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Abstract. Modern parallel computing algorithm has been applied to the solution of the
few-body problem. The approach is based on Feynman’s continual integrals method im-
plemented in C++ programming language using NVIDIA CUDA technology. A wide
range of 3-body and 4-body bound systems has been considered including nuclei de-
scribed as consisting of protons and neutrons (e.g., 3,4He) and nuclei described as con-
sisting of clusters and nucleons (e.g., 6He). The correctness of the results was checked
by the comparison with the exactly solvable 4-body oscillatory system and experimental
data.

1 Introduction

The wave functions of the ground states of 3,4,6He nuclei were calculated in Refs. [1, 2] by Feyn-
man’s continual integrals method in Euclidean time [3, 4]. The present work is devoted to studying
hydrogen, helium, lithium, and beryllium nuclides using the same approach. The few-body nuclei
2,3H, 3,4He were considered as consisting of protons and neutrons, whereas the nuclei 6He, 6Li, 9Be
were considered as α-cluster nuclei. The algorithm allowing us to perform calculations directly on
GPU was developed and implemented in C++ programming language. The energy and the square
modulus of the wave function of the ground states for several few-body nuclei have been calculated
using NVIDIA CUDA technology. The results show that the use of GPU is very effective for these
calculations.

2 Theory and computing

The energy E0 and the square modulus of the wave function |Ψ0|2 of the ground state of a system of
few particles with coordinates q may be calculated by Feynman’s continual integrals method using
the propagator KE (q, τ; q, 0) in Euclidian time τ [4]

KE (q, τ; q, 0) =
∑

n

|Ψn(q)|2 exp
(
−Enτ

�

)
+

∞∫

Econt

|ΨE(q)|2 exp
(
−Eτ
�

)
g(E) dE. (1)
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Here g(E) is the density of states with the continuous spectrum E ≥ Econt. For the system with
a discrete spectrum and finite motion of particles the square modulus of the wave function of the
ground state may be found in the limit τ→ ∞ together with the energy E0

KE (q, τ; q, 0)→ |Ψ0(q)|2 exp
(
−E0τ

�

)
, τ→ ∞. (2)

The theoretical approach is described in detail in Ref. [2]. The calculation of KE (q, τ; q, 0) for the
fixed τ was performed by parallel calculation of exponentials F

F = exp

−
∆τ

�

N∑
k=1

V (qk)

 (3)

for every random trajectory qk = f (q, k∆τ), where ∆τ is time step, N = τ/∆τ. The same effective
pairwise nucleon-nucleon, nucleon-cluster and cluster-cluster interaction potentials V (r) were used
for all the studied nuclei.

The Monte Carlo algorithm for numerical calculations was developed and implemented in C++
programming language using NVIDIA CUDA technology. Calculations were performed on the
NVIDIA Tesla K40 accelerator installed within the heterogeneous cluster [5] of the Laboratory of
Information Technologies, Joint Institute for Nuclear Research, Dubna. The code was compiled with
NVIDIA CUDA version 7.5 for architecture version 3.5.

The code implementing Feynman’s continual integrals method was initially written for CPU. The
calculation time of the ground state energy for 3He with statistics 106 using Intel Core i5 3470 (dou-
ble precision, 1 thread) and NVIDIA Tesla K40 (single precision) was ∼18377 sec and ∼47 sec,
respectively, which corresponds to the impressive performance gain of ∼400 times [2]. The typical
calculation time of the square modulus of the wave function for the ground state of 3He with statistics
106 on the mesh of 60·60·12 points using NVIDIA Tesla K40 was ∼10 hours, which yields an esti-
mation of the calculation time using Intel Core i5 3470 (double precision, 1 thread) ∼170 days. This
performance gain allows us to increase the statistics and the accuracy of calculations, reduce the mesh
step, and may even enable calculations impossible before.

To check the correctness of the calculation of the propagator the comparison with the exactly
solvable 4-body oscillatory system has been performed. For four particles with masses m1 = m2 =

m3 = m4 = m interacting with each other by oscillator potentials

Vi j(ri j) =
mω2

2
r2

i j, V = −U0 +
∑
i< j

Vi j(ri j) = −U0 +
mω2

2

(
r2

12 + r2
13 + r2

14 + r2
23 + r2

24 + r2
34

)
, (4)

the kinetic energy T and the potential energy V may be written using the normalized Jacoby coordi-
nates x, y, z

T =
1
2

(
ẋ2 + ẏ2 + ż2

)
, V = −U0 +

1
2

(2ω)2
(
x2 + y2 + z2

)
, (5)

and the energy E0 of the ground state is given by

E0 = −U0 + (2�ω)
(

3
2
+

3
2
+

3
2

)
= −U0 + 9�ω. (6)

Assuming ω = 1, � = 1, we obtain E0 = −U0 + 9. For example, in the cases of U0 = 0, E0 = 9 and
U0 = 15, E0 = −15+9 = −6, whereas Feynman’s continual integrals method with statistics N = 7·107

yields E0 = 9.05 ± 0.1 and E0 = −5.98 ± 0.02, respectively, which is close to the exact result.
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U0 = 15, E0 = −15+9 = −6, whereas Feynman’s continual integrals method with statistics N = 7·107

yields E0 = 9.05 ± 0.1 and E0 = −5.98 ± 0.02, respectively, which is close to the exact result.

3 Results

In the calculation of the propagator for the nuclei 2,3H, 3,4He nucleon-nucleon two-body effective
strong interaction potentials Vi− j(r) (i, j = n, p) with repulsive cores, similar to the M3Y potential [6],
have been used (Figure 1a)

Vi− j(r) =
3∑

k=1

uk exp
(
−r2
/
b2

k

)
. (7)

Figure 1. a) Two-body interaction potentials Vi− j(r) for the following pairs of particles: neutron-proton with
parallel (solid line) and antiparallel spins (dotted line), neutron-neutron (dashed line), α-cluster-neutron (dash-
dotted line) and α-cluster-α-cluster (dash-dot-dotted line). b) The dependence of the logarithm of the dimension-
less propagator K̃E on the dimensionless Euclidean time τ̃ for 2H (filled triangles), 3H (circles), 3He (dots), 4He
(empty triangles), 6He (filled squares), 6Li (empty squares), 9Be (stars); lines are the results of linear fitting of
the data; b0 is a coefficient [2].

The calculated logarithm of the propagator for nuclei 2,3H and 3,4He is shown in Figure 1b. The
theoretical binding energies EB = −E0 obtained using formula (2) are listed in Table 1 together with
the experimental values taken from the NRV knowledge base [7]. It is clear that the theoretical values
are close enough to the experimental ones. The observed difference between the calculated binding
energies of 3H and 3He is also in agreement with the experimental values.

Momentum distributions after breakup in nuclear reactions show that 6He nucleus consists of
an α-cluster core and a two-neutron cluster (e.g., [8]). Similarly, the 6Li nucleus consists of an α-
cluster core and a deuteron cluster. The 9Be nucleus consists of two α-clusters and a neutron. There
are several different approaches to the approximate analysis and solution of the three-body problem
(e.g., [9]). Feynman’s continual integrals method provides a simpler possibility of calculating the
energy and the probability density for the ground state of the few-body system, because it does not
require expansion of the wave function in a system of functions. The calculated dependence of log-
arithm of the propagator on the Euclidean time for nuclei 6He (α + n + n), 6Li (α + n + p) and 9Be
(α + n + α) is shown in Figure 1b. The α-cluster-nucleon and α-cluster-α-cluster strong interaction
potentials Vi− j(r) (i, j = n, p, α) were used in the form of the combination of Woods-Saxon potentials
(Figure 1a)

Vα− j(r) =
s∑

i=1

Ui

[
1 + exp [(r − Ri)/ai]

]−1
, (8)
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Table 1. Comparison of theoretical and experimental binding energies for the ground states of the studied nuclei

Atomic nucleus Experimental value [7], MeV Theoretical value, MeV
2H 2.225 2.22 ± 0.15
3H 8.482 8.21 ± 0.3

3He 7.718 7.37 ± 0.3
4He 28.296 30.60 ± 1.0
6He 0.97542 0.96 ± 0.05
6Li 3.637 3.87 ± 0.2
9Be 1.573 1.7 ± 0.1

where s = 2, 3. The values of parameters are given in Ref. [10]. The obtained theoretical energies of
separation into cluster(s) and nucleon(s) ES = −E0 are listed in Table 1 together with the experimental
values taken from the NRV knowledge base [7]. It can be seen that the theoretical values are close
enough to the experimental ones.

The results show that even simple central two-body potentials provide good agreement with ex-
perimental data and thus may be used for calculations of the ground states. Moreover, we would like
to emphasize the fact that good agreement with experimental data was obtained using the same uni-
fied set of potentials with the same parameters for all the studied nuclei, which makes the approach
universal and self-consistent.

4 Conclusion

In this work an attempt is made to use modern parallel computing solutions to speed up the calcula-
tions of ground states of few-body nuclei by Feynman’s continual integrals method. The developed
parallel algorithm provided significant increase of the speed of calculations. The method was applied
to the nuclei consisting of nucleons and cluster nuclei. The results of calculations demonstrate that
the obtained theoretical values are close enough to the experimental ones for the studied nuclei. The
obtained probability densities may be used for the correct definition of the initial conditions in the
time-dependent calculations of reactions with the considered nuclei. The results may also serve as a
useful addition to the results obtained by the expansion in hyperspherical functions.
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