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SUMMARY

We have introduced multilinear PLS in 3D QSAR and applied it to GRID descriptors from a set of benzamides
with affinity to the dopamine D3 receptor subtype, synthesized as potential drugs against schizophrenia. The key
issue in 3D QSAR modelling is to obtain a predictive model that is easy to interpret. Each component in the
multilinear PLS model explains clearly defined details, e.g. substituent positions, while the bilinear PLS solution
is general and more difficult to interpret. The best models were obtained after four components with multilinear
PLS (Q2 =51%) and after only one component with bilinear PLS (Q2 =50%). The external test set was predicted
better with multilinear PLS (Q2 =31%) than with bilinear PLS (Q2 =25%). With multilinear PLS one loses in fit
and gains in stability and simplicity owing to the fewer parameters that need to be estimated as compared with
bilinear PLS. Finally, multilinear PLS is also less influenced by insignificant variation in the descriptor block,
which is an advantage in 3D QSAR modelling © 1997 John Wiley & Sons, Ltd.
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INTRODUCTION

Since Cramer et al.1 presented the CoMFA (comparative molecular field analysis) procedure in 1988,
it has frequently been used by medicinal2–4 and environmental5 chemists, as implemented in the
SYBYL molecular modelling package.6 Today, other similar approaches are available, e.g. the GRID7

program in combination with GOLPE variable selection.8 Rational drug design with 3D QSAR may
be divided into three parts: alignment of the molecules, generation of the molecular fields and
regression analysis with one or more biological activity parameters as the response.

First, low-energy conformations of the molecules are aligned by superimposition of mutual and
possible interaction points. e.g. atoms on the molecules, with a target receptor protein. This is by far
the most crucial step in order to achieve a reliable 3D QSAR model.

A molecular field is a three-dimensinal grid large enough to enclose all the aligned molecules,
where at each grid point the interactions between a probe atom and each molecule are calculated. Thus
the grid points in the grid are the variables.

Since multicollinearity among the descriptor variables may affect the regression analysis
detrimentally, PLS9 is traditionally used as the regression method in 3D QSAR. However, Bro10

recently presented the multilinear PLS algorithm and demonstrated additional advantages as compared
with bilinear PLS. Bro and Heimdal11 showed that multilinear PLS is less influenced by noise, more
stable, increases the predictive ability and improves the interpretation of the result as compared with
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other methods applied to their data set. We have applied multilinear PLS regression analysis to GRID
descriptors from a set of benzamides (Figure 1), synthesized as potential drugs against
schizophrenia,12 and compared the result with that obtained with bilinear PLS.

It is well known that redundant variables may affect the regression analysis detrimentally and in the
literature several methods to reduce the number of variables8, 13, 14 have been presented. We have used
multilinear PLS for variable reduction of our data set and investigated whether the performance of the
reduced model was improved as compared with the complete model.

Throughout this paper, lowercase characters represent scalars, boldface lowercase characters
represent vectors, boldface uppercase characters represent matrices and underlined boldface uppercase
characters represent multiway matrices.

THEORY AND METHODS

The multilinear PLS algorithm

The algorithm for multilinear PLS is actually an extension of traditional bilinear PLS. In PLS one
wants to build a regression model between an independent (X) and a dependent (y) variable block. In
bilinear PLS the X-block is a matrix where each row contains the variables measured for each object.
Prior to regression analysis the X-block is decomposed into scores t (=Xw) and weights w (Figure
2(a)), where w is chosen such that t has the property of maximum covariance with y. Analogously, if
X is a threeway matrix (I3J3K) and y is a univariate (I31), with typical elements xijk and yi

respectively, X is decomposed into one score vector t (I31) and two weight vectors wJ (J31) and wK

(K31), i.e. one vector per mode. The general idea, expressed in (1), is to find wJ and wK so that the
covariance between t and y is maximized:

max
wJwK FOI

i=1

tiyiU ti =OJ

j=1
OK

k=1

xijkw
J
jw

K
kUiwJi= iwKi=1G (1)

Figure 1. Thirty aligned training molecules, enclosed in grid, viewed in x- and z-mode
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Consequently, t, wJ and wK are a least squares approximation of X. However, the least squares
property is valid for given wJ and wK but not for general wJ and wK, hence (2) is a partial least squares
model:

xijk = tiw
J
jw

K
k +eijk (2)

In order to solve wJ and wK, we rearrange (1) into

max
wJwK FOI

i=1
OJ

j=1
OK

k=1

yi xijkw
J
jw

K
k UiwJi= iwKi=1G (3)

and since X and y already are known, we can define Z (J3K) with typical element zjk =· yixijk . Now
we can rewrite (3) as

max
wJwK FOJ

j=1
OK

k=1

zjkw
J
jw

K
k UiwJi= iwKi=1G (4)

and determine wJ and wK by a singular value decomposition (SVD) of Z as in (5):

max
wJwK

[(wJ )TZwK ] ⇒ (wJ, wK )=SVD(Z) (5)

Further, X is updated by subtracting the contribution from the first component with typical element
x̂(1)

ijk = tiw
J
jw

K
k . This results in E1 with typical element eijk =xijk 2 x̂(1)

ijk , where superscript (1) indicates the
component subtracted. Accordingly, E1 replaces xijk in (1) and the weights and scores from the next
following component can be determined.

Since the scores from different components are not orthogonal, the regression coefficients bA in (6)
have to be calculated taking all the score vectors into account:

bA =(TTT)21TTy (6)

Figure 2. Graphical description of regression methods: (a) bilinear PLS; (b) multilinear PLS
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The score matrix T has the dimension I3A, where the ath column represents the ath score vector.
In the case of 3D QSAR data, five different modes may be defined: the molecular mode, the grid

x-direction, the grid y-direction, the grid z-direction and finally the probe mode (see Figure 3). Thus
we have a data set in five modes with one dependent variable which requires a pentalinear PLS1
algorithm.

Analogously to the three-way problem, the five-way solution is obtained by finding the weight
vectors wJ, wK, wL and wM (Figure 2(b)). Since X is of order higher than three, the solution cannot be
accomplished by an SVD, but similarly the weight vectors are now obtained by a one-component

PARAFAC10, 15, 16 decomposition of Z as in (7) with typical element zjklm =·
i

yixijklm:

max
wJwKwLwMSOJ

j=1
OK

k=1
OL

l=1
OM

m=1

zjklmwJ
jw

K
k wL

l w
M
mD (7)

The multilinear PLS algorithm discussed above has been thoroughly scrutinized by Bro10 and
Smilde.17

Partial PLS coefficients

For the purpose of interpretation the results from CoFMA studies are presented as contour plots of the
partial regression coefficients bPLS .6 Basically, the coefficients bPLS are needed for predictions of new

Figure 3. Complete data set defining five modes. The object mode is of 30 dimensions, the x-mode of 30
dimensions, the y-mode of 15 dimensions, the z-mode of 18 dimensions and the probe mode of three

dimensions
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samples, but since the size and sign of the coefficients reveal the relative importance of the variables,
they are also suitable for the interpretation.

What we are looking for is a direct relationship between X(0) and ŷ as in (8):

ŷ=TbA =X(0)bPLS (8)

where X(0) (I3R) is the unfolded original X, ŷ (I31) is the fitted y, bA (A31) are the coefficients
calculated as in (6) and T (I3A) is the scorfe matrix. The derivation of the full and closed predictions
for multilinear PLS is presented by Smilde,17 but since the PLS coefficients are frequently utilized in
3D QSAR, we find it essential to repeat the derivation also in this context.

Since the weights obtained with multilinear PLS are not orthogonal, we need to take this into
account when we derive the bPLS .

For clarity, X is updated after the ath component with X(a) =X(a21) 2 taw
T
a. If X is three-way,

wa =wK
k ^ wJ

j , where ^ is the Kronecker product. Then

t1 =X(0)w1 (9)

t2 =X(1)w2 =(X(0) 2 t1w
T
1)w2 =(X(0) 2X(0)w1w

T
1 )w2 =X(0)(I2w1w

T
1 )w2 (10)

· · ·

tA =X(0)(I2w1w
T
1 ) · · · (I2wA21w

T
A21 )wA (11)

With T=(t1 , t2 , . . . , tA ) the following holds:

T=X(0)[w1|(I2w1w
T
1 )w2| . . . |(I2w1w

T
1)(I2w2w

T
2 ) . . . (I2wA21w

T
A21)wA ] (12)

Insertion of (12) in (8) followed by rearrangement gives

bPLS =[w1|(I2w1w
T
1 )w2| . . . |(I2w1w

T
1 )(I2w2w

T
2 ) . . . (I2wA21w

T
A21 )wA ]bA (13)

When the number of variables is large, as in 3D QSAR, computing the outer product of the weight
can be a problem. However, computational short-cuts are possible (see Appendix).

If wT
i wj =0 (i­ j), then (13) is reduced to

bPLS =[w1 w2 . . . wA ]bA =WbA (14)

which resembles the solution obtained with Martens and Naes’ non-orthogonalized PLS algorithm.18

Leverages

In order to determine which variables have affected the model most, we rank the variables by their
leverages, determined by first calculating an overall weight matrix W=(w1 , . . . , wa , . . . , wA ), in
which wa (R31; R=JKLM) combines the weights from the different modes as

wa =wM
a ^ wL

a ^ wK
a ^ wJ

a (a=1, . . . , A) (15)

The ^ sign represents the Kronecker product and a denotes the component number. The leverage18

h (R31; R=JKLM) after A components is then expressed as

h=diag(WWT ) (16)

A variable with a leverage hT close to zero does not affect the model very much, while a variable with
an hr close to one is very important for the model. The average hr is A/R and variables with leverage
exceeding hcut 3A/R (hcut being an integer, normally two or three) may, according to Martens and
Naes,18 be considered significant.
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Validation

The cross-validation (CV) experiments and the external predictions (Pred) are quantified with Q2(CV)
and Q2(Pred) in (17), while the quality of the calibrations is given by R2 in (18):

Q2 =F12SOI

i=1

(yi 2 ŷ(i) )
2/OI

i=1

(yi 2 ȳ)2DG3100 (17)

R2 =F12SOI

i=1

(yi 2 ŷi )
2/OI

i=1

(yi 2 ȳ)2DG3100 (18)

The predicted y in (17) is denoted ŷ(i), i.e. in the case of cross-validation an estimation of yi using a
model with the ith object excluded. In the case of external predictions, yi is the response of the ith test
object estimated with the complete calibration model. The fitted y from the calibration in (18) is
denoted ŷi

THE DATA SET

The molecules considered in this paper were synthesized by Glase et al.12 and later modelled with
traditional 3D QSAR methods by Nilsson et al.19 In addition to the 30 compounds modelled by
Nilsson et al.,19 we have introduced a test set consisting of 21 compounds for validation purposes.

Low-energy conformations of all the molecules were initially aligned as described by Nilsson et
al.19 and subsequently surrounded by a three-dimensional grid large enough to enclose all the aligned
molecules with a border of 4 Å in all directions (Figure 1). The directions x, y and z in the grid were
divided into 31, 15 and 18 steps of 1 Å each respectively, yielding a total of 8370 grid points. The
surroundings of each molecule were mapped by calculating the interactions between a probe atom and
each molecule at each grid point. The resulting grid, filled with interaction values, is called a
molecular field. Different types of probe atoms yield different types of fields. We used three different
probes,7 a carbon atom (the C3 probe), a water molecule (the OH2 probe) and a plus two charged
calcium ion (the CA+2 probe), reflecting the steric field, the hydrogen-bonding field and the
electrostatic field respectively. In CoMFA one wants to correlate the differences in these fields with
e.g. the affinities for a certain receptor subtype. The complete model is described graphically in Figure
3.

Prior to bilinear PLS analysis the data set is unfolded to form a two-way matrix which is
decomposed into scores t (I31) and loadings p (JKLM31) as described in Figure 2(a). In multilinear
PLS, however, the unfolding step is omitted and the one-component decompostion consists of a score
vector t (I31) and four weight vectors wJ (J31), wK (K31), wL (L31) and wM (M31) as in Figure
2(b). The vectors t, wJ, wK, wL and wM in Figure 2(b) correspond directly to the molecular mode, the
grid x-direction, the grid y-direction, the grid z-direction and the probe mode respectively as described
in Figure 3.

RESULTS

Model I

The only data preprocessing applied was mean-centering in the object (I ) direction. In bilinear PLS,
scaling is often performed column-wise, e.g. autoscaling,9 whereas in multilinear PLS, scaling is not
that straightforward.16

J. NILSSON, S. DE JONG AND A. K. SMILDE516
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The objective of this paper is to introduce multilinear PLS in 3D QSAR modelling and compare the
solution with the traditional bilinear PLS solution. Accordingly, the complete model (Model I) was
calibrated and validated with both regression methods, presented in Tables 1 and 2 respectively. With
multilinear PLS (Table 1), maximum Q2(CV) was obtained after four components (Q2 =51%), where
17% of the variation in X explained 73% of the variation in y. With bilinear PLS, however, maximum
Q2(CV) was found after only one component (Q2 =48%), where 22% of the variation in X explained
62% of the variation in y. The weights from the different modes obtained with multilinear PLS contain
information useful for the interpretation of the result and in Figure 4 the weights from the first four
components are plotted. For comparison the weight vector from the first component with bilinear PLS
is plotted in Figure 5

The number of significant components was estimated by leave-one-out cross-validation and we
found maximum Q2(CV) after four components (Table 1) with multilinear PLS. In order not to lose
information during the variable reduction step, we performed the variable reduction starting from a
model one component more complex than optimal. Accordingly the absolute sum of the weights from
the first five components was calculated for each mode separately. A position in a mode was
considered significant and selected only if it exceeded a lower cut-off value. An arbitrary cut-off value
of 0·2 generated a reduced data set with 6624 variables, called Model II. Stated differently, only
variables with high weights from Model I were selected and included in Model II. The probe mode
was left intact, hence variables from all three probes were included in the reduced data set.

Model II

The results from Model II are summarized in Tables 3 and 4 respectively. Model II was validated
thoroughly (Table 4) with cross-validation and external predictions. In addition to traditional ‘leave-

Table 1. Calibration and validation of Model I
(30325, 110) with multilinear PLSa

#LV R2(X) R2(y) Q2(LOO) Q2(Pred)b

1 7 48 39 19
2 12 58 43 18
3 15 64 45 29
4 17 73 51 31
5 18 76 34 34

a All values in percentage.
b Predictions of external test set (21325, 110).

Table 2. Calibration and validation of Model I
(30325, 110) with bilinear PLSa

#LV R2(X) R2(y) Q2(LOO) Q2(Pred)b

1 22 62 48 26
2 34 76 47 21
3 43 86 46 32
4 53 89 42 31
5 59 93 37 32

a All values in percentage.
b Predictions of external test set (21325, 110).
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one-out’ cross-validation, also ‘leave-three-out’ and ‘leave-five-out’ cross-validations were
performed, where in each experiment objects were left out randomly but only once. The results are
reported as the average Q2 of 20 cross-validation experiments.20, 21

In order to simplify the interpretations of a PLS Model in 3D QSAR, the partial PLS coefficients
bPLS in (13) are often presented as comprehensive iso-contour plots. That is, each bPLS is transferred
back to its original position in the grid, where grid points with similar coefficients are connected. In
Figure 6 the bPLS contour is plotted in stereo from the C3 probe after the fourth multilinear PLS
component.

Figure 4. Weights WJ, WK, WL and WM: ——, component one; – – –, component two; – · –, component three;
· · · ·, component four
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Figure 5. Weight vector after first component with bilinear PLS

Table 3. Cross-validationa and external predictions of Model II
(3036624)

N-PLSb PLSb

@LV LOO L3Oc L5Oc Pred.d LOO L3Oc L5Oc Pred.d

1 39 43 42 19 50 50 50 25
2 43 44 41 18 48 46 47 23
3 45 43 41 29 48 46 48 33
4 51 53 49 31 44 41 42 30
5 43 42 38 34 39 37 40 31

a LOO is short for leave-one-out, L3O for leave-three-out and L5O for leave-five-
out.
b All values in percentage.
c Average from 20 Q2.
d Predictions of external test set (2136624).

Table 4. Calibration of Model II with
bilinear PLS and multiliner PLS for

first five components

N-PLS PLS

#LV R2(X) R2(y) R2(X) R2(y)

1 8 48 22 64
2 13 58 32 79
3 16 64 41 86
4 19 73 51 90
5 20 76 58 93

a All values in percentage.
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DISCUSSION

The key issue in 3D QSAR modelling is to find a predictive model which can be used as a tool in the
design of new potent compounds. The solution should also be simple and straightforwrd, since also
the non-expert must be able to interpret the model.

The initial complete model (Table 1) indicted four significant components with leave-one-out cross-
validation. With help from Figure 4 we can determine, with good precision, the region accounted for
by each component. The full curves in Figure 4 represent the weights from the first component, the
broken curves the second component, the chain curves the third component and the dotted curves the
fourth component. For ease of interpretation the weights WJ and WL correspond to the x-mode and z-
mode respectively in Figure 1. The first component has high weight wJ at position 5 and high weights
wL between positions 5 and 10 (Figure 4), which correspond to the region where the naphthalene
moiety protrudes (Figure 1). Thus the first component explains the difference between naphthamides
and benzamides. Similarly, it can be concluded that the second component mainly deals with the ortho
and meta positions on the arylpiperazine phenyl ring, the third component the para position and,
finally, the fourth component with substituents on the benzamide phenyl ring.

In contrast with the weights from multilinear PLS (Figure 4), the weights from bilinear PLS (Figure
5) are difficult to interpret.

Striking is the much less explained variance obtained with multilinear PLS (Table 1) as compared
with bilinear PLS (Table 2). A speculative explanation for this is the fewer parameters that need to be
estimated with multilinear PLS.10, 15 Also, each component in multilinear PLS focuses on small
specific items, e.g. regions in the grid, while bilinear PLS searches for more general directions for its
components and is more flexible.

It is well known that many of the variables in a 3D QSAR model are more or less redundant and
may affect the predictive ability detrimentally. From Figure 4 it is clear that positions corresponding
to grid points in the periphery of the grid have low weights and also limited influence on the model.
By omitting these variables, as described in the theory part, a reduced model with 6624 variables was
obtained which was validated with cross-validation and external predictions. Variable selection must
be performed very carefully, otherwise problems with overfitting may occur. Norinder14 and Cho and
Tropscha13 reported increased cross-validated Q2 but decreased ability to predict an external test set
when the number of variables was reduced. We reduced the number of variables in our model from
25, 110 to 6624, which speeded up further calculations, but the predictive ability did not improve.

From Model II (Table 3) it can be concluded that our model is homogeneous and stable, since the
cross-validated Q2 was not affected very much when larger groups of molecules were left out each
time. Each cross-validation experiment was repeated 20 times20 and, accordingly, reported as the
average Q2.

In Figures 7(a) and 7(b) the experimental log10(Ki ) are plotted against the fitted log10(Ki ) from
Model II for the training set with multilinear PLS and bilinear PLS respectively. The 21 test
compounds have been predicted and plotted on the same figures as small circles. A four-component

Figure 6. Coefficients bPLS from final multilinear PLS model and C3 probe after four components
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Figure 7. Experimental log10(Ki ) versus fitted log10(Ki ) after (a) fourth component with multilinear PLS and (b)
first component with bilinear PLS
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model with multilinear PLS (R2 =73%) explains more of the variation in y as compared with a one-
component bilinear PLS model (R2 =64%). The test compounds were also better predicted with
multilinear PLS (Q2 =31%) than with bilinear PLS (Q2 =25%). In fact, the bilinear PLS model (Figure
7(b)) more or less distinguishes between two groups of compounds, i.e. between benzamides and
naphthamides, while the multilinear PLS model is much better fitted (Figure 7(a)).

The iso-contour plot of the coefficients bPLS from the fourth component in Figure 6 is probably the
most comprehensible tool for the interpretation of the model:

Bio-Act=x1b1 + · · ·+xibi + · · ·+xkbk +e (19)

If a novel molecule is designed with a substituent protruding in a negative bPLS region, then xi in (19)
will be positive and consequently xibi will be negative. This substituent will thus have a negative effect
on Bio-Act. If low Bio-Act is desirable, new substituents must be added in regions where bPLS for the
C3 probe (steric field) is negative and vice versa. For more specifics about how to interpret the iso-
contour plots, we refer to the SYBYL manual6 and Reference 19.

In Figure 8 we rank the 6624 variables by their respective leverage. Even after variable reduction
a lot of variables with low influence on the model are present.

CONCLUSIONS

We have successfully introduced multilinear PLS as regression method in 3D QSAR. The main
improvement lies in the interpretation of the result and the slightly better predictive ability as
compared with bilinear PLS. The multilinear PLS model is also superior to bilinear PLS with regard
to simplicity and stability, since fewer parameters need to be estimated.

The number of variables can effectively be reduced with help from multilinear PLS. Although the
predictive ability did not improve, the speed of the calculations did. The number of high-leverage

Figure 8. Leverages from Model II after multilinear PLS(4) in increasing order of size
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variables was quite low, even after variable reduction, and the idea of omitting low-leverage variables
is tempting. This will be dealt with in future research.

APPENDIX: MATLAB CODE FOR REGRESSION COEFFICIENTS IN MULTILINEAR PLS

Smilde17 gives the following explicit expression for the regression coefficients in multilinear PLS1
calibration based on A components:

bPLS =W*bA (20)

where

W*=[w1|(IP 2w1w
T
1 )w2|. . .|(IP 2w2w

T
2 )(IP 2w1w

T
1) . . . (IP 2wA21w

T
A21 )wA ] (21)

In equation (21), wa is the vectorized (unfolded) form of the rank-one N-way tensor product obtained
from the mode-specific weight vectors wJ, wK, etc. that define the ath PLS component.

Equation (21) is not suitable for implementation in predictive CoMFA computations using N-PLS
regression, since it involves very large matrices IP 2waw

T
a (P3P). For example, in our current

application (P=JKLM=3131531833Å25 000) one such matrix occupies 5 Gb. Merely multiplying
two such matrices takes 31 Tflops!

Let us consider the second column of W*. The expression (IP 2w1w
T
1 )w2 represents the projection

of w2 onto w>
1 , the orthogonal complement of w1 . It is more efficient, with respect to both space and

time, to compute this as w2 2 (wT
1w2 )w1 . The same approach can be used recursively in each of the

subsequent columns, starting from the back. The MATLAB code implementing this procedure is given
below as Algorithm I. It requires little additional storage and involves 2A2P flops.

Algorithm I

function bPLS=getbpls1(W,b)

% function bPLS=getbpls1(W,b)

% gives explicit b_PLS in trilinear PLS

% (i.e. yĥat=Xpb_PLS)

% from W(JK3A) and b(A31)

A=size(W, 2);

bPLS=0;

for a=1:A

v=W(:,a);

for j=a21:21:1

v=v2 (v9pW(:,j))pW(:,j);

end

bPLS=bPLS+b(a)pv;

end

We may increase the speed further by starting at the last column of W*, i.e. computing bAwA ,
projecting this onto w'

A21 , adding the result to bA21wA21 , projecting this onto w'
A22 , adding the result

to bA22wA22 and so forth. In this way we obtain the alternative Algorithm II. It requires (4A-3)P flops;
hence Algorithm II is about A/2 times faster than Algorithm I.

MULTIWAY CALIBRATION IN 3D QSAR 523

© 1997 John Wiley & Sons, Ltd. J. Chemometrics, Vol. 11, 511–524 (1997)



Algorithm II

function bPLS=getbpls1 (W,b)

% function bPLS=getbpls1 (W, b)

% gives explicit b_PLS in trilinear PLS

% (i.e. yĥat=Xpb_PLS)

% from W (JK3A) and b(A31)

A=length(b);

bPLS=b(A)pW(:,A);

for a=A21:21:1

bPLS=bPLS+(b(a)2bPLS9pW(:,a))pW(:,a);

end

Other approaches to computing N-PLS regression coefficients for prediction purposes are discussed
in Reference 22.
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