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Abstract. The problem of obtaining characteristics of bound nuclear states from con-

tinuum states data is discussed. It is shown that the ambiguities due to the existence of

phase-equivalent potentials can be resolved by using the analytic properties of scattering

amplitudes. The methods of determination of asymptotic normalization coefficients and

vertex constants are considered. The asymptotic normalization coefficients for 6Li in the

α+d channel are found by analytic continuation of the two-channel effective range expan-

sion. The account of inelastic channels within the effective range approach is discussed.

1 Introduction

Asymptotic normalization coefficients (ANC) determine the asymptotics of nuclear wave functions

in binary channels. ANCs are proportional to vertex constants (VC), which determine the virtual

processes A → B +C [1].

VCs and ANCs are fundamental nuclear characteristics. They are used actively in analyses of

nuclear reactions within various approaches. VCs and ANCs extracted from one process can be used

for the prediction of characteristics of other processes. Comparing of empirical values of VCs and

ANCs with theoretical ones enables one to evaluate the quality of a model. The ANC for the channel

A → B+C determines the probability of the configuration B+C in the nucleus A at distances greater

than the radius of nuclear interaction.

Thus ANCs arise naturally in the expressions for cross sections of nuclear reactions between

charged particles at low energies, in particular, of astrophysical nuclear reactions.

Note that due to the Coulomb barrier the cross sections σ(E) at astrophysical energies are so small

that their direct measurement in laboratories is very difficult, or even impossible. At low energies

σ(E) ∝ 1

k

2πη

e2πη − 1
(1)

where η = ZBZCe2μ/k is the Coulomb parameter for the initial B + C state, Zie is the charge of the

particle i, μ is the reduced mass, and k is the relative momentum.

Usually at astrophysical energies one uses the astrophysical S factor in place of the cross section

S (E) = Ee2πησ(E), E = k2/2μ (2)
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It was shown [2] that the cross section of the B(C, γ)A reaction at astrophysical energies with a

good accuracy is determined by the value of the ANC CABC in the B + C channel. This conclusion

made it possible to calculate S (E = 0) for a number of radiative capture processes: 4He(d, γ)6Li,
4He(3He, γ)7Be, 7,9Be(p, γ)8,10B, 8B(p, γ)9C, 11,13C(p, γ)12,14N, 12−14N(p, γ)13−15O, 17F(p, γ)18Ne,
20Ne(p, γ)21Na.

2 Definition and Properties of ANCs and VCs

For the short-range interaction the asymptotics of the radial overlap integral IABC(LS ; r) of the wave

functions of A, B, and C is of the form

IABC(LS ; r)|r→∞ = CABC(LS )
e−κr

r
, (3)

where κ2 = 2με, ε = mB + mC − mA, L (S ) is the channel orbital momentum (channel spin). If the

Coulomb interaction is present, then one should substitute the Whittaker function W−η,L+1/2(2κr) for

e−κr.
VC GABC(LS ) is the on-shell matrix element of the virtual A ↔ B+C process in the given partial-

wave state LS . It is related to the amplitude of elastic BC scattering:

res < LS |MJA |LS > |E=−ε = (−1)LG2
ABC(LS ) (4)

GABC and CABC are interrelated:

GABC(LS ) = −(πNBC)1/2CABC(LS )/μ (5)

The factor NBC arises due to the identity of nucleons and depends on the way of the antisym-

metrization of wave functions.

1 ≤ NBC ≤
(AB + AC)!

AB!AC!
(6)

Often NBC is included into CABC .

Note that the asymptotics (3) can be rigorously proved for two-body systems only. For three-

and more particle systems the asymptotics of overlap integrals may differ from (3) (‘anomalous’

asymptotics) [3, 4].

Considering the Fourier component of the overlap integral I(r) one gets

I(r)|r→∞ = C0

e−κr

r
+C1

e−κ1r

rp
, p > 1 (7)

where iκ1 is the nearest to the origin singular point of the vertex function G(q) for the A → B + C

vertex. If κ1 < κ, then the second term in (7) dominates at r → ∞. Consider the diagram of figure 1,

which contributes to G(q).

This diagram results from the Faddeev expansion in the simplest three-body model, in which A

consists of d, f and C, B is a bound state of d and f , and e is a bound state of f and C.

For that diagram p = 2 and the singular point is

q = iκ1 = i
mB

md

(κAde + κBd f ), κi jk = 2μ jkεi jk, εi jk = mj + mk − mi (8)

At any εABC the ‘anomalous’ condition κ1 < κ could be satisfied if εAde and εBd f are sufficiently small.
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Figure 1.

3 Methods of determining ANCs and VCs

Microscopic calculations are very tedious.

Using the coordinate representation one should go to the asymptotical region where the values of

wave functions are very small what results in low accuracy.

On the other hand, in the momentum representation to calculate VCs and ANCs one deals with

imaginary values of momenta what complicates calculations considerably.

To our knowledge, there are only two works, in which ANCs for nuclear systems with A>3 were

calculated ab initio:

- in the work [5] the ANCs for an alpha-particle were calculated using the hyperspherical harmon-

ics approach.

- in the work [6] the ANCs for one-nucleon removals from nuclei with 3 ≤ A ≤ 9 were obtained

using the GFMC method.

The alternative way of getting ANCs and VCs is the analysis of experimental data on scattering

and reaction processes. The examples are as follows

- If the pole mechanism (figure 2) contributes to the A(x, y)B reaction, then the differential cross

section σ(z) of that reaction possesses the 2nd order pole at z = z0 (z = cos θ, |z0| > 1). If one

extrapolates the experimental values of (z− z0)2σ(z) to the pole position, one immediately obtains the

value of |GABCGyxC |2.

Figure 2.

- Extrapolation in energy E of the partial-wave amplitude of elastic BC scattering (obtained by

the phase-shift analysis) to the pole corresponding to the bound state A (figure 3) gives the value of

|GABC |2.

The problem of using continuum-state data to obtain information on bound-state characteristics is

not trivial.
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Figure 3.

"Bound-state properties cannot be extracted from the phase shifts of a single partial wave, as a

matter of principle" ([7]; repeated in some original papers).

This assertion is based on the existence of phase-equivalent potentials (PEPs). Different PEPs lead

to coinciding phase shifts δL(E) but properties of the bound states for a given L are different.

According to the inverse scattering problem, to restore a local potential one needs to know

i) δL(E), 0 ≤ E < ∞.

ii) two additional parameters for each of NL bound states for a given L. One can choose NL binding

energies and NL ANCs as such parameters.

Hence. within the formal potential approach with arbitrary potentials and without any additional

conditions, it is impossible to determine unambiguously characteristics of bound states knowing only

δL(E).

The way to resolve that ambiguity problem is to make use of the natural requirement that ampli-

tudes of processes are analytic functions of their kinematic variables. As is known, the analyticity of

amplitudes follows from the microcausality principle.

Using analiticity and knowing the partial-wave BC scattering amplitude fL(E) on some segment

of the real positive semiaxis, one can continue analytically fL(E) to the unphysical region E < 0 and

obtain both the position of the pole E = −ε < 0 and the residue of fL(E) at that pole, that is, the VC

and ANC.

Note that in the present section we discuss the principal side of the problem and not the practical

ways of analytic continuation.

Knowing ε, ANC CABC , and fL(E) at 0 ≤ E < ∞, one can construct unambiguously the local

potential V(r) using methods of the inverse scattering problem. As a result, the unique "analytic"

potential would be selected out of set of PEPs, which leads to the needed analytic properties of the

scattering amplitude. That potential describes all bound and continuum states of a given system.

The existence of PEPs means that the characteristics of a bound state obtained by the direct ana-

lytic continuation of fL(E) from E ≥ 0 to E < 0 may differ from the characteristics found by solving

the bound state problem with the potential which describes correctly fL(E) at E ≥ 0. The cause of

this fact can be elucidated as follows.

In the potential scattering theory the partial-wave amplitude is written as

fL(E) = − μ

2π

∫ ∞

0

drφL(kr)V(r)ψL(kr), (9)

where ψL is the exact solution of the radial Schrödinger equation and φL is a plane wave. If k is con-

tinued to the complex plane, the terms e2|Im κ|rV(r) arise in the integrand, which leads to the divergence

of the integral if V(r) does not decrease rapidly enough at r → ∞.
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fL(k) in the form (9) can be analytically continued to k = iκ (E = −ε) if ([7])

∫ ∞

0

drr|V(r)|e2|κ|r < ∞ (10)

If the condition (10) is violated, then the characteristics of bound states corresponding to the potential

V(r) cannot be obtained by using Eq.(9).

However, there exist other possibilities of analytic continuation of amplitudes, for instance:

- if the explicit form of fL(E) at E ≥ 0 is known

- if one succeeds in approximating fL(E) at E ≥ 0 by a certain analytic expression accurately

enough.

Consider the trivial example:

χ(z) =

∫ ∞

0

e(a−z)tdt (11)

Initially χ(z) is defined only at Re z > Re a since if this inequality is violated, the integral diverges.

On the other hand, the integration in (11) can be performed explicitly giving

χ(z) =
1

z − a
(12)

This expression defines the function, which is analytic in the whole complex z plane with a pole at

z = a.

The description of elastic scattering of composite objects (say, nuclei) could be considered for-

mally in the two-body potential approach, however, the corresponding potentials are complex, nonlo-

cal and energy- and angular momentum dependent. Nevertheless, one can still use analytic continua-

tion of fL(E) to E < 0 to find the binding energy and the VC and ANC. Analytic continuation can be

performed in different ways.

In the work [8] VC G6Lidα and ANC C6Lidα for the S state of 6Li were found in two ways.

1. Analytic approximation of experimental values of k cot δ using Padé approximants and subse-

quent continuation to E < 0.

2. Constructing the effective two-body dα potential Vdα(r) describing experimental phase shifts

and finding the two-body bound-state wave function for this potential. Vdα(r) was written as a sum of

gaussians and satisfied the necessary condition (10).

The results of two different methods are in close agreement.

Note that in the general case, when B and/or C are composite systems, the ANC CABC corre-

sponds to the overlap integral IABC(r), which is normalized not to 1 but to the spectroscopic factor

S ABC . However, if the ANC is found in the two-body model, the corresponding two-body bound-state

wave function should be normalized to 1. Normalizing this function to the independently determined

spectroscopic factor is incorrect.

One may conclude that using the fundamental analyticity property of scattering amplitudes and

analytic continuation methods allows one to obtain information on characteristics of bound states

(including ANCs) from the phase shift data. Thus the ambiguity related to the existence of phase-

equivalent potentials is removed.

4 Analytic continuation of effective range expansion (ERE)

One of the most widespread methods is the analytic continuation in energy of the data on the partial-

wave amplitude of elastic BC scattering to the pole corresponding to the bound state A. The most
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effective way of realization of this procedure is the analytic continuation of the effective range function

KL(k2). This method was used in [8] to obtain the S wave VCs and ANCs for the process 6Li → α+d,

by Yu.V. Orlov et al. [9] for the systems 3H, 2,3,5He, 5Li,8 Be, and by J.-M. Sparenberg et al. [10] for

the systems 16O + n, 16O + p, and 12C + α.

All above-listed works treated one-channel elastic scattering. However, the description of scatter-

ing of particles with nonzero spins even in the absence of inelastic channels often demands account

of channel coupling. The most typical situation induced by tensor forces is the case of two coupled

channels 1 and 2 with the same J but different L (L1 and L2 = L1+2). The examples are dα scattering,

NN triplet scattering etc. In principle, coupled channels may differ not in L but in channel spins.

In the work [11] it was considered the generalization of the ERE to the case of two coupled

channels and using that expansion for determining VCs and ANCs. The consideration in [11] was

carried out for the short-range interaction, which practically limited using the formalism developed

to the reactions induced by neutrons. Then the results of [11] were generalized to account of the

Coulomb interaction which radically changes analytic properties of scattering amplitudes and their

behavior at low energies.

The formalism developed could be applied to any two-channel nuclear system, for which the re-

sults of the phase-shift analysis are known (including the mixing parameter). One of similar important

systems is 6Li in the α + d channel. The ANC values for this system determine the cross section of

the radiative capture 4He(d, γ)6Li, which is the main process of 6Li formation in the big bang model.

Direct measurements of that process at astrophysical energies are absent due to the smallness of

the cross section. The data on the values of the VCs and ANCs for 6Li → α + d (L = 0; 2) channel

obtained by different methods are characterized by a large spread. In the first place it refers to the

D-state constants.

The procedure of analytic continuation of the two-channel ERE has been applied to dα scattering

using several sets of phase shifts. The values of the VCs GL and ANCs CL for 6Li → α + d (L = 0; 2)

have been extracted.

Using the data from the available phase-shifts analysis resulted in G2
0
= 0.4 − 0.5 fm and C0 =

2.3 − 2.8 fm−1/2.

The constants under consideration have also been calculated by solving Faddeev equations in the

three-body model of 6Li (n + p + α) giving G2
0
= 0.3 fm and C0 = 2.0 fm−1/2.

Unfortunately, the poor accuracy of the phase-shift analysis at low energies and the simplified

form of the Faddeev equations used did not make it possible to obtain accurate values of the ANC for

L = 2: C2 = 0.02 − 0.05 fm−1/2.

Nevertheless, it was established that the sign of C2 (relative to C0 ) is positive.

One may conclude that the method suggested is operable.

To get the reliable values of VCs and ANCs for 6Li → α + d it is desirable:

- to measure more accurately the dα scattering differential cross section at low energies

- to perform the thorough phase-shift analysis of the corresponding data

- to perform Faddeev calculations of 6Li in the 3-body model with realistic pair potentials and

account of the Coulomb interaction.

5 Including inelastic channels

The procedure described above considers elastic channels only.

On the other hand, low-lying inelastic thresholds might influence the ERE. (The typical example

is the deuteron-nucleus scattering). The simplest way to allow for an inelastic channel at E = E0 is to

include into the ERE an additional term, which is complex at E > E0. The form of that term should

lead to the correct analytic behavior of scattering amplitudes at the threshold E = E0.
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According to the general theory of singularities of Feynman diagrams [12], a singular part

of a scattering amplitude near a threshold behaves like (E − E0)(3n−5)/2 at n even and like

(E − E0)(3n−5)/2 ln(E − E0) at n odd, where n = 2, 3, 4, ... is a number of intermediate particles at

the threshold.

Adding to the standard ERE singular terms written above, one obtains for the inelasticity coeffi-

cient ηn for the most important two-particle (n = 2) and three-particle (n = 3) thresholds:

η2 =

⎧⎪⎪⎨⎪⎪⎩
K2

0
+ (k − d

√
E/E0 − 1) 2

K2
0
+ (k + d

√
E/E0 − 1) 2

⎫⎪⎪⎬⎪⎪⎭
1/2

, E > E0 (13)

η3 =

⎧⎪⎪⎨⎪⎪⎩
[K2

0
+ d(E/E0 − 1)2 ln |E/E0 − 1|]2 + [k − πd(E/E0 − 1)]2

[K2
0
+ d(E/E0 − 1)2 ln |E/E0 − 1|]2 + [k + πd(E/E0 − 1)]2

⎫⎪⎪⎬⎪⎪⎭
1/2

, E > E0 (14)

K0 is the standard effective range function and d > 0 is an additional factor which in the simplest

case can be considered as a fitting constant. We plan to apply the above formulas to the dα scattering.

The work has been supported by the Russian Foundation for Basic Research under Grant No.

13-02-00399.
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