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ABSTRACT

Subsutiam flow processes mayt~eplace atmmydifferent scales. Thedifferent scales refer to
rock pore structure, micro-fractures, distinct fracture networks ranging from small to large fracture
spacing, and even faults. Presently, there is no satisfactory methodology for describing quantita-
tively flow and reactive transport in multi-scale media. Approaches commonly applied to model
fractured systems include single continuum models (SCM), equivalent continuum models (ECM),
discrete fracture models (DFM), and various forms of dual continuum models (DCM). The SCM
describes flow in the fracture network only and is valid in the absence of fracture-matrix inter-
action. The ECM, on the other hand, requires pervasive interaction between fractm and matrix
and is based on averaging their properties. The ECM is characterized by equal fracture and ma-
trix solute concentrations, but generally different mineral concentrations. The DFM is perhaps the
most rigorous, but would require inordinate computational resources for a highly fractured rock
mass. The DCM represents a fractured porous medium as two interacting continua with one con-
tinuum corresponding to the fracture network and the other the matrix. A coupling term provides
mass transfer between the two continua. Vidues for mineral and solute concentrations and other
properties such as liquid saturation state maybe assigned individually to fracture and matrix. Two
forms of the DCM are considered characterized by connected and disconnected matrix blocks. The
former is referred to as the DCCM (dual continuum connected matrix) model and the latter as the
DCDM (dual continuum disconnected matrix) model. In contrast to the DCCM model in which
concentration gradients in the matrix are allowed only parallel to the fracture, the DFM provides
for matrix concentration gradients perpendicular to the fracture. The DFM and DCCM models can
agree with each other only in the case where both reduce to the ECM. The DCCM model exhibits
the incorrect behavior as the matrix block size increases, resulting in reduced coupling between
fracture and matrix continua. The DCDM model allows for matrix gradients within individual
matrix blocks in which the symmetry of the surrounding fracture geometry is preserved. However,
the DCDM model breaks down for simultaneous heat and mass transport and cannot account for
significant changes in porosity and permeability caused by chemical reactions.

1 INTRODUCTION

Fractured porous media, and more generally hierarchical media involving multiple length scales,
play a ubiquitous role in flow and transport processes in the Earth’s subsurface. Fracture dominated
flow systems are involved in numerous subsurface geochemical processes including contaminant
migration, ore deposition, weathering and others. Practical applications involving fractured porous
media include contaminant migration, oil recovery from fractured reservoirs, geothemud energy,
degradation of cement, and potentially subsurface sequestration of C02, to mention but a few.

Considerable progress has been made in developing and applying reactive transport models to
complex geochernical systems involving porous media characterized by a single continuum [see
Lichtner et al. (1996) for a general overview and references therein; Llchtner, 1998]. However,
subsurface flow processes may take place at many different scales. The different scales refer to
rock pore structure, micro-fractures, distinct fracture networks ranging from small to large fracture
spacing, and faults. At present there does not exist a completely satisfactory methodology for
describing quantitatively reactive flow and transport in multi-scale media.

Because fractured porous media are characterized by bimodal distributions in physical and
chemical properties with generally distinct values associated with the fracture network and rock
matrix, a description based on a single porous medium is generally unable to capture the unique
features characteristic of a fractured system. Furthermore, existing approaches presently used



. Lichtner: Witherspoon Symposium -2- February 29,2000

for describing fracture-matrix interaction are of limited use. This is especially true for transport
of chemically reacting constituents and situations where simultaneous flow of mass and heat is
involved. A prime example where present approaches may fail and where more general methods
are needed is the proposed Yucca Mountain high level nuclear waste repository which is to be
hosted in a variably saturated fractured tuff rock. This contribution provides a critical review
of existing approaches for representing fractured media in continuum-based models applied to
reactive flow and transport. Extension of these methods to hierarchical. porous media is considered
briefly.

This contribution provides an overview of existing conceptual and numerical methods based
on a continuum approach for describing reactive chemical transport in fractured media. The pre-
sentation is restricted to continuum-based formulations, in contrast to other approaches such as
algorithmic methods including Cellular Automata and Diff@ion Limited Aggregation (DLA), and
network models, for example. This is because the level of chemistry which can be incorporated
into continuum models is on a par with the most sophisticated geochemical models. These mod-
els incorporate presently avaiiable thermodynamic and kinetic data for complex multicomponent
systems. This work reviews previous efforts to describe fracture-matrix interaction involving fluid
and heat flow with particular emphasis on the applicability of these methods to reactive chemical
transport.

2 CONTINUUM MODELS FOR REACTIVE FLOWS IN
FRACTURED MEDIA

A number of different conceptual frameworks have been used to represent fractured porous media.
They include the discrete fracture model (DFM), equivalent continuum model (ECM), variations
of dual and multiple continuum models (DCM), and the representation of fractures as regions of
high permeability-low porosity in heterogeneous media. Incorporation of chemical reactions in
models of fractured porous media requires new considerations of the suitability and extension of
some of the basic techniques used to represent fluid flow, especially with regard to the appropri-

.. ate length scale to account for the presence of reaction fronts. Furthermore, because equations
for multicomponent systems require a much greater computational effort to solve, new numerical
techniques are required. Finally, chemical reactions can dramatically alter the physical and hence
flow properties of a porous medium. Fractures may widen or become sealed as a result of chem-
ical reactions. Alteration of the matrix surrounding fractures may affect the interaction between
fracture and matrix.

A fractured porous medium is composed of two distinct continua, referred to as fracture and
matrix, represented by sub- and super-scripts ~ and m. A representative elementmy volume (REV)
of bulk rock with volume

as illustrated in Figure 1.
by

Vbconsists of the sum of fracture Vi and matrix V~ volumes

.vb=vf+v~, (2.1)

The fraction of volume occupied by fractures, denoted by et, is defined

v-j
Ef = —,

Vb
(2.2)

with em = 1 —.ef representing the fraction occupied by the rock matrix. The fracture and matrix
volumes may be further broken down into pore and solid fractions

Va = V; + V~fid, (a = f, m), (2.3)
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Vb= 13, Vf = 21%

Ef=v/vb = 2tM

Af=lj~A; =2/1

Am= 2(1-9/l

Figure 1: Illustration of geometric relations in a fractured porous medium with fracture aperture
2$. See text for an explanation of symbols used in the figure.

Note that et corresponds to the fracture porosity of the bulk rock volume for the case that the
fractures are not filled with solid (V$ = Vf). In general, however, due to the presence of fracture
filling in the form of solids, the intrinsic porosity of the fracture is less than unity. Bulk and intrinsic
fracture and matrix properties of some quantity 2? are related by c.:

(2.4)

where Z: denotes the bulk and Za the intrinsic property.

Because of their small aperture and volume, fractures can be easily altered by chemical reac-
tions. To illustrate this effect consider the redistribution of silica between matrix and fracture as
heat drives fluid from the matrix into the fracture network. An example of this process might be
heat generated by the decay of high level nuclear waste at the proposed Yucca Mountain repository.
Imagine that the pore fluid in the rock matrix is brought to equilibrium with respect to a particular
silica polymorph such as amorphous silica at boiling conditions. Further consider that as the fluid
in the matrix boils it escapes into the surrounding fracture network. As the matrix pore fluid is
vaporized, its silica content is deposited in surrounding fractures partially filling the fractures by
precipitating silica polymorphs. At issue is the extent to which the fractures can be filled by the

,. silica contained in the matrix pore water. To determine the volume fraction of solid precipitated in

the fracture @{io,, the expression

(2.5)

is evaluated, where C~oz denotes the concentration of silica in the matrix pore fluid at 100°C

assumed to be in equilibrium with a particular s~ica polymorph with molar volume ~sioz, and
matrix porosity ~~. This relation, derived from mass balance considerations, is dependent on all
matrix pore water flashing to steam in the fracture. If this is not the case, for example a drying front
may propagate inward into the matrix depositing silica within the matrix, then Eqn.(2.5) provides
an upper bound on the extent of fracture filling. Other processes may also be possible, such as
silica becoming remobilized from fracture coatings, which are not accounted for in this simple
analysis. Results for a matrix porosity of ~~ = 0.1 are shown in Figure 2 for quartz, chalcedony and
amorphous silica. From the figure it is clear that for a given matrix porosity, the degree of sealing of
the fracture depends on the fracture volume fraction ef and the particular silica polymorph which
precipitates. Amorphous silica with a higher volubility gives the largest fracture filling followed

by chalcedony and quartz. For complete sealing of the fracture (~~io, = 1) a very small fracture
volume fraction is necessary. Moderate filling could lead to fracture coatings that armor the fracture
and prevent or reduce imbibition into the matrix. Thus very different consequences could result
depending on the extent of fracture filling.
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Figure 2: Volume fraction of quartz (solid curve), chalcedony (dashed curve) and amorphous silica
(dash-dotted curve) plotted as a function of fracture porosity. A volume fraction of one represents
complete filling of the fracture assuming that the fracture was initially devoid of solid filling.

This example is but a highly simplified sitnation that could take place at the proposed Yucca
Mountain nuclear waste facility. Heat from the waste is expected to lead to the formation of
heat pipes with consequent boiling and degassing of COZ with an increase in pH and possible
precipitation of salts as evaporation takes place (Lichtner and Seth, 1996).

2.1 Dkcrete Fracture Model (DFM)

One approach is to treat fractures explicitly taking into account coupling with the rock matrix
through a mass transfer term (Figure 3). This approach, referred to as the discrete fracture model
(DFM), applies to a single fracture or an infinite number of equally spaced fractures. The DFM,.
however, rapidly becomes unwieldy for more than a few fractures if there is no simple geometric
relation between them.

Several forms of the DFM are possible depending on treatment of transport processes in the
fracture and matrix. Here a simplified form for the solute transport equations is considered neglect-
ing diffusion in the fracture and advection and diffusion parallel to the fracture in the matrix. This
is a good approximation for sufficiently fast flow rates in the fracture. A single reacting species is
considered obeying the reaction

A- A(.), (2.6)

with solid ~~, and aqueous species A. Transport equations for the DFM can be expressed as

for the fracture, and

a acm azcm
#47GJ +%x – T~&D- =

3X2 ‘~m(cm – c-q),

(2.7)

(2.8)
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Figure 3: Discrete fracture model.

for the matrix, where z is the coordinate along the fracture, and x is the coordinate in the matrix
perpendicular to the fracture. Linear reaction kinetics are assumed with rate constants kf and km
for fracture and matrix, respectively, and equilibrium concentration Cw. The solute concentration
is denoted by Ca (a = f, m), corresponding to fracture and matrix. Diffusivity is denoted by
D, and fracture and matrix porosity and tortuosity by r. and ~., respectively. The fluid flow
velocity in the fracture and matrix is represented by vi and v~, respectively. To complete the set
of equations initial and boundary conditions must be prescribed. At the fracture-matrix interface
the solute concentrations are presumed to be the same

Cm(z = (7,z) = Cf(z). (2.9)

The fracture transport equation is coupled to the matrix equation by the last term on the right-hand
side of Eqn.(2.7) representing the flux across the fracture-matrix interface.

Recently, Steefel and Lichtner ( 1998a,b) demonstrated a unique relation between mineral al-
teration along a fracture and that within the rock matrix perpendicular to the fracture. This property
can be investigated by examining the stationary state solution to the DFM transport equations. The
stationary state solution is useful for describing the time evolution of a reacting system which may

,. be represented as a sequence of stationary states, with each stationary state corresponding to a dif-
ferent configuration’of minerals along the flow path (Lichtner, 1988). The stationary state solution
to the DFM transport equations can be expressed as (Steefel and Lichtner, 1998a)

Ct(,Z) = (C$ – Cq) e-z/Af + G&, (2.10)

and

cm(x’’)=~’’z)-c~)e”z’’m+ceq (2.11)

where ~~, ~ represent equilibration lengths (Lichtner, 1988; 1998) in the fracture and matrix, re-
spectively, defined by

v“~= (T#D)m
m

km ‘
(2.12)

(2.13)
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where the dimensionless Peclet-like number Pe is defined by

Vf($
‘e= (T@)m”

(2.14)

and where A“ = vf/kf denotes the fracture equilibration length for pure advective transport (Licht-
ner, 1988). ~ccording to these results a wedge-shaped front geometry is produced with slope

(2.15)

The slope is characterized by the sum of the two dimensionless groups Pe and A~/A~. A simple
scaling relation exists between the concentration profile into the rock matrix Cm and along the
fracture Cf of the form

()Af
Cm(z, z) = Cf ~z + z .

m

(2.16)

Similar scaling relations hold for other quantities such as reaction rates and mineral concentrations.
Numerical analysis involving multicomponent systems with nonlinear reaction kinetics yielded
similar results.

A surprising result of this analysis is that in spite of the high flow velocity in the fracture, with
only diffusive transport in the matrix, the fracture behaves as a diffusion dominated system because
of the strong interaction with the matrix (Steefel and Lichtner, 1998). The results suggest that field
observations of matrix alteration perpendicular to the fracture may be used to predict mineraliza-
tion along the fracture itself. How well this prediction is born out in natural systems depends on
strong communication between the fracture and matrix that could be significantly impeded by the
presence of impermeable fracture coatings, for example.

These results may be generalized to include an infinite set of equally spaced fractures with
spacing d (Jichtner, 1998). In this case the stationary state matrix solute concentration is given by

Cm(’;’)= (cf(’)-ceq):~q ‘ceq-
.

(2.17)

L An ].

This solution reduces to the previous case of infinite fracture spacing ford>> Am>>J. For finite
fracture spacing which is small compared to the matrix equilibration length, the scaling relation
between fracture and matrix concentration profiles no longer holds. If the fracture spacing is much
smaller compared to the matrix equilibration length (6<< d << AJ, matrix concentration gradients
disappear and the solute concentration in the fracture and matrix become equal. This is just the
definition of the ECM which is a limiting case of the DFM.

2.2 Dual Continuum Models: DCCM & DCDM Approaches

The dual continuum model (DCM) represents a fractured porous medium as two interacting con-
tinua with one continuum corresponding to the fracture network and the other the matrix. A cou-
pling term provides mass transfer between the two continua. The fracture continuum is character-
ized by high permeability and low porosity compared to the matrix continuum. The DCM enables
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separate values of the field variables to be assigned to fracture and matrix continua. Additional
parameters are needed to represent the average matrix block size and fracture aperture, or equiva-
lently fracture volume, associated with a representative elemental volume (REV) of bulk medium.
From these geometric quantities the interracial surface area between fracture and matrix can be
computed.

In the field of reservoir engineering dual continuum models have been in use for some time
since their first introduction by Barenblatt and Zheltov (1960) and Barenblatt et al. (1960). The
approach put forth by Barenblatt and Zheltov (1960) represented a fractured reservoir as two dis-
tinct overlapping continua. Flow equations were developed for each continuum, with a coupling
term providing mass transfer between them. Shortly thereafter, Warren and Root (1963] published
an alternative conceptual model in which the matrix was represented as a periodic array of iden-
tical blocks completely surrounded by fractures. Pruess and Narisimhan (1985) generalized the
approach of Warren and Root (1963) to include multiple nodes within a matrix block allowing
for local gradients to be present within the rock matrix. These authors also provided for a fully
transient description. In this approach the matrix is discretized into concentrically nested blocks,
spheres, or other geometric shapes. The outer most block is connected to the fracture continuum.
The authors referred to their generalization as the so-called MINC (Multiple Interacting Contin-
uum) approach. The term MINC, however, is somewhat of a misnomer. In their original paper,
Pruess and Narisimhan (1985) associated different continua with the grid, and not as a material
property of the medium independent of the grid. In so far as the matrix is considered as a single
continuum in which provision is made for gradients in various field variables such as pressure,
temperature, saturation, concentration etc., there are still only two solid continua—fracture and
matrix, rather than “multiple” continua.

The two distinct approaches to formulating dual continuum models maybe conveniently dis-
tinguished by the connectivity of the rock matrix (the fracture is always considered to be connected
in the following). In the case of Barenblatt and Zheltov ( 1960), the matrix continuum is completely
connected with each matrix block connected to its neighboring blocks. In contrast, for the con-
ceptual model used by Warren and Root (1963) and Pruess and Narisimhan (1985), the matrix
continuum is disconnected with each matrix block connected to surrounding fractures, but not to
other matrix blocks. In what follows these two approaches are referred to as the dual continuum

,. connected matrix (DCCM) and dual continuum disconnected matrix (DCDM) formulations of the
DCM. As originally formulated, the DCCM model associates a single matrix node with each frac-
ture node. This turns out to be a distinct disadvantage of the DCCM approach since it does not
allow for gradients, within the matrix perpendicular to the fracture. An extension of the DCCM
formulation to include more than one matrix node for each fracture node has been used, but only
to limited extent. The computer code FEHM (Zyvoloski et al., 1997), for example, allows for the
possibility of two ‘i-natrixnodes for each fracture node. This extension of the DCCM model to
multiple matrix nodes is referred to as the MDCCM model, or Multiple Node Dual Continuum
Connected Matrix model. The structure of the MDCCM model is similar in many respects to the
DFM, with the transport equation for the discrete fracture replaced by a continuum formulation.
As a consequence it would have similar computational requirements as the DFM. The MDCCM
model is not considered further in this critique.

It is not clear that dual continuum models can provide sufficient flexibility, especially in the
case of sufficiently fast chemical reactions where the equilibration length is on the order of the pore
scale or microscale. In such cases a hierarchical approach may be needed. “Fast” heterogeneous
reactions have often in the past been represented by local equilibrium. However, in fact, such
reactions may be much more complicated than surface controlled kinetic reactions because they
may result in local concentration gradients and hence become sensitive to pore and fracture geom-
etry. An important unanswered question is how to scale such processes to the macroscale where
the continuum formulation is valid. Triple- and multiple-porosity models that have been used to
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Table 1: Summary of acronyms used for continuum models describing flow and transport in frac-
tured porous media and their definitions.

Model Definition Description

SCM Single Continuum Model Fracture can be represented as a single con-
tinuum with no interaction with the matrix

ECM Equivalent Continuum Model Pervasive interaction between fracture
and matrix

DFM Discrete Fracture Model Applicable to sparse, widely spaced
fractures

DCM Dual Continuum Model Representation of fracture and matrix as .
separate continua

DCCM Dual Continuum Connected Matrix DCM in which matrix continuum is con-
nected and discretized by a single node

MDCCM Multiple Node Dual Continuum DCM in which matrix continuum is con-
Conn~cted Matrix netted and discretized by multiple nodes

DCDM Dual Continuum Disconnected Matrix DCM in which matrix continuum is
disconnected

describe flow through fractured porous media (Closmann, 1975; Abdassah and Ershaghi, 1986;
Chen, 1989) may ’be useful in such instances, but are beyond the scope of the present treatment.

Terminology is not applied consistently in the literature when referring to these two different
conceptual approaches. Barenblatt et al. (1960) used the terminology double porosity. However,
other authors since then have attempted to distinguish the cases of a connected and disconnected
matrix continuum as dual permeability (Barenblatt and Zheltov, 1960) versus dual (or double)
porosity (Warren and Root, 1963) models, respectively. Hill and Thomas (1985) generalized the
dual porosity model to include arbitrary connectivity referred to as a dual permeability-dual poros-
ity model. Triple porosity models have also been considered (Bai et al., 1993). To confise the
issue, in the soil literature the connected matrix continuum approach is referred to as a double

.* porosity model (Gerke and Van Genuchten, 1993; Chittaranjan et al., 1997), rather than dual per-
meability as is common in the oil reservoir literature. A summary of the acronyms and their

“ definitions used here are listed in Table 1.

2.2.1 Dual Continuum Connected Matrix (DCCM) Model

The DCCM formulation represents the fracture network and matrix as distinct but coexisting con-
tinua. A coupling term provides exchange of mass and heat between the two continua. In what
follows a multicomponent chemically reacting system consisting of N aqueous species and M
minerals is considered. Homogeneous reactions within the aqueous phase and mineral precipita-
tion/dissolution reactions take place represented by the reactions

written in terms of a set of (nonunique) aqueous primary or basis species Aj, aqueous secondary
species Ai, and minerals M.. The quantities ~ji and ~j~ represent the stoichiometric reaction co-
efficients- These reactions take place simultaneously in the fracture and matrix continua. Homo-
geneous reactions are presumed to be sufficiently fast allowing for a local equilibrium description.
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Ion exchange and surface complexation reactions are not considered in the present treatment, al-
though they are straightforward to include. Mass conservation equations for a multicomponent
system for fracture and matrix continua can be written in the form

for the fracture continuum and for the matrix continuum as

for aqueous primary species labeled j, and for minerals as

(2.19)

(2.20)

(2.21)

These equations are referenced to the bulk rock REV. For simplicity a fully saturated system is
considered. The quantities @a, @~, ill;, n;, and I:, (~ = ~, m) refer to intrinsic fracture and
matrix properties corresponding to porosity, mineral volume fraction, total solute concentration and
flux, and mineral reaction rate, respectively. The quantity VS denotes the mineral molar volume.
The total concentration V; is defined relative to an arbitrarily chosen set of primary species with
concentrations C; as

x*:=q+ I/..c”J%i> c: = (’f)-% l-J (’y;c’’)v’i , (2.22)
i j

where C? denotes the concentration of the ith secondary species derived from the primary species
concentrations through mass action equations with equilibrium constant Ki and activity coeffi-
cients ~i, j [see Lichtner et al. (1996) for more details]. The solute flux consisting of contributions
from advection, dispersion and molecular difision is defined by

with tortuosity r. and diffusion coefficient Da assumed to be the same for all species within each
continuum. The mineral kinetic reaction rate I: can be expressed as a sum over various parallel
reaction mechanisms which has the general form based on transition state theory

c = -Jvxksm[l- (K#zJ’’””]j (2.24)
1

with kinetic rate constant ksl, mineral surface area As, equilibrium constant KSZ(T, p), Tempkin
constant o~z, and prefactor P$ consisting of products of primary and secondary species concentra-
tions raised to respective powers njs and nis (Lichtner, 1998)

p: = II”F”rI”~. (2.25)

j i

The ion activity product Q: is defined as

(2.26)
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The surface area A: is in general different for each continuum, and as a consequence so also is the
reaction rate 1: even in the limiting case of equal fracture and matrix aqueous concentrations.

The coupling term I’$~ is equal to the product of the interracial specific surface area Afm

between fracture and matrix continua multiplied by the flux fl$~ between fracture and matrix
defined by

For the geometry shown in Figure 1, the interracial specific fracture-matrix area Atn is given by
the expression

Ajm=; (l–+. (2.28)

More complex geometries can also be represented leading to more complicated expression for the
fracture-matrix surface area.

The aqueous and mineral mass conservation equations are coupled to one another through the
reaction rate term, and through changes in porosity, tortuosity, and permeability caused by chem-
ical reactions. The latter effects are more difficult to incorporate into the conservation equations,
requiring various phenomenological relations that relate changes in physical continuum properties
to changes in mineral concentrations. One approach that is often used is to relate porosity and
mineral volume fractions for each continuum by the assumption that they add to unity

q$.+~fi!$= 1. (2.29)
s

This relation, however, presupposes that the connected porosity and total porosity are equivalent.
Other continuum properties such as permeability and tortuosity are then related to porosity through
Archie’s law and the Carmen-Kozeny equation, for example. How successful this approach really
is needs to be tested in the field and in laboratory experiments.

2.2.2 Dual Continuum Disconnected Matrix (DCDM) Model

An alternative formulation to the DCCM approach that alleviates the
blocks is the dual continuum dkconnected matrix (DCDM) approach.

limitation to small matrix
In this approach it is as-

sumed that each matrix block is completely surrounded by fractures (Figure 4). Different matrix
blocks can only communicate with one another through the fracture network. In the DCDM for-
mulation, the matrix is resolved into a set of nested rectangular or spherical regions forming an
onionskin-like nodal structure. Gradients across a single matrix block, caused by gravity, or ther-
mal or concentration gradients, for example, are thus not possible to describe in this formulation.

Mass transport equations for the DCDM model for fracture continuum have the following
form

(2.30)

This equation may be of 1,2, or 3 spatial dimensions. The matrix continuum transport equations,
however, have the one-dimensional form

(2.31)
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Figure 4: Geometry for the DCDM model for matrix blocks of size 1 and fracture aperture 2d
indicating the ID c~ordinate ~ for each matrix block and possible node numbering scheme.

written with generalized coordinate Y representing the distance from the fracture to a point within
the matrix. The coordinate Y, for example, is a radial coordinate in the case of nested spheres or
linear distance for a nested set of cubes. The fracture-matrix coupling term l?~~ has the same form
as given in Eqn.(2.27) for the DCCM formulation.

Fundamental difficulties occur when applying the DCDM approach to simultaneous heat and
mass transport. This may be seen by considering a stack of matrix blocks with each block sur-
rounded by a fracture. The top and bottom of the stack is held at different fixed temperatures.
In the absence of heat sources or sinks within the matrix blocks, it is clear that at steady-state

,. conditions temperature gradients cannot exist withh the matrix blocks. In fact, for steady state
conditions, the temperature of each matrix block must be the same as its surrounding fracture. As
a consequence, heat conduction takes place through the fracture network only and not through the
matrix blocks. This leads to an effective thermal conductivity determined by the fracture network
~.ff = ~f. By contrast in a layered medium with layer thicknesses .li of alternating fracture and
matrix properties the effective thermal conductivity is given by the harmonic mean

(2.32)

for 1>> J, and km<< kj, with half-fracture aperture 6 and matrix block size 1. Field observations
suggest that heat conduction in a fractured porous medium is determined primarily by the matrix
conductivity and not the conductivity of the fracture network which above the watertable may be
filled primarily with air. Presumably this is because matrix blocks are not completely isolated from
each other by fractures, but in fact are in direct contact over some fraction of the fracture interracial
area as a result of asperities and in situ stress field. Thus the DCDM approach gives an incorrect
vaiue for the effective thermal conductivity for a composite medium such as a fractured porous
rock.

There are other limitations to the DCDM approach as formulated here. It is restricted to a
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homogeneous matrix and cannot handle strong changes in porosity and permeability which would
alter the flow characteristics of the rock from a fracture dominated system to one of porous flow,
a common occurrence in chemical weathering for example (Odling and Roden, 1997). A hetero-
geneous matrix block would break the symmetry of the nested matrix node structure. Significant
changes in porosity and permeability can alter the physical properties of the porous medium alto-
gether. Thus during chemical weathering of a granitic rock, in the extreme case of formation of a
bauxite deposit the weathering profile changes continuously with depth from a lateritic layer near
the surface containing aluminum oxide ore, to a highly weathered saprolite zone containing clay
minerals, to the unweathered granite basement rock. The lateritic and saprolite layers are highly
porous and have lost the fracture characteristics of the granite rock mass. The DCDM formula-
tion, for example, could not describe the continuous changes in material properties taking place
with depth. As the medium becomes more porous and the fracture properties of the granite rock
body are obliterated, the DCDM model would continue to impose a relic symmetry on the medium
correspondkg to the initial fracture geometry that would not be correct. Moreover, the boundary
between the two distinct media in the case of weathering is continuously changing, albeit slowly,
with time. The question of continuously joining a non-fractured porous medium to a fractured
medium needs more study.

2.3 Equivalent Continuum Model (ECM)

The ECM representation of a fractured porous medium is based on a composite medium obtained
by suitably averaging fracture and matrix properties. Concentrations of dissolved constituents are
identical in the fracture and matrix. However, mineral concentrations and reaction rates may be,
and generally are, distinct in each continuum. As is demonstrated quite generally below through
scaling relations, the ECM represents the asymptotic limit of the DCCM model.

2.3.1 Derivation of the ECM from the DCCM Model

For conditions of sufficiently strong fracture-matrix coupling the DCCM model reduces to the,.
ECM. This maybe seen by adding Eqns.(2. 19) and (2.20) for fracture and matrix aqueous primary

‘~ drops out yielding the single equationspecies. The fracture-matrix coupling term I’j

This equation reduces to the ECM provided that the primary species concentrations in the fracture
and matrix are identical

c; = q = q=”.

In that case, ~~m = !V; = V~, and the accumulation term becomes

where the ECM porosity @~Cmis defined as an average over fracture and matrix porosities

(2.34)

(2.35)

(2.36)
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Likewise, the solute flux reduces to an expression involving the ECM solute concentrations

(2.37)

In this equation the ECM tortuosity is related to intrinsic fracture and matrix properties by the
expression

Cf Tjof + EmTm&
Tecm =

(&In ‘
(2.38)

and the Darcy flux q~C~ is given by the weighted sum of intrinsic fracture and matrix velocities

qecm = Efvf + Emvm. (2.39)

For equal fracture and matrix concentrations, the mineral reaction rate reduces to

where the ECM mineral surface area A~m is given by the weighted sum of intrinsic fracture and
matrix surface areas

In contrast to the ECM transport equations for solute species, the ECM equations for minerals
generally can not be reduced to a single bulk averaged equation. Formally, mineral mass transfer
equations for the ECM can be derived that have the same form as the individual fracture and matrix
continua given by Eqn.(2.21)

(2.42)

obtained by a weighted sumofEqn.(2.21 ) written for fracture and matrix with weight factors ef and
cm. The mineral volume fraction fi- in the ECM formulation is related to the intrinsic fracture
and matrix volume fractions by the expression

The ECM porosity and mineral volume fractions satisfy the relation

However, unlike solute concentrations, mineral concentrations in the ECM need not be, and gen-
erally are not, equal for fracture and matrix. This is because different mineral surface areas apply
to each continuum that, furthermore, may change differently with time as reaction progresses. For
example, fracture and matrix mineral surface areas may vary with reaction with distinctly different
dependencies on mineral volume fraction according to a relation of the form

(2.45)
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where na is a constant which maybe different for each continuum. One possible choice for the ini-
tial specific mineral surface area in the matrix is to assume the surface area is inversely proportional
to mineral grain size and directly proportional to the initial matrix mineral concentration

(2.46)

The initial fracture mineral specific surface generally has a different value, for exampie, propor-
tional to the reciprocal of the half-fracture aperture J for minerals located at the fracture wall, plus
the ratio of initial fracture mineral concentration to grain size for fracture filling minerals

(2.47)

The different mineral surface areas associated with each continuum lead to different reaction rates
in fracture and matrix continua, and hence different mineral concentrations even though the solute
concentrations are the same for each continuum. For na # O, mineral volume fractions must
be obtained dkwstly from the individual mass transfer equations for fracture and matrix continua
through Eqn.(2.21) and not the ECM Eqn.(2.43). This is because it is not possible to express the
ECM surface area as defined by Eqn.(2.41) as a function of the ECM mineral volume fraction.
It should be noted that it is tacitly assumed that ~f remains constant for all time which need not
actually be the case.

Deciding what values to use for the reacting mineral surface areas is perhaps one of the most
uncertain parameters to determine. What makes specification of this parameter most difficult is
that it is the hydrologically accessible surface area, that is the area that is in contact with the fluid,
that is of interest. For accurate determination of the surface, in situ experiments and direct field
measurements are required.

A consequence “of averaging fracture and matrix properties in the ECM is that travel times
of non-reacting tracer species are generally longer in the ECM compared to the other models
describing transport in fractured media. Indeed, it follows that the ECM travel time for a tracer is

,+ given by

had
t—ecm =

!lecm ‘

(2.48)

where L denotes the system length. Substituting for #eCmand qw~ in terms of their intrinsic fracture
and matrix properties gives for the case of flow in the fracture network only (v~ = 0)

‘em=(’+*)”
where the fracture travel time tf is defined as

t,= $@
Vf

(2.49)

(2.50)

The travel time tf applies to single and dual continuum formulations for the case when flow is
absent in the matrix. As a consequence of Eqn.(2.49), the ECM is not conservative in predicting
contaminant arrival times in the case of fracture dominated flow.
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2.3.2 Asymptotic limit of the DCCM Model: Scaling ReIations

As demonstrated by Lichtner (1993) through scaling relations, the reactive mass transport equa-
tions based on a kinetic description of mineral reaction rates approach asymptotically the local
chemical equilibrium limit. This asymptotic relation between a kinetic description and local equi-
librium one provides an immediate understanding for the conditions of validity of local equilib-
rium. In addition, because the solution to the local equilibrium form of the reactive transport
equations can be reduced to solving a set of ,algebraic equations, this relation also provides a way
of checking the accuracy of the more complicated solution to the partial differential equations rep-
resenting the kinetic formulation. The same considerations apply to the relationship between the
DCCM formulation and the ECM. Applying the scaling transformation

–1ro=ur, (2.51)

ta = c7-lt, (2.52)

with constant scale factor o to the DCCM equations [Eqns.(2. 19) and (2.20)] leads to the trans-
formed equations

and

(2.54)

where the transformed flux fl~~ is given by

in which the diffusionklispersion term is scaled, and V& represents the gradient operator with
respect to the scaled spatial coordinates. As a consequence, assuming that the boundary conditions.
imposed on the system are scale invariant, it follows that the solution to the solute and mineral
conservation equations represented by the function %(r, t!{k}, D, q, Afro) scalesaccording to
the relation

r(~r, 0~1{~},D, q, AfJ = 7(V, tla{k}, CT-lD,q,CAfm). (2.56)

Taking the limit of this relation as o ~ 00 leads to the pure advective, local equilibrium form of
the ECM as the asymptotic limit of the DCCM equations.

3 DFM-DCCM MODEL COMPARISON

In this section a comparison is made between stationary state solutions to the DFM and DCCM
model. The stationary state DCCM transport equations for a single component system expressed
in terms of intrinsic properties for the solute species in the fracture and matrix have the form

PC. dCa
—T&&Dx + vfx = –ka(Ca – G&) + (1 – 2i$f$(Cf – Cm), (3.1)

a
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.

where the Kronecker delta function dta = 1 if a = ~, and zero otherwise, and the fracture-matrix
coupling term y is defined by

(7-@3)f(@D)m ~tm,

7 = (if(T@D)m + dm(qlm)f
(3.2)

where the notation df = d and d~ = 1/2 is introduced to refer to the perpendicular distances from
the fracture and matrix node centers, respectively, to their common interface. The kinetic rate
constants ka are effective rate constants equal to the product of the intrinsic rate constant times
the specific surface area for the fracture and matrix continua, respectively. Thus they may differ
significantly from each other. The coupling term is presumed to be linear in the difference in
fracture and matrix concentrations at each node. The coupling strength y has the same units as the
kinetic rate constants [s-l].

At large distances from the inlet the solute concentration approaches the equilibrium concen-
tration C.q of the solid. The transport equations are subject to the following boundary condkions
at the inlet and outlet to the fractured porous medium

c.(o) = C:, ca(~) = Cq. (3.3)

To solve the stationary state transport equations, first note that the fracture transport equation may
be solved for the matrix concentration C’~ to give

(3.4) “

where

c: = c. – Cq. (3.5)

Substituting this expression into the matrix transport equation results in the following fourth order
ordinary differential equation with constant coefficients

The coefficients a(y), b(y), c(~), d(~),

Cf Em(T’@D) f (Tqn))m
a(~) = >

7

and e(~) are defined by

b(~) = ~
( )

vm(T@)f + Uf(njll)m ,

ef Vf emvm

()

C.fkf Emkm
c(y) = – Cm(T@D). 1 + — – Cf(T#D)f 1 + —

‘Y 7 )‘Y’

‘(’)= ’mvm(l+%)+’fvf (l+*)

‘(7)=’[(1+%(1++11)
ef kf emkm

= + efkf + eynk~.
‘Y

(3.6)

(3.7a)

(3.7b)

(3.7C)

(3.7d)

(3.7e)
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The most general solution to Eqn.(3.6) for an infinite system subject to the boundary conditions at
the inlet and outlet given by Eqns.(3.3) has the form

Cf(z; -y) = Ae-g” + Be-q’” + Ceq, (3.8)

where ql (~) and q2(-y) are the two nonnegative roots of the characteristic fourth order polynomial

24%‘Y)= 47)(74+wY)~3+4?’)~2– 4’-Y)(7+ 47) = o- (3.9)

Because the coefficient e(~) is positive, there must always exist an even number of positive roots.
Because d(~) z O, there can be only two nonnegative roots. From Eqn.(3.4), the matrix concen-
tration has the form

Cm(x) = wlA1e-ql’ + w2A2e-q’z + C.q, (3.10)

where

&f kf Cf Vf efrfq5fD z
w~=l+—– —~ %- q;, (i = 1, 2).

7 7
(3.11)

The coefficients Ai are related to the boundary conditions imposed on the solution with the values

~ = (_~~+l (c% – Ceq) – ‘3-i(C$ – Ceq) j (i= 1, 2).
wl —W2

(3.12)

In the limit -y + O the coupling term vanishes and the matrix and fracture continua evolve inde-
pendently of one another. The ECM is retrieved in the limit ~ a 00.

Stationary state profiles for fracture and matrix concentrations are illustrated in Figure 5 based
on the analytical solution for a single component system. A fracture aperture of 1 mm, Darcy flow
veloci~ of 1000 m y–l, matrix block size of 0.1 m, and matrix porosity of 0.05 are used in the
calculations. As can be seen from Figure 5(a), as the fracture-matrix surface area increases the
matrix concentration plateau decreases. The ECM limit is recovered with increasing time. As
shown in Figure 5(b) as the fracture kinetic rate constant increases the ECM limit is obtained at
earlier times.

,.
Comparing the stationtuy state solution for the DCCM formulation, Eqns.(3.8) and (3.10),

with the DFM solution given by Eqns.(2. 10) and (2.11), very different behavior for the solute con-
centration is obtained. In particular, a scaling relation between fracture and matrix concentrations
does not exist in the DCCM formulation-if for no other reason that there is only one matrix
node for each fracture node. In fact, the DFM, DCCM model, and ECM can only agree with
each other when the ECM is vdld. In the DCCM approach concentration gradients are parallel to
the fracture, whereas in the DFM (and DCDM) matrix gradients are perpendicular to the fracture.
Although gradients parallel to the fracture could have been included in the DFM, they would not
have made a significant difference in the qualitative behavior of the solution for sufficiently rapid
fracture flow.

4 NUMERICAL IMPLEMENTATION

4.1 Integrated Finite Volume

To develop numerical techniques for solving the partial differential equations arising from the
various formulations of the DCM, it is convenient to use an unstructured grid approach. In this
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Figure 5: Stationary state concentration profiles based on the analytical solution to the stationary
state transport equations. (a) Fracture-matrix surface area multiplied by factors of 100 (dashed),
10 (solid), 1 (dot-dashed), and 0.1 (solid). (b) Fracture (solid) and matrix (dashed) concentration
profiles for kinetic rate constant equal to (1) 10–10, (2) 10–11, and (3) 10-14 moles cm–2 s–l.

approach, nodal connectivity, volumes, distances between connecting nodes, and surface areas can
be specified arbitrarily as illustrated in Figure 6 for a simple structured grid geometry with unequal
spacing. The integrated finite volume equations for the primary species are expressed simply as

(~n#n~jn)t+At – (%#n~jn)t
At

+ ~ ‘<ntn>fi~t;n>

n’

for a fully implicit time discretization with time step At. The flux

= ‘~.j~~~A’, (4.1)
8

flj<ntn> is defined as

Cl.
Wj~ – i!lj~f

~<n’n> = -(T#D)<n,n> ~ + ~ + ~<n,n>~j<n,n>.
n n’

(4.2)

The notation <n’n> refers to the interface between nodes n and n’ with interracial area A<n,m>
and distances to the interface denoted by dn and d.~. The sum in Eqn.(4. 1) is over all which are

.. nodes connected to the nth node. Note that there is no referenee to fracture or matrix properties
as that is handled automatically by the grid structure and its connectivity. Even explicit reference
to the fracture-matrix coupling term has disappeared in the integrated finite volume form of the
equations which is now included in the term containing the sum over fluxes. This approach offers
greater flexibility in programming both the DCCM and DCDM methods, requiring only a change
in preprocessor to invoke the appropriate geometrical relation between nodes. The internal part of
the code can remain the same.

I .*% I
Figure 6: Integrated finite volume geom-
etry.
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Figure 7: Nodes and their connections for
the DCCM model.
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Table 2: Node connections for the DCDM model with grid numbering as shown in Figure 4.

Node Connecting Nodes
1127
2123
3234
4345
5456
656
717813
8789
9 8 9 10

. . . . . .

Examples of integrated finite volume grids for the DCDM and DCCM formulations are illus-
trated in Figures 4 and 7, respectively. Note that the DCCM grid is in fact just a two-dimensional
(2D) problem with two y-nodes. The difference between a true 2D problem and the DCCM grid,
lies in the different assignment of areas at the fracture-matrix interface. The node connections for
the DCDM model corresponding to Figure 4 are listed in Table 2.

The flexibility of the unstructured grid framework of the various dual continuum formula-
tions allows for practically arbitr~ assignment of block connections and surface areas. However,
one must ensure that the resulting finite volume equations actually represent partial differential
equations. It is important to be’ certain that the processes to be modeled can actually take place
physically and are not merely an artifact of some artificially imposed grid structure.

4.2 DCCM: Harmonic Versus Arithmetic Averaging

An important consideration in the numerical implementation of the DCCM model is the computa-
., tion of interface properties between fracture and matrix. This is especially true because of the often

great difference in fracture aperture and matrix block size. In finite difference form the coupling
term Eqn.(2.27) is given by

(4.3)

where as previously defined following Eqn.(3.2), df = d and dm = 1/2. To evaluate the product
@D at the fracture-matrix interface, harmonic or arithmetic averages are possible. The harmonic
average is more rigorously based from considerations of the steady-state flux across the interface
(Patankar, 1980). For df <<~, the harmonic mean yields

(4.4)

Thus the harmonic mean yields a coupling term proportional
The arithmetic mean, however, gives for the interface property

to the effective matrix diffusivity.

N (T@D)~, (4.5)
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yielding a coupling term proportional to the effective fracture diffusivity. Because the intrinsic
fracture porosity {@fN 1) is generally much larger than the matrix porosity (~~ << 1), harmonic
averaging leads to a smaller coupling term compared to arithmetic averaging. Which approach
is correct? Intuitively, one would expect that the flux across the fracture-matrix interface would
be governed by diffusion in the matrix and not the fracture, because of the very small fracture
aperture, and hence harmonic averaging is preferred.

The DCCM model appears to give the incorrect behavior as the matrix block size is increased.
Evaluating the coupling term Eqn.(2.27) using harmonic averaging according to Eqn.(4.4) and
inserting Eqn.(2.28) for the interracial area, it is apparent from the finite difference form of the
coupling term Eqn.(4.3) that as the matrix block size increases, the coupling term decreases as d~2

(4.6)

As a consequence, coupling between fracture and matrix decreases as the matrix block size in-
creases. This behavior mns counter to that predicted by the DFM and what intuitively is to be
expected. That is, the fracture-matrix interaction should be independent of the matrix block size,
at least for times which are short compared to the transport time across the matrix block. The
DCDM model does not have this limitation and is able to describe narrow alteration halos sur-
rounding fractures resulting from sharp concentration gradients within the rock matrix.

Numerical difficulties arise when applying the DCCM model to cases where the fracture vol-
ume fraction Ct is very small. As shown in Figure 8, variable grid spacing can lead to completely
erroneous results for mineral concentrations. In this figure, the DCCM model is applied to forma-
tion of kaolinite resulting from the alteration of K-feldspar. Results are compared for uniform and
variable grid spacing using harmonic averaging. Each pair of curves compare uniform grid spacing
with a change in spacing at 0.5 m from the inlet. Grid spacing varies from 0.0075 m to 0.09 m as
indicated in the figure. As can be seen from the figure, an erroneous jump in the kaolinite volume
fraction is obtained at a change in grid spacing. The magnitude of the jump is also very sensitive
to the absolute grid size. The DCDM model, on the other hand, does not suffer from this difficulty
since a small grid spacing on the order of the fracture aperture can used to discretize the matrix in

~. the neighborhood of the fracture.

4.3 DCDM: Decoupling Fracture and Matrix Transport Equations

Computationally, the DCDM model is generally much more expensive compared to the DCCM
model. For a spatial domain consisting of Nf fracture nodes and N~ nodes within each matrix
block, for an N= component system the D.CDM model requires solving Nc”xNf x Nm simultaneous
equations; whereas the DCCM model requires solving only 2xN&Nf equations. However, perhaps
surprisingly, it is possible to rigorously decouple the fracture and matrix equations in the DCDM
model reducing the system of equations to NCx (Nf +Nm) in number. As noted by Gilman ( 1986)
this is possible because of the one-dimensional form of the matrix equations in the DCDM model.
This result is surprising given the strong, nonlinear, coupling that is possible between fracture and
matrix continua. The procedure outlined by Gilman ( 1986) involves first a backward solution of the
matrix equations beginning with the inner most matrix node. This provides a relation between the
concentration at outer most matrix node and the concentration at the adjacent fracture node. With
this result the matrix concentration appearing in the coupling term in the fracture equations can
be eliminated. As a result, the fracture equations are only a function of the fracture concentration
and may be solved independently of the matrix equations. Once the fracture equations are solved,
the solution of the matrix equations can be completed through a forward sweep of the matrix
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Figure 8: Profiles showing the volume fraction of Kaolinite which precipitates as K-feldspar is
weathered. Shown are profiles for different grid spacing based on the harmonic mean. The calcu-
lations correspond to an elapsed time of 10,000 years with a fracture flow rate of 1000 m y-l and
fracture volume fraction ef = 10- 3. The intrinsic fracture porosity is unity and matrix porosity 0.1.

nodes beginning with the outer most node. This approach also lends itself to parallel computing
techniques (Seth and Hanno, 1995; Smith and Seth, 1999) in which the matrix equations can be
solved in parallel, greatly reducing computation times and dramatically extending the capability
of the DCDM to much larger numbers of nodes and chemical components that could be solved
without these techniques.

5 EXAMPLE: lN SITU COPPER LEACHING

To illustrate and contrast the various approaches previously discussed for describing transport in
porous fractured meda, an example problem of insitu leaching of a hypothetical copper ore body is
presented (Lichtner, 1998). Calculations were carried using the computer code FloTran (Lichtner,
1999). A one-dimensional column is considered containing the copper-bearing phase chrysocolla
and gangue minerals in the form of kaolinite and quartz. A sulfuric acid solution with pH 1 is
allowed to infiltrate into the column through a fracture network. The initial fluid in the column is
assumed to be in equilibrium with chrysocolla, kaolinite, and quartz at a pH of 8. The composition
of the host reek for the model ore deposit is listed in Table 3. For the model parameters listed in
the table, the ore body has a copper grade of 0.90% and bulk rock density of approximately 2.44
g cm–3. A matrix block size of 0.1 m is used in the calculations. A fracture aperture of 1 mm
corresponding to a fracture volume fraction of Cj = 2.941 x 10–2 is used. A bulk Darcy velocity of
10 m y-l corresponding to a fracture velocity of 340.02 m y-l, and an effective matrix diffusivity
Of 10–6 cm2 s–l is used in the calculations. In the DFM and DCDM model, the matrix was
discretized into 10 grid blocks of variable spacing with the smallest spacing equal to the fracture
aperture neighboring the fracture. Secondary minerals wlich form during leaching are amorphous
silica, gypsum, jurbanite, and alunite, and secondary copper minerals brochantite and antlerite.

Results for the copper breakthrough curves for the different models are shown in Figure 9. If
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Table 3: Model ore deposit giving primary ore and gangue mineral abundances, porosities,
and associated mineral surface areas used in the calculations for dual, equivalent, and single
continuum models. Values for the SCM are bulk properties.

Volume Fraction Surface Area [cm-l]
Property Fracture Matrix ECM SCM Fracture Matrix ECM SCM

Chrysocolla 0.2 0.02 0.0253 0.0059 42. 4. 5.118 1.235
Quartz 0.0 0.73 0.7085 0. 1 14.6 1 0.0294
Kaolinite 0.0 0.2 0.1941 0. 1 40. 38.82 0.0294
Porosity 0.8 0+05 0.0721 0.0235

diffusion is turned off, then the assumption no flow in the matrix would require that the SCM must
give identical results as the DCCM and DCDM models. Thus differences between breakthrough
curves for these models are due to differences in how the interaction term between fracture and
matrix is treated. The SCM breakthrough curve exhibits a single peak resulting from dissolution
of chrysocolla in the fractures. Likewise the ECM also exhibits a single peak but which is de-
layed in time compared to the SCM as expected from Eqn.(2.49) which predicts a retardation of
approximately

(5.1)

in agreement with the figure.

The width of the ECM peak is longer compared to the SCM since there is more copper to
dissolve because the ECM incorporates copper from both the rock matrix and fractures. The
breakthrough curves for the DFM and DCCM and DCDM models, show a bimodal distribution
resulting from contributions from individual fracture and matrix copper sources. The shapes of
the curves are somewhat different with the DCDM model agreeing” more closely with the DFM.
Differences between the DFM and DCDM model can be attributed to different formulations of
the matrix which is treated as three-dimensional cubical blocks in the DCDM. The DCCM curve
follows closely to the SCM result during the early part of breakthrough dominated by dissolution,.
of copper in fractures, but then drops off to an almost constant value as the matrix becomes the
dominant contributor. Clearly, the DCCM model is unable to give the proper behavior at longer
times and overshoots the copper concentration as predicted by the DFM and DCDM model at early
times.

It should be noted that the peak copper concentration is quite high in these simulations com-
pared to what might be expected from an actual five spot leach field. This is an artifact of the
one-dimensional form of the calculations.

6 CONCLUSION

Describing quantitatively reactive flow and transport in fractured porous media presents a number
of challenges that have yet to be resolved satisfactorily. Dual continuum models attempt to account
for the bimodal distribution in physical and chemical properties characteristic of fractured porous
media. An equivalent porous medium description is generally unable to capture the unique features
characteristic of fractured systems. Dual continuum models are presumably applicable to highly
fractured systems where the DFM becomes impractical,
can be described as a equivalent continuum. Whether

but not so highly fractured that the system
a dual continuum as opposed to a single
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Figure 9: Copper breakthrough curves for the SCM, ECM, DFM, DCCM and DCDM models.

continuum representation of the fracture network only is appropriate, depends on the time scales
of interest and the extent of interaction between the fracture network and rock matrix.

Two different DCM models were discussed in detail, characterized by the connectedness of
the rock matrix. In the DCCM model, the matrix formed a connected continuum with each fracture
node associated with a single matrix node. The validity of the DCCM model rests on the absence
of strong concentration gradients within the matrix perpendicular to the fracture. This is a con-
sequence of representing the matrix by a single node for each fracture node. The DCCM model
should be applicable to situations where the kinetic reaction rate varies smoothly over the matrix
block, or equivalently, the characteristic chemical equilibration length scale is long compared to
the matrix block size. Faster reactions imply shorter equilibration length scales, leading to steeper

,. gradients, and eventually failure of the DCCM approach.

An alternative approach, the DCDM model, is applicable to situations where the fracture
network segregates the matrix into disconnected blocks which can only communicate with one
another through their common fracture interface. Within each matrix block, a fine grid may be
used to capture arbitrarily sharp gradients, thereby eliminating one of the limitations of the DCCM
model. However, in contrast to the DCCM approach, the DCDM model associates a single fracture
node with each matrix block which completely surrounds the block. This symmetry imposes severe
constraints on the DCDM model. It is not possible, for example, to account for gradients or
reaction fronts across matrix blocks arising, for example, from gravity driven flow. Furthermore,
incorporation of heterogeneous matrix blocks would destroy this symmetry. Finally, it does not
appear possible to describe simultaneous heat and mass flow within the DCDM framework.

Many conceptual difficulties remain in providing a quantitative description of reactive flow
and transport in fractured porous media. Although not discussed in any detail here, especially
difficult is obtaining the necessary data to apply the models to a particular field situation. Both
the DCCM and DCDM approaches introduce additional parameters such as matrix block size,
fracture aperture, and fracture-matrix interaction parameters, which represent averages over dis-
tributions and which are difficult to measure and characterize. In addition, these models require
characterizing the reactive surface
from experimental and field data.

area of minerals separately for fracture and matrix con~inua
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