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Generalised gamma bidding model 
 
 
A generalised gamma bidding model is presented, which incorporates many previous models.  
The log likelihood equations are provided.  Using a new method of testing, variants of the 
model are fitted to some real data for construction contract auctions to find the best fitting 
models for groupings of bidders.  The results are examined for simplifying assumptions, 
including all those in the main literature.  These indicate no one model to be best for all 
datasets.  However, some models do appear to perform significantly better than others and it is 
suggested that future research would benefit from a closer examination of these. 
 
Keywords 
 
Generalised gamma distribution, bidding models, grouping, least-squares cross-validation, 
goodness of fit. 
 
 
1. Introduction 
 
Much of the bidding literature is concerned with setting a mark-up, m, so that the probability, 
Pr(m), of entering the winning bid reaches some desired level.  Several composite density 
functions have been proposed for estimating this probability, the most frequent being the 
uniform (e.g., Vickrey, 1961; Fine and Hackemar, 1970; Cauwelaert and Heynig, 1978; 
Whittaker, 1970; and Grinyer and Whittaker, 1973), normal (e.g., Alexander, 1970; Emond, 
1971; McCaffer, 1976; Mitchell, 1977; Cauwelaert and Heynig, 1978; Morrison and Stevens, 
1980; Carr, 1983), lognormal (e.g., Arps, 1965; Brown, 1966; Crawford, 1970; Capen et al, 
1971; Klein, 1976; Weverbergh, 1982; Skitmore and Pemberton, 1994); gamma (Friedman, 
1956; Dougherty and Nozaki, 1975); and Weibull (Gates, 19671; Oren and Rothkopf, 1975) - 
and with a variety of simplifying assumptions concerning parameter estimation (e.g., 
Friedman 1956, Carr 1982; Skitmore and Pemberton 1994). 
 
Of the few empirical comparative studies made, Hossein (1977) claimed the gamma 
distribution to be the best fit, followed by lognormal and normal distributions, while McCaffer 
and Pettitt (1976) considered the normal distribution to be a better fit than uniform for their 
data.  More recently, Skitmore (1991) reported a lognormal distribution to be better than 
uniform with Skitmore (2001, 2002b, 2004) and Skitmore and Lo (2002) finding the truncated 
lognormal to be the best fit followed by the truncated normal distribution, with the uniform 
distribution some way behind. 
 
Fitting probability distributions to bidding data is not an easy task.  The special features of 
construction contract2 auctions, for example, are (1) each contract is different in size, (2) there 
are a small number of bidders in each auction and (3) different bidders bid in each auction 
(making the contract-bidder matrix usually well over 90% sparse).   To date, only Skitmore 
(1991) has succeeded in using multivariable methods.  As discussed by Skitmore (1991), the 
main difficulty resides in the extreme sparseness and asymmetry of the contract-bidder matrix, 
quoting Elman (1982) who, in considering the use of direct and iterative methods of solving 
large sparse non-symmetric systems of linear equations, found difficulties with direct methods 
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due to the factoring process involved generating many more non-zeros than the coefficient 
matrix, thereby increasing the computational storage size needed. A further problem 
encountered was that the number of arithmetic operations could become excessive, prompting 
the general conclusion that '. . . although progress has been made in the development of 
orderings for the unknowns that decrease the complexity of directness for solving sparse 
problems . . . many large sparse problems cannot be solved by direct methods on present day 
computers'.  Faced with similar problems, Skitmore (1991) resorted to an iterative method that 
has since become established in the field (e.g., Skitmore and Pemberton, 1994; Skitmore et al, 
2007).  It should also be noted that the sparseness of the matrix increases as the dataset 
enlarges over time and new bidders are added. 
  
A further difficulty until recently has been the lack of available methods for testing the 
suitability of the models and simplifying assumptions.  This has been resolved to some extent 
by Skitmore (2001, 2002b) and Skitmore and Lo (2002), who developed both graphical and 
statistical methods.  Skitmore (2002a, 2004) has also developed methods based on Dowe et 
al’s (1996) log score measure. 
 
In this paper, an alternative approach is adopted in using a more general model in which the 
various distribution forms are represented as special cases depending on the value of certain 
parameters in the model.  Of particular interest is Stacey’s (1962) generalised gamma (GG) 
distribution, as this includes many of the common bidding distributions in the literature, such 
as the lognormal, Weibull and gamma, as special cases.  Coincidentally, these are also the 
most commonly used in the statistical analysis of lifetimes (Lawless, 1982), where it is often 
convenient to move between these and their equivalent log forms – normal, extreme value and 
log-gamma – for parameter estimation and inference procedures in general.  Skitmore's (1991) 
method of solving the log likelihood equations iteratively is followed to remove the contract 
size effect and a method is developed for grouping similar bidders involving a new method of 
testing the fit of potential grouping arrangements.  An example application is provided by the 
analysis of some real data for construction contract auctions to find the best groupings of 
bidders, and the results are examined for a wide range of simplifying assumptions for 
parameter estimation. 
 
 
2. GG model for bidding 
 
Let kXXX ,,, 21  be independently distributed random variables, and suppose we generate 
one value, i.e., kxxx ,,, 21   from each variable.  Letting ( ).f  denote the probability density 
function (pdf) and ( ).F  the distribution function (cdf) of X , then choosing a value, say ix , the 
probability of this being less than one other value jx  ( )ij ≠  we denote as ijP .  Assuming 
independence, the probability of xi being the lowest value of all the x values is then 
 

 ( ) ( ) dxxSxSxfP
k

ij
jiiii

ji∫ ∏
∞

∞− ≠

−= ωωω 1
. )(  (1) 
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where ( ).jS  is the survival function, ( ).1 jF− , of each of the remaining ijX ≠ variables. This 

includes all the major bidding models as special cases when 1== ji ωω  (e.g., Friedman, 

1956); Carr, 1982; Skitmore and Pemberton, 1994) and 
ij

ji
j P

P
=ω (Gates, 1967) model3. 

 
Stacey’s (1962) GG distribution represents the sum of n-exponential distributed random 
variables and is defined in terms of its nonnegative scale and shape parameters (Shin et al, 
2005).  It has been used in many situations, with recent applications ranging from the analysis 
of drought data (Nadarajah and Gupta, 2007), speech recognition (Babu et al, 2012) and crab 
catches (Hvingel et al, 2012), to breast cancer survival analysis (Abadi et al, 2012) and 
estimating pregnancy times (Keiding et al, 2012). 
 
For the GG family, the pdf and cdf involve the gamma function, ( )xΓ , and incomplete gamma 
function, [ ]xI λκ , , i.e.: 
 

 ( ) ( ) ( ) ( )[ ]χκχ λλ
κ

λχ xxxf −
Γ

= − exp1        x>0 (2a) 

and 
 
 ( ) ( )[ ]χλκ xIxS ,1−=        x>0 (2b) 
 
so that from (1) 

 ( ) ( ) ( )[ ] ( )[ ]{ }dxxIxxP
k

ij
jjii

i

ii
i

jiii∫ ∏
≠

− −−
Γ

= χχχκ λκλλ
κ
χλ ,1exp1

.  (3) 

 
where 0〉χ , 0〉λ  and 0〉κ  are parameters, ω  in (1) being subsumed within the λ  parameter.  
This includes as special cases the exponential ( )1== κχ , Weibull ( )1=κ , and gamma 
( )1=χ , with the lognormal distribution arising as a limiting form as ∞→κ .  Happily, 
therefore, the GG model includes many of the most commonly proposed bidding distributions 
as special cases. 
 
 
3. Parameter estimation 
 
3.1 Generalised gamma 
 
To estimate the parameters, it is convenient to first consider Y=logX instead of X and 
reparameterise ( )κλχ ,,  to ( )κσα ,,  in (3) by setting κχλα loglog 1 += −  and 2/11 −−= κχσ  
after Prentice (1974).  Then, by introducing subscripts j and l to denote bidder j and contract l 
(j=1,…,r; l=1,…,c), Skitmore's (1991) approach is followed where a log bid, jly  is modelled 
by 
 
 jlljjly εβα ++=  
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where jjjj κχλα loglog 1 += − is interpreted as a bidder location parameter, lβ  a contract 
datum parameter and jlε  is distributed according to p.d.f. ( )jjf κσ ,,00 . Although this is 
clearly a two way ANOVA regression problem, the major difficulty in applying direct 
methods of estimation, as discussed earlier, is that the bidder/auction matrix in the 
construction contract auction context is asymmetric and extremely sparse - usually over 90% 
so4 - resulting in the need for a special maximum log likelihood procedure as follows.   
 

     Setting 
σ

βα ljjl
jl

y
z

−−
= , jly has the p.d.f.

 
 

 

  ( ) 
























−

Γ

−

j

jl
jjlj

jj

j z
z

κ
κκ

κσ
κκ

expexp
2/1

         ∞<<∞− jly  (4) 

 
So the log-likelihood is: 
 

 ( ) ( ) ∑∑∑∑ −+−Γ−−=
r

j

c

l j

jl
jlj

r

j

c

l
jljljjjjj

z
zNNNL

κ
δκδκσκκκ logloglog21log  

 
where 1=jlδ if bidder j bids for contract l 
                = 0 if bidder j does not bid for contract l 

∑∑=
c

l

r

j
jlN δ  = total number of bids 

 
     The maximum likelihood equations over the α ’s, β ’s and σ ’s are: 
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where ∑=
c

l
jljn δ , the number of bids made by bidder j, and ∑=

r

j
jllm δ , the number of bids 

for contract l.  Setting jσ =1 and jκ =1 and solving the jα ’s and lβ ’s by iteration of (5) and 
(6) provides the required maximum likelihood estimates (m.l.e) for the exponential 
distribution.  For the Weibull distribution, the parameter estimates can be obtained by setting 

jκ =1 and solving the jα ’s and lβ ’s by iteration of (5) and (6) for trial jσ  values - finding the 
best jσ  using the Newton-Raphson method5 for (7).  Similarly, the gamma parameters can be 
obtained by setting jκ =1/ 2

jσ  and solving the jα ’s and jβ ’s by iteration of (5) and (6) for trial 

jσ  values – again finding the best jσ  using the Newton-Raphson method for (7).  On 

completion, the m.l.e’s of the original parameters are then 2/11 −−= jjj κσχ  and ( ) 1exp −= jj αλ . 
 
 
3.2 Weighted lognormal 
 
For the lognormal distribution, this method is impractical as setting κ  to a very large value 

creates computational problems (e.g., for 
κ
1 ).  A better approach is therefore to work 

directly with the limiting form itself.  Also, from (1), we include the weighting term ω .  
 
Letting ( )XY log= , jlljjly εβµ ++=  and jlε  is distributed according to p.d.f. ( )jf σ,00 . 

With ( ) 22

2
1 zez −=
π

φ  and ( ) ( )dxxzQ
z
∫
∞

= φ , the log likelihood is 
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     The first derivatives of Log L are 
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     Putting ( ) ( )
( )zQ
zzV φ

=  and ( )
jjlljlj yz σµβ −−=  

 
Then the maximum likelihood equations for βσµ ,, and ω  are 
 

( ) ( ) 01 =−+=
∂

∂ ∑∑ lj
l

jljlj
l

lj
j

zVzLogL ωδδ
µ

  (8) 

 

( ) ( ) 012 =−++−=
∂
∂ ∑∑∑ ljlj

l
jlj

l
ljlj

l
lj

j

zVzzLogL ωδδδ
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 (9) 

 

( ) ( ) 01 =−+=
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∂ ∑∑ lj
j

jljlj
j

lj
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zVzLogL ωδδ
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  (10) 
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     One method of solution is to use the Newton-Raphson method to solve (8), (9) and (10) for

,jµ  jσ  and lβ , using (11) to calculate jω  from the trial ,jµ  jσ  and lβ  values on each 

iteration.  Upon convergence, the estimates of 2
jσ are biased, but can be adjusted by 

multiplying by the approximation (Skitmore 1991) 
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4. Scoring function 
 
4.1 Error term 
 
To date, the only approach to quantifying the accuracy of bidding models has been to examine 
their predictions of the probability of a bidder winning a contact, by means of a modified form 
of the Dowe et al (1996) logscore (Skitmore, 2001).   The method suffers from discontinuities, 
however, which makes it difficult to use as a grouping criterion.  To overcome this problem, a 
new method of scoring is used. This is the mean square error (MSE) of predicting the lowest 
bid.  The MSE is chosen as it is symmetrically very responsive to extreme errors, which is a 
big advantage for construction contract bidders, where underestimates of the actual low bid 
leads to bidding too low and hence to less than optimal profits or even losses, while 
overestimates leads to bidding too high and obtaining less work.  Either way, both can be fatal 
financially to bidders.  What is needed is a model that predicts competitors’ bids equally close, 
whether over or under, and disproportionately heavily penalises those which produce extreme 
errors either way.   
 
Let lix *)1( denote the lowest bid for auction l excluding bidder i  (that is, the lowest bid of bidder 
i’s competitors) then the auction MSE is given by 

 
 

 ( ) ( )( )2*1*1
1*

ˆ1
lili

r

i
il

l
l xx

m
MSE −= ∑

=

δ  (13) 

 
where ( ) lix *1ˆ is the value of ( ) lix *1 estimated by the model. 
 
 
7.2Estimation of ( ) lix *1ˆ  

 
     The best estimate of ( ) lix *1 is provided by the expected value of ( ) lix *1 .  The p.d.f is 
 

 ( )( ) ( ) ( ) ( )[ ]∑ ∏
≠ ≠

−=
r

ii

r

iij
jiiiilli dxxSxSxfxf jlji

* *,

1
*1

δωωωδ  (14) 

so the expectation is 
 

 ( ) ( ) ( ) ( )[ ]∑ ∏∫
≠ ≠

−
∞

∞−

=
r

ii

r

iij
jiiiilli dxxSxSxfxx jlji

* *,

1
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δωωωδ  (15) 

 
     Again using the transformation ( )xy log= , from (15) the expectation of the lowest 
remaining bid for the GG distribution is 
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and for the lognormal distribution, 
 

 ( )
( ) ( )∫ ∑ ∏

∞

∞− ≠ ≠

−
























 −+







 −
−=

r

ii

r

iij j

jii
ji

i

i

i

iilli dy
y

SySyyy
jl

j

i

* *,

1
2

2

2*1 2
exp

2
1ˆ

δω

ω

σ
µµσ

σ
µ

πσ
ωδ  (17) 

so that now 
 

 ( ) ( )( )2*1*1
1*

ˆ1
lili

r

i
il

l
l yy

m
MSE −= ∑

=

δ  (18) 

 
 
5. Simplifying assumptions 
 
5.1 Fixing parameters 
 
As mentioned above, parameter estimation difficulties are expected.  For a typical dataset 
comprising 400 auctions and 400 different bidders, there 1600 parameters to estimate.  Of 
course, this problem can be alleviated by fixing some of the parameters to be equal.  For 
example, we could assume that === 21 µµ  etc.  This would reduce the number of 
parameters to be estimated by 400 in the above example.  This is not a new approach in this 
field.  Table 1 summarises the most obvious ways of doing this, highlighting the main 
simplifications made to date, the lognormal being shown separately for ease. 
 
 
5.2 Pooling 
 
An advancement on this is to pool the data also.  This can be done empirically by means of an 
algorithmic selection procedure.  As this is a forecasting situation, to do this meaningfully 
involves using the out sample error as the grouping criterion.  The procedure used was as 
follows.  First, set up a number of groups g=1,2, …, G  and then to assign each bidder into a 
group.  For pooling purposes, at this stage all the bidders in each group are assumed to be iid.  
Several operations are then involved.  These are described below. 
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Model Code λ  ( 10 =λ ) χ  κ  

Standard exponential GG1 121 === λλ  121 === χχ  121 === κκ  

Exponential GG2 ≠≠ 21 λλ  121 === χχ  121 === κκ  

1 param Weibull (1) GG3 121 === λλ  == 21 χχ  121 === κκ  

1 param Weibull (2) GG4 121 === λλ  ≠≠ 21 χχ  121 === κκ  
2 param Weibull (1) 
(Gates 1967; Rothkopf 1969) GG5 ≠≠ 21 λλ  == 21 χχ  121 === κκ  

2 param Weibull (2) GG6 ≠≠ 21 λλ  ≠≠ 21 χχ  121 === κκ  

1 param Gamma (1) GG7 121 === λλ  121 === χχ  == 21 κκ  

1 param Gamma (2) GG8 121 === λλ  121 === χχ  ≠≠ 21 κκ  
2 param Gamma (1) 
 GG9 ≠≠ 21 λλ  121 === χχ  == 21 κκ  

2 param Gamma (2) 
(Weverbergh 1982) GG10 ≠≠ 21 λλ  121 === χχ  ≠≠ 21 κκ  

2 param GG (1) GG11 121 === λλ  == 21 χχ  == 21 κκ  

2 param GG (2) GG12 121 === λλ  == 21 χχ  ≠≠ 21 κκ  

2 param GG (3) GG13 121 === λλ  ≠≠ 21 χχ  == 21 κκ  

2 param GG (4) GG14 121 === λλ  ≠≠ 21 χχ  ≠≠ 21 κκ  

3 param GG (1)  GG15 ≠≠ 21 λλ  == 21 χχ  == 21 κκ  

3 param GG (2) GG16 ≠≠ 21 λλ  == 21 χχ  ≠≠ 21 κκ  

3 param GG (3) GG17 ≠≠ 21 λλ  ≠≠ 21 χχ  == 21 κκ  

3 param GG (4) GG18 ≠≠ 21 λλ  ≠≠ 21 χχ  ≠≠ 21 κκ  

Log Normal  µ ( 00 =µ ) σ  ω  ( 10 =ω ) 

Standard LN1 021 === µµ  121 === σσ  121 === ωω  

 LN2 ≠≠ 21 µµ  121 === σσ  121 === ωω  

 LN3 021 === µµ  == 21 σσ  121 === ωω  

 LN4 021 === µµ  ≠≠ 21 σσ  121 === ωω  

Carr (1983) LN5 ≠≠ 21 µµ  == 21 σσ  121 === ωω  
2 param lognormal 
(Weverbergh, 1982; Skitmore, 1991) LN6 ≠≠ 21 µµ  ≠≠ 21 σσ  121 === ωω  

 LN8 021 === µµ  121 === σσ  ≠≠ 21 ωω  

 LN10 ≠≠ 21 µµ  121 === σσ  ≠≠ 21 ωω  

 LN12 021 === µµ  == 21 σσ  ≠≠ 21 ωω  

 LN14 021 === µµ  ≠≠ 21 σσ  ≠≠ 21 ωω  

 LN16 ≠≠ 21 µµ  == 21 σσ  ≠≠ 21 ωω  

 
Table 1: Summary of models 
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1. Calculate group gMSE  
Step 1. Set contract number l=1 
Step 2. Remove contract l, estimate the group g’s bidders’ parameters using the above 
maximum likelihood formula in conjunction with the remaining contracts and bidders.  Being 
iid, this means that all the bidders in group g will have the same parameters 
Step 3. Insert the parameters obtained in step 2 into (18) to calculate lMSE  
Step 4. For cl ,,2 = , reinstate contract l-1, leave out contract l and repeat steps 2 to 3 

Step 5. Set the group ∑=
c

l
lg MSEMSE  

The total MSE is ∑
=

=
G

g
gtotal MSEMSE

1
.  The aim now is to find an allocation of bidders to groups 

that produces the lowest totalMSE .  First, we start with all the bidders placed in group 1 (G=1) 
and then place bidders from group 1 into group 2 (G=2) until there is no further improvement in 
MSE, at which point bidders are placed in group 3 (G=3), etc until no further improvement in 
MSE is possible.  The procedures for G=1 and G>1 follow. 
 
2. Allocation of bidders, G=1 
Set g=1 and calculate 1=gMSE  and hence totalMSE as above.  This is the baseline totalMSE .  Set 

totalMSEmin = baseline totalMSE  
 
3. Allocation of bidders, G>1 
Step 1. Set g=1 and bidder b=1 
Step 2. Remove bidder b from group g and place in group G 

Step 3. Calculate ,, 21 MSEMSE  as above and hence ∑
=

=
G

g
gbtotal MSEMSE

1
)( and reinstate b 

into group g 
Step 4. Repeat steps 2 and 3 for b=2, …  
Step 5. Repeat steps 2 and 3 for g=2,…,G and b=1, … 
Step 6. Find the lowest )(btotalMSE .  If totalbtotal MSEMSE min)( <  remove the bidder b, for which 

)(btotalMSE is minimum, place in group G and reset totalMSEmin = )(btotalMSE   
Step 7.  Repeat Steps 1 to 6 immediately above  
Step 8.  Repeat Step 7 until no more totalbtotal MSEMSE min)( < can be found. 
 
Upon reaching the point where no more totalbtotal MSEMSE min)( < can be found for a new G 
value, the procedure then checks if any more single transfers between groups will improve 

totalMSEmin before terminating. 
 
Of course, the method described here is only the one used in the research and is modelled on the 
forward stepwise method of variable selection in regression analysis.  Many other grouping 
algorithms are possible. 
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  Case 1   Case 2   Case 3   Case 4  Rank 

Model 
Baseline 

MSE 
Final 
MSE Rank 

Baseline 
MSE 

Final 
MSE Rank 

Baseline 
MSE Final MSE Rank 

Baseline 
MSE Final MSE Rank Sum 

Over
all 

GG1 4.632203 4.632203 28 3.788572 3.788572 29 3.684643 3.684643 29 7.971837 7.971837 29 115 29 
GG2 4.632203 4.632203 29 3.788572 3.782243 28 3.684643 3.683275 28 7.971837 7.971675 28 113 28 
GG3 0.009378 0.009378 20 0.042495 0.042495 17 0.011708 0.011708 15 0.069402 0.069402 22 74 19 
GG4 0.009378 0.009378 21 0.042495 0.042495 18 0.011708 0.011708 16 0.069402 0.069402 23 78 21 
GG5 0.009378 0.003773 3= 0.042495 0.02581 3 0.011708 0.007665 3 0.069402 0.051474 20 29 6 
GG6 0.009378 0.003773 3= 0.042495 0.034574 10 0.011708 0.007623 2 0.069402 0.053313 21 36 10 
GG7 0.009889 0.009889 22 0.048841 0.048841 23 0.013091 0.013091 23 0.048954 0.048954 19 87 23 
GG8 0.009889 0.008499 17 0.048841 0.04749 21 0.013091 0.012962 21 0.048954 0.047565 17 76 20 
GG9 0.009889 0.003763 2 0.048841 0.027391 6 0.013091 0.007755 4 0.048954 0.021697 3 15 2 

GG10 0.009889 0.003573 1 0.048841 0.027119 5 0.013091 0.009111 8 0.048954 0.021639 2 16 3 
GG11 0.009889 0.009889 23 0.048828 0.048828 22 0.013062 0.013062 22 0.048399 0.048399 18 85 22 
GG12 0.009889 0.008409 15 0.048828 0.039107 14 0.013062 0.012086 17 0.048399 0.032257 12 58 14 
GG13 0.009889 0.009182 19 0.048828 0.046383 20 0.009889 0.009182 10 0.048399 0.042961 15 64 16 
GG14 0.009889 0.008409 16 0.048828 0.039107 15 0.013062 0.012086 18 0.048399 0.032257 13 62 15 
GG15 0.009889 0.007833 14 0.048828 0.043848 19 0.013062 0.012685 20 0.048399 0.046788 16 69 18 
GG16 0.009889 0.007748 12 0.048828 0.03839 12 0.013062 0.011688 13 0.048399 0.030983 10 47 12 
GG17 0.009889 0.009131 18 0.048828 0.042074 16 0.013062 0.012424 19 0.048399 0.040489 14 67 17 
GG18 0.009889 0.007748 13 0.048828 0.03839 13 0.013062 0.011688 14 0.048399 0.030983 11 51 13 
LN1 1.244456 1.244456 24 0.959893 0.959893 26 0.959372 0.959372 25 2.020992 2.020992 27 102 26 
LN2 1.244456 1.244456 25 0.959893 0.951989 25 0.959372 0.957704 24 2.020992 2.020802 26 100 24 
LN3 0.006748 0.006748 11 0.034872 0.034872 11 0.009647 0.009647 12 0.026523 0.026523 9 43 11 
LN4 0.006748 0.004563 6 0.034872 0.03279 9 0.009647 0.009249 11 0.026523 0.024542 6 32 8 
LN5 0.006748 0.005992 9 0.034872 0.020875 1 0.009647 0.008385 5 0.026523 0.021913 4 19 4= 
LN6 0.006748 0.004935 8 0.034872 0.026769 4 0.009647 0.008798 6 0.026523 0.020756 1 19 4= 
LN8 2.60814 1.516058 26 3.483638 2.645717 27 3.683598 3.316535 27 0.974126 0.936129 25 105 27 
LN10 2.60814 1.574765 27 3.483638 0.750217 24 3.683598 0.963543 26 0.974126 0.44544 24 101 25 
LN12 0.00632 0.006244 10 0.034873 0.032083 8 0.009644 0.008864 7 0.026618 0.026121 8 33 9 
LN14 0.00632 0.004742 7 0.034873 0.030526 7 0.009644 0.009174 9 0.026618 0.025803 7 30 7 
LN16 0.00632 0.004561 5 0.034873 0.022425 2 0.009644 0.007553 1 0.026618 0.022202 5 13 1 
 

Table 2: Results of analyses 
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6. Analysis 
 
Four sets of bidding data, termed here Cases 1-4, were analysed: 
     The Case 1 data comprised a donated set from a construction company operating in the 
London area.  They cover much of the company's building contract bidding activities during a 
twelve-month period in the early 1980's and comprise 51 auctions for which a full set of bids, 
together with the identity of each bidder, were available.   
     The Case 2 data comprise a donated set from a north of England County Council for 
building contract auction bids over an approximately four year period prior to July 1982.  The 
resulting number of auctions for which a full set of bids, together with the identity of the 
bidder, was available for analysis totals 218. 
     The Case 3 data comprise the Case 1 data supplemented by a similar set of 373 auctions 
obtained from the records of a bidding information agency in the London area for the period 
November 1976 to February 1977. 
     The Case 4 data were obtained from the Hong Kong Architectural Services Department for 
their building contract auction bids for the period November 1990 to November 1996.  The 
resulting number of auctions for which a full set of bids, together with the identity of the bidder, 
was available for analysis total 267. 
     The above procedure was applied for each model for each dataset.  Table 2 summarises the 
results of this analysis, showing the baseline and the final MSE upon termination, with the 
rank order of each model for each case. Therefore, the best models for Case 1 are GG5, GG6 
GG9 and GG10 all of which have very similar MSE termination values of 0.003573, 
0.003673, 0.003773 and 0.003773 respectively.  For Case 2 the lognormal LN5 (0.020875) 
appears to be the clear favourite followed by LN16 (0.022425) while for Case 3 the leading 
contenders are LN16 (0.007552), GG5 (0.007623) and GG6 (0.007665), with LN6 (0.020756) 
being the standout for Case 4, followed by GG10 (0.021639), GG9 (0.021697) and LN5 
(0.021913).  There is therefore no single model that performs best for all datasets.  However, 
some models do appear to perform significantly better6 than other models.  Based on the 
overall rankings these are LN16, GG9, GG10, LN5, LN6, GG5, LN14, LN4, GG6 and LN3.  
It is also of interest to note that the London datasets (Case 1 and Case 3) have a much lower 
terminal MSE and hence better fit in general, which may possibly be due to (1) the close 
proximity, intense competition, good market intelligence and (2) with the predominant use of 
selective (short-listed) tendering in that location.  In contrast, Case 2 experiences (2) but not 
(1), while Case 4 has (1) but not (2). 
 
 
7. Discussion 
 
     Table 3 summarises these top 11 models for each Case in terms of their percentage above 
the lowest final MSE and Table 4 details the resulting number of bidder groupings under each 
parameter for each model.  From this, some observations can be made. 
     Firstly, Table 4 shows that some of the models overlap.  For example, the GG6 model for 
Case 1, resulted in all the bidders having the same second parameter despite having an 
unconstrained second parameter.  This therefore reduces GG6 to the GG5 model, which 
deliberately allows only one group of bidders for that parameter.  Hence, the results are the 
same for each model, although GG5 should take preference as it has less parameters to 
estimate.  The same applies also to Case 3. 
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  Case 
1   Case 

2   Case 
3   Case 

4  Rank 

Model 
Final 
MSE Rank 

% above 
lowest 

Final 
MSE Rank 

% above 
lowest Final MSE Rank 

% above 
lowest Final MSE Rank 

% above 
lowest 

Avg % 
above 
lowest Overall 

LN16 0.004561 5 27.651833 0.022425 2 7.4251497 0.007553 1 0 0.022202 5 6.9666602 10.510911 1 
GG9 0.003763 2 5.3176602 0.027391 6 31.214371 0.007755 4 2.6047711 0.021697 3 4.5336288 10.917608 2 

GG10 0.003573 1 0 0.027119 5 29.911377 0.009111 8 17.100209 0.021639 2 4.2541916 12.816444 3 
LN6 0.004935 8 38.119228 0.026769 4 28.234731 0.008798 6 14.150943 0.020756 1 0 20.126226 4 
LN5 0.005992 9 67.702211 0.020875 1 0 0.008385 5 9.9224806 0.021913 4 5.5742918 20.799746 5 
LN14 0.004742 7 32.717604 0.030526 7 46.232335 0.009174 9 17.669501 0.025803 7 24.315861 30.233825 6 
LN4 0.004563 6 27.707809 0.03279 9 57.077844 0.009249 11 18.337118 0.024542 6 18.240509 30.34082 7 
LN12 0.006244 10 74.755108 0.032083 8 53.691018 0.008864 7 14.790162 0.026121 8 25.847948 42.271059 8 
GG5 0.003773 3 5.5975371 0.02581 3 23.640719 0.007665 3 1.4611872 0.051474 20 147.99576 44.673801 9 
LN3 0.006748 11 88.860901 0.034872 11 67.051497 0.009647 12 21.70623 0.026523 9 27.784737 51.350841 10 
GG6 0.003773 4 5.5975371 0.034574 10 65.623952 0.007623 2 0.9182736 0.053313 21 156.85585 57.248903 11 

Table 3: Top 11 models compared 
  



14 
 

 

 
 

 
Case  LN16 GG9 GG10 LN5 LN6 GG5 LN14 LN4 LN12 GG6 LN3 

1 Baseline MSE 0.006320 0.009889 0.009889 0.006748 0.006748 0.009378 0.006320 0.006748 0.006320 0.009378 0.006748 
 Final MSE 0.004561 0.003763 0.003573 0.005992 0.004935 0.003773 0.004742 0.004563 0.006244 0.003773 0.006748 
 Rank 5 2 1 9 8 3 7 6 10 4 11 
 1st param 5 10 9 4 3 26 1 1 1 26 1 
 2nd param 1 1 1 1 3 1 (GG9) 5 4 1 1 (GG9) 1 
 3rd param 7 1 2 1 1 1 4 1 2 1 1 

2 Baseline MSE 0.034873 0.048841 0.048841 0.034873 0.034873 0.042495 0.034873 0.034872 0.034873 0.042495 0.034872 
 Final MSE 0.022425 0.027391 0.027119 0.020875 0.026769 0.025810 0.030526 0.032790 0.032083 0.034574 0.034872 
 Rank 2 6 5 1 4 3 7 9 8 10 11 
 1st param 6 14 14 17 5 19 1 1 1 4 1 
 2nd param 1 1 1 1 4 1 (GG9) 3 4 1 2 1 

 3rd param 7 1 2 1 1 1 3 1 20 1 1 

3 Baseline MSE 0.009644 0.013091 0.013091 0.009647 0.009647 0.011708 0.009644 0.009647 0.009644 0.011708 0.009647 

 Final MSE 0.007553 0.007755 0.009111 0.008385 0.008798 0.007665 0.009174 0.009249 0.008864 0.007623 0.009647 
 Rank 1 4 8 5 6 3 9 11 7 2 12 
 1st param 3 22 2 7 3 20 1 1 1 28 1 
 2nd param 1 1 1 1 1 (LN5) 1 (GG9) 2 6 1 1 (GG9) 1 
 3rd param 3 1 2 1 1 1 4 1 28 1 1 

4 Baseline MSE 0.026618 0.048954 0.048954 0.026523 0.026523 0.069402 0.026618 0.026523 0.026618 0.069402 0.026523 
 Final MSE 0.022202 0.021697 0.021639 0.021913 0.020756 0.051474 0.025803 0.024542 0.026121 0.053313 0.026523 
 Rank 5 3 2 4 1 20 7 6 8 21 9 
 1st param 4 10 11 16 6 30 1 1 1 15 1 
 2nd param 1 1 1 1 7 1 (GG9) 3 12 1 2 1 
 3rd param 4 1 3 1 1 1 1 (LN4) 1 11 1 1 

Table 4: Top 11 models – number of groupings 
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     Similar considerations for LN6 and LN14, and inspection of Table 3 leads to the conclusion 
that the three highest ranked models of LN16, GG9 and GG10 are likely to be the best models, 
with LN5 and LN6 being good reserves. 
 
 
8. Conclusions 
 
Construction contract auctions are characterised by (1) each contract being different in size, (2) a 
small number of bidders for each auction, (3) different bidders bidding for each contract (making 
the contract-bidder matrix usually well over 90% sparse).  For the purpose of modelling, several 
probability distribution forms have been proposed in the past but with little testing for suitability 
to date.  Stacey’s GG model includes many of the forms as special cases, depending on the value 
of the parameters involved, and the maximum likelihood equations have been presented here as a 
means of estimating these parameters. This involved the provision of extra parameters to 
accommodate (1) and the use of iteration procedures for (2).  For (3), bidders with similar 
parameters were placed into groups empirically by a least-squares cross-validation procedure 
according to a new scoring measure.  This was applied to four sets of real bidding data under a 
variety of simplifying assumptions, including all those used previously in the main literature.  
Examination of the results for the 29 models involved indicates that no one single model performs 
best for all datasets.  However, some models do appear to perform significantly better than other 
models with the data used.  Based on the overall rankings, these are LN16 (weighted lognormal 
with constant variance), GG9 (gamma with unitary second parameter and constant power term) 
and GG10 (Weverbergh's (1982) gamma with just unitary second parameter), with LN5 (Carr's 
(1982) unweighted lognormal and constant variance) and LN6 (Weverbergh (1982) and 
Skitmore's (1991) unweighted lognormal) being good reserves, and suggest it may be beneficial 
in future to concentrate on this subset of five models for further development. 
     It should be noted that all five models take a very large amount of computing time to build.  
The estimation for LN16, for example, took over 5 years continual processing on the university 
supercomputer.  A mitigating factor however, is that, once the analysis is completed, adding a 
further set of contract auction bids to an existing set should take a relatively small time to analyse.  
Also, the work described in this paper is aimed at identifying some of the most suitable statistical 
models to use with bidding data of this kind.  Before commencing, there was no extant empirical 
knowledge at all of the most likely candidates by multivariable analysis – with very few 
exceptions, all the models in the literature having been assumed on apriori reasoning.  Having 
now reduced the possible models to a small number of serious contenders, future research in this 
area would benefit well from the development of more economical approaches (such as the 
preliminary allocation of bidders to groups by a non- least-squares cross-validation over fit 
method perhaps).  Also, in view of the seemingly contingent nature of the situation, it would be 
useful to investigate the exogenous factors involved, such as local bidding procedures or intensity 
of market conditions.  In addition, as suggested by one reviewer, an investigation is warranted of 
alternative measures to MSE of goodness of fit, such as those based the chi square or log 
likelihood statistic. 
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1 See Skitmore et al (2007). 
2 For construction contract auctions, the term "contract" is equivalent to "item" in the more 
general bidding literature. 
3 Letting 2σ  denote the second moment in ( )2.,σf  we can further associate 0=iσ  with Friedman 
(1956) and kσσσ === 21  with Carr (1982). 
4 The opportunities for merging cells are limited, as even with the bidder groupings described 
later, there is no obvious way in which contracts can be merged as well. 
5 See Ypma (1995) for example, on the background to this method, said to "lurk inside millions of 
modern computer programs” (Thomas and Smith, 1990).  
6Being an essentially nonparametric analysis, the term significance is used here in an 
observational rather than statistical sense. 


