be safely evaluated in parallel. The program can rely on user annotations,

as in GAML or Ginger; use strictness analysis and other such methods to determine

which parts of a program can be safely evaluated in parallel [55]; or even specula-

tively evaluate parts of a program in the hope that the results can be used later on

in the evaluation sequence [71].
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As Aladin already has strictness declarations, we can use these to determine

which parts of the program to evaluate in parallel. With regards to our particular im-

plementation, this would involve modifying the evalArgs method from Section 5.3.3

so that each of the strict arguments of a function are evaluated concurrently in sep-

arate threads in parallel- in Java this would involve creating a new thread for each

strict argument and evaluating each strict argument in that thread. We would also

have to adapt the implementation so that it performed the various housekeeping

tasks required by a parallel evaluator, for example, making sure that two threads

.. don't try to evaluate or update the same variable, locking the heap so that two

threads don't try to write to it at the same time, and managing the various threads

of execution.

However, strictness information by itself may not be enough. Kaser et. al. [55]

showed that even if we know the strict arguments of a function we may not be able

to extract and exploit enough information for maximal parallelism, that is, when all

available processors have work to do. This is because most lazy functional languages

only evaluate arguments down to Weak Head Normal Form (see Section 2.2) whereas

more parallelism can be achieved if we know which arguments can be evaluated all

the way down to Normal Form as well as those that can be evaluated to WHNF.

For instance, in the case of a list, it is in WHNF once we have evaluated down to

the first list constructor (the one at the head of the list), but is not in NF until all

elements of the list have been evaluated.

Kaser called this three-level strictness ee-strictness and used a form of strictness

analysis to determine the ee-strictness of functions. Aladin is not restricted to

evaluating expressions to WHNF or NF, it depends on the strictness and definitions

of the functions used, but a function cannot evaluate a program down to WHNF in

one context and down to NF in another without the definition or strictness of the

function being changed. However, we could alter Aladin's concept of strictness to
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enable the user to specify that an argument should be evaluated all the way down

to normal form and provide a suitable implementation using [55] as a basis.

Another method of introducing parallelism into Aladin programs could be to

supply parallel primitives. For instance, we could define par of strictness l x l ~ l

which would evaluate its two arguments in parallel and return the result of applying

the first to the second. For instance, par « +) x) y would return the result of x

+ y but evaluate x and y in parallel (presuming + is strict in its first argument so

that x is evaluated). We could also define other parallel primitives, such as parallel

. versions of map, fold - which would be useful in fuzzy systems, for instance, to

evaluate the rules of a fuzzy system in parallel- and filter.

7.4 Other Aladin Enhancements

Our implementation of Aladin was developed as much to show the correctness and

applicability of the Aladin semantics as to have a machine to develop and work

with. This means we have mirrored the semantics in the implementation as much as

possible. Any future implementation may wish to use a more obscure interpretation

of the semantics in order to implement compiler enhancements, such as those for

Ginger described in Chapter 4.

We mentioned above the possible use of Aladin to partially evaluate Ginger

programs. Such a use for Aladin is not restricted to Ginger - Aladin could be

used to partially evaluate programs written in any pure functional language, pro-

vided suitable implementations of the primitives and functions of that language were

provided.

Another possible area for investigation is the language used to implement AI-

adin. Java has the advantages of portability, ease of use, being able to be run in

applets, and an in-built garbage collector, but it has one large disadvantage: current
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implementations are slow. It may be advantageous to write any future implemen-

tat ion in C or C++ and take advantage of the existence of fast compilers for these

languages. This approach would also make the task of importing CjC++ primi-

tives into Aladin (the present method is a little involved) though would complicate

the importing of Ginger and Java primitives. A CjC++ implementation would be

more involved, for instance, we would have to encode our own memory management

scheme.

The development of Aladin programs is sometimes complicated by the fact that

it is very weakly typed, which can make debugging programs hard. To alleviate
.,

this problem we could investigate adding a type system, probably based on the

Hindley-Milner system described in Section 2.4. This leaves us with the problem

what to do with the type of data objects. Aladin allows the user to introduce new

types at will, and in no particularly systematic way. Some way would have to be

found to allow the user to declare new types, including container types, and some

way of allowing the overloading of functions using these types, possibly based on

Haskell's type classes or subtyping [19, 101]. Alternatively, we could use a single

type to represent all Aladin data objects, though this would reduce the strength of

the typing system.
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