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Time-critical applications process a continuous stream of input data and have to meet specific tim-
ing constraints. A common approach to ensure that such an application satisfies its constraints is
over-provisioning: The application is deployed in a dedicated cluster environment with enough pro-
cessing power to achieve the target performance for every specified data input rate. This approach
comes with a drawback: At times of decreased data input rates, the cluster resources are not fully
utilized. A typical use case is the HLT-Chain application that processes physics data at runtime of
the ALICE experiment at CERN. From a perspective of cost and efficiency it is desirable to exploit
temporarily unused cluster resources. Existing approaches aim for that goal by running additional
applications. These approaches, however, a) lack in flexibility to dynamically grant the time-critical
application the resources it needs, b) are insufficient for isolating the time-critical application from
harmful side-effects introduced by additional applications or c) are not general because application-
specific interfaces are used. In this thesis, a software framework is presented that allows to exploit
unused resources in a dedicated cluster without harming a time-critical application. Additional ap-
plications are hosted in Virtual Machines (VMs) and unused cluster resources are allocated to these
VMs at runtime. In order to avoid resource bottlenecks, the resource usage of VMs is dynamically
modified according to the needs of the time-critical application. For this purpose, a number of pre-
viously not combined methods is used. On a global level, appropriate VM manipulations like hot
migration, suspend/resume and start/stop are determined by an informed search heuristic and applied
at runtime. Locally on cluster nodes, a feedback-controlled adaption of VM resource usage is carried
out in a decentralized manner. The employment of this framework allows to increase a cluster’s us-
age by running additional applications, while at the same time preventing negative impact towards a
time-critical application. This capability of the framework is shown for the HLT-Chain application:
In an empirical evaluation the cluster CPU usage is increased from 49% to 79%, additional results are
computed and no negative effect towards the HLT-Chain application are observed.



Acknowledgements

For inspiration and guidance on the road to this thesis I thank my professor Mr. Kebschull. Both
valuable feedback and daily life companionship from my colleagues Timo Breitner and Jochen Ulrich
also helped me in mastering this task. Special thanks goes to my colleague Camilo Lara whom I owe
much for professional advice and fruitful discussions. My parents I thank for all their unconditional
trust and support. Heinke, thank you for your understanding and sincerity.



Contents

1. Introduction 11

2. Thesis Goal 15

3. Context and Related Work 17
3.1. Research Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1.1. Goals in Current Research . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.1.2. Resource Allocation Primitives . . . . . . . . . . . . . . . . . . . . . . . . 22
3.1.3. Data Used for Decision Making . . . . . . . . . . . . . . . . . . . . . . . . 25
3.1.4. Decision Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2. Evaluation of Relevant Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4. Conceptual Work 35
4.1. Scope Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2. Basic Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.3. Conceptual Cornerstones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.3.1. Resource Usage as Sensor Metric . . . . . . . . . . . . . . . . . . . . . . . 40
4.3.2. Virtualization as Enabling Technology . . . . . . . . . . . . . . . . . . . . . 43
4.3.3. Virtual Machine Life-Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.3.4. Secondary Application Abstraction . . . . . . . . . . . . . . . . . . . . . . 47
4.3.5. Constraints on Resource Usage: Policies . . . . . . . . . . . . . . . . . . . 49
4.3.6. Decision Making Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.3.7. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.4. Resource Allocation Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.4.1. Feasibility Estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.4.2. Global Provisioner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.4.3. Global Reconfigurator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.4.3.1. Recognition Phase and Triggering . . . . . . . . . . . . . . . . . 62
4.4.3.2. Search Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.4.4. Local Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.4.4.1. Resource Usage Adaptor . . . . . . . . . . . . . . . . . . . . . . 81
4.4.4.2. Local Trigger Unit . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.4.5. Functional Unit Coordination . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.4.5.1. Execution and Concurrency . . . . . . . . . . . . . . . . . . . . . 85
4.4.5.2. Enforcement of Policy Semantics . . . . . . . . . . . . . . . . . . 87

4.4.6. Further Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.4.6.1. Computational Complexity . . . . . . . . . . . . . . . . . . . . . 88
4.4.6.2. Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.4.6.3. Self-Sustaining Behavior . . . . . . . . . . . . . . . . . . . . . . 92

5



Contents

4.4.7. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5. Realization 95
5.1. Environment, Products and Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.2. Framework Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.3. Actors and Use Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.4. Platform-Specific Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6. Experimental Results 105
6.1. Test Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.2. Experiment Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.3. Policy Modification Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.3.1. Experiment Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
6.3.2. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.3.3. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.4. Efficiency Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
6.4.1. Metrics Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
6.4.2. Experiment Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
6.4.3. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
6.4.4. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.5. Interference Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
6.5.1. Experiment Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
6.5.2. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
6.5.3. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6.6. HLT-Chain Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
6.6.1. HLT-Chain Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
6.6.2. Experiment Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
6.6.3. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
6.6.4. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

6.7. Summary of Empirical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

7. Summary and Conclusion 145
7.1. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
7.2. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

8. Future Work 149

A. Appendix 151
A.1. HLT-Chain Application Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
A.2. Derivation of Complexity Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . 151
A.3. Cloud Computing and EaaS Stack . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
A.4. Virtualization Technologies and Products . . . . . . . . . . . . . . . . . . . . . . . 155
A.5. Feasibility Estimator Customization . . . . . . . . . . . . . . . . . . . . . . . . . . 158

B. Abbreviations 167

6



List of Figures

4.1. Virtual Machine Life-Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2. Lease Life-Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.3. Basic Framework Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.4. Example Search Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.5. Search Example: Initial Cluster State . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.6. Search Example: Intermediate Search Tree I . . . . . . . . . . . . . . . . . . . . . . 70
4.7. Search Example: Intermediate Cluster State I . . . . . . . . . . . . . . . . . . . . . 71
4.8. Search Example: Intermediate Search Tree II . . . . . . . . . . . . . . . . . . . . . 71
4.9. Search Example: Intermediate Cluster State II . . . . . . . . . . . . . . . . . . . . . 72
4.10. Search Example: Final Search Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.11. Search Example: Final Cluster State . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.12. Control Loop of RUA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.13. Concurrency of Reconfiguration Cycles . . . . . . . . . . . . . . . . . . . . . . . . 86

5.1. Package Diagram of the VM-Scheduling Framework . . . . . . . . . . . . . . . . . 97
5.2. Use Cases for the VM-Scheduling Framework . . . . . . . . . . . . . . . . . . . . . 99

6.1. Test Environment KIP Cluster In Heidelberg, Germany . . . . . . . . . . . . . . . . 106
6.2. Modification of CPU Core Availability for VMs in a Cluster . . . . . . . . . . . . . 109
6.3. Manipulations Chosen for Removing VMs from 6 Nodes . . . . . . . . . . . . . . . 110
6.4. Manipulations Chosen for Removing VMs from 12 Nodes . . . . . . . . . . . . . . 111
6.5. Manipulations Chosen for Removing VMs from 24 Nodes . . . . . . . . . . . . . . 111
6.6. Manipulations Chosen for Modifying Policies Every 60 Seconds . . . . . . . . . . . 112
6.7. Manipulations Chosen for Modifying Policies Every 40 Seconds . . . . . . . . . . . 113
6.8. Manipulations Chosen for Modifying Policies Every 20 Seconds . . . . . . . . . . . 113
6.9. SecApp Results for Different Policy Modification Intervals and Timelimits . . . . . . 115
6.10. Patterns for Generating CPU Usage on a Physical Node . . . . . . . . . . . . . . . . 118
6.11. Probability Densities for Generating a Mean CPU Usage . . . . . . . . . . . . . . . 119
6.12. Generated CPU Usage and Resulting VM CPU Usage for Different Thresholds . . . 120
6.13. VM CPU Usage and SecApp Results for Different Thresholds . . . . . . . . . . . . 121
6.14. Efficiencies for Different Thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . 122
6.15. Threshold and Number of Manipulations . . . . . . . . . . . . . . . . . . . . . . . . 123
6.16. Generated CPU Usage and Resulting VM CPU Usage for Different Timelimits . . . 124
6.17. VM CPU Usage and SecApp Results for Different Timelimits . . . . . . . . . . . . 125
6.18. Efficiencies for Different Timelimits . . . . . . . . . . . . . . . . . . . . . . . . . . 127
6.19. Effect of Trigger Sensitivity on Triggering and VM Manipulations . . . . . . . . . . 128
6.20. Effect of Local Resource Usage Adaption on Triggering . . . . . . . . . . . . . . . . 129
6.21. Additional Cluster CPU Usage and SecApp Results for Different Thresholds . . . . 135
6.22. Additional Cluster CPU Usage and SecApp Results for Different Timelimits . . . . 136
6.23. Dataflow of HLT-Chain Application . . . . . . . . . . . . . . . . . . . . . . . . . . 137

7



List of Figures

6.24. Development of HLT-Chain Queue-Length . . . . . . . . . . . . . . . . . . . . . . . 139
6.25. Average Cluster and Node CPU Usage with and without VMs . . . . . . . . . . . . 140
6.26. VM Manipulations during HLT-Chain Run . . . . . . . . . . . . . . . . . . . . . . . 140
6.27. HLT-Chain Queue-Length during Action Sequence Experiment . . . . . . . . . . . . 141
6.28. Cluster CPU Usage and VM manipulations during Action Sequence Experiment . . . 142

A.1. Resource Usage of Single VM Manipulations Suspend and Migration . . . . . . . . 160
A.2. Maximum Duration of Single Supend and Stop Manipulations . . . . . . . . . . . . 162
A.3. Maximum Duration of a Single Migration Manipulation . . . . . . . . . . . . . . . . 163

8



List of Tables

3.1. Computing Task Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.1. Example Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.2. Additional Resource Usage of VM Manipulations . . . . . . . . . . . . . . . . . . . 58

5.1. User Interfaces for Lease Owners . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.2. Interfaces of vWrapper Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.3. Interfaces of Sensor Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.1. Triggering and VM Manipulations for Different Timelimits . . . . . . . . . . . . . . 126
6.2. VM Manipulations for Different Timelimits and Load Patterns . . . . . . . . . . . . 126
6.3. Trigger Sensitivity Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
6.4. Mean and Deviation of Performance Metrics for No-VM Runs . . . . . . . . . . . . 132
6.5. Two-sided t-Tests for Different Policy Configurations . . . . . . . . . . . . . . . . . 133
6.6. Amount of Interference for Different Policy Configurations . . . . . . . . . . . . . . 134
6.7. Sequence of Actions in HLT-Chain Experiment . . . . . . . . . . . . . . . . . . . . 141

A.1. HLT-Chain Topology for Experiments . . . . . . . . . . . . . . . . . . . . . . . . . 152
A.2. Naming of VM Manipulations for Different Products . . . . . . . . . . . . . . . . . 157
A.3. Additional Resource Usage of VM Manipulations . . . . . . . . . . . . . . . . . . . 161

9





1. Introduction

Today, computer clusters play an important role in scientific and commercial computing. A cluster is a
confederation of interconnected computing devices ("nodes"). It represents a single computer system
and is typically deployed in order to make use of the combined processing power of its constituting
nodes. Most commonly, a cluster consists of commodity hardware nodes which are loosely connected
by a Local Area Network (LAN) and spatially located within a single computing center. Clusters have
a wide range of applicability that involves scientific simulations (climate research, fluid dynamics),
modeling (computer aided design, solid modeling) and image processing (medical imaging, oil reser-
voir imaging). Computing tasks ("applications") which run in a cluster can be distinguished by timing
constraints that apply to their desired processing performance:

• A best effort application processes readily available, persistently stored input data and has no
explicit timing constraint. Such an application can be re-run if a failure has occurred without
suffering from degraded result or service quality. Simulations and modeling applications are
typical examples.

• A time-critical application processes a stream of input data and has to satisfy a timing constraint
concerning processing performance. Typical timing constraints are: Maximum response time
per user request, number of data units processable per second or number of customers servable
per day. If a timing constraint is not satisfied, the service or result quality is degraded. Exam-
ples are web based applications (web servers, online shops), applications for stock trading or
applications that process data in high-energy physics experiments.

A typical problem in the context of time-critical applications is to ensure that an application’s timing
constraint is always satisfied. A widely accepted approach to this problem is "over-provisioning". In
simple terms this means buying more computing power than needed in the worst expectable case.
This approach is adopted by hardcore gamers1 that buy a desktop computer according to the criterion
that next year’s version of their favourite game has to run smoothly. In cluster computing, this means
to tailor the cluster environment explicitely to the application, i.e. to design the cluster in such a man-
ner that a specific maximum application performance will be achieved. Such a specifically tailored
cluster environment is called a "dedicated cluster". The stream of input data for an application in a
dedicated cluster is not necessarily constant, i.e. both frequency and size of to be processed data units
may vary over time.2 For instance, a web server hosting a sports ticketing software will experience
increased user request rates before a tournament and an instant decline thereafter. Such a variation
in the input data rate translates to a variation in the resource usage of the dedicated cluster. Running
a cluster is cost-intensive and a temporarily decreased resource usage means wasting precious com-
puting power. Therefore, a nearly optimal resource usage is desirable. The question arises as to how
unused resources in a dedicated cluster can be exploited without affecting the time-critical application.

1Hardcore gamer is a colloquial term for a person who spends significant time and money on playing specific computer
games such as 3D shooters.

2For ease of understanding, the size of to be processed data units is assumed to be constant. The metric indicating the
amount of data to be processed within a specific time frame is called "data rate".
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1. Introduction

A use case which belongs to this category and inspired this thesis is the cluster based process-
ing of detector data during a particle physics experiment: Conseil Européen pour la Recherche
Nucléaire (CERN) is a research facility that operates a particle accelerator and collider, the Large
Hadron Collider (LHC) [67]. The LHC is an underground-built ring of 27 kilometers in circumfer-
ence. It accelerates protons and heavy ions to 99.9999991% of the velocity of light and brings these
particles to collision at specific interaction points in the ring. A Large Ion Collider Experiment (AL-
ICE) [1] is an experiment located at one of these interaction points and is optimized for studying
heavy ion collisions. Its main purpose is to explore the Quark-Gluon-Plasma (QGP) that is supposed
to be forming at high energy density and temperature conditions. The ALICE experiment consists
of multiple detectors and processing elements that gather and process collision data. One of these
processing elements is the ALICE High Level Trigger (HLT). Basically, the HLT is a dedicated clus-
ter that runs a time-critical application, the HLT-Chain [104]. The HLT-Chain is a distributed and
hierarchical application for evaluation, selection and compression of collision data at runtime of the
experiment. According to specification, the HLT-Chain has to be capable of processing a maximum
input data rate of 25 GByte/s. The cluster hosting this application ("HLT-Cluster") comprises of about
200 commodity hardware nodes and 25 infrastructure servers. The resource usage in the HLT-Cluster
is varying: There are alternating run / no-run phases for the ALICE experiment. While collision data
has to be processed during a run phase, no processing occurs during a no-run phase.3 A run phase
can last from minutes to hours, a no-run phase can last from minutes to months. The data rate can be
different for separate run phases due to a modified filling scheme of the LHC and a modified trigger
scheme of the ALICE experiment. During a single run phase, the data rate also changes due to de-
creasing beam quality ("luminosity"). Additionally, the HLT-Chain application may be reconfigured
during a run phase. This leads to a spatial reallocation of HLT-Chain processes in the HLT-Cluster and
consequently to a changed resource usage on the concerned cluster nodes. Hence, there is variation in
the resource usage of the HLT-Cluster and temporarily unused resources exist.

Unused resources in a dedicated cluster can be exploited by running additional applications. While
this can lead to an increase in cluster resource usage and result output, it also poses several challenges:

Software Incompatibility: An additional application requires a suitable Operating System (OS) config-
uration. If the application was compiled against a specific kernel type that is not compatible with the
cluster configuration (Windows application / Linux cluster, 64bit application / 32bit OS), considerable
administrative overhead is required to assure the running of such an application in the cluster.4 Incom-
patibilities may also occur on another level: Different versions of shared libraries might be required
by the time-critical and additional applications. Such a version conflict may prevent an application
from being started or cause it to fail at runtime. Since this is inacceptable for the time-critical appli-
cation, special care has to be taken when trying to install an additional application in dedicated cluster.

Security Issues: During installation of an additional application, new software packages are merged
into a dedicated environment. This may introduce security risks which can be exploited by attackers.
This not only concerns intentionally designed malicious code, but any sufficiently complex software
with application and user interfaces. Exploits may compromise the dedicated cluster setup and lead to
disclosure of confidential data, degraded application performance or even a break in the functionality

3The cluster is used for occasional testing and calibration during a no-run phase.
4For instance, this could be achieved by having a dual-boot node configuration, enabling to switch the running OS upon

reboot of a node.
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of the time-critical application.

Software Bugs: An additional application may suffer from software bugs. Infamous bugs are program-
ming errors like memory leaks, synchronization faults (deadlocks, race-conditions) and unintendedly
created infinite loops. Common to bugs is to cause an application to behave differently than expected
or specified. Some bugs only emerge occasionally or with subtle effects, e.g. a faulty calendar map-
ping in a leap year or a periodically occurring minor computation error. Other bugs are more severe:
An application may crash or even affect the OS environment as a whole. For example, the memory
leak of an application may consume a great share of a node’s memory, which eventually affects the
performance of other running applications.5 The risk of introducing software bugs needs to be taken
into account when running an additional application.

Competition for Resources: In a dedicated cluster, all resources (Central Processing Unit (CPU),
network, memory etc.) are at sole disposal of the time-critical application and dimensioned such that
the timing constraint can be satisfied. By running an additional application, resources will be shared
among the additional application and the time-critical application. If a certain resource is fully utilized
(e.g., the CPU on a node), there will be competition for this resource between these applications. This
may affect the performance of the time-critical application. Two scenarios exemplify this effect:

• Given that the input data rate for the time-critical application is below the expectable maximum
data rate. Then there probably are unused resources, e.g. idle CPU cycles on a node. If an
additional application is now started on this node, CPU shares are attributed to this application in
a fair manner, i.e. the CPU usage is split between the time-critical and the additional application.
This might cause the additional application to receive more CPU cycles than were idle before,
hence the additional application will steal CPU cycles from the time-critical application.6 Such
stealing may affect the time-critical application by decreasing its performance. Therefore, the
question is how to give an additional application only that share of resources that is unlikely to
decrease the performance of the time-critical application.

• Given that an additional application is already running in the cluster and only uses otherwise
idle CPU cycles. Now the input data rate for the time-critical application is suddenly increasing.
Then the amount of resources needed by the time-critical application also rises, i.e. the amount
of resources safely usable by the additional application decreases. If the additional application
does not release a share of its used resources, the time-critical application might suffer from a
decreasing performance. The question is how to dynamically adjust the resource share given to
an additional application according to the changing needs of a time-critical application.

These challenges not only apply to the CPU usage on nodes, but are valid also for other resources, e.g.
the network. Additionally, there may be more than one additional application. This eventually gives
rise to the question as to how the competition for resources between a time-critical application and
multiple additional applications can be coordinated such that the time-critical application still meets
its timing constraint.

5A memory leak enforces the OS to heavily make use of swap space or running the out-of-memory emergency routine.
This decreases the performance of running applications.

6The fair-share scheduling policy is the default setting for today’s Linux and Windows OS process schedulers. Both may
be influenced by manually setting a process priority. This setting, nevertheless, is not sufficient for ensuring that a
process does not use more than a certain desired ratio of CPU cycles. For more information, please refer to Linux
documentation [71].
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1. Introduction

This thesis presents the conceptual approach and implemention of a framework which addresses these
challenges and allows to run additional applications in a dedicated cluster with a time-critical appli-
cation. By using platform virtualization for additional applications, a sufficient isolation between the
time-critical application and additional applications is provided. Thus, security issues are avoided and
the effects of software bugs towards the time-critical application are eliminated. Platform virtualiza-
tion also broadens the scope of runnable additional applications by providing a specifically configured
environment for each application. This method renders obsolete software incompatibilities and library
version conflicts.
The core challenge of this thesis is how to run additional applications without causing resource com-
petition that leads to a violation of the timing constraint of the time-critical application. In this thesis,
a concept is developed that provides a dynamic resource allocation for every Virtual Machine (VM)
hosting an additional application: Temporary resource bottlenecks are anticipated and counteracted
by allowing VMs only to use resources for a limited time frame if the total usage of a resource exceeds
a certain value. The share of resources used by VMs is modified at runtime. The dynamic resource
allocation for VMs according to the needs of a time-critical application is realized on two levels: A
Global Scheduler residing on a management node decides on using virtualization product features like
VM hot migration, suspend/resume and start/stop in order to prevent or resolve resource bottlenecks.
A Local Controller residing on each worker node uses a feedback controller to dynamically adjust the
share of resources like CPU and network usable by local VMs.
The presented approach is distinctive and novel by combining two features. First, the framework re-
lies on application-agnostic, OS provided metrics only and thereby is not tied to the utilization for a
specific time-critical application. Second, it combines multiple methods for adapting the resource
usage of additional applications: A developed search heuristic chooses between different coarse-
grained, globally initiated VM state transitions to adapt the resource usage at runtime. In parallel,
a fine-grained, decentralized adaption of VM resource usage is carried out. The feasibility of the ap-
proach is shown for the HLT-Chain application. However, the applicability of the framework is not
tied to HLT-Chain context. Configuration items (policies) will be presented that allow to customize
the framework towards dedicated clusters running other time-critical applications. By employing the
presented framework it is possible to exploit unused resources and to increase the result output of
dedicated clusters by running additional applications without affecting the time-critical application.
This framework, though explicitely designed for dedicated clusters with a time-critical application,
is not restricted to employment in such environments. The conceptual approach and implementation
is feasible also for exploiting unused resources and increasing the result output of clusters running
multiple time-critical applications or applications without timing constraints.

The thesis is structured as follows:
Chapter 2 states the goal of this work. Chapter 3 discusses the context of this thesis and portrays
methods used for dynamic resource allocation in clusters. Furthermore, a review of competing ap-
proaches is given. In Chapter 4 the conceptual work of this thesis is described: The basic terminology
is introduced, conceptual decisions are explained and the functionality of the decision-making infras-
tructure is laid out in detail. Chapter 5 gives insight into implementational details and user interfaces.
Empirically retrieved results are presented in Chapter 6. These include performance tests with simu-
lated workload and tests for the HLT-Chain application. In Chapter 7 the particular approach and the
achievements of this thesis are summarized. Additionally, an outlook for future work is presented.
Finally, the Appendix details several marginal aspects and provides a description of the used abbrevi-
ations.
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2. Thesis Goal

Over-provisioning is a paradigm for dimensioning a computing facility according to a required peak
performance. For a cluster that runs a time-critical application, this requires to design the cluster in
a manner that the timing constraint of the application will be satisfied for every specified data input.
Such a cluster explicitely tailored to the needs of a specific application is called a dedicated cluster. If
the input data rate for the time-critical application is varying over time, then the dedicated cluster is
likely to be underutilized at times of low data rates. This thesis aims at exploiting unused resources
in a dedicated cluster by running additional applications. For this purpose, a software framework
needs to be developed that realizes this task. The following conditions constrain the behaviour of this
framework:

1. The proper functionality of the time-critical application must not be affected by additional ap-
plications.

2. The framework cannot control the time-critical application. That is, the time-critical application
is a black-box and the framework can only passively react to the behavior of this application.1

3. The framework improves the efficiency of the cluster such that it increases a) the cluster usage2

and b) the number of computed results per time.

The provided framework has to fulfil the stated goal for the HLT-Chain application. Throughout this
thesis, the term Main Application (MainApp) will be used to refer to the time-critical application, for
example the HLT-Chain. An additional application that exploits unused resources via the provided
framework is called a Secondary Application (SecApp).

1This excludes contrasting approaches that are not valid for the HLT-Chain use case, e.g. steering the time-critical ap-
plication using its own proprietary Application Programming Interface (API) or using hypervisor commands for e.g.
migrating virtualized components of the time-critical application.

2The term cluster usage refers to the share of CPU cycles used in a cluster averaged over time and nodes.
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3. Context and Related Work

The goal introduced in Chapter 2 explicitely demands to run additional applications in a dedicated
cluster. The underlying general question is that of how to give resource consumers, e.g. additional
applications, access to cluster resources such that certain criteria are met. This is called a "resource
allocation problem". For a time-bound resource allocation problem, which involves both the question
of where (space dimension) and when (time dimension) to allocate a resource consumer, the term
"scheduling problem" is commonly used. Both terms "resource allocation problem" and "scheduling
problem" are used interchangeably in this thesis.

Scheduling is a very general concept and encompasses a large range of problems, use cases and ap-
proaches. This range spans from hardware scheduling, Operating System (OS) process scheduling
over cluster job scheduling to capacity planning in manufacturing. No exhaustive classification1 is
given, instead it is focused on resource allocation problems arising in the thesis’ context: Multiple,
potentially distributed applications request access to resources in a computing cluster. Since an appli-
cation is made up of at least one OS process, two levels of scheduling exist: Global scheduling deals
with the problem of where and when to allocate (run) a process in the cluster. Local Scheduling is a
task of the OS process scheduler on the node to which the process was allocated to.2 The OS process
scheduler usually is part of the OS kernel and follows the time-sharing paradigm: Local processes
are given time-slices of the CPU, the length of the time-slice is repeatedly recalculated according to
a predefined scheduling policy (e.g. fair-share according to priorities in Linux kernel 2.6 [71]). This
thesis is concerned with scheduling problems on the global level. Nevertheless, the thesis goal may
require the modification of the amount of resources given to an application’s processes locally on a
node. This, however, will not be achieved by patching or replacing the policies employed by a native
OS process scheduler. Such an approach would limit the generality of a to-be-developed framework
and put into question the usability of the framework in dedicated clusters. For instance, in the HLT-
Chain use case such a modification is not permitted. A dicussion of OS process scheduling techniques
is therefore omitted in this chapter.
When scheduling applications, a common strategy is to allocate the application’s processes to cluster
nodes once and leave them running until they finish their computing tasks. In certain cases, this ap-
proach is not sufficient: For example, if a low-prioritized application fully utilizes the CPU resources
of a node and a high-prioritized application requests to be run, then it might be appropriate to stop
the low-prioritized application in favour of starting the high-prioritized application. In this thesis,
the phrase "dynamic resource allocation" will be used when scheduling of (distributed) applications
not only involves an initial decision on when and where to run an application’s processes, but also
involves the usage of additional methods ("primitives") to modify the access to resources for already
running applications. As motivated earlier in the introduction, a framework that strives to meet the
thesis goal needs to possess the capability of "dynamic resource allocation": If the resource needs of a
time-critical application change due to a varying data input rate, the resource usage of already running

1For a comprehensive overview on scheduling, please refer to Pinedo [87].
2The distinction between global and local scheduling was introduced by Casavant and Kuhl [20]. In this paper, a brief but

well founded taxonomy for scheduling in distributed systems can be found.
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additional applications might need modification such that no or only limited competition for resources
occurs. This might be necessary for avoiding the violation of the timing constraint of the time-critical
application.
In research, multiple approaches to dynamic resource allocation have been proposed and different
aspects have been prioritized. Existing research work differs in pursued goals, methods of data acqui-
sition, applied decision logic and proposed modification primitives. In the first section of this chapter,
these goals and methods are briefly discussed to allow the embedding of this thesis in the current
state-of-the-art research. After having introduced the context in which this thesis is situated, several
significant approaches are discussed in the second section of the chapter.

3.1. Research Overview

This section gives an overview on how researchers propose to automate dynamic resource allocation
in a cluster environment. The overview especially focuses on the usage of platform virtualization
to host applications.3 This technology is considered an enabling technology towards the goal of this
thesis. The reasons herefore are discussed later in Section 4.3.2. Therefore, approaches for both native
and virtualized applications are considered.

Computing Task Schedulable Constituent Finished Computation
Application OS process Result
Job OS process Finished job
Application VM Result

Table 3.1.: Differing terms used for scheduling of generic applications, jobs and VMs.

For the following overview, the terminology needs to be split to avoid confusion. The term job is a
commonly used abstraction for a schedulable computing task in distributed environments. A job in
its most simple representation is a specific application that consists of at least one OS process that
requires to be scheduled to a physical node in a cluster. A job has an (often unknown) duration during
which it consumes resources.4 Once the job finishes, a useful result has been computed. As an ex-
ample, a job can be the simple calculation of all prime numbers between 1000 and 2000, but also the
weather forecast for the next weekend using a sophisticated atmospheric model. A job therefore is the
computation of a single "result" by a specific application. With the introduction of the job term, there
are now competing terminologies for the same concept. This is illustrated in Table 3.1. Both the first
and the second row represent an application that consists of schedulable OS processes which upon
finished computation yield a result. In contrast to the concept represented by rows one and two in this
table, the third row represents virtualized applications. These also consist of OS processes, yet these
processes are wrapped inside of VMs (Virtual Machines) with each having a dedicated OS environ-
ment. Distributed virtualized applications therefore consist of a set of VMs that need to be scheduled
to physical nodes.5 In this chapter, the term job will be used only for describing existing products
that label their own approach as job scheduling, otherwise the term application is chosen. The term
process will be used to denote the schedulable constituents of a non-virtualized application/job, and

3Details on virtualization technologies and products are given in Section A.4.
4For a comprehensive overview on the job nomenclature, its derivates like parallel jobs, job-shops and flow-shops and the

according mathematical models, please refer to Pinedo [87]. For a more practical approach to "parallel machine models
with parallel jobs" (i.e. scheduling of distributed applications in clusters), please refer to [40, 41].

5More precisely, a VM on a physical node is served by a local hypervisor that realizes the virtualization semantics.
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the term VM is used to denote the schedulable constituents of a virtualized application.

The task of dynamic resource allocation involves decisions on a) which physical nodes are eligible
to run constituents of a distributed application and b) to which extent local resources can be utilized.
In this context multiple goals and methods have been examined in research. These are now described
along the following dimensions:

1. What goals do researchers and products pursue?

2. What are the basic primitives proposed for changing the resource allocation?

3. What kind of information is incorporated to make a resource allocation decision?

4. How do researchers decide when and how to modify resource allocation?

3.1.1. Goals in Current Research

Three basic directions have been identified for the current research concerning dynamic resource
allocation in clusters: First, researchers and industry focus on formalizing and satisfying runtime con-
straints for single applications. Second, it is researched how clusters can be exploited most efficiently
concerning number of serviced customers, energy consumption and costs. The third direction is that
of how to provide cluster resources to a multitude of users and applications in a uniform and abstracted
manner.

Application Runtime Constraints Applications typically possess specific run conditions under
which they are considered fully functional, or vice versa: there are conditions which may keep an
application from fulfilling its purpose. Examples are real-time video conferencing or multi-tier web
servers. Users only tolerate a certain delay, a non-tolerated delay makes the application unusable from
the user’s point of view. The term Quality of Service (QoS) [57], for instance, refers to constraints for
traffic in telecommunication networks. Such constraints have always been an issue but have received
additional attention in research over the last years: The shared and concurrent usage of computing
clusters by multiple applications and users led to the need a) to formalize runtime constraints for ap-
plications and b) to find ways to make sure these constraints are met at runtime.
The first point has gained massive focus by industry in order to provide accountability. In analogy
to the QoS terminology for telecommunications, the Service-Level Agreement (SLA) concept has
been proposed in Information Technology Infrastructure Library (ITIL) [58]. A SLA is an agreement
between a service provider and a customer and describes a service, its targets and defines responsi-
bilities. An SLA can be used to describe the specific service "to host an application in a cluster".
Part of the SLA is the Service-Level Targets (SLT) that describe the desired qualities of a service
quantitatively. For this purpose the SLT consist of multiple Key Performance Indicators (KPI). An
example KPI is "maximum response time of a web server per user request". The SLT therefore state
under which circumstances an application is considered to be fully functional. While such targets
enable legal treatment of software run conditions, they do little to describe how these goals can be
met by a service provider. In ITIL, the term Operational-Level Agreement (OLA) is proposed for
guidelines and agreements used within the Information Technology (IT) department of the service
provider. Such OLAs comprise of low-level technical goals that when pursued and achieved will lead
to meeting the SLT. For instance, if for a web server the maximum response time per user request
is specified to be 5s, a potential low-level goal to be pursued by cluster operators is to keep the CPU
utilization under 80% on the physical nodes hosting the web server. SLT are not necessarily specified
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using technical, IT related terms but can also be composed using some abstract KPI like customer
satisfaction. As of today, there is no agreed-upon general technique to find and specify OLAs for
given SLT. Some reseachers try to model the dependency between high-level goals (SLT) like re-
sponse time, customer satisfaction or mean transaction rate and low-level goals (OLAs) like CPU
usage mathematically [111, 133], using feedback control6 [134], or based on historical experience
and feasibility [52]. Others [46, 126, 134, 26, 8, 54] only monitor low-level properties like CPU usage
and memory consumption of a physical machine. If these properties of a physical machine do meet
certain criteria (e.g. average CPU usage over last 5 minutes < 80%), hosted applications are consid-
ered to perform correctly. Such an approach is criticized by researchers [14, 115, 84, 132] for being
too general. These propose to consider other application-specific metrics, like errors in logfiles, when
trying to meet SLT requirements.

Consolidation and Efficiency While the research work mentioned in the last paragraph deals
with satisfying constraints and requirements of a single application, there is also the perspective of the
service provider, e.g. the IT department running and providing the cluster environment for a multitude
of applications. While any service provider wants to make sure that each customer is satisfied with
the delivered service, he also aims at minimizing its own total costs or increasing revenue. This can
be accomplished by e.g. reducing the number of running needed physical machines, reduced power
consumption or maximized resource exploitation. Again ITIL delivers a term to describe this aspect:
Such goals are subsummed under the term Business-Level Objective (BLO). Researchers often cover
both application SLT and provider BLOs and try to find a trade-off between these potentially contra-
dicting objectives. Some researchers specifically focus on server consolidation, trying to minimize
the number of physical machines needed to serve applications [46, 14, 116, 102, 65, 135]. This typ-
ically is tried by putting VMs or applications as densily as possible on physical machines. Others
explicitely claim to gain lower power consumption [118, 55, 89]. In contrast to cutting cost by using
less servers or consuming less power, classical job schedulers like Load Sharing Facility (LSF) [88],
Oracle Grid Engine (OGE) [81], Torque [108] or Maui [61] rather aim at improving the efficiency
of a cluster by improving aggregated performance metrics: For instance the "throughput" of jobs de-
scribes the number of finished jobs over time, "walltime" (also: "turnaround") is the average time a
job takes until its computation is finished and "queuetime" is the average time a job has to wait until
being given computing resources. Another goal often pursued is to use existing CPU resources as
optimally as possible, i.e. to strive for a high cluster CPU utilization. Such problems like reducing
power consumption, computing more results over time, increasing exploitation of available resources
but also offering satisfactory service to many applications at the same time are accepted goals pursued
by many researchers.

Encapsulation and Interfacing Applications running in distributed environments often have spe-
cific runtime constraints, e.g. SLT. Sometimes applications are distributed, have a multi-tier ar-
chitecture or base on parallel code (e.g. Message Passing Interface (MPI) applications). Between
the constituents of a distributed application (processes/VMs) there may be interdependencies. The
number of constituents may be variable for a single application.7 Such properties and other relevant

6Control theory describes how a dynamical system, i.e. a system whose state evolves over time, reacts to input values. A
closed-loop feedback controller uses sensor data, i.e. a system’s output values, to continually adjust the input values for
the system. A common goal of using a feedback controller is to make a system reach a specific target state. For more
information, please refer to Franklin et al.[42].

7In job scheduling the options of moldability and malleability exist. While the former means that the number of processes
can freely be chosen upon starting of a job, the latter even allows for manipulating the number of processes for a job at
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meta-information, e.g. the amount of memory an eligible physical node has to possess, the number of
CPU cores needed by processes/VMs or which OS environment is required, need to be specified and
taken into account when making decisons on when and where to run applications. In job scheduling
such meta-information is manually coded in job description files that are made available to a deci-
sion instance, the job scheduler. For a user that wants to run a job, an interface for submitting a job
along with the description file exists. Upon submittance, the job scheduler takes full responsibility
to schedule the job according to the requirements stated in the description file. In general, after sub-
mitting the job no further possibilities exist for the user to influence the scheduling of the job.8 In
grid computing this approach is extended to multi-cluster environments with intermediate decision in-
stances (resource brokers) that decide in which local cluster the job is executed. Job scheduling with
all its existing products (LSF, OGE, Torque, Maui, Condor) is a mature, highly configurable and fully
established technology for running distributed applications in clusters. This still is different for the
scheduling of virtualized applications, but with the dawn of cloud computing9 now draws a lot of at-
tention. Scheduling of virtualized applications is still an evolving technology and the question of how
to interface and instrument virtualized environments and applications is still under debate. While for
plain job scheduling only a simple description file is needed and appropriate physical resources have
to be found before a job is run, running a virtualized application requires the existence of properly
configured VMs and environments. This means that not only meta-information on the application is
needed, but also a description of the VMs, a configured virtual environment and properly set up VMs
are required. Research and product development has heavily focused on how to make distributed
resources available to arbitrary applications in a virtualized manner. This spans:

• Tools like rPath [93] and Cloudzoom [28] for obtaining, creating and configuring specific VM
images ("appliance").

• Unified, abstracted interfaces and APIs like libvirt [70] for managing virtual environments in-
dependently from the underlying virtualization technology and product.

• Cloud platforms providing standardized interfaces to create, operate and manage arbitrary vir-
tualized environments (Amazon EC2 [4], Amazon S3 [5], OpenStack [86] and Oracle Manage-
ment API [80]). These solutions offer APIs or a Graphical User Interface (GUI) for setting up
and managing a complete virtual infrastructure including VMs, storage and Virtual Local Area
Network (VLAN). However, management of the environment is still delegated to the user of
these APIs. Basic automated resource allocation like initial allocation of VMs to physical nodes
is provided using a round-robin, first-fit algorithm10 for Amazon EC2.

• OpenNebula [101], Enomalism [37] and Eucalyptus [38] are software frameworks that instru-
ment the above mentioned or proprietary APIs and establish a convenience layer on top of these
APIs for easening the interaction with cloud environments. For instance they incorporate ap-
plicance building and VM life-cycle management, add enhanced user security (Authentication,
Authorization), monitoring or high availability options. OpenNebula allows to define sets of
VMs that form functional units, thereby starting either all or none of the respective VMs. Auto-

runtime.
8Job schedulers like Condor[72] also allow for pausing a job. All job schedulers allow to cancel a submitted job.
9An overview on cloud computing and the Everything as a Service (EaaS) stack can be found in Section A.3.

10Round-robin is a basic scheduling algorithm that assigns a resource to multiple resource consumers in a circular order,
thereby implicitely giving each consumer the same priority. Each resource consumer receives the same portion of the
resource. First-fit is a scheduling algorithm that assigns the first appropriate resource (found among multiple resources)
to a resource consumer. A round-robin, first-fit approach in the respective context means that VMs are processed in a
circular order and the first eligible node in the cluster is chosen as a host for a VM.
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mated resource allocation for VMs does not go beyond choosing an inital placement based on
round-robin, first-fit algorithms. However, the need to make resource allocation for VMs more
adaptive and flexible is acknowledged, offering to plug-in external VM scheduling algorithms.

The need to treat a set of VMs hosting a single distributed application as a functional unit and to
automatize resource allocation has been addressed first by Chase et al. [22] and Irwin et al. [49].
While Chase et al. only aim at modifying a set of VMs as a whole, Irwin et al. wrap a set of VMs
with additional meta-information, calling it a lease. Such a lease belongs to a user, has a life-cycle and
associated timing constraints. Researchers build on this early work and acknowledge the need to treat
sets of VMs as functional units, representing a single virtualized application. A lot of research effort
has since gone into the evaluation of methods how to dynamically manipulate resource allocation in
distributed environments, especially for virtualized applications. Several approaches are discussed in
the next section.

3.1.2. Resource Allocation Primitives

The basic operations ("primitives") for resource allocation in job scheduling are starting and stopping
of jobs on physical nodes. While preempting processes, i.e. pausing single processes for a limited time
frame, is an important operation used by process schedulers in operating systems, this is less com-
mon in distributed computing where gang scheduling prevails. Some job schedulers like Condor [72]
offer the option to preempt jobs, but strictly limit its usage to jobs with single, non-communicating,
Input/Output (I/O) restricted processes [31]. VMs offer more flexible methods to manipulate an ap-
plication’s resource allocation. This actually means that beside of initially allocating and running
VMs on physical nodes until their computing tasks are finished, additional modifications at runtime
are possible. Researchers currently focus on using such modifications in order to meet goals like
server consolidation, increased resource usage or SLT compliance. The following primitives have
been proposed:

Run-to-Completion The basic paradigm to run an application is run-to-completion. In its initial
context this means a job/application is allocated to resources, put in running state and kept running
until its computing task completes. This approach is adopted by OpenNebula for VMs and Maui,
OGE and LSF for native applications. Such a basic strategy lacks flexibility for adapting to changing
resource availability.

Stopping and Restarting Stopping an application and restarting it at a later point in time is a
very basic way to modify the resource usage in a cluster. For their In-Vigo system Xu et al. [130]
propose stopping of VMs and restarting these on different physical machines. They regard this as a
mechanism to cope with QoS violations, specifically deadline violations. Unless partial results are
saved prior to stopping a VM or job, this method has the drawback that unsaved computational state
is lost and computations need to be repeated upon restart.

Preemption This downside can be avoided if preemption is used instead of stopping/restarting jobs
or applications. Preemption basically means that a computing task is temporarily stopped from con-
suming resources. Its computational state is preserved until the task is resumed at a later stage. The
base technology for preempting distributed applications is called checkpointing. Checkpointing saves
the state of an application to disk such that it can be continued at this very checkpoint at a later
point in time. However, checkpointing does not necessarily stop an application from running and
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consuming resources. Commonly this technology is used to save specific computational milestones
that later can be rolled back to, e.g. in case of failures. Still, this base technology can also be used
to manipulate the resource consumption of a running application, via checkpointing and successively
stopping this application. There are multiple techniques to implement checkpointing for native, i.e.
non-virtualized applications: user-, kernel- and application-level checkpointing.11 Each of these have
specific drawbacks, which eventually prevent the wide adoption of this technology in job scheduling.
The most important ones are synchronization issues for distributed applications and the difficulty to
guarantee that a later continuation occurs in a comparable, i.e. non-differing OS and kernel environ-
ment [9, 19]. Therefore, preemption for applications is applied by job schedulers only with strict
limitations [31, 88] or if applications make use of specific checkpointing libraries [72], hence severely
limiting the scope of runnable applications. For VMs, preemption ("suspend/resume") is a natively
supported operation12 which causes few problems because not only the application state is saved, but
also its whole operating system environment including the state of I/O transactions and inter-process
communication. Nevertheless, a problem that also exists for VM preemption is the synchronization
between multiple to-be-suspended VMs, e.g. hosting an MPI application. For this problem, Walters
et al. [121] propose a VM-aware MPI library which allows the parallel suspending of multiple VMs
without breaking the application’s functionality. Agarwal et al. [2] introduce a distributed checkpoint-
ing library and Emeneker et al. [36] propose to synchronize clocks before preempting a set of VMs.
Despite of its native support by all virtualization products, VM preemption is not often proposed in
research concerning dynamic allocation of resources for VMs. A possible explanation is that the over-
head for the suspend/resume operations is still not sufficiently accounted for and coped with in current
research. Also, suspending an interactive job or application will break its execution semantics, thereby
only allowing best effort jobs to be suspended. Zhao et al. [132] mention the usage of the suspend/re-
sume feature but do not specifically propose when and how to make use of it. Sotomayor et al. [100]
discuss the overhead involved with suspending and resuming of VMs. Walters et al. [120] propose to
use preemption of lower prioritized VMs in favour of other VMs hosting interactive applications.

Migration Migration is an operation that changes the allocation of a resource consumer to a certain
resource. For native applications this means moving a process from one physical node to another. For
virtualized applications this means moving a VM accordingly. The purpose of using this operation
depends on the goal pursued by the researcher. For instance, it can be used to free resources on
a specific physical node, but also for improving application performance by moving a process or
VM to a physical node with more computing power. A distinction between cold, warm and hot
migration can be made. Cold migration basically refers to the fact that a process or VM that previously
had been running on a certain physical node was stopped and restarted on a different physical node.
Accordingly warm migration means that a suspended single process or VM is resumed on a different
physical node. The most interesting feature is hot migration. Using this operation, a process or VM
can me moved from one physical node to another at runtime of the process or VM. In most cases,
the migration act is transparent towards users or other processes communicating with the migrated
process or VM [75, 27, 119]. Hot migration is a powerful tool for achieving different goals like
server consolidation or application SLT compliance. Cold migration of jobs is a basic feature that job

11User-level checkpointing requires an application to be compiled/linked with checkpointing library support. Application-
level checkpointing requires an application to self-provide the mechanisms for saving its state. Kernel-level check-
pointing makes use of the preemption techniques of the OS process scheduler, but requires additional kernel patches or
modules. For more information, please refer to [19].

12The naming of this feature differs for the specific VM products. See Table A.2 for nomenclature details. In this thesis
checkpointing to disk, stopping and later continuation of a VM is referred to as suspend/resume.
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schedulers make use of. Warm migration requires previous checkpointing and therefore is only used
by job schedulers that utilize the checkpointing feature (Condor, LSF). Hot migration is not used in
job scheduling. Cold and warm migration is supported by all virtualization platforms (see Section
A.4 for an overview on virtualization platforms). Hot migration is also offered by most vendors, but
sometimes (VMware ESX [123]) fully supported only in commercial distributions or with respective
licenses. The migration feature is subject to current extensive studies. Xu et al. [130] propose
cold migration. They suggest to stop VMs which violate a certain deadline three times in a row
and to restart it somewhere else. They do not make remarks on which physical machines and when
these VMs should restarted. Zhao et al. [132] also try to meet application deadlines by using warm
migration. Sotomayor et al. [100] mention the benefit of warm migration for meeting time constraints
of virtualized applications. Hot migration of VMs is focused on by a lot of researchers, e.g. for
resolving hotspots [114, 126, 8], load balancing [94], consolidation [54, 55, 118, 102, 65, 47, 89]
and SLT compliance [26, 98]. Others examine general properties and benefits of VM hot migration
[111, 23]. The overhead of hot migration for VMs machines is explicitely tackled by Akoush et al.
[3] and Voorsluys et al. [119]. From now on, the single term "migration" will be used to refer to VM
hot migration.

Global Resizing A method for scaling an application at runtime, e.g. in order to meet SLT, is to
modify the number of its processing components. In this thesis this approach is called "global resiz-
ing". PCM [73] and Dynaco [17] are initiatives that offer an API to MPI applications by which these
can dynamically spawn new processes on new physical nodes if resources are available. Accordingly,
processes can also be eliminated at runtime without affecting the functionality of the application.13

APM [56] offers such a dynamical adaption in Symmetric Multiprocessing (SMP) environments.14

Applications have to support this feature explicitely by either instrumenting a specific API or self-
providing the methods needed for such a functionality like dynamic discovery, registration and inte-
gration of new processes.
A similiar approach called clustering is used by application servers like JBoss [60] and Websphere
[122]. Applications hosted in such runtime environments are able to utilize additional application
server instances such that application performance can be increased. Again, such applications need to
make use of APIs and programming constructs (e.g. Enterprise Java Beans) provided by application
servers in order to benefit from this feature. Common job schedulers are also able to incorporate new
physical nodes at runtime. However, these are then only available to newly started jobs. Already
running ones cannot profit from this modification. In the context of virtualization, adding (and re-
moving) VMs to (from) a set of VMs hosting a specific application is no technical problem. However,
in this case the same requirement exists: The hosted application has to support this up/down-scaling.
Chase et al. [22] propose to modify the number of VMs dedicated to a specific application. In their
work, VMs host a batch scheduling client (LSF) and the number of clients, i.e. the number of VMs,
is dynamically adapted based on a metric provided by the job scheduling server (LSF).

Local Resizing Contrary to global resizing, which means modifying the number of processing
units for a distributed application, local resizing modifies the share of resources given to a single
process or VM on a node. A typical example is the "nice" command in Linux used for manipulating

13This means the application will not crash. It may, however, have an impact to the performance, i.e. the SLT compliance
of the application.

14SMP refers to a paradigm in computer architecture where multiple processing units equally access a common shared
memory. A typical example is a CPU with multiple cores which share a common memory space.
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the scheduling priority of a process at runtime. Such a change of scheduling priority may affect
the share of CPU cycles given to that process. A comparable command is "chrt" which allows a
runtime change of scheduling policy and real-time priority the process scheduler applies to a specific
OS process.15 The command called "ionice" can be used to adapt the I/O scheduling priority of a
process at runtime. Other Linux tools exist (iptables, niceload) that can be used to manipulate the
amount of locally consumed resources of a single process. Common job schedulers (Maui, Condor,
LSF, OGE, Torque) do not use such methods for modifying the resource share of running jobs. The
virtualization platform XEN [11] offers runtime adaption of memory size, number of virtual CPU
cores and maximum share of CPU cycles given to single VMs. VMware ESX offers runtime adaption
of VM memory size and number of virtual CPU cores. A runtime modification of the number of CPU
cores attributed to a VM is proposed in several works [89, 133, 94, 64]. Padala et al. [84] use the
"cap" command to manipulate the CPU share utilized by XEN VMs. They also change the disk I/O
bandwidth available to a running VM using a modified XEN I/O-driver.

3.1.3. Data Used for Decision Making

Different primitives have been presented that researchers propose for dynamic resource allocation
However, it has not been mentioned yet how researchers make use of these primitives in order to
achieve their goals. This question is split in two parts. First it is examined what data is used by
researchers to make decisions on dynamic resource allocation. Second there is the question how this
information is incorporated and which algorithms and techniques are proposed for making resource
allocation decisions. The first aspect, the type of data used for decision making will be discussed next.

Static Data Available resources in the cluster and requirements of jobs/VMs need to be considered
when making resource allocation decisions. There are several "static" properties of a distributed en-
vironment which commonly do not change in the short run, like the number of physical machines
available, their hard- and software specification (Random Access Memory (RAM), CPU, Instruction
Set Architecture (ISA), OS) and network topology. For a job, the description file offers the possi-
bility to specify e.g. the memory and amount of CPU cores needed by a job’s processes, the swap
space a physical node has to possess and which OS environment is required to run the job’s pro-
cesses. Accordingly, a VM also has specific configuration properties like its number of virtual CPU
cores, amount of RAM and desired network configuration. A resource allocation decision has to
match such requirements with available cluster resources. For properties like number of CPU cores
and amount of memory a cumulative match-making is sensible, taking into account the amount of
resources already attributed to other jobs or VMs. The XEN virtualization platform is an exception
because it explicitely allows over-provisioning of CPU cores and RAM ("memory ballooning"). Most
scheduling approaches take into account such static information. Regarding network topology com-
mon job schedulers assume a homogeneous network such that full bisectional bandwidth is given for
every node-to-node communication. However, this assumption does not always hold in real life en-
vironments and may lead to decreased performance for distributed jobs. A network topology-aware
scheduling algorithm is therefore proposed by Pascual et al. [85] using locality-aware policies. Meng
et al. [74] consider network topology in the virtualization context.

15The "nice" setting affects the length of a timeslice given to a process in the SCHED_OTHER fair-scheduling policy. The
"chrt" command allows to change the scheduling policy for a process, e.g. from the common SCHED_OTHER fair-
share scheduling to SCHED_FIFO real-time scheduling. "chrt" also allows to manipulate the static real-time priority of
a process at runtime. For more information, please refer to the Linux documentation [71].

25



3. Context and Related Work

Dynamic Physical Node Data Static properties like number of CPU cores offered by a physical
node and required by jobs or VMs are not subject to unpredictable fluctuations. In stark contrast to
such properties there are resource usage metrics, like CPU usage on a node, that may exhibit volatile
behavior, thus having an impact on achievement of the resource allocation goals. Such "dynamic" data
needs to be retrieved and evaluated at runtime. The current CPU usage or load16 of a physical machine
is a criterion widely adopted by researchers to decide on where to allocate and run processes or VMs.
Job schedulers like LSF, Condor and Maui allow to define thresholds on current CPU usage and load
to specify which physical nodes are eligible for running additional jobs. LSF and Condor also use
such thresholds for decisions on the preemption or stopping of jobs. In the context of VM scheduling
Wood et al. [126] use CPU load to detect physical nodes with CPU bottlenecks. Tesauro et al. [109]
and Choi et al. [26] use current CPU usage. Gmach et al. [47], Zhu et al. [135] and Rolia et al. [92]
use historical trace-data about a physical nodes’s CPU usage and extrapolate it to predict future CPU
"overload". Other physical node metrics are also considered. Condor and LSF offer to incorporate
the current paging rate, currently available free RAM, available swap space and even current disk I/O
rate. For VM scheduling, the currently free memory on physical machines is considered by XU et al.
[130]. Meng et al. [74] and Sonnek et al. [98]. The latter also take into account the current network
traffic generated for a network interface of a physical machine. The disk I/O for a specific hard disk
is used by Padala et al. [84]. Stoess et al. [106] use a physical node’s thermal sensor data to indicate
thermal overload which needs to be resolved.

Dynamic Process/VM Data Dynamic data for a physical node is queried using OS interfaces and
may give hints whether a physical machine is overloaded or is suited for hosting additional process-
es/VMs. More specific information on already running processes or VMs seems helpful to some
researchers. Job schedulers do not take into account runtime metrics for single processes, e.g the CPU
usage caused by a process. While job schedulers allow the specification of constraints for jobs that
determine when a job can be run or has to be stopped, such a specification always bases on metrics
gathered for the whole physical node. In the context of VM scheduling, researchers propose to utilize
VM-specific runtime information. Wood et al. [126] introduce the distinction between Black-Box
and Grey-Box resource management. According to them, Black-Box resource management only uses
VM-specific information that can be gathered via the physical node OS or the virtualization hypervi-
sor.17 On the opposite, Grey-Box management relies on data to be captured from the virtualized OS
or application. While the latter allows to incorporate application-specific metrics and can therefore be
used to tightly control SLT compliance, the former has the advantage of being application-agnostic
and therefore suitable in general scenarios.

Black-Box Data Wood et al. [126] capture CPU load, swap activity and network traffic for ev-
ery single VM. The CPU usage of single VMs is taken into account by several researchers
[133, 89, 47, 111, 14, 8, 55, 65, 102, 54]. Meng et al. [74] and Sonnek et al. [98] measure
network statistics for every VM, whereas Padala et al. [84] take into account not only overall
disk I/O but also disk I/O specifically generated by single VMs. Wood et al. [127] make an
interesting proposal for improving resource allocation decisions. These researchers claim that
many VMs have similar contents in the physical node’s RAM. If supported by the hypervisor,
VMs with identical pages can be placed together on a physical node and those pages can be used
together. Another paper by Verma et al. [118] discusses caching issues for VMs. They argue

16While CPU usage commonly refers to the shares of CPU cycles used by processes over a time interval, CPU load in most
cases is the moving average for the CPU queue length over a time interval.

17Please see Section A.4 for details on virtualization technology.
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that VMs dealing with data structures that fit into the L2 cache of a physical machine’s CPU are
more efficient compared to those dealing with data structures not fitting into this cache. They
propose to place VMs together on a physical node if the summed size of their data structures
does not exceed the cache’s size. This latter proposal is not an explicit Black-Box approach
because there are certain assumptions about the virtualized applications and the nature of the
virtualization technology used. However, in comparison to the following Grey-Box approaches
the researchers mentioned so far do not rely on monitoring the virtualized OS and applications.

Grey-Box Data Chase et al. [22] and Irwin et al. [64] propose to write application managers which
process application log-files to decide upon the necessity of allocating additional resources.
Meng et al. [74] propose to measure which VMs in a distributed environment communicate
with each other in order to place them according to physical network topology. They show that
network bottlenecks can be circumvented. A similiar approach taking into account current net-
work traffic is chosen by Sonnek et al. [98] . They measure network traffic for VMs and place
VMs with high communication traffic together on a physical machine.
As mentioned (see Section 3.1.1), the meeting of application SLT is one of the major goals in
current research. A natural approach to achieving this goal is using application feedback. While
adaptive control using application feedback is quite established in engineering, low-level net-
work protocols and for specific applications like video conferencing systems and load-balanced
web servers, this is less common for general purpose resource allocation frameworks like job
and VM schedulers. This is due to one reason: Since every application has its own distinct SLT,
a general way of incorporating arbitrary, non-standardized application-level data into a decision
logic is tedious if not impossible. Hasselmeyer et al. [52] suggest that a human expert, based
on historically retrieved measurements, manually translates desired web server throughput to
low-level parameters like the number of web servers needed. Zhikui et al. [133], Turner et al.
[111], Bobroff et al. [14] and Van et al. [115] propose to use response times of a virtualized
application to determine appropriate VM allocations and properties. The additional usage of
request rates is proposed by Wood et al. [126] and Van et al. [116]. Padala et al. [84] argue
that response time and request rate are not sufficient and claim a benefit for measuring applica-
tion throughput over time. A similiar argument provide Xiong et al. [129]. They incorporate
variance and percentiles of response time as well as throughput rate.

Intrinsic Scheduler Data The types of data mentioned so far require access to external sources
like physical node OS or application log-files. However, any scheduler also has internal metrics that
emerge from past scheduling behavior. Such metrics encompass the computing time already given to
a specific job, elapsed time since job submittance, time left to a potential deadline or averaged per-
formance metrics like mean job throughput and walltime. Depending on the algorithmic approaches
taken by a scheduler such metrics can be incorporated into decision making or even used for improv-
ing future scheduling.

3.1.4. Decision Techniques

It has been shown what data is incorporated into decision making and what primitives are used to
modify resource allocation. The still missing link is the decision logic that evaluates the data and
decides what primitives to apply at which point in time. A distinction can be made between scheduling
of jobs or applications that do not run ("initial allocation") and modifying already running jobs or
applications ("adaptive allocation").
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Initial Allocation Mature job schedulers like Maui, Condor and LSF commonly prefer the run-to-
completion paradigm. For this paradigm the questions a) which job to provision next and b) where to
provision the processes of the job are important . All mentioned job schedulers can be configured with
different scheduling policies. For the question which job to consider next, algorithms like first-come,
first-served18, fixed-priority scheduling19 and fair-share with dynamic-priority scheduling20 can be
choosen as scheduling strategies. For finding appropriate target nodes, first-fit is the most commonly
used technique. Advanced reservation, i.e. keeping specific nodes unused until all requirements of a
high-priority job are met (instead of giving it to lower-prioritzed jobs), is another option offered by
mainstream job schedulers. In the context of virtualization the same questions arise, i.e. which set of
VMs hosting a specific application to provision next and where to put them in the cluster. For deciding
which application to provision next, OpenNebula and Walters et al. [120] both use a first-come, first-
served strategy. Walters et al. additionally incorporate the backfill strategy that allows to use unused
resources for lower-prioritized or later submitted applications. First-fit decreasing21 is also proposed
by researchers[126, 118, 14, 63]. For finding an appropriate allocation of VMs to physical nodes the
proposed techniques range from plain first-fit [120, 101] over the aforementioned first-fit decreasing
approaches to more elaborated bin-packing search algorithms [135]. Gmach et al. [46] propose to
use a genetic algorithm22 to find a suitable allocation scheme. Van et al. [115] and Hermenier et al.
[54] claim to have superior heuristics to find an optimized allocation using a "Constraint Satisfaction
Problem" solver. Van et al. [116] suggest a search heuristic with application-specific utility functions
for finding an appropriate allocation scheme for a set of VMs.

Adaptive Allocation The aforementioned approaches tackle the question when and where to run
a job or set of VMs. A finer-grained resource allocation control, e.g. the preemption of running
jobs, migration of a running VM or giving a running process more CPU shares, are not considered in
these proposals. For run-to-completion approaches this question is irrelevant: Upon submittance of
a job or virtualized application, a potential allocation is calculated and applied if feasible. Running
applications or jobs are not manipulated. For approaches which claim to dynamically adapt resource
allocation by manipulating running VMs or jobs, basically two questions arise: When to modify which
running job or application (and its constituent processes and VMs) and how to modify it. Researchers
focus on the first aspect, the approaches are therefore distinguished according to their method of de-
ciding which running job or application to modify, i.e. how a decision to modify a specific job or
application is triggered.

18First-come, first-served (FCFS) is a scheduling algorithm that assigns a resource to resource consumers in the order in
which they have arrived, e.g. by submittance date.

19Fixed-prority scheduling is a scheduling algorithm that assigns a resource to resource consumers in order of their pri-
orities. Priorities are given to a resource consumer only once and are fixed. For instance, a priority can be calculated
depending on a resource consumer’s temporal requirements, its importance for correct functionality of a system or
credentials of a submitting user.

20Fair-share scheduling is scheduling approach that assigns each resource consumer an appropriate portion of a resource.
One method to achieve this is dynamic-priority scheduling for which a resource consumer’s priority is periodically
updated in accordance with the time it has already consumed a resource.

21First-fit decreasing is a variant of the first-fit algorithm. In contrast to the latter, the eligible resource consumers are
ordered and processed by decreasing size, i.e. by decreasing amount of required resources. That is, this algorithm also
implies which resource consumer (application) to provision next.

22A genetic algorithm is a meta-heuristic that lets a set of sub-optimal algorithms evolve to an improved algorithm by
applying techniques inspired by nature, such as selection, mutation and inheritance, on a set of possible algorithms.
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Cooperative Decision Triggering For scheduling of VMs, Kiyanclar et al. [64] and Chase et al.
[22] propose that every set of VMs hosting a specific application needs its own manager. This
manager observes application statistics and decides when the set of VMs should be resized
by starting an additional VM or a single VM should be attributed more CPU cores. These
decisions are communicated to a central instance that applies the requested modifications. This
is problematic: By delegating the responsibility for such decisions to third-party application
managers, a central instance cannot find out about the priority and urgency of such decisions,
relying on cooperative behavior of the managers. This problem is also known in cooperative
scheduling for OS processes and has proven to be inefficient [103]. Later approaches therefore
propose that decisions on dynamic resource allocation have to be made by a unified decision-
making instance, a scheduler, that bases it decisions on a comparable metric like application
priority.

Statically Triggered Decisions In order to decide about modifications to running jobs, LSF and
Condor offer a language based on boolean and algebraic operators. Using this language, con-
ditions on dynamic physical node data, e.g. CPU usage, can be specified together with a re-
sulting modification like preemption or stopping of a job. For virtualized applications, multi-
ple researchers propose rule or policy based techniques to trigger modifications. Approaches
mentioned in this paragraph exclusively use warm and hot migration as the only manipulation
primitive. Also, the focus of researchers is on when a migration has to occur, rather than where
to migrate a VM. For this latter aspect, initial allocation algorithms (see above, Section 3.1.4)
are used. The proposed policies or rules have in common that they contain a threshold, which
triggers a decision upon its exceedance. Gmach et al. [46, 47], Rolia et al. [92] and Khanna et
al. [63] propose fixed thresholds for CPU and memory usage, which trigger migrations when
exceeded. Wood et al. [126] use a fixed threshold, but base it on a polynomial combination of
multiple parameters like memory, network and CPU usage. They refine their decision by only
triggering a migration if k out of n measurements already have exceeded and the next projected
measurement will exceed the threshold. Bobroff et al. [14] and Kochut et al. [65] do not state
when a decision has to be made and simply assume a periodic checking whether a better VM
allocation is available. They stress the fact that a decision has to take into account the specifics
of hosted applications, e.g. whether it has periodic fluctuations in CPU usage or application
request rate. Both researchers model CPU usage of an application with periodograms and auto-
correlation coefficients23 to predict future overload on a server and to proact accordingly. Choi
et al. [26] emphasize that fixed thresholds are not sufficient, but it is also important to know
which VM (of multiple VMs running on a node) to migrate and where to migrate it. They pro-
pose to have a history about past migrations and record the benefit for decreasing the CPU load.
Migrations are triggered if a threshold is exceeded and if migrations could resolve the overload
in the past. Andreolini et al. [8] distinguish between the decision which server is overloaded
and which VM needs to be migrated. For the first part, they use a cumulative sum model and
for identifying a VM to be migrated they use a load-trend model based on linear regression.24

Dynamically Triggered Decisions Tesauro et al. [109] criticize the usage of fixed thresholds to
trigger a modification. They propose to have an inital threshold which is incrementally im-

23Periodograms and autocorrelation are mathematical tools for estimating the spectral density of a time series or a stochastic
process. Both reveal contained frequencies, i.e. periodicities and patterns. For more information, please refer to Box et
al. [16].

24Linear regression is a statistical method used for fitting a linear function to measurement data. It therefore models a
relationship inherent to the data.
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proved using a neural network25. The aforementioned proposal of Choi et al. [26] to include a
history about the success of past migrations can also be considered as a simple dynamic trigger
model. Other researchers make decisions using mathematical models or Proportional-Integral-
Derivative (PID) controllers26. Turner et al. [111] propose a general purpose mathematical
model which combines resource allocation, CPU usage and response times of applications.
They do not state how to use the model, i.e. when to make a decision, but emphasize its
strength for matching high-level response time contraints (SLT) to low-level parameters like
CPU usage. Zhikui et al. [133] propose a model based on queueing theory27 which facilitates
the assignment of CPU shares to a VM based on CPU load and response times of an applica-
tion. Zhu et al. [134] propose nested feedback controllers for minimizing resource usage by
also meeting response time constraints for a hosted web server. Their controllers dynamically
adapt the CPU shares given to a specific VM. Padala et al. [84] claim that multiple parameters
need to be adapted when aiming for server consolidation and SLT compliance. They modify
CPU shares and disk bandwidth given to a single VM by using a feedback controller. Xiong
et al. [129] also use a feedback controller to govern the CPU shares a VM is given on a phys-
ical node. They stress that their controller processes multiple input parameters like response,
response time variance, application throughput and resource usage.

3.2. Evaluation of Relevant Approaches

As a reminder, it is the thesis goal to develop the concept and implementation of a software framework
for exploiting unused resources in dedicated clusters running a time-critical application. Constraints
are that by running additional applications a) the time-critical application should not be affected in its
proper functionality, b) this has to be achieved without controlling the time-critical application and
c) cluster resource (CPU) usage has to be increased and additional computational results have to be
generated. The term Main Application (MainApp) is used to refer to the time-critical application,
for example the HLT-Chain. An additional application that exploits unused resources via the pro-
vided framework is called a Secondary Application (SecApp). By comparing the thesis goal to the
research goals presented in Section 3.1.1, the following can be stated: A goal adopted by researchers,
the satisfaction of an application’s runtime constraints, corresponds to the thesis sub-goal of prevent-
ing that a MainApp is affected in its proper functionality. Another goal adopted by researchers, to
increase the efficiency of a cluster, corresponds to the thesis sub-goal of increasing cluster resource
usage and increasing the result output generated by SecApps28. Three issues emerged while evaluat-
ing the state-of-the-art research with respect to meeting the thesis goal: First, approaches using only
the run-to-completion approach were discarded because they do not offer the flexibility to manipu-

25A neural network is a computational model for processing data. It consists of a number of interconnected artificial
neurons and maps input data to a desired output. Its bottom-up design and learning capabilities make this technique
appropriate for processing unstructured data that is difficult to treat using deductive, symbol manipulation-based top-
down approaches. Visual and audio pattern recognition are prominent examples for using neural networks. Please see
Fausett [39] for more information.

26PID controllers are a special type of feedback controllers.
27Queueing theory is a mathematical model for waiting lines (queues). It uses probability distributions to model items that

enter a queue (e.g. customer calls) and items that leave a queue (e.g. customers served). For instance, it allows to
make statements on the average number of items in a queue or the average time an item spends in a queue. For more
information, please refer to Gross et al.[51].

28Several approaches focus on server consolidation by densely packing applications on physical nodes. Though not pre-
cisely fitting the stated thesis goal, such approaches were also considered. Both the thesis goal and server consolidation
require efficient scheduling to optimize the cluster usage.
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late running applications such that Service-Level Targets (SLT) for a MainApp can always be met in
case of changing resource needs29. Second, most of the research works do not provide ready-to-use
implementations but rather present mere proposals, theoretical models, simulation results or empiri-
cal results gathered with prototypes in a cluster with few (≤ 5) physical nodes. Also, in most cases
only a single aspect is discussed, either the efficient initial allocation of submitted jobs/applications
or the manipulation of running jobs/applications. In the latter case only very few approaches propose
to apply more than one primitive, e.g. using both migration and local resizing like Zhu et al. [135].
Another aspect is that many approaches explicitely deal with a specific time-critical application, like a
web server, and incorporate application metrics to meet the SLT of this application. Using such Grey-
Box data is an acceptable approach, but cannot be used for a general purpose scheduling framework.
Third, except for one approach (Condor, see Section 3.2), it is always assumed that cluster resources
are under full control of a decision instance and any running application can be manipulated by using
one of the mentioned primitives. However, according to the stated thesis goal the MainApp is a black
box and cannot be controlled by a scheduler30. Even when researchers did not acknowledge this spe-
cific constraint, their approach was not rejected per se. Instead it was evaluated whether the methods
applied could be used such that the SLT of a MainApp can be met without actively manipulating this
application.

In this section ready-to-use solutions that aim for satisfying application runtime constraints in a gen-
eral way are presented. It is discussed whether they can be used to fulfil the goal of this thesis.

OpenNebula SVMSched Smart Virtual Machine Scheduler (SVMSched) [21] is a scheduling ex-
tension to OpenNebula [101]. It makes use of the interfaces offered by OpenNebula for creating,
deploying and managing VMs. Its goal is to provide fair and efficient access to cluster resources for a
number of virtualized applications. The product allows customers to submit requests to run an appli-
cation hosted by a set of VMs. Then the needed VMs are instantiated and handed over to a scheduler
that makes decisions when to provision which application. The developers distinguish between two
classes of applications: Best effort and production jobs. Production jobs are time-critical and should
be given sufficient resources to perform correctly. For scheduling of production jobs, priority schedul-
ing with backfill is applied. Once provisioned, a production job is subject to the run-to-completion
paradigm. With respect to the thesis goal a comparison can be drawn: A production job can be re-
garded as a MainApp that cannot be manipulated. Best effort jobs are scheduled using a first-come,
first-served strategy with backfill and can be preempted. These jobs correspond to the SecApps of this
thesis. However, there are two main aspects which render the conceptual approach taken by SVM-
Sched unusable for the thesis goal. First, the preemption of best effort jobs only takes place when new
production jobs are submitted, not when a currently running production job requires more resources.
So a dynamic resource allocation according to the changing needs of a running production job is not
possible. Such an approach is only feasible if a constant resource consumption for running production
jobs is assumed. This assumption cannot be made for a MainApp in the thesis scenario. Second, only
a single manipulation primitive, preemption, is used for best effort jobs. This lacks flexibility, espe-
cially when taking into account that there is considerable network overhead31 associated with using
this primitive. The network usage, which is a potential bottleneck that could affect a production job’s
performance is not considered by SVMSched when deciding on the preemption of best effort jobs.

29If a time-critical application has a varying data rate to process, such resource needs will vary as well.
30The primitives for modifying resource allocation cannot be applied to this application.
31Suspending a VM means saving its memory state to a shared storage facility. This causes network traffic.
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The SVMSched extension for OpenNebula can therefore not be instrumented for meeting the thesis
goal.

VMware vSphere VMware vSphere [114] is software framework for managing a distributed en-
vironment running the VMware ESX [123] virtualization platform. The product is mature and has
a strong market penetration [113]. It provides an API, a GUI and a single-point-of-access to de-
ploy, manage and survey virtualized environments and applications. Distinctive features are its abil-
ity to provide fault tolerance and high availability to customer applications and easy Infrastructure
as a Service (IaaS) cloud32 integration. The resource allocation of virtualized applications (sets of
VMs) can be done manually. However, certain features that aim for dynamic resource allocation are
provided. The modules of interest are the Distributed Resource Scheduler (DRS) and the vFabric
Application Performance Manager. While the precise algorithms are not disclosed, the following
can be stated: The second module specifically claims to make virtualized applications meet their
SLT. However, to-date this vFabric Application Performance Manager only offers the specification
and monitoring of Key Performance Indicator (KPI)s, sending out customer notifications for critical
application states. Upon notification, manual interaction for tracing and resolving potential SLT vio-
lations (e.g. via adding a CPU core to a VM) is required. This module therefore is not sufficient for
automated dynamic resource allocation.
The other module (DRS) aims at providing automated server consolidation and CPU load balancing
for physical nodes. This is accomplished by migrating VMs. So the load balancing feature of DRS
can be used to strive for application SLT compliance by avoiding CPU bottlenecks. It is possible to
prioritize a specific application hosted by a set of VMs, thereby making it comparable to a MainApp
of this thesis. However, vSphere cannot be configured such that migrations are only used for lower-
prioritized applications. Dynamic resource allocation for all applications in the cluster is assumed,
making this product inappropriate for achieving the thesis goal. In addition, the current network us-
age of physical nodes is not considered when deciding on migrations. Since migrations put a strain
on the network, this could lead to a violation of the SLT of a high-priority application.

1000 Islands In their research work, Zhu et al. [135] provide a software framework that aims for
both server consolidation and SLT compliance for virtualized applications. They propose to use both
local resizing, i.e. dynamically attributing VMs CPU shares, and VM migrations. More explicitely
they propose a three-layered architecture. On local nodes they propose to use feedback controllers to
match high-level goals (e.g. response time of an application) to low-level actuators like CPU shares
given to a VM. On a second layer they propose to identify overloaded servers based on historic CPU
load trace data and to find potential VM migration target nodes via a simulated annealing based search
algorithm. On a third layer they revise past allocation decisions for their benefit in order to improve fu-
ture scheduling. With respect to the thesis goals the following can be stated: These researchers strive
for SLT compliance of applications. They assume to have control over all applications, explicitely
modifying their resource consumption and node allocation. The question is whether the framework
can be used in a way, that a highly-prioritized application is monitored for SLT compliance and re-
source allocation decision are executed on lower-prioritized applications only. Their second and third
layer, where VM placements and migrations are calculated, cannot be operated in this manner. The
first layer in principle could be configured such that lower-prioritized applications are given less CPU
shares, thereby automatically increasing the share available to a high-priority application. The ap-
proach used for the last layer could be used strive for SLT compliance without actively manipulating

32For an overview on clouds and the EaaS stack please refer to Section A.3.
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a high-priority application. The framework as a whole, nevertheless, is not appropriate:
First, on local nodes (first layer) they only modify the CPU shares given to VMs. This is not sufficient
because also bottlenecks for other resources like network can arise that harm an application’s perfor-
mance. Second, the methods applied on layer two and three do not support the exclusive migration
of VMs of lower-prioritized applications, but assume to have control over all applications. Third,
the framework does not describe whether additional applications can be submitted at runtime. The
researchers assume that the number of applications running in a cluster is fixed, so no inital allocation
decisions for not-yet running applications are supported. Because of these reasons the framework is
not suited for meeting the thesis goal.

Condor Condor is a job scheduling framework. Being started in 1988 this project has since reached
a mature status and its implementation is used in about 3000 clusters worldwide [32]. According to
the project’s own description [72] it focuses on high-throughput computing, i.e. an optimization in
job throughput over weeks, months and years. Though initially targeted at desktop environments,
they claim to be a usable in high-performance computing clusters as well. They explicitely address
the problem of under-utilized computing nodes, aiming at exploiting unused CPU cycles by running
additional jobs, a task they refer to as "CPU stealing". They specifically mention the aspect that Con-
dor can be used in dedicated environments, i.e. where applications run that Condor has no control
over, e.g. desktop environments. Therefore they formulate a goal comparable to the thesis goal: Ex-
ploitation of unused CPU cycles without affecting natively running applications. In order to specifiy
when a physical node is eligible to run Condor jobs the ClassAd configuration mechanism is used.
ClassAd offers a language to specify constraints on physical nodes, jobs and timing. These constraints
steer the job scheduling to physical nodes. Thereby criteria can be defined when CPU resources on a
node have to be freed in order to satisfy MainApp requirements. In Condor this is called satisfying the
wishes of a resource owner - in contrast to satisfying the needs of resource users (Condor jobs). While
this ClassAd language is powerful and detailed requirements can be specified, native support only
takes into account CPU consumption (CPU load and usage) for the evaluation whether a MainApp is
affected. Via extensions like Hawkeye other resources can be monitored and taken into account for
job scheduling, like available network bandwidth or disk space.

So, Condor is a framework that via its extensions can be used to run additional jobs in a distributed en-
vironment with dedicated applications. However, there are several drawbacks that make its usage for
the HLT-Chain application difficult: First, the primitives usable for dynamic resource allocation are
starting/stopping and preemption. However, jobs have to comply with strict limitations [31] or need
to implement a specific checkpointing library in order to be preemptable. Because starting/stopping
is inflexible and leads to a low job throughput (i.e. SecApp result output), the scope of jobs that can
be scheduled efficiently is severly limited. Other primitives for dynamic resource allocation by using
migration or local resizing are not considered. Second, only jobs utilizing the same OS-platform con-
figuration like the MainApp can be run. This additionally restricts the number of runnable jobs due to
potential library conflicts or conflicting OS requirements. Third, there is no guarantee that buggy or
vulnerable job code33 won’t compromise a running MainApp. The provided level of isolation between
SecApps and MainApp is not sufficient.

Condor aims at similiar goals like this thesis does. It provides a mature, accepted and highly config-
urable framework to exploit unused CPU resources in a dedicated environment. It does however lack

33A job can have infinite loops, cause memory holes or can be vulnerable to hacking attacks.
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isolation for MainApps, generality considering the type of runnable jobs and flexibility in modifying
the resource consumption of running jobs.

3.3. Summary

Two main sub-goals of this thesis, meeting the performance targets of an application and improved
cluster usage and result output are subject to existing and ongoing research. Basically two main
scheduling paradigms are adopted for running distributed applications in a cluster: Run-to-completion
and dynamic resource allocation. While the former only involves an initial decision on when and
where to run an application, the latter also allows for manipulating running applications. For dynamic
resource allocation, multiple manipulation primitives like preemption, migration and local resizing
and different decision-making techniques like search algorithms and feedback controllers have been
proposed by researchers.
No existing solution meets the goals stated for this thesis. Run-to-completion approaches are not
sufficient because they lack the flexibility to manipulate running SecApps such that a MainApp’s
Service-Level Targets (SLT) can always be met. Among the dynamic resource allocation approaches
most approaches do not provide a mature implementation or only discuss the use of a single primitive,
thereby lacking in flexibility to adapt the resource usage of SecApps at runtime. Most proposals do not
meet the requirement that a running MainApp cannot be actively controlled. Only a single product
does so and only manipulates SecApps in order to meet a MainApp’s SLT. However, this product,
Condor, does not provide the level of isolation and flexibility needed in this thesis.
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In this chapter the developed conceptual approach will be presented. The chapter is structured in fours
sections that build on each other. The scope of the to-be-developed framework is briefly discussed
in the first section. The second section follows with an introduction to basic terms like resource,
resource usage and interference. Using this terminology, the basic conceptual cornerstones will be
pinpointed in the third section: The usage of OS based metrics as the basis for making resource
allocation decisions is motivated, leases and VMs as feasible SecApp containers are introduced, the
role of policies as constraints for SecApp resource usage is discussed and finally a basic proposal
for the functional design of the framework is given. The application logic of the framework and its
constituents is discussed and algorithmic approaches are detailed in the fourth section.

4.1. Scope Discussion

As a reminder, the goal (see Chapter 2) is to develop the concept and implementation of a software
framework for running additional applications ("SecApps") in a dedicated cluster with a time-critical
application ("MainApp"). This goal is constrained by: a) The MainApp must not be affected in its
proper functionality, b) this has to be achieved without controlling the MainApp and c) cluster usage
has to be increased and additional computational results have to be generated. Before turning to the
conceptual work, basic explanations are given to refine the scope of the thesis.

MainApp Scope For any MainApp, there is a precondition to being in the target scope of this the-
sis: A MainApp has to have a performance specification, i.e. a quantitative timing constraint. Without
such an explicit constraint, the question whether SecApps affect a MainApp cannot be answered.
This does not not exclude such MainApps from being used with the to-be-developed framework, yet
achievement of the thesis goal cannot be evaluated for these. In the previous chapter, SLTs were intro-
duced as a mean to describe such constraints for applications. Other, non-ITIL conform approaches
are also valid, as long as they provide an evaluable functionality criterion. Proper functionality of a
MainApp is assessed using this criterion.

SecApp Scope Since the amount of unused resources in a dedicated cluster is unknown, may vary
or tend to zero over prolonged time phases, SLT-constrained applications do not qualify as SecApps.
In this thesis the set of applications that can be run as SecApps is therefore restricted to non-interactive,
non-deadlined applications that have no explicit SLT requirements. Still there is a great range of
applications that conform to this requirement and can be scheduled using a best effort approach.
This range encompasses most applications runnable in Volunteer Computing (Seti@Home [7], Boinc
[6]) and Grid Computing (AliEn [10]) as well as typical job scheduling applications like scientific
simulations, data analysis and code compilation.

Generality It is not reasonable to claim that a provided solution allows to run SecApps in an arbi-
trary dedicated cluster with a time-critical application such that the thesis goal can always be met:
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Imagine a MainApp has to process a constant data-rate. The application is network-bound and most
network links are nearly fully saturated throughout the runtime of the MainApp. The average cluster
CPU usage is at 50%. The MainApp has a functionality criterion, say maximum response time per
request of 100 ms. This criterion is met, yet the actual response time is permanently close to that
upper limit, e.g. the mean response time is 90 ms with minimal variance.
In such a scenario, an additionally run SecApp most likely will cause the MainApp to violate its func-
tionality criterion because an additional application will under most circumstances put a strain on at
least one network link.1 So, there are scenarios where both running SecApps and preserving proper
MainApp functionality is a hardly achievable goal.

Therefore, it is not claimed that the framework will be capable of increasing the usage and result
output of any dedicated cluster without compromising an arbitrary MainApp. Instead, a practical,
inductive approach is taken: The framework has to satisfy the thesis goal for the HLT-Chain applica-
tion, but should be applicable in other scenarios as well. From a functional perspective, this requires
to use generic concepts and methods such that the framework can be deployed in alien environments.
Whether using the framework in such an environment is indeed benefitial, depends on three main
aspects: a) The amount, scale and temporal/spatial distribution of unused resources (when, where
and how much resources are free), b) the sensitivity of the MainApp towards lack of computing re-
sources (how does a short-term resource contention influence the performance of the MainApp and
c) the tightness of the performance constraint (is there a considerable gap between worst observed
performance and tolerated performance). Depending on these aspects, a trade-off between benefit of
running SecApps2 and negative impact towards a MainApp needs to be made. In this thesis, it is tried
to find "configuration items" that allow to make such a trade-off. It will be evaluated to what extent
these configuration items (policies) are suitable to making a trade-off in different scenarios.

4.2. Basic Terminology

A problem in achieving the thesis goal is that criteria and decision logic have to be provided that
allow to control the access to cluster resources for SecApps such that the MainApp is not affected in
its functionality. At the very core this is a resource allocation problem, i.e. how to allocate potential
resource consumers (SecApps) to resource producers like cluster hard- and software. In this section
the terms necessary to describe such an allocation are introduced. The phrase "a MainApp is affected
in its proper functionality" will be defined by introducing the concept of interference.

Resources and Resource Usage A computing cluster comprises of interdepending hard- and
software components and offers resources which can be used by resource consumers. Rather than
giving a precise, from-scratch formalization of a cluster, the focus is on those components and their

1It is assumed that any non-trivial application in a cluster requires network communication. However, from a theoretical
point of view this is a matter of scale. If a very fine-grained control over the network usage of this application can be
exercised, then it is possible to make use of the few percent unused network bandwidth without producing a bottleneck.
According to the explanation given in the first paragraph of Chapter 3, local scheduling in form of intervening with
kernel-level process and I/O scheduling is not allowed as a method for achieving the thesis goal. Without this possibility,
its is difficult to have the fine-grained control over network communication needed to exploit the few percent unused
network bandwidth without incidentally stealing bandwidth from the MainApp. Even if a fine-grained control could be
exercised, it is questionable whether this will yield a significant increase in cluster usage and SecApp result output.

2The benefit of running SecApps are increased cluster CPU usage and computed SecApp results.
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properties that are regarded sensible for describing resource consumption in a cluster. Differing for-
malizations of distributed environments for specific purposes can be found in [24, 33]. A cluster
comprises of at least three sets of architectural items:

cluster =
( { nodei | 1 ≤ i < n }, { switch j | n ≤ j < m }, { storagek | m ≤ k < p } )

Any nodei, switch j and storagek is a resource producer, also called cluster item. A cluster item pro-
vides resources, e.g.

nodei = (CPUi,NetOuti,DiskReadi,Memi, ...)

These resource may correspond to physical hardware, like a CPU or an Ethernet interface, but not
necessarily need to. Also a resource like Usersi, representing slots for user logins, is possible. For
every resource, a metric is defined that denotes the usage of a resource:

Let Γ = {tk ! t0 + k∆t, k ∈ N} be an equidistant set of points in time. It is assumed that ∆t = 1s
unless stated otherwise. A function f : Γ #→ R maps these points in time to a set of measurements
denoted by {x(tk)} = {x1, x2, x3, ..., xk} with xk given in units of e.g. [GBit/∆t]. The absolute usage of
a resource res at point in time t0 + k∆t = tk is then defined by:

currentUsageres(k,N) =
N−1∑
i=0

1
N xk−i

According to a resource’s specification or empirical knowledge, there is also a known maximum for
its usage:

maxUsageres(k, 1) = xmax = const , with xmax > xk ∀k ∈ N

As an example, for an Ethernet interface the maximum throughput achievable for sending data is given
by maxUsageNetOut(k, 1) = 1GBit/s. Based on currentUsage and maxUsage, a normalized (relative)
usage function can be defined:

Usageres(k,N) = currentUsageres(k,N)∗100
maxUsageres(k,1)

By definition 0 ≤ Usageres(k,N) ≤ 100 holds. Thereby the free, i.e. non-used share of a resource is
easily defined by f reeResres(k,N) = 100−Usageres(k,N). Usageres and f reeResres can be interpreted
as a percentage which is why in this thesis the terminology "a resource usage of x%" is used.

Applications and Processes As mentioned, resources are used by resource consumers. An ap-
plication is such a resource consumer. A running application is a set of processes app = {proci | 1 ≤
i ≤ n }. Any process proci can use resources:

currentProcUsageres(k,N, proci) =
N−1∑
i=0

1
N xk−i

with xk−i denoting the measurements for the usage of a resource res generated by process proci. The
normalized resource usage generated by this process for the resource is defined accordingly:
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ProcUsageres(k,N, proci) =
currentProcUsageres(k,N,proci)∗100

maxUsageres(k,1)

Like for Usageres, ProcUsageres can be interpreted as a percentage. In this thesis the terminology of
"process y uses x% of a resource" is therefore used. The normalized usage of a resource can also be
written as:

Usageres(k,N) = ε1 +
P∑

i=1
ProcUsageres(k,N, proci)

where P denotes the number of processes using this resource, i.e. with ProcUsageres(k,N, proci) > 0
and ε1 represents the residuals not captured by the modelled processes, e.g. the overhead of the OS.
The definition is highly idealized and ignores both potential OS process inheritance and the specifc
OS process scheduling techniques used in a modern OS. The term process used in this thesis refers to
the entirety of an application’s parent and (temporarily) created child operating system processes on a
node.3 A process needs to be allocated to a node in order to use resources provided by that node. The
allocation relation alloc(proc j, nodei) is defined upon a single measurement interval ∆t and forms the
basic relation a resource consumer can have to a resource producer at a given point in time. A process
can only be allocated to at most one node at a given point in time:

ProcUsageresi(k, 1, proc j) > 0 =⇒ alloc(proc j, nodei)4

alloc(proc j, nodei) =⇒ !m : nodem " nodei ∧ alloc(proc j,Nodem)

The most intuitive interpretation of an allocation is probably that of a non-distributed application that
is started on a cluster node. Once the application is started, the allocation relation between the process
(representing the application’s local OS processes) and the node is established. Once the application
is stopped, the allocation relation is dissolved.

Interference It is part of the thesis’ goal to allow SecApps to exploit cluster resources without
affecting the proper functionality of a MainApp. The concept interference is now introduced to capture
this notion more precisely.
Let app1 and app2 be two applications. For app1 there is a (quantitative) performance metric such as
transactions per seconds, response time or latency. In scenario (A), app1 is run and its performance
metric is measured, yielding a value v1. Scenario (B) extends scenario (A) such that, ceteris paribus,
app2 is also run and a performance metric value v2 is measured for app1.

Definition 4.1 If there is a statistically significant difference between v1 and v2, then app1 is said to
be interferred by app2, i.e. app2 causes interference towards app1.

This definition allows a statement on whether a SecApp has impact towards (the behavior of) a
MainApp. However, not every statistically significant difference for an observed performance metric
is relevant. Relevance is tied to predefined thresholds (e.g. SLT) for such performance metrics. Let us
assume there is an upper limit vmax for a performance metric that defines a reference value that can be
used to assess whether an application is fully functional. Then vmax can also be used to assess whether
a statistically significant difference for an observed performance metric is relevant.

3If the common interpretation of process as an operating system process is referred to, then the term "OS process" is
explicitely used.

4This statement assumes that resi is a resource provided by a nodei.
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Definition 4.2 If v1 < vmax for scenario (A), app2 causes interence to app1, and v2 > vmax for
scenario (B), then app1 is said to be strongly interferred by app2, i.e. app2 causes strong interference
towards app1.

So Definition 4.1 describes statistically significant interference while Definition 4.2 describes relevant
interference. Additionally, the term "amount of interference" is now introduced.

Definition 4.3 A statistically derived absolute difference between v1 and v2 is called amount of inter-
ference.

Such an empirical approach to assessing interference now has specific drawbacks:

• From a practical point of view, this definition requires a certain number of measurement sam-
ples to derive statistical statements about interference. This can be problematic in productive
environments.

• This definition uses a white-box approach for assessing an application’s performance. This
means that application-specific metrics rather than OS-specific metrics are used. So depending
on the application and its performance metric, e.g. logfiles have to be examined, APIs have to
be queried or even customer feedback is needed to assess application performance. This makes
the development of a general approach difficult.

• Most importantly, the definition does not make any statements about a general sensor metric that
can be used at runtime of an application to detect and remedy potential causes of interference5.
So these definitions serve the purpose of stating whether interference has occurred, but not how
to control the probability of occurring interference at runtime.

Summing it up: A cluster consists of cluster items, e.g. nodes, each of which offering resources
that can be used by resource consumers. Applications were introduced as prototypical resource con-
sumers. An application consists of at least one process.6 A process runs on at most one node. This
correspondence is represented by the relation alloc(proc j, nodei). A process may use resources, the
usage of a resource is described by a function Usageres(k,N). Applications of interest are the Main
Application (MainApp) and the Secondary Application (SecApp). When both applications run con-
currently, the performance of the MainApp may be compromised. This aspect is acknowledged by
the introduction of the "interference" concept. The metric "amount of interference" enables a quan-
tification of the performance impairment. The concept "strong interference" allows for an assessment
whether SecApps affect a MainApp’s performance such that it performs beyond its specification. Fi-
nally it was concluded that interference and application-specific performance metrics are no sufficient
base to make runtime decisions on dynamic resource allocation.

4.3. Conceptual Cornerstones

As shown in the last section, the concept of interference helps to assess whether a MainApp’s proper
functionality is affected by additionally run SecApps. However, it was also stated that the mere ob-
servation of interference provides insufficient information for making resource allocation decisions at
runtime. In this section it is explained what is regarded reasonable information to base such decisions

5If a performance metric is defined on a bigger time scale, e.g. customers served per day, the detection of strong interfer-
ence can easily lag behind occurrence time of its potential cause.

6A process is the entirety of all OS (child) processes and threads of an application that run on the same node.
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on. Also, an introduction to the basic design principles of the framework will be given. The general
term "decision instance" is tentatively used in this section to represent a (not-yet-elaborated) decision
logic of the framework. This section is now structured as follows:

1. As a first step, it is discussed as to how resource allocation decisions can be based on a sensor
metric Usageres(k,N).

2. Next, the usage of platform virtualization as an enabling technology for the thesis goal is ex-
plained. The life-cycle of a VM will be defined.

3. Then the "lease" concept is described. A lease is a container to encapsule arbitrary SecApps
and to standardize their access methods.

4. At this stage, "policies" as configuration items for the decision instance are introduced. The
actual configuration of policies determines how the values provided by the sensor metric are
interpreted by the decision instance and influence the decision making.

5. Finally the term decision instance is elaborated. A distinction between multiple functional units
will be made and a tentative description of their purpose and interplay is given. This last step
is the basis for the next section which exclusively deals with the functional, architectural and
algorithmic design of the decision logic.

4.3.1. Resource Usage as Sensor Metric

As a reminder, the core challenge of this thesis is to prevent strong interference towards a MainApp
when running additional SecApps. The argument was made that application-specific performance
metrics can be used to assess interference, but are not sufficient as the only source of information
when having to decide on resource allocation at runtime (see Section 4.2):
First, a certain number of measurements is needed to make sure that e.g. observed deviations from
a target performance value are significant and require an immediate reaction. Second, application-
specific performance metrics can vary considerably between applications (e.g. customer satisfaction
vs. transactions per second) and make a general approach for decision making difficult. Third, there is
no reason to assume that the observation of (strong) interference coincides with its cause. For instance
there can be a substantial lag between detection of a problem and its cause: If for an application a target
performance value of "serve 1M customers in August" is given, then a failure in achieving this goal
can be due to a malfunctioning node on 08/01 but is only observed on 08/31. This clearly leads to the
following conclusion:

• The interference Definitions 4.1, 4.2 and 4.3 can be used for the ex-post assessment of interfer-
ence. In this thesis they are used to assess whether and to what extent interference occurred in
experimental scenarios.

• A sensor metric is needed which can be used by a decision instance to make decisions on
when and where to allocate which resource consumers such that the amount of interference is
kept under control, i.e. that no strong interference occurs. This metric should possess several
qualities. It should be:

– quantitatively measurable,

– updated in a (relatively) high frequency, i.e. a 1/s or 1/5s readout frequency should be
supported and reflect a current state,
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– general, i.e. not dependent on used applications, hence based on common OS provided
system data,

– actable, i.e. a feedback loop between dynamic resource allocation and the sensed metric
has to exist,

– relevant, i.e. the metric has to reflect potential causes of interference.

To obtain such a metric, potential causes for interference in the sense of Definition 4.2 have to be
considered:

• An application app2 can introduce library conflicts or incompatible kernel parameters settings
that cause runtime errors of app1 or even prevent app1 from starting.

• An application app2 can introduce security risks that can be exploited by attackers. This may
compromise the whole OS, e.g. leading to decreased performance. This will also affect app1.

• An application app2 can be buggy or badly coded, e.g. exhibiting a memory leak. This can
severly decrease the amount of free memory available in the system. In order to resolve this
issue, the OS will take counter-measures (e.g., "out-of-memory daemon" on Linux) which are
known to reduce system performance temporarily. This will also affect the performance of
application app1.

• An application app2 competes with app1 for sparse resources. This may affect the performance
of app1.

The first three points can be avoided by using platform virtualization. Virtualization is an accepted
technology to isolate applications and their processing environments from each other. More details are
given later in Section 4.3.2. For the fourth point - competition for sparse resources - there is a metric
that reflects this competition. Such competition is equivalent to the temporary existence of resource
shortage (lack of free resources):

Usageres(k,N) + ε2 > 100 , where ε2 represents a safety buffer (4.1)

The previoulsy defined function Usageres(k,N) satisfies the criteria for a sensor metric. It is a quanti-
tative metric and has a update frequency of 1/s. It does not depend on any specific application and can
be retrieved by means of the OS. The development of metric values over time can be influenced by
dynamically granting and revoking access to resources for SecApps. It also reflects a potential cause
for interference, the competition for sparse resources.

Preventing resource competition is difficult: In context of this thesis, preventing resource competition
on a single node means giving the locally running MainApp absolute preceedence over a locally run-
ning SecApp. That means, if both a MainApp OS process and a SecApp OS process request access
to the same resource at the same time, the MainApp OS process is always granted access. The deci-
sion which OS process is given which resource share at which time is the responsibility of the kernel.
The kernel coordinates the access to devices and resources and therefore employs several subsystems
like a process scheduler for granting access to the CPU, an I/O scheduler for controlling disk access
and a packet scheduler for managing network communication. For ensuring that these subsystems
service requests from the SecApp only if there is no request from the MainApp, one needs to con-
figure the scheduling used by these subsystems. It was mentiond in the first paragraph of Chapter 3
that modifying or patching the kernel strategies (such as OS process scheduling policies) is not ap-
propriate for achieving the thesis goal because this approach lacks generality and may influence the
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system behavior in a way not permitted by the operator of the dedicated cluster. Nevertheless, there
are Linux user space tools which to some extent help to realize that a MainApp preceeds a SecApp:
The tool "nice" can be used for tuning the priority of an OS process. By giving a SecApp OS process
the lowest possible priority, the process scheduler will assign this process only the smallest possible
time slice (e.g. 20ms, depends on OS) and make it receive only a little share of the CPU resource
over time. Unfortunately, for the standard OS process scheduling policy (SCHED_OTHER in Linux),
the actually applied priority is periodically recalculated (usually every 20ms). If an OS process does
have network or disk I/O, then the process priority will improve over time. This will give a SecApp a
bigger share of CPU than originally intended by setting the lowest possible OS process priority. For
disk access, a tool "ionice" exists that may be used for modifying the way the I/O scheduler grants
access to disk resources for specific OS processes. Again, a low priority can be set for an OS pro-
cess, making it less likely to receive read or write access to the disk. As with the CPU counterpart
"nice", this tool can be used to influence the share of disk I/O attributed to a OS process, but cannot
give guarantees that the MainApp always preceeds a SecApp. For network communication, things are
more complicated: Here tools like "iproute2" and "tc" allow to classify certain packages, e.g. those
originated by a SecApp, in specific Quality of Service (QoS) classes and to modify the scheduling
policy for these classes ("traffic control"). This, however, is non-trivial to configure, not recommeded
for production systems and might require changes to the system not allowed by the dedicated cluster
operators.7 Since SecApps will be hosted by VMs, it depends on the hypervisor of the virtualization
product to which extent the application of these tools will also have an effect on the resource shares
used by VMs. For distributed SecApps, hosted by multiple VMs on different physical nodes, an ad-
ditional problems arises: If on one node a VM is given few or no resources, this VM may appear as
an unavailable or crashed communication partner to other VMs. This may break the semantics of the
distributed SecApp hosted by these VMs.

The bottom line of this discussion is: There are tools that can be used for giving SecApps less re-
sources than the MainApp. Nevertheless, no guarantees can be given that no resource competition
occurs. Since a proprietary approach (e.g. patching the kernel) is not allowed and existing tools do
not suffice to avoid resource competition in total, the strategy how to deal with resource competition
is phrased as follows:

Instead of trying to prevent any resource competition, it is the goal to reduce the probability that
resource shortage occurs.8 That means that potential resource shortage should be anticipated and
counter-measures have to be taken. If resource shortage occurs, then it has to be resolved within a
specific time frame.9 The following proposal is made: The metric Usageres(k,N) is used to monitor
the current resource usage. Based on this metric, policies are defined that constrain to what extent a
SecApp is allowed to use resources, i.e. policies cap the share of resources usable by SecApps. If
the total usage of a resource exceeds a certain threshold, a policy defines for how long any SecApp is
still allowed to use that resource. Once that time elapses, any SecApp must stop using this resource.
The to-be-developed framework has to realize the semantics of these policies. In this thesis, it will be

7For more information on kernel-level scheduling please refer to the Linux documentation [71]. Information on the
mentioned tools can be found on their corresponding Linux man pages.

8For a scenario of duration t seconds, a retrieval of Usageres(k,N) is executed every second. If n is the number of times
the Equation 4.1 is evaluated to true, then n/t should be small.

9For a scenario of duration t seconds, a retrieval of Usageres(k,N) is executed every second. If Equation 4.1 is evaluated
to true for a point in time k, then the number i of successive points in time (k + 1, k + 2, ..., k + i), for which Equation 4.1
is also evaluated to true should be small.
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shown a) how the metric Usageres(k,N) can be used for policies, b) how policies are evaluated and
decisions are based on these and c) how the amount of interference can be controlled by tuning policy
parameters.

To avoid over-simplification some final remarks need to be made: First, not every resource that pro-
cesses are competing for can be modelled or its usage can be influenced in a controlled manner.
Depending on the granularity taken into account even a software mutex, a CPU cache or a CPU reg-
ister can be regarded as a resource. So, there are hidden, non-modelled resources which OS processes
compete for. Second, there are interdependencies between resources. For instance, while a single-
threaded OS process is waiting for its currently being processed I/O request to be completed, it will
not use CPU resources. So the usage of a disk resource is related the usage of the CPU resource.
Another example are OS processes located on different nodes in the cluster that concurrently access a
shared storage facility, e.g. a Storage Area Network (SAN). Here a bottleneck at the SAN will impact
how these OS processes make use of their local CPU resources. A third example is that of a parallel
MPI application that has barriers.10 Such barriers synchronize the processing on one node with the
processing on other nodes, which means that the resource usage on these nodes has an interdepen-
dency. Since not every possible resource and no interdependencies between resources are modelled
and accounted for, it is virtually impossible to fully control the amount of interference by basing de-
cisions on the usage of modelled resources only.

Nonetheless, it is assumed that the metric Usageres(k,N) is a reasonable sensor metric even if only
applied to few resources like CPU, NetOut and NetIn. Further resources of interest are mentioned
later in Section 4.3.5. Empirical tests will be made to evaluate whether controlling the SecApp usage
of these resources using policies indeed allows to control the amount of interference.

4.3.2. Virtualization as Enabling Technology

Instead of running SecApps natively on the cluster nodes, in this thesis it is proposed to run SecApps
using platform virtualization, i.e. SecApps run inside of VMs. This has specific advantages:

• Virtual machines act as a sandboxed container, encapsulating SecApps. This cleanly separates
a MainApp running on the native cluster node from SecApps running inside of VMs. This
isolation is provided by the virtualization platform and the effects of buggy or insecure SecApps
are thereby contained to the VM and cannot cause interference towards a MainApp. Security
and isolation using VMs are subject to continuous research and improvement. Please refer to
Chen at al. [25] for more information on current achievements and challenges of this topic.

• VMs can host a multitude of different operating systems and applications. This broadens the
spectrum of SecApps that can be run in a cluster. This aspect goes far beyond the trivial example
of running a Windows-based software in a Linux cluster. As an example, in the HLT-Cluster
a potential candidate for a SecApp (AliEN[10]) could not be run due to library conflicts.11

Even though such an issue can be resolved with sufficient manpower and effort, in practice
such seemingly minor issues generate inacceptable additional overhead. Virtualization therefore

10A barrier is an MPI primitive to synchronize distributed MPI processes. This will make MPI processes wait for each
other.

11This observation was made for a previous Ubuntu-OS and AliEn version in 2009 and may not be relevant for current
versions.
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not only enables to run different operating systems but also different incarnations of the same
operating system that are explicitely tailored to a single SecApp.

• VMs allow to define a maxmimum on the amount of certain resources used by a VM. For
instance, prior to running a VM, the amount of RAM and the number of CPU cores usable by
this VM can be defined. At runtime, the VM will consume no more than the specified maximum
for these resources. This allows to statically cap the resource usage of hosted SecApps. Thereby
even a memory leak in the virtualized application is contained to the VM only.

• VMs offer an abstracted interface12 for modifying hosted SecApps, and thereby also their re-
source usage. Most VM products offer the complete set of manipulations like start, stop, sus-
pend, resume and cold, warm and hot migration. This enables a flexible manipulation of Se-
cApps without relying on application-specific support and interfaces.

• In addition to this abstraction which allows for a set of standardized manipulations of SecApps,
another aspect is important. Any such manipulation has advantages and disadvantages regard-
ing:

– Their effect towards SecApp state. Stopping a VM will cause the stopping of the hosted
application and a loss of not yet finished or saved computations. Suspending a VM how-
ever allows for a flawless later continuation of computations which were still ongoing
when the VM was suspended.

– Their overhead or effect towards resource usage while being applied. Suspending or mi-
grating a VM requires the transfer of state information over network and therefore stresses
this specific resource. On the contrary, stopping a VM only uses few CPU and network
resources. Modifying the CPU usage of a single VM by adding a CPU core or by using
Linux signal sequences (see Section 4.4.4) practically has no overhead at all.

– Their duration. Suspending or migrating a VM may take several seconds while the hard
stopping a VM requires only some milliseconds.

It is therefore vital to have a range of different manipulation primitives to choose from according
to the circumstances. VMs exactly provide this flexibility.

There are multiple virtualization technologies, products and vendors. Common technologies and
products are briefly outlined in Section A.4. These products considerably differ in nomenclature and
functionality. In this thesis an abstracted and simplified naming convention is used: A software entity
governing states and properties of single VMs on a physical node is called "hypervisor". Via its
API a hypervisor offers primitives to manipulate VMs. The main primitives used in this thesis are
{start, stop, suspend, resume,migrate}. The correspondence of this naming scheme with the different
vendor terminologies is given in Section A.4. Regarding the properties of a VM, it is assumed that a
VM has a number of virtual CPU cores, an amount of allocated RAM, a permanent storage (virtual
disk), network interfaces and a specific operating system setup. The mentioning of product-specific
techniques and implementation of these properties is avoided whenever possible13, because the design
principles of the framework are independent from the used virtualization product.

12Abstracted interface means that no application-specific commands need to be used when modifying e.g. the state of an
application.

13For example, the permanent storage of a VM can be on a local or remote disk, it can be realized via file or block-level
access, it can be pre-allocated or allocated on-demand, its size can be modifiable or fixed throughout the life-time of a
VM.
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4.3.3. Virtual Machine Life-Cycle

With respect to the definitions made in Section 4.2, a VM is a process.14 A VM has a state and can
be allocated to at most one node at a time.15 The decision instance decides on allocations of VMs to
physical nodes and puts the decisions into practice by means of the local hypervisors. A VM further-
more has a specific life-cycle that describes the states a VM can be in and the state transitions. This
life-cycle is shown in Figure 4.1 and described in the following. The life-cycle is administrated by
the decision instance. The decison instance uses hypervisor calls to initate most state transitions.16 A

Figure 4.1.: Life-cycle of a VM: States and transitions.

VM is created by means, i.e. using the API, of a hypervisor. Along with a VM’s creation its initial
properties (CPU, RAM, storage, network) are defined and the VM is registered with the decision in-
stance. Created VMs, i.e. their storage (virtual disk) and meta-data, are physically located on a shared
storage medium and therefore instrumentable by all hypervisors on nodes in the cluster.

A created VM can be started. Starting a VM involves the allocation of the VM to a specific node by
the decision instance and the actual start up of the VM via a call to the local hypervisor. This changes
the state of the VM to "running". Now the VM uses resources of that node. A running VM can be
stopped, suspended or hot migrated.

14As a reminder: A process subsumes all local operating system processes and threads that realize a common functionality
on a single node. For the virtualization product VirtualBox such a VM process indeed corresponds to a single OS
process.

15The allocation relation alloc(V M, node) was defined in Section 4.2.
16The state transition from "running" to "stopped" that can also be realized without calling the hypervisor, e.g. by using

Linux signals.
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Stopping a running VM puts the VM in state "stopped" and dissolves the allocation relation between
the VM and its allocated node. The stopping can by done by a) using a hypervisor call "soft-stop"
which equals a warm shutdown of a computer system, b) using a hypervisor call "stop" which equals
a cold shutdown of a computer system or c) using OS signals . The latter can be compared to unplug-
ging a running computer system from the mains. In any case the current state of the hosted SecApp is
lost, meaning that computations which had not been finished, saved or checkpointed are wasted.

Suspending a running VM puts the VM in state "suspended" and dissolves the allocation relation
between the VM and its allocated node. A hypervisor call "suspend", which can be compared to a
suspend-to-disk for computer systems, will cause the state17 of the VM to be saved. So a flawless
later resumption is possible without spoiling ongoing computations.

Migrating a running VM will not change the state of the VM. This transition does however dissolve
the allocation relation between the VM and a current node and establishes an allocation relation be-
tween the VM and a different node. Thus, the VM keeps on computing but changes the host is is
allocated to and whose resources it consumes.18

A suspended VM can be resumed. Resuming a suspended VM involves the allocation of the VM to a
specific node and a "resume" call to the local hypervisor. It can be compared to opening a previously
to-disk-suspended (closed) notebook. The VM and its hosted SecApp continue their processing as if
no previous suspend/resume had taken place.

A suspended VM can be reset. This causes the VM to change its state to "stopped". The saved state19

of the previously suspended VM is discarded.

A stopped VM can be started. Starting a VM involves the allocation of the VM to a specific node
and the actual start up of the VM via a call to the local hypervisor. It can be compared to pressing the
power button of a switched-off computer system, causing the operating system to boot from scratch.
This changes the state of the VM to "running". Now the VM uses resources of that node.

A stopped VM can be destroyed. This involves the deregistration of the VM from the decision in-
stance and the deletion of its virtual disk and meta-data.

Summing it up: Virtual Machines provide an isolated environment for SecApps. The life-cycle of
VMs is administrated by the decision instance. VMs offer standardized and flexible ways of manip-
ulating hosted SecApps and accordingly, their resource usage. State changes are primarily put into
practice using API calls to the hypervisor(s) of a virtualization platform. The different VM state tran-
sitions have specific advantages and disadvantages regarding overhead, duration and influence on the
computational state of hosted SecApps. Apart from VM state transitions there are other methods to
modify the resource usage of SecApps. Such methods are either product-specific (like changing the
number of CPU cores at runtime for XEN) or general OS means (like capping the CPU usage of a
VM). The potential usage of such additional methods is discussed in Section 4.4.4.

17Not to be confused with a VM’s state in the life-cycle. Here all information needed for a later resume, e.g. the memory
contents, CPU queue and registers, I/O queues, et cetera are meant.

18Technically this involves minimal interruptions in the computation of SecApps, please see [119, 3] for details.
19Again, this is not the VM’s state in the life-cycle. Instead a file containing information on how to resume the VM is

deleted.
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4.3.4. Secondary Application Abstraction

VMs offer flexible and uniform methods for encapsulating arbitrary non-distributed SecApps and ma-
nipulating their resource usage. They are, nonetheless, not sufficient for fully abstracting general
SecApps. First, VMs merely provide a hosting environment similiar to a physical node with an op-
erating system setup. No meta-information about the hosted SecApp like priorities, user privileges,
credentials, runtime conditions or even SLT requirements come with a VM’s description. Second, a
VM represents only a single virtualized node. No distributed applications, e.g. an MPI application,
can be abstracted using the VM concept only. The "lease" concept, inspired by Grit et al. [49] is there-
fore used in this thesis. A lease is a container for a set of VMs running a single, potentially distributed
SecApp.20 The relation assign(lease, {V M}) defines a temporary correspondence between a lease and
a set of assigned VMs. At a specific point in time a VM can only be assigned to at most one lease. A
lease has multiple properties. For now these are restricted to few basic properties which are the (lease)
owner, the (lease) priority and the number and type21 of assignable VMs. The decision instance then
regards the set of assigned VMs of a lease as a unit, i.e. it makes sure that all assigned VMs are in
the same state for any given point in the lifetime of a lease and accord with the requirements given
by the lease’s properties. The life-cycle of a lease is shown in Figure 4.2. There is a correspondence

Figure 4.2.: Life-cycle of a lease: States and transitions.

between the life-cycles of leases and VMs. The life-cycle of a lease is now explained, corresponding
VM state transitions are mentioned:

20Like a VM can be considered as a process according to the description given in Section 4.2, a lease corresponds to an
application mentioned ibidem.

21The type of a VM simply denotes which SecApp is run by the VM and what configuration (CPU, RAM, etc.) the VM
possesses.
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When a user wants to run a SecApp, he submits a request to the decision instance. The request is
evaluated and a lease is created. The lease is equipped with meta-information which is the priority,
the owner22 and information about to-be-assigned VMs. The lease is now in state "created". Upon
triggering of an event internal to the decision instance, e.g. a certain date, the lease is transferred to
state "queued".

Leases in queued state are those leases that are waiting to be provisioned to the cluster. Once the de-
cision instance decides that for a queued lease a) there are appropriate usable resources in the cluster
and b) there is a sufficient number of appropriate VMs available , the lease will be provisioned. The
transition to state "provisioned" involves the assignment of VMs to the lease, the allocation of these
VMs to nodes and the starting of these VMs.Throughout this thesis, the phrase "starting a lease" is
repeatedly used to refer to this procedure.

It is possible that a lease in queued state already has VMs assigned to it. These VMs are in suspended
state.23 In this case the transition to state provisioned only involves the allocation of VMs to nodes and
the resuming of these VMs. Again, the phrase "resuming a lease" is used to refer to this procedure.
The transistion of a queued lease to provisioned state will cause the assigned VMs to attain running
state.

A lease in queued state can be terminated. This can be due to the owner’s explicit request or upon an
event internally triggered by the decision instance (e.g. a date). If the lease has assigned VMs, then
this relation is dissolved and these VMs are reset. Then the lease is destroyed, i.e. its data residuals
are deleted.

A lease in provisioned state can be preempted. This is done by the decision instance and transfers the
lease to queued state. Depending on the type of preemption any of two things can happen: Either all
assigned VMs are stopped, their allocation relations to nodes and the assignment relation to the lease
are dissolved. Or all assigned VMs are suspended, their allocation relations to nodes are dissolved but
the assignment relation to the lease is maintained. The former is called "stopping a lease", the latter
is called "suspending a lease". The phrase "preempting a lease" is used when referring to any of these
procedures.

A lease in state "provisioned" can be terminated. Again, this can be due to the owner’s explicit re-
quest or upon an event internally triggered by the decision instance (e.g. a date). In both cases all
assigned VMs are stopped, their allocation relations to nodes and the assignment relation to the lease
are dissolved and the lease is destroyed, i.e. its data residuals are deleted.

A lease in provisioned state can be paused. This only happens upon an owner’s request. Such a re-
quest means that the owner wants a provisioned lease to be paused temporarily, i.e. to stop the SecApp
from running in the cluster, but without terminating the lease. Pausing a provisioned lease will put
the lease in state "heaped". All assigned VMs are suspended, their allocation relations to nodes are
dissolved but the assignment relation to the lease is maintained.

A lease in heaped state can be unpaused. This only happens upon an owner’s request. Such a request

22The user that submitted the request becomes the owner of the lease.
23This is the case if a previously provisioned lease was preempted or paused and later unpaused.
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means that the owner wants a currently paused lease to be provisioned in the cluster again. The lease
will attain queued state, which means that it is put under control of the decision instance which again
decides on its provisioning.

A lease in heaped state can be terminated. This only happens upon an owner’s request. All assigned
VMs are reset, their allocation relation to nodes and the assignment relation to the lease are dissolved
and the lease is destroyed, i.e. its data residuals are deleted.

The lease concept will not be defined in a more formal way. A lease merely represents a container
of VMs, runs a specific SecApp, can be in different states and carries meta-information. Leases are
administrated by the decision instance. Their state transitions are triggered by the owner of a lease
or by the decision instance. It is assumed that the VMs appropriate for assignment to a lease are
exisiting throughout the runtime of the decision instance, i.e. they had been created beforehand. That
is, the creation of VMs is not captured by any phase of the lease life-cycle. Existing approaches
[93, 82, 28, 110] regarding runtime creation of appropriate VMs ("appliance automation") are not
considered relevant in context of this thesis.

4.3.5. Constraints on Resource Usage: Policies

So far resource producers (e.g. Nodes), resources (e.g. CPU) and resource consumers (VMs, leases)
have been introduced. Their relations have been described in a basic manner: leases make up of VMs,
VMs are allocated to nodes. The allocation of a VM to a node causes the VM to use resources of
that node. Decisions on establishing or dissolving assignment and allocation relations are made by
a decision instance. This decision instance incorporates resource usage data to make such decisions.
Policies are statements about the desired usage of resources, that guide the interpretation of current
resource usage values, and drive the decisions of the decision instance. Before formalizing the policy
concept the terms "allocation pattern" and "cluster model" are introduced.

Allocation Pattern and Cluster Model It was mentioned before (see Section 4.3.1) that in order
to control the amount of interference, resource usage in the cluster has to be controlled such that
competition for sparse resources can be avoided or temporally limited. The only way to control
resource usage in a dedicated cluster without control over the MainApp is to modify the resource
usage generated by SecApps. VM life-cycle transistions have been introduced as a method to modify
the resource usage of SecApps. A decision instance will therefore make use of the VM manipulations
∈ {start, stop, suspend, resume,migrate}. To describe a current state of leases, VMs, nodes and their
relations the term allocation pattern is introduced. An allocation pattern is a snapshot of the cluster’s
nodes, leases and VMs taken for a single measurement interval ∆t. Such an allocation pattern AP is
defined as

Definition 4.4 AP :=
{

(lease, {V M}) | assign(lease, {V M}) } ∪ { (V M, node) | alloc(V M, node)
}

The state of all leases and VMs contained in an allocation pattern is implicitely given and can be
derived from the VM and lease life-cycle definitions stated above. Since an allocation pattern is
defined as a snapshot of the cluster with its nodes, leases and VMs for a specific measurement interval,
an order relation (<) can be imposed on allocation patterns, defining a timeline: APk < APk+1 with
∆(tk, tk+1) = 1s. APk is said to be equal to APk+i if there is a bijective mapping f such that for every
assignment and allocation tuple in APk there is a tuple in APk+i with f being the identity function.
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Definition 4.5 The transition of one allocation pattern to another: APk #→ APk+i with APk " APk+i
is called change of an allocation pattern. It is achieved by establishing, modifying or dissolving
allocation and assigment relations.

The change of an allocation pattern is merely the execution of lease and VM state transitions. It
may involve VM or lease state changes (e.g. for stopping a lease), but not necessarily needs to (e.g.
migration of a VM). In this thesis, the terms "manipulating a lease", "manipulating a VM" or simply
"manipulation" are often used to denote single state transitions of VMs and leases. An allocation
pattern describes the relation between leases24, VMs and nodes and therefore represents a state directly
manipulable by a decision instance. There are other interesting properties of a cluster environment
which are not represented by an allocation pattern, like modelled resources and their usage. A more
comprehensive description of a cluster, its resources, existing leases and VMs is the cluster model.
Again, a cluster model is a snapshot of the cluster taken for a single measurement interval ∆t.

Definition 4.6 CM :=
{{cluster item}, {(res,Usageres)}, {V M}, {lease}, AP

}

In this definition, {cluster item} is the set of all known cluster items (e.g. nodes) and {(res,Usageres)}
is the set of all modelled resources and their usage. AP denotes an allocation pattern. In analogy to
the allocation pattern the cluster model is situated in time, CMk. A specific cluster model CMk at a
point in time tk is also called a cluster model incarnation.

Policies The policy concept has been developed in order to equip the decision instance with criteria
to assess whether further SecApps can be run, the share of resource usage generated by SecApps is
appropriate (with repect to resource competition) or needs to be modified. A policy is a statement on
the usage of a resource and specifies for how long SecApps are allowed to contribute25 to a certain
level of resource usage.
The policy PCPU = (CPU ≤ 80, 10)×(Node4,Node5) represents a typical example. Roughly it means
that the CPU utilization on Node4 and Node5 must not exceed 80% for more than 10 seconds while
SecApps are using this resource. The decision instance has to realize these semantics by adapting the
CPU usage generated by SecApps (VMs) running on these nodes. The value 80 is called a threshold
on the usage of resource CPU, the value 10 is called timelimit. The threshold and timelimit parame-
ters are reconfigurable. This can be done prior to running SecApps or at runtime of the framework. A
policy therefore is a configuration item which can be used to specify constraints on desired resource
usage in a cluster.

More formally a policy P is characterized such: Let S be a predicate-logical statement that is inter-
preted in the cluster model. S has the form S := ∀x ∈ CI : A(x). CI denotes a family of cluster
item sets, e.g. CI =

{
{Node1}, {Node2}

}
.26 Every x ∈ CI provides a resource. A(x) is a statement

about the usage of these resources. The evaluation of both A(x) and S is bound to a specific cluster
model incarnation CMk, i.e. eval : {(S ,CMk)} #→ {True, False}. If there is no VM process using the
resource provided by a specific x then A(x) is True. If a VM uses this resource, then the truth value of
A(x) depends on the actual usage of the resource given by CMk. An evaluation eval(S ,CMk) is called
a model-check. Assuming a measurement interval of ∆t = 1s, a model-check occurs every second. A
24According to definition, stopped (queued), created and destroyed leases are not part of the allocation pattern. The same

holds for non-assigned VMs
25A VM contributes to the usage of a resource res at point in time tk iff Usageres(k,N,V M) > 0.
26CI is a family of sets (instead of a set) because a resource can also be defined as a "cumulated" resource of multiple cluster

items. An example is the total number of VMs running in a subcluster.
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policy P is now defined as a tuple P = (S ,CI, n) with S being the statement over the cluster model
incarnations, CI being the family of cluster item sets for which the model-check is done and n ∈ N
representing a number of model-checks. A policy can either be valid or invalid. A policy is valid
unless it has been found invalid at any point in time. A policy is invalid if

∃m : m ∈ N ∧
m+n∨
i=m

eval(S ,CMi) = False. The goal of the decision instance is to keep policies valid.

The formalism is now explained using an example. Let P = (S ,CI, n) with CI =
{
{Node1}, {Node2}

}
,

n = 5 and S := ∀x ∈ CI : UsageCPUx(k, 1) ≤ 80. The statement S itself can be interpreted as: The
usage of the CPU resource on Node1 and Node2 within the last measurement interval is below 80%.
At a point in time tk+i the policy P itself is valid if including the first model-check at k = 1 no six
consecutive model-checks returning False have occurred. This practically means that no node had a
CPU utilization over 80% for more than 5 seconds while some VM was using the CPU resource. In
simple words, a policy makes a statement on the resource usage in a cluster and additionally specifies
"how long" this statement can be False until the policy is considered invalid. A less complicated
terminology to describe policies is used from now on:

PCPU = (CPU ≤ 80, 10)× (Node4,Node5) means that the CPU utilization on Node4 and Node5 must
not exceed 80% for more than 10 seconds while a SecApp is using this resource. The statement A(x)
(here: CPU ≤ 80) defines the threshold27 and n (here: 10) is defines the timelimit. Since timelimits
were introduced as a number of consecutive model-checks and a model-check is done every second,
the timelimit value is interpreted as a time interval in this thesis, e.g. the timelimit in PCPU : (80, 10)
is 10 seconds. When emphasizing the fact that the policy specification contains specific elements
x ∈ CI the phrase: "The policy is associated with x" is used. In this particular example the policy is
associated with Node4 and Node5. At times an even shorter terminology PCPU : (80, 10) is utilized
when discussing policies without mentioning associated cluster items. The operator "≤" is implicitely
assumed for A(x) when such a simplified form is used.

Example Resources Policies are defined over resources and their usage. Throughout the previous
sections the normalized function Usageres was used to refer to the usage of a resource. When apply-
ing the normalized function to an inhomogeneous cluster, e.g. consisting of nodes with a different
number of CPU cores, this leads to information loss: 80% CPU usage on a 16 CPU core node is
different from 80% CPU usage on a 2 CPU core node. When specifiying policies there needs to be
an agreement for every resource type on whether the normalized (relative) Usageres or the absolute
resource usage currentUsageres is used. In this thesis, the normalized, unitless function Usageres
is used for the resources CPU, NetIn, NetOut, DiskIn and DiskOut when specifying policies. That
is, thresholds are interpreted as percentage values for these resources. For any other resource, the
absolute functions currentUsageres and currentProcUsageres(k,N, proci) are used instead. In this
case thresholds are interpreted using their native units, e.g. MByte for a threshold on memory usage.
Table 4.1 shows several exemplary resources with their producers and native units for the absolute
functions currentUsageres and currentProcUsageres(k,N, proci). For all resources the measurement
interval of ∆t = 1s is used and their usage functions are defined using the average over the last mea-
surement interval, e.g. currentUsageres(k, 1).

27Despite of choosing the term threshold that does not mean that A(x) needs to be defined upon metrically scaled variables.
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Resource Producer Explanation Unit
CPU Node CPU Utilization Jiffies/s
Mem Node Allocated memory MByte
NetIn Node Incoming traffic on eth0 MByte/s
NetOut Node Outgoing traffic on eth0 MByte/s
DiskIn Node Disk0 write rate MByte/s
DiskOut Node Disk0 read rate MByte/s
AllocVM Node # VMs allocated None
UsedCore Node # Cores used by allocated VMs None

Table 4.1.: Example resources, their producer and intended meaning.

The resources CPU28, Mem29, NetIn, NetOut, DiskIn, DiskOut refer to architectural components of a
computer system. Their maximum usage is restricted mainly by the properties of the hardware.30 On
the contrary, the resources AllocVM and UsedCore are (artificially composed) synthetic resources.
AllocVM can be interpreted as allocation slots for VMs on a single node. Likewise UsedCore denotes
the number of CPU cores usable by (virtual CPU cores of) VMs on a single node. Of particular use
is a policy on the AllocVM resource: Since policies can be modified at runtime, such a modification
from e.g. PAllocV M : (2, 10) to PAllocV M : (0, 10), will enforce the removal of all VMs on the asso-
ciated nodes with 10 seconds.31 A closer look at the relation between policies and their procedural
semantics, i.e. how they trigger and influence the choice of manipulations will be taken in Section 4.4.

4.3.6. Decision Making Architecture

So far the term decision instance was used for denoting an entity that makes decisions on when to
grant or revoke access for SecApps to cluster resources. This term will now be refined. To start with
there are two differing scenarios:

Scenario 1: There are queued leases. A decision instance strives to provision these leases, i.e. giving
them access to computational resources. This is done by repeatedly choosing a queued lease and
finding allocations for its assigned VMs. Knowledge of the cluster model incarnation and specified
policies is required to make such decisions. No automated preemption of running leases is used, i.e.
a run-to-completion scheme is employed. This scenario is a classical job scheduling scenario. A
functional unit performing this task is called Global Provisioner (GP). The goal of this functional
unit GP is to make provisioning decisions in order to use free resources in the cluster and to allow
SecApps to compute results. Policy semantics have to be obeyed. The GP is more closely described
in the next Section 4.4.2.

28A jiffy is the duration of one tick of the system timer interrupt and can be used to measure the CPU utilization by
calculating how many jiffies/s the CPU spent in various execution modes.

29The meaning of "allocated memory" depends on the OS, virtual memory subsystem and the programmer’s intention. Here
the meaning is the Linux-specific value retrievable by querying procfs memory statistics: used − (bu f f ers + cached).

30Properties of the specific operating system may also play a role, for instance the 4GByte memory limit of a 32bit Windows
XP OS.

31Such a manual policy modification will trigger a change of the allocation pattern and is very handy when an administrator
wants to free a subcluster from VMs.
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Scenario 2: There are running leases. Unless paused upon (lease) owner request, these leases run
till termination. However, policies impose restrictions towards the usage of resources. If resource
usage increases over the threshold level, the contribution of SecApps (VMs) to this usage needs to
be decreased. Basically there are two different ways of achieving policy compliance, i.e. of keeping
them valid in a critical scenario (e.g. high CPU usage):

• changing the current allocation pattern or

• modifying the resource usage of single VMs directly

The change of an allocation pattern has been defined before (see Definition 4.5). Feasible lease and
VM manipulations that could lead to a decrease in resource usage are stopping and suspending of
leases and migration of single VMs. Choosing appropriate lease and VM manipulations that keep
policies valid requires knowledge of the current cluster model incarnation and specified policies. A
functional unit which makes such decisions on how to change an allocation pattern is the Global
Reconfigurator (GR). This unit recognizes when there is the need for a change, decides on which to
choose and applies it. The GR is more closely described in Section 4.4.3. A vital role in this scenario
plays the estimation of effects of VM manipulations towards the usage of resources. This estimation
is discussed separately in Section 4.4.1.

Changing an allocation pattern in order to modify resource usage has disadvantages: First, it takes
considerable time till its effects kick in (e.g. a migration may take several seconds), second, the
manipulation itself consumes resources (e.g. a migration uses network resources) and third, such a
manipulation involves communication between separate cluster nodes and may therefore fail, e.g. due
to network, OS and hardware failures. There are other options to modify the resource consumption
of running VMs: The attribution of resource shares can be adapted locally on the node which the VM
is running on. This relieves the dependency on a remote decision instance and provides greater flexi-
bility. Means provided by the hypervisor (e.g. change of virtual CPU cores) and the OS (e.g. Linux
signals) can be used to modify the resource usage of a VM locally. Such an adaption does not rely
on knowledge about the current cluster model incarnation (e.g. the resource usage on other nodes).
Knowledge of policies that concern the local node is required. In contrast to the coarse-grained ma-
nipulations choosable by the GR, a fine-grained adaption of resource usage (e.g. CPU usage of a
VM) is possible. A closed loop adaption of local resource usage bases on feedback control theory and
therefore can react to changes in the total usage of local resources flexibly at runtime. A functional
unit implementing such a local resource usage adaption is called Resource Usage Adaptor (RUA).

Three funtional units have been introduced: GP, GR and RUA. These units constitute what has been
called "decision instance" up to this point. Having described these units from a functional perspec-
tive, now a tentative introduction32 is given for the architectural design of the software framework.
The software framework will from now on be referred to by using the terms VM-Scheduler, VM-
Scheduling Framework or simply framework.

32A more detailed coverage of the software architecture will be given in Section 5.2.
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Figure 4.3.: Basic framework architecture with focus on distinction between Global Scheduler and
Local Controller components.

Figure 4.3 shows the basic architectural components of the framework. GP and GR are part of the ar-
chitectural component "Global Scheduler". This component is located on a global management server.
Both units therefore possess a global view at the cluster and make decisions involving more than a
single node. For instance, when a lease is about to be provisioned, target nodes (allocations) for all of
its assigned VMs need to be found. A global instance (GP) with knowledge about the cluster state is
therefore feasible. The RUA is part of the architectural component "Local Controller" depicted in Fig-
ure 4.3. Instances of the Local Controller are located on each node governed by the VM-Scheduling
Framework. The knowledge scope of the RUA encompasses policies for the specific node and locally
running VMs. Global Scheduler and Local Controller (i.e. GP, GR and RUA) interact by exchanging
information about current resource usage, state of VMs/leases and currently active policies.

The architectural approach therefore is a hierarchical, two-layered one. The provisioning and pre-
emption of leases is decided globally. Resource usage of running VMs is adapted locally unless a
local adaption is not sufficient. This principle, subsidiarity, is considered a key factor to building an
efficient framework. If local adaption does not suffice to achieve policy compliance, the GR steps in
and overrides local adaptions via allocation pattern changes. Regarding the functional units hosted
by the Global Scheduler the GP is subordinated to the GR which means that decisions by the GP (to
provision a lease) can be blocked or canceled by GR for the sake of policy compliance, i.e. in order
to prevent strong interference. In the next section, the algorithms and coordination of these functional
units (GP, GR, RUA) are discussed. Since the identified main challenge for this thesis is to prevent
a MainApp from being affected by running SecApps, this next section especially focuses on dynamic
resource allocation realized by GR and RUA.
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4.3.7. Summary

The basic concepts, terms and entities of this thesis were explained in this section. These are now sum-
marized. The main challenge of this work is to avoid the potential impact of SecApps to a MainApp.
This requirement for a valid solution was formalized using the interference concept. The argument
was made, that the impact of SecApps to a MainApp requires the statistical evaluation of a perfor-
mance metric of the MainApp. The developed interference terminology then allows to make state-
ments on whether a MainApp is affected by additionally run SecApps, to which extent its is affected
and whether this impairment leads to incorrect functionality. It was shown that the interference con-
cept is feasible for ex-post assessments of past scenarios, but lacks as a base for runtime decisions
on how to exploit unused resources. Potential causes of interference were considered and it was con-
cluded that two necessary conditions have to be met in order to prevent strong interference: Isolation
of the MainApp from SecApps and avoidance of resource competition.

To meet the first condition, the usage of platform virtualization was proposed for running SecApps:
A SecApp runs in VMs, multiple VMs are assembled to a lease. A lease therefore represents a
single, potentially distributed SecApp. A lease is equipped with additional meta-data that details
requirements of the SecApp. Beside of the fact that virtualization efficiently isolates MainApp and
SecApps and thereby confines negative effects of buggy and insecure software, the usage of VMs and
leases also provides uniform and standardized interfaces for manipulating arbitrary types of SecApps.

To meet the second condition, the sensor metric Usageres(k,N) was introduced. This metric, i.e. the
knowledge of the past and current resource usage, serves as base for making decisions on how, where
and when to give SecApps access to resources. This metric has the advantage that it is MainApp
independent, i.e. of generic nature, but at the same time also indicates when there is a potential risk of
interference. It is desirable to prevent any kind of resource competition, i.e. when a SecApp is running
on an node, the resource usage should be below 100% at all times. In this case, a SecApp does not
steal resource shares, e.g. CPU cycles, from a MainApp. However, without intrusive kernel-level
techniques that are not permitted in a dedicated cluster, this is difficult to achieve for some resources
(e.g. network).

Resource competition is therefore counteracted by limiting the time span for which a SecApp is al-
lowed to use a resource if the total resource usage exceeds a certain "threshold", e.g. 90%: If the
threshold is exceeded, then the SecApp needs to reduce its used share of that resource. If the overall
resource usage stays above that threshold for a certain time ("timelimit"), then the SecApp needs to
reduce its share to 0%. This requirement is formalized using the configuration item "policy". For ev-
ery resource, there is a policy with configurable threshold and timelimit parameters. By customizing
these parameters, the impact of SecApps to a MainApp (amount of interference) can be controlled.
This assumption is subject to later empirical evaluation (see Chapter 6). A two-layered architecture
has been proposed for realizing the policy semantics and making runtime decisions on when to grant
or revoke access to resources for SecApps. The functional units GP and GR are part of a "Global
Scheduler". They decide on changes to the allocation pattern, i.e. they initiate lease state transitions
and VM manipulations like start, stop, suspend, resume and migrate. The functional unit RUA is part
of the "Local Controller" that runs on each cluster node. The RUA adapts the resource usage of lo-
cally running VMs. The existence and cooperation of these functional units serves the purpose of both
keeping policies valid, hence controlling interference, while at the same time allowing the SecApp to
use cluster resources and to generate additional results. The following section describes the functional
units and their cooperation.
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4.4. Resource Allocation Functionality

The VM-Scheduling Framework consists of two major architectural components: The Global Sched-
uler and the Local Controller. These host functional units, which are the the Global Reconfigurator
(GR) and Global Provisioner (GP) on side of the Global Scheduler and the Resource Usage Adaptor
(RUA) on side of the Local Controller. The algorithmic approaches chosen for these units and their
coordination are portrayed in this section.

4.4.1. Feasibility Estimator

In the last section it was stated that in order to control interference, appropriate policies need to be
specified and their compliance must be enforced. Both GP and GR make use of lease state transi-
tions and corresponding VM manipulations ∈ {start, stop, suspend, resume,migrate} for manipulat-
ing leases and realizing policy compliance. However, the execution of such manipulations carries a
certain overhead towards resource usage. Based on this consideration the Feasibility Estimator (FE)
is introduced. This facility is part of the architectural component Global Scheduler and used by both
globally acting units GP and GR to assess the appropriateness of VM and lease manipulations with
respect to policy compliance. In order to find changes of the allocation pattern that allow for provi-
sioning of leases or prevention of policy invalidations, it is necessary to estimate the resource usage
in the cluster model at future points in time. The Feasibility Estimator (FE) takes as input a proposed
set of VM manipulations and predicts the resulting future resource usage under the assumption that
these manipulations are instantly applied and no other changes of the allocation pattern occur. For
a resource like AllocVM33 this estimation is simple: If a single VM is to be suspended on a node,
then the usage of AllocVM is decremented by 1 once the manipulation is finished. That is, the FE
only needs to estimate the duration of manipulations to know the usage of a resource AllocVM at a
future point in time. For resources like CPU, NetIn and NetOut this is more complicated: The ma-
nipulation itself, not just its outcome, also impacts the usage of these resources. In the following a
simple model is given for calculating the duration of manipulations and their overhead towards re-
sources CPU, NetIn, NetOut, thereby enabling the prediction of future resource usage on nodes. The
model was not developed as a general purpose model to estimate these factors. The now presented
model for estimating the duration and overhead is a prototypical approach for estimating these effects
specifically for the test environment used in this thesis to evaluate the framework (see Section 6.3.1).
A best-practice proposal of how to adapt the FE settings for a different cluster environment is given in
Section A.5.

The FE is queried by functional units GP and GR at time tk. These pass a set of proposed VM manipu-
lations, a future point in time tk+i and a resource as parameters to the FE. The FE returns the predicted
usage of that resource at tk+i. The FE knows about the current cluster model incarnation and currently
being executed ("ongoing") VM manipulations at time tk. The starting point to describe the function-
ality of the FE is to capture the concept of VM manipulations using the process and resource usage no-
tion introduced in Section 4.2. A VM manipulation is a state transition in the life-cycle of a VM. Such
a transition has a duration. The duration of a single VM manipulation is described by its starting point
ta and its ending point tb with duration = tb− ta. As long as a VM manipulation is not finished the VM
is considered to be in its old state. A manipulation ∈ {start, stop, suspend, resume,migrate} is ongo-
ing at tk if ta ≤ tk ≤ tb.34 During a manipulation, there exists a manipulation process on the concerned
33The resource AllocVM represents a number of slots for running VMs on a node. See Table 4.1 for reference.
34For ease of understanding, points in time and manipulations are not indexed in order to refer to each other.
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node manipProc ∈ {startProc, stopProc, suspProc, resumeProc,migOutProc,migInProc} that re-
alizes the primitive. These manipulation processes are abstractions and do not necessarily exist as
separate OS processes. For a migration there are two such processes, migOutProc on the source node
and migInProc on the target node. While all manipulations processes cause a certain CPU usage,
some processes like migInProc or resumeProc generate usage of the resource NetIn and others like
migOutProc and suspProc generate usage of the resource NetOut on a node.

The Equation 4.2 is used by the FE at a point in time tk to calculate the usage of a resource at a future
point in time tk+i.

Usageres(k + i, 1) < Min
(
100,
(
ProcUsageres(k + i, 1,MainApp)

+

N∑

n=1

ProcUsageres(k + i, 1,V Mn)

+

R∑

r=1

ProcUsageres(k + i, 1,V Mr)

+

M∑

m=1

ProcUsageres(k + i, 1,manipProcm)
))

(4.2)

This equation consists of four ProcUsageres terms that as a sum represent the usage of a resource res
at a future point in time tk+i. These terms are now described. A specific term is referenced by the line
number in which it occurs in the equation, e.g. line 1 references ProcUsageres(k + i, 1,MainApp).

Line 1 This term represents the resource usage of a running MainApp at tk+i.

Line 2 This term represents the summed resource usage of every V Mn that is in running state and
contributes to resource usage at tk and still runs or is subject to an ongoing manipulation at tk+i.

Line 3 This term represents the summed resource usage of every V Mr that at tk does not contribute
to resource usage, but at tk+i is expected to be running and contributing to resource usage (e.g.
newly started, resumed or migrated VMs).

Line 4 This term represents the summed resource usage of every ongoing manipulation manipProcm
at tk+i.

At point in time tk the FE only knows the current resource usage values for the MainApp and run-
ning VMs. Furthermore the FE knows about ongoing manipulations and proposed manipulations.35

For calculating the future resource usage using Equation 4.2, it is therefore required to estimate the
future resource usage values represented by the four ProcUsageres terms. It is now stated how these
estimations are made.

• The future resource usage of the MainApp at tk+i (represented by the term in line 1) is projected
by using the MainApp’s resource usage at tk averaged over the last 5 measurement intervals:
ProcUsageres(k + i, 1,MainApp) = ProcUsageres(k, 5,MainApp)

• The future resource usage of any VM that is in running state at tk and is still running or being
manipulated at tk+i (represented by the term in line 2) is projected by using the VM’s resource
usage at tk averaged over the last 5 measurement intervals: ProcUsageres(k + i, 1,V Mn) =
ProcUsageres(k, 5,V Mn)

35Proposed manipulations are manipulations transmitted as parameters by the caller of the FE.
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• The future resource usage of a VM that does not run at tk but is expected to be running at tk+i
(represented by the term in line 3) for a resource like Mem was defined upon creation of that
VM, e.g. 1GB. For resources like NetIn, NetOut and CPU, where no maximum usage can be
defined upon creation, the future resource usage of a VM is 20%: ProcUsageres(k+i, 1,V Mr) =
20. Every such newly running VM is subject to resource usage adaption by the functional unit
RUA. The value of 20% has shown to be a feasible estimation for the inital resource usage of
newly started, resumed or immigrated VM in empirical tests.

Since the last two items incorporate the state of a VM, e.g. whether it is running or currently being ma-
nipulated at tk+i, it is required to have knowledge about the duration of manipulations. Additionally,
the term ProcUsageres(k + i, 1,manipProcm) in the fourth line of Equation 4.2 requires knowledge
about the resource usage generated by an ongoing manipulation. The duration and resource usage of
a single manipulation is estimated in the following manner:
It is assumed that a certain resource usage value can be attributed to any type of manipulation pro-
cess.36 This value is retrieved by measuring the resource usage while conducting a single manipulation
in an idle environment, i.e. nodes, storage and network are idle except for the single VM and its ma-
nipulation. For instance, if a suspend manipulation takes 10 seconds, then the CPU usage is measured
and the highest value of the 10 measurement intervals is taken. The difference between this value and
the CPU usage generated by the VM prior to suspending it is considered as the CPU usage of the
suspend process in an idle environment. Since the situation is commonly more complicated in real
life, i.e. multiple concurrent manipulations occur, the MainApp uses resources and multiple VMs are
running, there will most probably be competition for resources. This is assumed to prolong the dura-
tion of the manipulation and to decrease its resource usage both averaged over the whole duration but
also for every single measurement interval. Therefore, the value obtained for a specific manipulation
of a single VM in an idle environment is considered to be a maximum value for the resource usage
of the respective manipulation process. This value serves as an estimation for the resource usage of
a specific manipulation process at tk+i. The values obtained for different manipulation processes and
resources in the experimental environment (see Section 6.1) are given in Table 4.2.

manipProc CPU(%) NetIn(%) NetOut(%)
suspProc 2 0 31
migOutProc 30 0 31
stopProc 0 0 0
migInProc 12 30 0
resumeProc 15 25 0
startProc 20 20 0

Table 4.2.: Additional resource usage caused by different manipulation processes. These values are
specific for the KIP cluster and a VirtualBox VM with one virtual CPU core, 512 MB
RAM and running GNU C Compiler (GCC).

In Table 4.2 it can be seen that multiple values are equal to zero. This either means that the specific
manipulation does not use a resource (e.g. NetIn for suspProc) or that starting a manipulation imme-
diately causes a drop in the resource usage (e.g. CPU for stopProc).37 Please refer to Section A.5 for
36Such values are specific for a cluster and VM configuration. Here it is referred to the test environment used in this thesis

(see Sections 6.3.1, 6.1).
37For instance, in the case of stopping a VM, the VM instantly stops consuming CPU cycles and the overall usage of
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a more detailed description on how these values were retrieved and how they can be interpreted.

While the values in Table 4.2 are considered as maximum values for the resource usage of manipula-
tions and can be used for a conservative estimation, the durations found for manipulating a single VM
in an idle environment rather represent a minimum value which is probably larger if multiple manip-
ulations occur at the same time. In order to retrieve a reasonable estimation for the duration of single
manipulations, multiple experiments with concurrent manipulations have been executed. These are
described in Section A.5. For interpreting the resulting estimation, several variables are introduced
first:

S tartsAndResumes = < total number o f ongoing and proposed starts and resumes >
S uspAndS tops = < total number o f ongoing and proposed suspends and stops >
ManipsS rcNode = < number o f ongoing and proposed suspends, stops and outgoing

migrations on source node >
ManipsTrgNode = < number o f ongoing and proposed resumes, starts and incoming

migrations on target node >

The variable S tartsAndResumes is the summed number of manipulations with read access to the
shared storage that are already ongoing at t or are proposed by the caller of FE. Accordingly the
variable S uspAndS tops for the manipulations with write access to the shared storage is constructed.
The variables ManipsS rcNode and ManipsTrgNode represent the number of ongoing and proposed
manipulations on a node that is subject to a VM migration.38 Based on linear regression using these
variables, a very simple model was established that enables the FE to estimate the duration of a single
manipulation:

duration(suspProc) = -5.3 + S uspAndS tops. s (4.3)
duration(stopProc) = -0.35 + S uspAndS tops/12.5. s (4.4)

duration(resumeProc) = -9.2 + S tartsAndResumes. s (4.5)
duration(startProc) = -21 + S tartsAndResumes. s (4.6)

duration(migOutProc) = -0.85 + 3.75 max(ManipsS rcNode,ManipsTrgNode). s (4.7)
duration(migInProc) = -0.85 + 3.75 max(ManipsS rcNode,ManipsTrgNode). s (4.8)

The variable S uspAndS tops is used to estimate the duration of a suspend and stop manipulation (see
Equations 4.3, 4.4). The variable S tartsAndResumes is used to estimate the duration of a resume
or start manipulation (see Equations 4.5, 4.6).39 The proposed estimations for these manipulations
assume that the network route and shared storage access are bottlenecks, read and write access do not
interfer and that an increased number of concurrent manipulations increases the duration of a single
manipulation. For the migration, the estimation only depends on the number of manipulations that
are concurrently being executed on the source and target nodes of a migration, which is reflected
by variables ManipsS rcNode and ManipsTrgNode (see Equations 4.7, 4.8). The effects of staged
manipulations, e.g. a single suspend already runs for 5 seconds at tk when the FE tries to estimate the
duration of another suspend are not taken into account. Every at tk already running manipulation is
considered to have the same impact on the duration like a newly started one.

the CPU drops. Even though the stopping of the VM itself also uses CPU cycles, this amount is relatively small in
comparison the CPU usage of a running VM. Therefore, the CPU overhead of a stopProc is considered to be zero.

38These variables ManipsS rcNode and ManipsTrgNode are node-specific. So for every node that is the target or the
source node of a VM migration these variables need to be calculated separately.

39The duration of a start manipulation is determined by ta = start of manipulation and tb = start of SecApp inside of VM.
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Using both the estimated duration and resource usage of single manipulations, the future usage of a
resource at point in time tk+i can be predicted using Equation 4.2. This model and the used estimations
are fitted to the experimental setup used in the framework evaluation (see Chapter 6) and sufficiently
estimate future resource usage. For a more detailed description and a proposal on how to adapt the
estimations to other cluster environments please refer to Appendix, Section A.5.

4.4.2. Global Provisioner

The Global Provisioner (GP) has two main purposes: First, it processes requests of users ("lease
owners") to submit, pause, unpause and terminate leases. The basic semantics of these lease primitives
have been introduced in Section 4.3.3 and are skipped at this point. Implementational details can be
found in Section 5.3. Second, the Global Provisioner (GP) is the instance that makes provisioning
decisions, i.e. it decides on when to assign which VMs to what lease and which nodes to allocate
these VMs to. Once such a decision is made it is applied to the cluster environment. For this purpose,
the finding and applying of a change of the allocation pattern, the GP initially calculates the priority
of a lease upon submittance of the lease request. The priority is calculated such that it incorporates
all the known properties of a lease, such as its urgency, its size (number of to-be-assigned VMs),
the owner’s credentials and so forth. In this proof-of-concept approach the formula Prio(lease) =
ownerPrio + 0.5 × (size) was used to calculate the priority of a lease. That basically incorporates
a owner’s importance ownerPrio ∈ [1, 10] and the number of VMs that are to be assigned to this
particular lease, thereby giving big leases (with many VMs) and leases of important lease owners an
advantage over other leases. No updating of priorities during a lease’s lifetime is considered, e.g. by
incorporating the past queuetime of a lease ("priority aging") into the priority calculation. While this
is a desirable feature in order to avoid starvation of leases, it is assumed that for the current proof-
of-concept this is unnecessary because the main focus in this thesis lies on the avoidance of strong
interference. In future work such improvements should be considered.
Once a priority is calculated, the lease acquires queued state. This literally puts the lease in a queue.
This queue consists of leases in queued state, ordered by descending priority, therefore being called
priority queue. This priority queue is processed periodically using priority scheduling, which means
that leases in the queue are processed in descending priority order. Leases with the same priority
are considered in first-come, first-serve order. The whole queue is processed lease by lease. For any
lease it is tried to find assignable VMs and nodes which these VMs can be allocated to. The whole
queue is processed independent from the fact whether a specific lease is found to be provisionable.40

The processing of lower-prioritized leases, even if a higher-prioritized lease is not provisionable, is
known under the term backfill. Since a MainApp with an unknown resource usage behavior exists,
thereby preventing the long term prediction of resources available in the future, any advanced reserva-
tion or plan-ahead techniques are pointless. For any processing of the priority queue appropriate lease
manipulations are collected. Once the whole queue is processed, the set of found lease manipula-
tions is executed, i.e. applied to the cluster environment. The priority queue is processed periodically.
Accordingly, any such periodic processing is called a "provisioning cycle". A provisioning cycle is di-
vided into a decision phase, during which the whole queue is processed and applicable manipulations
are collected, and an execution phase during which the found manipulations are applied.
For every lease in the queue a first-fit search heuristic is used during the decision phase. This search
traverses the solution space, i.e. the set of possible allocations of VMs to nodes for the current queued
lease, and evaluates the appropriateness of the manipulation. The appropriateness of a lease manipula-

40A lease is provisionable if a change of the allocation pattern could be found that transfers this lease into provisioned state.
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tion is checked by using the previously introduced Feasibility Estimator (see Section 4.4.1), taking into
account the overhead induced by the manipulations themselves and assumed resource usage caused
by to-be-run VMs. A set of lease manipulations is appropriate if it will, according to the FE, not cause
policies to be invalidated after applying the lease manipulations. The first appropriate manipulation
of a lease is chosen, independently from the fact whether this allows for additional provisioning of
lower-prioritized leases during the very same provisioning cycle. The method applied therefore is a
first-fit heuristic with backfill. If during a provisioning cycle a manipulation for a high-priority lease
had already been found appropriate, lower-prioritized lease manipulations are checked for appropri-
ateness taking into account these already found manipulations. That means that for lower-prioritized
leases a set of manipulations including those of higher-priority leases is checked rather than the single
manipulation of the current lease only. A run-to-completion scheme is applied, i.e. no manipulations
of running leases are considered by the GP. This means no preemptive actions are taken in order to
provision queued leases. This also means a lease manipulation considered by GP only uses the start
and resume primitives for manipulating the VMs assigned to a lease.

Once the whole priority queue is processed and a set of manipulations has been found, the decision
phase ends and the GP enters the execution phase. During this phase the manipulations are tried to be
applied to the cluster environment. For any lease manipulation the execution may succeed or fail. Even
more, the execution itself can last some time until the outcome is known. Experiments showed that
e.g. resuming a single VM can take 10 or more seconds. As elaborated later in Section 4.4.5.1, there is
a global lock on the cluster model during the decision phase and a VM-level lock during the execution
phase. These locks practically realize that unless the execution of a manipulation of a specific lease is
not finished, the lease remains in queued state, but is not considered by later provisioning cycles. Once
the execution of a lease manipulation is finished, the lease enters provisioned state if the execution
succeeded or remains in queued state instead. In the latter case, the lease is considered for being
provisioned again by future provisioning cycles.41

The GP is subordinated to the functional unit described next, the GR. While the GP only takes
care of provisioning queued leases and therefore employs a rather simple algorithmic scheme, the
GR is responsible for avoiding policy invalidations potentially caused by provisioned leases. The
subordination therefore refers to the importance of the functional unit with respect to thesis goals, but
also to the fact, that provisioning cycles of the GP can be interrupted during their decision phase by
the GR.

4.4.3. Global Reconfigurator

The Global Reconfigurator (GR) is responsible for making sure that no policy invalidation occurs.
It is supported in this goal by the GP, which tries to provision only queued leases that are unlikely
to cause policy invalidations and by the Resource Usage Adaptor (RUA) which continuously aims to
adapt resource usage caused by running VMs on nodes. However, there are cases where local adaption
of VM resource usage does not suffice to maintain policy validity.

First, policies can be adapted at runtime. If an administrator decides to change a policy PAllocV M :
(2, 10) to PAllocV M : (0, 10) for a specific node, trying to enforce the number of running VMs to de-
crease to 0 within 10 seconds, a local resource usage adaption is not feasible. In such a case the GR
has to migrate the concerned VMs to other nodes or preempt the lease(s) the VMs are assigned to.
41If a lease manipulation fails potential residuals of this failed manipulation are removed first. Then the lease is considered

for being provisioned again. See Section 5.4 for more details.
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Second, for a given policy PCPU : (80, 10) the RUA continuously tries to adapt the CPU usage of VMs
such that the total usage of the CPU resource on a node does not exceed 80% for more than 10 sec-
onds (i.e. avoiding 10 consecutively failing model-checks). If the MainApp now constantly demands
a very high share of CPU resources, local adaption of VM-generated CPU usage might not suffice to
keep the CPU usage below 80%. Based on the policy definition, the CPU usage of all running VMs
then should be set to 0%. This however is considered not feasible, e.g. because it breaks inter-VM
communication for a lease. Hence, the GR has to step in and take responsibility for policy validity by
migrating VMs or preempting concerned leases.

Multiple questions arise in this context:

1. How and when does the GR recognize a potential policy invalidation which is it has to take care
of?

2. How does the GR prevent a policy invalidation? If multiple conflicting solutions exist, what is
the criterion for their goodness and how a choice is made?

3. The execution of manipulations has considerable temporal and resource usage relevant over-
head. How is a deadline (timelimit) miss avoided? How is transactionality provided and to
what extent computational parallelism can be used? How to make sure that manipulations do
not cause subsequent invalidations of other policies?

Items 1 and 2 are covered in this subsection detailing the GR: First, the recognition of potential policy
invalidations is targeted. Second, the prevention of policy invalidations is explained by sketching the
algorithm used for the GR. The questions of item 3 can only be answered after all functional units
of the framework have been introduced and their coordination was explained. They are therefore
answered at the end of this section (see 4.4.5, 4.4.6.3).

4.4.3.1. Recognition Phase and Triggering

Before starting with the recognition of potential policy invalidations, the terms for describing the basic
behavior of the GR are introduced:
In accordance with commonly accepted terminology the computational behavior of the GR is called
scheduling. Like the phases of a provisioning cycle of the GP (decision + execution phase) the GR
and its scheduling can be described along three phases:

(a) During the recognition phase periodical or externally triggered model-checks are performed.
When certain critera are met the scheduling enters the decision phase.

(b) During the decision phase the GR searches an appropriate change of the current allocation pattern
which is likely to prevent policy invalidation. Once such a manipulation is found, the execution
phase is entered.

(c) During the execution phase the found change of the allocation pattern is applied to the actual
cluster environment.

These three phases together are called a "reconfiguration cycle". When referring to any of the intro-
duced cycles (provisioning cycle of the GP and reconfiguration cycle of the GR), without specifying
which one is meant, the term "manipulation cycle" is used.

The recognition of potential policy invalidations is situated in the recognition phase. To know about
potential policy invalidity, the cluster model is checked periodically, i.e. it is evaluated whether the
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statement made by a policy on resource usage (threshold) holds and whether VMs contribute to that
usage. Policy invalidity occurs if a number (timelimit) of consecutive model-checks fail. As an ex-
ample, for the policy PCPU : (80, 10) the CPU usage has to remain below or equal to 80% and policy
invalidation occurs if this requirement is violated for 11 consecutive measurements.42 This policy
invalidation the GR has to anticipate and take measures before it occurs.
Therefore, an additional criterion for every policy is introduced. This criterion is called a trigger.
When this criterion is evaluated to True ("the trigger fires") the decision phase of a reconfiguration
cycle is started. In this phase the GR tries to find manipulations that prevent the respective policy from
being invalidated.

Every policy possesses two triggers: a global and a local trigger. The local trigger acts as last resort
before a policy is being invalidated, i.e. shortly before the timelimit is exceeded and the thereby given
deadline is missed. Its firing enforces a hard stopping of any VMs contributing to a potential policy
invalidation. Architecture-wise the local trigger is not part of the GR. It is, as the name hints, realized
directly on the local node to which the policy is associated. A functional unit, called Local Trigger
Unit, takes care of all local triggers defined for a single node. The Local Trigger Unit is part of the
architectural component Local Controller. Local triggers are discussed separately in Section 4.4.4.2
where the Local Controller is portrayed.

Global Triggering The checking of a global trigger is a task of the GR. The purpose of a global
trigger is the anticipation of a potential policy invalidity. The global trigger reflects the probability
that after encountering a number n of consecutive failed model-checks for a policy at points in time
(tk+1, tk+2, ..., tk+n) the policy will be invalidated at a point in time tk+timelimit+1 if the GR does not step
in. Without giving a calculation for this probability, it is possible by examining different policies
whether this probability is high or low for a specific policy. This now is done for two example policies
PCPU : (80, 10) and PAllocV M : (0, 10).
For a policy on the CPU resource, e.g. PCPU : (80, 10), the result of a model-check (UsageCPU ≤ 80)
may easily oscillate between True and False for successive, second by second model-checks. This
is due to the unknown, potentially changing resource usage of the MainApp, the process scheduling
techniques used in OS and the influence of the RUA that continuously adapts the resource share used
by VMs. So if a single failed model-check is encountered for such a policy at tk+1, the probability that
this policy is invalidated at tk+11 if the GR does not step in is relatively low. Now imagine a policy on
the resource AllocVM, e.g. PAllocV M : (0, 10) which is associated with a node that currently runs two
VMs. This situation occurs if the policy was configured with PAllocV M : (2, 10) before and two VMs
were allocated to that node. Now the administrator decides to remove these VMs from this node and
reconfigures the policy at runtime from PAllocV M : (2, 10) to PAllocV M : (0, 10). In this case a single
failed model-check at tk+1 is a very strong indicator that this policy is invalidated at tk+11 if the GR
does not step in. If not the improbable cases occur that a lease owner incidently just at that time pauses
or terminates the concerned leases and VMs, the concerned VMs crash or that the policy is modified
again, that policy will be be invalid at tk+11. This is due to the fact that VM allocations do not simply
change if not explicitely commanded by GP or GR. Since the GP does not preempt running leases,
the policy will be invalidated if the GR does not step in.

Based on these contrasting examples, a basic distinction is made: A policy Pres : (threshold, timelimit)
is called a static policy if the truth value of a model-check for this policy can only be modified by

42Policy invalidation only occurs if a VM contributes to the CPU usage of all 11 measurements.
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changing the current allocation pattern. Any other policy is called a dynamic policy. In this thesis
static policies are those that use resources AllocVM and UsedCore. For these policies the global trig-
ger fires once a single failed model-check occurs.
For dynamic policies the global trigger is defined slightly different. Since e.g. the usage of the resource
CPU can be highly volatile and the RUA is able to influence the resource usage, a single failed model-
check is no sufficient indicator for an about-to-happen policy invalidity that has to be taken care of by
the GR. A global trigger for dynamic policies as used in this thesis therefore fires when s subsequent
model-checks have failed. The variable s depends on the timelimit and lies within (1, timelimit− 1).43

The variable s is called "triggerSensitivity". Appropriate values for the triggerSensitivity of a policy
were retrieved empirically, which is discussed in Section 6.4.3. For instance, the global trigger of a
dynamic policy PCPU : (80, 10) has a triggerSensitivity=4. The empirical retrieval of the triggerSen-
sitivity was subject to a compromise: Low values (for the example: triggerSensitivity < 4) lead to
an increased number of potentially unnecessary manipulations. High values (for the example: 4 <
triggerSensitivity < 9) limit the solution space of applicable manipulations because fewer time is left
until the policy will potentially be invalidated.

A mathematical analysis for triggerSensititivity values, an automated adaption of triggerSensititiv-
ity based on historical feasibility or the even the consideration of differing trigger semantics using
forecasting techniques like ARIMA44 is a target for future work.

Policy Violation In the following several phrases are introduced that will help to describe how a
GR reacts to a fired global trigger. If a global trigger has fired for a policy Pres at time tk+i, then the
policy is called "violated". Please take note of the distinction between a policy violation, which indi-
cates that the GR has to act because a global trigger has fired and a policy invalidation, which means
that the framework failed to comply with the policy semantics, something that must be avoided at all
costs. Once a global trigger fires, i.e. a policy is violated, the GR needs to take measures to prevent
policy invalidation.
Because a policy can be associated with e.g. multiple single nodes and a model-check in this case is
the evaluation of the threshold statement for each of these nodes, a firing global trigger means that at
least for one such node the threshold was exceeded for a number (triggerSensitivity) of subsequent
model-checks. This is denoted by saying "the policy is violated for <node>". For instance, the state-
ment "the policy PCPU : (80, 10) is violated for node1 and node4" means that on these two nodes
the CPU usage was higher than 80% for at least 4 seconds (4 is the triggerSensitivity of this example
policy). By definition a policy can only be violated if a VM uses the resource the policy was defined
on. In this case any such resource-using VM is said to violate the policy: "<VM> violates policy
<P>". A lease which a policy-violating VM is assigned to is said to be contributing to the policy
violation: "<lease> contributes to violation of policy <P>". For any violated policy there may be
multiple violating VMs and thereby also multiple leases contributing to this violation.

43To be more precise, the value for s depends on multiple factors: a) The timelimit of the policy, b) the probability
distribution for obtaining further timelimit − s + 1 consecutive failed model-checks after having already encountered
s failed model-checks if the GR does not step in and c) the estimated duration of potential changes of the allocation
pattern that could avoid a policy invalidation . The mentioned probability distribution in turn depends on the resource
type, i.e. how volatile is the usage of that resource, and on the fact whether the RUA has an influence on the usage of
that resource.

44The AR(I)MA model family is commonly used in engineering, finance and economics to discover trends in time series
data.
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It is the goal of the GR to prevent policy invalidation once a policy is violated. What exactly does
"preventing a policy invalidation" mean?
According to the policy semantics defined in Section 4.3.5, a specific number (timelimit) of consecu-
tive model-checks must not fail. Since upon firing of the global trigger, already a number (triggerSen-
sitivity) of model-checks have failed, only (timelimit-triggerSensitivity) further consecutive model-
checks are allowed to fail. After that, a single subsequent failed model-check renders the policy
invalid. Hence, the invalidation of a violated policy (whose global trigger fired at tk+1) is successfully
prevented if:
∃i : 1 < i ≤ timelimit-triggerSensitivity ∧ eval(S ,CMtk+1+i) = True
So, at least one model-check needs to be true before the timelimit runs out. If the invalidation of a vi-
olated policy is successfully prevented, this is called "the policy violation is resolved". Alternatively,
also the phrase "the violated policy is revalidated" is used.45

Summing it up: The global trigger of a policy is defined by a number of consecutively failed model-
checks. This number is called triggerSensitivity. The evaluation of global triggers is done during the
recognition phase of the GR’s reconfiguration cycle. The firing of a global trigger indicates that the
GR needs to change the allocation pattern. Once a single global trigger fires for a policy, this policy
is called violated and the GR enters the decision phase. In this phase, the GR aims to find a set of
lease and VM manipulations that will revalidate the violated policy. In the following subsection the
algorithmic approach used by the GR in the decision phase is described.

4.4.3.2. Search Algorithm

Upon firing of a trigger, i.e. once a policy is violated, the GR enters the decision phase, searching for
an appropriate change of the current allocation pattern. Potential manipulations only concern provi-
sioned leases and their assigned running VMs. However, the manipulation is not restricted to violat-
ing VMs and violation-contributing leases, also non-violating VMs and leases that do not contribute
may be manipulated. A change of the allocation pattern initiated by the GR upon policy violation
consists of manipulations ∈ {migrate(V M), suspend(V M), stop(V M), suspend(lease), stop(lease)}.
Any suspend(lease) and stop(lease) manipulation implicitely requires at least one suspend(V M) or
stop(V M). Any violated policy specifies a timing constraint (timelimit). The GR therefore needs to
take into account a deadline for the decision and execution phase of any reconfiguration cycle.
The developed algorithm employed by the GR for the decision-phase is a depth-first search with back-
tracking for traversing the solution space of potential manipulation sets. The choice of target nodes
for VM migrations is based on a first-fit approach. The search algorithm utilizes a highly-informative
help-function that excludes theoretically possible, yet impractical solutions. The algorithm therefore
can be regarded as a guided search heuristic. In the following the algorithmic approach will be ex-
plained: First, the driving factors that determine the goodness of a chosen set of manipulations are
given. Second, the search heuristic is explained using an example. Third, the algorithm is expressed
using a more abstract pseudocode notation.

Goodness of Manipulations Manipulations initiated by the Global Reconfigurator (GR) are those
of type ∈ {migrate(V M), suspend(V M), stop(V M), suspend(lease), stop(lease)}. The change of an
45Not every policy violation requires a change of the allocation pattern in order to resolve the violation. Depending on

external disturbance, e.g. an instant decrease in resource usage of the MainApp, a policy revalidation could also occur
without GR intervention. Nevertheless, upon firing of the global trigger the GR assumes that a policy invalidation is
imminent and will take action.
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allocation pattern therefore consists of at least a single VM manipulation. In most cases manipulating
a single VM is not sufficient to modify resource usage such that policy violations can be resolved.
More commonly, the change of an allocation pattern is a set of multiple manipulations, e.g. consisting
of migrations of multiple VMs or even lease suspending or stopping. In order to choose an appropriate
set of manipulations, the GR has to assess the goodness of potential manipulations. The driving factors
for such an assessment are now discussed separately.

Prevention of Strong Interference It is assumed that enforcing the semantics of appropriately
configured46 policies allows to avoid resource shortage, which is one of the reasons for in-
terference47. So, a set of manipulations has to avoid policy invalidations by resolving policy
violations. Whether a set of manipulations is appropriate for resolving policy violations de-
pends the type of manipulations and what impact they have towards the usage of the critical
resource(s) for which the policy is violated. Any manipulation migrate(VM), suspend(VM) and
stop(VM), once it is finished, will stop the respective VM from using resources of the node
it was allocated to. This might suffice to resolve a policy violation. However, a manipulation
itself takes time and uses resources on its own. So choosing a manipulation means a) taking
into account whether the manipulation itself will succeed in decreasing the usage of the critical
resource within the given timelimit and b) whether other policies might be violated by such a
manipulation.

The answer to these non-trivial issue is delegated to the secondary unit Feasibility Estimator
(FE), which was described above (see Section 4.4.1). This unit estimates the future usage of
specific resources and thereby allows for statements on whether a policy violation will be re-
solved by a set of manipulations or if future policy violations occur. To exemplify the impact of
manipulations on resource usage, it can be stated that stopping is the shortest and least resource-
demanding manipulation, while suspending a VM comes with a considerable overhead to the
NetOut resource and takes considerable time to complete. Migrating a VM carries considerable
overhead to NetOut and CPU resources, but under most circumstances is faster than suspending
a VM. For more information please refer to Section 4.4.1 which contains a description of FE.
No matter how precise such an estimation can be, it is very important to note that this is an
estimation only, therefore valid with a probability of less than 100%. The GR will and must
incorporate the FE’s feedback, yet relying purely on it is not sufficient to avoid policy inval-
idations. This is one of the reasons48 for the local trigger’s existence. If the chosen set of
manipulations fails to resolve policy violations, this local trigger will eventually prevent policy
invalidations by forcefully removing violating VMs. The local trigger functionality is explained
later in this section (see 4.4.4.2).

SecApp Result Output Apart from the GR’s function to realize policy compliance49, other goals
also drive the scheduling of VMs. Manipulated VMs host SecApps and the effects of manipula-
tions towards these have to be taken into account. Regarding result output there are considerable
differences between choosable manipulations. The best choice from the perspective of the vir-
tualized SecApp is the migration of VMs. Such a migration practically leads to a minimal

46Configuring policies is a task of the administrator. An appropriate configuration needs to be found by testing multiple
setups and choosing one that does not cause strong interference to a MainApp

47The other identified reasons, security issues, library conflicts and buggy SecApps, are counteracted by using platform
virtualization. If interference can be avoided then also strong interference is avoided.

48For instance, the local trigger also is required if the node hosting the GR has crashed and no decision could be made, or
if due to a network failure the decision of the GR could not be executed.

49To realize policy compliance means avoiding the invalidation of policies.
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application downtime and inter-VM communication within a lease is not affected in most cases.
Towards a SecApp such a manipulation is nearly transparent.50 Relative to other manipulations
like stopping or suspending a VM, the migration of a VM is considered the best choice with
respect to the SecApp result computation. This statement becomes more obvious when looking
at the alternatives. Stopping VMs means shutting down the virtual computing system, either
by powering it off or cleanly shutting down the OS. In either case this leads to an immedi-
ate stopping of the hosted SecApp. Assuming that no advanced techniques like checkpointing
or saving of partial results is used by the SecApp, the ongoing computation will stop and has
to be repeated once the VM is started again. For long-running jobs, e.g. an ALiEn [10] job
computation taking two hours in average, this causes a severe drop in computing efficiency.51

Suspending a VM is a better choice. This manipulation also stops the SecApp from computing,
but saves its current state and therefore precisely avoids the result loss incurred by stopping
a VM. So a later resuming of the VM will cause the SecApp to continue processing as if no
suspending had occurred. This leads to a better ratio of computed results per time.
When comparing suspending and stopping of a VM to its migration another aspect needs to be
considered. Since a lease that multiple VMs are assigned to represents a distributed application,
the suspending/stopping of only a single VM of such a lease corresponds to the loss/failure
of a physical node within a cluster environment. There are applications (e.g. job schedulers)
which can tolerate the failure of a node at runtime, but for sake of generality this scenario is not
considered in this thesis. This means when a single VM needs to be stopped or suspended, the
whole lease will have to be stopped or suspended.

By looking solely at the effects towards the result computation of virtualized SecApps, there is
a definitive preference of VM migrations over lease suspends and of lease suspends over lease
stops. This aspect is referred to later on by calling it the impact of a manipulation towards a
lease, which is smallest for a migration and biggest for a stop.

Fairness and Prioritization of Leases Apart from these two aspects, effects of manipulations to-
wards policy compliance and SecApp result output, a third factor needs to be considered when
choosing an appropriate set of manipulations. A goal of the thesis is to provide the capability
to run multiple (competing) SecApps. So, the decision which of multiple provisioned leases to
manipulate in case of a policy violation needs to be made. In this thesis all the aspects rele-
vant for assessing a lease’s claim to use free resources are boiled down to a single number, the
lease’s priority. Fairness between leases is therefore realized by taking into account the priority
of leases, e.g. by preferring to stop a low-prioritized lease over stopping a higher-prioritized
one.

So, the GR makes a choice for a set of manipulations based on these three aspects: the manipulation
set’s capability to maintain policy compliance, to balance resource usage between multiple leases and
its impact towards the result output of SecApps.

Search Heuristic Introduction Rather than taking the common approach of weighting these fac-
tors using a utility function and searching for (sub)optimal solutions within the solution space, a

50Researchers [119, 27, 75] have evaluated this aspect for different environments and have shown that VM migrations
allow to satisfy runtime constraints of virtualized applications under most circumstances. However, Voorsluys et al.
[119] report that they observed a considerable downtime of up to 3 seconds for their virtualized applications in a specific
cluster environment.

51Here the ratio of computed results per time is meant.
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search heuristic purely based the priority of leases is employed. The algorithm strives to keep higher-
prioritized leases running, e.g. by migrating their VMs at expense of preempting lower-prioritized
leases. The decision between suspending and stopping a lease always tends to suspending a lease if
the feasibility estimation allows for such a manipulation. According to these basic principles, a search
tree is constructed. The first appropriate set of manipulations that, according to FE, will resolve policy
violations is chosen. The main reason for utilizing such a heuristical approach is the timing constraint
of violated policies (timelimit), which limits the time usable for finding a good solution. A complex-
ity discussion for the portrayed approach is given in Section 4.4.6.1. While portraying the search
algorithm, phrases like "the lease is suspended" are used for readibility. Nevertheless, in the decision
phase these manipulations are only executed in memory. The manipulations are not applied to the
cluster until the decision phase ends and the execution phase is entered.

Figure 4.4.: Example search tree (left) and help data structures (right) for the search algorithm.

The algorithm is a depth-first search with backtracking. It operates on a search tree and traverses this
tree in a depth-first manner. Backtracking may occur, which means that a current branch is abandoned
and a jump is made to a node closer to the root of the tree. Beginning at this backtrack node, alterna-
tive branches are explored. A new backtrack node is set by commiting a branch. The tree consists of
nodes labeled (lease, manipulation), i.e. (lease, Susp), (lease, Stop) and (lease, Mig). While (lease,
Susp), (lease, Stop) represent the manipulation (suspending, stopping) of all the VMs of the particular
lease, (lease, Mig) represents the migration of all violating VMs of the lease. An example of the
search tree is given on the left side of Figure 4.4. In this example, the migration of violating VMs of
lease L5 was tried and failed, e.g. because no targets in the cluster were available. The rejection of this
manipulation is reflected by the crossed white node (L5, Mig). Instead, the lease L1 is suspended and
afterwards the migration of violating VMs of lease L5 is carried out. Both manipulations have been
accepted (committed) by the algorithm, which is indicated in the figure by the green, non-crossed
nodes (L1, Susp) and (L5, Mig).52 The generation of nodes in the search tree depends on highly-
informative help data structures (ordered lists). An example for these lists is shown on the right side
of Figure 4.4: Here the lists HIGH, LOW, HIGHACTION and LOWACTION are depicted. These lists
52The set of violating VMs of L5 which need to be migrated by the green node (L5, Mig) depends on the position of the

node (L5, Mig) in the search tree. In the very example, the green node (L5, Mig) represents the migration of VMs of L5
that still violate a policy after (L1, Susp) has been applied. This is not necessarily the same set of VMs that would have
been migrated if the white node (L5, Mig) had been accepted by the algorithm.
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contain leases and applicable manipulations. In this figure also pointers H, L, HA, and LA are shown.
These reference the currently active entry in the respective list. These currently active entries are used
to generate new nodes in the search tree. The lists constitute of the following (see Section 4.4.3.2 for
more details):

HIGH contains all leases contributing to policy violation(s) of the current reconfiguration cycle.
HIGHACTION contains the manipulations applicable for a lease in HIGH, i.e. Mig, S usp and S top.
LOW contains lease tuples consisting of provisioned leases.
LOWACTION contains tuples of manipulations that can be applied to lease tuples in LOW.

Using entries in these lists, nodes in the search tree are generated. Generated nodes are checked for
appropriateness by a function called checkBranch(branch). This function takes as input the currently
active branch of the search tree and returns a value ∈ {RES OURCE,T IME,OK}. The output of the
function determines which tree nodes are generated next. The meaning of the return values roughly
corresponds to (see Section 4.4.3.2 for a more precise definition):

RES OURCE: There are not enough suitable targets for migrating VMs.
T IME: The set of manipulations represented by the branch is likely to invalidate a currently violated
policy (e.g. a suspend will not decrease the resource usage below threshold on time).
OK: Neither of the above applies.

Having introduced the basic algorithmic entities: The search tree, the lists and a function assessing
a current branch (checkBranch(branch)), the algorithm is now introduced by executing an example
search first. Afterwards, the algorithm is described in a more abstract fashion by using peudocode, by
explaining how the list are generated and how the checking of an active tree branch is done.

Example Search An example search is now carried out: The used setup is shown in Figure 4.5.
It consists of nine cluster nodes (Node1, Node2 ... Node9) that are equipped with five provisioned
leases. The leases (L1, L2, L3, L4, L5) and their assigned VMs (V M1, V M2, ..., V M22) are identifi-
able by their distinct colors. V M1, V M2, V M3 are assigned to lease L1, V M4, ... ,V M7 are assigned
to lease L2, V M8, ... ,V M12 are assigned to lease L3, V M13 ... V M17 are assigned to lease L4 and
V M18 ... V M22 are assigned to lease L5. The numbering of the leases also represents their priority,
i.e. L5 has the highest priority and L1 the lowest one. For the sake of simplicity, each physical node
is said to have the same physical resources (CPU, RAM, ...), also the 22 VMs are identical regarding
their requirements for CPU cores, RAM and so forth. The cluster is in the state shown in Figure 4.5,
when the administrator decides to change the policy configuration. After this change, each physical
node is equipped with a policy PAllocV M, defining the maximum number of VMs that are allowed to
run on a single node. The policy threshold setting for a specific node is exemplified by white boxes
on the right side of each node.53 The number of non-crossed white boxes equals the number of VMs
allowed to run on a node, e.g. PAllocV M : (0, 10) for Node6 and PAllocV M : (3, 10) for Node4. Accord-
ing to this explanation, the policy is violated for Node1, Node3 and Node6. Node8 has a free slot
for an additional VM and the rest of the nodes are optimally filled with running VMs. With a single
model-check the policy violation for Node1, Node3, and Node6 is recognized and the global triggers
fire. Upon triggering, the decision phase starts by calculating the data structures LOW and HIGH.

53The timelimit of each policy PAllocV M is set to 10 seconds.
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Figure 4.5.: Initial cluster state in example search. Node1, Node3 and Node6 have violated policies.

Figure 4.6.: Search tree (left) and help data structures (right) after lease L1 was suspended and VMs
of lease L5 were migrated.

HIGH is an ordered list of leases contributing to a violation: HIGH = (L5, L4, L3, L1). LOW consists
of preemptable lease tuples: LOW =

(
L1, L2, (L1, L2), L3, (L1, L3), (L1, L2), ...)

)
.54 The algorithm

tries to keep lease in HIGH running at the expense of leases in LOW and proceeds as shown on the
left in Figure 4.6. First a migration of violating VMs of L5 is tried in order to keep L5 running. There
are four violating VMs for lease L5: V M18, V M19, V M20, V M21. However, only three VMs of this
lease need to be migrated to make L5 not contribute to a violation anymore: The migration of either
V M18 or V M19 on Node1 suffices, it is not needed to migrate both of them. The migration of three
VMs of lease L5 does not work out because not enough migration target slots are available in the clus-
ter. This is indicated by checkBranch(branch) = RES OURCE. Therefore, this tree branch is skipped
and instead the lowest-prioritized lease L1 from list LOW is suspended and violating VMs of L5 are

54The list LOW is an ordered power set of all provisioned leases. It has 25 entries and therefore is not fully detailed. Please
see Section 4.4.3.2 for more information.
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Figure 4.7.: Cluster state with suspend of lease L1 and migration of VMs belonging to lease L5.

Figure 4.8.: Search tree (left) and help data structures (right) while evaluating the stop of lease L2.

migrated. The corresponding LOW and HIGH lists with their currently active entries are shown on the
right in Figure 4.6. The effects of the suspending and migrating can be seen in Figure 4.7. Here the sus-
pending is indicated by shortended VM bars and the migrations are indicated by arrows: All VMs of
L1 are suspended (V M2 on Node1, V M3 on Node7 and V M1 on Node9). The migrated VMs of lease
L5 are: V M19 on Node1 (to Node7), V M21 on Node3 (to Node8) and V M20 on Node6 (to Node9).
The choice, which of the violating VMs of lease L5 on Node1 to migrate, is made using a first-fit
decreasing approach, in this example this leads to the random choice of V M19.55 Once these manip-
ulations have been committed (checkBranch(branch) = OK), the algorithm proceeds with the next

55The violating VMs, here V M18 and V M19 are chosen in order of decreasing number of virtual CPU cores assigned to a
VM. If these are equal, a random choice is made. In this example, the VM is chosen randomly because every VM has
the same properties.

71



4. Conceptual Work

lease in HIGH: L4. The resulting search tree is given on the left side of Figure 4.8. A following mi-
gration of L4 does not succeed because not enough resources for the two to-be-migrated VMs (V M13
on Node3, V M15 on Node6) are available (checkBranch(branch) = RES OURCE). Therefore, L2
in LOW is tried to be suspended first before migrating violating VMs of L4. For this attempt, the
checkBranch(branch) function returns T IME. The interpetation is the following: The suspending of
all VMs of L2 (V M4 on Node2, V M5 on Node3, V M7 on Node7, V M6 on Node9) and a subsequent
migration of violating VMs of lease L4 would be feasible from a resource perspective; enough migra-
tion target slots are freed by suspending L2.56 However, at least one of the involved manipulations

Figure 4.9.: Cluster state with stop of lease L2 and migration of V M15 belonging to lease L4.

will not finish within timelimit of 10 seconds. This could, e.g., be the suspending of V M5 on Node3.
There are, according to the committed branch, already planned suspends (for lease L1). Further sus-
pends might take too long, thus exceeding the timelimit. Therefore, the currently active sub-branch
(L2, Susp), L4, Mig)) is rejected. Instead, the stopping of lease L2 is tested. The corresponding LOW
and HIGH lists are shown on the right in Figure 4.8, the search tree is given on the left of this figure.
The algorithm proceeds as shown in Figure 4.10: VMs of L2 (V M4 on Node2, V M5 on Node3, V M7
on Node7, V M6 on Node9) are stopped and violating VMs of lease L4 are migrated (V M15 on Node6
(to Node9). A check yields checkBranch(branch) = OK, so the branch is committed. This step is
shown in Figure 4.9, where the stopping of VMs of L2 and a following migration of V M15 from
Node6 to Node9 are indicated. At this point, only a single VM is left that violates a policy: V M12
on Node6. With H pointing to L3 in HIGH, the migration of this VM is tried. The corresponding
tree is shown in on the left in Figure 4.10. At this point, the migration of V M12 would be possible
resource-wise (e.g. to Node2, which has an open resource slot). This does however fail because
checkBranch(branch) = T IME. This is reasonable, because on Node6 there are already two planned
migrations (of VMs assigned to leases L4 and L5). Any further migration might take too long. Con-
sequently, the next action on a lease in LOW is tried. Interestingly the lease in LOW is also L3. This
lease is therefore tried to be suspended, which again fails because of checkBranch(branch) = T IME
which is due to several, already planned suspends. Therefore, L3 is chosen to be stopped. The cor-
responding lists are given in Figure 4.10 and the resulting cluster is shown in Figure 4.11. Now H
56Please take note that a suspending of V M5 on Node3 would have made the migration of V M13 of L4 obsolete. Only

V M15 of L4 on Node6 still would require to be migrated.
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Figure 4.10.: Search tree (left) and help data structures (right) at the end of GR’s decision phase. The
branch in green is the found set of manipulations.

Figure 4.11.: Cluster state with the final stop of lease L3.

points to L1 as the last lease in HIGH which initially contributed to a policy violation. Since L1 had
been suspended at an earlier stage of processing, the pointer H is incremented and therefore points to
NULL now. This finishes the search algorithm and returns the committed branch, which is indicated
in Figure 4.10 by the green-ovaled branch:

(
(L1, S usp), (L5,Mig), (L2, S top), (L4,Mig), (L3, S top)

)
.

Now a set of manipulations has been found, which most probably will revalidate the violated poli-
cies. The next step is the execution of the found manipulation pattern. The GR therefore enters the
execution phase. This phase is explained later in Section 4.4.5.1.
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Search Heuristic Abstraction Now that the algorithm has been introduced by example, it is de-
scribed in a more abstract way using a pseudocode notation: As was shown in the example search,
the algorithm operates on a search tree. Tree nodes are generated according to the currently selected
entries in the ordered lists HIGH, HIGHACTION, LOW and LOWACTION. Branches of the tree are
checked using a function checkBranch(branch). A sketch of the search is given in Algorithm 4.4.1:
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Algorithm 4.4.1: " (S earch f or appropriate lease and V M manipulations)

H,HA, L, LA← 0 (1)
BACK ← S T ART
CURRENT ← generateNode(H,HA) (2)
while H " NULL (3)

do




branchS tate← checkBranch(S T ART,CURRENT ) (4)
if branchS tate = ok (5)

then




while H does not contribute to any violation

do




BACK ← CURRENT (6)
HA← 0
H ← H + 1
while L has already been manipulated

do
{

L← L + 1
LA← 0

if H " NULL
then CURRENT ← generateNode(H,HA) (7)

else if branchS tate = resource (8)

then




CURRENT ← BACK (9)
LA← 0
CURRENT ← generateNode(L, LA) (10)
L← L + 1

else if branchS tate = time (11)

then




CURRENT ← BACK (12)
LA← LA + 1
if LA = NULL

then
{

L← L + 1
LA← 0

CURRENT ← generateNode(L, LA) (13)
return (S T ART,CURRENT ) (14)

The algorithm starts at a node (START) representing the root of the tree and iteratively generates child
nodes in the search tree. For this generation it uses a function generateNode(lease, manipulation) (see
breakpoints 2,7,10,13), which is parameterized with entries of the mentioned lists: The parameter
lease is taken from either list HIGH or LOW, the parameter manipulation is taken from either list
HIGHACTION or LOWACTION. For example, at breakpoint 2 a node is generated with the active
entry in HIGH (a lease pointed at by H) and the active entry in HIGHACTION (a manipulation pointed
at by HA).
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The syntactical construct H ← H + 1 is used to denote that the next entry in the respective list (here:
HIGH) is about to be processed. Accordingly, H ← 0 means that the first element in HIGH is about
to be processed. H = NULL occurs if H pointed to the last element in HIGH and a subsequent
H ← H + 1 was issued. At start (see breakpoint 1), the pointers point at the first entry in each list.
BACK and CURRENT are pointers to nodes in the search tree. While CURRENT references the latest
generated node, BACK is a pointer to a node in the tree which can be jumped to using backtracking.
Using such a jump abandons the branch which was generated and explored below the node referenced
by BACK and resets CURRENT to BACK. This basically means that the current branch explored by
the depth-first search provides no appropriate set of manipulations, and therefore some alternative
branches need to be explored.
A short remark needs to be made at this point: While the code snipplet shows the main algorithmic
approach taken by the GR, it still is an abstraction of the actually employed algorithm. For brevity
and ease of understanding the data structures representing the lists and the search tree themselves are
omitted. The layout of the tree derives from the usage of pointers START, BACK and CURRENT and
the list entries are sufficiently referenced using pointers H, HA, L and LA. The currently active tree
branch is therefore represented by (START, CURRENT) and corresponds to the shortest path in the
search tree between the nodes referenced by START and CURRENT.
The basic procedure of the algorithm is the following: Breakpoint 3 starts a while loop that iterates
over all entries in HIGH. At breakpoint 4 the current tree branch (referenced by (START, CURRENT))
is checked for appropriateness by the checkBranch(branch) function. Depending on the return value
(RES OURCE, T IME, OK), one of the continuations at breakpoints 5,8 or 11 is used.
An interpretation of the algorithm is now given: The algorithm iterates over the high-prioritized leases
(entries in HIGH) and tries to migrate their violating VMs. To determine the targets of such migra-
tions, a first-fit approach is used, i.e. the first appropriate target node in the cluster is chosen. Appropri-
ateness is determined using the aforementioned function checkBranch(branch), which in turn makes
use of the Feasibility Estimator (FE). The return value provided by this function is used to decide
whether the migrations are appropriate or if free slots for VMs have to be provided first. In the latter
case (breakpoint 8, 11), the low-prioritized lease (tuples) in LOW are iterated over to find appropriate
S usp or S top manipulations which in turn could provide these slots, or even render the successive
migration of VMs assigned to the high-priority lease (in HIGH) obsolete. The difference between
breakpoints 8, 11 (i.e. the difference between checkBranch(branch) return values RES OURCE and
T IME) is that for RES OURCE no further (susp|stop) variations for the current tuple in LOW is tried.
The outcome of these manipulations does not differ with respect to the slots providable to a lease in
HIGH. Since RES OURCE indicates that more suitable slots are needed, these variations are not
tested.
Backtracking (see breakpoints 9, 12) occurs if a sub-branch (BACK, CURRENT) was found to be not
appropriate (checkBranch(branch) returns RES OURCE or T IME). Then pointers L and/or LA are
incremented and alternative nodes are generated to suspend or stop low-priority leases. For a specific
lease in HIGH this continues until either a branch is found appropriate (checkBranch(branch) = OK,
breakpoint 5) or that lease itself is reached in the LOW list.57 In the latter case, the high-priority lease
is tried to be suspended or even stopped. This eventually leads to checkBranch(branch) = OK (break-
point 5) as well. A branch is committed (see breakpoint 6), once a set of manipulations was found that
makes this lease not contribute to a violation anymore. At best, previously committed manipulations
already resolve the policy violations and the lease does not contribute to a violation anymore. At
worst, the lease needs to be stopped. Then the pointer H is incremented and the next lease in HIGH

57Every lease in HIGH also appears in LOW.
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is active. Once all leases in HIGH are iterated over, the algorithm finishes and returns the committed
search tree represented by (S T ART , CURRENT ).

The set of manipulations generated by this algorithm is mainly driven by two aspects: First, there is the
checkBranch(branch) function deciding on the appropriateness of manipulations. If a manipulation
is found to be not appropriate for resolving policy violations, the function yields a return value that
gives additional information on why this is the case (RES OURCE or T IME). Based on this additional
feedback the search tree is constructed. Second, there are the mentioned lists HIGH, HIGHACTION,
LOW and LOWACTION. These data structures, i.e. their entries and their ordering are crucial for the
algorithm’s behavior. The lists and the checkBranch(branch) function are now explained.

The Lists Four lists are used by the algorithm to create new nodes in the search tree:

HIGH This list contains all leases that contribute to policy violations triggered for the current recon-
figuration cycle. All policy violations are resolved if all leases of this list are manipulated. However,
not every lease in HIGH needs to be manipulated: Manipulations of other leases in LOW or HIGH
can render the manipulation of a lease in HIGH obsolete. The order within this list is defined by:
Prio(L1) > Prio(L2) → Rank(L1) < Rank(L2), i.e. the leases in HIGH are descendingly ordered by
priority. Leases with the same priority are ordered by the first-come, first serve principle. This list is
generated every time the GR enters the decision phase.

HIGHACTION This list contains the manipulations applicable to leases in HIGH. The list is ordered
by ascending impact of the manipulation towards the SecApp, i.e. (Mig, S usp, S top). This data struc-
ture is static and does not change.

LOW All leases in provisioned state are used to establish this datastructure. The algorithm strives
to keep leases in HIGH running. It does so even at the expense of suspending or stopping leases
in LOW if this resolves the policy violations which a lease in HIGH was contributing to or if this
allows for migrating the violating VMs of a lease in HIGH. This even may involve suspending
multiple low-prioritized leases. As an example, leases L6, L5, L4 with Prio(L6) > Prio(L5) >
Prio(L4) could be suspended in order to keep lease L9 running. Suspending lease L4 neither re-
solves all policy violations which lease L9 was contributing to nor does it provide enough free
slots in order to migrate the violating VMs of lease L9. The same applies to suspending lease L5.
At this point two options exist: Suspending lease L6 or suspending both L4 and L5. According
to the algorithm’s basic principle (keep high-priority leases running), suspending of L4 and L5 is
tried next. More formally this approach is described such: The list LOW is created as the power
set of all provisioned leases. Based on example leases L6, L5, L4, the resulting datastructure is
LOW =

(
L4, L5, L6, (L4, L5), (L4, L6), (L5, L6), (L4, L5, L6)

)
. The entries in LOW represent sets

of leases that may be manipulated. This list is now quick-sort ordered using the order-establishing
comparison procedure given in Algorithm 4.4.2. This algorithm recursively determines which of
two lease tuples is lower-prioritized, i.e. is ranked lower in the LOW list. The resulting list is
LOW =

(
L4, L5, (L4, L5), L6, (L4, L6), (L5, L6), (L4, L5, L6)

)
, which precisely follows the principle

of keeping higher-prioritized leases alive at expense of lower-prioritized ones.
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Algorithm 4.4.2: " (Establishes an order relation (>) f or two lease tuples a, b)

comment: |a| = 0 ⇐⇒ a has no elements

comment: max(a) is the lease in a with the highest priority

comment: a − max(a) ≡ removes the lease in a with the highest priority

procedure Compare(a, b)
if |a| = 0

then return (FALS E)
if |b| = 0

then return (TRUE)
if max(a) " max(b)

then




NEWa← (a − max(a))
NEWb← (b − max(b))
return (Compare(NEWa,NEWb))

else return (TRUE)

Other ordering principles are possible. However, it is assumed that priority represents all the rele-
vant aspects of a lease (e.g. number of VMs, urgency, owner credentials etc.) and that no aggregate
metrics over lease tuples are needed. In such a case, the presented technique is sufficient for a proof-
of-concept approach. This list LOW is generated every time the GR enters the decision phase. For a
large number of provisioned leases, the complexity of establishing and sorting the list is not accept-
able.58 Therefore, LOW is not calculated from scratch every time the GR enters the decision phase.
When the VM-Scheduling Framework is started, a preliminary LOW list is created for the (reconfig-
urable) number of 10 dummy leases. When the GR enters the decision phase, the actually provisioned
leases are mapped to these dummy leases, making the computation of LOW for the lowest-prioritized
n leases unnecessary.59

LOWACTION The datastructure LOWACTION contains the manipulations applicable for lease tuples
in LOW. These manipulatons are only S usp and S top. Migrating VMs of a lease in LOW is considered
not relevant.60 Since LOW contains tuples of leases, LOWACTION contains tuples of manipulations.
So for, e.g., the tuple (L4, L5) the following manipulations are possible:

(
S usp(L4), S usp(L5)

)
,
(
S top(L4), S usp(L5)

)
,
(
S usp(L4), S top(L5)

)
,
(
S top(L4), S top(L5)

)

LOWACTION is created as follows: For a specific entry (tuple) in LOW containing n leases, the corre-
sponding LOWACTION consists of tuples ( S usp | S top )n, so there are 2n entries in LOWACTION. To
decide which manipulations are tried first, an order relation upon LOWACTION is defined. Suspending
a lease is considered to be preferable over stopping it and if stopping is needed, then lower-prioritized
leases are stopped rather than higher-prioritized ones. The order is therefore defined as:

58The power set of a set of cardinality n has cardinality 2n.
59When the number of leases known to the framework extends n, an extension to the dummy list is easily computed in

background upon submission of an additional lease.
60There may be cases where the migration of a VM assigned to a lower-prioritized lease is benefitial for freeing resource

slots for VMs of higher-prioritized leases. Such an optimization, which merely is a shuffling of VM allocations at
runtime, is assumed to be rarely appropriate for resolving policy violations.

77



4. Conceptual Work

1. The leases of a lease tuple in LOW are ordered by ascending priority, e.g. a lease tuple in LOW
is (L4, L5), not (L5, L4)).

2. Any manipulation tuple entryi in LOWACTION can be coded as a sequence of binary numbers
with S usp ≡ 1 and S top ≡ 0. Thus, (S usp, S top) is coded as ”10”. The order relation imposed
on LOWACTION is:
Rank(entry1) > Rank(entry2)←→ binaryCode(entry1) < binaryCode(entry2)

For any to be processed tuple in LOW, the corresponding LOWACTION list is computed at runtime.

Entries and order of the lists HIGH, HIGHACTION, LOW and LOWACTION affect the set of manip-
ulations produced by the algorithm. The other important factor is the checkBranch(branch) function,
that decides on the appropriateness of a given set of manipulations and also returns additional infor-
mation used for further processing.

The checkBranch(branch) Function This function assesses a given set of manipulations for its
effect on resource usage in cluster. It associates this usage with configured policies and returns a value
that helps the caller to decide on how to proceed in selecting lease and VM manipulations. In order
to find out about the resource usage that comes with a given set of manipulations, the function makes
use of the Feasibility Estimator (FE). Please refer to Section 4.4.1 for more information on the FE.
The search algorithm processes the lists as given in Algorithm 4.4.1. It generates nodes in a search
tree representing lease manipulations. At times (see breakpoint 4), the checkBranch(branch) function
is called. The set of manipulations represented by the branch (START, CURRENT) is handed over as
parameter. The function checkBranch(branch) assumes that these manipulations are about to be ex-
ecuted instantly and in parallel. For assessing their effects on resource usage, the explicit constraints
on resource usage (policies) are taken into account. For every involved node (e.g. a node that a to-
be-suspended VM is allocated to, target and source node of a migration), its associated policies are
determined. This yields a set of policies which is examined further:
For every policy which is violated in the current reconfiguration cycle, the FE is called to find out
whether the set of manipulations could invalidate policies. The FE is given two parameters: a) The
resource on which that policy operates and b) the date of the first model-check after the timelimit of
the policy runs out.61 The set of manipulations is not appropriate if the value returned by FE, i.e. the
resource usage at this future point in time, exceeds the threshold of the violated policy.
For every policy that is not violated, the Feasibility Estimator (FE) is called to find out whether the set
of manipulations could violate this not-yet-violated policy. Therefore, the FE is given two parameters:
a) The resource on which that policy operates and b) the point in time at which the global trigger for
this policy could earliest fire if the manipulations were instantly applied.62 The set of manipulations is
not appropriate if the value returned by FE, i.e. the resource usage at this future point in time, exceeds
the threshold of the policy.

61More precisely: The global trigger of the policy has fired at tk. That is, at tk already triggerS ensitivity failed model-
checks have occured. It needs to be checked whether at least one of the remaining model-checks at [k + 1, k + 1 −
triggerS ensitivity + timelimit] will yield True if the set of manipulations is applied. Otherwise the policy is invalidated,
thus the proposed set of manipulations is inappropriate. In the prototypical implementation only the usage of the re-
source at tk+1−triggerS ensitivity+timelimit (i.e. the first measurement after timelimit elapses) is taken into account: The set of
manipulations is not appropriate if this value exceeds the threshold of the policy.

62This is at latest tnow+triggerS ensitivity, but can also be an earlier point in time if several subsequent model-checks have already
failed, but not yet led to a policy violation.
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Depending on the outcome of these checks, the checkBranch(branch) function returns a value to the
caller, i.e. to the search algorithm. The basic procedure for determining the return value is given in
Algorithm 4.4.3.!
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Algorithm 4.4.3: " (Evaluates a tree branch)

procedure checkBranch(S T ART,CURRENT )

if At least one not yet violated policy will be violated
then return (RES OURCE)

if At least one currently violated policy will be invalidated
then return (T IME)

return (OK)

If the checkBranch(branch) function returns OK, then the current set of manipulations neither violates
new policies nor invalidates already violated policies. In that case, the branch is committed (break-
point 7) because the current high-priority lease does not contribute to a violation anymore. The return
values RES OURCE and T IME indicate that the current set of manipulations is not sufficient to keep
the high-priority lease running while at the same time avoiding new policy violations or invalidations
of already violated policies. One may wonder why a distinction between return values RES OURCE
and T IME is made. Essentially, this distinction is not needed to find appropriate manipulations. How-
ever, by giving the caller (the search algorithm) a hint on why a set of manipulations is not appropriate,
the search algorithm can adapt the generation of new tree nodes according to this hint. This actually is
done at breakpoints 8 and 11 in Algorithm 4.4.1, where the search proceeds depending on the return
value of the checkBranch(branch) function. In both cases backtracking occurs (breakpoints 9, 12),
i.e. the current non-commited branch is abandoned and processing continues at the backtracked node
(BACK). An informal interpretation of the return values of Algorithm 4.4.3 is now given:
The return value of RESOURCE can be interpreted such that no sufficiently dimensioned migration
targets for all violating VMs of the current lease in HIGH exist. In this case, the algorithm will choose
leases in LOW to be preempted to provide such migration targets. As long as RES OURCE is returned,
there is no need to vary the method of preemption (suspend/stop), since both will lead to the same
outcome, only differing in short-term resource usage and duration. Instead, the LOW list is traversed
to find low-priority leases that either provide migration targets or, upon preemption, will resolve the
policy violation without having to migrate VMs of the high-priority lease. In contrast, the return value
of TIME means that the current set of manipulations will likely lead to policy invalidation, i.e. the
selected manipulations will not succeed in decreasing the resource usage on time. In this case, before
trying to preempt other leases in LOW, it is tried to choose shorter-lasting manipulations, e.g. to stop
a lease instead of suspending it. So, the distinction between RES OURCE and T IME is an heuristical
optimization that keeps the algorithm from traversing a sub-set of the solution space that is unlikely
to provide appropriate results.
A remark concerning the computational effort for computing this function needs to be made at this
point. The description of its functionality may suggest a high time complexity. However, many re-
source usage estimations do not require the full involvement of the FE. For instance, in order to find
out whether the migration of a VM to a target node will violate a policy on the resource AllocV M, no
estimation on the overhead and duration of such a manipulation needs to be made. In most cases, a
simple addition on the number of available CPU cores is sufficient to know whether a node is a target
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for a migration. Also, in any non-trivial case there is more than one configured policy. Since some
policy types are more easy to evaluate (e.g. those for AllocV M) or are more likely to exhibit volatile
model-check results (CPU), it is reasonable to prioritize the checking of some policies over oth-
ers such that a return value is obtainable without having to check every resource for which a policy is
defined. Furthermore, the checking task is parallelized on a per-resource level. These implementation-
level optimizations are not detailed in this thesis, but eventually lead to a worst-case time complexity
for this function of O(|Policies|), i.e. the time-complexity scales linearly with the number of policies.
This function checkBranch(branch) therefore is not crucial for determining the overall complexity for
the proposed search algorithm. A discussion of this complexity is given later in Section 4.4.6.1.

As a summary for the checkBranch(branch) function it can be stated: This function is used by the
search algorithm to assess the effect of a set of manipulations on the compliance with the policy
semantics. Sets of manipulations that neither violate new policies nor invalidate already violated
policies are considered appropriate. The assessment bases on future resource usage estimations made
by the FE. A heuristical distinction between return values RES OURCE and T IME is used to shrink
the solution space to be traversed.

Summary GR In this section the functional unit Global Reconfigurator (GR) was introduced. The
GR is responsible for making sure that no policy invalidation occurs. It is supported in this goal by the
Global Provisioner (GP), which tries to provision only queued leases that are unlikely to cause policy
invalidations and by the Resource Usage Adaptor (RUA) which continuously aims to adapt resource
usage caused by VMs on nodes. Two questions were posed at the beginning of this subsection:

1. How and when does the GR recognize a potential policy invalidation which is it has to take care
of?

2. How does the GR prevent a policy invalidation? If multiple conflicting solutions exist, what is
the criterion for their goodness and how a choice is made?

These questions were answered: The GR operates in cycles, the so-called reconfiguration cycles.
A reconfiguration cycle comprises three parts: The recognition phase, the decision phase and the
execution phase. The first question is subject to the recognition phase. For every configured policy
there is a global trigger. This trigger is a criterion on model-checks. Once a trigger fires, i.e. the
criterion is evaluated to True, a potential policy invalidation is indicated. This means, that a policy is
likely to be invalidated if the GR does not take measures. The global trigger was defined as a number
of subsequently failed model-checks. This number is called triggerSensitivity. The triggerSensitivity
of a global trigger for a specific policy depends on the type of resource which the policy is defined
on. Reasonable values for the triggerSensitivity of policies were retrieved empirically. Once a global
trigger fires for a policy, the policy is called violated.
Upon policy violation, the GR enters the decision phase. In the decision phase the GR tries to find VM
and lease manipulations that are likely to resolve a policy violation, i.e. to prevent the policy from
being invalidated. Three aspects steer the choice of VM and lease manipulations: a) The assumed
capability of a set of manipulations to decrease the resource consumption such that policy invalidation
is prevented, b) the fairness between leases, i.e. every lease receives a share of computing resources
according to its priority and c) the effect of a set of manipulations on the overall result output of
SecApps represented by leases. These three choice criteria culminate in the basic approach that the
search algorithm uses to find and assess manipulations: A search heuristic purely based the priority of
leases is employed. The algorithm strives to keep higher-prioritized leases running, e.g. by migrating
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their VMs, even at expense of preempting lower-prioritized leases. The choice of targets for migrating
a VM is first-fit. First-fit decreasing is used if multiple VMs of a lease have to be migrated from the
same physical cluster node. The decision between suspending and stopping a lease always tends to
suspending a lease if this resolves policy violations and does not cause new policies violations. The
search algorithm is a tree-based, depth-first search heuristic with backtracking. Backtracking, i.e.
abandoning a branch and jumping to a preferred node in the tree, is based on highly-informative data
structures. Their design is important for the search results. Therefore the approach is also called a
guided search. Once a set of manipulations has been found by the search algorithm, the GR enters
the execution phase. During the execution phase, the found manipulations are tried to be applied to
the cluster. However, the GR is not the only player trying to make changes to the allocation pattern.
Also the Resource Usage Adaptor (RUA) and the Global Provisioner (GP) interact with the cluster.
Furthermore, there can be multiple concurrent reconfiguration cycles of the GR. The questions of
how to realize transactionality and concurrency between these players and how to enforce policy
semantics in the execution phase, are open issues still to be discussed. Before turning to these points,
the decentralized part of the VM-Scheduler is introduced, the Local Controller.

4.4.4. Local Controller

The Local Controller is a component (agent) that runs on every node that is taken care of by the
VM-Scheduling Framework. It hosts two functional units, the Resource Usage Adaptor (RUA) and
the Local Trigger Unit. The purpose of the RUA is to adapt the resource usage of locally running
VMs according to the policies associated with that node. By using a local adaption of resource usage,
the probability that the Global Reconfigurator (GR) needs to intervene in order to enforce policy
compliance can be reduced. The Local Trigger Unit realizes the local trigger functionality for all
policies associated with the node. It therefore is an actor-of-last-resort that in emergency cases which
makes sure that no policy invalidation occurs if both the RUA and the GR fail to do so.

4.4.4.1. Resource Usage Adaptor

The Resource Usage Adaptor (RUA) operates on policies defined for resources of the local node. It
adapts the share of a resource (e.g. CPU) that is used by locally running VMs. It therefore is one
of the functional units responsible for ensuring policy compliance. The Local Trigger Unit also real-
izes the policy semantics, i.e. prevents policy invalidations, but only as an actor-of-last-resort. The
Local Trigger Unit is described in the next paragraph. Another unit responsible for ensuring policy
compliance is the GR. This unit was described in Section 4.4.3. In contrast to the GR, the RUA has
distinctive advantages: First it is located directly on the node. If, for instance, the management server
hosting the Global Scheduler - the GR is part of the Global Scheduler - crashes, then no manipula-
tions of VMs or leases can be found and executed by the GR. In this case it is benefitial to have a
locally acting instance that independently tries to adapt the resource usage of VMs according to the
configured policies. Also, it is possible that the network connection is unstable, which might as well
be an obstacle to executing manipulations found by the GR: Decisions are not propagated to the target
nodes or executions may fail. An unstable network connection can also lead to the fact that potential
policy invalidations are recognized very late, i.e. there is only view time left to find and execute ma-
nipulations in order to prevent policies from being invalidated. So, complementing a remote decision
instance, which cannot be relied on absolutely, with an independent, locally acting decision instance
is reasonable.
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A further aspect motivates the existence of the locally acting RUA: The RUA not only acts locally
and independently from the GR, but also it uses different primitives to modify the resource usage of
VMs. The GR manipulates VMs using coarse-grained primitives like migration, suspend and stop:
Such manipulations have an all-or-nothing effect on the resource usage of VMs, either the VM uses
resources on a node or not. GR induced manipulations carry considerable overhead concerning re-
source usage of the manipulation itself and they take considerable time (100 or 101 second scale) to
finish. Due to their duration, the frequency of applying them is limited (a currently migrating VM can
only be suspended once the migration is finished). So, complementing low frequency, coarse-grained
VM manipulations with high frequency, fine-scaled local methods of modifying VM resource usage
is sensible.

The methods used by the RUA are OS provided means to interact with running OS processes and the
kernel from user space.63 As an example, in most cases an OS process can be stopped from using
any resources within tens of a second by using the Linux signal SIGSTOP.64 However, the RUA does
complement but not replace the GR. The primitives of the GR are powerful and some resource usage
problems cannot be solved locally.
First, a local adaption is appropriate only for specific resources. Such an adaption needs to be transpar-
ent towards VMs allocated to different nodes but assigned to the same lease as the to-be-managed VM.
Thereby a local adaption of the usage for the resource AllocV M is not appropriate because changing
the number of locally running VMs, e.g. shutting down a single VM would break the communication
with other VMs of the same lease. Also, for sake of generality, the adaption should be supported
by any common hypervisor or provided by means the the OS. Specialized features, like changing
the number of virtual CPU cores attributed to a single VM (resource UsedCore) at runtime is only
supported by XEN and VMware ESX and therefore not considered in this thesis. Second, local adap-
tion is not sufficient in many cases: Let there be a node with 40% MainApp CPU usage. A policy
PCPU : (70, 10) is associated with that node. A single VM hosting a SecApp runs on this node, using
20% CPU. The VM is assigned to a lease consisting of five VMs. The other four VMs run on other
nodes. If the CPU usage of the MainApp rises to 75% and is bound to stay at or above that level for an
hour, then a policy invalidation will occur: The CPU usage is above 70% and a VM is running on that
node. By locally adapting the CPU usage of the VM, its share of CPU usage can be decreased to ,e.g.,
1%. This, on the one hand, may make this VM look crashed from the perspective of the other VMs of
that lease. This will most likely crash the SecApp as well. On the other hand, the policy is invalidated
and the existence of the VM on this node might interfer with the MainApp if the MainApp’s resource
usage rises even further. This needs to be prevented. In such cases the VM needs to be migrated or
the whole lease needs to be suspended. This can only be done by the GR.
In this thesis the functionality of the RUA is realized for three specific resources, CPU,NetIn and
NetOut. An extension to other resources can be done if transparency towards other VMs is given
(i.e. inter-VM communication for a lease is not affected qualitatively) and hypervisor or OS provided
interfaces for this adaption exist. The RUA in this proof-of-concept approach is a classical integral
controller. A integral controller ("I-Controller") is a feedback control mechanism that sets the input
value of a dynamical system as a sum of the differences between a target value and observed past
output values of the system.65 In this particular case, the dynamical system is the resource, its usage

63User space is a privilege domain in Linux based OS. The term refers to a part of the memory usable by user space OS
processes and contrasts the area used by the kernel. Processes running in user space are restricted in directly accessing
devices, memory regions or manipulating process and I/O scheduling.

64Linux signals are asynchronous and therefore no upper limit can be given.
65Please refer to Franklin et al. [42] for a comprehensive introduction to control theory.
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caused by the VMs is the input value and the total usage of the resource is the measured output value.
So, the RUA adapts the amount of resources usable by VMs on a single host. For each resource that
is controllable (CPU,NetIn and NetOut), there is a separate control loop with resource usage being
the sensor metric (output value) and an OS provided interface being used as actuator (for setting the
input value). For the resource CPU, the actuator is realized by capping the CPU usage for a specific
VM, for the NetIn,NetOut resources the amount of traffic receivable or sendable per time frame by a
specific VM is capped. A control loop for a policy on an arbitrary resource is depicted in Figure 4.12.
This control loop is now described using the terminology of control theory:

Figure 4.12.: Single control loop used by RUA for an arbitrary resource.

Let SI be the sampling interval, e.g. 1s. Then the kth sampling interval is defined as the time interval
[(k − 1)S I, (k)S I). The controlled variable y represents the actual resource usage, thus y(k) being its
actual value for the kth interval. The setpoint or reference value is w(k), which is determined by the
respective policy threshold for the resource: w(k) = threshold − ε. The ε term represents a buffer
(of up to 5% utilization) which is introduced to avoid accidental policy violations caused by a too
ambitious reference value. The manipulated variable, i.e. the controller output is called u(k). The
error at the kth sampling point is e(k) = w(k) − y(k).
A integral controller is employed which calculates the new output as u(k + 1) = u(k) + K ∗ e(k). K
is the integral gain and is dimensioned empirically. From the actual resource usage y(k) the share of
resource usage caused by VMs can be discriminated: y(k) = vm(k) + sys(k).
sys(k) represents the disturbance variable (denoted z(k) in Figure 4.12 in accordance with common
control theory notation) which can be identified as the MainApp and OS overhead. vm(k) represents

the summed actual resource usage of all n running VMs vmi: vm(k) =
n∑

i=1
vmi(k). Therefore

u(k + 1) = u(k) + K(w(k) − vm(k) − sys(k)) holds. The resulting controller-output (i.e. the share of
the resource usable by VMs) still needs to be applied by the actuator to the VMs, i.e. the controller
output needs to be distributed over several running VMs. This is done by calculating ui(k + 1) =
u(k+1)∗vmi(k)/vm(k), which actually means that the controller output is distributed proportionally to
the resource usage of VMs in the current sampling interval. It has to be mentioned that the controller
does not directly set the resource usage share in the next sampling interval for a specific VM, but

83



4. Conceptual Work

rather sets an upper limit for this share. This is referred to by using the phrase "capping the resource
usage".
If the disturbance is high, i.e. the resource usage of the MainApp is close or above threshold this
can result in calculated resource usage shares for single VMs close or below zero. This needs to be
avoided because this can break inter-VM communication. Therefore a minimum resource share of 5%
is given to any running VM:

u′i(k + 1) =
{

ui(k + 1), i f ui(k + 1) ≥ 5
5, else

The actual applied controller output for all VMs is u′(k + 1) =
n∑

n=1
u′i(k + 1).

Such an adaption may cause the integral controller to remain in transient state longer than for a I-
Controller without such an adaption. Also the threshold of the policy might be exceeded more often,
which eventually could cause an increased rate of global or local triggering. This, however, is the
trade-off to be accepted in order to assure proper functionality for every lease by preventing unre-
sponsive VMs, i.e. VMs with an assigned resource share of close to 0%. More implementation-level
information on how the resource usage adaption is realized for specific resources can be found in
Section 5.4.

4.4.4.2. Local Trigger Unit

Beside of its task to adapt the local resource usage of VMs, the Local Controller also hosts the Local
Trigger Unit which in turn realizes the local trigger functionality for all policies associated with the
local node. Both the local adaption of resource usage and the manipulations chosen by the GR are
meant to avoid policy invalidations, yet there is no guarantee they will do on time. The local trigger
has the purpose to make sure the policy semantics are realized in any case. Like the global trigger, it
bases on model-checks, yet with the difference that only local information is evaluated which com-
prises local policies, respective resource usage and locally running VMs. There is no need to know
about the complete cluster model and allocation pattern. The local trigger is defined to be firing after
timelimit − 1 consecutive failed model-checks66 (∆t = 1s) if a violating VM is running on the local
host. Thereby the trigger fires one second before a policy becomes invalidated. The firing of the trig-
ger causes the instant (< 1s) stopping of all violating VMs on this very node such that VM processes
stop to generate resource usage. Ongoing manipulations are aborted as well. This behavior is called
"killing of VMs". There are two potential problems associated with the killing of VMs:
First, enforcing VM processes to stop using resources within one second requires a forceful shutdown
of the VM67 and to abort potentially ongoing VM manipulations, e.g. commanded by GR to resolve
a policy violation. This may cause data loss. Implementation-wise this has to be handled such, that
either this data loss is avoided, or affected VMs can be re-used after such a procedure. In Section 5.4
it is discussed how for the actual implementation of the VM-Scheduling Framework the avoidance of
data loss and the recovery of affected VMs is managed.
Second, the local trigger firing is independent from potentially fired global triggers. This may cause
the overlapping of manipulations caused by the local trigger with an ongoing decision or execution
phase of the GR or the GP. This in turn may lead to inconsistencies in the cluster model maintained
by the Global Scheduler. This aspect is discussed in Section 4.4.5.1.

66The Local Trigger Unit does not perform model-checks in the sense that the cluster model is queried. Only resource
usage on the local node is examined.

67A comparable scenario is pulling the power plug of a physical computer system.
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4.4.5. Functional Unit Coordination

Several functional units aiming at exploiting cluster resources (GP) and realizing policy semantics
(GR, RUA and Local Trigger Unit) have been detailed. Now it will be discussed how these sepa-
rate units are aligned in their functionality. This also includes the execution phases of the Global
Reconfigurator (GR) and the Global Provisioner (GP). Afterwards it is discussed how policy seman-
tics are enforced with the proposed concept.

4.4.5.1. Execution and Concurrency

Once the GR or GP end their decision phase they enter the execution phase. During this phase the
found manipulations are applied to the cluster, i.e. the calculated change of the current allocation
pattern is carried out. The Local Trigger Unit as part of the Local Controller may also cause a manip-
ulation of running VMs. Because multiple independent units of the VM-Scheduling Framework can
change allocation patterns, a strategy for avoiding transactional inconsistencies was developed.
Both functional units GR and GP operate on the same cluster model. That means they both use the
same knowledge base to decide on changes of the current allocation pattern and need to update the
cluster model upon successful execution. The most basic strategy to avoid concurrency and conflicts is
a strictly sequential processsing, i.e. any functional unit trying to change the allocation pattern aquires
a global lock which throughout all phases of a manipulation cycle blocks concurrent access to the clus-
ter model until the end of a manipulation cycle. This is no viable general strategy: Based on empirical
data, the potential duration of execution phases is known to be significant (e.g. resuming a VM can
last more than 10 seconds). A strictly sequential processing will therefore cause functional units to
wait for each other for a considerable amount of time. For the GP it is appropriate to wait several
seconds, because this simply keeps the GP from provisioning leases, i.e. potentially usable resources
remain unused and queuetimes of queued leases are increased. Concerning the GR such a global lock
is no sensible option. A global lock on the whole cluster model (spanning even the recognition phase)
would lead to the fact that potential policy invalidations are not recognized and global triggers would
not fire. In this case, such potential policy invalidations would have to be treated locally, eventually
leading to excessive killing of VMs by the Local Trigger Unit. A global lock which does not span the
recognition, but only the decision and execution phase would lead to similiar behavior. In this case
potential policy invalidations would be recognized and global triggers would fire. However, due to the
lock these policy violation could not be handled (i.e. the decison phase could not be entered). This
means that these policy violations would queue up at the GR, reducing the time available to resolve
these violations up to the point that the Local Trigger Unit decides to kill VMs.

Therefore, the following decisions to enable a partial parallelization have been made:

1. There is at most one provisioning cycle and an unlimited number of reconfiguration cycles
active at a point in time.68

2. There are two type of locks, one for the decision and one for the execution phase. There is no
lock for the recognition phase. The lock for the decision phase is a global, pessimistic lock for
the whole cluster model. This means that at any point in time only a single decision phase of
any unit can be active. The lock for the execution phase is not a global lock, but a pessimistic

68Implementation-wise this means that the GR runs multi-threaded and the GP is represented by a single thread.
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lock on VM-level. This means, that an ongoing manipulation of a VM will put a lock on this
VM, excluding it from subsequent decision and execution phases. This also means, that in a
subsequent manipulation cycle the lease which that VM is assigned to can not be manipulated.

3. The Local Trigger Unit is independent from the globally acting units GR and GP. This means
that the mentioned locks do not apply to local triggering and the subsequent killing of VMs and
abortions of ongoing manipulations. Any successful killing of VMs is immediately propagated
to the Global Scheduler, the allocation pattern (represented in the cluster model) is updated and
this change is taken into acount by following manipulation cycles. The abortion of an ongoing
manipulation is automatically detected by GR or GP as a failed manipulation, i.e. these units
update the allocation pattern accordingly.

4. Not every single policy violation makes the GR enter a decision phase. Policy violations are
collected over a reconfigurable interval (e.g. 2s) and processed together in a single decision
phase. This may limit the time available for the decision and execution phases, but reduces the
number of concurrently active reconfiguration cycles.

5. The GP is subordinated towards the GR. This means that while the GP holds the global lock for
the decision phase, the GR can step in, acquire this lock and abort the ongoing decision phase of
the GP. The VM-level locks for the execution phase that are held by the GP can not be captured
by the GR, however.

Figure 4.13.: Two concurrent reconfiguration cycles. Cycle1 blocks the decision phase of Cycle2,
because Cycle1 holds a global lock. Cycle2 enters the decision phase at tc, but excludes
solutions involving V M1 since Cycle1 still holds a VM-level lock on V M1.

An example for the concurrency of multiple reconfiguration cyles is shown in Figure 4.13. Here the
GR periodically (e.g. 1/s) performs model-checks. This is indicated by the boxes labeled "Recogni-
tion" that belong to the upper and the lower reconfiguration cycles (Cycle1 and Cycle2) shown in this
figure. The dashed line on the left of these boxes symbolizes that there is no specific starting point
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for this checking, but it is performed as long as the framework is running.69 At ta a policy violation
is detected. A decision phase is started and the corresponding reconfiguration cycle (Cycle1) acquires
a global lock on the cluster model. No active executions are going on, i.e. no VM-level lock is held
by other manipulation cycles, therefore the whole model is processed for finding potential manipu-
lations. During the search another policy violation is detected at a point in time tb. This violation is
taken care of by Cycle2. Since the global lock is held by Cycle1 this second cycle Cycle2 has to wait.
Cycle1 finds an appropriate manipulation, e.g. the migration of V M1. At tc it releases the global lock,
acquires a lock on V M1 and starts executing the manipulation. Once the global lock was released by
Cycle1 at tc, Cycle2 grabs the global lock and enters the decision phase. Since for V M1 a VM-level
lock is held by Cycle1, this VM and its lease can not be manipulated, therefore only manipulations
excluding these are considered.70 A manipulation for V M2 is found as a potential solution. At td
Cycle2 releases the global lock, acquires the VM-level lock for V M2 and enters the execution phase.
Both cycles successfully execute their manipulations and release their VM-level locks.

4.4.5.2. Enforcement of Policy Semantics

According to the defined policy semantics there is a strict upper limit for the interval (timelimit) VMs
are allowed to contribute to the exceedance of policy thresholds. The functional units responsible
for maintaining policy compliance (GR, RUA and Local Trigger Unit) have been introduced, yet no
explicit discussion on how to obey the timelimit of policies was made so far.
Four aspects contribute to meeting the deadline set by a policy timelimit, i.e. to preventing policy
invalidation:

1. First there is the RUA. By modifying resource usage of VMs locally, many situations that
otherwisely would cause globally triggered changes of the allocation pattern can be handled
locally. This is shown in an experiment (see Section 6.4.3). By diminishing the amount of policy
violations treated by GR also the amount of decisions by GR that could invalidate policies due
to a misestimation by FE is reduced. Therefore the RUA decreases the occurrence probability
of invalidated policies.

2. Once a global trigger fires for a policy, the GR has to find a suitable change of the allocation
pattern. It therefore uses the Feasibility Estimator to assess potential manipulations. Here only
appropriate manipulations will be chosen that assumingly will not invalidate violated policies,
e.g. by exceeding the timelimit when being executed during the execution phase. Given that a
realistic estimation is made by FE, this approach reduces the probability of policy invalidations.

3. The former aspect dealt with the duration and overhead of manipulations during the execution
phase of a reconfiguration cycle. However, it is also important that the finding of manipulations
during the decision phase does not waste too much time at expense of the time available for
executing manipulations. Two strategies have been adopted for limiting the duration of the
decision phase:

a) The algorithm used by GR for finding a change of the allocation pattern is a guided heuris-
tic search. The guidance is provided by incorporating information returned by the check-
Branch(branch) function and by having multiple lists that steer the search for appropriate

69Because there is no locking involved in the recognition phase, a single recognition phase is shared by all reconfiguration
cycles. A new decision phase (reconfiguration cycle) is spawned upon detection of a policy violation.

70Implementationwise this also excludes manipulations involving the physical node to which V M1 is being migrated by
Cycle1.
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manipulations. This allows for an acceptable computational complexity, which is shown
later in Section 4.4.6.1. This spares time for the execution phase which in turn decreases
the probability that the chosen manipulations will invalidate violated policies.

b) A reduced time spent in the decision phase may decrease the probability of policy inval-
idations. However, any timespan needed to find appropriate manipulations reduces the
amount of time available to the execution phase. Therefore this timespan needs to be
taken into account during the decision phase. This aspect was not explicitely mentioned
when detailing the GR algorithm, yet was considered during development. First, when
checkBranch(branch) is called, the time left until a violated policy is potentially invalidated
(timelimit− (triggerS ensitivity+ time spent in decision phase)) is taken into account when
assessing the appropriateness of a set of manipulations. Second, the ongoing search for
appropriate manipulations may, due to elapsing time, render already committed manipu-
lations in the search tree inappropriate. This problem is solved by applying a meta-check
to the search algorithm. During the decision phase, it is continually checked whether an
already committed branch (a set of appropriate manipulations) can still be executed safely
without invalidating violated policies if time advances further. If this check fails the search
is immediately stopped. All leases which still contribute to a policy violation and are not
part of the committed set of manipulations, are set to be stopped in addition to the already
committed manipulations. Thereby the duration of the decision phase is supervised and lim-
ited such that any chosen change of the allocation pattern can be executed within timelimit.
This decreases the probability of invalidated policies.

4. The previous points dealt with how to reduce the probability of invalidated policies. The Local
Trigger Unit on each node makes sure that this probability will tend to zero. In the case that
chosen manipulations take too long and a policy might get invalidated, the local trigger of a
policy will prevent this from happening via killing of VMs and aborting manipulations. Also,
if no manipulation decision by the GR was made on time (e.g. due to server crash) or failed
to be executed (e.g. due to network failure), the local trigger will avoid the policy invalidation.
Nevertheless, the measures mentioned above to reduce the probability of policy invalidity are
still needed. Even though the local trigger makes sure that no policy invalidations occur, the
primitive it uses has a negative impact towards the result output of the SecApp or even requires
to recover an inconsistent VM afterwards. Therefore the mechanisms mentioned above not
only contribute to the reduction of policy invalidation probability, but also decrease the relative
amount of cases where the Local Trigger Unit needs to step in.

4.4.6. Further Considerations

The basic functional units and their interplay have been presented. Before describing implementa-
tional details in the next chapter, some additional considerations concerning the presented conceptual
approach are made. First the computational complexity of the GR algorithm is analyzed. Then the
scalability of the framework is discussed and finally the possibility of self-sustaining VM manipula-
tion behavior is considered.

4.4.6.1. Computational Complexity

In order to maintain policy compliance it is required to obey the timelimit of specified policies. Unless
satisfied by the RUA, this requirement particularly implies that the duration of the decision and the
execution phases of a reconfiguration cycle is a relevant factor for avoiding the invalidation of violated
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policies. For the decision phase a measure can be given to describe the time properties of that phase:
The (computational) time complexity of an algorithm is a measure to describe its runtime behavior
with respect to the number of computational steps carried out for a given input. It can be used as
an abstracted quantification of the algorithm’s duration. The time complexity of the search heuristic
employed by the GR in the decision phase is now determined.

Let there be a cluster environment with a set of nodes {node} and a current allocation pattern with
provisioned leases {lease} and running VMs {V M}. The variables N = |{node}|, L = |{lease}| and
V = |{V M}| denote the cardinality of these sets. There are no implicit restrictions which VM can run
on which physical node, i.e. any possible allocation pattern is only constrained by the set of specified
policies. Let there be a reconfiguration cycle which entered the decision phase upon the violation
of at least one policy. For ease of mathematical handling it is assumed that any lease has the same
number of assigned VMs, thereby V

L ∈ N holds as well. For making a statement on the worst-case
time complexity of the developed search heuristic it is assumed that any single VM is contributing to
a policy violation.

The basic unit (operation) on which the derivation of the time complexity is based is the check of a
proposed set of manipulations for appropriateness using the checkBranch(branch) function.71 This
set consists of elements ∈ {suspend(lease), stop(lease),migrate(V M)}. Any suspend(lease) repre-
sents the suspending of all assigned VMs, i.e. it merely abbreviates the {suspend(V M) | V M ∈
Σ ∧ assign(Σ, lease)} notation.72 For stop(lease) this statement holds accordingly. For any VM at
most one VM manipulation (migrate, suspend, stop) is allowed for a proposed set of manipulations in
a single reconfiguration cycle. It is debatable whether this basic unit (checking a set of manipulations
for appropriateness) is sufficient for determining the algorithm’s time complexity. It is clear that using
a finer granularity also increases the plausibility of the time complexity calculation. However, this will
necessarily also require to increase the degrees of freedom for the time complexity equation, thereby
requiring to consider more input parameters like the number and type (configuration) of nodes, poli-
cies and VMs as well as any policy’s association with cluster items sets (nodes) and violation state. It
is assumed that the proposed basic unit (checking a set of manipulations for appropriateness) merely
comprises a number of condition checks that can efficiently be implemented and even be parallelized
due to the atomic, independent nature of the single conditions. This is also the reason why the algo-
rithm for doing such a check has not been detailed in this thesis and is not regarded as a computational
challenge. Therefore, the time complexity of the proposed search heuristic is calculated with that basic
unit (appropriateness check). The complexity then depends on input parameters N, V and L.
For having a comparison, first the time complexity of finding appropriate manipulations using a brute-
force search is determined. Afterwards the time complexity of the search heuristic proposed in this
thesis is discussed.

Brute-Force Search Using a brute-force search the complexity is calculated as given below. The
worst-case time complexity is given by:

T (V, L,N) = 1 +
L−1∑

i=0

2i
(
L
i

)
(N − 1)V−Vi/L (4.9)

71This means for a set of manipulations it is tested whether these will suffice to resolve a policy violation and do not trigger
violations of other policies.

72Σ represents a set of VMs which is assigned to a lease.
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The derivation of this Equation 4.9 can be found in Section A.2. T (V, L,N) can be transformed to

T (V, L,N) =1 + (N − 1)V
L−1∑
i=0

2i
(

L
i

)
( 1

(N−1)V/L )i = 1 + (N − 1)V
L−1∑
i=0

(
L
i

)
( 2

(N−1)V/L )i

By applying the binomial theorem this gives

= 1 + (N − 1)V
((

1 + ( 2
(N−1)V/L )

)L − ( 2
(N−1)V/L )L

)

= 1 − 2L + (N − 1)V
(
1 + ( 2

(N−1)V/L )L
)

> 1 − 2L + (N − 1)V
(
1L + ( 2

(N−1)V/L )L + ( 2
(N−1)V/L )L−1

)
for any L ≥ 2

= 1 + (N − 1)V + (N − 1)V2L−1(N − 1)V/L

Therefore T (V, L,N) ∈ O(NV2L). This means the time complexity is exponential for non-constant
inputs L or V. The time complexity is polynomial for a non-constant input N. These complexities hold
both for the worst and the best-case if a brute-force search is used.

Proposed Search Heuristic Using the proposed search heuristic the complexity is calculated as
given below. The worst-case time complexity is given by:

T (V, L,N) = L +
(N − 1)V

L


L +

L−1∑

i=1

L−1∑

j=i

2i
(

j
i

) (4.10)

Again, the derivation can be found in Section A.2. By applying the properties of summed binomial
coefficients follows
T (V, L,N) = L + (N−1)V

L

(
L +

L−1∑
i=1

(
L

i+1

)
2i
)
= L + (N − 1)V

(
L−1∑
i=0

(
L−1

1

)
2i
)

Application of the binomial theorem gives T (V, L,N) = L + 3L−1(N − 1)V .

Therefore T (V, L,N) ∈ O(3LNV). This means time complexity is exponential for a non-constant input
L. For non-constant inputs V or N the complexity is linear. So the proposed algorithm shows an
acceptable time complexity for a non-constant number of VMs and nodes, while for a non-constant
number of leases it still exhibits an exponential complexity in the worst-case. However, the worst-case
time complexity is relevant only to certain extent.
First, the worst-case time complexity corresponds to a scenario that will not occur in real life. In this
scenario any possible proposal for manipulating leases and VMs via migration and suspend is checked
and dismissed because no set of manipulations is appropriate such that it will resolve policy violations
on time. This will cause the algorithm to loop over all possible set combinations proposable by the
algorithm. Finally all lease-contributing leases will be stopped. This scenario will not occur:
If a given timelimit of a violated policy indeed renders any suspend and migration impossible, then
the aforementioned meta-check will stop the search before that timelimit is supposed to be exceeded,
which also results in stopping of the remaining violation-contributing leases. So for a big number
of leases and small timelimits, the search is stopped by the meta-check before looping through all
possible manipulations. For a big number of leases and and greater timelimits, the algorithm does
not need to loop through all lease manipulations because appropriate migrations or suspends will be
found.
Second, there is also the best-case and average-case time complexity that matter. The best-case time
complexity O(VN) is given by

F(V, L,N) = V(N − 1) (4.11)
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which corresponds to a migration of any violating (in the assumed case every running) VM. Here
the complexity is linear for non-constant inputs V or N and constant for the number of leases. The
search heuristic is optimized for the average-case, assuming that the worst-case is handled by the
meta-check. Giving a mathematical derivation for the average-case time complexity is difficult be-
cause assumptions on the range of parameters V, L, N and their frequency distribution for this range
have to made. Also, the timelimit of violated policies (i.e. the range and distribution) then needs to
be considered. This derivation is left for future work. A plausibility argument is given instead: As
shown for the worst-case complexity, the critical factor is the exponential growth of the number of
basic computational units with a rising number of leases O(3L). This growth derives from the fact
that for any high-priority lease that contributes to a policy violation, a k-combination of preemptable
low-priority leases from LOW list is tested in order to keep the high-priority lease alive. This behavior
is intrinsic to the algorithm and does not vanish in the average-case. Still, several aspects suggest that
the average time complexity is acceptable:

a) If lease tuples are tested for preemption in order to keep a high-priority lease running, only in rare
cases the whole set of k-combinations of provisioned leases in the LOW list needs to be iterated over.
For instance, due to the ordering of the LOW list, its 7th (12th) entry suggests to preempt 3 (4) low-
priority leases in favour of a high-priority lease in HIGH. The preemption of multiple low-priority
leases in most cases either resolves the policy violations which the high-priority lease was contribut-
ing to or frees enough resource slots to migrate the violating VMs of a high-priority lease. Assuming
that e.g. the preemption of 4 lower-prioritized leases always suffices for keeping alive a single high-
prioritiy lease, O(3L) becomes O(128L)73 for the worst-case that any variation of (suspend | stop)
needs to be tested on the lease tuples in LOW. This is an acceptable time complexity.

b) With increasing timelimits the time complexity tends to O(2L) (instead of O(3L)) because the vari-
ation of (suspend | stop) for preemptable leases is spared, eliminating the 2i factor in Equation 4.10.

c) For any lease that contributes to a policy violation and whose VMs cannot be migrated because of
a low timelimit the exponent in T (V, L,N) decrements by 1.

For these reasons, the computational complexity of the algorithm employed by the GR is considered
acceptable from a theoretical point of view. Empirical results on how the GR fares with respect to
timing and goodness of found changes of the allocation pattern74 can be found in Chapter 6.

4.4.6.2. Scalability

As mentioned in the previous Section 4.4.6.1, the time needed for the decision phase in the worst-case
exponentially rises with the number of leases and linearly rises with the number of VMs and nodes.
Not only the decision phase, but also the execution phase is subject to such scalability issues: With
an increasing number of VMs, leases, policies and nodes the number of potential policy violations
and thus also the number of executed manipulations rises. Functional units have been introduced
that a) reduce the number of policy violations (RUA) and b) take countermeasures against excessive
execution times for manipulations (Local Trigger Unit). Still, it is reasonable to discuss additional

73More precisely, the complexity degrades to O(128 × < number of initially violation-contributing leases >).
74Though also driven by other parameters, an indicator for excessive durations of a decision phase is the stopping of all

leases for a reconfiguration cycle. An indicator for the goodness of choices made by GR is the number of computed
results by SecApps.
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measures that help to scale the framework with a growing environment.75 In order to do so, potential
bottlenecks for the choice and execution of manipulations have to be considered.

Global Reconfigurator The functional unit GR has to decide on which manipulations to choose in
case of policy violations. The computational complexity of this task (see Section 4.4.6.1) influences
the choice of manipulations. If the number of VMs, leases and nodes increases, then a computational
bottleneck can occur which would lead to a preferred choice of stop manipulations or even to locally
triggered kills of policy-violating VMs. The proposal is made to introduce multiple GR instances in
order to circumvent this issue. This can easily be done by splitting a cluster environment into two
logical subclusters, each served by a separate GR. This also requires the set of leases and VMs to be
split among these.76 Each GR then manipulates its own leases and VMs that run on the set of nodes
in its scope. Since these separate GRs share no common data that needs to be synchronized and every
GR only deals with a subset of all leases, VMs, policies and nodes, such a separation will eliminate a
computational bottleneck for the GR.

Shared Storage Another potential bottleneck is the shared storage facility used for hosting VMs,
more specifically the read/write access to its persistent storage media. An existing bottleneck increases
the execution times of manipulations like suspend, resume, start and stop. In order to counteract a
bottleneck for the shared storage in a growing environment, the proposal is to use separate shared
storage facilities, each associated with a single GR and hosting only the VMs in its scope.

Networking Another factor contributes to increased execution times: The network bandwidth and
topology. This factor is relevant for inter-node communication (e.g. for migrations), but also for the
node to shared storage communication (e.g. for suspends). In this thesis it is proposed to connect a
single shared storage facility to every switch serving worker nodes. Additionally a single GR is re-
sponsible for the worker nodes connected to this switch. Using this topology, the number of physical
nodes communicating with each other (via migrations) and with a shared storage (e.g. for suspends)
is limited and manageable.

By employing these proposals, the framework scales with an increasing number of physical nodes,
VMs, leases and policies.77 An empirical evaluation for this statement is desirable, but out of scope
for this thesis.

4.4.6.3. Self-Sustaining Behavior

Any VM manipulation carries some overhead towards resource usage, e.g. the transfer of a VM’s
memory state over network for a migration. This means that manipulations can trigger new policy
violations. Thereby a phenomenon can occur: The handling of policy violations causes manipulations
which in turn again cause new policy violations. This can lead to a self-sustaining behavior which
is not intended. An informal approach to capturing this notion is: Given that running applications
(MainApp, SecApps) do not change in resource usage, the frequency of manipulations should tend to
75A growing environment means an increase in the number of VMs, leases, nodes and/or policies. If no additional measures

are taken, the percentage of locally triggered kills for all executed manipulations will rise for growing environment.
76Accordingly also two separate Global Scheduler components with separate GPs are needed.
77For a rising number of policies the acquisition of resource utilization statistics needs to be scalable as well. There are

existing approaches like SysMES [66] , Ganglia [44] and Nagios [76] that can be used for a scalable monitoring of
cluster resources.
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zero over time, i.e. VM manipulations have to be justified by changes in the resource usage of running
applications. If this does not hold, then the framework exhibits self-sustaining behavior.
This problem was approached on a very basic, non-mathematical level. The goal was to avoid such
behavior in the prototypical implementation. Multiple heuristic methods that aim to reduce its occur-
rence probability have been applied.

1. Local resource usage adaption decreases the relative number of cases where the GR needs to
issue manipulations in order to avoid policy invalidation.78 A decrease in the relative number
of VM manipulations also leads to fewer policy violations caused by such manipulations.

2. If the GR needs to react, then by using the Feasibility Estimator (FE) such manipulations are
preferred which most probably do not trigger new policy violations. Ongoing manipulations
and their overhead are taken into account by the FE.

3. Nodes involved in a manipulation of VMs initiated by GR and GP will not be target of future
manipulations commanded by GR and GP for a (reconfigurable) period of 30s after this ma-
nipulation. During this time interval these nodes are excluded from the search space of the
GR and GP, any policy violation on such nodes will only be treated by the Local Trigger Unit.
Practically this means that a node involved in a policy violation will be blocked from being
considered for global VM manipulations for a certain time.

4. VMs for which a manipulation has finished are blocked for successive manipulations initiated
by GR and GP for a (reconfigurable) period of 30s. During this time interval these VMs are
excluded from the search space of the GR and GP.

The latter two heuristics79 cause that a high number of manipulations ongoing at a point in time
shrinks the search space for GP and GR for a certain time interval, i.e. the amount of choosable
and executable manipulations within this time frame is decreased. Using this approach, an inhibition
is introduced that automatically corrects high manipulation frequencies. This basic method should
in most cases suffice to counteract manipulation frequencies that are not justified by changes in the
resource usage of running applications. A theoretical and more general discussion of this topic is left
for future work (see Chapter 8).

4.4.7. Summary

In this section the decision logic of the framework has been detailed. Its overall goal is to give Se-
cApps access to cluster resources and to dynamically modify their resource usage so that the MainApp
is not affected, additional SecApp results can be computed and cluster usage can be improved. Sev-
eral functional units realize this decision logic. First, the functional units of the Global Scheduler
were explained. The Global Scheduler is a component that runs on a global management server and
hosts the functional units Global Provisioner (GP) and Global Reconfigurator (GR). The GP has the
purpose of giving a queued, i.e. non-provisioned lease access to the cluster resources by starting or
resuming its VMs. It uses a non-preemptive, run-to-completion approach and employs a priority-
scheduling algorithm with backfill. The other functional unit hosted by the Global Scheduler, the GR,

78This is shown in Section 6.4.3.
79These mechanisms, the blocking of VMs and nodes involved in a previous manipulation for a certain time frame, is

not used for static policies, e.g. PAllocV M and PUsedCore. The violation of such policies will be handled by GR without
excluding previously concerned nodes and VMs from the search space. The reason herefore is that such policy violations
and resulting manipulations cannot provoke successive violations of static policies since the usage of resources like
AllocVM and UsedCore is under full control of the framework.
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is a runtime scheduler that decides on how and when to manipulate a provisioned lease by suspend-
ing, stopping or migrating its VMs. Its purpose is to modify the resource usage of SecApps in order
to satisfy policy constraints. The GR makes these decisions based on an informed depth-first search
heuristic with backtracking. Both the GR and GP use VM manipulations to change the allocation
of leases in the cluster. Since such manipulations carry considerable overhead concerning resource
usage and duration, the appropriateness of manipulations with respect to the policy semantics needs
to be evaluated. The Feasibility Estimator (FE) was developed as a mean to estimate future resource
usage. GR and GP incorporate these estimations into their decisions and thereby only choose manip-
ulations that presumably will not lead to further policy violations and resolve existing ones. However,
this approach of manipulating VMs based on estimations in order to dynamically adapt the resource
usage of SecApps has two drawbacks. First, the control of resource usage is relatively coarse-grained.
Second, centralized and remote decision making is inherently prone to (hardware, software) errors
and the made decisions themselves may be inappropriate because they base on estimations. In order
to complement the global, coarse-grained decision making of the Global Scheduler, the component
Local Controller has been developed. The Local Controller runs decentralized on each node and hosts
two functional units, the Resource Usage Adaptor (RUA) and the Local Trigger Unit. The RUA con-
tinuously modifies the share of resources like CPU or NetOut usable by a locally running VM. The
adaption is realized by a closed loop integral controller per single resource. The RUA provides a fine-
grained control over the resource usage of SecApps and therefore complements the coarse-grained
resource allocation of the GR. The Local Trigger Unit is an actor-of-last-resort and realizes the policy
semantics by forcefully stopping and aborting VMs, unless policy compliance can be maintained by
GR and RUA. The Local Trigger Unit therefore counteracts the second issue mentioned for the Global
Scheduler: Erroneous global VM manipulation decisions will not lead to policy invalidations because
policy-violating VMs are stopped locally from using resources on time.

The proposed approach realizes the semantics of a set of defined policies. The distinction between
different functional units allows for a partial parallelization of the conceptual approach: The units
of the Local Controller (RUA and Local Trigger Unit) act independently and in concurrency to the
functional units of the Global Scheduler (GP and GR). The GR is parallelized such that it can run
multiple concurrent reconfiguration cycles that take care of different resource usage problems (policy
violations) occurring in a staged manner. For the coordination between multiple reconfiguration cycles
of the GR and provisioning cycles of the GP, a specific locking scheme was developed to enable
transactionality while still providing a partial parallelization. Potential self-sustaining behavior of the
framework is counteracted by excluding VMs and nodes that have taken part in VM manipulations
from future manipulations for a reconfigurable time frame of one minute.
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Based on the ideas detailed in the last chapter, the proposed approach was implemented in software.
The developed software is referred to as "VM-Scheduling Framework" or "framework" throughout
this chapter. Purpose and functional aspects of the framework have already been discussed, so the
first section of this chapter briefly portrays the software environment and used tools. The framework
design is discussed in the second section. The third section introduces use cases and actors. In the
fourth section several details concerning the environment-specific implementation are described.

5.1. Environment, Products and Tools

The development of the framework as well as the empirical evaluation was done on x86-64 servers
running a Linux derivate, Gentoo Linux. Platform-independent technologies were chosen for the sake
of generality and portability. Where a platform-specific implementation could not be avoided it was
ensured that these components are encapsulated and therefore easily replacable if the framework is
to be run in a x86-64 cluster equipped with a non-Unix compatible Operating System (OS) like MS
Windows OS. This concerns platform-specific components a) for the retrieval/read-out of resource
usage statistics and b) the local adaption of resource usage caused by Virtual Machines.

Development The VM-Scheduling Framework was developed following the "rapid prototyping"
software development pattern.1 The development was done using command-line editors Vim and
GNU Emacs. A software versioning system, Apache Subversion, was utilized.

Programming The framework is implemented in the Python programming language. Python is
an interpreted language with interpreters available for MS Windows, Mac and Unix OS families.
This ensures the aforementioned portability for the developped software. The adopted programming
paradigm is object-oriented programming. Inter-process communication between framework compo-
nents was implemented using Python socket libraries. Both synchronous and asynchronous commun-
ciation paradigms were employed. Parallelism in the framework was realized using Python threading
libraries. The implementation of platform-specific components responsible for resource usage read-
out and adaption uses Linux signals, procfs and tools like pv and cpulimit. These components are
mentioned separately in Section 5.4.

Virtual Machines As virtualization platform Oracle VirtualBox 3.14 ("VBox") was used for the de-
velopment and evaluation of the framework. The product was configured to run in the so-called "head-
less" mode which means that a Virtual Machine (VM) runs decoupled from a user’s session in back-
ground and no Graphical User Interface (GUI) is needed to manipulate the state of VMs. VBox offers
multiple interfaces to communicate with the hypervisor and single VMs, of which the Command-line
Interface (CLI) "VBoxManage" and the Python Application Programming Interface (API) are used in

1The rapid prototyping pattern is a software development approach that bases on minimal initial planning and incremental
refinement of specification and implementation.
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the framework implementation. These interfaces are instrumented in a wrapper class that encapsulates
and abstracts the access to arbitrary VMs. In order to run the framework using a different virtualiza-
tion platform, the current wrapper class needs to be exchanged with a wrapper class that instruments
the specific interfaces for the other product.
A running VBox VM is represented by a single OS process ("VBoxHeadless"). This offers the ad-
ditional possibility to communicate with a specific VM using Linux signals, e.g. a VM can be hard-
stopped by sending the respective process a kill signal. Sending a kill signal will also abort ongoing
manipulations (e.g. a suspend).2 This communication type is also encapsulated inside of the wrapper
class. Virtual Disks used by a VBox VM are represented by Virtual Disk Image (VDI) files. VM
specific meta-information like virtual hardware specification is contained in an eXtensible Markup
Language (XML)-formatted settings file. Both VM specific files, the virtual disk file and the settings
file are hosted on a shared storage server via Network File System (NFS). Any physical node equipped
with a VirtualBox installation mounts the remote filesystem. Thereby the local hypervisor acquires
access to these files and can run and manipulate VBox VMs.

5.2. Framework Design

The functional units of the framework (Resource Usage Adaptor (RUA), Global Provisioner (GP),
Global Reconfigurator (GR)), their purpose and semantics have been discussed in the previous chapter.
Also the two main architectural components which host these functional units, the Global Scheduler
and the Local Controller, were tentatively introduced. Regarding software design of the framework,
the implementation-level description is now stated more precisely. The two architectural components
Global Scheduler and Local Controller are software packages. These packages are organizational units
that group the framework from an architectural point of view. The basic design of the framework is
given in Figure 5.1. It shows the two software packages and their communication paths. The packages
are now discussed separately.

Global Scheduler Package This package is installed on a management node3 and consists of
specific classes and components. For every functional unit involved in making decisions about the
change of the allocation pattern (GP, GR) there is a component with the same name that is part
of the Global Scheduler package. These components implement the functionality of the respective
functional units. Additionally, the package contains classes used for implementing the cluster model
and interface classes. The Cluster Model in Figure 5.1 is a set of classes that not only represent the
cluster model as defined in Section 4.3.5, but the whole data base that all decision instances operate
on, i.e. the cluster model, actual and potential future incarnations, the current allocation pattern, the
queue, non-provisioned leases and non-assigned VMs. The interface communication classes ("User
IF", "Cluster Model IF" and "Manipulation IF") encapsule communication logic in order to provide
interfaces (in the generic sense of the term) to actors and components outside of the scope of the
Global Scheduler package. These communication partners are users of the framework (see Section
5.3) and Local Controller instances.

2Sending signals is not the specified way of communicating with VBox VMs. It is however a method to instantly relieve
a node from resource load generated by a VBox VM.

3A management node is a physical host that is dedicated to hosting administration and management applications only,
rather than performing, e.g., scientific computations.
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Figure 5.1.: Abstracted package diagram of the VM-Scheduling Framework with the main architec-
tural components and their interaction.

Local Controller Package This package is installed on a worker node.4 Since a cluster consists of
more than one worker node, multiple installations of the Local Controller package commonly exist.

4A worker node is a physical host eligible to run a Secondary Application (SecApp), so basically every node with a VBox
installation.
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These instances are referred to as agents.5 The Local Controller package contains the like-named
components implementing the functional units RUA and Local Trigger Unit. Also it contains interface
classes that encapsulate the communication with the local environment:
First there is the Sensor class responsible for acquiring utilization statistics for every relevant local
resource, second there is the Actuator class that realizes the adaption of resource usage commanded
by the RUA and third there is the vWrapper class that bundles the logic for communicating with local
VMs and the hypervisor. All packages, components and classes mentioned so far are implemented in
Python. Additionally these are fully platform- and environment-independent except for the interface
classes of the Local Controller package. These interface classes are tailored towards the specific
virtualization platform (vWrapper) and operating system (Sensor, Actuator) and therefore make use
of existing, platform-specific APIs and CLIs.

Persistent Storage Both packages rely on an existing local installation of SQLite Database Man-
agement System (DBMS) for persistent data storage. The Global Scheduler package uses a database
for storing cluster item and resource specifications as well as all configured policies. The Local Con-
troller package uses a database for storing the set of specified policies associated with the local node.

Package Communication The Global Scheduler communicates with all Local Controller agents.
Implementation-wise this is realized using Python sockets. The communication is steered by two in-
terface communication classes: First there is the Manipulation IF class. This class takes control of
every VM manipulation which is commanded by the Global Scheduler and initiated by GR or GP.
The Manipulation IF class informs the Local Controller agents about to be executed VM manipula-
tions. It thereby keeps track of these manipulations and captures their execution status, i.e. whether a
manipulation successfully finished or failed. A locally triggered abortion of manipulations is thereby
recognized by the Manipulation IF class as a failed manipulation. A locally triggered killing of a
VM is also announced by the Local Controller agent to the Manipulation IF class. So the Manip-
ulation IF class is the single-point-of-control that knows about actually performed changes to the
allocation pattern. This knowledge needs to be incorporated into the Cluster Model. Therefore the
Cluster Model classes have a unified interface class that allows to apply changes to them. This Cluster
Model IF class is therefore used by the Manipulation IF class to update the current representation of
the allocation pattern. Additionally, this Cluster Model IF class also takes responsibility of updating
the resource utilization statistics. Depending on the type of cluster item, this information is either
retrieved by publish/subscribe from the Sensor classes of Local Controller agents or actively pulled
from passive Simple Network Management Protocol (SNMP) devices like switches. According to this
description, any Local Controller interacts with the Global Scheduler. However, no separate commu-
nication classes were implemented for this communication on side of the Local Controller Package.
That means that the Sensor, Local Trigger Unit and vWrapper classes directly communicate with the
corresponding interface communication classes on side of the Global Scheduler package.

5.3. Actors and Use Cases

For the actual software implementation two main actors were considered: the lease owner ("owner")
and the administrator. The owner is an abstracted person (role) that is interested in running its pro-
prietary application (SecApp) in a dedicated cluster. The administrator is an abstracted person (role)

5In contrast an instance of the Global Scheduler is called master or scheduler.
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that both takes care of the business goal associated with the service (providing a cluster environ-
ment to owners for running their SecApps) and the goal of maintaining the functionality of the Main
Application (MainApp), i.e. to avoid strong interference. The use cases associated with these actors
are shown in Figure 5.2.

Figure 5.2.: Use cases for the actors owner and administrator.

The owner controls the state of its proprietary SecApp via lease manipulations, i.e. by submitting,
pausing, unpausing and terminating of a lease. These actions correspond to the respective state transi-
tions in a lease’s life-cycle. The administrator controls the configuration of the framework and thereby
defines the trade-off between providing resources for running SecApps and interference generated to-
wards the MainApp. A main task of the administrator therefore is to define to which extent resources
can be used by SecApps. This is done by configuring a target environment (cluster items, nodes,
resources) and a set of applied policies. The framework provides a single point-of-control such that
the "Start Framework", "Stop Framework" and all owner use cases are initiated by using the User IF
classes of the Global Scheduler on the management node. Specific tasks of the "Configure Frame-
work" use case require less convenient manual interaction, like installing the VirtualBox platform on
worker nodes.

Owner Interfaces For the owner role, four use cases (S ubmit | Pause |Unpause | Terminate) lease
exist. Any of these possibilities to interact with the framework is provided as a dedicated CLI. The
python scripts implementing these use cases can be found in Table 5.1, along with a short description
of their purpose.
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Script Name Purpose
vsub.py Submit a lease
vsusp.py Pause a lease
vres.py Unpause a lease
vdel.py Terminate a lease
vinfo.py Query Information

Table 5.1.: Command-line interfaces for lease owners.

The precise syntax for using a script can be queried by using the command-line parameter "–help".
As an example for instrumenting the interfaces, the submission of a lease (use case "Submit lease")
is done as follows:

[tism001] ~/vsched $ ./vinfo.py --app
distcc 10
oge 15
[tism001] ~/vsched $ ./vsub.py --app distcc --size 5 --prio 10
Your lease has been created with ID: 1

In this example, the framework is first queried for existing appliances (preconfigured VMs). The
scheduler returns that 10 VMs hosting a distcc6 SecApp and 15 VMs hosting an OGE [81] job schedul-
ing client are governed by the VM-Scheduling Framework.7 Using this information, a lease request
for five VMs running distcc is submitted.8 The request is accepted, so a lease is created and infor-
mation on it is returned. Using the returned lease ID, the owner can reference the lease for later
manipulation or querying status information.

Administrator Interfaces According to the presented use cases, for the administrator additional
options to interact with the framework exist. A precondition to starting and stopping the framework
(use cases "Start Framework", "Stop Framework") is the proper configuration of the environment and
the framework. This encompasses defining and preparing the worker nodes in scope of the framework
(use case "Configure Cluster"), the configuration of policies (use case "Define Policies") and the ini-
tialization of the Feasibility Estimator (FE) (use case "Configure FE").

For the use case "Configure Cluster" the installation of the software packages and SQLite DBMS
on management and worker nodes as well as the installation of the virtualization platform Virtual-
Box on worker nodes is required. For the use case "Configure Framework" information on the
worker nodes needs to made be available to the Global Scheduler and policies need to be defined. A
simple approach has been chosen in the current implementation: All information is directly manip-
ulated in the database on the management node using an SQLite client. Table "Resource" contains
all cluster items (e.g. nodes), their resources (e.g. Central Processing Unit (CPU)), static information
on that resource (e.g. total CPU cores available on node) and information on how to access the re-
source utilization statistics, e.g. whether the utilization is delivered by a Local Controller sensor or is

6Distcc is a distributed compiler for the C programming language.
7The creation of appliances is not in scope of this thesis. Appliance building and registration with the framework needs to

be done in advance.
8In this prototypical implementation the lease owner is allowed to freely choose a priority ∈ [1, 10].

100



5.4. Platform-Specific Implementation

queried via the SNMP protocol. The use case "Define Policies" is used for adapting the framework
to the MainApp and realized accordingly: Table "Policy" contains the configured policies, a resource
it is defined on, the threshold and timelimit. A table "PolAssociation" contains the association be-
tween policies from the "Policy" table and nodes specified in the "Resource" table. For instance,
PCPU = (80, 10) × (Node4,Node5) is a policy that specifies usable CPU resources on Node4 and
Node5. Accordingly its defined as a join over tables "Resource", "Policy" and "PolAssociation".
The use case "Configure FE" needs to be executed once for every new cluster environment in order
to initialize the FE. At first it requires the finding of appropriate estimation parameters for VM manip-
ulations. In Section A.5 a proposal for an according procedure is made. These parameters then have
to be inserted into the feasibilityEstimator.py file according to the annotations given in that
file. After having configured the framework and environment, the framework can be started (use case
"Start Framework"). Via "./schedMaster.py <loglevel>" the Global Scheduler is started on
the management node. The configuration in the database is read and the cluster model is set up using
this data. Also Local Controllers agents are started automatically on all worker nodes specified in
the "Resource" table. All relevant policies for a specific node are propagated to the Local Controller
agent’s database. Now the framework can be used by lease owners via the use cases mentioned above.

For the administrator role the framework offers the possibility to modify policies at runtime of the
framework (use case "Modify Policies"). This is done by modifying entries in the "Policy" or "Po-
lAssociation" tables manually via an SQLite client (e.g. the threshold of a policy on AllocVM can
be changed for multiple nodes). This change needs to be announced to the framework, which is
done by executing a dedicated python script "vpol.py --update", which in turn causes the Global
Scheduler to re-read the configuration, to modify the internal cluster model and to propagate relevant
changes to concerned Local Controller agents. An immediate model-check is performed by the GR to
recognize potentially introduced policy violations.9 The stopping of the framework (use case "Stop
Framework") is realized via issueing "./schedMaster.py stop".

5.4. Platform-Specific Implementation

In the Local Controller package the three classes interfacing the local environment and hypervisor
(Sensor, Actuator, vWrapper) use platform- and environment-specific methods. Their functionality is
now briefly explained for the prototypical implementation.

Primitive Realization In this thesis the primitives for manipulating VMs are {start, stop, suspend,
resume,migrate}. These primitives are implemented in the vWrapper class. Table 5.2 shows these
VM manipulations and the methods that are used for executing a manipulation. For migrating a
VM, the command-line interface is used due to licensing restrictions for Oracle VirtualBox. The
killing of VMs caused by the Local Trigger Unit is implemented using Linux signals, more precisely
SIGTERM and SIGKILL. Upon local trigger firing a SIGTERM signal is sent and the VBox processes
are expected to terminate. If this does not succeed within a second because the hypervisor blocks the
termination (e.g. for transactional reasons), a SIGKILL is sent. This will forcefully terminate the
VBox processes, i.e. runnning VMs are immediately stopped and ongoing manipulations are aborted.
Such an approach to get rid of VMs, i.e. to end the resource usage caused by them within timelimit
is certainly debatable. It was however the only method found for implementing the local triggering

9The administrator may for instance change the number of allocatable VMs for several nodes to zero. In this case an
immediate reconfiguration cycle will be started if these nodes are running VMs.
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Manipulation Interface Interface Provider
start Python API Hypervisor
stop Python API Hypervisor
suspend Python API Hypervisor
resume Python API Hypervisor
migrate CLI Hypervisor
kill Linux signals OS

Table 5.2.: Interfaces used in vWrapper class for VM manipulations.

for VBox in reliable fashion.10 So, this method does yield the desired effect of enforcing policy
compliance but on the other hand raises the question for its impact on the consistency of VMs and
hosted SecApps. The main problem encountered in empirical evaluation was the fact that file system
inconsistencies for the virtual disk of VMs occurred occasionally (in about 3% of all local trigger
firings). After restarting a previously killed VM, these prevented the VM from either booting correctly
or the SecApp from running without errors. Since no reliable method was found to safely abort VBox
VMs and ongoing manipulations within a guaranteed short time frame, two options were left: Either
the policy semantics are weakend or these inconsistencies are recovered. In the evaluation phase for
the prototypical implementation it was opted for recovering of VMs: After a local trigger fires for a
VM, the lease is queued, all assigned VMs are stopped and the assignment relation between the lease
and VMs is dissolved. So far this is the functionality as described in Section 4.3.4. However, in order
to cope with the occasional inconsistencies, this functionality was extended such that a) after initial
creation of a VM and b) after every stopping of a VM in the VM’s life-cycle a copy of the virtual disk
file is created . Now every time the local trigger fires for a VM it becomes assignable to leases again
only after a remedy procedure was executed. The procedure checks whether the VM is able to boot
and run the SecApp. If not, the lastest copy of the virtual disk file is used as the new virtual disk file.
This resolves the inconsistency issues at the expense of keeping a killed VM from being assigned to a
lease again for about a minute (instead of instantly making it assignable again).
Further improvements a) using runtime disk-snapshots instead of offline copys of the virtual disk
and b) distributed checkpointing for leases to avoid semantical, i.e. application state problems were
considered but not implemented due to timing constraints. The empirical evaluation of the framework
discussed in the next chapter showed the chosen remedy procedure to be sufficient for the tested
environment and SecApps.

Resource Usage Metrics Acquistion As stressed in conceptual work (see Section 4.3.1), infor-
mation on resource usage is the key to decide on changes of the allocation pattern. For some resources
defined in Table 4.1, such as VmAlloc and SwAlloc, this information is contained in the cluster model
and exclusively modified by the Manipulation IF Class. For these resources no read-out functionality
for the retrieval of resource utilization data is needed. On the contrary, for resources like CPU and
NetOut, the information on resource usage needs to be retrieved from the resource at runtime. This
retrieval is done using the Sensor class of the Local Controller package. The Sensor acquires the
current utilization using the OS-provided interfaces with the period given in Table 5.3.

10Using the VBox provided abort command initially promised to be a feasible solution but blocked in several cases.
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Resource OS Interface Period (s)
CPU /proc/stat 0.5
Mem /proc/meminfo 5
NetIn /proc/net/dev 1
NetOut /proc/net/dev 1
DiskIn /proc/diskstats 1
DiskOut /proc/diskstats 1

Table 5.3.: Interfaces used in Sensor class for resource usage data retrieval.

The "/proc filesystem" ("procfs") offers a low-level, fine-grained access to resource utilization statis-
tics. The current sensor implementation reads and processes the files in procfs via the Python standard
library provided I/O interfaces. Processing is needed for converting cumulative statistics in procfs to
current usage numbers averaged over the past measurement interval. The data obtained by the Sensor
class is of interest to the Global Scheduler, the RUA and the Local Trigger Unit. The components of
the Local Controller package, i.e. the Local Trigger Unit and the RUA query the Sensor class peri-
odically to retrieve the metrics relevant for the active policies. The data for the Global Scheduler is
actively propagated via publish/subscribe to the Cluster Model IF.

The retrieval, processing and propagation of resource statistics by the Sensor class induces some
overhead to the CPU usage on the local node. In the evaluation up to 0.5% CPU were consumed
by these tasks. The propagation of statistics to the Cluster Model IF of the Global Scheduler caused
network traffic of less than 0.5 kByte per Local controller agent and second. This is acceptable for
mid-sized clusters. However, an alternative read-out implementation using C and the Linux System
Call Interface (SCI) and the revision of the communication paradigm between Local Controller agent
and Global Scheduler should be considered in a future implementation.

Resource Usage Adaption The current implementation considers the adaption (capping) of re-
source shares used by local VMs for resources CPU, NetIn and NetOut. The general approach of using
an integral controller to realize this adaption has been introduced in the previous chapter in Section
4.4.4.1. For the resource CPU the values for K p and S P, i.e. the gain and sampling/actuating period
of the controller were choosen to be K = 1, S P = 0.5s. The Actuator class is commanded by the RUA
to cap the CPU usage share for each running VM according to the formula stated in Section 4.4.4.1.
The method used by the Actuator class for the CPU resource is the alternating sending of signals
SIGSTOP and SIGCONT to a VM-process. The variable periods for sending these signals determine
the maximum CPU utilization of a (VM-)process. The Linux tool "cpulimit" with this functionality
was used in the current implementation. Using this method, a maximum deviation from the target
CPU usage of 0.5% was achieved.

For the resources NetIn and NetOut the values for K and S P, i.e. the gain and sampling/actuating pe-
riod of the controller were choosen to be K = 1, S P = 1s. The Actuator class is commanded to set the
maximum resource usage share for each running VM according to the aforementioned formula. While
it was possible to dynamically cap the incoming and outgoing network traffic for single VMs using
the virtualization platform Kernel-based Virtual Machine (KVM) [62] with the Linux tools "tc" and
"iptables’", this attempt failed for Oracle VirtualBox. Therefore, a rather peculiar method was chosen
for capping the network traffic in the Actuator class. The dynamical limit to network throughput was
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achieved by adapting the CPU usage share of the VM process. The Actuator class itself employs a
control algorithm that dynamically adapts the CPU usage of a VM such that the minimum of both
target settings for NetIn and Netout was set as maximum cap for both resources as a side-effect. Due
to this unconventional approach the actual CPU usage target applied by the actuator therefore was the
minimum of the three values for target CPU usage, calculated CPU usage to cap NetIn utilization and
calculated CPU usage to cap NetOut utilization. It is clear that this is not an approach that should be
used in a productive environment because it also slows down VMs (i.e. decreases their CPU usage)
if only one of the resources CPU, NetIn or NetOut is heavily utilized. This leads to a less efficient
SecApp performance.

However, it is possible to cap resource utilization for any of the presented resources with the proposed
method. The implementation of a kernel hook for dynamic VBox traffic shaping is a task left for
future work. Alternatively using a different virtualization platform like KVM should be considered.
For the resources DiskIn and DiskOut which were not used in the evaluation of the implementation,
the tool "ionice" can be used by the Actuator class for adapting the resource usage at runtime.
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In this chapter the experimental results obtained for the thesis are described. It is evaluated how
these results relate to the thesis goals of providing an adaptable framework for exploiting unused
resources without strongly interfering a Main Application (MainApp) while still improving Secondary
Application (SecApp) result output. The chapter is structured as follows:
The testing environment where the evaluation took place is introduced first. Afterwards, an overview
over the presented experiments is given. Then each experiment and its findings are discussed step-by-
step. Finally the found results are summarized.

6.1. Test Environment

The experiments were conducted in a commodity hardware based cluster which is located at Kirchhoff
Institute for Physics (KIP) in Heidelberg, Germany. This cluster consists of 24 worker nodes, several
infrastructure nodes and Gigabit Ethernet interconnects. Specifically, the cluster environment makes
up of:

• 2 Infrastructure Servers: 4 Intel CPU x 2.2 GHz x 4 Cores , 16 GB RAM, Linux Gentoo OS,
Naming & Directory Services

• 1 File Server: 4 Intel CPU x 2.2 GHz x 4 Cores , 16 GB RAM, Linux Gentoo OS,
NFS

• 24 Worker Nodes: 1 AMD CPU x 1.8 GHz x 2 Cores , 4 GB RAM, Linux Gentoo OS

• 1 Cisco Switch: 100 MBit, 80 Ports, Management/BMC Network

• 3 Netgear Switch: 1000 MBit, 40 Ports, Full Bidirectional Bandwidth

The network topology can be seen in Figure 6.1a. There is a switch hierarchy: The top-level switch
connects the storage and infrastructure nodes and the low-level switches. Each low-level switch con-
nects 12 worker-nodes. Beside of this Gigabit Ethernet based network, there is also a 100 Mbit
management network for Board Management Controllers (BMC) on each node. A photographic pic-
ture of the cluster environment is given in Figure 6.1b. The virtualization platform Oracle VirtualBox
3.14 is installed on all worker nodes. VM virtual disk files are hosted on a fileserver using NFS and
each worker node mounts the respective remote directory.

6.2. Experiment Overview

In this section an overview about the experiments and their contribution is given. As a reminder, the
purpose of the framework is to a) prevent strong interference for a non-controllable MainApp and
b) to improve efficiency metrics like generated results output and increased resource utilization for
the cluster. In the conceptual work of this thesis it was proposed to use policies as configurational
items that offer the possibility to find a trade-off between these two potentially conflicting goals. In
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(a) Network topology and nodes (b) Photograph, taken in november 2011

Figure 6.1.: Test environment KIP cluster in Heidelberg, Germany.

the following, experimental results are detailed that exemplify the behavior of the VM-Scheduling
Framework and show the effect of policy configurations towards these goals for multiple scenarios.
These experiments culminate in a final empirical test with the HLT-Chain application by which the
thesis goal achievement is shown.

Policy Modification Experiment In this experiment the reaction of the VM-Scheduler towards
a) a single policy modification and b) a sequence of policy modifications is evaluated. This is done
by using static policies1 that operate on the UsedCore resource, thereby specifying the maximum
number of CPU cores usable by VMs on a node. By modifying these policies at runtime, policy
violations are forcefully introduced which can solely be resolved by the Global Scheduler, specifically
by Global Reconfigurator (GR). By recording the type and number of manipulations chosen by GR
for a single modification, the goodness of choices made by GR can be assessed. For a sequence
of policy modifications, the cooperation of both GR, that resolves introduced violations and Global
Provisioner (GP) that tries to provision leases to free resources can be assessed. Again, this is done
by recording the type and number of chosen manipulations as well as the results generated by a
virtualized SecApp.

Efficiency Experiment The above mentioned "Policy Modification Experiment" discusses how the
GR and GP cope with forcefully changed resource availability for SecApps introduced by explicitely
modified policies on the UsedCore resource. However, there are resources, e.g. Central Processing
Unit (CPU), whose usage is not fully under control of the VM-Scheduler. Their utilization not only
depends on the resource usage generated by SecApps, but also on that of the MainApp. In this second

1As a reminder, static policies are those policies that operate on resources whose usage is dependent only on the VM-
Scheduling behavior. Examples are the UsedCore and AllocVM resources whose usage only changes upon framework
initiated manipulations. All other policies are called dynamic policies.
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experiment dynamic policies operating on the CPU resource are employed. By applying different
host load patterns which mimic different MainApps and modifying policy parameters timelimit and
threshold, the effect of these parameters towards the efficiency of exploiting unused cluster resources
and generating additional SecApp results is evaluated. The goal of this experiment is to demonstrate
that policies with their parameters timelimit and threshold are feasible configuration items to strive
for the thesis goal of improving the efficiency of cluster usage independent of a particular MainApp
resource usage behavior.

Interference Experiment In the former experiment it is examined for arbitrary MainApp load pat-
terns what effects policy parameters have towards cluster usage efficiency. However, in order to assess
the interference generated by SecApps, a MainApp with a performance metric is needed. In this "In-
terference Experiment" a MainApp with a performance metric is run which generates considerable
CPU and network utilization. Two dynamic policies operating on resources CPU and NetOut are
applied. The performance metric for this MainApp is measured for different threshold and timelimit
configurations. Based on the performance metric values, the amount of interference caused by addi-
tionally running SecApps is assessed. The goal of this experiment is to demonstrate that policies with
their parameters timelimit and threshold are feasible configuration items to strive for the thesis goal
of controlling interference towards a MainApp.

HLT-Chain Experiment In this experiment the HLT-Chain MainApp is run together with the VM-
Scheduler. This experiment proves the appropriateness of the thesis approach by showing that there
is a policy parameter configuration for which no strong interference occurs, the cluster utilization is
improved and additional SecApps results are computed.

6.3. Policy Modification Experiment

The effect of runtime policy modifications, i.e. deliberately changed resource availability for SecApps,
is examined in this experiment. A typical scenario is the decision of an administrator to restrict the
usage of a (sub)cluster by SecApps at runtime. This he could do by changing the threshold parameter
of static policies operating on the UsedCore2 resource, thereby forcefully introducing policy viola-
tions for nodes with a running Virtual Machine (VM). An objective of such a modification is that
concerned, now policy-violating VMs are removed from nodes within the timelimit of the respective
policy and that these VMs are treated gently. Gentle treatment refers to the choice made by GR how to
remove a violating VM from a node: While a migration keeps the VM alive and computing, suspend
will pause the computation of results and stopping a VM even causes the loss of already computed
and not yet saved results. The manipulations chosen by GR are recorded and discussed.

In a second step of this experiment the runtime modification of policies is taken further: A modifica-
tion is not only applied once, but repeatedly during the experiment’s run. This continually changes the
number of CPU cores usable by VMs and accordingly how many VMs are allowed to run on nodes.
This sub-experiment shows how GP and GR cope with this changing resource availability: The GP
takes care of provisioning leases if CPU cores become "marked" as usable, the GR removes VMs from
nodes if CPU cores are blocked for SecApps, i.e. when policies are violated. This sub-experiment
therefore demonstrates the basic cooperation of GP and GR. In addition, it also represents an impor-
tant scenario in the ALICE High Level Trigger (HLT) context: The runtime reconfiguration of the

2Alternatively, also a policy on the AllocVM resource is an option to control the number of VMs running in a cluster.
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HLT-Chain MainApp. As described later in this chapter (see Section 6.6.1), this application consists
of a multitude of processing components distributed over the cluster nodes. A reconfiguration of the
HLT-Chain reallocates components from one node to another, spawns new or removes existing pro-
cessing components. The modification of UsedCore policies is a possibility for the HLT-Chain to
explicitely announce such a reconfiguration to the VM-Scheduler and to enforce an according adap-
tion of VM allocations. So, in this sub-experiment a pattern of policy modifications ("reconfiguration
pattern") is applied and the manipulations executed by the VM-Scheduler are recorded. Additionally,
the goodness of the manipulation decisions is assessed. This is done by running a prototypical SecApp
inside of VMs and comparing the amount of actually computed results to the amount of computable
results in the optimal case.3 The effect of the timelimit parameter of modified policies towards SecApp
result computation and gentleness of GR decisions is evaluated.

6.3.1. Experiment Layout

The experiment is carried out in the environment described in Section 6.1, consisting of 24 worker
nodes. Each cluster node is equipped with a single PUsedCore policy, delimiting the number of CPU
cores that can be used by VMs on this node. The initial policy configuration for every node is
PUsedCore : (2, t), indicating that the whole cluster, i.e. all CPU cores, can be used for running VMs.
Before the start of each sub-experiment, leases are submitted to the VM-Scheduler. Every lease is
assigned a specific number of VMs. There are

• 12 leases with 1 VM,

• 6 leases with 2 VMs,

• 2 leases with 4 VMs,

• 2 leases with 8 VMs,

making 22 leases with 48 VMs in total. The number and size of these leases has been chosen that
way to avoid overly trivial scheduling scenarios, like e.g. 48 leases with 1 VM or 1 lease with 48
VMs. The VMs are configured to use one CPU core and 512MB RAM. Practically this means that
any physical CPU core represents a slot for a single VM and if all leases are optimally provisioned,
all physical CPU cores are used by VMs. All leases have the same priority in this experiment. The
leases and their VMs are equipped with RedHat Enterprise Linux (RHEL) 5.1 [91] and run a CPU-
bound SecApp, which is a GCC [43] compiler benchmark running in a closed loop. This SecApp is
set up such that nearly 100% of the available CPU resources are consumed. In order to measure the
number of results computed by the SecApp, a single result is defined as the completed compilation of
a specific amount of source code inside of a VM. If a VM receives 100% of a CPU core4, a single
result computation takes 2.5 min.

For the first sub-experiment, the policy configuration is changed at runtime from PUsedCore : (2, t) to
PUsedCore : (0, t) for a number of nodes ∈ {6, 12, 24} and timelimits t ∈ {5, 10, 25, 50}. The resulting
manipulations are recorded. Three experiment runs are conducted for every parameter configuration.

3For a non-distributed SecApp the number of optimally computable results per time is retrieved by running a single VM
on an idle node for a certain time frame without manipulating the VM.

4This statement corresponds to running the VM in an idle environment without competing applications and therefore
represents the optimal case that can be used as a reference to assess the SecApp result output achieved in the experiment.
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For the second sub-experiment, periodical changes to policy configurations are made for random
sets of nodes. These periodical changes affect the number of CPU cores available to VMs on cluster
nodes. The parameters modified in this sub-experiment are the frequency of policy changes and the
timelimit of the changed policies. The resulting manipulations and the number of computed SecApp
results are recorded.

For repeatedly modifying policy configurations, a pattern of modifications is generated and applied
throughout a sub-experiment’s run. Such a reconfiguration pattern consists of reconfiguration events.
A single reconfiguration event E is described by E = ({node}, {timelimit}, {change}, {type})C .
Variable C represents the number of nodes affected and is a random number between 0 and 24. This
also means that every reconfiguration event changes the policy configuration for a randomly deter-
mined set of nodes with a cardinality of C. The timelimit variable determines the timelimit to be set
for the policy of the node. For a specific experiment run, the timelimit variable is fixed to one value
∈ {5, 10, 25, 50}. The change variable represents the quantitative change in the number of CPU cores
freed or blocked for VMs on a node. This natural number is modelled using a random walk with vari-
able step size and reflective barriers at zero and two. The type variable denotes whether the number of
CPU cores usable by VMs on a node is diminished ("down") or increased ("up"). With a probability
of 1/3 all nodes of a reconfiguration event either have type = up, type = down or a randomly chosen
value ∈ {up, down}. This actually means that for a single reconfiguration event either on all chosen
nodes new VM slots (physical CPU cores) are provided (P = 1/3), VM slots are removed (P = 1/3)
or that on some nodes new slots are provided while on others these are removed (P = 1/3).

A reconfiguration pattern is a sequence of events E occurring every RI ∈ {20, 40, 60} seconds. RI
is called the reconfiguration interval, i.e. denoting how much time lies between two reconfiguration
events. For every setup (timelimit, RI), an experiment run with 30 reconfiguration events is conducted.
Every combination of parameter settings is tested three times.

Figure 6.2.: Exemplary reconfiguration pattern (RI = 20s, above) and its effect on the availability of
CPU cores for VMs (below).
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Figure 6.2 shows an exemplary effect of a reconfiguration pattern with 30 reconfiguration events and
RI = 20s. The total number of CPU cores usable by VMs at a specific point in time is shown in the
lower part of this figure. The upper part of the figure shows the actual reconfiguration events that
lead to this CPU core availability. At times, CPU cores are only taken away from VMs ("blocked")
or made available to VMs ("freed"). Alternatively both happens for the same reconfiguration event
(e.g. at about 120s), which means that on some nodes CPU cores are blocked while on others they are
freed.

6.3.2. Results

The first sub-experiment conducted is the singular blocking of a subset of cluster nodes. Figures 6.3,
6.4, 6.5 show the manipulations chosen and executed by the VM-Scheduler for blocking 6, 12 and 24
nodes using different timelimits. In any of the setups it is visible that the timelimit has a considerable
effect on the type of manipulations choosen: The lower the timelimit, the less gentle the VMs are
treated, i.e. the more often stops are chosen. This is especially obvious for the timelimit of 5 seconds.

Figure 6.3.: VM manipulations chosen by GR when ordered to remove 12 running VMs from 6 nodes
within a given timelimit.

An interesting point is the existence of migrations in two setups (Figures 6.3, 6.4) for timelimits of 25
and 50 seconds. At first glance, one would not expect migrations because only a number of nodes are
blocked and no additional target nodes for VM migrations are made available. However, this becomes
clear when taking into account the existence of leases containing more than one VM. If such a lease
with e.g. 8 VMs has a single violating VM, then either this particular single VM has to be migrated
to another node ("emigration") or the whole lease needs to be preempted. By stopping or suspending
the lease and all of its VMs, CPU cores on nodes without a violated policy are freed which can be
used for migrations of violating VMs to such a node ("immigration"). This is exactly what happens
in these cases. It has to be noted that in this particular sub-experiment two configurations were ex-
periencing kills, i.e. manipulations which could not be finished within timelimit and had to be killed
by the Local Trigger Unit. For blocking 24 nodes with 48 running VMs in 25 seconds (Figure 6.5), 5
suspend manipulations had to be aborted. For blocking 12 nodes with 24 running VMs in 10 seconds,
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Figure 6.4.: VM manipulations chosen by GR when ordered to remove 24 running VMs from 12 nodes
within a given timelimit.

Figure 6.5.: VM manipulations chosen by GR when ordered to remove 48 running VMs from 24 nodes
within a given timelimit.

6 suspends manipulations had to be aborted. This can be attributed to an insufficient estimation for
the duration of these manipulations made by Feasibility Estimator (FE).
This sub-experiment demonstrates that modifications to static policies can be used to remove VMs
from (sub-)clusters within a given timelimit. The chosen manipulations depend on the timelimit pa-
rameter and more gentle manipulations are chosen for higher timelimits. Timelimits were obeyed in
every case even though it took the Local Controller Unit to abort manipulations in two setups.

The second sub-experiment uses a reconfiguration pattern which periodically changes the number of
CPU cores available for VMs. Figures 6.6, 6.7 and 6.8 and show the number and types of manipula-
tions chosen by the VM-Scheduler for experiment runs with different timelimits and reconfiguration
intervals. The figures also contain the number of "Failed" manipulations, i.e. manipulations that failed
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to finish within timelimit and had to be aborted. In contrast to the first sub-experiment, where only
manipulations for resolving policy violations were applied by GR, in this sub-experiment also the GP
plays a role in provisioning leases to newly available CPU cores. Therefore, these figures also con-
tain the manipulations start and resume chosen by GP. The figures show that with a rising timelimit
the number of stops decreases and the share of suspends and migrations increases. For timelimits of
5 seconds, only stops are performed to resolve policy violations induced by reconfiguration events.
This effect applies to any reconfiguration interval. Another effect visible for any reconfiguration in-

Figure 6.6.: Type and number of total executed and hereof failed VM manipulations for a reconfig-
uration pattern with RI = 60s and experiment duration of 1800s for different policy
timelimits.

terval is that the lower the timelimit, the more manipulations are carried out. This is explained easily
by the fact that when policy violations have to be resolved quicker, then preempted leases can also
be provisioned again earlier, resulting in a higher frequency of GP and GR initiated manipulations.
Comparing the results for different reconfiguration intervals with each other is difficult since the ex-
periment durations differ.5 It is, nevertheless, obvious that the number of manipulations for a given
timelimit is similiar for RI = 40s and RI = 60s (Figures 6.6, 6.7), but apparently lower for RI = 20s
in Figure 6.8. A possible explanation is that for a low reconfiguration interval of 20 seconds factors
like duration of decision and execution phases play a greater role. These factors are independent from
the reconfiguration interval and do not scale down with a decreased experiment duration. So probably
the GP cannot keep up with provisioning of leases due to locked VMs, so less leases are provisioned
and less manipulations are issued by GR in order to resolve policy violations.

While these findings are not remarkable per se, two aspects need to be mentioned: The overlapping of
timelimit and reconfiguration interval and the impact of the reconfiguration interval on the efficiency
of result computation. The overlapping of timelimit and reconfiguration interval, i.e. cases where the
reconfiguration interval is shorter than the timelimit of policies, is of particular interest. An example

5The experiment durations differ because 30 reconfiguration events were used for every reconfiguration interval. The
experiment duration therefore scales with the reconfiguration interval.
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Figure 6.7.: Type and number of total executed and hereof failed VM manipulations for a reconfig-
uration pattern with RI = 40s and experiment duration of 1200s for different policy
timelimits.

Figure 6.8.: Type and number of total executed and hereof failed VM manipulations for a reconfigura-
tion pattern with RI = 20s and experiment duration of 800s for different policy timelimits.

configuration is timelimit = 50s and RI = 20s, shown in Figure 6.8. The overlapping of an ongoing
manipulation by a shortly afterwards induced policy violation is something that may happen in a real
life scenario as well: The administrator falsely applies a blocking of certain nodes, notices his error
immediately and tries to revert it by modifying policies again. Also, the GP may decide to provision
a lease and resume its VMs on nodes which are shortly after, during the execution of the resume
manipulation, concerned by a policy violation. So what is happening in such a case?
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First, the recognition of policy violations occurs in parallel to decision and execution phases of GR
and GP. Nevertheless, during the execution phase a manipulated VM is locked by the mechanism
explained in Section 4.4.5.1. This means that any subsequent manipulation of a single VM has too
wait until the previous manipulation of the same VM finishes.6 This can lead to two situations:

1. The duration of manipulation A (e.g. migration or resume) finishes within timelimit of a shortly
after begin of manipulation A violated policy. In this case, the remaining time of this timelimit
is used for the decision and execution phases needed for resolving the newly introduced policy
violation. So, manipulations will be chosen which are shorter than otherwise possible with the
given timelimit.

2. The duration of manipulation A exceeds the timelimit of a shortly after begin of manipulation
A violated policy. In this case, the Local Trigger Unit will kill the according VMs and abort
ongoing manipulations.

When comparing the manipulations chosen by GR for the three reconfiguration intervals, the ratios of
manipulations can be interpreted in this sense: With a timelimit of 50 seconds, the GR should opt for
similiar ratios of manipulations types when resolving policy violations. However, while for RI = 60s
and RI = 20s about 60% suspends were chosen, this contrasts RI = 40s with only 30% of suspend
manipulations. With both RI = 20s and RI = 40s exhibiting an overlapping of reconfiguration interval
and timelimit, for RI = 40s the first situation seems to occur more often, i.e. previous manipulations
decrease the time left for choosing and executing following manipulations. This results in choosing
long-lasting suspends less often. This is backed by the observation that both RI = 60s and RI = 20s
had only 8% resp. 9% stops while RI = 40s has a ratio of 26% chosen stop manipulations. For
RI = 20s the second situation seems to occur: Previous manipulations do not finish within timelimit
of successively violated policies and manipulations had to be aborted. This can be seen by looking at
the ratio of kills where RI = 20s has 13% of GR initiated manipulations aborted, while RI = 40s has
7% and RI = 60s has less than 1% aborted manipulations.

The effect of the reconfiguration intervals and timelimits towards the efficiency of SecApp result
computation can be seen in Figure 6.9. Here not the absolute numbers of computed results are depicted
but the relative efficiency with respect to the optimal number of computable results using the available
CPU cores. The higher the reconfiguration interval, the more results can be computed for a specific
timelimit. This comes at no surprise since for lower reconfiguration intervals the provisioning of
preempted leases might not be able to keep up with the speed of the reconfiguration. This applies
to resuming VMs, but also to starting VMs which might not even have fully booted before they are
subject to manipulations again. So, for low reconfiguration intervals the overhead of starting/resuming
VMs plays a greater role and therefore leads to lower efficiency in computing SecApp results. A
second observation is that the longer the timelimit is, the more results can be computed for a specific
reconfiguration interval. This is due to more gentle manipulations for higher timelimits. This effect is
especially obvious when comparing the timelimit of 5 seconds to the timelimit of 25 seconds for any
reconfiguration interval. This statement does, however, not hold for the reconfiguration interval of 20
seconds and a timelimit of 50 seconds. Here the aforementioned overlapping effect comes into play.

6As a reminder, a mechanism for avoiding self-sustaining scheduling behavior was introduced in Section 4.4.6.3. This
mechanism blocks VMs and nodes for manipulations after a previous manipulation for a certain time frame. However, as
stated in the mentioned section, the mechanism is not used by GR for static policies like the one used in this experiment.
Therefore any subsequent VM manipulation by GR in this experiment can indeed start once a previous manipulation
has finished.
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Figure 6.9.: Ratio between actually computed and optimally computable SecApp results for different
reconfiguration intervals and policy timelimits.

6.3.3. Summary

In this experiment it was shown how the VM-Scheduling Framework copes with static policy modi-
fications, i.e. with manually introduced policy violations. Parts of a cluster which was fully used by
running VMs were suddenly blocked for these in the first sub-experiment. This resulted in removal of
the respective VMs. The framework, specifically the GR, was able to obey to timelimits of the vio-
lated policies. Manipulations were chosen depending on the timelimit, with lower timelimits causing
more stops, while higher timelimits allowed for more suspends and migrations.
In the second sub-experiment, a sequence of policy modifications was applied to the running VM
Scheduling Framework. Again, the framework was able to change the allocation and state of VMs
accordingly, obeying the timelimits and killing VMs in several cases where manipulations took too
long. Shorter timelimits led to the preference of stops over more gentle manipulations. The longer the
time between policy modifications, the more SecApp results could be computed by VMs. Both sub-
experiments show that static policies and their runtime modification can be used to change the usage
of a cluster by SecApps easily and conforming to policy specifications. Policy compliance is even
achieved for a timelimit of 5 seconds. Giving more time to the VM-Scheduling Framework to react to
policy violations will, however, increase the number of computed SecApp results considerably.
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6.4. Efficiency Experiment

This experiment evaluates how the VM-Scheduling Framework copes with the changing uage of re-
sources that are not under full control7 of the framework. An example for such a resource is CPU,
whose usage also depends on the MainApp. A dynamic policy that operates on this resource is as-
sociated with the cluster nodes. It is expected that the configuration of this policy, i.e. the settings
for parameters timelimit and threshold have a significant effect towards the thesis goals of increased
cluster utilization and SecApp result output. In order to evaluate this effect, a set of CPU load patterns,
representing a wide range of MainApps, are generated and applied to the cluster environment. The
resulting efficiency of using free CPU resources and computation of SecApp results is measured and
discussed.

6.4.1. Metrics Discussion

To assess the benefit of the VM-Scheduler with respect to cluster utilization and SecApp result output,
metrics need to be defined. The first aspect of interest is the generation of additional cluster resource
usage. This metric, however, does not fully reflect the actual benefit of running SecApps in VMs.
Three aspects influence the translation of resource usage by SecApps to actually computed results:

1. Running applications in a virtualized environment instead of natively on a node causes a de-
crease in application performance. This was discussed before in Section 4.3.2 and the argument
was made that virtualizing SecApps is needed to provide flexibility and isolation. This overhead
is therefore not considered for assessing the benefit of the VM-Scheduler, i.e. no comparison to
running SecApps natively is made.

2. A SecApp runs on top of an Operating System (OS), which itself uses resources. This overhead
can be neglected when an OS is up and running. However, when booting or shutting down an
OS, considerable resource usage is generated which does not contribute to the computation of
SecApp results.

3. The manipulation of VMs causes resource usage. This overhead does not contribute to the
computation of SecApp results.

In order to account for points 2 and 3, i.e. to assess the overhead, variables and metrics for the resource
CPU8 are introduced. Let S I = 1s be the sampling interval. The duration of an experiment run is
given by the interval [0, kS I] = k seconds.

maxCPUnode =

k∑

i=1

maxUsageCPU(k, 1) (6.1)

is the cumulated maximal CPU utilization on node for an experiment run. Accordingly

vmCPUnode =

k∑

i=1

|V M|∑

j=1

currentProcUsageCPU(k, 1,V M j) (6.2)

mainCPUnode =

k∑

i=1

currentProcUsageCPU(k, 1,MainApp) (6.3)

7For comparison, the resources UsedCore and AllocVM are fully under control of the framework.
8The CPU usage is a commonly accepted metric to evaluate the utilization of a cluster. However, the introduced metrics

can also be applied in the same manner to other resources.
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are the cumulated CPU resource utilization of VMs (6.2) and of the MainApp (6.3) on a node for an
experiment run.

bu f f ernode :=
maxCPUnode × (100 − threshold o f PCPU)

100
(6.4)

This variable bu f f ernode reflects the non-usable CPU share which is given by the threshold parameter
of the dynamic policy PCPU . The variable resultsvm represents the total number of results calculated
by a single VM for an experiment run. The variable maxresults is the number of results that could be
computed by SecApps if 100% of CPU resources in the cluster were dedicated to VMs.9 Based on
these definitions, the resulting metrics are:

ResUsage =
∑nodes

0 vmCPUnode
∑nodes

0 (maxCPUnode − mainCPUnode − bu f f ernode)
(6.5)

VmConv =
∑vms

0 resultsvm ×
∑nodes

0 maxCPUnode

maxresults ×∑nodes
0 vmCPUnode

(6.6)

ResUsage as defined in Equation 6.5 describes the ratio between resources which actually have been
used by VMs and theoretically usable resources in the cluster. The theoretically usable resources are
limited by the threshold parameter of the policy which is reflected in the buffer variable.10 The met-
ric ResUsage therefore describes the loss in resource usage due to non-optimal scheduling of VMs
and local adaption of resource usage by the Resource Usage Adaptor (RUA) (see Section 4.4.4.1).
VmConv as defined in Equation 6.6 describes the ratio between actually computed results by consum-
ing resources and the theoretical amount of results that could have been computed by SecApps using
the same amount of resources. This metric therefore reflects the amount of VM-utilized resources that
were not translated to results but were wasted by OS-overhead and VM manipulations.

6.4.2. Experiment Layout

The experiment is carried out in the environment mentioned in Section 6.1, consisting of 24 worker
nodes. Every node runs a specific synthetical CPU utilization pattern ("load pattern"). Every such
node is also used by the VM-Scheduling Framework, i.e. a static policy of PAllocV M : (2, 25) is applied.
Additionally, a dynamic policy PCPU is applied with a specific configuration (threshold, timelimit) ∈
{95, 90, 80, 70}×{20, 15, 10, 8, 6}. Multiple load patterns are run against specific policy configurations
in this experiment and the resulting cluster usage and SecApp results are measured. Three experiment
runs are performed for every experiment configuration (load pattern × policy con f iguration). Such
a run takes 20 min and starts by applying the pattern, starting the VM-Scheduler and the measure-
ments. A number of leases is submitted and is taken care of by the GP which tries to provision these
leases. After the 20 minutes have elapsed, the measurements are stopped and the previoulsy submitted
leases are canceled by explicit request to the framework. The leases, VMs and SecApp used in this
experiment are identical to the ones used in the "Policy Modification Experiment" (see Section 6.3.1).

9In this experiment, the same VM configuration and SecApp is used as in the "Policy Modification Experiment". Therefore,
a single result is computed by a single VM and a maximum for computable SecApp results can be defined.

10There is a certain fuzziness introduced by the buffer variable. There is the possibility that CPU usage extends the policy
threshold for a period defined by the timelimit. Knowing this fact, ResUsage is considered a synthetic metric, not
describing what could be used under the best circumstances, but rather what is usable in plausible cases.
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CPU Usage Pattern Generation For testing the effect of a specific policy configuration
(threshold, timelimit) ∈ {95, 90, 80, 70} × {20, 15, 10, 8, 6} towards the defined metrics, load patterns
are generated. The goal of using different load patterns is to show that the framework copes with
different load scenarios representing arbitrary MainApps. For producing specific patterns, a program
was implemented that generates a node CPU usage with a precision of 0.5% (standard error) at a given
point in time within tens of a second. The two main load patterns used in this experiment are shown
in Figure 6.10.

Figure 6.10.: Node CPU usage generation using the square (green-colored) and triangle (black-
colored) pattern types. The CPU usage at a point in time t is a variate of the random
variable Y and the frequency of usage changes is realized by the random variable X.

The load pattern drawn in green is called square load pattern. For this pattern the CPU usage on
a node changes instantly. The pattern drawn in black is called triangle load pattern representing a
steadily (and almost linearly) changing CPU usage. A load pattern is a tuple LP := (Load,Type)
with Type ∈ {square, triangle}, representing the type of pattern; and Load with 5 ≤ Load ≤ 95
representing the mean of the generated node CPU usage (in %) over an experiment run. So for a
specific tuple LP := (Load,Type) the same mean CPU usage is created for any node in the cluster. The
actual development of the CPU usage, however, differs between nodes over an experiment run. For any
such pattern, the frequency of load changes is randomly varied in an interval [ 1

5s ,
1

30s ] throughout an
experiment run. More precisely, X is a random variable X ∈ {4t |4t = tn+1−tn∧ 4t ∈ R∧5 ≤ 4t ≤ 30},
representing the difference between two points in time (tn+1 − tn) for which a target CPU usage is set.
X follows a uniform distribution with variates in [5, 30]. The way the target CPU usage for tn+1 is
reached from tn is determined by the Type parameter, i.e. either the CPU usage changes instantly or
steadily.
The target CPU usage for a point in time tn is defined as the variate of a continuos random variable
Y ∈ {y | y ∈ R ∧ 0 ≤ y ≤ 100}. The probability distribution for Y depends on the desired mean load
for the specific load pattern. Figure 6.11 shows two different probability densities: the red function
represents a distribution for random variable with expectation value E[Y] = 50, the blue function
represents a distribution for a random variable with expectation value E[Y] ≈ 43. So, a desired mean
load for a particular load pattern over an experiment run (e.g. 43%) is achieved by realizing Y with
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Figure 6.11.: Two example linear probability density functions f (y) for a random variable Y . A re-
peated realization yields a mean CPU usage of 50% resp. 43.3%.

the according expectation value (e.g. E[Y] ≈ 43). In order to cover the whole range of possible CPU
usage values, the probability density is a linear function for any desired mean.11 For a mean of 50%
CPU usage it is exactly a uniform distribution, while for all other desired means it is a tilted uniform,
i.e. a linear probability distribution calculated according to basic stochastical laws:

P(n ≤ Y ≤ m) =
∫ m

n f (y)dy with f (y) = ay + b and E[Y] =
∫ m

n y f (y)dy.

The experiment is conducted by running a specific policy configuration (threshold, timelimit) ∈
{95, 90, 80, 70}×{20} ∪{ 90}×{15, 10, 8, 6} against a load pattern (Load,Type) ∈ {4, 8, 12, ..., 92, 96}×
{square, triangle}. This results in 368 runs in total with each lasting 20min. However, the results show
that the desired load means are not exactly met, which probably would require a longer experiment
run duration. Nevertheless, the results are explicit enough to make arguments on how the framework
copes with specific CPU utilization scenarios with respect to the defined metrics.

6.4.3. Results

For brevity reasons, the term "host load" is used to refer to the synthetically generated cluster CPU
usage averaged over all nodes over an experiment run. The term "VM load" refers to the cluster
CPU usage generated by VMs over an experiment run. First the impact of the threshold parameter is
examined. Multiple run configurations with differing policy threshold (from 95% to 70%), but same
timelimit (20s) have been set up and tested. The findings are now discussed. The timelimit parameter
and its effect towards the efficiency metrics are examined in the second part of the section.

Threshold Parameter In Figure 6.12a the relation between host load and resulting VM load is
shown for the triangle load pattern. Any measurement point represents a single experiment run. First,
11A normal distribution would favor variates close to the desired mean, potentially sparing occurrences of very low and very

high load. On the other hand, a "bathtub curve" (weibull probability distribution) would do just the opposite, favoring
high and low values at the expense of values in the middle of the domain. A linear density function is a reasonable
compromise.

119



6. Experimental Results

the amount of VM load clearly depends on the chosen policy threshold. This comes at no surprise
since the threshold directly affects the resource share usable by VMs. Second, the generated host load
has an recognizable effect towards the VM load. For thresholds of 95% and 90% this relation seems
quite linear (with negative slope), i.e. the fewer load is generated on physical nodes, the more CPU
resources are utilized by VMs. For thresholds of 80% and 70% the measurements follow the same
basic pattern, but the curve looks somewhat shaky.12 The same can be said for the square load pattern
shown in Figure 6.12b . For any chosen threshold, the VM load increases with a decreasing host load.

(a) Triangle load pattern

(b) Square load pattern

Figure 6.12.: Generated cluster CPU usage and resulting VM CPU usage for 20min experiment runs.
Every dot represents a single run. Different policy thresholds are depicted in different
colors.

For the square load pattern, the shaky curves for thresholds of 70% and 80% are even more obvi-
ous. A possible explanation is that there are host load ranges (0%-20% and 40%-60%) for which the
VM-Scheduler tries to start/resume two VMs (0%-20%) or one VM (40%-60%) on a node, but has
to revert/modify these allocations due to repeated policy violations. This assumption is backed by the
fact that for the range 40%-60%, the number of manipulations is 43% higher compared to the range
12The residuals for an applied linear regression are greater for 80% and 70% than for the 95% and 90% thresholds.
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of 20%-40%.13 The effect is more obvious for the square load pattern because the host load changes
instantly, rather than gradually as for the triangle load pattern, and therefore is more likely to cause
a policy violation. These shaky effects, i.e. the clear visual deviations from a linear functional rela-
tionship, may be regarded as a non-optimal configuration of the VM-Scheduler and can be avoided by
improving the feasibility estimation and local resource usage adaption.
The following Figures 6.13a and 6.13b show the translation of VM load to computed SecApp results
for the triangle and square load patterns. These figures therefore show the waste of CPU resources
due to OS overhead and manipulations. At first glance, there is a monotonic, quite linear relation

(a) Triangle load pattern

(b) Square load pattern

Figure 6.13.: VM CPU usage and resulting SecApp results for 20min experiment runs. Every dot
represents a single run. Different policy thresholds are depicted in different colors.

between VM load and computed SecApp results for all thresholds for both load patterns. That is,
the more VM load is generated, the more SecApp results are computed. Moreover, the VM load to
SecApp results conversion, i.e. how many results can be computed with a given VM load, seems to
be rather identical for all thresholds. This suggests that the conversion of VM generated CPU us-
age to benefitial SecApp results is independent from the chosen threshold. However, this can be only
13Measured for the square load pattern and threshold 70%.
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said for VM loads below 50%. Higher VM loads were not reached for, e.g., a policy threshold of 70%.

What could be seen so far by looking at the plots is that the threshold has an effect towards the VM
load, but no visible effect towards the translation of VM load to SecApp results. There are, however,
host load ranges which are better exploited by the VM-Scheduling Framework than others, which
is likely to be caused by a non-optimal configuration of the VM-Scheduler. When factoring out the
generated host load for the different thresholds, the picture becomes clearer. The efficiency metrics,
calculated as explained in Section 6.4.1, are shown in Figures 6.14a and 6.14b.

(a) Triangle load pattern (b) Square load pattern

Figure 6.14.: Efficiency metrics (see Section 6.4.1) for different policy thresholds.

For both load patterns, the VMs consume about 80 % of the usable CPU resources for every chosen
threshold (ResUsage). While the threshold affects the absolute amount of VM load, there is no impact
of the threshold towards the relative efficiency of exploiting usable resources. This observation is in-
dependent from the applied load pattern. Concerning the translation of VM load to results (VmConv),
both load patterns also behave similiar: For thresholds of 90% and 95%, the efficiency lies at about
70% and declines for the other two thresholds to about 60%. This contradicts the tentative visual
interpretation that the threshold has no impact on the translation of VM load to SecApp results. What
is now the reason for this decrease at lower thresholds? Figure 6.15, which shows the average amount
of manipulations executed for a certain threshold, clearly states that more manipulations have been
conducted for lower thresholds.14 Any manipulation and the OS overhead for booting a VM use CPU
cycles. Therefore, an increased number of manipulations leads to a the lowered efficiency concerning
VM load to SecApp results translation.

14These numbers have been obtained as an average over all experiment runs with square load pattern and timelimit 20
seconds. The averaged cluster CPU utilization was at about 47%.

122



6.4. Efficiency Experiment

Figure 6.15.: Average number of VM manipulations for different policy thresholds with an applied
square load pattern and timelimit of 20s.

Summary for Threshold Parameter As a summary the following can be stated: There is an
almost linear relation between host load and VM load for any threshold. The threshold parameter
affects the total amount of resources used by VMs. The higher the threshold, the more CPU resources
are used by VMs. The threshold does not have an impact towards the relative efficiency of exploiting
usable CPU resources on nodes in the cluster: On average about 80% of usable CPU resources15 are
used by VMs. The parameter does affect the efficiency how VM-utilized CPU resources are translated
to SecApp results.
While for higher thresholds (90%) about 70% of the optimally computable results were obtained
this percentage drops to about 60% for lower thresholds (70%). The reason for this behavior is the
increased number of manipulations for lower thresholds. The VM-Scheduler performs similiar for
both tested load patterns.

15If the buffer given by the threshold is taken into account.
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Timelimit Parameter Next the impact of the timelimit parameter is examined. Multiple policy
configurations with a timelimit ∈ {20, 15, 10, 8, 6} and a threshold of 90% have been set up and tested.
Figures 6.16a and 6.16b show the relation between host load and VM load for different timelimits.
For both load patterns there is no obvious impact of the timelimit parameter on the CPU usage of

(a) Triangle load pattern

(b) Square load pattern

Figure 6.16.: Generated cluster CPU usage and resulting VM CPU usage for 20min experiment runs.
Every dot represents a single run. Different policy timelimits are depicted in different
colors.

VMs. Furthermore, there is a linear dependency with negative slope between generated host load and
resulting VM load, i.e. the more host load is generated on nodes, the less CPU resources are used by
VMs.

The picture is different for the translation of VM load to SecApp results. This effect is depicted in
Figures 6.17a and 6.17b for the triangle and the square load pattern respectively. While at first glance
both figures also show a similiar, quite linear dependency between VM load and SecApp results for all
timelimits, a closer look reveals that a) lower timelimits seem to perform worse that higher timelimits
and b) this effect is more obvious for the square load pattern. So how can this be explained?
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(a) Triangle load pattern

(b) Square load pattern

Figure 6.17.: VM CPU usage and resulting SecApp results for 20min experiment runs. Every dot
represents a single run. Different policy timelimits are depicted in different colors.

• Lower timelimits leave less time to the VM-Scheduler to make a decision and execute a VM
manipulation. Stops are more likely to occur compared to higher timelimits, which decreases
the amount of computable results. This effect is shown in Table 6.1, which shows the averaged
number of manipulations for the square load pattern. For timelimit = 20s, 6.6 stops are per-
formed, which accounts for about 36% of all manipulations performed in this configuration. For
timelimit = 6s, 49.7 stops are performed, which corresponds to about 61% of all manipulations.
This higher share of stops for lower timelimits leads to a decreased efficiency in translating VM
load to computed SecApp results.

• According to the numbers given in Table 6.1, also the total number of manipulations rises with
a decreasing timelimit. With an increasing number of manipulations, the OS and manipulation
overhead leads to a decreased efficiency in translating VM load to computed SecApp results.
The reason for the dependency between timelimit and number of manipulations is the "trig-
gerSensitivity", which is discussed later in Section 6.4.3.
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VM Manipulations Triggers Fired
Timelimit (s) Mig Susp Stop Global Local
6 12.5 18.8 49.7 23.9 17.4
8 13.9 11.3 33.8 25.3 7.7
10 15.4 12.7 22.3 29.5 4.3
15 7.2 8.2 15.9 17.1 2.1
20 6 5.6 6.6 12.9 0.25

Table 6.1.: Number of VM manipulations and fired triggers averaged over all experiment runs for
square load pattern and policy threshold of 90%.

• Another hint is given in Table 6.1: Not only the total amount of manipulations rises with de-
creasing timelimit, but also the number of locally triggered kills. While it seems natural that
with more manipulations taking place also the amount of failed manipulations rises, the share of
aborted manipulations is higher for timelimit = 6s (about 17%) than for timelimit = 20s (about
1%). This can be attributed to a bad feasibility estimation and leads to a decreased efficiency in
translating VM load to computed SecApp results.

• The reason why this effect is more obvious for the square load pattern is that an instant and
persistent host load change is more likely to cause a policy violation and therefore manipulations
than the gradual host load change applied in the triangular load pattern. This is due to the global
trigger mechanism and clearly backed by data given in Table 6.2. So, more manipulations for
the square load pattern decrease the efficiency of translating VM load to computed SecApp
results.

VM Manipulations
Timelimit (s) Square Load Triangle Load
6 81 40.9
8 59 31.8
10 50.4 26.2
15 31.3 15.1
20 18.2 9.6

Table 6.2.: Number of VM manipulations averaged over all experiment runs for policy threshold of
90%.

The shown plots indicate that there is no obvious impact of the timelimit towards the usage of free CPU
resources, but a certain, not yet quantified effect towards the number of computed SecApp results.
The efficiency metrics shown in Figures 6.18a and 6.18b make these effects more explicit. For the
efficiency of exploiting usable CPU resources (ResUsage), the timelimit of 20 seconds performs
best for both load patterns; about 80% of usable CPU resources are exploited by VMs. There is a
slight decline for other timelimits, which all still reach at least 70% efficiency. So there is a certain,
yet limited impact of the timelimit parameter towards the efficiency of exploiting usable resources.
Concerning the translation of VM load to computed SecApp results (VmConv), there is a considerable
decline from 71% for timelimit = 20s to 52% for timelimit = 6s for the square load pattern. For the
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triangle load pattern this efficiency drops from 71% for timelimit = 20s to 60% for timelimit = 6s.
This decline reflects the relevant impact of the timelimit parameter towards the efficiency of translating
VM load to SecApp results. Comparing this impact for the two load patterns shows that for any
timelimit this efficiency is worse for the square load pattern which is due to the higher number of
manipulations for this load pattern.

(a) Triangle load pattern (b) Square load pattern

Figure 6.18.: Efficiency metrics (see Section 6.4.1) for different policy timelimits.

Summary for Timelimit Parameter As a summary it can be stated that the timelimit parameter
has a minor impact towards the efficiency of exploiting usable resources. The efficiency is at about
80% for timelimit = 20s and declines to about 70% for timelimit = 6s. This holds for both tested
load patterns. The timelimit parameter does, however, have a considerable impact on the efficiency of
translating VM load to computed SecApp results. Here, the usage of low timelimits has an adverse
effect on the number of computed SecApp results. This adverse effect exists for both load patterns but
is more evident for the square load pattern.

Job Length Concerning the declining VmConv metric for lower timelimits, one additional aspect
needs to be considered. So far, these metrics have been calculated using the assumption that the
duration for computing a single result by a VM ("job length") is 2.5min. There are, however, appli-
cations (e.g. ALICE Offline batch jobs - AliEn [10]) that may take up to an hour to complete a result
computation. For such a job length, the loss induced by stopping a running computation clearly is
weighing in heavier, with an adverse effect towards the efficiency measure VmConv. A recalculation
of this efficiency for an example job length of 5min, i.e. two successive, completed jobs count as
one, demonstrates this effect: For the square load pattern, a timelimit of 6 seconds and a job length
of 2.5min, a VmConv efficiency of 52% could be achieved. By doubling the job length this efficiency
drops to 40%. The decline in efficiency for lower timelimits is relevant and becomes more important
the longer an average result computation takes. This effect of course also applies to the efficiency
metrics calculated for the threshold experiment.
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Trigger Sensitivity As shown before (see Table 6.2), there is a dependency between the number
of manipulations and the timelimit parameter. This parameter reflects the time span for which the
resource usage is allowed to exceed the threshold with a VM using this resource. The earlier a global
trigger fires, the more time is left for decision and execution phases of the GR. This means that
more time-consuming but gentler manipulations can be chosen. However, not every exceedance of
the threshold automatically leads, if not handled by GR and Local Trigger Unit, to an invalidation of
the respective policy. Both the resource usage variation caused by MainApp and the RUA may cause
the total resource usage to drop below threshold again. This means that an early global triggering,
i.e. a high global triggerSensitivity16, allows for gentler manipulations, but also increases the occur-
rence probability of globally fired triggers, thereby increasing the total number of manipulations. Late
triggering, i.e. a low global triggerSensitivity, decreases the occurrence probability of globally fired
triggers and leads to fewer manipulations. However, late triggering leaves fewer time for decision
and execution phases of the GR, thereby leading to less gentle manipulations. So the choice of the
triggerSensitivity is a trade-off. However, it is not reasonable to choose the same triggerSensitivity
for all timelimit configurations. For any timelimit, the triggerSensitivity should be chosen such that
upon triggering there is still enough time left to execute a set of manipulations. For a low timelimit
of 6 seconds, the global trigger therefore must fire earlier than for a timelimit of 20 seconds. This
is the reason why lower timelimits cause more manipulations. In Figure 6.19 the effects of different

Figure 6.19.: Effect of triggerSensitivity (see Table 6.3) on VM manipulations and triggering. The
effect is shown for a specific setup LP(45, square) and PCPU(90, 8).

triggerSensitivity levels are shown for a specific experiment run.17 The triggerSensitivity levels (Low,
Mid, High) refer to the ones defined in Table 6.3. For a low sensitivity, few global triggers have fired
(29) and most manipulations were stops (5 migrations, 2 suspends, 50 stops). Quite the opposite can
be seen for the high sensitivity. Here, a large number of global triggers fired (226) and many manipula-
16As a reminder, the triggerSensitivity was defined in Section 4.4.3.1 by the number of subsequent, failed model-checks for

a policy. A high number corresponds to a low triggerSensitivity.
17Run configuration: 20min, PCPU : (90, 8), Load Pattern: (square, 50).
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tions (152 migrations, 39 suspends, 165 stops) were executed. The excessive amount of manipulations
led to bottlenecks not sufficiently predicted by the Feasibility Estimator (FE) and consequently to a
considerable amount of locally triggered kills (36). The reasonable compromise therefore is to make
a trade-off, i.e. to use the medium sensitivity as given in Table 6.3. In the experiment this medium
sensitivity allowed for both having less manipulations than with high triggerSensitivity, but also for
choosing not only stop manipulations (26 migrations, 19 suspends, 29 stops). This contributes to a
better SecApp result computation. This medium sensitivity was used in all experiments discussed so
far.

Timelimit (s)
Sensitivity 25 20 15 10 8 6
Low 6 5 4 3 2 1
Mid 7 6 5 4 3 2
High 8 7 6 5 4 3

Table 6.3.: TriggerSensitivity configurations (in s) for different timelimits.

Local Resource Usage Adaption In conceptual work, Section 4.4.4, it has been argued that a
subsidiary framework design, i.e. to handle resource usage generated by SecApps locally as far as
possible, helps to relieve the GR from making global changes of the allocation pattern. If resource
utilization can be adapted locally, less globally triggered policy violations occur, thereby decreasing
the computational effort needed by GR and reducing the number of executed manipulations. Accord-
ing to the proposed GR algorithm, this in general will lead to the choice of gentler manipulations and
less locally triggered kills, which in turn increases the efficiency of computing SecApp results. An
experiment has been conducted where the framework ran with disabled resource usage adaption.

(a) Policy violations (b) Local kills

Figure 6.20.: Effect of local resource usage adaption by RUA on the number of locally triggered
kills and globally triggered policy violations. The effect is shown for a specific setup
LP(45, square) and PCPU(90, 8).

Figure 6.20a shows the number of globally triggered policy violations depending on the applied trig-
gerSensitivity for both enabled and disabled resource usage adaption for a specific experiment run. It
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can be seen that a local RUA decreases the amount of policy violations the GR has to handle, which
in turn decreases the number of globally commanded manipulations. Figure 6.20b shows the effect of
these setups for locally triggered kills of VMs and/or aborted VM manipulations. Again, it is clearly
visible that an enabled local resource usage adaption decreases the number of locally triggered kills.
The conceptual decision to have a locally acting functional unit (RUA) is thereby confirmed to be
appropriate for the purpose of decreasing the number of globally handled policy violations.

6.4.4. Summary

In this experiment it has been examined how the VM-Scheduling Framework copes with a changing
usage of resources over which the framework does not have full control.18 The CPU was chosen as
a prototypical resource whose usage also depends on the MainApp. It was evaluated what impact a
policy configuration, i.e. settings for threshold and timelimit parameters, has towards the goals of
increased cluster utilization and generated SecApp result output. In order to represent a wide range of
potential MainApps, synthetic CPU usage patterns were generated and applied to a test environment.
It could be shown that the amount of resources which were exploited by VMs has an almost linear
relation (with negative slope) to the synthetically generated CPU usage. This property of linearity
could be observed independently from the chosen threshold and timelimit.19 Also, it was shown that a
higher threshold corresponds to higher total resource usage by VMs. When factoring out the buffer, i.e.
the amount of non-usable resources determined by the threshold, the share of exploitable resources
used by VMs was between 70% and 80% for any chosen timelimit and threshold. Concerning the
translation of exploited resources to actually computed SecApp results, the threshold parameter has a
minor impact. While for higher thresholds (90%) about 70% of the optimally computable results were
obtained, for lower thresholds (70%) this percentage drops to about 60%. The timelimit parameter
also has an impact towards the translation of exploited resources to computed results. There is a
decline from a relative efficiency of 71% for the timelimit of 20 seconds to 52% for the timelimit of
6 seconds. For both parameters threshold and timelimit, this decline depends on the average SecApp
result computation time. The larger the computation time, the less efficient is the translation of used
resources to actually computed results.
These findings suggest that using higher timelimits and higher thresholds will yield better results with
respect to the thesis goals of increasing the cluster usage and generating additional result output. To
see the full picture, it is now necessary to evaluate the effect of these parameters towards the amount
of interference caused for a MainApp.

6.5. Interference Experiment

To evaluate the amount of interference caused by running SecApps in a cluster it is not sufficient to
run a synthetic CPU utilization pattern that represents a MainApp. Instead, an application needs to
be run which has a measurable performance metric. Using this metric the amount of interference
caused by additionally run SecApps can be assessed. The MainApp used in this experiment not only
generates a substantial amount of CPU usage but also considerable network traffic. This requires the
usage of dynamic policies for the resources CPU and NetOut. Again it is evaluated what effect the

18For comparison, the framework has full control over the resource AllocVM.
19This statement has not been proven mathematically, but was derived visually. Also, only the property of linearity, not the

exact equation and the residuals of a regression are independent of the policy parameters.
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policy configuration, i.e. the parameters timelimit and threshold have towards the amount of generated
interference. More specifically, the following questions are targeted in this experiment:

• Are there policy configurations for which no interference20 exists?

• If interference can be avoided, will still additional cluster usage and SecApp results be gener-
ated?

• Can the amount of interference be tuned by adapting timelimit and threshold parameter of poli-
cies?

6.5.1. Experiment Layout

The experiment is executed in the cluster environment used for the previous experiments (see Section
6.1). Each of the 24 worker nodes is in the scope of the VM-Scheduling Framework, i.e. a static
policy of PAllocV M : (2, 25) is associated with every node. Additionally, a dynamic policy PCPU ,
which operates on the CPU resource, and another dynamic policy PNetOut, which targets the outgoing
network traffic, are associated with each node. Different configurations for these policies are applied
in this experiment. The leases and VMs used in this experiment are identical to the ones used in the
"Policy Modification Experiment" (see Section 6.3.1).

MainApp Design The MainApp used in this experiment consists of two independent tasks that run
on each node, one that is CPU-bound and another one that is network-bound. The CPU-bound task is a
GCC compiler benchmark running in a closed loop. The number of completed loops having compiled
a specific amount of source code, summed over all nodes for a run, is used as the performance metric
for this task. The metric is referred to as "CPUResults". The network-bound task is the copying of
data from experiment worker nodes to target nodes which are not in the scope of the VM-Scheduling
Framework.21 The copying is realized by sending data from /dev/zero on a worker node to /dev/zero
on the target host using out-of-the-box Linux tools "dd" and "netcat".22 The amount of copied data,
summed over all worker nodes for a run, is used as the performance metric for this task. The metric is
referred to as "NetResults". So both tasks together are the MainApp. This MainApp has two separate
performance metrics, CPUResults and NetResults.

In order to avoid a permanent full saturation of the CPU and NetOut resources (i.e. Usageres(k, k) =
100) on the nodes, which would prevent any SecApps from running in the cluster, the following is
done: The GCC compiler benchmark uses only one of the two available CPU cores. The copying task
is configured such that the data rate, i.e. the usage of NetOut, varies over time. This also causes a
variation of the CPU usage caused by the copying task. For each node the applied variation pattern is
different. However, averaged over the duration of an experiment run, every node has a NetOut usage
of about 50% and has copied the same amount of data.23. Using this scheme, both the CPU utilization
and the NetOut utilization on every node in the cluster vary over time without inter-node correlation.

20Interference was defined as a statistically significant difference between performance metric values.
21The target nodes have not been mentioned yet in the experiment layout and are chosen such that all worker nodes can

simultaneously saturate their outgoing network interfaces. Every copying worker node has its own target node and it is
ensured that no contention occurs at switches.

22By using this method the disk resources on the nodes are not involved which otherwise could be a bottleneck limiting the
data-rate.

23The variation of the NetOut utilization is realized using the method described in Section 6.4.2. Actually a NetOut load
pattern LP := (50, square) is applied. The Linux tool "pv" is used to cap the network utilization.
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Nevertheless, the values obtained for the performance metrics are constant24 for any experiment run
without SecApps.

SecApp Design Any VM used in the experiment hosts a GCC compiler benchmark as described for
the previous experiments (see Section 6.3.1). Additionally, each VM runs a network-stressing task,
which is implemented using the same method (dd/netcat) like the one described for the MainApp.
However, no variation of the data-rate is applied but any running VM pushes data over the network as
fast as it can.25 The metric used for assessing SecApp result computations is the number of completed
compiler loops. This metric is referred to as SecApp results.

The experiment compares the metrics CPUResults and NetResults for experiment runs without run-
ning SecApps ("No-VM runs") with those where additional SecApps were run ("With-VM runs"). An
experiment run takes 7 minutes. At first 8 No-VM runs are conducted. CPU utilization, CPUResults
and NetResults are recorded as a baseline to be compared against With-VM runs. For each policy
configuration (threshold, timelimit) ∈ {95, 90, 85, 80, 75} × {25, 15, 8} for the two policies PCPU and
PNetOut three With-VM runs are performed, resulting in a total of 45 With-VM runs. The leases are
submitted at the beginning of a With-VM run. For every such With-VM run, the CPU usage of the
nodes, CPUResults, NetResults and computed SecApp results are recorded.

6.5.2. Results

As baseline for evaluating the impact of SecApps towards the MainApp, the statistics gathered for the
No-VM runs are used. The mean and standard deviation of CPUResults and NetResults for 8 runs
are shown in Table 6.4. These values translate to an average cluster CPU utilization of 54% and an
average NetOut utilization of about 52%, i.e. 522 MBit/s per node, for a No-VM run.

Mean Standard Deviation Resource Usage (%)
NetResults 666129 MB 1393 MB 52
CPUResults 344.25 4.1 54

Table 6.4.: Mean and standard deviation of performance metrics and resulting cluster resource usage
for No-VM runs

Since CPUResults and NetResults for a single No-VM run are aggregated values over all nodes in
the cluster, a normal distribution for these values can be assumed according to the central limit the-
orem. The specific normal distributions for CPUResults and NetResults are representatives for the
performance of a non-interferred MainApp. To evaluate the interference caused by SecApps, the re-
spective values gathered for With-VM runs need to be tested against these distributions. This test is
done in two different ways: First, it is evaluated whether there is a statistically significant deviation
for With-VM runs with a specific policy configuration. Second, it is evaluated whether there is a
dependency between the amount of interference and policy parameters settings. A null hypothesis
is formulated to test for statistically significant differences between the performance metric values

24Constant with a certain standard deviation when considering multiple runs. This deviation is provided later on in Table
6.4.

25The virtualization product used in all experiments (VirtualBox 3.14) showed a practical limitation of about 250MBit/s
throughput per ethernet interface. This was the network throughput created by a single VM in this experiment.
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obtained for No-VM runs and With-VM runs :

H0 : µ0 = µ1

H1 : µ0 " µ1
(6.7)

where H0 represents the assumption that no statistically significant difference for a metric (CPURe-
sults, NetResults) exists between With-VM and No-VM runs for a specific policy configuration. H1
therefore represents the opposite assumption. This hypothesis H0 now has to be tested for every policy
configuration to find out whether there is a statistically significant interference with the MainApp. A
significance niveau of 5% is chosen according to common scientifc practice.

An important aspect needs to be discussed before proceeding: By testing for H0 a conclusion like
"there is no interference for this policy configuration" cannot be drawn. By rejecting H0 it can only
be stated that there is interference, though it is not possible to prove that there is no interference for
a policy configuration. This problem of hypothesis design is known [13, 34] and non-inferiority and
equivalence trials were proposed to circumvent this issue. These, however, require an assumption
on what is considered an acceptable difference of the metric means for the control groups. For the
MainApp in this experiment no such assumption can be made. Therefore, the proposed hypothesis
design does not provide statistical proof, but nevertheless a plausible hint on the existence of interfer-
ence. It will not be shown that there is no interference for a policy configuration, but rather:
Is there enough statistical evidence to assume that there is interference for a specific policy config-
uration? If so, then the existence of interference is shown. If not, then the hypothesis ("there is no
interference") could not be rejected using this statistical test. The retaining of H0 then translastes to:
The probability that the values found for With-VM runs also could have been obtained for No-VM
runs is too high to reject H0.

For testing the significance a "two-sample unpooled t-test for unequal variances" is used. Tables 6.5a
and 6.5b show the results (t-values) for these significance tests referring to CPUResults and NetRe-
sults respectively. The values highlighted with grey color represent a retained H0, the other values
stand for a rejected H0, i.e. an accepted H1.

Timelimit (s)
Threshold (%) 8 15 25
75 47.28 20.9 9.28
80 4.4 0.74 0.2
85 1.8 0.1 0.01
90 0.01 0.01 0.01
95 0.01 0.01 0.01

(a) t-Values for CPUResults

Timelimit (s)
Threshold (%) 8 15 25
75 46.78 94.06 20.36
80 2.52 21.62 17.1
85 2.08 5.62 2.56
90 1.94 3.14 3.06
95 1.24 1.42 1.4

(b) t-Values for NetResults

Table 6.5.: Two-sided t-test values for different policy configurations and performance metrics.

For CPUResults given in Table 6.5a this means: For every policy configuration PCPU except (75,8),
(75,15) and (75,25) interference is shown. For (75,8), (75,15) and (75,25) the existence of interference
could not be proven. For NetResults given in Table 6.5b this means: For every policy configuration
PNetOut except (75,8), (75,15), (75,25), (80,15), (80/25) and (85,15) interference is shown. For (75,8),
(75,15), (75,25), (80,15), (80/25) and (85,15) the existence of interference could not be proven.
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This leads to the interpretation: There are policy configurations for which the MainApp is interferred.
There are other policy configurations (threshold of 75% for both PCPU and PNetOut) where no inter-
ference could be found. The latter can be regarded, despite of the hypothesis design aspect discussed
above, as a strong hint that there are policy configurations ((75,8), (75,15), (75,25)) which do not lead
to interference. The values for which H0 could not be rejected are those where fewer resource shares
were given to SecApps.
This observation brings up the question whether there is a dependency between the policy parameter
settings and the amount of interference caused. The values for the amount of interference are given
in Table 6.6 for the metrics CPUResults and NetResults. These values clearly state that for any given
timelimit, the amount of interference strictly increases with the policy threshold.26 This monotonic
relation applies to both CPUResults and NetResults. So, choosing a lower threshold for a policy will
decrease the amount of interference. This makes the threshold parameter an appropriate configuration
item to control interference. It is clear that choosing a too low threshold might lead to a situation

Timelimit (s)
Threshold (%) 8 15 25

75 2.21 4.46 6.75
80 8.33 14.71 18.67
85 21.5 24.38 41.25
90 34.25 42.71 43.88
95 48.21 50.08 51.59

(a) CPUResults

Timelimit (s)
Threshold (%) 8 15 25

75 1060 27 1701
80 5205 2136 2257
85 9172 4600 6209
90 9901 8180 9508
95 14411 12425 14125

(b) NetResults (in MB)

Table 6.6.: Amount of interference for different policy configurations.

where no VMs are run at all. So one could suspect that for the policy configurations where no inter-
ference was observed ((75,8), (75,15), (75,25)) this could have happened. This, however, is not the
case. In Figure 6.21 it can be seen that additional CPU utilization (7%) and SecApp results (24) were
generated for the policy configuration (75,15). But this figure also clearly shows that using a higher
threshold enhances the benefits of the VM-Scheduler, i.e. additional cluster utilization and generated
SecApp results, considerably. When using the VM-Scheduler, there is a trade-off to be made between
the amount of interference tolerated and benefit from VM-Scheduling expected. This trade-off is re-
alized by choosing approriate policy configurations and should be geared towards avoiding strong
interference, i.e. to keep a MainApp functional according to pre-defined Service-Level Targets (SLT)
metrics.
For the timelimit parameter, such a clear conclusion ("interference and VM benefit scale with thresh-
old") can not be drawn. As shown in Table 6.6, for metric CPUResults the amount of interference
strictly increases with the chosen timelimit. Nevertheless, for NetResults this statement does not hold.
For timelimits of 15 and 25 seconds the amount of interference also increases with the timelimit. The
timelimit of 8 seconds stands out, however. It generates, except for threshold 75%, the highest amount
of interference. A possible explanation is that for low timelimits there are more manipulations than
for higher timelimits due to triggerSensitivity. Such manipulations like migration and suspend, but
also successive starts and resumes carry considerable overhead towards network usage, which may be
the cause for the high amount of interference for the timelimit of 8 seconds.

26A statistical test for significance or even curve fitting is omitted at this place. The observations are used only to demon-
strate some basic insight into the effect of parameters.
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Figure 6.21.: Cluster CPU exploited by VMs and accordingly computed SecApp results for different
policy thresholds.

Three conclusions can be drawn from the observations concerning the timelimit parameter:

• The impact of network manipulations has been underestimated and should be re-weighted in
the Feasibility Estimator (FE). This should result in prefering stops over e.g. suspends of VMs
more often.

• For the experiment layout, this means that more timelimit configurations (e.g. 10, 20, 40 sec-
onds) should have been tested to provide more factual data to investigate. Identical configura-
tions for PCPU and PNetOut had been chosen in the current experiment layout. Differing con-
figurations for these (e.g. a lower threshold for PNetOut than for PCPU) could yield interesting
results.

• The amount of interference increases with the timelimit for the CPUResults metric. For the
metric NetResults, choosing a lower timelimit (15 seconds) yields a lower amount of interfer-
ence than a higher timelimit (25 seconds). However, choosing a too low timelimit (8 seconds)
comes with a considerable penalty towards the amount of interference concerning NetResults.

The effect of the timelimit parameter towards the benefit of the VM-Scheduler, i.e. computed SecApp
results and cluster utilization, is exemplified in Figure 6.22, which depicts these values retrieved
for a threshold of 85%. The number of SecApp results increases with rising timelimits. The same
relation holds for the cluster utilization. Regarding the feasibility of the timelimit parameter as a
configuration item to make a trade-off between interference and VM-Scheduler benefit, the following
can be said: The higher the timelimit, the more SecApp results and additional cluster utilization is
generated. For CPU-bound tasks a higher timelimit will also lead to a higher amount of interference.
For network-bound tasks such a relation could not be shown. So, for CPU-bound MainApps the
timelimit parameter can be used to make a trade-off between amount of interference and benefit of
the VM-Scheduler such that no strong interference occurs. For network-bound tasks the timelimit
parameter is not an appropriate configuration item for making this trade-off.
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Figure 6.22.: Cluster CPU exploited by VMs and accordingly computed SecApp results for different
policy timelimits.

6.5.3. Summary

It could be shown that there are policy configurations for which no (statistically significant) inter-
ference can be observed, which increase the cluster utilization and lead to the generation of SecApp
results. The effect of the policy parameters timelimit and threshold towards the amount of interference
was examined. A monotonic relation between the threshold value and the amount of interference was
observed. This makes the policy threshold an appropriate configuration item to control interference
and avoid strong interference for a MainApp. Results for the timelimit parameter are indifferent. Con-
cerning the amount of interference generated towards a CPU-bound MainApp, there is a monotonic
relation between timelimit and amount of interference. No such relation was found for the amount
of interference towards a network-bound application. Based on these findings, it can be stated that
interference can, in a controlled manner, be modified by the threshold parameter. The timelimit pa-
rameter can be used to control interference if the MainApp is not network-bound. More experiments
and presumably a better feasibility estimation are needed to assess the effect of the timelimit parame-
ter towards the interference of a network-bound MainApp.

6.6. HLT-Chain Experiment

In the previous experiments the chosen approach was evaluated for different host load patterns (see
Section 6.4) and a specific, yet constructed MainApp (see Section 6.5). Such in-situ experiments, as
good as they may be planned, can provide arguments but no certainty. The VM-Scheduler therefore
has to be tested against a MainApp, whose correctness of functionality is specified using a perfor-
mance metric. Only such a specification allows to make a statement on whether there are benefits in
using the VM-Scheduler with a specific MainApp while at the same time preventing strong interfer-
ence. In this experiment, the VM-Scheduler is evaluated against the HLT-Chain application.
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The goal of this experiment is to show that:

1. SecApps can run in parallel to the HLT-Chain without causing strong interference.

2. The average cluster CPU usage thereby is improved.

3. Additional results can be computed by SecApps run inside of VMs.

In a first sub-experiment both the HLT-Chain and the VM-Scheduler are running in parallel for a
certain time and appropriate metrics are evaluated with respect to the stated goals.
A second sub-experiment is made to assess whether a more demanding scenario with sudden cluster
utilization changes can also be coped with by the VM-Scheduler. A typical case is the starting and
stopping of the HLT-Chain, something that happens multiple times a day at A Large Ion Collider
Experiment (ALICE) and should not be affected by running SecApps. Another typical scenario is
the starting and stopping of the VM-Scheduler at runtime of the HLT-Chain. To evaluate the impact
of such cluster-wide changes, a sequence of starting and stopping both the VM-Scheduler and the
HLT-Chain is is tested in the second sub-experiment.

6.6.1. HLT-Chain Application

A reminder about the properties of the HLT-Chain is needed before taking a look at the sub-experiment
layout. The HLT-Chain application is soft real-time application used for processing physics data gath-
ered at the ALICE experiment in CERN. The HLT-Chain has a distributed, hierarchical structure. The
structure makes up of components that are placed on physical nodes and communicate with each other.
Data is inserted at components representing the leafs of the hierarchy and is subsequently processed
and propagated throughout the hierarchy until fully processed and stored by Data Acquisition (DAQ).
The hierarchy and several processing paths in distinct colors are shown in Figure 6.23.

Figure 6.23.: Dataflow for the HLT-Chain application. Data arrives at leaf nodes, is processed towards
the root node along (here: colored) data paths and is finally stored by Data Aquisition
(DAQ).
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According to the application’s experts, the proper functioning of the HLT-Chain can be assessed by
evaluating the number of events waiting to be processed during a HLT-Chain run. "Event" in this con-
text is the basic unit of data to be processed by the HLT-Chain MainApp. The metric to be analyzed
therefore is the queue-length of waiting events. The application status is ok unless the queue-length
reaches 3000 at any point in time during an HLT-Chain run. The HLT-Chain is not tested in its na-
tive environment, the HLT-Cluster of the ALICE experiment. When the ALICE experiment entered
production state in November 2010, rules became active that disallow software testing and evalua-
tion in the HLT-Cluster. It is the recommended practice for software developers to test HLT-Chain
components not in the HLT-Cluster, but in a test cluster. A software package was provided for eased
installation of the HLT-Chain in test clusters. Additionally, a software module called "file-publisher"
allows to replay recorded collision data with the original data rate. The file-publisher is the de-facto
standard for testing the HLT-Chain. This guideline, using the file-publisher in a test cluster, was
followed to evaluate the framework for this thesis.

6.6.2. Experiment Layout

For this experiment 25 nodes are used from the environment27 presented in Section 6.1. Each node
hosts a number of HLT-Chain components dedicated to specific physics computations like cluster
finding, tracklet finding, tracking and merging. The HLT-Chain in this experiment is configured to
process 100 events per second. This means that short term variations (on scale of seconds) for this
frequency can occur but in the long run (on scale of minutes) the file-publisher seeks to adjust the
input data rate such that for a 30min run an averaged frequency for incoming events of 100Hz is
achieved. The precise configuration of HLT-Chain and the allocation of its components to physical
nodes is given in Section A.1. Every node running the HLT-Chain application is also a target node for
the VM-Scheduler. This is realized by associating each node with a static policy of PAllocV M : (2, 10)
or PAllocV M : (0, 10) respectively, depending on whether running SecApps in an experiment run is
desired or not. The leases, VMs and SecApp used in this experiment are identical to the ones used in
the "Policy Modification Experiment" (see Section 6.3.1).
In the first sub-experiment two different setups are compared. The HLT-Chain is run for 30 minutes
without SecApps ("No-VM run") in the first setup. In the second setup, the HLT-Chain is run again for
30 minutes, this time with additionally run SecApps ("With-VM run"). At t0 = 0s the VM-Scheduler
is given access to the physical nodes by switching from PAllocV M : (0, 10) to PAllocV M : (2, 10) which
causes leases to be provisioned. Policies PCPU : (95, 15), PNetOut : (75, 15) and PNetIn : (75, 15) are
associated with every node. The metrics measured are the CPU utilization per node, the MainApp
performance metric queue-length and the number of computed SecApp results.
In the second sub-experiment, the HLT-Chain and the VM-Scheduler are alternatingly started and
stopped. A run consists of a sequence of actions ∈ {StartChain, StartVM, StopChain, StopVM}. The
"StartChain" and "StopChain" actions are realized by using the HLT-Chain command-line interface.
The "StartVM" and "StopVM" actions are realized by switching from PAllocV M : (0, 10) to PAllocV M :
(2, 10) and vice versa for all nodes of the cluster. A run takes about 40 minutes. The metrics measured
are the CPU utilization per node and the MainApp performance metric queue-length. The number of
SecApp results is not recorded because the repeated starting and stopping of the VM-Scheduler does
not allow a reasonable interpretation of this metric.

27An identically configured physical node was added because of HLT-Chain requirements, thus having 25 nodes in this
experiment.
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6.6.3. Results

In the first sub-experiment, the queue-length averaged over an experiment run was measured.28 For
the first setup (No-VM run), the average queue-length was µ = 8.93 with a variance of σ2 = 9.09. The
queue-length did not reach 3000 for any single measurement. So the HLT-Chain performed according
to its specification.29 For the second setup (With-VM run) the average queue-length was µ = 10.72
with a variance of σ2 = 28.71. This difference, especially the increased variance, suggests that Se-
cApps have an influence on the MainApp for the With-VM run. The important question is, however,
whether this is relevant, i.e. whether there is strong interference. Did the additional running of Se-
cApps render the application’s performance inacceptable? In Figure 6.24 the queue-length is shown

Figure 6.24.: Queue-length of HLT-Chain in 30min With-VM run. Displayed resolution is one queue-
length value per second.

for the duration of the With-VM run. The highest value observed for the queue-length was about
350. Therefore, no strong interference occurred according to the criterion "queue-length < 3000". In
Figure 6.25a the change in cluster CPU utilization comparing both setups is depicted. The average
utilization in a No-VM run was 48.69 % and rises to 79.27% for the With-VM run. This effectively
improves the total cluster load by about 63%. Figure 6.25b shows two heatmaps for the CPU usage on
single nodes averaged over the experiment duration, thereby detailing the change in the cluster usage
between the two setups. Each box in these figures represents a physical node and its coloring shows
the average node CPU utilization over an experiment run. The upper heatmap shows the first setup
where no SecApps were run. It can be seen that the CPU usage is not spread evenly over all nodes.
There are nodes which have a higher CPU usage and others with a lower one. This is due to the HLT-
Chain’s component topology. The lower heatmap in Figure 6.25b represents the average node CPU
usage for the second setup (With-VM run). It can be seen that not only a higher load could be obtained
for any single node and the cluster in total, but also that the differences in CPU utilization on nodes

28The measurement interval was ∆t = 1s. The queue-length is treated in a unitless form.
29Multiple runs were carried out with this very configuration beforehand to test the stability of the HLT-Chain (see Sec-

tion A.1). With an inter-run variance of σ2 = 5.47 for five runs and all runs performing according to specification, the
HLT-Chain was considered to run stabily.
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(a) Cluster CPU usage (b) Node CPU usage

Figure 6.25.: Average CPU usage in 30min HLT-Chain run with and without additional VMs.

in the upper heatmap could be levelled. This additional cluster usage generated by running SecApps
allowed an additional 158 results to be computed by SecApps. With (2.5min × 1V M) needed for a
single result, this corresponds to the amount of results computable by 14 VMs running at full scale
for 30 minutes. So assuming that the full cluster could have been used by VMs this is an efficiency
of 14/50 = 28%.30 Taking into account that HLT-Chain utilized about 50% of the total available

Figure 6.26.: Number of VM manipulations distributed over 30min HLT-Chain run, accumulated per
25s time bin.

30A VM uses one CPU core. With 25 nodes having two CPU cores in total there are 50 CPU cores.
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CPU resources, the efficiency of SecApp result computation31 even rises to about 14/25 = 56%. The
behavior of the VM-Scheduler in this experiment, i.e. the distribution of VM manipulations over the
experiment runtime, is shown in Figure 6.26 using aggregations for time bins of 25 seconds. The
figure shows that the biggest amount of manipulations was executed in the first 300 seconds of the
experiment, declining to zero after 400 seconds. This set of manipulations consists of starts (34) and
very few migrations (3). This means that in this experiment there was a certain lead-in phase where
the scheduler tried to find suitable allocations for VMs and provisioned the respective leases. After
this lead-in phase, the local resource usage adaption was sufficient to guarantee policy compliance
and no further manipulations were needed.

In the first sub-experiment it was shown that there is a policy configuration which enables the run-
ning of SecApps without causing strong interference to the HLT-Chain, which increases the cluster
CPU usage and allows the computation of additional SecApp results. The second sub-experiment
now evaluates the VM-Scheduler in a more demanding scenario with a sequence of of actions ∈
{StartChain, StartVM, StopChain, StopVM} applied in an experiment run taking 40min. The se-
quence of actions is given in Table 6.7. Figure 6.27 shows the development of the queue-length

Figure 6.27.: Queue-length of HLT-Chain in 40min experiment with a sequence of actions applied
(see Table 6.7). Displayed time resolution is one queue-length value per second.

Action StartChain StartVM StopChain StartChain StopVM StopChain
Time(s) 75 310 1000 1400 2000 2250

Table 6.7.: Sequence of actions for 40min HLT-Chain experiment.

31This efficiency does not take into account the buffer defined by the threshold setting. If the efficiency is calculated ac-
cording to the metrics defined in Section 6.4.1 then ResUsage = 66% and VmConv = 42%. However, these efficiencies
do not consider the additional restriction set up by PNetOut and PNetIn.
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metric for this sub-experiment. The action sequence is also shown in this figure together with the
point in time when an action was applied. It can be seen that the queue-length metric never exceeds
400. This means that according to the criterion mentioned before ("queue-length < 3000"), there is no
strong interference towards the HLT-Chain. Figure 6.28a shows the development of the cluster CPU
usage over the duration of the sub-experiment. The usage rises from close to zero to about 45% at
start of HLT-Chain at t = 75s.32 The additional start of SecApps beginning at t = 310s improves the

(a) Cluster CPU usage (one value/0.5s)

(b) VM manipulations (accumulated per 10s time bin)

Figure 6.28.: Cluster CPU usage with the sequence of actions (above) and VM manipulations (below)
in 40min HLT-Chain experiment.

32The starting of the HLT-Chain consists of multiple successive phases. The starting time of the final phase is used as the
reference point "StartChain".
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CPU usage to about 81% until the HLT-Chain is stopped at t = 1000s. At this point, a fast drop of
CPU usage to about 40% occurs. This comes at no surprise since the CPU usage generated by the
HLT-Chain vanishes. In Figure 6.28b the number and type of according VM manipulations can be
seen. When the chain is stopped at t = 1000s several suspends (19) occur. This is presumably due
to that fact that stopping of HLT-Chain itself poses an additional short-term spike in CPU or network
usage which causes policy violations and resulting manipulations. The VM-Scheduler recovers the
CPU usage drop by provisioning queued leases, i.e. starting and resuming VMs. This can be seen
in Figure 6.28b that details the manipulations at that point in time (t > 1000s) and by looking at the
cluster usage Figure 6.28a: The usage rises up to about 70% again, this time only by running SecApps
with a still stopped HLT-Chain. This shows that the framework achieves a high cluster CPU usage
whether HLT-Chain is running or not and automatically adapts to changes in HLT-Chain run state. At
t = 1400s the HLT-Chain is started again. The Scheduler reacts with a greater number of suspends
(17) to free resources for the HLT-Chain. The queue-length does not reach the critical watermark
of 3000 during that phase, so the starting of the HLT-Chain is not interferred by the manipulations
executed by the VM-Scheduler. After the HLT-Chain has been started, the suspended VMs remain
in that state, only two VMs are started. This is because the average CPU utilization is already at a
quite high level (> 70%), leaving few resources for additional VMs. The average CPU utilization then
remains at about 75% until VM-Scheduling is stopped at t = 2000s by switching PAllocV M : (2, 10)
to PAllocV M : (0, 10) for every node, which causes all VMs to be stopped and CPU usage to decline.
Again, no harmful effects towards the performance metric queue-length could be found.

In this second sub-experiment it could be seen that even such a demanding scenario like the stopping
and starting of the VM-Scheduler does not produce relevant, i.e. strong interference to the HLT-Chain.
Also, the stopping and starting of the HLT-Chain could be handled gracefully by the VM-Scheduler
without causing strong interference.

6.6.4. Summary

In the sub-experiments it was shown that by using the implemented approach, SecApps can be run
in addition to the HLT-Chain application without causing strong interference to it. By running Se-
cApps in a 30 minutes first sub-experiment the cluster CPU utilization was raised from 49% to
79% and 158 additional SecApp results were computed. This corresponds to about 56% of optimally
computable SecApp results if all unused CPU resources would have been translated to SecApp re-
sults. With a second sub-experiment the usability of the VM-Scheduler in demanding scenarios like
HLT-Chain start-up could be shown. First a running VM-Scheduler could adapt to sudden changes
in cluster resource usage without strongly interfering a starting or stopping HLT-Chain. Second the
VM-Scheduler was able to achieve a high cluster CPU utilization (> 70%) independent from the run
state of the MainApp. Third a running HLT-Chain was not strongly interferred by starting or stopping
of the VM-Scheduler.
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6.7. Summary of Empirical Results

Four experiments have been conducted. In the "Policy Modification Experiment" discussed in Section
6.3 a user interface to the VM-Scheduling Framework was used to modify active policy configura-
tions at runtime. Using a sequence of such modifications, the amount of cluster resources available
to SecApps was repeatedly changed and the framework needed to adapt the VM allocations accord-
ingly. It was shown that the VM-Scheduling Framework copes with such changes, i.e. newly available
resources are used for provisioning VMs and running VMs are manipulated on time if needed to pre-
serve policy compliance. It was shown that the effect of these modifications towards the number of
computed SecApp results depends on the frequency of modifications and the timelimit of modified
policies. In the "Efficiency Experiment" of Section 6.4 the effect of policy parameters timelimit and
threshold on SecApp result computation and additionally exploited cluster CPU resources was ex-
amined. It could be shown that the greater policy threshold and timelimit, the more SecApp results
can be computed and the more cluster CPU utilization can be generated. Measurements indicate that
this observation holds for arbitrary existing MainApp CPU utilization patterns. In the "Interference
Experiment" presented in Section 6.4 the effect of policy parameters timelimit and threshold on the
amount of interference towards a MainApp was examined. It could be shown that the amount of inter-
ference rises with the applied policy threshold. Concerning the policy timelimit it was shown that the
amount of interference towards a CPU-bound MainApp rises with the applied timelimit parameter.
For a network-bound MainApp such a relation could not be found. The aforementioned experiments
6.3, 6.4 and 6.5 indicate that policies are appropriate configuration items to control the amount of
interference towards a MainApp, the additionally generated cluster CPU utilization and the amount
of computed SecApp results. In the "HLT-Chain Experiment" discussed in Section 6.6 it was demon-
strated that a policy configuration setup exists that allows to run the VM-Scheduling Framework in a
cluster environment with a time-critical MainApp, the HLT-Chain application. It was shown that no
strong interference occurred, the cluster CPU utilization could be increased from 49% to 79% and ad-
ditional 158 SecApp results could be computed. This number of SecApp results corresponds to 56%
of the optimally computable SecApp results. The ability of the framework to cope with the demand-
ing scenario of starting and stopping of the HLT-Chain application without causing strong interference
was demonstrated as well.
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In this chapter the thesis approach is summed up and a conclusion is given. As a reminder, the
goal was to develop the concept and implementation of a software framework ("VM-Scheduler") for
running additional applications ("SecApps") in a dedicated cluster with a time-critical application
("MainApp"). This goal was constrained by: a) The MainApp must not be affected in its proper func-
tionality, b) this has to be achieved without controlling the MainApp and c) cluster usage has to be
increased and additional computational results have to be generated. An examination of current state-
of-the-art research showed that both the increase of resource usage / result output and the achievement
of performance goals for applications are topics covered by researchers and developers. However, no
existing approach satisfies the goal stated for this thesis. Either researchers assume controllability of
the MainApp, provide insufficient isolation between MainApp and SecApps or lack in flexibility of
methods applicable for maintaining proper functionality of the MainApp. Based on these findings, the
concept and prototypical implementation of a VM-Scheduler has been developed. The prototypical
implementation was evaluated empirically and found to be appropriate for achieving the thesis goal.

In the first section of this chapter the thesis work is summed up. In the second part a conclusion is
drawn and the contribution of this thesis is given.

7.1. Summary

The challenge of this thesis is that by running SecApps in a dedicated cluster, the proper functionality
of the MainApp can be affected. According to the given goal this needs to be prevented. As a first
step it was needed to define what "affecting the proper functionality of a MainApp" means. A state-
ment on whether a MainApp is affected by SecApps requires to have a predefined performance metric
(e.g. throughput) for the MainApp. Based on this performance metric, the terms "interference" and
"amount of interference" were introduced. These allow for an assessment of the effect that SecApps
have towards the performance of a MainApp. It was argued that not every statistically significant
effect (i.e. interference) is relevant. A statement on relevance can only be made if for the performance
metric of a MainApp a target value or range exists, which serves as a criterion for the proper function-
ality of the MainApp. Using this criterion, the term "strong interference" was introduced to capture
the notion of "SecApps affect the proper functionality of a MainApp.

Based on these definitions, the question was approached how SecApps can be given access to cluster
resources such that no strong interference occurs, but cluster usage is increased and additional Se-
cApp results can be computed. It was argued that potential reasons for interference have to be found
and counteracted. The found reasons are: a) Software incompatibility, b) security holes, c) software
bugs and d) competition for sparse resources between SecApps and the MainApp. By using Vir-
tual Machines, a specific environment for every single SecApp is provided. Thereby any negative
effects arising from software incompatibilities are prevented and the scope of runnable SecApps is
broadened. VMs also efficiently isolate SecApps from the MainApp, thereby avoiding the effects
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of potential security issues and software bugs. Regarding the fourth reason (resource competition),
it was argued that a decision instance is required to evaluate the usage of resources at runtime, to
recognize potential resource competition and to make decisions on the amount of resources given to
VMs hosting SecApps accordingly. To enable a decision instance to prevent or limit the duration of
resource competition, explicit contraints on the resource usage of SecApps ("policies") were intro-
duced. A policy defines a maximum time span ("timelimit") for which SecApps are allowed to use
a resource if the total usage of that resource exceeds a certain value ("threshold"). The basic idea
is that policies are configurable ("configuration items") and that the amount of interference (i.e. the
effect towards the MainApp) scales with the settings for the policy parameters threshold and timelimit.

Based on a set of configured policies, a decision instance decides on when and where to run SecApps
in the cluster. If necessary, the decision instance also modifies the resource usage of running SecApps
in order to satisfy the policy constraints. A single SecApp is represented by an abstraction called
lease. A lease consists of at least one VM hosting the application logic of the SecApp. The lease
abstraction and the VM encapsulation of SecApps provide standardized methods to the decision in-
stance to manipulate arbitrary SecApps and to modify their resource usage. The decision instance has
a two-layered architecture and comprises of four main functional units. One layer is the Global Sched-
uler that resides on a global management node and hosts the functional units Global Provisioner (GP)
and Global Reconfigurator (GR). The second layer is the Local Controller that runs on every worker
node1 and hosts the functional units Resource Usage Adaptor (RUA) and Global Trigger Unit.

The GP takes care of leases that are not running2 and makes scheduling decisions on when and where
to provision a lease by starting or resuming its VMs. It uses a non-preemptive, run-to-completion
approach and employs a priority-scheduling algorithm with backfill. The other functional unit of the
global layer, the GR, was developed as a runtime scheduler that decides on how and when to manip-
ulate a running lease3 by suspending, stopping or migrating its VMs. The GR makes these decisions
based on an informed depth-first search heuristic with backtracking. The purpose of the GR is to
modify the resource usage of running leases if needed to satisfy the policies constraints. It uses the
method of manipulating VM states. Since such manipulations carry considerable overhead concern-
ing resource usage and duration, the GR is complemented in its purpose by the functional units of the
local layer. The RUA is part of the Local Controller and continuously modifies the share of resources
like CPU or NetOut usable by a locally running VM. The adaption is realized by a closed loop integral
controller per single resource. The RUA provides a fine-grained, minimal-overhead charged method
to modify the resource usage of leases, acts locally on a node and independent from the GR. Thereby
it decreases the relative number of cases where the GR is required to initiate VM manipulations to
satify policy constraints. The fourth functional unit is the Local Trigger Unit which also is part of the
Local Controller. It is an actor-of-last-resort that realizes policy compliance forcefully by stopping
and aborting VMs, unless policy compliance can be maintained by GR and RUA.

This conceptual proposal was implemented in a platform-independent manner using the Python pro-
gramming language. The only platform-specific code is that which is responsible for interfacing the
virtualization platform, capping local VM resource usage and querying resource statistics. However,

1A worker node is a physical node in the cluster that is intended to run SecApps.
2According to the terminology used in this thesis, these leases are in queued state and wait for access to computational

resources.
3According to the terminology used in this thesis, these leases are in provisioned state and are currently using cluster

resources.
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due to object-oriented software design these functionalities are encapsuled using classes with clearly
defined interfaces and can be replaced easily.

Several experiments were carried out to test the implemented VM-Scheduler. In two experiments the
effects of policy parameter settings for timelimit and threshold on the SecApp result output, the addi-
tional cluster CPU usage and the amount of interference caused towards a prototypical MainApp were
evaluated. The results indicate that the threshold parameter setting scales monotonically increasing
with all three target metrics. The results for the timelimit parameter were inconclusive. While the
timelimit setting also scales monotonically increasing with the additional cluster CPU usage and Se-
cApp result output, this does not hold for the amount of interference: The monotonically increasing
relation only holds if a CPU-bound MainApp is present. If a network-bound MainApp runs in the
cluster, then a lower timelimit setting can also lead to a higher amount of interference. It was shown
that the amount of interference can be controlled by configuring the threshold parameter of policies.
This means that an upper limit for the effect that running SecApps have towards a MainApp can be
set. Policies therefore are appropriate configuration items to customize the VM-Scheduler towards
a cluster and MainApp environment and to specify a trade-off between tolerated amount of interfer-
ence and the benefit gained from SecApps. The conceptual approach of adapting the resource usage
of SecApps at runtime in accordance with configured policies is thereby shown to be feasible for
avoiding strong interference. While these experiments examined the general idea and adaptability of
the VM-Scheduler to arbitrary environments, the appropriateness of the thesis approach was clearly
demonstrated for the HLT-Chain application in KIP cluster. In this experiment, the VM-Scheduler in-
creased the cluster CPU utilization from 49% to 79%, the aimed at data-rate of 100Hz for HLT-Chain
was achieved, hence no strong interference occurred and additional SecApp results (code compilation)
were computed. The theoretically exploitable CPU share of 100% − 49% = 51% was translated to
SecApp results with an efficiency4 of 56%.

7.2. Conclusion

The thesis provides the concept and an implementation for a framework ("VM-Scheduler") that is
able to run additional applications ("SecApps") in a dedicated cluster with a time-critical application
("MainApp"). The pivotal challenge is that of preventing the MainApp from being affected by run-
ning SecApps. The driving ideas to meet this goal are: a) The isolation of SecApps by running them
in Virtual Machines and b) the dynamic resource allocation for VMs, i.e. runtime adaption of the
resource share used by SecApps. This adaption is realized by using both globally initiated VM ma-
nipulations (migration, suspend/resume, start/stop) and decentralized, feedback-controller based cap-
ping of resource usage using OS interfaces. An informed depth-first search heuristic was developed
to choose appropriate VM manipulations in a time-constrained manner. The proposed concept uses
application-agnostic, OS provided metrics only. No interface for manipulating a MainApp is needed.
The implementation is platform-independent and only requires a cluster environment to provide a
Python interpreter, TCP/IP network communication, a shared storage facility and a virtualization plat-
form. It was shown empirically that the framework provides reasonably tunable configuration items
("policies") that allow to make a trade-off between benefit gained from running SecApps and tolerated
amount of interference for many different MainApp scenarios. These arguments hint for the general
applicability of the concept. Fulfilment of the thesis goal was directly demonstrated for a specific

4Efficiency is the ratio between actually computed results and optimally computable results if all the free CPU cycles were
used.
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time-critical application, the HLT-Chain application. This application processes experimental physics
data with soft real-time conditions. Applying the VM-Scheduler to a cluster running this application
allowed to increase the cluster CPU utilization from 49% to 79%, to compute additional SecApp re-
sults and to maintain the proper functionality of the HLT-Chain application. Fulfilment of the tree
goal constraints is therefore considered achieved: First it is possible to customize the framework such
that the MainApp is not affected. Second, no control is exercised over the MainApp. Third, the cluster
resource usage is increased and additional results are computed.

Contribution The main contribution of this thesis is that it allows to exploit unused CPU resources
and to generate additional SecApp results in a dedicated cluster running the HLT-Chain application
without affecting the proper functionality of this application. The novel and distinctive property of the
provided VM-Scheduler is that it assumes no runtime knowledge or active control of the time-critical
application in order to ensure its proper functionality. The framework only monitors the amount of un-
used resources and dynamically modifies the resource share consumed by SecApps. A second aspect
distinguishes this thesis: The VM-Scheduler uses multiple methods for the dynamical modification
of the SecApp resource share. While single methods have been studied separately before, no existing
solution provides the here presented conceptual flexibility by combining the multiple methods of VM
migration, suspend and stop as well as feedback-control based resource usage adaption.
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During the work for this thesis, two not fully covered challenges were encountered. The first one arises
from a theoretical consideration - how to make sure that the framework does not exhibit self-sustaining
behavior. The second one concerns runnable SecApps: The scope of SecApps was constrained to best
effort schedulable applications and no empirical evaluation was made for VMs hosting tightly coupled
parallel SecApps. These aspects are now discussed and suggestions are given how to advance these
aspects in future work.

Self-Sustaining Behavior In this thesis the fact was mentioned that VM scheduling by GR may
cause a self-sustaining behavior: The handling of policy violations causes manipulations which in
turn again cause new policy violations. Basic heuristics were introduced to decrease the occurrence
probability of such a phenomenon: a) Handling of VM resource usage locally by RUA to decrease the
number of VM manipulations, b) the preference of manipulations that are unlikely to cause new policy
violations, c) the exclusion of being-manipulated VMs and d) the exclusion of nodes with ongoing
manipulations for a specific time frame after a manipulations was issued.

An informal description for self-sustaining behavior was proposed: Given that running applications
(MainApp, SecApps) do not change in resource usage, the frequency of manipulations should tend to
zero over time, i.e. VM manipulations have to be justified by changes in the resource usage of running
applications. The framework exhibits self-sustaining behavior if this this does not hold. As a first in-
dication, in the HLT-Chain experiment (see Section 6.6.3) it could be seen that after a lead-in phase
where many manipulations occurred, the frequency of manipulation dropped to zero. This is a hint
that the applied heuristics work, but cannot be regarded a proof. In future work the qualitative descrip-
tion of self-sustaining behavior requires a more formal or quantitative definition. Based on a such a
definition, the behavior of the framework needs to be evaluated. Inspiration for a theoretical stance on
this phenomenon may come from different research fields: Signal theory and Control theory both use
Bounded-Input Bounded-Output (BIBO) and Nyquist stability criteria for linear, time-invariant sys-
tems. For nonlinear systems the circle stability criterion is proposed [42]. In dynamical systems the-
ory, which basically abstracts the aforementioned theories to nonlinear, time-variant systems described
by differential equations with few parameters, the Lyapunov stability criterion is used for assessing
the development of a system over time [35]. Complex systems theory extends dynamical systems
theory by making statements on systems that have a very large number of parameters, e.g. interde-
pendent or interacting entities in biological organisms, actors in economy or solid state physics. This,
for instance, leads to other criteria like criticality in cellular automata or chaotic behavior in random
boolean networks [15, 50]. Game theory, used for describing the interaction between decision-making
agents in economist models, proposes the nash equilibrium as a stability criterion[69]. A cluster with
network-connected nodes and running distributed applications can be understood as a system evolv-
ing over time. Whether a formalization of the behavior of the framework is sufficiently possible and
whether the mentioned criteria meet the notion of self-sustaining behavior has to be evaluated. Apart
from a theoretical approach of defining and examining the behavior of the framework, it might also be
needed to improve the practical measures taken to counteract self-sustaining behavior. In the authors
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view, the application of inhibitors, i.e. feedback control mechanisms on multiple layers (per VM,
lease, node, sub-cluster, cluster) is a feasible way to control the number of manipulations, and thereby
the occurrence probability of self-sustaining behavior. Further research work and empirical studies
are required to examine this assumption.

SecApp Types In the scope discussion of that thesis (see Section 4.1) it was stated that only best
effort schedulable applications should be used as SecApps. Source code compilation was chosen as
a prototypical representative for the empirical framework evaluation. This evaluation left open the
question how tightly coupled, parallel applications fare as SecApps. If no explicit deadlines or other
performance constraints are given, then such applications, e.g. Message Passing Interface (MPI) based
fluid dynamics simulations, can be scheduled in a best effort manner. This case was not explicitely
evaluated. In this thesis it was assumed that suspending a lease consisting of multiple VMs is pos-
sible for any distributed SecApp. So, in the current implementation no special focus was laid on the
avoidance of synchronization issues. A lease is simply suspended by parallely initiating the suspend
manipulation for all VMs of a lease. However, for tightly coupled SecApps, like MPI applications,
such an approach might cause an application to enter an erroneous state after resuming the lease.
Researchers propose different methods [121, 2, 36, 78] for system-level checkpointing of parallel ap-
plications, trying to avoid synchronization issues. The current approach (parallel suspending) and the
made proposals need to be evaluated and and the most reliable solution has to incorporated into the
framework.
Beside of evaluating the suitability of the framework for tightly coupled, parallel SecApps, it could
also be tried to broaden the scope of runnable SecApps to SLT-constrained applications. A reason
was given for not considering SLT-constrained SecApps: There is no guarantee that there will be
enough available resources for a SecApp at a future point in time because of not sufficiently pre-
dictable MainApp resource usage. In order to extend the range of runnable SecApps, a number of
physical nodes could be reserved for VM scheduling. Such nodes then are completely under control
of the VM-Scheduling framework and can be used as emergency migration targets for VMs of SLT-
bound or interactive SecApps if no other resources are available. Thus, guarantees could be given
for a subset of SecApps, extending the scope of runnable SecApps. Another option is the analysis
of resource usage patterns for the MainApp. Time series techniques [16] could be used to identify
phases with a reliably predictable amount of unused resources, which in turn could be used for, e.g.,
running interactive applications. Such a paradigm shift would have to be accompanied by a modifi-
cation of the scheduling algorithm used by GP. Currently for GP a basic priority-based scheduling
algorithm with backfill is employed and priorities are calculated upon lease request submittance. In
order to satisfy deadlines, to avoid starvation or to enable fair-share scheduling for leases, dynamic
priority calculation, that takes into account past queue- and computation times, should be considered
for future framework releases.
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Additional information on topics covered in this thesis is given in this chapter. First, the HLT-Chain
application configuration used for the experiments (6.6) is described. Second, the derivation of the
formulas for the computational complexity of the GR algorithm is detailed. Third, the terms cloud
computing, Everything as a Service (EaaS) stack and its constitutive layers are explained. Fourth,
an introduction to platform virtualization is given and several products are mentioned. Fifth, general
best-practice is elaborated for customizing the VM-Scheduling Framework towards a cluster and its
MainApp.

A.1. HLT-Chain Application Setup

The HLT-Chain application used for the "HLT-Chain Experiment" (6.6) was configured to process
a continuous replay of raw data that was recorded for a specific ALICE experiment run. The re-
spective run has the ID 146616. Due to limited availability of resources in the test cluster only data
for a specific sub-detector (Time Projection Chamber (TPC), 2 Slices) was processed. The data was
propagated to the HLT-Chain application using the file-publisher method with a configurable replay
frequency. The replay frequency reflects the number of events to be processed per second. The replay
was tested for the frequency range between 80 Hz and 120 Hz. It showed that for frequencies greater
than 100 Hz the application did not run sufficiently stable for at least 30 minutes without reaching or
exceeding the maximum number of pending (queued) events. Therefore the highest acceptable fre-
quency (100Hz) was chosen for the "HLT-Chain Experiment". The precise layout of the application,
i.e. which components of the HLT-Chain were placed on which physical nodes, is given in table A.1.
For more detailed information on the HLT-Chain application please refer to [104] .

A.2. Derivation of Complexity Formulas

The equation T (V, L,N) = 1 +
L−1∑
i=0

2i
(

L
i

)
(N − 1)V−Vi/L

was given for the computational time complexity of a brute-force search for finding applicable VM
and lease manipulations. The equation’s derivation is now detailed.

The variables N = |{node}|, L = |{lease}| and V = |{V M}| are used in the equation, reflecting the num-
ber of nodes, provisioned leases and running VMs known to the VM-Scheduler. Every lease has the
same number of associated VMs and every such VM violates a policy. There are (N−1)V possibilities
to migrate violating VMs without preempting a lease. There are

(
L
i

)
possibilities to choose i leases for

preemption. There are two ways to preempt a single lease (suspend/stop). After preempting i leases,
(V − Vi/L) running VMs remain that can be tried to be migrated. Preempting all leases means no
further migration can be tried.
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Node Component Component Component
ti019 TPCCATracker
ti020 TPCCATracker
ti027 TPCCATracker
ti037 TPCCATracker
ti038 TPCCATracker
ti039 TPCCATracker
ti040 TPCCATracker
ti041 TPCCATracker
ti047 GMRelay1 ClusterFinder
ti049 GMRelay2 ClusterFinder
ti050 TPCCAGlobalMerger ClusterFinder
ti051 TPCCAGlobalMerger ClusterFinder
ti052 TPCCAGlobalMerger ClusterFinder
ti053 TPCCAGlobalMerger ClusterFinder
ti054 GlobalEsdConverter
ti055 GlobalEsdConverter
ti056 GlobalEsdConverter
ti057 GlobalEsdConverter
ti058 GlobalTrigger ClusterFinder
ti059 GlobalTrigger ClusterFinder
ti060 BarrelMultiplicityTrigger
ti061 BarrelMultiplicityTrigger
ti062 BarrelMultiplicityTrigger
ti064 OutputRelay ClusterFinder ClusterFinder
ti067 BarrelMultiplicityTrigger
ti075 OutputRelay ClusterFinder ClusterFinder

Table A.1.: Allocation of HLT-Chain components to physical nodes for the HLT-Chain experiments.

So the total number of choosable sets of manipulations is calculated by:

(N − 1)V + 21
(

L
1

)
(N − 1)V−V/L + 22

(
L
2

)
(N − 1)V−V2/L + ... + 2L−1

(
L

L−1

)
(N − 1)V−V(L−1)/L + 1

= 1 +
L−1∑
i=0

2i
(

L
i

)
(N − 1)V−Vi/L

For a brute-force search every possible result (choosable set of manipulations) is checked against
policies. The number of model-checks therefore is equal to the best- and worst-case time complexity,
which is precisely the equation given above.

For the proposed search heuristic a worst-case time complexity of

T (V, L,N) = L + (N−1)V
L

(
L +

L−1∑
i=1

L−1∑
j=i

2i
(

j
i

))

was given. This equation was derived as follows: There a L violation-contributing leases. For the first
violation-contributing lease in HIGH it is tried to migrate its violating VMs. Since this is done using
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a first-fit approach there are at most (N − 1)V/L model-checks. If after tried migrations the current
lease is still contributing to a violation, then it is subsequently tried to preempt a set of other leases
and again tried to migrate violating VMs of the current lease. If all combinations of lease preemptions
and successive migrations fail, the lease itself is preempted using suspend or finally stop. For any
such possibility a model-check is conducted. So the total number of checks for the first violation-
contributing lease is calculated as:

(N−1)V
L + (N−1)V

L

(
21
(

L−1
1

)
+ 22
(

L−1
2

)
+ ... + 2L−1

(
L−1
L−1

))
+ 1

For the second lease in HIGH the same is tried. Assuming the worst-case that only the preemption of
the previous lease was successful, then still L − 1 violation-contributing leases exist. For the current
lease accordingly the number of checks is:

(N−1)V
L + (N−1)V

L

(
21
(

L−2
1

)
+ 22
(

L−2
2

)
+ ... + 2L−2

(
L−2
L−2

))
+ 1

For any lease in HIGH such a summand exists. So L summands exit. For the last lease in HIGH the
potential preemption of other leases is redundant:

(N−1)V
L + 1

The total number of checks in the worst-case therefore is:

L + (N−1)VL
L + (N−1)V

L

(
L−1∑
i=0

L−i−1∑
j=1

2L−i− j
(

L−i−1
L− j−1

))
= L + (N−1)V

L

(
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L−1∑
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L−1∑
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2i
(

j
i
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This is precisely the equation given above for the worst-case time complexity of the heuristic search.

A.3. Cloud Computing and EaaS Stack

The concepts of cloud computing and EaaS are briefly portrayed in this section.

Cloud Computing Cloud computing is a currently adopted metaphor to describe a class of tech-
nologies that make software and hardware remotely available to customers in a transparent manner.
An important aspect is the service orientation of these approaches, i.e. to provide customer value
on-demand and to make the service provider accountable for the negotiated service level. The most
intuitive approach to cloud computing is by referring to the Everything as a Service (EaaS) stack,
which describes a range of services that are delivered by cloud service providers. This stack is ex-
plained in the following.

EaaS Stack Everything as a Service (EaaS) is an industry-inspired taxonomy of services that ex-
tends the Service Oriented Architecture (SOA) paradigm to arbitrary, billable services in distributed
computing. The most common layers of the EaaS stack are now given:

Humans as a Service For the sake of completeness, the Humans as a Service (HaaS) layer is men-
tioned. Personal (humans) can be regarded as a service because they provide value to customers,
are billable and service terms can explicitely be stated. In general, software support and hotlines
can be regarded as HaaS, though rarely referred to this way.
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Software as a Service With the ubiquituos availability of internet, the business model of software
companies nowadays turns to strategies different from selling products and licenses. Today,
software can also be leased. Herein the software itself is not installed on a customer’s com-
puter infrastructure but installed in a computing facility outside of the customer’s scope. The
customer forms a contract with the software hoster and leases a time frame during which the
software can be used but not owned. This layer of the EaaS stack is called Software as a
Service (SaaS). Typical examples for software that is provided as a service are Customer Rela-
tionship Management (CRM) and Collaboration Frameworks. Please see [79] for an overview
of current SaaS projects.

Platform as a Service The Platform as a Service (PaaS) strategy can be understood as a structural
extension to the classical web hosting services. Like for the latter, a service provider offers
computer infrastructure and an installed platform (OS, web server) to be used by customers
to run their software. These customers pay a fee or renting amount. Such services nowadays
not only cover web hosting, but a whole range of other platform services like development and
runtime environments in which a customer can run its own software. Typical examples are MS
Azure [125], which provides a leasable runtime environment for .NET applications and Google
Apps [48], which provides a runtime environment for applications based on the Google App
engine.

Infrastructure as a Service In recent years, the Infrastructure as a Service (IaaS) strategy has be-
come more and more important. Companies do rely on using Information Technology (IT), but
do not want to invest in installment, management and maintenanace of their own computing
facilities. From an economical point of view, IT infrastructure is the perfect business object for
outsourcing since high Total Cost of Ownership (TCO) can be avoided. A typical scenario for
such outsourcing is that a company leases infrastructure in a remote computing facility (cluster)
which is operated by external service providers. IaaS describes this aspect of making remote
infrastructure leasable on a timely base. Such infrastructure ranges from single computers to
a whole Local Area Network (LAN) consisting of a large number of servers. In addition, also
server management applications like Domain Name System (DNS), Dynamic Host Configura-
tion Protocol (DHCP), directory services and additional infrastructure items like Virtual Local
Area Network (VLAN), gateways and proxies can be leased. Furthermore, backup and storage
facilities are offered. Even though servers and other infrastructure items can be real hardware,
the actual enabling technology of the IaaS layer is platform virtualization. This technology
gives IaaS providers the flexibilty to offer services in a fine temporal, functional and structural
granularity. Typical examples adopting the IaaS paradigm are Amazon EC2 [4], Amazon S3 [5]
and Nebula [77]. While Amazon EC2 is the brand for offering server hardware, S3 is the term
used by Amazon to refer to their storage services. Nebula offers both computing and storage
facilities.

Other terms in relation to the EaaS paradigm are High Performance Computing as a Service (HPCaaS)
and Data Intensive Computing as a Service (DICaaS). Both refer to large scale scientifc computing
and its outsourcing to external service providers. While the first targets scientific number-crunching1

applications, the second focuses on infrastructure and applications which process and store huge
amounts of data. When linking the thesis to one of these fuzzy-defined business terms, then IaaS
is the term that applies best.

1Number-crunching is a common, but slightly colloquial term for describing computing-intensive tasks that require a large
amount of CPU resources.
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IaaS, SaaS and PaaS typically are referred to as cloud services. A cloud therefore is a set of computing
facilities (clusters) that hosts a service which belongs to these layers and is transparently offered to
customers. Transparency refers to the fact that the customer only knows and uses the interfaces
(Application Programming Interface (API), rich client, web browser), but is not aware of the location
or back-end technology of the hosting environment.

A.4. Virtualization Technologies and Products

The term virtualization encompasses a number of technologies. These have in common that they
provide an abstracted environment for software, e.g. OS or applications. Please refer to Smith and
Nair [97] for an introduction and taxonomy. In this thesis, the term virtualization is used for hardware
(platform) virtualization, more specifically same Instruction Set Architecture (ISA) hardware virtual-
ization2, which provides an environment for a specific OS. Such an environment is called a Virtual
Machine (VM).

Technologies

Platform virtualization adds an intermediate layer between a virtualized operating system and the
actual hardware. Such an intermediate layer is called hypervisor or Virtual Machine Monitor (VMM),
depending on the product used for virtualization. Typically, the distinction between VMM type I and
VMM type II is made. A VMM type I ("bare metal hypervisor") runs directly on the native hardware,
i.e. it carries its own basic routines to manage the hardware resource access. In contrast, a VMM type
II runs on top of a conventional, non-virtualized operating system ("host operating system"), either
integrated into the kernel/core of the host OS or residing in user space. A VMM type II therefore uses
the routines provided by the host operating system to access hardware resources. In this section, the
term hypervisor is used instead of VMM. Beyond this basic classification of hypervisor technologies,
three main types of platform virtualization techniques can be distinguished:

Full Virtualization The crux in virtualizing a platform and its operating system is that the OS core
(Windows) or kernel (Unix/Linux) of a virtualized operating system ("guest operating system")
is unaware of being virtualized. Therefore kernel-level commands of the guest OS try to access
hardware directly. The virtualized kernel assumes full privileges to access the hardware, but
lacks these privileges because it does not operate on the lowest layer ("ring-0") of an actual OS
architecture3 but on a virtualization layer. Guest kernel calls which try to access the hardware
will cause an access violation and exceptions will be thrown by the host OS kernel. The basic
principle of full virtualization is to catch such exceptions via the intermediate virtualization
layer (hypervisor), to translate the request into privileged calls to the real hardware and to
return a proper result to the caller (instead of an exception). This mechanism is called trap-and-
emulate and is the core functionality used in full virtualization. This strategy is expensive, as
every ring-0 call of the guest causes additional overhead. A refinement has been proposed for
specific VM products: Binary translation tries to circumvent trap-and-emulate by looking at the
instruction registers before instructions are being executed. Potential ring-0 access instructions
are replaced beforehand with appropriate calls to the hypervisor. This mechanism has two
purposes: First, this way access violations and exception handling can be avoided and a faster

2The virtual hardware provides the same CPU architecture (instruction set) like underlying real hardware CPUs.
3This layer, ring-0, is a privilege domain in OS architecture. Commands executed in this domain are not restricted in their

access to hardware. Ring-0 corresponds to the kernel space of the host OS.
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execution of virtualized systems is possible. Second, on x86 architectures commands exist
which do have different semantics depending on which level (ring-0 or ring-2) they are issued
from. Since the virtualized system is unaware of being virtualized, such calls will have faulty
semantics. This is captured by the virtualization layer using a beforehand binary translation.

Paravirtualization Paravirtualization is a technique targeted at circumventing the performance is-
sues of full virtualization. With paravirtualization the guest operating system is made aware
of the fact that it is virtualized. This means specific drivers (network, disk) and the virtualized
kernel do not try to access hardware directly via ring-0 calls, but contact the hypervisor via a
specific Application Binary Interface (ABI) instead. This way the overhead of binary transla-
tion and trap-and-emulate is gone. However, this technique requires the virtualized OS to be
modified, which has a negative practical relevance for production roll-out cycles and updates.

Hardware-assisted Virtualization This type of virtualization uses an approach similiar to full vir-
tualization. While for full virtualization the trap-and-emulate/binary translation is carried out
software-wise, in hardware-assisted virtualization the binary translation is done in hardware in-
stead. Modern x86 processors have extensions (Intel-VT, AMD-V) that natively support such
behavior. These extension allow virtualized Input/Output (I/O) drivers the direct access to real
hardware.

Products

There are multiple mature products in the market that provide platform virtualization for x86 desktop
and server environments. The following list is not exhaustive, neither concerning the number of
products mentioned nor the features described. A more comprehensive overview of virtualization
products and further references can be found here [29].

KVM Kernel-based Virtual Machine (KVM) [62] is a virtualization product for Linux OS derivates.
It relies on hardware-assisted virtualization and partially uses binary translation. It provides a
type II hypervisor, running as a loadable module of the Linux kernel. It supports checkpoint-
ing, suspend/resume and migration. KVM is open source and part of many Linux distribution
repositories. Paravirtualized I/O drivers for the virtualized OS are available. KVM in its current
release (1.2.0) supports the dedication of hardware Peripheral Component Interconnect (PCI)
devices4 to virtual guest systems. It allows different virtual disk types to be used, such as cow,
cow2, raw images and vmdk.

VMware ESX VMware ESX [123] is a product targeted at server-based computing clusters. It re-
lies on a type I hypervisor. This bare-metal hypervisor is a minimalistic Linux kernel ("vmk-
ernel") with integrated virtualization support. To date, ESX uses full virtualization with bi-
nary translation, in addition hardware virtualization extensions are exploited. The product line
splits up into a freely available ESXi edition with reduced functionality and the fully fea-
tured commercial ESX product. VMWare ESX is market leader in commercially deployed
virtualization setups for computing clusters (in 2011, see [128]). ESX supports Storage Area
Network (SAN)/Network-Attached Storage (NAS) based shared storage for virtual disks and
provides its own proprietary cluster file system, Virtual Machine File System (VMFS).

4PCI is a bus used for connecting I/O devices with the processor.

156



A.4. Virtualization Technologies and Products

VMware Workstation VMware Workstation [112] is a desktop and small business server virtualiza-
tion product. In comparison to the ESX product line, VMware Workstation is a type II hypervi-
sor product, running on top of a host operating system (Linux, Windows). Binary translation is
the main technology used for virtualization. Hardware-assistance via Intel-VT or AMD-V can
additionally be enabled if the hardware supports these features. VMware Workstation does not
support migration and checkpointing, however suspend/resume is provided.

Xen Xen [11] is an open source virtualization product for Linux using the paravirtualization ap-
proach. It uses a hybrid type I+II hypervisor. Even though there is a native host operating
system ("dom0"), the hypervisor is part of the host operating system’s kernel (rather than a
loadable module) and therefore can be regarded as preceeding the host OS kernel with priori-
tized access to hardware resources. Due to the use of paravirtualization, a guest OS needs to
be modified such that ring-0 calls are redirected to the hypervisor rather than letting them try to
access the hardware directly. The drawback is that closed source OS (like Windows) cannot be
virtualized unless explicitely supported by the OS vendor. The claimed advantage is improved
performance [11]. The architecture of Xen not only requires the guest system to be adapted but
also needs a modification to the dom0 host OS. This is of practical relevance for maintenance
and roll-out cycles. Xen offers several distinctive features. Xen not only allows migration of
VMs, but also offers the runtime adaption of guest properties like number of virtual CPU cores,
capping of CPU usage per VM and attribution of Random Access Memory (RAM) to VMs.

Oracle VirtualBox Virtualbox is a virtualization platform based on a type II hypervisor. It targets
both desktop and server environments and is freely usable for personal and educational use. Full
virtualization (binary translation) and optionally hardware-assisted virtualization are supported.
VirtualBox runs on a multitude of operating systems like Windows, Mac OS X and Linux. It
supports checkpointing, suspend/resume and migration and allows the usage of multiple virtual
disk types like vdi, vmdk and cow. Block-level access to virtual disks on shared storage media
using iSCSI is supported.

Virtual Machine Manipulation Primitives

The introduced platform virtualization products use different naming conventions for denoting the
manipulation of VMs. These naming conventions are given in table A.2. The first column lists the
manipulations by their name used in this thesis, while the other columns represent the corresponding
product-specific terms.

Naming Technique KVM VirtualBox XEN VMware ESX
start start start start start start
stop stop stop poweroff shutdown shutdown
suspend suspendToDisk savevm suspend save suspend
resume resumeFromDisk loadvm resume restore resume
migration hot migration live-migration teleportation live-migration live-migration

Table A.2.: Naming of VM manipulation primitives for different platform virtualization products.
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A.5. Feasibility Estimator Customization

An important aspect, the tuning of the Feasibility Estimator (FE), has to be considered when cus-
tomizing the framework a) to a new MainApp and b) to a new cluster environment. The goal of this
tuning is to enable the FE to make reasonably good estimations of the costs of running VMs and of
executing VM manipulations. Bad estimations will not break the framework functionality, but may
lead to an increased rate of globally triggered policy violations and locally triggered kills. This would
decrease the benefit of the framework, i.e. the computation of additional SecApp results and improved
cluster resource usage. The steps taken for adjusting the FE to the experimental environment, the KIP
cluster, are now described and serve as a proposal for later FE tuning for other clusters:

The Estimation Equation The duration of a single VM manipulation can be described by its start-
ing point ta and its ending point tb with duration = tb − ta. For any ongoing VM manipulation
∈ {start, stop, suspend, resume,migrate} there are manipulation processes5 on the concerned nodes
that realize these manipulations:
manipProc ∈ {startProc, stopProc, suspProc, resumeProc,migOutProc,migInProc}.6 The manip-
ulaton processes use resources. While all these processes cause a certain CPU overhead, some pro-
cesses like migInProc or resumeProc mainly cause overhead towards the resource NetIn and others
like migOutProc and suspProc cause overhead towards the resource NetOut on a node. The FE is
called at a point in time tk and given a resource res, a future point in time tk+i and a set of manip-
ulations. Its purpose is to return the resource usage of res at point in time tk+i given that the set of
manipulations is applied at tk. Equation A.1 shows the approach used by FE to estimate the future
usage of a resource at tk+i.

Usageres(k + i, 1) < Min
(
100,
(
ProcUsageres(k + i, 1,MainApp)

+

N∑

n=1

ProcUsageres(k + i, 1,V Mn)

+

R∑

r=1

ProcUsageres(k + i, 1,V Mr)

+

M∑

m=1

ProcUsageres(k + i, 1,manipProcm)
))

(A.1)

The meaning of the ProcUsageres terms in equation A.1 is now explained:

• The ProcUsageres term in the first line of equation A.1 represents the projected future resource
usage of a running MainApp using its averaged usage over the past five measurement intervals
at tk.

• The summand in the second line incorporates the resource usage of every V Mn that at tk is in
running state, contributes to resource usage and at tk+i still runs or is being manipulated. The
future resource usage of every such V Mn is estimated using its averaged resource usage over
the past five measurement intervals at tk.

5These manipulation processes are abstractions and do not necessarily exist as separate OS processes
6The migration primitive consists of two manipulation processes, migOutProc on the source node and migInProc on the

target node.
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• The summand in the third line reflects the summed resource usage of every V Mr that at tk
does not contribute to resource usage, but at tk+i is expected to be running and contributing to
resource usage (e.g. newly started, resumed or migrated VMs).

• The summand in the last line of equation A.1 reflects the summed resource usage of every
ongoing manipulation represented by manipProcm at tk+i.

Several values are needed for solving equation A.1 for a given resource, a set of manipulations and
point in time tk+i:

1. Current resource usage of MainApp and already running VMs (lines one and two). This infor-
mation is available by querying the cluster model.

2. VM manipulations that take place in the interval [k, k + i]. Ongoing manipulations at tk are
known to the FE. To be started, i.e. proposed manipulations are parameters that are passed to
the FE when queried by a functional unit like GP or GR.

3. Resource usage of newly started, resumed and migrated VMs on the target node (third line). An
estimation for these values is given later in this section.

4. Duration and resource usage of VM manipulations ongoing at tk+i, i.e. duration and resource
usage of their corresponding manipulation processes manipProcm (fourth line). An estimation
for these parameters is described next.

Resource Usage of VM Manipulations To obtain an estimation on the resource usage of VM
manipulations, the resource usage of single manipulations in an idle environment7 is measured first.
It is assumed that this measured resource usage is the maximum of resource usage a manipulation can
generate for node resources. Additional cluster activity, e.g. a running MainApp, other running VMs
and manipulations, only lead to competition for resources, prolong the duration of a single manipula-
tion and thereby decrease a manipulation’s average resource usage over time. Figures A.1a and A.1b
show the results of such an experiment for suspending and migrating a single VM in the idle KIP
cluster (see 6.3.1, 6.1). For suspending a single VM (A.1a) it can be seen that once the manipulation
starts, a drop in CPU usage occurs. This is due to the fact that a suspend consists of two phases:
First the VM is halted, hence the CPU usage of the VM itself drops. Then the VM-related memory
and register contents, which are required for a later resume, are transfered to the shared storage. The
latter phase requires some CPU, but in most cases less than a previously running VM. For the NetOut
resource an obvious increase in usage can be seen for the duration of the suspend manipulation. The
variable ProcUsageres(k + i, 1,manipProc)8 is calculated from these experiments by substracting the
latest known resource usage of a running, not yet manipulated VM from the maximum resource usage
observed for a single interval during the manipulation of this very VM. For a manipulation taking i
seconds this means:

ProcUsageres(k + i, 1,manipProc)
= max

(
Usageres(k + 1, 1),Usageres(k + 2, 1), ...,Usageres(k + i, 1)

) − ProcUsageres(k, 1,V M)

For a conservative estimation only the highest observed value is used instead of taking into account
the varying resource usage during a manipulation. For manipulation processes startProc, resumeProc

7Nodes, storage and network are idle except for the single VM and its manipulation. Node configuration is homogeneuos.
8This variable describes the resource usage of a manipulation process manipProc at tk+i and contributes to equation A.1

in line four.
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(a) Suspend resource usage (b) Outgoing migration resource usage

Figure A.1.: Resource usage for NetOut and CPU plotted for a single VM suspend (left) and VM
migration (right). The VirtualBox VM has one virtual CPU core, 512 MB RAM and runs
GCC. The node has two CPU cores and a 1GBit network interface. An NFS server is
used as shared storage. At t = 0s the VM is up and running, no other activity is on the
node or in the cluster, at t = 6s the manipulation starts. Start and end of manipulations
are indicated by vertical bars.

and migInProc the subtrahend is redundant since no previous resource usage at tk by the manipulated
VM on the target node exists. For the suspend manipulation in figure A.1a this means:

ProcUsageCPU(k + 6, 1, suspProc) = 47 − 45 = 2
ProcUsageNetOut(k + 6, 1, suspProc) = 40 − 9 = 31

The previous resource usage of a VM determines the outcome of this calculation, and in real life
this usage is subject to changes. So for very a low CPU usage (e.g 7%) of a running VM, the ob-
served maximum of additional CPU usage during a suspend may be higher than 2%. Nevertheless,
the basic statement can be made that a suspend lowers the CPU usage and increases the NetOut usage
during the manipulation in most cases. These values, ProcUsageCPU(k + 6, 1, suspProc) = 2 and
ProcUsageNetOut(k + 6, 1, suspProc) = 31, are considered an estimated maximum percentage for the
additional resource usage caused during a suspend manipulation. Accordingly the overhead of other
manipulations is retrieved. An further example is the migration of a VM. The resource usage for this
manipulation on the source node is shown in figure A.1b. Here the resource usage pattern consid-
erably differs from the suspend scenario. This is due to the pre-copy technique used for migrations.
Simply said, unless not the all memory content of a being-migrated VM is correctly transferred to the
target node, the VM keeps running on the source node.9 That results in a considerable overhead for
the CPU and NetOut resources during a migration. The resulting values for the migOutProc are:

ProcUsageCPU(k + 6, 1,migOutProc) = 79 − 49 = 30
ProcUsageCPU(k + 6, 1,migOutProc) = 41 − 10 = 31

9For more precise information on techniques for hot migrations and their properties please refer to Akoush et al. [3].
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These values are regarded as an estimation for the maximum percentage for the overhead of a pro-
cess migOutProc on a source node. Accordingly the values for stopProc, migInProc, startProc and
resumeProc have been obtained. These can be seen in table A.3.

manipProc CPU(%) NetIn(%) NetOut(%)
suspProc 2 0 31
migOutProc 30 0 31
stopProc 0 0 0
migInProc 12 30 0
resumeProc 15 25 0
startProc 20 20 0

Table A.3.: Additional resource usage caused by different manipulation processes. These values are
specific for the KIP cluster and a VirtualBox VM with one virtual CPU core, 512 MB
RAM and running GNU C Compiler (GCC).

Several values in this table are equal to zero. This either means that the specific manipulation does not
use a resource (e.g. NetIn for suspProc) or that starting a manipulation immediately causes a drop in
the resource usage (e.g. CPU for stopProc).10 A peculiarity is the start manipulation. By definition the
start manipulation ends once the VM begins to boot, which with an irrelevant delay occurs after the
command has been issued.11 However, during the boot process such a VM stresses the NetIn resource
by loading parts of the virtual disk image from shared storage. On the other hand, such a booting
VM is already subject to local resource usage adaption by RUA, capping the resource usage of a VM.
For the prototypical implementation, the duration of a start manipulation is the time from issueing the
command until the virtualized SecApp starts calculating. While the VM is booting it is already under
the realm of RUA and uses values of 20% for NetIn and CPU.

Duration of VM Manipulations For solving equation A.1 the duration of single manipulations
needs to be known. The durations seen in figures A.1a and A.1b in the last paragraph are no valid
representatives for real life durations, they rather represent a minimal duration. When there is ac-
tivity in the cluster, e.g. multiple manipulations are executed concurrently, bottlenecks may occur,
presumably for the network and shared storage resources. This prolongs the duration of manipula-
tions. Figures A.2a and A.2b show the duration of the longest-lasting single manipulation when up to
40 VMs are concurrently12 stopped and suspended respectively. It can be seen that a rising number
of concurrently manipulated VMs prolongs this maximum duration for a single manipulation. In the
figure representing the suspend manipulation it is also visible that having six VMs on a node does
not have a considerable impact on the duration of the longest-lasting suspend. Most probably the
bottleneck is not on the local node, but rather the route and access to the shared storage. The same
can be said for the stop scenario. A linear regression for the stop manipulation (two VMs/node) gives
y = 0.08x+0.35. A linear regression for the suspend manipulation (two VMs/node) yields y = x+5.3.

10For instance, in the case of stopping a VM, the VM instantly stops consuming CPU cycles and the overall usage of
the CPU drops. Even though the stopping of the VM itself also uses CPU cycles, this amount is relatively small in
comparison the CPU usage of a running VM. Therefore, the CPU overhead of a stopProc is considered to be zero.

11Given the time resolution of one second, which is used here.
12The start of manipulation for any VM is at the same point in time ta.
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(a) Maximum duration of VM suspend (b) Maximum duration of VM stop

Figure A.2.: Maximum duration of single suspend and stop manipulations when up to 40 VMs are
concurrently manipulated. The measurements are separated by the number of VMs run-
ning on each node. The VirtualBox VM has one virtual CPU core, 512 MB RAM and
runs GCC. The node has two CPU cores and a 1GBit network interface. An NFS server
is used as shared storage.

Given that both manipulation types, suspend and stop, stress the same resources (outgoing network
route, shared storage write access), the simplistic assumption is made that these manipulation types
and only these interfer with each other. Suspends slow down the duration of stops and vice versa. No
other manipulation type (resume, start, migrate) interfers with these because a) local node resources
do not seem to be the bottleneck and b) global network routes and shared storage access have different
directions.13 With this approach the duration of a single stop or suspend manipulation is calculated
such:

S uspAndS tops = < total number o f ongoing and proposed suspends and stops >
duration(suspProc) = -5.3 + S uspAndS tops. s
duration(stopProc) = -0.35 + S uspAndS tops/12.5. s

Figure A.3 shows the duration of the longest-lasting migration when up to 20 VMs are concurrently
migrated to target nodes connected to the same switch.14 The total number of concurrently executed
migrations has no visible impact towards the duration. For a rising number of VMs/node there is
an extended duration visible. Probably there is a bottleneck for the network or CPU resources of
the concerned nodes. When only looking at the number of VMs/node, then a linear regression over
the values for 20 (18 for 6 VMs/node) concurrently migrated VMs gives y = 0.85x + 3.75 with x
being the number of outgoing migrations on the same node. In analogy to the method used above,
it is simplistically assumed that any manipulation that stresses the same resources like a migration
(suspend, stop on a source node; resume and start on a target node) has the same impact on the

13These assumptions are problematic for some scenarios. However for the protoypical implementation and evaluation they
yielded sufficiently satisfying results, which was assessable using the local trigger rate. It is however advised to use a
more sophisticated experimental setup with concurrent, potentially staged manipulations of different types when tuning
the FE for another environment in order to retrieve more reliable and theoretically founded estimations.

14Target nodes are idle. All VMs on a source node are migrated to the same target node.
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Figure A.3.: Maximum duration of a single migration when up to 20 VMs are concurrently manip-
ulated. The measurements are separated by the number of VMs running on the source
node. Target nodes are idle. The VirtualBox VM has one virtual CPU core, 512 MB
RAM and runs GCC. The node has two CPU cores and a 1GBit network interface.

duration like a migration. With this approach the duration of a migration is calculated such:

ManipsS rcNode = < number o f ongoing and proposed suspends, stops and outgoing
migrations on source node >

ManipsTrgNode= < number o f ongoing and proposed resumes, starts and incoming
migrations on target node >

duration(migOutProc) = -0.85 + 3.75 max(ManipsS rcNode,ManipsTrgNode). s
duration(migInProc) = -0.85 + 3.75 max(ManipsS rcNode,ManipsTrgNode). s

Finally, the same procedure is carried out for concurrent start and resume manipulations.15 Like for
suspend and stop, the total number of concurrently executed manipulations, i.e. the network route
and shared storage read access seems to be the relevant bottleneck that determines the duration of
these manipulations. In analogy to the method described above, the duration of starts and resumes is
calculated such:

S tartsAndResumes = < total number o f ongoing and proposed starts and resumes >
duration(resumeProc) = -9.2 + S tartsAndResumes. s
duration(startProc) = -21 + S tartsAndResumes. s

Resource Usage of New VMs Having an estimation for the duration and resource usage of single
manipulations, only the resource usage of a newly started, resumed or to a target node migrated VMs
is missing to solve equation A.1.

For a newly started VM, the usage of a resource like AllocVM is given by the resource’s definition.
Once a new VM is started, the VM uses one allocation slot and the overall usage of that resource is

15The duration of a start manipulation is determined by ta = start of manipulation and tb = start of SecApp.
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incremented by one. The usage of resources like UsedCore and Mem is given by the VM’s configura-
tion file. If, e.g., a VM using two virtual CPU cores and 1GB memory is started, then these values are
regarded as the VM’s usage of the respective resources and the overall resource usage is adapted ac-
cordingly. For the resource CPU, the VM’s resource usage is capped by 100× |coresV M | / |coresnode|,
which for the KIP cluster and the used VM configuration is 50%. However, the resource usage of any
running VM is controlled by RUA and therefore in most cases much smaller. The value of 20% was
chosen for NetIn, NetOut and CPU as an estimation of the inital resource usage values. This choice
is a compromise between a too low estimation, which would consequently increase the probability
that a policy violation occurs and a too high value, which would reduce the probability that a VM is
started, hence leaving resources unused and leases waiting for provisioning:

ProcUsageres(k + i, 1,V M) = 20

For a migrated VM, the usage of a resource like AllocVM is given by the resource’s definition. Once
a VM is migrated to a target node, the VM uses one allocation slot on this node and the overall usage
of this resource is incremented by one. The usage of resources like UsedCore and Mem is given by
the VM’s configuration file. If, e.g., a VM using two virtual CPU cores and 1GB memory is started,
then these values are regarded as the VM’s usage of the respective resources and the overall resource
usage is adapted accordingly. For resources like CPU, NetIn and NetOut, the VM’s resource usage
on the source node prior to starting the migration is used as the base for estimating the resource usage
on the target node. However, since a migration is often used to resolve policy violations it is reason-
able to assume that there was resource shortage on the source node, which also decreased the share
of resources usable by this very VM. Therefore the resource usage of a VM on the target node is the
minimum of the VM’s resource usage on the source node and the value of 20% for newly started VMs:

ProcUsageresTarget(k + i, 1,V M) = min
(
ProcUsageresS ource(t, 5,V M), 20

)

For a resumed VM, the same like for migrated VM applies. For resources like AllocVM, Mem and
UsedCore the predefined values are used. For resources like CPU, NetIn and NetOut, the resource
usage of a VM is the minimum of the resource usage prior to its suspending and the value of 20% for
newly started VMs:

ProcUsageres(k + i, 1,V M) = min
(
ProcUsageres(tsuspend, 5,V M), 20

)

Summary With these estimations, the resource usage of newly started, resumed or migrated VMs,
the resource overhead of VM manipulation processes and the duration of manipulations can be cal-
culated. Using these, the equation A.1 can be solved by FE for a given resource, given proposed
manipulations and a future point in time tk+i. The approach taken to estimate the duration and the
resource usage generated by manipulations can be critizised for two reasons. First, it lacks a suffi-
cient theoretical foundation which limits its applicability to general environments. However, for this
prototypical implementation such a specific prediction model is sufficient to show the functionality
of the framework for the given experimental environment. Second, since several parameters are left
out in the estimation16 and the used parameters require a more sophisticated modelling, the calculated

16Other parameters probably having an influence are VM memory size, network bandwidth and page dirty rate. The page
dirty rate is relevant for a migration and represents the probability distribution for the number of memory pages that at a
point in time are marked dirty (modified) on the source node after having already been transferred to a target host. Such
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resource usage at a future point in time can be way off the actual resource usage. This means that
the framework bases its global manipulation decisions on possibly bad assumptions. However, this
is no problem since the framework provides mechanisms, RUA and local triggering, to decrease the
resource usage of VMs and to enforce policy compliance even for bad estimations.

To sum it up, the proposed best-practice for making estimations for the future resource usage in a
cluster requires to do the following:

1. Determine a good estimation for the inital resource usage of a started, resumed or migrated VM.

2. Determine the additional resource usage for manipulations of VMs.

3. Measure the impact of the number of concurrent write access manipulations (suspend, stop) on
the duration of these manipulations and apply curve fitting.

4. Measure the impact of concurrent manipulations for a node on the duration of migrations and
apply curve fitting.

5. Measure the impact of the number of concurrent read access manipulations (resume, start) on
the duration of these manipulations and apply curve fitting.

6. Use the retrieved values and functions with equation A.1.

a page requires re-transmission. Please see [75, 27, 119] for more information.
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ABI Application Binary Interface

ALICE A Large Ion Collider Experiment

API Application Programming Interface

BLO Business-Level Objective

BMC Board Management Controller

CERN Conseil Européen pour la Recherche Nucléaire

CLI Command-line Interface

CPU Central Processing Unit

CRM Customer Relationship Management

DAQ Data Acquisition

DICaaS Data Intensive Computing as a Service

DNS Domain Name System

DHCP Dynamic Host Configuration Protocol

EaaS Everything as a Service

FE Feasibility Estimator

GP Global Provisioner

GR Global Reconfigurator

GUI Graphical User Interface

GCC GNU C Compiler

HLT High Level Trigger

HPCaaS High Performance Computing as a Service

IaaS Infrastructure as a Service

I/O Input/Output

IT Information Technology
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ITIL Information Technology Infrastructure Library

ISA Instruction Set Architecture

HaaS Humans as a Service

KIP Kirchhoff Institute for Physics

KPI Key Performance Indicator

KVM Kernel-based Virtual Machine

LHC Large Hadron Collider

LAN Local Area Network

LSF Load Sharing Facility

MPI Message Passing Interface

MainApp Main Application

NAS Network-Attached Storage

NFS Network File System

OS Operating System

OLA Operational-Level Agreement

OGE Oracle Grid Engine

PCI Peripheral Component Interconnect

PID Proportional-Integral-Derivative

PaaS Platform as a Service

RAM Random Access Memory

RUA Resource Usage Adaptor

SaaS Software as a Service

SAN Storage Area Network

SecApp Secondary Application

SLA Service-Level Agreement

SLT Service-Level Targets

SOA Service Oriented Architecture

TCO Total Cost of Ownership

TCP/IP Transmission Control Protocol/Internet Protocol
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TPC Time Projection Chamber

SMP Symmetric Multiprocessing

SNMP Simple Network Management Protocol

QoS Quality of Service

VMFS Virtual Machine File System

VLAN Virtual Local Area Network

VM Virtual Machine

VMM Virtual Machine Monitor

XML eXtensible Markup Language
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Virtual Machine Scheduling in Dedicated Computing Clusters

Problemstellung Computercluster dienen u.a. der Ausführung verteilter Anwendungen. Zu die-
sen zählen auch Anwendungen mit zeitkritischem Verhalten. Diese verarbeiten einen kontinuierlichen
Strom an Eingangsdaten und haben hierbei bestimmten Zeitbedingungen zu genügen. Beispiel für
solche Bedingungen sind maximale Antwortzeit bei Nutzeranfragen in Web- und Cloudanwendungen
oder anvisierte on-line Verarbeitungfrequenz in Experimenten der Teilchenphysik. Eine übliche Her-
angehensweise zur Sicherstellung dieser Zeitbedingungen ist „Over-Provisioning“. Diesem Ansatz
zufolge wird eine zeitkritische Anwendung in einer speziell auf sie zugeschnittenen Hard- und Soft-
wareumgebung, einem dedizierten Cluster ("Dedicated Cluster"), betrieben. Dies garantiert, daß die
angestrebte Anwendungsleistung für jede im Vorhinein spezifizierte Dateneingangsrate erreicht wird.
Dieses Vorgehen hat jedoch einen Nachteil: Ist die Eingangsdatenrate niedriger als die spezifizier-
te Maximalrate, werden Hardwareressourcen nicht zufriedenstellend ausgelastet. Ein Beispiel ist die
HLT-Chain Applikation [8], welche Daten des ALICE Experiments am CERN [1] zu dessen Laufzeit
verarbeitet. Hier führen Schwankungen in der zu verarbeitenden Datenrate zu einer Unteraulastung
der Clusterumgebung. Aus Kosten- und Effizienzgründen ist jedoch eine Ausnutzung zeitweise un-
ausgelasteter Ressourcen wünschenswert.

Dies läßt sich durch die zusätzliche Nutzung der dedizierten Hard- und Softwareumgebung durch
Drittanwendungen realisieren. Dies bringt jedoch verschiedene Herausforderungen mit sich:

• Drittanwendungen benötigen eine geeignete Software- und Betriebssystemumgebung. Bei In-
kompatibilität mit der vorhandenen Umgebung (Bibliotheken, OS, Architektur) ist eine mit
Aufwand verbundene Anpassung der bestehenden Umgebung oder der Drittanwendung selbst
nötig, wenn deren Einsatz gewünscht ist. Jedoch sind sowohl die Kosten1 einer solchen Anpas-
sung als auch die alternative Einschränkung auf ohne Anpassung lauffähige Drittanwendungen
nicht erstrebenswert.

• Durch Installation und Betrieb von Drittanwendungen in einer dedizierten Umgebung kann es
zu Sicherheitsproblemen kommen: Sowohl explizit platzierter Schadcode als auch Lücken in
Betriebskonzept und Softwareimplementierung von Drittanwendungen können zu Angriffen
führen. In deren Folge sind der Verlust sensibler Daten, die leistungsmäßige Beeinträchtigung
oder sogar der Absturz der zeitkritischen Anwendung möglich.

• Durch den Betrieb von Drittanwendungen können Softwarefehler („Bugs“) in die dedizierte
Umgebung eingeführt werden: Durch Fehler wie Memory-Leaks in Drittanwendungen kann die
Betriebssystemumgebung und damit auch der spezifikationsgemäße Betrieb der zeitkritischen
Applikation beeinträchtigt werden.2

1Unter Kosten ist hier die Gesamtheit aller Kosten (Total Cost of Ownership) zu verstehen. Diese umfaßt neben den
Anschaffungskosten u.a. auch Betriebs-, Personal- wie auch Opportunitätskosten.

2Beispielsweise kann ein Memory-Leak unter Linux die Notfallroutine „Out of Memory Killer“ [6] auslösen. Diese er-
zwingt den Abbruch von Userspace-Prozessen um Hauptspeicher freizugeben. Der Ausschluß von für die zeitkritische
Anwendung notwendigen Prozessen ist konfigurierbar. Dies ist jedoch nicht ausreichend um den ordnungsgemäßen Be-
trieb der zeitkritischen Anwendung sicherzustellen: Zum einen bietet dieses heuristisches Verfahren keine Garantie daß
kein notwendiger Prozess beendet wird, zum anderen geht die Ausführung der Routine mit erheblichen Swappingauf-
wand einher und reduziert hierdurch die Systemleistung.



• Zur Laufzeit nutzt eine Drittanwendung Ressourcen (z.B. CPU, Netzwerk, RAM), welche für
die alleinige Nutzung durch die zeitkritische Anwendung dimensioniert wurden. Dies kann
zu einem Konkurrenzverhalten zwischen Anwendungen führen und bei Ressourcenknappheit
die Verletzung der Zeitbedingungen der zeitkritischen Anwendung bewirken. Das Ausmaß der
Ressourcennutzung durch Drittanwendungen muß daher gesteuert werden. Kommt es zu einer
Variation der Eingangsdatenrate und damit einhergehend auch des Ressourcenbedarfs der zeit-
kritischen Anwendung, so muß die Ressourcennutzung durch Drittanwendungen dynamisch zur
Laufzeit angepaßt werden, um eine Verletzung der Zeitbedingungen zu vermeiden.

Auf Basis dieser Herausforderungen läßt sich die Zielstellung der Arbeit folgendermaßen formulie-
ren: Ziel ist es, ein Software Framework bereitzustellen, welches den Betrieb von Drittanwendungen
in einem dedizierten Cluster ermöglicht um ungenutzte Ressourcen auszunutzen. Das Framework
muß gewährleisten, daß die Funktionalität einer zeitkritischen Anwendung nicht beinträchtigt wird.
Das Software Framework kann das Ressourcennutzungsverhalten der Drittanwendungen beeinflussen,
hat jedoch keine Möglichkeit die zeitkritische Anwendung selbst zu steuern.3 Durch den Betrieb von
Drittanwendungen muß die Effizienz des Clusters gesteigert werden, d.h. a) die Anzahl berechneter
Resultate wird gesteigert und b) die CPU-Auslastung des Clusters wird erhöht.

Die zeitkritische Anwendung wird im folgenden Main Application (MainApp) genannt. Eine im Clus-
ter zu betreibende Drittanwendungen heißt Secondary Application (SecApp).

Existierende Ansätze Eine Evaluation ergab, daß nur ein Produkt, Condor [3], die Effizienzstei-
gerung eines Clusters durch SecApps zum Ziel hat und dabei die Nichtbeeinträchtigung einer separat
existierenden Mainapp berücksichtigt. Dieses Produkt bietet jedoch nur limitierte Möglichkeiten, die
Ressourcennutzung durch SecApps zur Laufzeit anzupassen. Ebenso ist der Schutz vor Softwarefeh-
lern und Sicherheitslücken von SecApps nicht gewährleistet. Daher ist dieses Produkt nicht für die
genannte Zielstellung verwendbar. Es existieren neben diesem Produkt Arbeiten, welche sich Tei-
laspekten der Zielstellung widmen. So ist sowohl der spezifikationsgemäße Betrieb einer einzelnen
Anwendung, als auch die Effizienzsteigerung eines Clusters ein Thema in Forschung und Entwick-
lung. Um schwankenden Ressourcenanforderungen einer Anwendung nachzukommen, wird derzeit
der Einsatz von Virtualisierungstechnologien in Betracht gezogen (u.a. [10][9][2]). Diese bieten Mani-
pulationsprimitive, mit denen der Ressourcenbedarf virtualisierter Anwendungen dynamisch gedeckt
werden kann.4 Exisitierende Ansätze gehen aber von der Virtualisierung der MainApp aus, erfor-
schen nur ein einzelnes Manipulationsprimitiv (z.B. Hot-Migration) oder bieten keine hinreichend
getestete Implementierung. Im Bereich der Clustereffizienzsteigerung hat Job Scheduling eine lange
Historie. Job Scheduler (u.a. [3][5][7]) ermöglichen den Parallelbetrieb mehrerer Anwendungen in
einem Cluster und sind in der Lage bestimmte Zielmetriken wie genutzte CPU, Job Durchsatz und
Job Wartezeit zu optimieren. Sie bieten jedoch wenig Möglichkeiten, einmal getroffene Ressourcen-
zuordnungsentscheidungen zu revidieren und sind daher nicht flexibel genug um auf die variierenden
Ressourcenbedürfnisse einer MainApp zu reagieren. Ebenso bieten sie keine ausreichende Absiche-
rung gegen Softwarebugs und Attacken und sind damit nicht geeignet, die Zielstellung dieser Arbeit
zu realisieren.

3Dies schließt Ansätze aus, welche die API einer zeitkritischen Anwendungen nutzen um deren Funktionalität sicherzu-
stellen. Ebenso können keine Hypervisorkommandos genutzt werden, um eine virtualisierte zeitkritische Anwendung
zu skalieren. Grund für den Ausschluß ist die Nichtanwendbarkeit auf den Anwendungsfall HLT-Chain Applikation.

4Abhaengig von der konkreten Virtualisierungsplattform sind unter anderem Suspendierung, Hot-Migration und dynami-
sche Anpassung der genutzten CPU-Cores einer virtuellen Maschine mögliche Laufzeitmodifikationen.



Vorgeschlagene Lösung Für den Betrieb von SecApps in einem dedizierten Cluster muß si-
chergestellt werden, daß die MainApp nicht in ihrem Laufzeitverhalten beeinträchtigt wird. Um die-
se Beeinträchtigung zu beurteilen bedarf es einer quantitative Performanzmetrik. In der vorliegenden
Arbeit werden die Begriffe Interferenz, Betrag der Interferenz und starke Interferenz eingeführt. Inter-
ferenz liegt vor, wenn durch das Betreiben einer SecApp eine statistisch signifikante Abweichung für
eine Performanzmetrik der MainApp beobachtet werden kann, z.B. eine signifikante Erhöhung der
mittleren Antwortzeit pro Nutzeranfrage. Betrag der Interferenz bezeichnet die Differenz zwischen
den Metrikwerten welche mit und ohne zusätzliche SecApps gemessen werden. Eine solche beob-
achtete Abweichung für die Performanzmetrik (Interferenz) läßt aber noch keinen Aufschluß darüber
zu, ob die Beeinträchtigung der MainApp relevant für deren korrekte Funktionalität ist. Hierzu muß
ein Zielwerts für die Performanzmetrik spezifiziert werden. Liegt eine solche Spezifikation vor, z.B.
in Form eines Key Performance Indicators5 oder eines anderweitig formulierten Zielwertes, z.B. ma-
ximale Anwortzeit pro Nutzeranfrage, dann lässt sich die Relevanz des Einflusses beurteilen. Starke
Interferenz liegt vor, wenn sowohl eine statistisch signifikante Abweichung (Interferenz) existiert, als
auch ein gewisser Zielwert für die Performanzmetrik der MainApp nicht erreicht wird. Somit kann
man das Ziel, eine laufende MainApp nicht zu beinträchtigen, mit der Vermeidung starker Interferenz
gleichsetzen.

Um starke Interferenz zu vermeiden, müssen deren potentielle Ursachen erkannt werden. Wie bereits
erwähnt können a) Softwareinkompatibilität, b) Sicherheitslöcher c) Softwarefehler und d) Ressour-
cenkonkurrenz zur Beinträchtigung einer MainApp führen. In der vorliegenden Arbeit wird die Kap-
selung von SecApps in Virtuellen Maschinen (VMs) vorgeschlagen. Durch Virtualisierung werden
die Laufzeitumgebungen von MainApp und SecApps effektiv voneinander getrennt. Dies verhindert
zum einen die durch Sicherheits- und Softwareprobleme von SecApps ausgelöste Interferenz, zum an-
deren erlaubt es die Bereitstellung dedizierter Betriebssystemumgebungen für jede einzelne SecApp.
Somit können auch SecApps betrieben werden, welche andernfalls aufgrund von Inkompatibilität
nicht lauffähig wären. Um der Konkurrenz zwischen Anwendungen zu begegnen wird der Einsatz
einer Entscheidungsinstanz vorgeschlagen. Diese Entscheidungsinstanz wird mit Kriterien versorgt
anhand derer sie über die initiale Platzierung von Virtuellen Maschinen im Cluster, deren Laufzeitre-
platzierung sowie über den lokalen Zugriff auf Knotenressourcen entscheidet. Diese Kriterien heißen
Policys. Policys sind konfigurierbar und treffen Aussagen darüber, in welchem Maße Drittanwendun-
gen eine bestimmte Ressource nutzen dürfen. Konkret ist eine Policy PA(X,Y ) durch drei Parameter
definiert. A ist eine Ressource, X ist ein Schwellwert und Y ein Zeitlimit. Durch die Definition einer
Policy wird die maximale Zeit (Y) definiert für welche eine Drittapplikation an der Nutzung einer
Ressource teilhaben darf, wenn die Auslastung der Ressource A den Wert X überschreitet. Beispiels-
weise ist die Policy PCPU (80, 10) zu interpretieren als: Das Sekundenmittel der CPU-Auslastung (ei-
nes Knotens) darf in maximal 10 aufeinanderfolgenden Messungen 80% überschreiten falls eine VM
die Ressource CPU nutzt. Diese Vorgabe zwingt die Entscheidungsinstanz dazu, die CPU-Auslastung
des Knotens möglichst unter 80% zu halten und im Notfall die CPU-Nutzung durch VMs zu beenden.

Basierend auf einer Reihe durch den Administrator definierter Policys entscheidet die Entscheidungs-
instanz darüber, wann und wo im Cluster SecApps laufen dürfen und modifiziert wenn nötig de-
ren Platzierung und Ressourcennutzung. Zur Abstraktion und uniformen Manipulation beliebiger Se-
cApps werden diese durch sogenannte Leases repräsentiert. Ein Lease besteht aus einer Menge von

5Key Performance Indicator (KPI) ist ein in ITIL[4] vorgeschlagenes Konzept zur Spezifikation von Kriterien für die
korrekte Funktionalität einer Anwendung.



VMs, Leases, Policys und Knoten begegnen kann. Das vorgeschlagene Konzept wurde plattformun-
abhängig in der Programiersprache Python umgesetzt. Als prototypische Virtualisierunglösung wurde
Oracle VirtualBox eingesetzt. Plattformabhängige Komponenten zur Beschaffung von Ressourcen-
auslastungsstatistiken und zur lokalen Modifikation der Ressourcenutzung durch VMs wurden mit
Linuxbordmitteln realisiert. Diese sind jedoch objektorientiert gekapselt und können bei Einsatz des
Frameworks in alternativen Umgebungen ersetzt werden.

Empirische Resultate Im empirischen Teil der Arbeit wurden zwei Aspekte untersucht: Zum
einen wurde überprüft, ob sich Policys eignen um die Anzahl der generierten SecApp Resultate, die
CPU-Auslastung des Clusters und den Einfluß auf die MainApp (Interferenz) zu skalieren. Zum zwei-
ten wurde getestet, ob es möglich ist, eine Policykonfiguration so zu finden, daß SecApps zusätzlich
neben der HLT-Chain Applikation betrieben werden können ohne daß starke Interferenz auftritt. Für
den ersten Aspekt wurden synthetische Anwendungen eingeführt, welche zeitlich und räumlich8 va-
riierende CPU bzw. Netzlasten im Cluster generieren. Der Einsatzzweck dieser synthetischen An-
wendungen liegt darin, daß das Verhalten des Frameworks für verschiedenen Lastmuster, die unbe-
kannte MainApps repräsentieren, überprüft werden kann. Es zeigte sich, daß sowohl die Anzahl der
produzierten SecApp Resultate9, als auch die zusätzliche CPU-Clusterauslastung mit den Policypa-
rametern Schwellwert und Zeitlimit skalieren. Für die Interferenz wurde gezeigt, daß der Einfluß auf
die MainApp mit sinkendem Schwellwert abnimmt. Auf Basis dieser Ergebnisse läßt sich sagen, daß
Policys geeignet sind, um einen Kompromiß zwischen Nutzen von Drittanwendungen und erzeugter
Interferenz für verschiedene Umgebungen und MainApps zu konfigurieren.
Konkret gezeigt wird die Nutzbarkeit des Ansatzes für den Anwendungsfall HLT-Chain Applikati-
on. In Experimenten wurde das Software Framework mit geeigneter Policy-Konfiguration parallel
zu einer laufenden HLT-Chain Applikation genutzt um Softwarecode zu kompilieren. Durch diese
Parallelnutzung der Clusterumgebung wurde deren CPU Auslastung von 49% auf 79% erhöht, es
wurden zusätzliche Ergebnisse berechnet und eine relevante Beeinträchtigung des Laufzeitverhaltens
der HLT-Chain war nicht zu beobachten.

Zusammenfassung und Schlußfolgerung Die vorliegende Arbeit stellt ein Software Frame-
work bereit, welches den Betrieb von Drittanwendungen neben einer zeitkritischen Anwendung in
einem dedizierten Cluster ermöglicht. Kernproblem der Aufgabenstellung war sicherzustellen, daß
die zeitkritische Anwendung nicht durch diese Drittanwendungen in ihrer Funktionalität beeinträch-
tigt wird. Die Kernideen zur Lösung dieses Problems sind a) die Isolation von Drittanwendungen
durch Plattformvirtualisierung und b) die dynamische Anpassung der Ressourcennutzung durch VMs.
Die Anpassung wird realisiert durch global initiierte VM-Manipulationen (Hot-Migration, Start/Stop,
Suspend/Resume) und durch dezentrale Regelung des Ressourcenzugriffs durch VMs auf Basis von
Betriebssystemmechanismen. Es wurde gezeigt, daß mittels bereitgestellter Konfigurationseinheiten
(Policys) eine Abwägung zwischen Nutzen von Drittanwendungen und toleriertem Einfluß auf die
zeitkritische Anwendung vorgenommen werden kann. Konkret wurde die Nutzbarkeit des Frame-
works für die HLT-Chain Applikation gezeigt.
Die Arbeit erweitert den Stand der Forschung dahingehend, daß sie a) eine bisher nicht vorhandene
Möglichkeit bietet Drittanwendungen sicher in einem dedizierten Cluster zu betreiben, b) hierzu ver-
schiedene, bisher nicht kombinierte Methoden einsetzt und c) Ressourcenallokationsentscheidungen

8Räumliche Variation der Last bedeutet, daß die Auslastungen der Netzwerkschnittstelle bzw. der CPU der Knoten des
Clusters unabhängig voneinander variiert werden.

9Als prototypische Drittanwendung wurde ein GCC Compilerbenchmark verwendet.



unter alleiniger Nutzung von Betriebssysteminformationen durchführt und damit einen generischen
Ansatz für verschiedenste Umgebungen anbietet.
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