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Rumen digestion of rice straw structural polysaccharides: effect
of ammonia treatment and lucerne extract supplementation
in vitro
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The combined effects of lucerne (Medicago sativa L.) extract supplementation and ammonia treatment of rice straw (Oryza sativa,
variety Thaibonnet) on the ruminal digestion of cell wall components were investigated in six continuous culture systems using
a randomised complete block design. Data were fitted to second-order polynomial models. Untreated rice straw had higher
contents of ash-free cell wall residues (CWR; 763 v. 687 g/kg dry matter (DM)) and non-cellulosic sugars (191 v. 166 g/kg DM)
than treated rice straw. Ammoniation preferentially removed xylose, which resulted in a lower xylose-to-arabinose ratio (5.1 v.
5.8). In absence of lucerne supplementation and ammoniation, degradability coefficients were 0.54, 0.46, 0.58, 0.54, 0.42 and
0.60 for cellulose–glucose, xylose, arabinose, galactose, mannose and uronic acids, respectively. Both factors had significant
effects on the microbial degradation of structural polysaccharides. With lucerne extract at an optimal level, ammonia treatment
increased ash-free cell wall degradation by more than 10%. The degradability coefficients were increased by ammoniation
without any significant interaction with lucerne extract, except for glucose, whose degradability was mostly influenced by lucerne
extract in a curvilinear way. The comparison of regression coefficients in cell wall and CWR models suggested that ammoniation
improved the degradabilities of xylose, galactose and mannose by partly solubilising the corresponding hemicelluloses and by
improving the susceptibility of the remaining fraction to microbial attack, whereas it increased the degradability of arabinose
only by favouring microbial attack.

Keywords: rice straw, cell wall, rumen digestion, ammoniation, lucerne

Implications

In Asia and Africa, the straw harvested from rice cultivation
areas is the main roughage available to ruminants for a
significant part of the year. However, it is poorly degraded
in the rumen because of its low crude protein and high
lignin and silica contents. In the present study, the effects of
ammonia pretreatment and lucerne extract supplementation
on the digestion of cell wall monosaccharides and uronic
acids were assessed. The simultaneous use of treatment and
supplementation is expected to improve the feeding value of
rice straw for ruminants.

Introduction

In Asia and, to a lesser extent, in Africa, the straw harvested
from rice cultivation areas is the main roughage available to

cattle and small ruminants for a significant part of the year.
Like other cereal residues, rice straw contains large amounts
of polysaccharides that are a potential source of energy
for the rumen microbiota. Its low nutritive value, linked to
low crude protein (CP) and high lignin and silica contents,
has prompted the use of various strategies to improve its
utilisation by microbes (Van Soest, 2006). Polysaccharide
solubilising processes calling upon alkali-based agents have
increased cell wall and sugar degradabilities in rice straws
by facilitating microbial access (Schiere and de Wit, 1995;
Harada et al., 1999; Nguyen et al., 2010). By-products
from local gardening and the agro-industry have been sup-
plied to provide rumen microbes with limiting nutrients in
semi-intensive production systems in Africa and in Asia.
The nutritional values of local leguminous trees and vege-
tables are well documented in this regard (Kaitho et al.,
1998; El-Nor and El-Sayed, 2000; Orden et al., 2000; Pamo
et al., 2007).- E-mail: laurent.broudiscou@agroparistech.fr
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In an in vitro experiment on the effect of rice straw
ammoniation and supply of fresh lucerne extract – a model
of legume supplementation – on rumen metabolism, we
observed that at low input levels of lucerne extract both
ash-free NDF (NDFom) and ash-free ADF (ADFom) degrad-
abilities tended to be lower with treated rice straw (e.g. 0.30
v. 0.46 for ADF), whereas at higher input levels they were not
modified by straw treatment (Broudiscou et al., 2003). The
present work was aimed at addressing the origin and extent
of this interaction with respect to cell wall constituents. We
studied the effects of ammonia pretreatment and lucerne
extract supplementation on the digestion of cell wall neutral
monosaccharides and uronic acids (UAs) for a better under-
standing of how cell wall monomers were made available to
microbial fermentation by these two factors.

Material and methods

Experimental design
The chemical compositions of lucerne (Medicago sativa L.) and
African legumes, such as Vigna unguiculata, consolidated in
phytochemical databases are similar, especially for b-carotene,
niacin, riboflavin, thiamine and mineral concentrations in their
aerial parts (Duke, 1992). These data only indicated one major
difference with respect to the concentration of ascorbic acid in
V. unguiculata, one-third of that found in lucerne. Lucerne
extract was thus used as a model in response to the lack of
fresh material from V. unguiculata in France.

Two types of rice straw (Oryza sativa, variety Thaı̈bonnet),
either native (untreated rice straw (URS)) or ammonia-
treated rice straw (TRS), were used. Lucerne extract was
introduced into continuous cultures at three levels: 0, 0.227
and 0.454 ml/g straw dry matter (DM). This corresponded to
an incorporation level of whole lucerne in the diet up to
100 g/kg DM. The six combinations of experimental treat-
ments were randomly assigned to six fermentors (working
volume of 1.1 l) for two consecutive periods of 7 days. This
randomised complete block design allowed the estimation of
all main effects, interaction and quadratic effect of lucerne
supply. Second-order polynomials have been shown to
correctly describe the action of lucerne extract on rumen
microbial metabolism (Broudiscou et al., 2001).

Experimental feeds and incubation procedure
Rice straw was harvested from the Camargue region of
France. A batch of straw was treated with ammonia as
described in Broudiscou et al. (2003). The TRS and a batch
of URS were both ground through a hammer mill (screen
aperture of 8 mm) and pelleted (Unité de Préparation des
Aliments Expérimentaux, INRA Jouy-en-Josas, France). Before
the experiment, a batch of lucerne at the beginning of flow-
ering (first growth) was coarsely chopped and divided into
portions of 200 g, immediately stored at 2208C in air-tight
plastic bags until use. On each day of incubation, a portion
was thawed and extracted as described in Broudiscou et al.
(2003). The soluble sugars and CP contents of the extract
were 12.0 and 15.93 g/l, respectively. When lucerne extract

was introduced at 0.454 ml/g straw DM, it supplemented the
fermentor with 0.12 g/day soluble sugars and 0.159 g/day CP.

Three wethers fitted with rumen cannula and fed 1200 g/day
rice straw and 100 g/day soybean meal served as rumen fluid
donors to inoculate fermentors at the beginning of each period.
Animal care and use procedures were approved by the French
Ministry of Agriculture in agreement with French regulations for
animal experimentation (guideline 19/04/1988). The fermentor
design and incubation procedure is detailed in Broudiscou et al.
(2003). The dilution rates of particle and liquid phases were
set at 0.03 and 0.06/h. Because 65% to 75% of the nitrogen (N)
fixed on roughage through ammonia treatment was readily
available to microbes (Dulphy et al., 1984), the amounts of
available N were equalised among diets by pipeting into URS
fermentors 5 ml of a 30.57 g/l NH4Cl solution simultaneously
with the supply of substrate every 12 h.

Chemical analysis
After a 5-day adaptation period, the displaced and filtered
effluents were collected during 2 days, pooled and freeze-
dried. Feeds and effluents were ground before analysis in a
Culatti grinder (Zurich, Switzerland) with a screen of 0.8 mm
aperture. They were analysed for DM, organic matter, NDF
(assayed without sodium sulphite and with alpha amylase),
ADF and ADL (Robertson and Van Soest, 1981). NDFom and
ADFom were calculated from the determination of their ash
content (5508C, 5 h). Hemicellulose contents were calculated
from NDFom and ADFom. Lucerne extract did not interfere
with the measurement of straw cell wall constituent degrad-
abilities, as its contribution to the inflow of cell wall con-
stituents was below the determination level of the method.
Total N was determined by the Dumas technique (Sweeney
and Rexroad, 1987) and CP was calculated as N 3 6.25.

The data used in the calculation of cell wall component
degradabilities were collected as follows. Cell wall residues
(CWR) from URS, TRS and effluents were obtained by
extraction in ethanol and ethanol/toluene (Jarrige, 1961)
after a thorough washing with deionised water at 408C. This
method was preferred to the more widely used NDF method
because the neutral detergent dissolves a fraction of cell wall
polysaccharides, especially pectic substances (Jarrige, 1980).
Before quantitative determination of monosaccharides, CWR
were finely ground in a ball mill. UA concentration was
determined colorimetrically (Blumenkrantz and Asboe-Hansen,
1973) after a sulphuric acid hydrolysis step (Englyst et al.,
1982). Cell wall neutral monosaccharides were analysed
by gas chromatography of alditol acetates (Englyst and
Cummings, 1984). All analyses were in triplicate.

Calculations and statistical analysis
For both straws, the degradability of a given cell wall com-
ponent dT was calculated using the following formula:

dT ¼ 1�
O

IT
ð1Þ

where O being the component daily outflow and IT its total
daily inflow, that is, the amount supplied by URS. In this way,
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the calculation of dT included the TRS cell walls already
solubilised by ammoniation and it accounted for the effects
of our experimental factors on the degradability of the entire
cell wall fraction. In the following text, CWRt refers to the
CWR degradability calculated using formula (1).

The degradability of a given CWR component dR was
calculated by using as the denominator its daily inflow IR
calculated for each type of straw:

dR ¼ 1�
O

IR
ð2Þ

The variation of dR in function of experimental factors
would specifically highlight differences in CWR nutritional
properties such as the accessibility to microbial attack.

Results were subjected to multiple linear regression
using a MINITAB procedure (Minitab, 1998). The variables
were straw ammoniation (S) and lucerne extract supple-
mentation (L). Period (P) was included as a randomising
block. The variable S was set to 21 for URS and 11 for TRS.
The variable A was related to the actual amount of lucerne
supplied L0 (in ml/g straw DM) by the equation:

L ¼ L0 = 0:227 � 1 ð3Þ

Thus, for values of L0 of 0, 0.227 and 0.454 ml/g straw DM
L was 21, 0 and 1, respectively. Data were fitted to the
following second-order polynomial model:

Y ¼ b0 þ b1S þ b2L þ b3P þ b4L
2 þ b5S � L

ð4Þ

where Y was the response; S, L and P the three coded vari-
ables described above; and b0, b1, b2, b3, b4 and b5 the six
regression coefficients to be estimated. As an illustration,
when fermentors were supplied with TRS and lucerne extract
at maximal level, the variables S and L were set to 11 and,
according to the regression coefficients, the predicted CWR
degradability equalled:

dT CWR ¼ 0:541 þ 0:044 þ 0:052 � 0:121

þ 0:015 ¼ 0:531
ð5Þ

When fermentors were supplied with URS and no lucerne
extract, the predicted CWRt degradability was

dT CWR ¼ 0:541 � 0:044 � 0:052 � 0:121

þ 0:015 ¼ 0:339
ð6Þ

The regression coefficient estimates were compared to
zero by a student t-test.

Results

The compositions of URS and TRS are given in Table 1. Ash
contents were similar in both straws (112 and 121 g/kg DM).
Ammonia treatment decreased ash-free NDF content of rice
straw by 68 g/kg DM and increased ash-free ADF and ADL

contents by 59 and 35 g/kg DM, respectively, along with an
expected increase in CP. Concentrations of monomers in URS
and TRS are given in Table 2. URS exhibited higher contents
of ash-free CWR (763 v. 687 g/kg DM) and non-cellulosic
sugars (191 v. 166 g/kg DM). Ammonia treatment preferentially
removed xylose, which led to a lower xylose-to-arabinose ratio
in TRS (5.1 v. 5.8).

The effects of ammonia treatment and lucerne extract
on the degradabilities of cell wall components are given in
Table 3. The most degraded compounds were galactose
(dT from 0.57 to 0.83), arabinose (dT from 0.59 to 0.77) and
UAs (dT from 0.59 to 0.80). Glucose and xylose degrad-
abilities were much lower, from 0.46 to 0.64 and from 0.36
to 0.63, respectively, whereas mannose dT was intermediate,
from 0.49 to 0.74. The model fitted well to all data except for
arabinose. Ammonia treatment had a positive impact on
all degradabilities without any significant S 3 A interaction
term, with the noticeable exception of glucose. CWRt, ash-
free CWRt and mannose degradabilities were increased
mainly by ammonia treatment. As an example, for an inter-
mediate lucerne extract supply of 0.227 ml/g straw DM, CWRt
degradability shifted from 0.497 to 0.585 (118%) following
ammonia treatment. CWRt, ash-free CWRt and mannose
degradabilities were also increased by lucerne extract in a
curvilinear way, the optimal value of lucerne extract input
being estimated at 0.28 ml/kg straw DM. In contrast, this

Table 1 Composition of rice straw with (TRS) or without (URS) ammonia
treatment (g/kg DM)

URS TRS

OM 888 6 0.8 879 6 0.5
CP 36.9 6 0.64 102.6 6 0.53
NDFom 733 6 11.6 665 6 7.8
ADFom 428 6 5.3 487 6 2.2
ADL 65 6 1.0 100 6 1.2

TRS 5 ammonia-treated rice straw; URS 5 untreated rice straw; DM 5 dry
matter; OM 5 organic matter; CP 5 crude protein; NDFom 5 ash-free NDF;
ADFom 5 ash-free ADF.
The s.e.m. (n 5 4) is given for each determination.

Table 2 Concentrations of neutral monosaccharides and UAs in URS
and TRS (g/kg DM)

URS TRS

CWR 842 6 9.0 767 6 11.5
Glucose 291 6 1.9 304 6 2.9
Xylose 152 6 1.5 131 6 0.9
Arabinose 26.4 6 0.21 25.6 6 0.55
Galactose 10.1 6 0.21 7.3 6 0.07
Mannose 2.1 6 0.05 1.8 6 0.03
UAs 11.0 6 0.78 7.1 6 0.53
CWR ash 78.8 6 0.08 80.1 6 0.08

UA 5 uronic acid; URS 5 untreated rice straw; TRS 5 ammonia-treated rice
straw; DM 5 dry matter.
CWR: cell wall residue according to Jarrige (1961).
The s.e.m. (n 5 3) is given for each determination.
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factor had no effect on xylose, arabinose and galactose
degradabilities. Glucose degradation showed a particular
pattern of variation as it was mainly influenced by the level
of lucerne extract in significant interaction with the type of
straw. This curvilinear effect, overall, was more favourable
with TRS, shifting the optimal level of lucerne input from 0.20
to 0.31 ml/g straw DM.

The effects of ammonia treatment and lucerne extract
on the degradabilities of CWR components are given in
Table 4. CWR degradability varied from 0.33 to 0.56. Among
monomers, glucose (dR between 0.48 and 0.66) and xylose
(dR between 0.36 and 0.57) were the least degraded,
followed by mannose (dR from 0.42 to 0.70) and UAs
(dR varying from 0.47 to 0.70). The highest degradabilities
were found for galactose (dR from 0.57 to 0.77) and arabinose
(dR from 0.59 to 0.76). The polynomial model explained most
of the variability in sugar degradabilities except for arabinose.
CWR and ash-free CWR degradabilities were only modified by
the lucerne extract in a curvilinear way. Glucose degradability

in CWR followed the same trend as in the entire cell wall
fraction, that is, linear effect of lucerne extract supplementa-
tion and a significant interaction with straw treatment. Non-
cellulosic sugars had dR influenced mainly by straw treatment.
However, the positive effect of ammoniation on xylose,
galactose and mannose degradation was 40% lower than that
when the entire cell wall fraction was considered.

Discussion

The decrease in NDFom content following ammoniation was
consistent with the existing data (Bae et al., 1997). As
expected, the most important effects of ammonia treatment
were on cell wall structure. Hemicelluloses accounted for
42% ash-free NDF in URS and only 27% in TRS. Comparable
decreases in concentrations of hemicelluloses and arabinose
residues after ammonia or urea treatment have also been
reported in maize stover (Sewalt et al., 1996) and barley
straw (Caneque et al., 1998). During ammoniation, ammonia

Table 3 Effects of ammonia treatment and lucerne supplementation on the degradability dT of cell wall components

Response CWRt Ash-free CWRt Glucose Xylose Arabinose Galactose Mannose Uronic acids

P . F 0.034 0.014 0.009 0.023 0.20 0.006 0.005 0.001
Adjusted R2 0.72 0.81 0.84 0.77 0.38 0.86 0.87 0.92
r.s.d. 0.048 0.038 0.035 0.061 0.081 0.043 0.047 0.030

Terms Regression coefficients

Intercept 0.541 0.579 0.615 0.573 0.694 0.734 0.650 0.750
S 0.044 (0.03) 0.048 (0.01) 0.008 (0.50) 0.084 (0.008) 0.075 (0.03) 0.090 (0.001) 0.082 (0.003) 0.045 (0.005)
L 0.052 (0.04) 0.052 (0.02) 0.022 (0.18) 20.012 (0.65) 0.009 (0.79) 0.015 (0.43) 0.066 (0.02) 0.009 (0.47)
L2 20.121 (0.01) 20.108 (0.007) 20.088 (0.01) 20.071 (0.13) 20.021 (0.70) 20.090 (0.02) 20.116 (0.01) 20.112 (0.002)
S 3 L 0.015 (0.47) 0.018 (0.29) 0.041 (0.03) 0.031 (0.27) 20.006 (0.86) 0.002 (0.90) 0.035 (0.13) 0.017 (0.20)

CWRt: the reference value is the URS cell wall residue according to Jarrige (1961).
P . F: P-value associated with the F-statistic.
Coded variables: S, straw ammoniation; L, lucerne extract supplementation.
For each regression coefficient, P-value for the null hypothesis is in brackets.

Table 4 Effects of ammonia treatment and lucerne supplementation on the degradability dR of CWR components

Response CWR Ash-free CWR Glucose Xylose Arabinose Galactose Mannose Uronic acids

P . F 0.054 0.029 0.008 0.055 0.24 0.056 0.015 0.014
Adjusted R2 0.66 0.74 0.85 0.66 0.32 0.65 0.80 0.81
r.s.d. 0.053 0.044 0.033 0.068 0.083 0.067 0.059 0.065

Terms Regression coefficients

Intercept 0.521 0.560 0.622 0.543 0.689 0.703 0.628 0.695
S 0.020 (0.28) 0.024 (0.14) 0.017 (0.17) 0.053 (0.05) 0.072 (0.04) 0.050 (0.06) 0.054 (0.03) 20.025 (0.27)
L 0.056 (0.05) 0.057 (0.02) 0.020 (0.20) 20.008 (0.78) 0.009 (0.79) 0.023 (0.42) 0.078 (0.02) 0.026 (0.36)
L2 20.130 (0.01) 20.117 (0.009) 20.085 (0.01) 20.075 (0.15) 20.021 (0.71) 20.114 (0.04) 20.131 (0.02) 20.154 (0.01)
S 3 L 0.017 (0.46) 0.021 (0.29) 0.040 (0.03) 0.030 (0.32) 20.006 (0.86) 0.001 (0.99) 0.040 (0.15) 0.015 (0.59)

CWR: cell wall residue according to Jarrige (1961).
P . F: P-value associated with the F-statistic.
Coded variables: S, straw ammoniation; L, lucerne extract supplementation.
For each regression coefficient, P-value for the null hypothesis is in brackets.
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cleaves ester linkages, such as diferulic bridges between
arabinoxylan chains, but does not release the degrafted
polymers, which are subsequently washed away during the
first step of cell wall analysis procedure with water or neutral
detergent. In our conditions, about 9% CWR and ash-free
NDF were alkali labile, a ratio similar to those previously
found in wheat, barley and oat straws (Mason et al., 1988).
We took this alkali-labile fraction into account in the calcu-
lation of dT in order to differentiate these cell wall polymers
from actual cell contents.

The major neutral sugars and the ash-free cell wall fractions
were degraded to a similar extent and in agreement with
published data. Glucose and xylose basal degradabilities, from
URS with no lucerne extract supplementation, equalled 0.54
and 0.46, respectively, close to the values of 0.61 and 0.50
previously reported in continuous fermentors receiving URS
(Karunanandaa and Varga, 1996). The other monomers, either
xylan substituents (UAs and arabinose) or constitutive of other
hemicelluloses, had much greater degradabilities. A similar
ranking of cell wall monosaccharides on the basis of ruminal
digestibilities was reported in steers fed wheat or barley straw
supplemented with flaked maize and various N sources, after
correction for microbial contribution (McAllan and Smith,
1976; McAllan, 1991). Similarly, in dairy cows fed ear and husk
meal maize silage and grass hay, xylose had the lowest rumen
apparent digestibility (0.46 to 0.66), followed by glucose (0.61
to 0.72) then arabinose (0.75 to 0.85), galactose (0.81 to 0.87)
and mannose (0.80 to 0.84; Südekum et al., 1992).

Our empirical modelling of the degradation extent of
structural monosaccharides provided new insights into the
origin of the interaction specific to cell wall fractions, because
cellulose and hemicelluloses were clearly differentiated on the
mode of action of our experimental factors. In the cell wall and
in CWR, glucose was the only monomer whose degradability
was affected by straw pretreatment through the interaction
with lucerne extract, suggesting a role for microbial inter-
species competition under the control of cellulose availability.
In continuous or batch culture, Ruminococcus flavefaciens
predominated in coculture with either Fibrobacter succino-
genes or Ruminococcus albus under cellulose limitation,
whereas coexistence was observed in cellulose-excess condi-
tions (Shi et al., 1997). These species differ slightly in their
nutritional requirements (Hungate, 1966) and a shift in their
relative populations caused by ammoniation through an
increased cell wall accessibility might explain the differential
impact of lucerne extract on cellulose digestion. Cytoplasmic
contents other than nitrogenous compounds or macro-
minerals may be involved in these effects on cellulolytic
bacteria. In the present study, a similar amount of N was
available to microorganisms whatever the continuous culture
and it met the requirement for microbial growth set in the INRA
feeding system (Vérité and Peyraud, 1988) at 145 g CP/kg
fermented organic matter (FOM). This ratio averaged 191 and
145 g CP/kg FOM with TRS and URS, respectively. Besides,
phosphorus and sulphur inputs from artificial saliva provided
microbial metabolic requirements (Durand and Kawashima,
1980). The curvilinear influence of lucerne supplementation

has been observed on other rumen variables such as microbial
protein synthesis efficiency and microbial biomass production
(Broudiscou et al., 2001). Similar effects of lucerne hay sup-
plementation of a roughage-based diet have also been reported
in vivo (Wang et al., 2008).

Ammonia treatment had a positive effect on the degra-
dation of hemicellulosic sugars. The positive link between
hemicellulose solubilisation and fibre degradability is well
documented in barley straw (Caneque et al., 1998) and in
lucerne (Ballet et al., 1997). When regression coefficients
were compared in cell wall and CWR models for a given
monomer, it suggested that ammoniation improved the
degradabilities of xylose, galactose and mannose by solubi-
lising a hemicellulose fraction and by improving the sus-
ceptibility of the remaining fraction to microbial colonisation
and enzymatic attack. In contrast, ammoniation appeared to
affect each xylose substituent in a single way. It increased
arabinose degradability by favouring microbial attack,
whereas it acted on UAs mostly by solubilising the related
polymers. This differential effect of ammonia treatment on
monomeric compounds might be related to the cell wall
structural heterogeneity at the molecular level and the
type and number of ester linkages differing between hemi-
celluloses (Cornu et al., 1994). It might also stem from dif-
ferences in chemical composition and accessibility between
plant tissues and parts (Bourquin and Fahey, 1994). It has
been observed that alkali treatment damages the silicified
cuticular layer of leaf blades (Wang et al., 2007) and lowers
the physical strength of rice straw particles (Selim et al.,
2004), allowing microbial access to inner tissues.

Conclusion

The analysis of cell wall degradation at a monomer level
allowed the drawing of inferences about the respective roles
of ammoniation and legume supplementation on rice straw
rumen digestion in relation with the nature of the structural
polysaccharide degraded.
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