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Abstract—The huge amount of CCTV footage available makes
it very burdensome to process these videos manually through
human operators. This has made automated processing of video
footage through computer vision technologies necessary. During
the past several years, there has been a large effort to detect ab-
normal activities through computer vision techniques. Typically,
the problem is formulated as a novelty detection task where the
system is trained on normal data and is required to detect events
which do not fit the learned ‘normal’ model. There is no precise
and exact definition for an abnormal activity; it is dependent on
the context of the scene. Hence there is a requirement for different
feature sets to detect different kinds of abnormal activities. In
this work we evaluate the performance of different state of the
art features to detect the presence of the abnormal objects in the
scene. These include optical flow vectors to detect motion related
anomalies, textures of optical flow and image textures to detect
the presence of abnormal objects. These extracted features in
different combinations are modeled using different state of the
art models such as Gaussian mixture model(GMM) and Semi-
2D Hidden Markov model(HMM) to analyse the performances.
Further we apply perspective normalization to the extracted fea-
tures to compensate for perspective distortion due to the distance
between the camera and objects of consideration. The proposed
approach is evaluated using the publicly available UCSD datasets
and we demonstrate improved performance compared to other
state of the art methods.

I. INTRODUCTION

During the past several years, there has been a large effort to
detect abnormal activities through computer vision techniques.
Typically, the problem is formulated as a novelty detection task
where the system is trained on normal data and is required to
detect events which do not fit the learned ‘normal’ model.
Many researchers have tried various sets of features to train
different learning models to detect abnormal behaviour in
video footage.

Although different features were used with different statis-
tical models, performance of these features varies with the
model being used. Furthermore the feature being used should
be informative and descriptive for the anomaly detection
problem in hand.

Previous research has also failed to account for the effect
of the perspective distortion caused by the depth variation in
the scene, meaning important information from distant objects
in the scene will lose significance relative to larger objects in

the foreground. This can result in some abnormal events being
missed reducing the system’s effectiveness.

In this work we evaluate different feature extraction tech-
niques to detect anomalies of various classes: objects moving
with excessive speed; the presence of abnormal objects in a
scene; and the presence of objects in restricted or anomalous
regions. We evaluate the performance of different state of
the art features such as optical flow vectors to detect mo-
tion related anomalies, textures of optical flow, and image
textures using Gabor wavelets to detect the presence of the
abnormal objects in the scene. Extracted features in different
combinations are modelled using different statistical modelling
techniques, including GMM [29] and Semi 2D HMM [24].

In addition we apply perspective normalisation to features
to remove perspective distortion. As our work is using single
camera video footage, no depth information is available. So
perspective normalization is achieved through the application
of a geometric technique applied to a single frame.

The remainder of this paper is structured as follows: Section
II summarises related work in this field; Section III describes
the models used in our work; Section IV describes the features
used; Section V describes the perspective normalization; Sec-
tion VI presents experimental results on the publicly available
USCD database [21]; and Section VII presents conclusions
and directions for future work.

II. RELATED WORK

Data driven anomaly detection can be divided into two
major processes: feature extraction and model learning. In
past research there have been different feature sets proposed
for different modelling techniques, and performance of the
features varies with the modelling technique selected.

Because of the huge variety of contexts with unique char-
acteristics, there is an ongoing search for more robust and
descriptive features which capture the unique properties of
normal behaviour [25]. The features used are expected to be
invariant and robust to variations such as brightness change,
occlusion, clutter, etc. Feature extraction can be performed
using both bottom-up and top-down approaches. A top-down
approach means each individual in the scene is segmented and
features are extracted separately. Anomalous event detection
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using object tracking is an example of this approach, where
individual object trajectories are obtained and the individuals
with abnormal trajectories are deemed to be performing an
abnormal event. This approach can be effective in a sparsely
crowded environment, though in densely crowded environ-
ments it is very challenging to track each individual separately
due to clutter and dynamic occlusions. These kind of feature
extraction techniques were proposed in [37, 34, 18, 23].

Bottom-up approaches are stimulus driven approaches. In-
stead of tracking individual objects, features are extracted
that represent the underlying scene characteristics and crowd
behaviour. These approaches can work very well in densely
crowded environments, amidst extensive clutter and dynamic
occlusions. Features extracted for the bottom-up approaches
are frequently collected at the pixel level, and are referred to
as ‘low level’ features. Low level features include information
such as the location, pixel intensity and intensity changes,
velocities, motion textures and any combination of these
simple features.

Optical flow has been extensively used to detect speed
related anomalies in a scene. Optical flow features can be
encoded as either flow vectors, histograms or applying PCA to
extract the dominant flow components. Ryan et al [28] used the
optical flow vector at each pixel summed together in a spatio
temporal cube. Similarly, Reddy et al [26] used the optical
flow vector at each pixel summed together for a set of cells
in a frame. Optical flow vectors have been used in numerous
other works as well [32, 22, 14, 13, 1, 19]. Andrade et al [2, 3]
calculated a dense optical flow field for each pixel, followed by
dimensionality reduction using PCA. Bin Zhao et al [38] and
Kim et al [14] described the motion information as histogram
of optical flow (HoF) in their work. Ryan et al [28] proposed
a feature called textures of optical flow which computes the
smoothness in the optical flow across a block which can be
used to detect motion related anomalies and the presence of
abnormal objects in the scene.

Among other features, Kratz et al [15] used the distribution
of spatio-temporal gradients as the base representation of non-
uniform local spatio-temporal motion patterns. Xiang et al
[36] proposed the Pixel Change History (PCH) for measur-
ing multi-scale temporal changes at each pixel. Lee et al
[16] proposed a feature extraction method where each video
clip is represented by the motion magnitude and direction
histograms and colour histogram. Zou et al [40] also used
colour histograms as the feature for their abnormal detection
algorithm. Chen et al [9] and Rougier et al [27] used a
motion history image [6] to determine the motion direction
and intensity. Reddy et al [26] has proposed a technique called
image textures which are calculated using Gabor wavelets,
and are combined with a size feature based on the number
of foreground pixels inside a cell.

The various low level features and object level features
that are extracted serve as input to a learning model. Popular
learning models include Coupled HMM [15, 39], Multi-
observation HMM [35], Semi-2D HMM [24], GMM [28],
LDA [11], Support Vector Machine (SVM) [34, 9] and Markov

Random Field [14, 4].
In the above works the feature extraction techniques are

typically only tested on a single statistical model. Our work
analyses different feature combinations with different models
to measure the performance of the features in each model.
Furthermore, existing feature extraction techniques do not
consider perspective distortion caused by the depth of the
scene. Consequently the features related to distant objects in
the scene are diminished, possibly resulting in events being
missed.

III. LEARNING MODELS

Models are trained in an unsupervised manner using videos
containing only normal events, and the incoming video is
classified as either normal or abnormal based on the likelihood
of the clip according to the trained model, i.e outliers of the
model are classified as abnormal while the rest is classified as
normal.

We use Gaussian mixture Models [28] and Semi-2D hid-
den Markov models [24] to model the extracted features.
The Gaussian mixture model is used to model the temporal
causality, while the Semi-2D HMM is used to model both
the spatial and temporal causalities. The Semi-2d hmm [24]
has two individual models called the X-HMM and Y-HMM to
model both the horizontal and vertical causalities respectively.

For the Gaussian mixture models, following [28] we divide
the video sequence in to non-overlapping spatio-temporal
cuboids and the low level features extracted at the pixel level
are summed up to encode a feature vector for each and
every spatio temporal cuboid. Dimensions of a spatio-temporal
cuboid are chosen to be 7x7(pixels) in the spatial domain
and 21(frames) in the time domain. The Bayesian information
criterion (BIC) [30] is used to select the optimum number of
states for the model.

For the Semi-2D hidden Markov model as proposed in
[24], we divide a frame from the video sequence in to non-
overlapping spatial cells and low level features extracted at
the pixel level are summed up to encode a feature vector for
each and every spatial cell. Then, feature vectors of the spatial
cells from consecutive frames at a specific location are used
to create an observation sequence for the HMMs. Observation
sequences are created for all the spatial cells. The spatial
cell dimension is set to be 7x7(pixels) and the observation
sequence length is chosen as 20(frames). The number of states
is chosen as 4 and 5 for the models of UCSD Ped2 and UCSD
Ped1 datasets [21] respectively.

Here for both models, the spatial dimension is chosen to be
roughly the same size of the interesting objects in the testing
dataset whereas dimension in the time domain is chosen to be
the one which gave better results with the testing dataset.

IV. FEATURES

We use different sets of features to model the normal
activities, and to detect different anomalies related to speed
violations, spatial access violations and the presence of abnor-
mal objects in the scene. A variety of features are extracted and



evaluated including location, optical flow, textures of optical
flow and image texture based features.

Reddy et al [26] used Gabor wavelets to extract texture
information of the objects in the scene. They used image
textures to increase the sensitivity of their size feature which
has been derived from Gaussian averaging the foreground
pixels around the eight connected cells of a single cell. They
modelled these texture features using a codebook that is
trained in an on-line fashion (adaptively grown). Further, Ga-
bor wavelet-based methods have been widely used to extract
representative features for face analysis such as edges with
different orientations [17].

We use the Gabor wavelet feature extraction technique
similar to the one used by Reddy et al [26] in their work. Gabor
wavelets are a frequency decomposition method similar to
Fourier analysis, but instead of decomposing the frequencies in
the global manner Gabor wavelets do it in a localised manner.
Here the local spectrum is established through (intermediate)
features that are obtained by filtering the input image with a set
of two-dimensional (2D) Gabor filters [31]. The convolution
kernel of a Gabor wavelet is obtained by multiplying a Gaus-
sian kernel with a cosine function. Here the Gabor wavelets
have two properties to analyse the texture features. The first
property is the orientation of the wavelet and the second is the
spatial frequency. Further variance of the Gaussian function
can be used to fine tune the localisation property of the Gabor
wavelet.

The Gabor function is given below,

ψ(x, y, ω0, θ) =
ω0√
2πk

e−
ω2
0

8k2 (4(x cos θ+y sin θ)2+(−x sin θ+y cos θ)2)

.ei(ω0x cos θ+ω0y sin θ)

(1)
where:

ω0 = 2π
λ and k = π

Here (x,y) is the element location, θ is the orientation and
λ is the wavelength. Elements of the kernel matrix are the
real part of the function ψ(x, y, ω0, θ) and we have chosen
the kernel size as 9 × 9 and λ = 3

Gabor kernels with four different orientations,
0◦, 45◦, 90◦, 135◦ in the spatial domain are shown in
Figure 1.

Gabor filters of of these four different orientations (see
Figure 1) are applied to the image to extract the image texture
features.

In addition to the above features other features such as:
1) Location features

The center coordinate of the spatial block or the spatio
temporal cuboid.

2) Motion information. This is the summation of optical
flow vectors inside a block [28]. To calculate the the
optical flow vectors, we have used Black and Anandan’s
algorithm [5].The motion features across a block B are
given by,

(a) 0◦ orientation. (b) 45◦ orientation.

(c) 90◦ orientation. (d) 135◦ orientation.

Fig. 1: Images of Gabor wavelets in spatial domain of different
orientations.

σu =
∑

(x,y)∈B

u(x, y), (2)

σv =
∑

(x,y)∈B

v(x, y). (3)

3) Textures of optical flow [28]
This feature measures the uniformity of the motion, is
computed from the dot product of flow vectors at dif-
ferent offsets. Uniformity computed at different offsets
is useful for detecting objects of various sizes [28].

4) Image textures [26]
Gabor filters of all four orientations are applied to
images as outlined above. This procedure generates a
four dimensional feature vector.

These features are evaluated with the learning models
outline in Section III. The following feature combinations are
evaluated:

Following feature combinations are evaluated

1) Optical flow vector only.

f = [σu, σv]. (4)

2) Optical flow and location.

f = [σu, σv, x, y]. (5)

3) Optical flow, location and textures of optical flow (ToF)
at various scales {φ}.



(a) Van is closer to the camera (b) Van is distant from the camera

Fig. 2: Optical flow variation with scene depth due to perspec-
tive distortion.

f =
[
σu, σv, x, y, φ(1,1,0), φ(3,3,0), φ(5,5,0)

]
, (6)

where φ(δ,δ,0) is uniformity feature value at δ offset [28].
4) Optical flow, location, ToF at various scales {φ} and

image textures at different orientations {α} as given in
equation 7.

f = [σu, σv, x, y, φ(1,1,0), φ(3,3,0),φ(5,5,0),

α0, α45, α90, α135],
(7)

where φ(δ,δ,0) is uniformity feature value at δ offset [28]
and αθ is image texture feature value at θ degrees of
orientation.

V. PERSPECTIVE NORMALIZATION

Due to the perspective distortion in a scene, objects near to
the camera appear to be large while distant objects appear to
be small. This can significantly affect the feature extraction
methods as the extracted features will vary according to their
depth in the scene. Figure 2 shows the variation in the optical
flow for the same van at two different depths.

In works related to crowd counting, perspective normaliza-
tion has been applied extensively [20, 12, 8, 7, 29]. In these
approaches, depth maps were created and features such as
areas and edges are scaled appropriately to compensate for
distortion due to perspective variation.

To create depth maps for a scene, a number of approaches
have been used. Firstly, an infra-red sensor attached to the
camera can be used to determine the depth values of objects
in the scene [33]. Another approach to use stereo images of
an object to estimate the depth information of an object in
the scene [10]. However, as most of the publicly available
datasets are monocular videos with no other information about
the camera parameters, the only available solution is to use
geometric correction to remove perspective distortion.

In our work we apply the geometric correction used in [7]
and other crowd counting approaches. Here it is assumed that
object size varies linearly with the y coordinate of the image.
A perspective map is approximated by linearly interpolating
an object’s size between the two extremes of the scene [7].
As depicted in Figure 3, a rectangular pathway which is lying
on the ground is marked and both the width of the pathway
and the height of a pedestrian are measured at two locations
in the scene. Based on these manual annotations, the width of

(a) Reference person at line AB. (b) Reference person at line CD.

Fig. 3: Geometric correction for perspective distortion. Images
from [7].

the pathway w(y) and the height of the pedestrian h(y) are
approximated by a linear function of the y coordinate. The
perspective map, S(y), assigns a weight to each pixel in row
y as follows:

S(y) =
h1w1

h(y)w(y)
(8)

where w1 and h1 denote fixed references (at line AB in
Figure 4). Thus the perspective map assigns larger weights to
smaller objects in the distant parts of the scene.

We weight raw optical flow by S(y) to compensate for the
perspective distortion. The other features (location, textures of
optical flow and image texture) are used without any change.

VI. EXPERIMENTAL RESULTS

In this work we have tested new feature combinations with
different modelling techniques [24, 28], and other existing
feature combinations as outlined in Section IV. In addition,
we evaluate the effect of applying perspective normalization on
the publicly available UCSD datasets [21]. This video dataset
contains bi-directional pedestrian traffic from two camera view
points. Several video sequences (each of 200 frames duration)
which contain normal pedestrian movements are used for the
training. The testing video sequences contain abnormalities,
such as the presence of abnormal objects, anomalous pedes-
trian motions and spatial abnormalities, and are annotated with
frame-level ground truth.

Perspective normalization is applied to different feature
combinations and modelled using different learning models.
Table I and II show the results for the Peds1 and Peds2 datasets
respectively for these combinations of features with different
models (the best performing feature vector for each learning
model is shown in bold, and the best performing feature vector
and learning model combination in each dataset is underlined).
It can be seen that the Ped1 dataset gave best results with
perspective normalization as most of the motion relating to
the objects in the scene happens perpendicular to the camera
plane, while the Ped2 dataset shows little improvement with
perspective normalization as objects in the scene move in
parallel to the camera plane.

For the Ped1 dataset, modelling only the optical flow
features significantly improves with the perspective normaliza-
tion. Previously without perspective normalization including
the location feature allowed a system to compensate for the



GMM X-HMM Y-HMM

Without PN With PN Without PN With PN Without PN With PN

Feature Combinations EER AUC EER AUC EER AUC EER AUC EER AUC EER AUC

OF 32.07% 0.754 26.46% 0.819 31.30% 0.750 19.93% 0.878 29.09% 0.783 21.26% 0.868

OF, Location 24.36% 0.839 22.86% 0.850 26.01% 0.814 22.96% 0.854 21.83% 0.859 20.65% 0.854

OF, ToF, Location 23.94% 0.828 20.69% 0.866 29.71% 0.767 22.86% 0.857 26.14% 0.796 22.13% 0.860

OF, ToF, IT, Location 28.06% 0.783 24.19% 0.822 28.82% 0.779 26.31% 0.826 22.89% 0.833 22.03% 0.855

TABLE I: Comparison of performances of different feature combinations with different models on Peds1 dataset: PN stands
for perspective normalization, ToF stands for Textures of Optical Flow [28], IT stands for Image Textures, O/F stands for
Optical Flow based features, EER stands for Equal Error Rate and AUC stands for Area Under Curve.

GMM X-HMM Y-HMM

Without PN With PN Without PN With PN Without PN With PN

Feature Combinations EER AUC EER AUC EER AUC EER AUC EER AUC EER AUC

OF 14.56% 0.937 20.55% 0.870 17.68% 0.889 23.17% 0.843 17.22% 0.905 21.77% 0.850

OF, Location 20.51% 0.862 20.00% 0.902 31.18% 0.693 24.85% 0.832 27.43% 0.810 25.91% 0.812

OF, ToF, Location 14.89% 0.933 15.15% 0.931 22.70% 0.881 20.21% 0.881 11.67% 0.928 13.76% 0.928

OF, ToF, IT, Location 12.02% 0.939 8.73% 0.970 16.88% 0.904 17.64% 0.878 14.56% 0.930 14.64% 0.922

TABLE II: Comparison of performances of different feature combinations with different models on Peds2 dataset. The same
notation as Table I is used here.

perspective distortion to some extent. Without location features
results are poor, but once the optical flow features are per-
spective normalized, results significantly improve with all the
models. Other feature combinations also show improvements.
The GMM gives best result for the perspective normalized
feature combination of textures of optical flow, optical flow
and location while the X-HMM and Y-HMM give best results
for the perspectively normalized feature combination of optical
flow only and optical flow with location respectively. Figures
5a, 6a, 7a show ROC curves for the different feature com-
binations with different models and the improvements with
the perspective normalization can be seen. Figures 4a and 4c
show failures to detect the presence of a skateboarder and
couple of bicycles in the far field of the camera without
perspective normalization, whereas Figures 4b and 4d show
that with the application of perspective normalization these
distant abnormal objects can be detected.

For the Ped2 dataset Gabor wavelets for image textures are
applied and the extracted 4 dimensional feature vector (differ-
ent orientations) is combined with the other optimum feature
combinations [28] to achieve improvement in the results.
After applying the perspective normalization the best result
is achieved, allowing events such as the slow moving bicycle
(see Figure 4f) to be detected for a longer duration. Here, it
can be observed that with the perspective normalization the
GMM performs well while the performance of the Y-HMM
is better without the perspective normalization, and X-HMM

performs poorly compared to the other models in both cases.
Figures 5b, 6b, 7b show the ROC curves for the different
feature combinations with different models. Figures 4e and
4g show the failures to detect the slow moving bicycle and
the presence of a partially occluded bicycle and skateboarder,
while Figures 4f and 4h show that the addition of image
textures to the previous combination enables the respective
detections.

Regarding the models, it can be seen that X-HMM and Y-
HMM perform best with a single feature (optical flow) for
Ped1, but perform best with a more complex feature vector
for Ped2. This is mainly because most of the anomalies in
Ped1 can be detected with only motion information, including
the abnormal objects such as vehicles and bicycles as their
speed is significantly high compared to the normal walking
pedestrians; whereas as in Ped2 abnormal events include slow
moving bicycles which move at approximately the same speed
as pedestrians. Hence the combination of multiple features
with motion features performs well for Ped2. Further it can
be seen that the GMM performs best with the inclusion of
image textures while the X-HMM and Y-HMM performance
degrades when these features are included. This is due to the
possibility of the background being modelled with the image
textures in the case of the X-HMM and Y-HMM, as their
feature vectors are spanning a larger area in the spatial domain
by taking in to account observations from the adjacent spatial
locations. The models (and particularly the HMMs) are limited



(a) Skateboarder at very distance is not
detected without PN

(b) Skateboarder at very distance is
detected with PN

(c) Couple of bicycles at very distance
is not detected without PN

(d) Couple of bicycles at very distance
is detected with PN.

(e) Slow moving bicycle is not detected
without image textures

(f) Slow moving bicycle is detected
with image textures.

(g) Bicycle and skate border are not
detected without image textures

(h) Bicycle and skate border are detect-
ed with image textures

Fig. 4: Representative frames demonstrating the proposed
anomaly detection algorithm. The left column is without the
proposed techniques and the right column is with the proposed
techniques [21], PN stands for Perspective Normalization

by the amount of data available. Hence lack of training data
degrades the performance when additional features such as
location are added to the HMM systems with a high number
of states, which is especially the case for Ped1.

Overall, Table I shows that perspective normalization im-
proves performance in every experiment on Ped1 except in a
single case, while Table II shows that it has no major effect
on Ped2 because perspective plays no significant role in that
scene. Furthermore, the addition of the image textures feature
to the state of the art feature combination of [28] achieves the
best results for the Ped2 dataset.

Regarding the speed of the models, on average it takes
0.09 sec to process a frame (11 fps) for all three models
on a computer with a 2.53 GHz Intel i5 processor and 4
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(a) ROC curves of Ped1 of different feature combinations with GMM.
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(b) ROC curves of Ped2 of different feature combinations with GMM.

Fig. 5: ROC curves of Ped1 and Ped2 of different feature
combinations with GMM

GB memory, running in a single threaded configuration. Both
versions of the Semi-2D HMM require significantly more
memory compared to the GMM approach.

VII. CONCLUSION AND FUTURE WORK

We have evaluated different feature combinations applied to
a variety of learning models. Perspective normalization was
applied to compensate for the perspective distortion. It can be
seen that the application of perspective normalization improves
performance on scenes where the effects of perspective are
strong. Optical flow features modelled by the Semi-2D X-
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(a) ROC curves of Ped1 of different feature combinations with Y-HMM.
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(b) ROC curves of Ped2 of different feature combinations with Y-
HMM.

Fig. 6: ROC curves of Ped1 and Ped2 of different feature
combinations with Y-HMM

HMM [24] yielded the best EER of 19.91%, compared to other
state of the art works [24]. For the Ped2 dataset, the combi-
nation of optical flow, textures of optical flow [28], image
textures using Gabor wavelets and location with perspective
normalization gave best EER of 8.44% compared to other state
of the art works [24]. It was observed that the addition of
image textures using Gabor wavelets doesn’t work as well for
the Ped1 dataset, as some background objects such as waving
trees are also included in the model captured by the image
textures.
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Fig. 7: ROC curves of Ped1 and Ped2 of different feature
combinations with X-HMM

Future works will be seek to extend this evaluation to
other databases, features and learning models. Based on these
results, approaches which can perform effectively over a
variety of conditions will be developed.
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