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Abstract

This thesis studies exact exponential and fixed-parameter algorithms for
hard graph and hypergraph problems. Specifically, we study two techniques
that can be used in the development of such algorithms: (i) combinato-
rial decompositions of both the input instance and the solution, and (ii)
evaluation of multilinear forms over semirings.

In the first part of the thesis we develop new algorithms for graph and
hypergraph problems based on techniques (i) and (ii). While these techniques
are independently both useful, the work presented in this part is largely
characterised by their joint application. That is, combining results from
different pieces of the decompositions often takes the from of multilinear
form evaluation task, and on the other hand, decompositions offer the basic
structure for dynamic-programming-style algorithms for the evaluation of
multilinear forms.

As main positive results of the first part, we give algorithms for three
different problem families. First, we give a fast evaluation algorithm for
linear forms defined by a disjointness matrix of small sets. This can be
applied to obtain faster algorithms for counting maximum-weight objects of
small size, such as k-paths in graphs. Second, we give a general framework
for exponential-time algorithms for finding maximum-weight subgraphs of
bounded tree-width, based on the theory of tree decompositions. Besides
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basic combinatorial problems, this framework has applications in learning
Bayesian network structures. Third, we give a fixed-parameter algorithm
for finding unbalanced vertex cuts, that is, vertex cuts that separate a small
number of vertices from the rest of the graph.

In the second part of the thesis we consider aspects of the complexity theory
of linear forms over semirings, in order to better understand technique (ii).
Specifically, we study how the presence of different algebraic catalysts in
the ground semiring affects the complexity. As the main result, we show
that there are linear forms that are easy to compute over semirings with
idempotent addition, but difficult to compute over rings, unless the strong
exponential time hypothesis fails.

Computing Reviews (1998) Categories and Subject
Descriptors:
F.1.3 [Computation by Abstract Devices] Complexity Measures and

Classes – relations among complexity measures
F.2.1 [Analysis of Algorithms and Problem Complexity] Numerical

Algorithms and Problems – computation of transforms
F.2.2 [Analysis of Algorithms and Problem Complexity] Nonnumerical

Algorithms and Problems – computations on discrete structures
G.2.1 [Discrete Mathematics] Combinatorics – combinatorial algorithms,

counting problems
G.2.2 [Discrete Mathematics] Graph Theory
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Additional Key Words and Phrases:
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Chapter 1

Introduction

In this chapter, we introduce the central themes and techniques of this
thesis and summarise the contributions, as well as provide background on
the exact algorithmics of hard problems.

1.1 Background

One of the fundamental goals of computer science is the development
of efficient algorithms. From a theoretical perspective, algorithms are
considered to be efficient if they run in polynomial time. Alas, there are
also problems that do not have polynomial-time algorithms; for instance,
NP-hard problems fall into this category, unless the common assumption of
P �= NP fails [66, 67]. Regardless, we still often want to solve such problems,
so it makes sense to ask what we can do despite intractability.

Exponential algorithms. Exact exponential algorithmics [59, 60] con-
siders the development of techniques that aim to avoid brute force search
over the whole solution space while still accepting that the running time
of the algorithm will have exponential dependence on the input size n –
essentially, this means developing less exponential algorithms. Over the
years, a wide variety of techniques have been successfully applied for this
purpose, such as branching [126], dynamic programming [7, 8, 73] and
meet-in-the-middle [74, 118].

More formally, when considering a problem with nominally super-
exponential solution space, the first question is whether we can still get the
dependence down to single-exponential level, that is, construct algorithms
with running time cnnO(1) for some constant c > 1. Furthermore, we can
then ask how small we can make the constant c in the running time. For
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2 1 Introduction

some problems, such as the maximum independent set problem, the constant
c can be made strictly smaller than 2, while at the other end of the spectrum
lie problems such as CNF-SAT and related problems, for which improving
upon c = 2 is a longstanding open problem [32, 48, 76, 114].

One trend in exact exponential algorithmics that we make a special note
of is the use of algebrisation, that is, casting a combinatorial problem as a task
of evaluating an expression or function over a suitable algebraic structure.
Efficient algorithms for the algebraic task can then be obtained by exploiting
the properties of the algebraic structure, such as the existence of additive
inverses or roots of unity. For example, Hamiltonian path and cycle problems
can be solved in polynomial space using inclusion–exclusion techniques [83,
90]; more recent examples of algebrisation include a matrix multiplication
based algorithm for MAX-2-SAT [133], subset convolution for k-colouring
and related problems [13, 17], polynomial interpolation/evaluation for Tutte
polynomial [15] and determinant sums for Hamiltonian cycles [11].

Parameterised algorithms. The theory of parameterised algorithms and
complexity [53, 57, 109] provides a way to study the exponential dependence
in the running time from a more structural perspective. The basic idea is to
isolate the exponential complexity into some parameter k that is independent
of n. Problems for which this is possible are called fixed-parameter tractable;
more precisely, a problem with parameter k is fixed-parameter tractable if
there is an algorithm with a running time of the form f(k)nO(1) for some
function f . For example, when the parameter k is the size of the solution,
techniques such as bounded-depth branching [52], colour-coding [1] and
iterative compression [116] have been applied to obtain fixed-parameter
algorithms.

The parameter can also describe the structure of the input; a prominent
example also relevant to the work of this thesis is the tree-width of a
graph [117], which measures how tree-like a graph is. Many combinatorial
problems are fixed-parameter tractable when parameterised by the tree-
width w of the input graph [3, 21, 24]; essentially, one can take (a) a
polynomial-time algorithm on trees and (b) an exact exponential algorithm
on general graphs, and run these on a tree decomposition of the input graph
to obtain an algorithm with running time f(w)nO(1). Typically the exact
exponential algorithms used within this scheme use dynamic programming,
but recently algebrisation has been employed to obtain better dependence
on tree-width w [25, 128].

Of course, not all parameterised problems are fixed-parameter tractable;
for example, W[1]-hard problems are assumed to not have fixed-parameter
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algorithms much in the same way as NP-hard problems are assumed not to
have polynomial-time algorithms [52, 57]. Still, many W[1]-hard parame-
terised problems have natural algorithms with running time nk+O(1) that
simply do brute-force enumeration of all subsets of size at most k. For such
problems, we can ask whether we can obtain algorithms with a running
time of the form nck+O(1) for c < 1, for instance by applying fast matrix
multiplication [108, 130] or the counting-in-halves [16] type of techniques.

Other approaches. While we are interested in exact algorithms and
worst-case complexity, there are also other approaches to dealing with
intractability that do not quite fall within these two criteria. Approximation
algorithms [131] consider finding solutions that are not necessarily optimal,
but are still guaranteed to be within a known factor of the optimum; in
particular, this can often be achieved in polynomial time. On the other hand,
algorithms with exponential worst-case complexity may still be feasible in
practice, especially when solving real-world instances; for example, carefully
implemented Boolean satisfiability solvers [10] have proven to be a useful
tool for solving instances of hard problems in practice [9, 78, 86].

1.2 Outline

This thesis contributes to a thread of research aimed at developing and under-
standing new techniques for exact algorithms for hard graph and hypergraph
problems. This work is centred on two main techniques, namely combina-
torial decompositions and evaluation of multilinear forms over semirings,
which we will discuss in detail in Section 1.2.1.

In the first part of this thesis, we develop new algorithms for combina-
torial problems based on combinatorial decompositions and evaluation of
multilinear forms over semirings; an overview of these results is given in
Section 1.2.2. The second part of this thesis considers the complexity theory
of multilinear form evaluation in the presence of different types of algebraic
catalysts, as we will discuss in Section 1.2.3.

1.2.1 Techniques

Combinatorial decompositions. The first technique we repeatedly em-
ploy is the development of suitable combinatorial decompositions. We
consider (i) decompositions of instances and (ii) decompositions of solutions:

(i) Given an instance X, we decompose the instance into sub-instances
X1, X2, . . . , Xm, solve the original problem or some variant of it on



4 1 Introduction

Example 1.1: Decomposing k-paths into halves

v

Let G = (V, E) be a graph, v ∈ V and let k be an even integer. To find
a path with k edges and a middle point v in the graph G, it suffices to
find two paths with k/2 edges and an end point v such that the vertex
sets of these paths only intersect at v; the illustration above shows a
12-path decomposed into two 6-paths. This idea will be expanded upon
in Example 1.3.

each of the instances Xi, and then assemble the solution for X from
the solutions to instances Xi.

(ii) When the goal is to find a solution Y , we first find some simpler
structures Y1, Y2, . . . , Ym, and then we assemble the desired solution
from the decomposition pieces Yi.

Depending on the problem at hand, we either use (i) or (ii) or both to
construct efficient algorithms. The decompositions can also be nested or
recursive, that is, each piece of the decomposition is again decomposed into
smaller pieces.

� See Example 1.1.

Multilinear forms over semirings. Our second technique is the evalu-
ation of multilinear forms over semirings. The simplest example of this type
of tasks is the evaluation of linear forms defined by a Boolean matrix. Let
(S, ⊕) be a commutative semigroup, that is, a set S equipped with binary
operation ⊕ that follows the usual rules of addition but is not necessarily
invertible. Given a Boolean matrix A ∈ {0, 1}m×n and an input vector
x ∈ Sn, the task is to compute an output vector y ∈ Sm defined by

yi =
⊕

j : Aij=1
xj .
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In the general case we operate over a semiring (S, ⊕, �), that is, we also
have a not necessarily invertible multiplication operation � that distributes
over addition. Given a (d + 1)-dimensional tensor T ∈ Sm×n1×n2×···×nd and
d input vectors

xi = (xi,1, xi,2, . . . , xi,nd
) ∈ Sni for i = 1, 2, . . . , d,

the task is to compute an output vector y ∈ Sm defined by

yi =
n1⊕

j1=1

n2⊕
j2=1

· · ·
nd⊕

jd=1
Ti,j1,j2,...,jd

d⊙
k=1

xk,jk
.

The use of multilinear forms usually becomes relevant when we consider
counting and optimisation problems, where we have to consider – at least
in some sense – all possible solutions instead of finding just one. The basic
pattern of usage is that we pick (a) a suitable set of multilinear forms and
(b) a suitable semiring, so that after evaluating the multilinear forms we
can recover the solution from the output vector. This often requires some
pre- and post-processing in addition to the evaluation itself.

In this thesis, we generally consider cases where the semiring of choice
does not have full ring structure; this is usually necessitated by applications
where rings do not have sufficient expressive power. For example, the
tropical semiring

(
R ∪ {−∞}, max, +

)
used in optimisation algorithms has

non-invertible addition. Working over semirings in particular means that
algebraic techniques such as inclusion–exclusion and reduction to matrix
multiplication cannot be used, as these rely on the existence of the additive
inverses in the ground ring.

� See Example 1.2.

1.2.2 Algorithm design

Overview. Our main goal is the development of efficient algorithms,
to which end we employ combinatorial decompositions and evaluation of
multilinear forms. In particular, the joint application of these techniques
will appear frequently;

1. combining results from different pieces of the decompositions often
takes the form of a multilinear form evaluation task, and

2. decompositions offer the basic structure for dynamic-programming-
style algorithms for the evaluation of multilinear forms.

� See Example 1.3.
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Example 1.2: Complement of the identity matrix

Consider the Boolean complement of the n × n identity matrix, that is,
the n × n matrix Ī with entries

Īij =
{

1, if i �= j, and
0, if i = j.

The matrix Ī defines the linear forms that transform input x ∈ Sn to
output y ∈ Sn by

yi =
⊕
j �=i

xj . (1.1)

Over a commutative group (G, +), the straightforward way of comput-
ing the linear forms (1.1) uses 2n − 1 binary additions and n negations;
we first compute the sum

∑n
j=1 xj , and then obtain the outputs as

yi =
( n∑

j=1
xj

)
− xi .

This is presented in circuit form in illustration (a), below. However,
the construction uses negations and thus cannot be employed over
semigroups. Still, it is possible to compute (1.1) over any commutative
semigroup using 3n−6 additions in total; the construction is illustrated
in (b).

(a)

(b)

x1

x2

x3

x4

x5

x6

x7

x8

x1

x2

x3

x4

x5

x6

x7

x8

y1
y2
y3
y4
y5
y6
y7
y8

y1
y2
y3
y4
y5
y6
y7
y8
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Papers I and II. Papers I and II are centred around the set of linear
forms defined by the disjointness matrix of sets of small size. That is, we
consider matrix D indexed by subsets of a ground set U . The rows are
indexed by subsets of size at most q and the columns by subsets of size at
most p, with entries

D(Y, X) =
{

1, if Y ∩ X = ∅, and
0, if Y ∩ X �= ∅.

The corresponding linear forms are called the (n, p, q)-disjoint transform.
That is, given an input value f(X) in a commutative semigroup (S, ⊕) for
each subset X of size at most p, the task is to output the values

e(Y ) =
⊕

X : X∩Y =∅
f(X) (1.2)

for each set Y of size at most q. A recursive tiling presented in Paper I
gives an algorithm for (n, p, q)-disjoint summation that uses[(

n
p

)
+
(

n
q

)]
· min{2p, 2q} · nO(1)

binary operations in S; the construction of Paper II is slightly less efficient,
but extends to a case where the input and output indices are allowed to
overlap to a degree.

For most applications it is convenient to extend the (n, p, q)-disjoint
summation into the disjoint product

Δ(g, f) =
⊕

Y,X : X∩Y =∅
g(Y ) � f(X)

over semirings (S, ⊕, �), where the parameters of input functions g and f
are sets of size at most q and at most p, respectively. We have

Δ(g, f) =
⊕
Y

g(Y ) � e(Y ) ,

where e is as in (1.2); that is, a fast algorithm for (n, p, q)-disjoint summation
also gives a fast algorithm for the disjoint product. In particular, this can be
used to reduce running times of form

(n
k

)
nO(1) to

( n
k/2

)
nO(1) for example for

counting decomposable maximum-weight objects of size k and rectangular
matrix permanents over non-commutative semirings.

� See Section 3.1 for details.
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Example 1.3: Counting in halves

Let us consider the setting of Example 1.1, but instead of just finding
a k-path – that is, a path with k edges – we want to count how many
k-paths there are in a directed input graph. This problem can be
reduced to the evaluation of disjoint product

Δ(g, f) =
⊕

X,Y : X∩Y =∅
g(Y ) � f(X) ,

where X and Y range over vertex sets of size k/2 and f and g are input
functions. Indeed, for any subset X ⊆ V \ {v} of size k/2, let f(X) and
g(X) be the number of k/2-paths vertex set X ∪ {v} starting from v
and ending at v, respectively. We now have that Δ(g, f) is the number
of k-paths with middle vertex v.

This idea can be extended to counting maximum-weight k-paths in a
graph with edge weights w : E → Q. We will use the semiring

(
N × (Q ∪ {−∞}), ∨, ⊗)

,

where

(c, w) ∨ (c′, w′) =

⎧⎪⎪⎨
⎪⎪⎩

(c, w) if w > w′,
(c′, w′) if w < w′,
(c + c′, w) if w = w′,

and (c, w) ⊗ (c′, w′) = (c · c′, w + w′). The value (c, w) can be thought
of as a representation of a collection of c objects of weight w; the
operation ∨ selects the objects with higher weight, and ⊗ is analogous
to taking a Cartesian product of the two collections. Now let f2(X) be
the maximum weight of a k/2-path with vertex set X ∪ {v} starting
from v, and let f1(X) be the number of such paths. Let f(X) =(
f1(X), f2(X)

)
and define g(X) analogously for paths ending at v;

the value (c, w) = Δ(g, f) gives the weight w and the number c of
maximum-weight k-paths with middle vertex v.

The efficient evaluation of disjoint products is discussed in detail in
the context of Papers I and II; to summarise, the inclusion–exclusion
algorithm of Björklund et al. [16] can be used to evaluate the disjoint
product over rings in time

( n
k/2

)
nO(1), while the results of Paper I give

a 2k/2( n
k/2

)
nO(1) time algorithm over semirings.
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Paper III. Paper III considers the problem of finding maximum bounded
tree-width subgraphs. The work is motivated by the study of graphical
probabilistic models, specifically Bayesian networks, which can be viewed
as directed acyclic graphs. The framework introduced in Paper III can be
used to find subgraphs of tree-width at most w and

1. maximum weight in time 3nnw+O(1), and
2. maximum number of edges in time 2nnw+O(1).

Furthermore, a variant of this algorithm can be applied to the Bayesian net-
work structure learning problem. The algorithm exploits the existence of nice
tree decompositions for bounded tree-width graphs, using the combinatorial
structure of the tree decompositions as a basis for Bellman–Held–Karp-style
dynamic programming with additional branching step.

� See Section 3.2 for details.

Paper IV. Paper IV studies finding small unbalanced vertex cuts in a
graph. That is, the task is to find a partition (X, S, Y ) of the vertex set
such that X is a non-empty set of size at most k, the set S has size at most
t and S separates X and Y .

We show that this problem is fixed-parameter tractable with parameter
t by giving an algorithm with running time 4tnO(1). The algorithm is based
on a combinatorial decomposition of the solution in terms of important
separators. Roughly speaking, to find a solution (X, S, Y ), we guess a
vertex x ∈ X and use important separators to find sets Y1, Y2, . . . , Y� that
are in a certain sense furthest away from x. Some subfamily of sets Yi is
then contained in the larger side Y of the cut, and an important separator
between this subfamily and x gives us the solution.

� See Section 3.3 for details.

1.2.3 Algebraic catalysts

Overview. Working over semirings prevents us from using many algebraic
techniques, which usually rely on some algebraic catalyst, most often the exis-
tence of additive inverses in the ground ring. Indeed, evaluating multilinear
forms over semirings may be viewed as evaluating the forms in a monotone
model of computation; it is known that monotone models are generally
weaker than non-monotone ones. We will see this with the multilinear form
evaluation algorithms of Papers I–III, as our combinatorial decomposition
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Example 1.4: Idempotent versus non-idempotent addition

Let us consider the matrix

A =

⎡
⎢⎢⎢⎢⎢⎣

1 0 1 0 0
1 1 1 0 0
1 1 1 1 1
0 0 1 1 1
0 0 1 0 1

⎤
⎥⎥⎥⎥⎥⎦ .

The illustration below shows the optimal circuit for evaluating the
linear forms defined by A (a) over commutative groups and (b) over
commutative idempotent semigroups, with 6 and 5 addition gates,
respectively. Note in particular that negation does not help over groups
in this case.
(a) x1

x2

x3

x4

x5

y1
y2
y3
y4
y5

(b) x1

x2

x3

x4

x5

y1
y2
y3
y4
y5

algorithms do not match the algebraic algorithms for analogous multilinear
forms over rings.

However, in some cases the ground semiring may have properties that
can be used as catalyst for efficient algorithms even if it lacks additive
inverses. We are particularly interested in the case of Boolean matrices
and linear forms when the additive semigroup (S, ⊕) is idempotent, that is,
x ⊕ x = x for all x ∈ S; an example is the maximum operation, as we have
max(x, x) = x. Specifically, then the main question is whether some linear
forms are easier to evaluate over idempotent semigroups than groups.

� See Chapter 4 for more background.
� See also Example 1.4.

Paper V. The main result of Paper V considers intersection matrices of
arbitrary set families; given two set families F,G ⊆ 2X , their intersection
matrix N is a matrix whose rows are indexed by sets Y ∈ G and the columns
by sets X ∈ F, with entries

N(Y, X) =
{

1, if Y ∩ X �= ∅, and
0, if Y ∩ X = ∅.
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The set of linear forms defined by any such intersection matrix, called
the intersection transform, has an almost linear algorithm over commutative
idempotent semigroups. However, any strictly sub-quadratic algorithm for
commutative groups would give us a 2(1−ε)n(n + m)O(1) time algorithm
for CNF-SAT for a constant ε > 0, violating the strong exponential-time
hypothesis. This can be interpreted as conditional evidence suggesting that
intersection transforms are difficult to evaluate over commutative groups.
On the other hand, it should be noted that the strong exponential time
hypothesis is a very strong complexity assumption, and as such may very
well be false; from this perspective, the result can also be seen as a possible
step towards faster CNF-SAT algorithms.

� See Chapter 4 for details.

1.3 Author contributions

Papers I & II. The algorithm of Paper II for disjoint summation is due to
the present author, while the applications are joint work with Petteri
Kaski and Mikko Koivisto. Igor Sergeev [119] subsequently gave a
faster algorithm for disjoint summation; this algorithm was further
improved in Paper I jointly by the present author and Igor Sergeev.

Paper III. The results are joint work by the present author and Pekka
Parviainen. The algorithm implementation is the work of the present
author.

Paper IV. The results are joint work by Fedor Fomin, Petr Golovach and
the present author.

Paper V. The results concerning lower bounds for intersection transforms
are joint work by Petteri Kaski, Mikko Koivisto and the present author.
The SAT encoding was developed together with Matti Järvisalo and
the experiments were implemented and run by the present author.
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Chapter 2

Preliminaries

This chapter briefly introduces notions and notations used throughout the
rest of this thesis. We will assume in later chapters that the reader is familiar
with the notations introduced in this chapter. Furthermore, the reader is
assumed to be familiar with basic notions of graph theory [51], algorithmics
and complexity theory [5] and parameterised complexity theory [52, 57].

2.1 Notations and definitions

Sets and set families. Let 0 ≤ k ≤ n be integers, and let X be a set.
We write

1. [n] = {1, 2, . . . , n} for the set of integers at most n,
2. 2X = {Y ⊆ X} for the power set of X,

3.
(

X
k

)
= {Y ⊆ X : |Y | = k} for the family of subsets of X of size k, and

4.
(

X
↓k

)
=
⋃k

i=0

(
X
i

)
for the family of subsets of X of size at most k.

Graphs and hypergraphs. A hypergraph (set family, set system) is a
pair H = (V,E), where V is the set of vertices and E ⊆ 2V is the set of edges.
When the vertex set is clear from the context, we identify a hypergraph
with its edge set.

A graph is a hypergraph where each edge contains exactly two elements.
We follow the usual convention of using regular upper-case letters as the
names of graph edge sets and lower-case letters as the names of single edges.

13
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Binary operations. Let S be a set and let ◦ : S × S → S be a binary
operation on S. An element e ∈ S is an identity element for ◦ if e ◦ x =
x ◦ e = x for all x ∈ S. We say that ◦ is

1. associative if (x ◦ y) ◦ z = x ◦ (y ◦ z) for all x, y, z ∈ S,
2. commutative if x ◦ y = y ◦ x for all x, y ∈ S,
3. idempotent if x ◦ x = x for all x ∈ S, and
4. invertible if there is a unique identity element e for ◦ and for each

x ∈ S, there is y ∈ S such that x ◦ y = y ◦ x = e.

Semigroups and groups. Let S be a set and ⊕ : S × S → S a binary
operation on S. We say that the pair (S, ⊕) is

1. a semigroup if ⊕ is associative,
2. a monoid if ⊕ has an identity element and is associative, and
3. a group if ⊕ has an identity element and is associative and invertible.

Furthermore, we call the structure (S, ⊕) commutative if ⊕ is commutative.

Semirings and rings. More generally, let S be a set and ⊕, � : S×S → S
be two binary operations on S. We say that (S, ⊕, �) is a semiring if

(a) (S, ⊕) is a commutative monoid with identity element 0,
(b) (S, �) is a monoid with identity element 1,
(c) multiplication � distributes over addition ⊕, that is, we have

x � (y ⊕ z) = (x � y) ⊕ (x � z) ,

(y ⊕ z) � x = (y � x) ⊕ (z � x)

for all x, y, z ∈ S, and
(d) multiplication by 0 annihilates, that is, 0� x = x � 0 = 0 for all x ∈ S.

We say that semiring (S, ⊕, �) is commutative if � is commutative, and
(S, ⊕, �) is a ring if ⊕ is also invertible.

Iverson bracket notation. Let P be a logical predicate and let (S, ⊕, �)
be semiring with additive identity element 0 and multiplicative identity
element 1. The Iverson bracket is the expression

[P ] =
{

1, if P is true, and
0, otherwise.
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2.2 Matrices and multilinear forms

Vectors and matrices. For our purposes it is usually convenient to
consider vectors and matrices that are indexed by objects other than natural
numbers. Thus, we will generally view vectors as functions, that is, given a
finite index set X, a vector of values in semiring S is a function f : X → S.
Similarly, we will treat matrices as functions

A : Y × X → S ,

and more generally multidimensional matrices or tensors as functions

T : Y × X1 × X2 × · · · × Xn → S .

Linear and multilinear forms. Matrices define sets of multilinear forms
and, as discussed in Chapter 1, evaluation of such forms is one of the main
themes of this thesis. Specifically, a matrix A : Y × X → S defines a set of
linear forms

A : (X → S) → (Y → S) ,(
A(f)

)
(y) =

⊕
x∈X

A(y, x) � f(x) , (2.1)

that is, A defines a function mapping a vector f : X → S to a vector
A(f) : Y → S. More concretely, these linear forms may be viewed as a
computational task where we are given an input vector f : X → S, and our
task is to compute an output vector e : Y → S defined as

e(y) =
⊕
x∈X

A(y, x) � f(x) .

We will often use post-fix notation for linear forms, that is, we write fA
for A(f).

Similarly, a multidimensional matrix T : Y × X1 × X2 × · · · × Xn → S
defines a set of multilinear forms

T :
n∏

i=1
(Xi → S) → (Y → S) ,

(
T (f1, . . . , fn)

)
(y) =

⊕
x1∈X1

· · ·
⊕

xn∈Xn

T (y, x1, . . . , xn)
n⊙

i=1
fi(xi) .

Again, this can be viewed as a computational task with input vectors
fi : Xi → S and output e : Y → S specified by e = T (f1, . . . , fn).
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Boolean matrices. For a Boolean matrix A : Y × X → {0, 1}, we can
consider the set of linear forms defined by A over a commutative semigroup
(S, ⊕), even when S does not have full semiring structure. First, we may
assume that S has an identity element, as we can append one if it does not
already exist. The semigroup ({0, 1}, ∧) now has a natural left action � on
S, defined by

0 � x = 0 , 1 � x = x .

With this extra structure the definition (2.1) is valid also over (S, ⊕).

Models of computation. We will, in general, consider the evaluation of
multilinear forms in an algebraic complexity setting where the semiring is
not fixed beforehand, and furthermore, we are interested in the complexity
of the task in terms of semiring operations [28]. Specifically, we will consider
one of the following models, depending on the situation.

1. Algebraic circuits, or equivalently, algebraic straight-line programs: An
algebraic circuit is a directed acyclic graph D = (V, A), where each
vertex is either
(a) an input gate with in-degree zero, labelled with an input entry,

or
(b) an operation gate with non-zero in-degree, labelled with a semir-

ing operation.
Furthermore, some of the operation gates are labelled as output gates
for specific output entries. The complexity measure is the number of
edges in the graph D.

2. Uniform algebraic circuits: Uniform algebraic circuits are circuits that
can be constructed on a uniform machine; the complexity measure is
the running time of the construction algorithm.

3. Uniform algebraic model: In this model, we consider algorithms that
run on a random-access machine with black-box access to semiring
operations, that is, the machine can store semiring elements in its
memory, each taking constant space, and perform semiring operations
on them in constant time. The complexity measures are the space
and time used by the algorithm.

In practice, there is little difference between the two uniform models, and
all positive results of this thesis can be interpreted in both of them.



Chapter 3

Algorithm design

This chapter gives an overview of the positive results of this thesis, based
on Papers I–IV.

3.1 Disjoint summation and meet-in-the-middle

This section is based on Papers I and II.

3.1.1 Introduction

Meet-in-the-middle. Meet-in-the-middle or split and list is an algorith-
mic technique for solving hard problems by essentially splitting the task into
two or more parts. That is, the basic approach is to (a) split the problem
into two or more equally-sized parts, (b) enumerate all solutions for the
smaller parts, and (c) combine the solutions from the different parts via
some fast algorithm.

The classical example of the meet-in-the-middle framework is the exact
2n/2nO(1) time algorithm for the subset sum problem, due to Horowitz and
Sahni [74]. Given a list of n numbers, we

1. split the list into two lists of length n/2,
2. for both of these new lists, enumerate all 2n/2 different sums that can

be obtained using elements of that list, and
3. use sorting and binary search to test whether there are two sub-results

from different parts that sum to 0.

Further applications where this technique gives a halved exponential depen-
dence on the input size include binary knapsack [74, 118], exact satisfiability
and set cover [118], and (σ, ρ)-dominating sets [62]. Williams [133] uses

17
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splitting into three parts and combination via matrix multiplication to
reduce the exponential dependence on the input size from n to ωn/3, where
ω < 2.3727 is the exponent of matrix multiplication [129].

Finding small subgraphs. In this section, we consider meet-in-the-
middle in the context of algorithms for counting small subgraphs; that is, we
have a pattern graph H with k vertices, and we want to count subgraphs of
the input graph G that are isomorphic to H. In particular, we will look at
the case where k is chosen to be a k-path. Note that the trivial algorithm
for any pattern H simply tries all possible injective homomorphisms from
H to G, giving running time nk+O(1).

As a starting point, one can consider the problem of simply finding a
subgraph isomorphic to the pattern graph H; the complexity of this problem
depends on the choice of H. For k-paths, the problem is fixed-parameter
tractable [107]; a single-exponential dependence on k was obtained by
Alon et al. [1], using a technique of colour-coding. Indeed, they establish
that finding a copy of pattern graph H is fixed-parameter tractable in
k whenever H has bounded tree-width. Subsequent work has further
improved the running time for k-paths, both in deterministic [36, 89] and
randomised [18, 95, 134] settings. On the other hand, finding a k-clique is
W[1]-hard [52], but can be solved in time nωk/3+O(1) [108].

However, counting subgraphs isomorphic to H is more difficult than
finding in general; indeed, the counting problem is #W[1]-hard even when H
is a k-path [58] or a k-matching [47]. The k-clique algorithm of Nešetřil and
Poljak [108] extends to counting copies of any fixed k-vertex pattern graph
H in time nωk/3+O(1), and a standard polynomial encoding technique allows
counting with positive integer edge weights at most W in time nωk/3+O(1)W .
An algorithm by Vassilevska Williams and Williams [130] further enables
counting with arbitrary real node weights in time nωk/3+O(1).

For patterns H with suitable properties, running time nωk/3+O(1) can
be improved upon; again, k-paths are a particular example. Indeed, three
different algorithms for counting k-paths in time roughly proportional to
nk/2 were proposed almost simultaneously.

1. For patterns with an independent set of size s, Vassilevska Williams
and Williams [130] give a counting algorithm with running time
2snk−snO(1); when applied for k-paths, this gives an algorithm with
running time 2k/2nk/2+O(1).

2. The group algebra techniques of Koutis and Williams [96] give an
algorithm with running time nk/2+O(1); they enumerate all k/2-paths
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and combine these via fast polynomial multiplication and multilinear
monomial counting.

3. The similar meet-in-the-middle algorithm of Björklund et al. [16] gives
running time

( n
k/2

)
nO(1). Their algorithm counts k/2-paths for each

subset of size k/2 and combines the results via a disjoint product of
set functions; this is the approach illustrated in Example 1.3.

Fomin et al. [63] extend the last result to counting patterns of path-width p
in time

( n
k/2

)
n2p+O(1). Furthermore, the recent work of Björklund et al. [12]

improves upon this by splitting the pattern graph into three parts of size
k/3 and combining the parts via a disjoint product of three set functions.
Specifically, their result gives running time n0.4547k+2p+O(1) for counting
patterns of path-width p, assuming p is sufficiently small compared to k.

Papers I and II. Papers I and II consider another way to extend the
meet-in-the-middle technique of Björklund et al. [16]; whereas the earlier
results are based on the evaluation of disjoint products over rings, we consider
the evaluation of disjoint products over semirings without additive inverses.
There are two principal motivations for this work; first is the question
whether the existence of additive inverses is necessary for the fast evaluation
of disjoint products, and the second is the prospect of additional applications
made possible by semiring encodings. Indeed, one such application is given
in Example 1.3.

� Section 3.1.2 introduces (n, p, q)-disjoint summation over commu-
tative semigroups and discusses the core algorithmic results of Pa-
pers I and II.

� Section 3.1.3 discusses the meet-in-the-middle framework of Björklund
et al. [16] and extensions over semirings.

3.1.2 Ingredient: disjoint summation over semigroups

Disjoint summation. The disjointness matrix D(E,F) of two set families
E,F ⊆ 2[n] is the matrix

D : E × F → S , D(Y, X) = [Y ∩ X = ∅] .

This matrix defines the (F,E)-disjoint transform over any commutative
semigroup (S, ⊕), defined as

δ : (F → S) → (E → S) , (fδ)(Y ) =
⊕

X∩Y =∅
f(X) .
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Figure 3.1: The disjointness matrix D
((

[8]
↓3

)
,
(

[8]
↓3

))
. The index sets are

ordered by size, and lexicographically within the size.



3.1 Disjoint summation and meet-in-the-middle 21

Papers I and II study the evaluation of disjoint transform in the case
where F and E are the complete hypergraphs

(
[n]
↓p

)
and

(
[n]
↓q

)
, respectively;

see Figure 3.1 We refer to this special case as (n, p, q)-disjoint summation.
That is, given an input function f :

([n]
↓p

) → S, the task is to compute the
disjoint transform

δ :
((

[n]
↓p

)
→ S

)
→

((
[n]
↓q

)
→ S

)
, (fδ)(Y ) =

⊕
X∩Y =∅

f(X) .

Paper I shows that (n, p, q)-disjoint summation can be evaluated over
any commutative semigroup in time that is almost linear in the combined
input and output sizes. That is, the main theorem in the paper is as follows;
see also Figure 3.2.

Theorem 3.1. The (n, p, q)-disjoint summation can be evaluated over com-
mutative semigroups in the uniform algebraic model in time

[(
n
p

)
+
(

n
q

)]
· min{2p, 2q} · nO(1) .

Controlling intersections. The earlier Paper II also gives an algorithm
for (n, p, q)-disjoint summation, albeit one with slightly worse running time
bounds than given in Theorem 3.1. However, the construction of Paper II
allows a more finely tuned control over the intersections in summation
terms.

Specifically, Paper II studies (n, p, q)-intersection summation, where we
are given a value g(Z, X) for each pair (Z, X) with X ∈

(
[n]
↓p

)
and Z ⊆ X,

and the task is to compute for each Y ∈
(

[n]
↓q

)
the sum

⊕
X∈

(
[n]
↓p

) f(X ∩ Y, X) .

The main result of Paper II shows that this extension can be solved almost as
efficiently as (n, p, q)-disjoint summation, as stated in the following theorem.
See also Figure 3.3.

Theorem 3.2. The (n, p, q)-intersection summation can be evaluated over
commutative semigroups in the uniform algebraic model in time

(
np + nq)nO(1) .
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f(1)

f(2)

f(3)

f(4)

f(5)

f(6)

f(7)

f(8)

(fδ)(1)

(fδ)(2)

(fδ)(3)

(fδ)(4)

(fδ)(5)

(fδ)(6)

(fδ)(7)

(fδ)(8)

Figure 3.2: A (8, 1, 1)-disjoint summation circuit, based on the construction
of Paper I. The inputs and outputs corresponding to the empty set are
omitted.

Related work. Some special cases of (n, p, q)-disjoint summation over
commutative semigroups are covered by earlier work; we summarise those
results here.

1. If we omit the empty set, the (n, 1, 1)-disjoint summation corresponds
to the matrix-vector multiplication task x �→ Īx, where Ī is the
Boolean complement of the identity matrix; see Example 1.2. The
optimal circuit for this task uses 3n − 6 semigroup additions [34, 127].
Indeed, this construction is illustrated in Example 1.2(b).

2. For (n, n, n)-disjoint summation, Yates’s algorithm [135] uses 2n−1n
semigroup additions, which is known to be optimal [87]. See Papers I
and II for details.

If we restrict attention to the case where the ground semigroup S has
full group structure, then it becomes possible to employ various algebraic
techniques. Let us consider the �-intersection matrix N�(E,F) of two set
families E,F ⊆ 2[n] is the matrix

N� : E × F → S , N�(Y, X) = [|Y ∩ X| = �] .

This matrix defines the �-intersection summation for set families F and E;
given an input function f : F → S, the task is to compute the �-intersection
transform

ι� : (F → S) → (E → S) , (fι�)(Y ) =
⊕

|X∩Y |=�

f(X) .
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f(1)

f(2)

f(3)

f(4)

f(5)

f(6)

f(7)

f(8)

(fδ)(1)

(fδ)(2)

(fδ)(3)

(fδ)(4)

(fδ)(5)

(fδ)(6)

(fδ)(7)

(fδ)(8)

Figure 3.3: A (8, 1, 1)-disjoint summation circuit, based on the construction
of Paper II. The inputs and outputs corresponding to the empty set are
omitted.

Björklund et al. [14] show that for any set families E and F, the �-
intersection summation for all � = 0, 1, . . . , n can be computed over any
commutative group in the uniform algebraic model in time(|↓F| + |↓E|)nO(1) ,

where ↓F denotes the down-closure of F, that is, the set family{
Z ∈ 2[n] : Z ⊆ X for some X ∈ F

}
.

This in particular implies that (n, p, q)-disjoint summation can also be
evaluated in the uniform algebraic model in time

[(n
p

)
+

(n
q

)]
nO(1) over

commutative groups.

3.1.3 Ingredient: meet-in-the-middle via disjoint products

Disjoint product. For applications, it is more often convenient to con-
sider (E,F)-disjoint products of two functions over a semiring (S, ⊕, �).
That is, given set families F and G, and functions f : F → S and g : G → S,
the disjoint product Δ(g, f) is defined as

Δ(g, f) =
⊕

X,Y : X∩Y =∅
g(Y ) � f(X) .

The disjoint product is closely connected to (E,F)-disjoint transform; indeed,
we have

Δ(g, f) =
⊕
Y

g(Y ) � (fδ)(Y ) .
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Thus, to evaluate (E,F)-disjoint product, it suffices to evaluate (E,F)-disjoint
transform and |E| multiplications in S. Thus, the results of Björklund
et al. [14] immediately give the following; see also the inclusion–exclusion
techniques used by Björklund et al. [16].

Theorem 3.3 ([14, 16]). The (E,F)-disjoint summation can be evaluated
over rings in the uniform algebraic model in time(|↓F| + |↓E|)nO(1) .

Again, we are interested in the case where F =
([n]

↓p

)
and E =

([n]
↓q

)
; we

refer to this case as (n, p, q)-disjoint product. Theorems 3.1 and 3.3 now
give us the following corollary.

Corollary 3.4. The (n, p, q)-disjoint product can be evaluated in the uniform
algebraic model

(i) over rings in time
[(

n
p

)
+
(

n
q

)]
· nO(1), and

(ii) over semirings in time
[(

n
p

)
+
(

n
q

)]
· min{2p, 2q} · nO(1).

Applications. We have already covered the basic idea of meet-in-the-
middle via disjoint products for counting problems in Example 1.3; Corol-
lary 3.4(i) provides the fast disjoint product algorithm required. In general,
the technique works for counting any objects of size k/2, as long as the
object in question can be split into two independent and disjoint parts;
for example, in the k-path application, the only dependence between parts
occurs at the middle vertex. To summarise, repeating some of the results
already mentioned, application of Corollary 3.4(i) gives an algorithm with
running time

1.
( n

k/2
)
nO(1) for counting k-paths [16],

2.
( n

k/2
)
n2p+O(1) for counting the number of subgraphs isomorphic to

k-vertex graph input graph H of path-width p [63], and
3.

( n
pq/2

)
nO(1) for counting p-packings of q-subsets [16].

These results can be extended to counting maximum-weight k-paths
and p-packings of q-subsets. If the weights are integers with absolute value
bounded by M , then we can encode the weights into the polynomial ring
Z[X] and apply Theorem 3.4(i); see e.g. Björklund et al. [13]. This gives
running time

1.
( n

k/2
)
nO(1)M log M for counting maximum-weight k-paths, and
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2.
( n

pq/2
)
nO(1)M log M for counting maximum-weight p-packings of q-

subsets.

For unbounded weights, the semiring encoding of Example 1.3 can be used
along with Corollary 3.4(ii). In particular, the latter gives the following
theorem of Paper I.

Theorem 3.5. Maximum-weight objects can be counted in time

(i)
( n

k/2
)
2k/2nO(1) for k-paths, and

(ii)
( n

pq/2
)
2pq/2nO(1) for p-packings of q-subsets.

Three-way disjoint product. Björklund et al. [12] extend the meet-in-
the-middle via disjoint products by splitting the objects into three inde-
pendent equally-sized parts; for example, a k-path can be split into three
parts of length k/3, and the only interaction happens at the cut points. The
parts are then assembled via the trilinear disjoint product of three functions
f, g, h :

(
[n]

↓(k/3)

)
→ Z, given by

Δ(f, g, h) =
∑

X,Y,Z
X∩Y =Y ∩X=X∩Z=∅

f(X)g(Y )h(Z) .

Björklund et al. [12] show that the product Δ(f, g, h) can be evaluated
over integers in time n0.4547k+O(1) for any constant k. This gives improved
algorithms for the counting applications mentioned above, assuming k is
constant.

3.2 Finding bounded tree-width graphs

This section is based on Paper III.

3.2.1 Introduction

Probabilistic graphical models. A probabilistic graphical model [93] is
a presentation of a joint probability distribution, given by an undirected or
directed graph with the individual variables as vertices; the graph structure,
i.e. the edges of the graph represent the dependencies between the variables,
and the parameters give the conditional probability distributions of the
individual variables given their neighbours. The motivation for such models
is that they allow presentation and processing of complex distributions
in a succinct and efficient manner, as we only need to store and consider
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variable dependencies given by the graph structure. Two principal examples
of graphical models are Markov networks, based on undirected graphs, and
Bayesian networks [113], based on acyclic directed graphs.

Bayesian networks. The work presented in this section is in particular
motivated by applications to Bayesian networks. A Bayesian network
represents a probability distribution as follows. The network structure is
a directed acyclic graph D = (V, A); for each v ∈ V , we have a random
variable Xv. The parameters of the Bayesian network are the conditional
probabilities

Pr
(
Xv = xv

∣∣∣ ⋂
u∈Av

Xu = xu

)
(3.1)

for each possible choice of values xv and xu for u ∈ Av in the ranges of the
respective random variables, where Av is the parent set of v in D, that is,
the set of vertices u such that (u, v) ∈ A. The joint probability distribution
is then given by

Pr
( ⋂

v∈V

Xv = xv

)
=

∏
v∈V

Pr
(
Xv = xv

∣∣∣ ⋂
u∈Av

Xu = xu

)
.

From a computational perspective, there are two main tasks associated
with the use of Bayesian network.

1. Given input data, usually based on the real-world phenomenon to be
modelled, the learning problem concerns finding a Bayesian network,
i.e. both the network structure and parameters that match the data
well.

2. Once we have learned a Bayesian network, we use it to compute the
conditional probabilities of a set of variables given some other set of
variables; this is called the inference problem.

Both of these tasks are NP-hard in general [39, 40, 43]. However, if the
network structure is restricted to a suitable graph class, i.e. the allowed
dependencies between variables are further restricted, the inference problem
can become tractable. For example, if the graph structure is required to be a
tree, then both learning and inference can be done in polynomial time [41, 54].
More generally, inference in Bayesian networks is fixed-parameter tractable
in the tree-width of the graph structure; see e.g. Dechter [50].

Learning network structures. In this work, we focus on learning the
network structure. We view Bayesian network structure learning as a
combinatorial problem by using an abstract score-based approach [110, 112].
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In this framework, we are given a set of vertices V and scoring functions fv

for each v ∈ V , and the task to compute

max
D=(V,A)

∑
v∈V

fv(Av) ,

where D ranges over all directed acyclic graphs on V . The idea is that
the scoring functions fv are pre-computed from the input data; see e.g.
Cooper and Herskovits [44] and Heckerman et al. [72]. The fastest known
exact algorithm for this problem is a Bellman–Held–Karp-style dynamic
programming algorithm with running time 2nnO(1) [92, 111, 120, 121].

Learning with bounded tree-width. As noted before, inference in
Bayesian networks is fixed-parameter tractable in the tree-width of the
network structure. This observation motivates us to consider learning
bounded tree-width network structures, as restricting the tree-width of the
learned network structure also limits the time required for subsequent
inference tasks. More specifically, this gives us a trade-off between the fit of
the network and inference speed; decreasing the tree-width bound limits
the space of possible models but guarantees faster inference on the resulting
Bayesian network.

Formally, the problem is as follows. We are given the vertex set V and
scoring functions fv for each v ∈ V as before, and additionally an integer
tree-width bound w ≥ 1, and the task is to compute

max
D=(V,A)

∑
v∈V

fv(Av) ,

where D ranges over directed acyclic graphs of tree-width at most w. Here
the tree-width of a directed acyclic graph is taken to be the tree-width
of its moralised graph; we defer the technical discussion of this point to
Section 3.2.2.

Unlike in the case of the inference problem, addition of the tree-width
constraint does not make the structure learning problem fixed-parameter
tractable. Indeed, the problem is NP-hard even for any fixed w ≥ 2; see
Paper III. Prior algorithmic work on learning bounded tree-width Bayesian
network structures is limited to the heuristic search algorithm of Elidan
and Gould [55]; for undirected graphical models, approximate and heuristic
algorithms have been proposed [6, 35, 81, 123].

Paper III. Paper III presents an exact exponential algorithm for finding
bounded tree-width Bayesian network structures. On a high level, the basic
approach is to extend the Bellman–Held–Karp-style dynamic programming
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algorithm for permutation problems into a dynamic programming over all
tree decompositions by adding an extra branching step. More generally,
the dynamic programming machinery of Paper III can also be used to
solve optimisation problems that concern finding maximum-weight bounded
tree-width graphs.

� Section 3.2.2 presents definitions and basic theory of tree-width and
tree decompositions.

� Section 3.2.3 gives an overview of a generic version of the dynamic
programming machinery of Paper III.

3.2.2 Ingredient: tree decompositions

Introduction. The basic idea is that the tree-width of a graph measures
how tree-like the graph is; an equivalent concept was first introduced by
Halin [71]. The concept was rediscovered independently by Robertson and
Seymour [117] and Arnborg and Proskurowski [3], who both observed that
certain NP-hard problems can be solved in polynomial time on graphs of
fixed tree-width; the apparent algorithmic usefulness quickly prompted an
extensive study of the concept [4, 21, 46].

Generally, if an NP-hard graph problem is polynomial-time solvable on
trees, it is often also fixed-parameter tractable in the tree-width of the input
graph. There are two principal ways to obtain fixed-parameter algorithms
for problems parameterised by the tree-width w of the input graph.

1. Courcelle’s Theorem [46] is a meta-theorem stating that recognising
any graph property definable in monadic second-order logic of graphs
is fixed-parameter tractable in w. This is sufficient to obtain fixed-
parameter algorithms for most problems; however, algorithms given
by Courcelle’s Theorem have highly super-exponential dependence
on w.

2. For faster algorithms, the underlying techniques of Courcelle’s theorem
can be fine-tuned for specific problems. This generally means using
dynamic programming over tree decompositions of low width [21, 24];
such a decompositions can be constructed in fixed-parameter time
for graphs of low tree-width, as we will discuss below. Essentially,
access to a tree decomposition allows one to significantly limit possible
interactions between partial solutions of problems, in a similar manner
as one would do when solving the problem on trees. Furthermore,
algebraic techniques are often applicable to obtain further speed-
ups [25, 128].
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Figure 3.4: (a) A directed acyclic graph, (b) its moralised graph, with edges
arising from v-structures highlighted, and (c) its tree decomposition.

Definitions and basic results. In this section, we review the basic
definitions and theory of tree-width and tree decompositions. The definitions
are essentially the ones introduced by Robertson and Seymour [117].

Definition 3.6. A tree decomposition of a graph G = (V, E) is a pair (X, T ),
where T = (I, F ) is a tree and X = {Xi : i ∈ I} is an indexed family of
subsets of V such that

(a)
⋃

i∈I Xi = V ,
(b) for each e ∈ E there is i ∈ I such that e ⊆ Xi, and
(c) for each v ∈ V the subtree T [{i ∈ I : v ∈ Xi}] is connected.

A rooted tree decomposition is a tree decomposition (X, T, r), where r ∈ I
is the root of the tree T . The width of a tree decomposition (T,X) is
mini∈I |Xi| − 1.

Definition 3.7. The tree-width of a graph G = (V, E) is the minimum
width of a tree decomposition of H.

Alternatively one may consider path decompositions and path-width. The
definitions are analogous, the only difference is that we require the tree T
of the decomposition to be a path.

It follows from the definition of tree-width that if G has a clique K ⊆ V ,
then K is contained in a set Xv for some v ∈ V . Another basic property of
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tree decompositions is that the vertex sets Xi act as separators in G, in the
sense of the following lemma.

Lemma 3.8 (Separation Property). Let H = (V,E) be a graph with tree
decomposition (X, T ), and let i, j and k be nodes in T such that j is on the
path from i to k. Then there is no edge S ∈ E such that S ∩ (Xi \ Xj) �= ∅
and S ∩ (Xk \ Xj) �= ∅.

For algorithmic applications, it is convenient to consider tree decompo-
sitions of a specific type.

Definition 3.9. A nice tree decomposition is a rooted tree decomposition
(X, T, r) such that each i ∈ I is either

1. a leaf with no children and |Xi| = 1,
2. a forget node for some v ∈ V , with one child j such that v ∈ Xj and

Xi = Xj \ {v},
3. a introduce node for some v ∈ V , with one child j such that v /∈ Xi

and Xi = Xj ∪ {v}, or
4. a join node with two children j and k such that Xi = Xj = Xk.

Any graph G of tree-width w has a nice tree decomposition of width
w + 1; furthermore, a such tree decomposition can be constructed in time
f(w)n for some function f [22, 88]. As the function f grows fast in this
case, it may be desirable in practice to use approximation algorithms with
better or no dependence on w; see survey by Bodlaender [23].

Bounded tree-width Bayesian networks. Let D = (V, A) be a di-
rected graph. The moralised graph of D is the undirected graph M(G) =
(V, E), where E consists of

1. edges {u, v} for (u, v) ∈ A, and
2. edges {u, v} for each v-structure {(u, w), (v, w)} ⊆ A.

We remark that the latter type of edges are sometimes called marriage
edges; the graph M(G) is called moralised as all pairs that have common
children are married [99].

For the purposes of our discussion of Bayesian networks, we define the
tree-width of a directed acyclic graph D as the tree-width of the moralised
graph M(D); see Figure 3.4. The reason for this definition is that the
complexity of inference in Bayesian networks is controlled by the tree-width
of the moralised graph [98, 99]; intuitively, if the parent set of v is Av, then
the inference algorithm must consider all subsets of v ∪ Av.
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3.2.3 Ingredient: finding bounded tree-width graphs

Introduction. The main technical tool of Paper III is a dynamic pro-
gramming algorithm for finding a tree decomposition on the base set that
minimises a given cost function, or more generally, for evaluating certain
types of multilinear forms defined in the terms of tree decompositions.
Paper III uses this machinery to find bounded tree-width Bayesian net-
work structures, and in this section we also apply it to maximum bounded
tree-width subgraph problems.

We note that the basic idea we employ is conceptually quite similar to the
Bellman–Held–Karp-style dynamic programming [7, 8, 73] for permutation
problems. Following the formalisation of Koivisto and Parviainen [91], a
permutation problem of degree d is the evaluation of an expression of the
form ⊕

σ

n⊙
i=1

fi
({σ1, σ2, . . . , σi}, σi−d+1σi−d+2 · · · σi

)
, (3.2)

where σ ranges over all permutations of [n] and functions fi are given
as input. For example, travelling salesman with integer weights can be
formulated as a permutation problem over semiring (Z ∪ {−∞}, max, +),
with d = 2 and weight fi(X, uv) being the weight of edge {u, v}.

Tree-decomposition problems. Let T = (X, T, r) be a nice tree decom-
position over a vertex set V ; for the purposes of this section, we do not
require that tree decompositions are associated with a fixed graph. The
definition of nice tree decomposition implies that for any vertex v ∈ V that
is not in the root bag Xr, there is a unique forget node for v in the tree
decomposition T; we denote this node by f(T, v).

Now let f :
(

V
↓w

)
×v → S be a function with values in semiring (S, ⊕, �).

For a tree decomposition T of width at most w, we define the cost of T as⊙
v∈V

f
(
Xf(T,v), v

)
.

A tree-decomposition problem of width w asks us to optimise this cost over
all nice tree decompositions, that is, to compute the multilinear form

τ(f) =
⊕
T

⊙
v∈V

f
(
Xf(T,v), v

)
,

where T = (X, T, r) ranges over nice tree decompositions of width at most
w with Xr = ∅. Note in particular that the condition that the root bag is
empty ensures that each vertex v ∈ V has a forget node.
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To evaluate the multilinear form τ(f), we will compute intermediate
values h(X, U) for disjoint sets X, U ∈ 2V such that |X| ≤ w +1, defined by

h(X, U) =
⊕
T

⊙
v∈U

f
(
Xf(T,v), v

)
,

where T ranges over tree decompositions on vertex set X ∪ U such that
Xr = X; indeed, we have that τ(f) = h(∅, V ). The computation of the
values h(X, U) can now be done using the recurrence

h(X, ∅) = 0 ,

h(X, U) = hj(X, U) ⊕ hi(X, U) ⊕ hf(X, U) ,
(3.3)

where

hj(X, U) =
⊕

U1∪U2=U
U1,U2 �=∅

[
h(X, U1) � h(X, U2)

]
,

hi(X, U) =
⊕
x∈X

h
(
X\{x}, U

)
,

hf(X, U) =
⊕
x∈U

[
h
(
X∪{x}, U \{x}

)
� g

(
X\{x}, x

)]
.

As special cases, we define hj(X, U) = 0 if |U | = 1 and hf(X, U) = 0 if
|X| = w + 1. To see that this recurrence works as intended, we observe that
values hj(X, U), hi(X, U) and hf(X, U) are restrictions of h(X, U) where
the root of the tree decompositions in the sum is required to be a join node,
an introduce node and a forget node, respectively.

The recurrence (3.3) can be evaluated in the uniform algebraic model
from bottom up in the usual dynamic programming manner. There are
O
(( n

w+1
)
2nw

)
index pairs (X, U) to consider, and the verbatim evaluation of

(3.3) requires
(n

w

)
3nnO(1) time, as all partitions of U have to be considered

when evaluating hj(X, U). However, when operating over rings, fast subset
convolution [13] can be used to speed this up to

(n
w

)
2nnO(1). Thus, we have

the following theorem.

Theorem 3.10. The multilinear form τ(f) can be evaluated in the uniform
algebraic model

(i) in
(n

w

)
2nnO(1) time and space over rings, and

(ii) in
(n

w

)
3nnO(1) time and

(n
w

)
2nnO(1) space over semirings.
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Applications. Theorem 3.10 can be used to solve various bounded tree-
width subgraph problems. In the simplest variant, we are given a graph
G = (V, E) and positive integers K and w, and the task is to decide whether
there is a subgraph of G that has at least K edges and tree-width at most
w; note that this problem is NP-hard even for fixed w = 2 [122]. To apply
Theorem 3.10, we define f(X, v) as the number of edges with one endpoint
v and the other endpoint in X. Now the value τ(f) evaluated over the
semiring (Z∪ {−∞}, max, +) gives us the weight of the maximum subgraph
of G with tree-width at most w; indeed,

1. for each subgraph H of G with tree-width at most w, the sum τ(f)
includes a tree decomposition that is compatible with H, and

2. for each tree decomposition T included in the sum τ(f), the value∑
v∈V f

(
Xf(T,v), v

)
is the number of edges in the maximum subgraph

of G compatible with T.

Furthermore, for bounded integers the subset convolution can be evaluated
efficiently over the semiring (Z ∪ {−∞}, max, +) [13], enabling us to use
the faster version of Theorem 3.10. The algorithm also generalises to
edge-weighted graphs, giving us the following theorem.

Theorem 3.11. Given a graph G = (V, E) with edge weights and positive
integers K and w, we decide whether G has a subgraph of weight at least K
and tree-width at most w

(i) in time and space
(n

w

)
2nnO(1) when all edges have weight 1,

(ii) in time and space
(n

w

)
2nnO(1)M log M when weights are positive inte-

gers bounded by M , and
(iii) in time

(n
w

)
3nnO(1) and space

(n
w

)
2nnO(1).

Bayesian network learning. Using the machinery established in this
section, Paper III shows that learning bounded tree-width Bayesian network
structures can be done in single-exponential time for any fixed w ≥ 2.
Specifically, we prove the following theorem.

Theorem 3.12. Given a vertex set V , an integer w ≥ 1 and a scoring
functions fv for each v ∈ V , we can find a directed acyclic graph D = (V, A)
of tree-width at most w maximising the score

f(D) =
∑
v∈V

fv(Av)

in time 3nnw+O(1).
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The proof of Theorem 3.12 also requires another result from Paper III;
Theorem 2 of the paper shows that if we are given a graph G = (V, E), it is
fixed-parameter tractable in the tree-width of G to find an optimal acyclic
orientation of G that does not introduce new edges in moralisation. The
algorithm of Theorem 3.12 essentially runs this algorithm on top of dynamic
programming over tree decompositions;

1. we use dynamic programming over all nice tree decompositions to
cover all possible moralised graphs of tree-width at most w, and

2. for each step of the dynamic programming algorithm, we use the
orientation algorithm on the new root bag to select best orientation.

3.3 Cutting a few vertices from a graph

This section is based on Paper IV.

3.3.1 Introduction

Minimum and maximum cuts. Minimum cut and maximum cut are
two fundamental cut problems; both of them ask for a partition of the vertex
set of a graph G = (V, E) into two parts X and Y , with the objective being
to either minimise or maximise the number of edges crossing the partition.
However, these problems exhibit very different complexity behaviours; in-
deed, minimum cut is polynomial-time solvable [65], while maximum cut is
NP-hard [82].

However, if we add a size constraint to minimum cut, that is, we require
that one side of the partition (X, Y ) covers at least some fraction or at most
some fraction of the vertices, then the problem becomes NP-hard [68]. This
holds even for minimum bisection, which asks for a minimum cut (X, Y )
with ||X| − |Y || ≤ 1.

Small unbalanced cuts. In this section, we consider minimum cut prob-
lems with size constraints in a case where we require that either the cut
itself or the smaller side of the partition is very small. In this setting, it
makes sense to consider parameterised algorithms for the problem. That
is, we look at variants of what we call cutting a few vertices from a graph,
or for the sake of brevity, the (k, t)-unbalanced cut problem; we are given a
graph G = (V, E) and integers k, t ≥ 0, and the task is to find a partition
of V into disjoint non-empty sets X and Y such that |X| ≤ k and the cut
(X, Y ) has size at most t.



3.3 Cutting a few vertices from a graph 35

(b)

x
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Figure 3.5: (a) Unbalanced vertex cut, (b) unbalanced vertex cut with
terminal x, and (c) unbalanced edge cut.

There are several natural variants of the problem, as illustrated in
Figure 3.5; we may

1. consider either edge cuts or vertex cuts,
2. require that X contains a distinguished vertex x ∈ V , called a terminal,

which is given as a part of the input,
3. require that X has either size at most k or size exactly k, and
4. consider the complexity of the problem when the complexity parameter

is (a) k alone, (b) t alone, or (c) both k and t.

Table 3.1 gives an overview of known fixed-parameter tractability and
hardness results for the different variants of the problem, including the
results from Paper IV.

Paper IV. Paper IV focuses on vertex-cut versions of the (k, t)-unbalanced
cut problem; that is, the task is to find a partition (X, S, Y ) such that
1 ≤ |X| ≤ k, |S| ≤ t and S separates X from Y . For (k, t)-unbalanced
vertex cut and its terminal variant, fixed-parameterised tractability when
parameterised by both k and t can be established using standard two-colour
colour-coding techniques [1, 30]. We omit detailed discussion of these results
here; see Paper IV.

The main results of Paper IV shows that the (k, t)-unbalanced vertex
cut problem is fixed-parameter tractable also when parameterised by t alone,
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Complexity parameter

Variant k only t only both k and t

vertex cut W[1]-hard FPT FPT [106]
vertex cut, terminal W[1]-hard W[1]-hard FPT
vertex cut, |X| = k W[1]-hard [106] W[1]-hard [106] W[1]-hard [106]
edge cut (solvable in polynomial time [2, 132])
edge cut, terminal FPT [100] FPT [100] FPT [100]
edge cut, |X| = k W[1]-hard [29] (open) FPT [33]

Table 3.1: Parameterised complexity of (k, t)-unbalanced cut variants; for
details, see Paper IV. All variants except the (k, t)-unbalanced edge cut are
NP-hard when k and t are part of the input. Results indicated in boldface
are from Paper IV.

as stated in Theorem 3.16 below. This result is obtained via the use of the
important separators technique [106]. Specifically, we use the important
separators to enable an efficient decomposition of unbalanced cuts based on
the combinatorial lemmas of Paper IV.

� Section 3.3.2 presents the basic theory of important separators and
their use in Paper IV.

3.3.2 Ingredient: important separators

Introduction. Important separators is a useful technique for parame-
terised graph cut problems, introduced by Marx [106]; in essence, given
vertices s and t, important (s, t)-separators are small (s, t)-separators that
are as far away from s as possible. The machinery was originally used to
establish fixed-parameter tractability of multiway cuts and multicuts, but
related techniques have since then been used in various guises to establish
fixed-parameter tractability of other cut-type problems, such as directed
feedback vertex set [37] and almost 2-SAT [115].

Paper IV uses important separators in the context of vertex cuts, but
the machinery is also applicable to edge cuts almost without modifications.
We refer to Lokshtanov and Marx [100] for a self-contained presentation of
important edge cuts.
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Definitions and basic theory. Let G = (V, E) be a graph. For disjoint
sets X, Y ⊆ V , an (X, Y )-separator is a vertex set S ⊆ V \(X ∪Y ) such that
there is no path between sets X and Y in G[V \ S]. An (X, Y )-separator
S is minimal if no subset of S is an (X, Y )-separator. We write R(X, S)
for the set of vertices reachable from X in G[V \ S], that is, for the set of
vertices v such that there is a path from X to v in G[V \ S].

Definition 3.13. A minimal (X, Y )-separator S is important if there is no
(X, Y )-separator T such that |T | ≤ |S| and R(X, S) is a proper subset of
R(X, T ).

Important separators have the convenient property of being algorithmi-
cally easy to handle; Marx [106] showed that listing all important (X, Y )-
separators up to size t is fixed-parameter tractable. The bound in the
following lemma follows implicitly from Chen et al. [38].

Lemma 3.14. There are at most 4t important (X, Y )-separators of size at
most t, and these separators can be listed in time 4tnO(1).

Lemma 3.15 ([106]). If there exists an (X, Y )-separator, then there is
exactly one important (X, Y )-separator of minimum size, and it can be
found in polynomial time.

Application to unbalanced vertex cut. As we stated before, the main
results of Paper IV uses important separators to establish fixed-parameter
tractability of the (k, t)-unbalanced vertex cut problem. The exact statement
of the theorem is as follows.

Theorem 3.16. The (k, t)-unbalanced vertex cut problem can be solved in
time 4tnO(1).

The main ingredients of the proof of Theorem 3.16 are as follows. For
full details, see Paper IV.

1. For (k, t)-unbalanced vertex cuts (X, S, Y ) such that the smaller side
X is inclusion-minimal among all (k, t)-unbalanced vertex cuts, Lem-
mas 6–9 of Paper IV give a combinatorial characterisation in terms of
important separators. The proof of these lemmas rely heavily on the
minimality of X and on the sub-modularity of the neighbourhood size
function, i.e. the inequality

|N(A ∩ B)| + |N(A ∪ B)| ≤ |N(A)| + |N(B)| .

2. When k is roughly equal to t or larger, the combinatorial lemmas can
be used to find a (k, t)-unbalanced cut in time 4tnO(1) via Lemma 3.14.
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3. On the other hand, when k is smaller than t, we can apply a fixed-
parameter algorithm with parameters k and t; specifically, the colour-
coding algorithm presented in Theorem 1 of Paper IV runs in time
2k+t(k + t)O(log(k+t))nO(1).



Chapter 4

Algebraic catalysts

In this chapter, we consider the evaluation of linear and multilinear forms
in the presence of different algebraic catalysts, focusing in particular on the
difference between rings and idempotent semirings. The chapter is partially
based on Paper V. The presentation is also influenced by a follow-up work
by the present author and others not included in this thesis, to which we
refer as Find et al. [56].

4.1 Introduction

Many fast multilinear form evaluation algorithms rely on some algebraic
catalyst, that is, some convenient algebraic property of the ground semiring.
For example:

1. Fast matrix multiplication [45, 124, 125, 129] and subset convolu-
tion [13] over rings both use the existence of additive inverses.

2. Fourier transforms [42] use the existence of roots of unity.
3. Algebraic sieving techniques exploit cancellation modulo 2 and can be

used, for example, to test Hamiltonicity in undirected graphs in time
1.657nnO(1) [11]; see also Björklund et al. [18, 20].

4. The Hasse diagram of a lattice L gives an optimal algorithm for the
zeta transform on L over commutative idempotent semigroups, while
equally fast algorithms are not known for rings [19, 87].

There are also algorithmic results that are essentially based on some matrix
having a low rank over a suitable semiring; recall that the rank of a n × n
matrix M over a semiring S is the smallest value r such that there is n × r
matrix P and r × n matrix Q such that M = PQ. For example:

39
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1. The (n, p, q)-disjointness matrix has rank at most
(p+q

p

)
2o(p+q) log n

over the Boolean semiring ({0, 1}, ∨, ∧) [26]. Similar results hold for
independent-union matrices of linear matroids [103], and algorithmic
versions of these results have been developed and applied in the context
of fixed-parameter algorithms [61, 97, 105–107].

2. The 2Θ(n log n) × 2Θ(n log n) matching connectivity matrix of a complete
graph on n vertices has rank 2n/2−1 over the field (Z2, +, ·) [25, 49]; this
result has been used to obtain fast Hamiltonicity testing algorithms
in exact and bounded tree-width settings.

Given the above variety of algebraic catalysts that have been successfully
employed in exact algorithmics, we are interested in how things change when
specific algebraic catalysts are not available due to a constrained choice
of semiring. While it is generally well understood that evaluation over
semirings is strictly more difficult than over rings, that is, monotone models
are weaker than non-monotone models, we will focus on the question whether
idempotent addition can be more powerful algebraic catalyst than invertible
addition in some cases. Specifically, we will consider this question within
the context of linear form evaluation; the main question is then whether
there are linear forms that are strictly easier to evaluate over commutative
idempotent semigroups than over commutative groups.

� Section 4.2 gives an overview of related circuit complexity results.
� Section 4.3 discusses intersection matrices and conditional complexity

results implying that the corresponding linear forms are easier to eval-
uate over commutative idempotent semigroups than over commutative
groups.

4.2 Relative complexity of linear forms

Introduction. The circuit complexity of linear forms provides a conve-
nient framework for systematic study of the relative power of different
algebraic catalysts [56, 80]. Specifically, we take a fixed Boolean matrix
M ∈ {0, 1}n×n and consider the circuit complexity of the linear maps
x �→ Mx in three circuit models over different commutative semigroups;

1. +-circuits, i.e. circuits over semigroup (N, +),
2. ∨-circuits, i.e. circuits over semigroup ({0, 1}, ∨), and
3. ⊕-circuits, i.e. circuits over group ({0, 1}, ⊕), where ⊕ is the exclusive

or operation, or equivalently, addition modulo 2.
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Note that these specific choices can be seen as prototypical examples of
commutative semigroups with different properties. Indeed, a circuit for one
of these models can be used to evaluate x �→ Mx over any commutative
semigroup with similar properties; (a) +-circuit works for any commutative
semigroup, (b) ∨-circuit works for any commutative idempotent semigroup,
and (c) ⊕-circuit works for any commutative group where elements are their
own inverses.

Definitions and basic results. For matrix M ∈ {0, 1}n×n, let C∨(M),
C+(M), and C⊕(M) denote the minimum number of wires in an unbounded
fan-in circuit for computing x �→ Mx in the respective models. For X, Y ∈
{∨, +, ⊕}, we define the relative complexity of X/Y as

ρX/Y(n) = max
M∈{0,1}n×n

CX(M)/CY(M) .

We observe the following basic properties of these complexity measures.

1. As a +-circuit works for any commutative semigroup, we have

ρ∨/+(n) = ρ⊕/+(n) = 1 , and
ρ+/⊕(n) ≥ ρ∨/⊕(n) .

2. For any M ∈ {0, 1}n×n and X ∈ {∨, +, ⊕}, we have

CX(M) = O(n2/ log n)

by a result of Lupanov [104]. Thus for any X, Y ∈ {∨, +, ⊕}, we have

ρX/Y(n) = O(n/ log n) .

3. In fact, standard counting arguments (see e.g. Jukna [79, Section
1.4]) and Lupanov’s upper bound imply that for most matrices M ∈
{0, 1}n×n, we have

CX(M) = Θ(n2/ log n)

for X ∈ {∨, +, ⊕}. This implies in particular that counting arguments
and random matrices do not directly separate the different models.

Non-trivial separations. We will briefly summarise the known separa-
tion results below, based on Find et al. [56].
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1. The relative complexity of ∨/⊕ has been explicitly studied; in partic-
ular Gashkov and Sergeev [69] and Grinchuk and Sergeev [70] showed
that ρ∨/⊕ = Ω

(
n/(log6 n log log n)

)
. Boyar and Find [27] improved

the separation by showing that

ρ∨/⊕(n) = Ω(n/ log2 n) , and thus
ρ+/⊕(n) = Ω(n/ log2 n) .

Furthermore, Find et al. [56] and Jukna and Sergeev [80] have sub-
sequently given progressively simpler proofs for the same separation
based on known complexity results.

2. The only known result on the relative complexity of +/∨ is also due
to Find et al. [56]. Specifically, they show that

ρ+/∨(n) = Ω(n1/2/ log2 n) .

For ρ⊕/∨(n), no super-constant separation results are known. The main
obstacle here is that proving lower bounds for non-monotone complexity
has generally proven to be difficult, and no applicable lower bounds are
known. However, Find et al. [56] conjecture that we also have

ρ+/∨(n) = n1−o(1) , and
ρ⊕/∨(n) = n1−o(1) .

The results of Paper V give some evidence in this direction, as we will
discuss in Section 4.3.

4.3 Uniform algorithms for intersection matrices

This section is based on Paper V.

4.3.1 Introduction

In this section, we aim to provide some evidence for the conjectures that
ρ+/∨(n) = n1−o(1) and ρ⊕/∨(n) = n1−o(1), based on results of Paper V. We
will consider intersection matrices of arbitrary set families. These matrices
have small rank over idempotent semirings, and thus the corresponding linear
forms, that is, intersection transforms, have small circuits over commutative
idempotent semigroups.

Specifically, we will show that non-trivial intersection transforms over
commutative rings could be used to implement a meet-in-the-middle style



4.3 Uniform algorithms for intersection matrices 43

algorithm for CNF-SAT with running time 2(1−ε)n(n + m)O(1) for ε > 0,
where n is the number of variables and m is the number of clauses. This
would violate the strong exponential time hypothesis, which asserts that
brute force is essentially optimal for CNF-SAT.

However, it should be noted that there are two major caveats. Firstly,
the result does not imply non-uniform circuit lower bounds, as even if the
strong exponential time hypothesis holds, our result does not rule out the
existence of small circuits that cannot be constructed efficiently. Secondly,
the strong exponential time hypothesis is a far stronger assumption than
even P �= NP, and it may very well turn out that it does not hold.

� Section 4.3.2 introduces the strong exponential time hypothesis and
related theory.

� Section 4.3.3 discusses intersection transforms and meet-in-the-middle
for CNF-SAT.

4.3.2 Ingredient: the strong exponential time hypothesis

Complexity of satisfiability. Even if we assume that P �= NP, we do
not know whether we can solve

1. 3-SAT in time 2o(n)(n + m)O(1), that is, in sub-exponential time, or
2. CNF-SAT in time 2(1−ε)n(n + m)O(1) for some ε > 0.

Following the influential work of Impagliazzo, Paturi, and Zane [75, 76],
the connection between these questions and the complexity of other hard
problems have been investigated, as we will discuss further below in detail. In
short, if we assume that the answer to either of these two questions is negative
– these assumptions are known as the exponential time hypothesis [75] and
the strong exponential time hypothesis [32, 76], respectively – we can then
derive conditional lower bounds for other problems. These results can be
seen as hardness results or new attacks on the complexity of CNF-SAT,
depending on whether one agrees with the hypotheses or not.

Definitions. For k ≥ 2, let sk be the infimum of real numbers δ such
that there exists an algorithm for k-SAT with running time 2δn(n + m)O(1).
Note that 2-SAT is known to be in P and CNF-SAT can be solved in time
2n(n + m)O(1), and thus we have

0 = s2 ≤ s3 ≤ s4 ≤ · · · ≤ 1 .

It follows that the limit s∞ = limk→∞ sk exists and we have 0 ≤ s∞ ≤ 1.
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Now the precise statements of the two hypotheses are as follows.

1. The exponential time hypothesis is the hypothesis that s3 > 0.
2. The strong exponential time hypothesis is the hypothesis that s∞ = 1.

In particular, the strong exponential time hypothesis implies that CNF-SAT
cannot be solved in time 2(1−ε)n(n + m)O(1) for any ε > 0. However, note
that the reverse does not hold, as it is possible in the light of current
understanding that s∞ < 1 but there is still no 2(1−ε)nmO(1) time algorithm
for CNF-SAT for any ε > 0 [114].

Consequences of the strong exponential time hypothesis. In this
work, we will restrict our attention to the strong exponential time hypothesis.
One interpretation of this hypothesis is that it states that brute-force search
over the whole solution space is essentially optimal for CNF-SAT, that is,
exponential speed-up is not possible. Furthermore, it is possible to show
that if the strong exponential time hypothesis holds, then brute force is also
essentially optimal for various other problems. For example, if the strong
exponential time hypothesis holds, then

1. hitting set and set splitting cannot be solved in time 2(1−ε)n(n+m)O(1)

for any ε > 0, where n is the number of elements and m is the number
set in the input [48],

2. ⊕CNF-SAT, that is, the problem of counting the number solutions
modulo 2 of a CNF formula, cannot be solved in time 2(1−ε)n(n+m)O(1)

for any ε > 0 [31], and
3. for any constant k ≥ 3, k-dominating set cannot be solved in time

O
(
n(1−ε)k) for any ε > 0 [114].

It is also known that many fixed-parameter algorithms for problems
parameterised by tree-width are optimal under the strong exponential time
hypothesis [101]. See the cited papers and a survey by Lokshtanov et al.
[102] for a complete picture of lower bounds based on the exponential time
hypotheses.

4.3.3 Ingredient: Intersection matrices

Intersection matrices. Let F = {F1, F2, . . . , Fs} and E = {E1, E2, . . . , Et}
be collections of subsets of [�]; for the purposes of this section, it is conve-
nient to allow duplicates in collections F and E. The intersection matrix
N(E,F) is the matrix

N : [t] × [s] → S , N(j, i) = [Ej ∩ Fi �= ∅] .
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That is, the matrix N(E,F) is the binary complement of the disjointness
matrix D(E,F).

The intersection matrix N(E,F) defines the (F,E)-intersection transform
over commutative semigroups (S, ⊕), defined as

ι : ([s] → S) → ([t] → S) , (fι)(j) =
⊕

i : Fi∩Ej �=∅
f(i) .

The trivial algorithm for intersection transform runs in time O(st�) on the
uniform algebraic model, assuming reasonable representation of E and F.

Idempotent intersection transform. The matrix N(E,F) has a low
rank over any commutative semiring S with idempotent addition operation.
Specifically, let us define two matrices

P : [s] × [�] → S , P (j, k) = [k ∈ Ej ] ,

Q : [�] × [t] → S , Q(k, i) = [k ∈ Fi] .

Clearly, N(E,F) = PQ over S, and thus N(E,F) has rank � over S.
The low rank of the intersection matrix gives us a fast algorithm for the

intersection transform in the uniform algebraic model over commutative
idempotent semigroups. That is, given input function f : [s] → S, we first
compute for each k ∈ [�] the sum

h(k) =
⊕

i : k∈Fi

f(i) ,

and then we recover the output for each j ∈ [t] as

(fι)(j) =
⊕

k : k∈Ej

h(k) .

This algorithm runs in time O
(
(s + t)�

)
in the uniform algebraic model.

General intersection transform. In contrast to the idempotent case,
we will now show that fast intersection transforms over arbitrary commu-
tative groups would violate the strong exponential time hypothesis. We
essentially follow Williams [133], who considered the possibility of a meet-
in-the-middle approach for CNF-SAT. We will show that a fast intersection
transform could be used to efficiently implement the combination step of
such a meet-in-the-middle algorithm.

For collections F = {F1, F2, . . . , Fs} and E = {E1, E2, . . . , Et} of subsets
of [�], we say that (i, j) is a covering pair for collections F and E if Fi ∪
Ej = [�]. The following lemma is a variant of a theorem of Williams [133,
Theorem 5.1].
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Lemma 4.1. If we can, for all collections F = {F1, F2, . . . , Fs} and E =
{E1, E2, . . . , Et} of subsets of [�],

(i) count the number of covering pairs for F and E in time (st)1−ε�O(1)

for some fixed ε > 0, then #CNF-SAT can be solved in time

2(1−ε)n(n + m)O(1) , and

(ii) count the number of covering pairs for F and E modulo 2 in time
(st)1−ε�O(1) for some fixed ε > 0, then ⊕CNF-SAT can be solved in
time

2(1−ε)n(n + m)O(1) .

The basic idea of the proof is similar to the subset sum algorithm of
Horowitz and Sahni [74], as discussed in Section 3.1.1. That is, given an
input CNF formula ϕ with n variables and clause set C of size m, we

1. split the variables into two subsets of size n/2, which we will call left
and right variables,

2. for any assignment x into left variables, we construct a set Lx ⊆ C of
clauses satisfied by x, and similarly Rx for any assignment into right
variables, and

3. observe that there is a one-to-one correspondence between covering
pairs for families {Lx} and {Rx} and satisfying assignments of ϕ.

Theorem 4.2. If we can evaluate the (F,E)-intersection transform for all
collections F = {F1, F2, . . . , Fs} and E = {E1, E2, . . . , Et} of subsets of [�]

(i) over (Z, +) in time (st)1−ε�O(1) for some fixed ε > 0, then #CNF-SAT
can be solved in time

2(1−ε)n(n + m)O(1) , and

(ii) over ({0, 1}, ⊕) in time (st)1−ε�O(1) for some fixed ε > 0, then ⊕CNF-
SAT can be solved in time

2(1−ε)n(n + m)O(1) .

Theorem 4.2 is proven by a reduction to Lemma 4.1; in particular,
we show that a fast algorithm for intersection summation can be used to
count the number of covering pairs for F and E. We will sketch the proof
for part (i); part (ii) is identical except that the arithmetic is performed
modulo 2.
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1. For sets X, Y ⊆ [�], we have that X ∪ Y = [�] if and only if

([�] \ X) ∩ ([�] \ Y ) = ∅ .

Thus, the number of covering pairs in F × E equals the number of
disjoint pairs for F̄ and Ē, where F̄ and Ē indicate collections obtained
by taking the complement of each set in F and E, respectively.

2. Assume that we have an (st)1−ε�O(1) time algorithm for some ε > 0 for
(F,E)-intersection transform over (Z, +). Then we can also evaluate
the (F,E)-disjoint transform in the same time via the identity

(fδ)(j) =
( s∑

i=1
f(i)

)
− (fι)(j) ,

and, by extension, the disjoint product

Δ(e, f) =
∑

i,j : Fi∩Ej=∅
f(i)e(j)

of functions f : [s] → S and e : [t] → S. Let 1F and 1E denote the
constant functions with value 1 at each point. Now Δ(1E, 1F) counts
the number of pairs (i, j) such that Fi ∩ Ej = ∅.

It now follows from Theorem 4.2 that there are no efficiently constructible
circuits for the intersection transform over non-idempotent commutative
semigroups or commutative groups unless the strong exponential time
hypothesis fails, as such circuits could be used to implement the transform
over the groups (Z, +) or ({0, 1}, ⊕). Specifically, we have the following,
extended version of Theorem 2 of Paper V.

Corollary 4.3. For any ε > 0, there is no algorithm that, given any
collections F = {F1, F2, . . . , Fs} and E = {E1, E2, . . . , Et}, constructs

(i) +-circuit for (F,E)-intersection transform in time (st)1−ε�O(1), or
(ii) ⊕-circuit for (F,E)-intersection transform in time (st)1−ε�O(1),

unless the strong exponential time hypothesis fails.
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1. Introduction

Let (S, +) be a commutative semigroup and let [n] = {1, 2, . . . , n}. For
integers 0 ≤ p, q ≤ n, the (n, p, q)-disjoint summation problem is as follows.
Given a value f(X) ∈ S for each set X ⊆ [n] of size at most p, the task is to
output the function e, defined for each set Y ⊆ [n] of size at most q by

e(Y ) =
∑

X∩Y =∅
f(X) , (1)

where X ⊆ [n] ranges over sets of size at most p that are disjoint from Y .
We study the arithmetic complexity [6] of (n, p, q)-disjoint summation, with

the objective of quantifying how many binary additions in S are sufficient to
evaluate (1) for all Y . As additive inverses need not exist in S, this is equivalent
to the monotone arithmetic circuit complexity, or equivalently, the monotone
arithmetic straight-line program complexity of (n, p, q)-disjoint summation.

Our main result is the following. Let Cn,p,q denote the minimum number of
binary additions in S sufficient to compute (n, p, q)-disjoint summation, and let
us write

(
n

↓k

)
for the sum

(
n
0

)
+
(

n
1

)
+ · · · +

(
n
k

)
of binomial coefficients.

Theorem 1. Cn,p,q ≤
[
p
(

n
↓p

)
+ q

(
n

↓q

)] · min{2p, 2q}.

�This paper is an extended version of a conference abstract by a subset of the present
authors [10].
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2. Related work and applications.

Circuit complexity. If we ignore the empty set, the special case of (n, 1, 1)-disjoint
summation corresponds to the matrix-vector multiplication task x �→ Īx, where Ī
is the complement of the identity matrix, that is, a matrix with zeroes on diagonal
and ones elsewhere. Results from Boolean circuit complexity concerning this
particular task can be transferred to our setting, implying that (n, 1, 1)-disjoint
summation has complexity exactly 3n − 6 [7, 14].

For the special case of (n, n, n)-disjoint summation, Yates [18] gave an al-
gorithm evaluating (1) for all Y ⊆ [n] using 2n−1n additions in S; Knuth [12,
§4.6.4] presents a modern exposition. Furthermore, this bound is tight in the
monotone setting [11]. Yates’s algorithm has been used as a component in
2nnO(1) time algorithms for graph k-colouring and related covering and packing
problems [3].

In a setting where S is a group and we are allowed to take additive inverses
in S, it is known that the (n, p, q)-disjoint summation can be evaluated with
O
(
p
(

n
↓p

)
+q

(
n

↓q

))
operations in S via the principle of inclusion and exclusion. This

has been employed to obtain improved counting algorithms for hard combinatorial
problems, most prominently the

(
n

k/2

)
nO(1) algorithm for counting k-paths in a

graph by Björklund et al. [4].

Maximisation. An immediate template for applications of (n, p, q)-disjoint sum-
mation is maximisation under constraints. If we choose the semigroup to be
(Z ∪ {−∞, ∞}, max), then (1) becomes

e(Y ) = max
X∩Y =∅

f(X) .

This can be seen as precomputing the optimal p-subset X when the elements in
a q-subset Y are “forbidden”, in a setting where the set Y is either not known
beforehand or Y will eventually go through almost all possible choices. Such
scenario takes place e.g. in a recent work [8] on Bayesian network structure
learning by branch and bound.

Semirings. Other applications of disjoint summation are enabled by extending
the semigroup by a multiplication operation that distributes over addition. That
is, we work over a semiring (S, +, ·), and the task is to evaluate the sum∑

X∩Y =∅
f(X) · g(Y ) , (2)

where X and Y range over all disjoint pairs of subsets of [n], of size at most p
and q, respectively, and f and g are given mappings to S. We observe that the
sum (2) equals

∑
Y e(Y ) · g(Y ), where Y ranges over all subsets of [n] of size

at most q and e is as in (1). Thus, an efficient way to compute e results in an
efficient way to evaluate (2).

2



Counting k-paths. An application of the semiring setup is counting the maximum-
weight k-edge paths from vertex s to vertex t in a given graph with real edge
weights. Here we assume that we are only allowed to add and compare real
numbers and these operations take constant time (cf. [16]). By straightforward
Bellman–Held–Karp type dynamic programming [1, 2, 9] we can solve the
problem in

(
n
k

)
nO(1) time. Our main result gives an improved algorithm that

runs in time 2k/2( n
k/2

)
nO(1) for even k. The key idea is to solve the problem in

halves. We guess a middle vertex v and define w1(X) as the maximum weight
of a k/2-edge path from s to v in the graph induced by the vertex set X ∪ {v};
we similarly define w2(X) for the k/2-edge paths from v to t. Furthermore, we
define c1(X) and c2(X) as the respective numbers of paths of weight w1(X)
and w2(X) and put f(X) = (c1(X), w1(X)) and g(X) = (c2(X), w2(X)). These
values can be computed for all vertex subsets X of size k/2 in

(
n

k/2

)
nO(1) time.

Now the expression (2) equals the number of k-edge paths from s to t with
middle vertex v, when we define the semiring operations � and � in following
manner: (c, w) � (c′, w′) = (c · c′, w + w′) and

(c, w) � (c′, w′) =

⎧⎪⎨
⎪⎩

(c, w) if w > w′,
(c′, w′) if w < w′,
(c + c′, w) if w = w′.

For the more general problem of counting weighted subgraphs Vassilevska and
Williams [15] give an algorithm whose running time, when applied to k-paths,
is O(nωk/3) + n2k/3+O(1), where 2 ≤ ω < 2.3727 is the exponent of matrix
multiplication [17].

Computing matrix permanent. A further application is the computation of
the permanent of a k × n matrix (aij) over a noncommutative semiring, with
k ≤ n an even integer, given by

∑
σ a1σ(1)a2σ(2) · · · akσ(k), where the sum is

over all injective mappings σ from [k] to [n]. We observe that the expression
(2) equals the permanent if we let p = q = k/2 = � and define f(X) as the
sum of a1σ(1)a2σ(2) · · · a�σ(�) over all injective mappings σ from {1, 2, . . . , �} to
X and, similarly, g(Y ) as the sum of a�+1σ(�+1)a�+2σ(�+2) · · · akσ(k) over all
injective mappings σ from {� + 1, � + 2, . . . , k} to Y . Since the values f(X)
and g(Y ) for all relevant X and Y can be computed by dynamic programming
with O

(
k
(

n
↓k/2

))
operations in S, our main result yields an upper bound of

O
(
2k/2k

(
n

↓k/2

))
operations in S for computing the permanent.

Thus we improve significantly upon a Bellman–Held–Karp type dynamic
programming algorithm that computes the permanent with O

(
k
(

n
↓k

))
operations

in S, the best previous upper bound we are aware of for noncommutative
semirings [5]. It should be noted, however, that algorithms using O

(
k
(

n
↓k/2

))
operations in S are already known for noncommutative rings [5], and that faster
algorithms using O

(
k(n − k + 1)2k

)
operations in S are known for commutative

semirings [5, 13].

3



3. Evaluation of disjoint sums

Overview. In this section, we prove Theorem 1 by giving an inductive con-
struction for the evaluation of (n, p, q)-disjoint summation. That is, we reduce
(n, p, q)-disjoint summation into one (n − 1, p, q)-disjoint summation and two
(n − 2, p − 1, q − 1)-disjoint summations. The key idea is to “pack” two elements
of the ground set [n] (say, 1 and n) into a new element ∗ and apply (n − 1, p, q)-
disjoint summation. We then complete this to (n, p, q)-disjoint summation using
the two (n − 1, p − 2, q − 2)-disjoint summations.

Preliminaries. For intervals of natural numbers, we write [k, n] = {k, k +
1, . . . , n}. For a set S and k ≤ |S|, we write

(
S
k

)
= {T ⊆ S : |T | = k} and(

S
↓k

)
=
(

S
0

) ∪ (
S
1

) ∪ · · · ∪ (
S
k

)
. With these notations, the (n, p, q)-disjoint summa-

tion takes an input function f :
([n]

↓p

) → S to the output function e :
([n]

↓q

) → S

defined by (1).

Base cases. When p = 0 or q = 0, the (n, p, q)-disjoint summation simplifies to
a form permitting trivial evaluation. If p = 0, then we have e(Y ) = f(∅) for all
Y ∈ ([n]

↓q

)
, and no additions are required. If q = 0, then there remains a single

sum
e(∅) =

∑
X∈([n]

↓p )
f(X) ,

which can be evaluated with
(

n
↓p

) − 1 additions in S.
If p = n or q = n, we use Yates’s algorithm to evaluate (n, p, q)-disjoint

summation with 2n−1n additions in S. For completeness, we repeat Yates’s con-
struction here. Given the input function f : 2[n] → S, we compute intermediate
functions ai : 2[n] → S for i = 0, 1, 2, . . . , n, where a0 = f and for any Z ⊆ [n]
and i = 1, 2, . . . , n the value ai(Z) is obtained from recurrence

ai(Z) =
{

ai−1(Z ∪ {i}) + ai−1(Z) if i /∈ Z,
ai−1(Z \ {i}) if i ∈ Z.

The output function e : 2[n] → S can be recovered as e = an.

Inductive step. We may assume that n ≥ 2 and 1 ≤ p, q ≤ n − 1. Let ∗ be an
element not in [n], and define f∗ :

([2,n−1]∪{∗}
↓p

) → S as

f∗
(
X
)

= f
(
X
)

for X ∈
(

[2,n−1]
↓p

)
,

f∗
(
X ∪ {∗}) = f

(
X ∪ {1})+ f

(
X ∪ {n}) for X ∈

(
[2,n−1]

p−1

)
,

f∗
(
X ∪ {∗}) = f

(
X ∪ {1})+ f

(
X ∪ {n})+ f

(
X ∪ {1, n}) for X ∈

(
[2,n−1]
↓(p−2)

)
.

4



We apply (n−1, p, q)-disjoint summation to input f∗ to obtain output e∗ :
([2,n−1]∪{∗}

↓q

) →
S with

e∗
(
Y
)

=
∑

X∈([n]
↓p ) : X∩Y =∅

f
(
X
)

for Y ∈
(

[2,n−1]
↓q

)
,

e∗
(
Y ∪ {∗}) =

∑
X∈([2,n−1]

↓p ) : X∩Y =∅
f
(
X
)

for Y ∈
(

[2,n−1]
↓(q−1)

)
.

(3)

In particular, we have e(Y ) = e∗(Y ) for Y ∈ ([2,n−1]
↓q

)
and e(Y ∪ {1, n}) =

e∗(Y ∪ {∗}) for Y ∈ ([2,n−1]
↓(q−2)

)
.

To complete e∗ to e, we compute two (n − 2, p − 1, q − 1)-disjoint summations
over ground set [2, n − 1]. Let

f1 :
(

[2,n−1]
↓(p−1)

)
→ S , f1

(
X
)

= f
(
X ∪ {1}) ,

fn :
(

[2,n−1]
↓(p−1)

)
→ S , fn

(
X
)

= f
(
X ∪ {n}) .

Now applying (n − 2, p − 1, q − 1)-disjoint summations to inputs f1 and fn yields
output functions

e1 :
(

[2,n−1]
↓(q−1)

)
→ S , e1

(
Y
)

=
∑

X∈([2,n−1]
↓(p−1) ) : X∩Y =∅

f
(
X ∪ {1}) , (4)

en :
(

[2,n−1]
↓(q−1)

)
→ S , en

(
Y
)

=
∑

X∈([2,n−1]
↓(p−1) ) : X∩Y =∅

f
(
X ∪ {n}) . (5)

By (3), (4) and (5), we can recover the output function e :
([n]

↓q

) → S as

e
(
Y
)

= e∗
(
Y
)

for Y ∈
(

[2,n−1]
↓q

)
,

e
(
Y ∪ {1}) = e∗

(
Y ∪ {∗}) + en

(
Y
)

for Y ∈
(

[2,n−1]
↓(q−1)

)
,

e
(
Y ∪ {n}) = e∗

(
Y ∪ {∗}) + e1

(
Y
)

for Y ∈
(

[2,n−1]
↓(q−1)

)
,

e
(
Y ∪ {1, n}) = e∗

(
Y ∪ {∗}) for Y ∈

(
[2,n−1]
↓(q−2)

)
.

Analysis. It remains to show that computing the (n, p, q)-disjoint summation
using the construction given above is sufficient to obtain the bound of Theorem 1.
For p = 0 or q = 0, we have Cn,0,q = 0 and Cn,p,0 =

(
n

↓p

) − 1. For p = n or
q = n, we have by Yates’s algorithm that Cn,n,q, Cn,p,n ≤ 2n−1n.

Otherwise, we have p ≥ 1, q ≥ 1 and n ≥ 2. Let r = min{p, q}. Computing
f∗ from f takes 2

(
n−2

↓(p−2)

)
+
(

n−2
p−1

)
additions in S and computing e from e∗, e1

and en takes 2
(

n−2
↓(q−1)

)
additions in S. Thus, we have

Cn,p,q ≤ Cn−1,p,q + 2 · Cn−2,p−1,q−1 + 2
(

n−2
↓(p−2)

)
+
(

n−2
p−1

)
+ 2

(
n−2

↓(q−1)

)
. (6)

5



By induction, it holds that

Cn−1,p,q ≤
[
p
(

n−1
↓p

)
+ q

(
n−1
↓q

)]
· 2r (7)

and

2 · Cn−2,p−1,q−1 ≤
[
(p − 1)

(
n−2

↓(p−1)

)
+ (q − 1)

(
n−2

↓(q−1)

)]
· 2r

≤
[
(p − 1)

(
n−1

↓(p−1)

)
+ (q − 1)

(
n−1

↓(q−1)

)]
· 2r

=
[
p
(

n−1
↓(p−1)

)
+ q

(
n−1

↓(q−1)

)]
· 2r −

[(
n−1

↓(p−1)

)
+
(

n−1
↓(q−1)

)]
· 2r .

(8)

Inserting (7) and (8) into (6) and noting that an iterative application of Pascal’s
rule implies

(
n

↓k

)
=
(

n−1
↓(k−1)

)
+
(

n−1
↓k

)
, we obtain

Cn,p,q ≤
[
p
[(

n−1
↓p

)
+
(

n−1
↓(p−1)

)]
+ q

[(
n−1
↓q

)
+
(

n−1
↓(q−1)

)]]
· 2r

=
[
p
(

n
↓p

)
+ q

(
n
↓q

)]
· 2r .
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Abstract. We study the problem of computing an ensemble of multiple
sums where the summands in each sum are indexed by subsets of size p
of an n-element ground set. More precisely, the task is to compute, for
each subset of size q of the ground set, the sum over the values of all
subsets of size p that are disjoint from the subset of size q. We present
an arithmetic circuit that, without subtraction, solves the problem using
O((np +nq) log n) arithmetic gates, all monotone; for constant p, q this is
within the factor log n of the optimal. The circuit design is based on view-
ing the summation as a “set nucleation” task and using a tree-projection
approach to implement the nucleation. Applications include improved
algorithms for counting heaviest k-paths in a weighted graph, comput-
ing permanents of rectangular matrices, and dynamic feature selection
in machine learning.

1 Introduction

Weak Algebrisation. Many hard combinatorial problems benefit from algebri-
sation, where the problem to be solved is cast in algebraic terms as the task of
evaluating a particular expression or function over a suitably rich algebraic struc-
ture, such as a multivariate polynomial ring over a finite field. Recent advances
in this direction include improved algorithms for the k-path [25], Hamiltonian
path [4], k-coloring [9], Tutte polynomial [6], knapsack [21], and connectivity [14]
problems. A key ingredient in all of these advances is the exploitation of an alge-
braic catalyst, such as the existence of additive inverses for inclusion–exclusion,
or the existence of roots of unity for evaluation/interpolation, to obtain fast
evaluation algorithms.

Such advances withstanding, it is a basic question whether the catalyst is
necessary to obtain speedup. For example, fast algorithms for matrix multipli-
cation [11,13] (and combinatorially related tasks such as finding a triangle in a
graph [1,17]) rely on the assumption that the scalars have a ring structure, which
prompts the question whether a weaker structure, such as a semiring without
� This research was supported in part by the Academy of Finland, Grants 252083

(P.K.), 256287 (P.K.), and 125637 (M.K.), and by the Helsinki Doctoral Programme
in Computer Science - Advanced Computing and Intelligent Systems (J.K.).
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additive inverses, would still enable fast multiplication. The answer to this par-
ticular question is known to be negative [18], but for many of the recent advances
such an analysis has not been carried out. In particular, many of the recent alge-
brisations have significant combinatorial structure, which gives hope for positive
results even if algebraic catalysts are lacking. The objective of this paper is to
present one such positive result by deploying combinatorial tools.
A Lemma of Valiant. Our present study stems from a technical lemma of
Valiant [22] encountered in the study of circuit complexity over a monotone
versus a universal basis. More specifically, starting from n variables f1, f2, . . . , fn,
the objective is to use as few arithmetic operations as possible to compute the
n sums of variables where the jth sum ej includes all the other variables except
the variable fj , where j = 1, 2, . . . , n.

If additive inverses are available, a solution using O(n) arithmetic operations
is immediate: first take the sum of all the n variables, and then for j = 1, 2, . . . , n
compute ej by subtracting the variable fj.

Valiant [22] showed that O(n) operations suffice also when additive inverses
are not available; we display Valiant’s elegant combinatorial solution for n = 8
below as an arithmetic circuit.

e� = f�       � f� � f� � f� � f� � f� � f	 
e� = f� � f�       � f� � f� � f� � f� � f	
e� = f� � f� � f�       � f� � f� � f� � f	
e� = f� � f� � f� � f�       � f� � f� � f	
e� = f� � f� � f� � f� � f�       � f� � f	
e� = f� � f� � f� � f� � f� � f�       � f	
e	 = f� � f� � f� � f� � f� � f� � f�  

e� =       f� � f� � f� � f� � f� � f� � f	 
f� 
f�
f�
f�
f�
f�

f� 

f	
Generalising to Higher Dimensions. This paper generalises Valiant’s lemma
to higher dimensions using purely combinatorial tools. Accordingly, we assume
that only very limited algebraic structure is available in the form of a commu-
tative semigroup (S, ⊕). That is, ⊕ satisfies the associative law x ⊕ (y ⊕ z) =
(x⊕y)⊕z and the commutative law x⊕y = y ⊕x for all x, y, z ∈ S, but nothing
else is assumed.

By “higher dimensions” we refer to the input not consisting of n values (“vari-
ables” in the example above) in S, but rather

(
n
p

)
values f(X) ∈ S indexed by

the p-subsets X of [n] = {1, 2, . . . , n}. Accordingly, we also allow the output to
have higher dimension. That is, given as input a function f from the p-subsets
[n] to the set S, the task is to output the function e defined for each q-subset Y
of [n] by

e(Y ) =
⊕

X:X∩Y =∅
f(X) , (1)

where the sum is over all p-subsets X of [n] satisfying the intersection constraint.
Let us call this problem (p, q)-disjoint summation.
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In analogy with Valiant’s solution for the case p = q = 1 depicted above, an
algorithm that solves the (p, q)-disjoint summation problem can now be viewed
as a circuit consisting of two types of gates: input gates indexed by p-subsets X
and arithmetic gates that perform the operation ⊕, with certain arithmetic gates
designated as output gates indexed by q-subsets Y . We would like a circuit that
has as few gates as possible. In particular, does there exist a circuit whose size
for constant p, q is within a logarithmic factor of the lower bound Θ(np + nq)?

Main Result. In this paper we answer the question in the affirmative. Specifi-
cally, we show that a circuit of size O

(
(np + nq) log n

)
exists to compute e from

f over an arbitrary commutative semigroup (S, ⊕), and moreover, there is an
algorithm that constructs the circuit in time O

(
(p2 + q2)(np +nq) log3 n

)
. These

bounds hold uniformly for all p, q. That is, the coefficient hidden by O-notation
does not depend on p and q.

From a technical perspective our main contribution is combinatorial and can
be expressed as a solution to a specific set nucleation task. In such a task we start
with a collection of “atomic compounds” (a collection of singleton sets), and the
goal is to assemble a specified collection of “target compounds” (a collection
of sets that are unions of the singletons). The assembly is to be executed by a
straight-line program, where each operation in the program selects two disjoint
sets in the collection and inserts their union into the collection. (Once a set is in
the collection, it may be selected arbitrarily many times.) The assembly should
be done in as few operations as possible.

Our main contribution can be viewed as a straight-line program of length
O
(
(np + nq) log n

)
that assembles the collection {{X : X ∩ Y = ∅} : Y } starting

from the collection {{X} : X}, where X ranges over the p-subsets of [n] and Y
ranges over the q-subsets of [n]. Valiant’s lemma [22] in these terms provides an
optimal solution of length Θ(n) for the specific case p = q = 1.

Applications. Many classical optimisation problems and counting problems can
be algebrised over a commutative semigroup. A selection of applications will be
reviewed in Sect. 3.

Related Work. “Nucleation” is implicit in the design of many fast algebraic
algorithms, perhaps two of the most central are the fast Fourier transform of
Cooley and Tukey [12] (as is witnessed by the butterfly circuit representation)
and Yates’s 1937 algorithm [26] for computing the product of a vector with the
tensor product of n matrices of size 2×2. The latter can in fact be directly used
to obtain a nucleation process for (p, q)-disjoint summation, even if an inefficient
one. (For an exposition of Yates’s method we recommend Knuth [19, §4.6.4];
take mi = 2 and gi(si, ti) = [si = 0 or ti = 0] for i = 1, 2, . . . , n to extract the
following nucleation process implicit in the algorithm.) For all Z ⊆ [n] and
i ∈ {0, 1, . . . , n}, let

ai(Z) = {X ⊆ [n] : X ∩ [n − i] = Z ∩ [n − i], X ∩ Z \ [n − i] = ∅} . (2)

Put otherwise, ai(Z) consists of X that agree with Z in the first n − i elements of
[n] and are disjoint from Z in the last i elements of [n]. In particular, our objective
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is to assemble the sets an(Y ) = {X : X ∩ Y = ∅} for each Y ⊆ [n] starting from
the singletons a0(X) = {X} for each X ⊆ [n]. The nucleation process given by
Yates’ algorithm is, for all i = 1, 2, . . . , n and Z ⊆ [n], to set

ai(Z) =
{

ai−1(Z \ {n + 1 − i}) if n + 1 − i ∈ Z,

ai−1(Z ∪ {n + 1 − i}) ∪ ai−1(Z) if n + 1 − i /∈ Z.
(3)

This results in 2n−1n disjoint unions. If we restrict to the case |Y | ≤ q and
|X | ≤ p, then it suffices to consider only Z with |Z| ≤ p + q, which results in
O
(
(p + q)

∑p+q
j=0

(
n
j

))
disjoint unions. Compared with our main result, this is not

particularly efficient. In particular, our main result relies on “tree-projection”
partitioning that enables a significant speedup over the “prefix-suffix” partition-
ing in (2) and (3).

We observe that “set nucleation” can also be viewed as a computational prob-
lem, where the output collection is given and the task is to decide whether there
is a straight-line program of length at most � that assembles the output using
(disjoint) unions starting from singleton sets. This problem is known to be NP-
complete even in the case where output sets have size 3 [15, Problem PO9];
moreover, the problem remains NP-complete if the unions are not required to
be disjoint.

2 A Circuit for (p, q)-Disjoint Summation

Nucleation of p-Subsets with a Perfect Binary Tree. Looking at Valiant’s
circuit construction in the introduction, we observe that the left half of the
circuit accumulates sums of variables (i.e., sums of 1-subsets of [n]) along what
is a perfect binary tree. Our first objective is to develop a sufficient generalisation
of this strategy to cover the setting where each summand is indexed by a p-subset
of [n] with p ≥ 1.

Let us assume that n = 2b for a nonnegative integer b so that we can identify
the elements of [n] with binary strings of length b. We can view each binary
string of length b as traversing a unique path starting from the root node of
a perfect binary tree of height b and ending at a unique leaf node. Similarly,
we may identify any node at level � of the tree by a binary string of length �,
with 0 ≤ � ≤ b. See Fig. 1(a) for an illustration. For p = 1 this correspondence
suffices.

For p > 1, we are not studying individual binary strings of length b (that is,
individual elements of [n]), but rather p-subsets of such strings. In particular, we
can identify each p-subset of [n] with a p-subset of leaf nodes in the binary tree.
To nucleate such subsets it will be useful to be able to “project” sets upward in
the tree. This motivates the following definitions.

Let us write {0, 1}� for the set of all binary strings of length 0 ≤ � ≤ b. For
� = 0, we write ε for the empty string. For a subset X ⊆ {0, 1}b, we define the
projection of X to level � as

X |� =
{

x ∈ {0, 1}� : ∃y ∈ {0, 1}b−� such that xy ∈ X
}

. (4)
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(a) (b)

X

W

1
1

111
01

1

0

00 0
0

0

0 1 1 1 1 1 1 1 10 0 0 0 0 0 0

1
1

111
01

1

0

00 0
0

0

0 1 1 1 1 1 1 1 10 0 0 0 0 0 0

Fig. 1. Representing {0, 1}-strings of length at most b as nodes in a perfect binary tree
of height b. Here b = 4. (a) Each string traces a unique path down from the root node,
with the empty string ε corresponding to the root node. The nodes at level 0 ≤ � ≤ b
correspond to the strings of length �. The red leaf node corresponds to 0110 and the
blue node corresponds to 101. (b) A set of strings corresponds to a set of nodes in the
tree. The set X is displayed in red, the set W in blue. The set W is the projection of
the set X to level � = 2. Equivalently, X|� = W .

That is, X |� is the set of length-� prefixes of strings in X . Equivalently, in the
binary tree we obtain X |� by lifting each element of X to its ancestor on level-�
in the tree. See Fig. 1(b) for an illustration. For the empty set we define ∅|� = ∅.

Let us now study a set family F ⊆ 2{0,1}b . The intuition here is that each
member of F is a summand, and F represents the sum of its members. A circuit
design must assemble (nucleate) F by taking disjoint unions of carefully selected
subfamilies. This motivates the following definitions.

For a level 0 ≤ � ≤ b and a string W ⊆ {0, 1}� let us define the subfamily of
F that projects to W by

FW = {X ∈ F : X |� = W } . (5)

That is, the family FW consists of precisely those members X ∈ F that project
to W . Again Fig. 1(b) provides an illustration: we select precisely those X whose
projection is W .

The following technical observations are now immediate. For each 0 ≤ � ≤ b,
if ∅ ∈ F, then we have

F∅ = {∅} . (6)
Similarly, for � = 0 we have

F{ε} = F \ {∅} . (7)

For � = b we have for every W ∈ F that

FW = {W } . (8)

Now let us restrict our study to the situation where the family F ⊆ 2{0,1}b con-
tains only sets of size at most p. In particular, this is the case in our applications.
For a set U and an integer p, let us write

(
U
p

)
for the family of all subsets of U of

size p, and
(

U
↓p

)
for the family of all subsets of U with size at most p. Accordingly,

for integers 0 ≤ k ≤ n, let us use the shorthand
(

n
↓k

)
=
∑k

i=0
(

n
i

)
.
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Fig. 2. Illustrating the proof of Lemma 1. Here b = 5. The set X (indicated with red
nodes) projects to level � = 2 to the set W (indicated with blue nodes) and to level
� + 1 = 3 to the set Z (indicated with yellow nodes). Furtermore, the projection of Z
to level � is W . Thus, each X ∈ F is included to FW exactly from FZ in Lemma 1.

The following lemma enables us to recursively nucleate any family F ⊆
(

{0,1}b

↓p

)
.

In particular, we can nucleate the family FW with W in level � using the families
FZ with Z in level � + 1. Applied recursively, we obtain F by proceeding from
the bottom up, that is, � = b, b − 1, . . . , 1, 0. The intuition underlying the lemma
is illustrated in Fig. 2. We refer to the full version of this paper for the proof.

Lemma 1. For all 0 ≤ � ≤ b − 1, F ⊆
(

{0,1}b

↓p

)
, and W ∈

(
{0,1}�

↓p

)
, we have that

the family FW is a disjoint union FW =
⋃{

FZ : Z ∈
(

{0,1}�+1

↓p

)
W

}
.

A Generalisation: (p, q)-Intersection Summation. It will be convenient to
study a minor generalisation of (p, q)-disjoint summation. Namely, instead of
insisting on disjointness, we allow nonempty intersections to occur with “active”
(or “avoided”) q-subsets A, but require that elements in the intersection of each
p-subset and each A are “individualized.” That is, our input is not given by
associating a value f(X) ∈ S to each set X ∈

(
[n]
↓p

)
, but is instead given by

associating a value g(I, X) ∈ S to each pair (I, X) with I ⊆ X ∈
(

[n]
↓p

)
, where I

indicates the elements of X that are “individualized.” In particular, we may insist
(by appending to S a formal identity element if such an element does not already
exist in S) that g(I, X) vanishes unless I is empty. This reduces (p, q)-disjoint
summation to the following problem:

Problem 1. ((p, q)-intersection summation) Given as input a function g that
maps each pair (I, X) with I ⊆ X ∈

(
[n]
↓p

)
and |I| ≤ q to an element g(I, X) ∈ S,

output the function h :
(

[n]
↓q

)
→ S defined for all A ∈

(
[n]
↓q

)
by

h(A) =
⊕

X∈([n]
↓p)

g(A ∩ X, X) . (9)

The Circuit Construction. We proceed to derive a recursion for the function
h using Lemma 1 to carry out nucleation of p-subsets. The recursion proceeds
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from the bottom up, that is, � = b, b−1, . . . , 1, 0 in the binary tree representation.
(Recall that we identify the elements of [n] with the elements of {0, 1}b, where
n is a power of 2 with n = 2b.) The intermediate functions h� computed by the
recursion are “projections” of (9) using (5). In more precise terms, for � = b, b −
1, . . . , 1, 0, the function h� :

(
{0,1}b

↓q

)
×
(

{0,1}�

↓p

)
→ S is defined for all W ∈

(
{0,1}�

↓p

)
and A ∈

(
{0,1}b

↓q

)
by

h�(A, W ) =
⊕

X∈
({0,1}b

↓p

)
W

g(A ∩ X, X) . (10)

Let us now observe that we can indeed recover the function h from the case
� = 0. Indeed, for the empty string ε, the empty set ∅ and every A ∈

(
{0,1}b

↓q

)
we

have by (6) and (7) that

h(A) = h0(A, {ε}) ⊕ h0(A, ∅) . (11)

It remains to derive the recursion that gives us h0. Here we require one more
technical observation, which enables us to narrow down the intermediate values
h�(A, W ) that need to be computed to obtain h0. In particular, we may dis-
card the part of the active set A that extends outside the “span” of W . This
observation is the crux in deriving a succinct circuit design.

For 0 ≤ � ≤ b and w ∈ {0, 1}�, we define the span of w by

〈w〉 =
{

x ∈ {0, 1}b : ∃z ∈ {0, 1}b−� such that wz = x
}

.

In the binary tree, 〈w〉 consists of the leaf nodes in the subtree rooted at w. Let us
extend this notation to subsets W ⊆ {0, 1}� by 〈W 〉 =

⋃
w∈W 〈w〉 . The following

lemma shows that it is sufficient to evaluate h�(A, W ) only for W ∈
(

{0,1}�

↓p

)
and

A ∈
(

{0,1}b

↓q

)
such that A ⊆ 〈W 〉. We omit the proof; please refer to the full

version of this paper for details.

Lemma 2. For all 0 ≤ � ≤ b, W ∈
(

{0,1}�

↓p

)
, and A ∈

(
{0,1}b

↓q

)
, we have

h�(A, W ) = h�(A ∩ 〈W 〉 , W ) . (12)

We are now ready to present the recursion for � = b, b−1, . . . , 1, 0. The base case
� = b is obtained directly based on the values of g, because we have by (8) for
all W ∈

(
{0,1}b

↓p

)
and A ∈

(
{0,1}b

↓q

)
with A ⊆ W that

hb(A, W ) = g(A, W ) . (13)

The following lemma gives the recursive step from � + 1 to � by combining
Lemma 1 and Lemma 2. Again, we defer the details of the proof to the full
version of this paper.
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Lemma 3. For 0 ≤ � ≤ b − 1, W ∈
(

{0,1}�

↓p

)
, and A ∈

(
{0,1}b

↓q

)
with A ⊆ 〈W 〉,

we have
h�(A, W ) =

⊕
Z∈
({0,1}�+1

↓p

)
W

h�+1(A ∩ 〈Z〉 , Z) . (14)

The recursion given by (13), (14), and (12) now defines an arithmetic circuit
that solves (p, q)-intersection summation.

Size of the circuit. By (13), the number of input gates in the circuit is equal
to the number of pairs (I, X) with I ⊆ X ∈

(
{0,1}b

↓p

)
and |X | ≤ q, which is

p∑
i=0

q∑
j=0

(
2b

i

)(
i

j

)
. (15)

To derive an expression for the number of ⊕-gates, we count for each 0 ≤ � ≤ b−1
the number of pairs (A, W ) with W ∈

(
{0,1}�

↓p

)
, A ∈

(
{0,1}b

↓q

)
, and A ⊆ 〈W 〉, and

for each such pair (A, W ) we count the number of ⊕-gates in the subcircuit that
computes the value h�(A, W ) from the values of h�+1 using (14).

First, we observe that for each W ∈
(

{0,1}�

↓p

)
we have |〈W 〉| = 2b−� |W |. Thus,

the number of pairs (A, W ) with W ∈
(

{0,1}�

↓p

)
, A ∈

(
{0,1}b

↓q

)
, and A ⊆ 〈W 〉 is

p∑
i=0

q∑
j=0

(
2�

i

)(
i2b−�

j

)
. (16)

For each such pair (A, W ), the number of ⊕-gates for (14) is
∣∣∣({0,1}�+1

↓p

)
W

∣∣∣ − 1.

Lemma 4. For all 0 ≤ � ≤ b − 1, W ∈
(

{0,1}�

↓p

)
, and |W | = i, we have

∣∣∣∣
({0, 1}�+1

↓p

)
W

∣∣∣∣ =
p−i∑
k=0

(
i

k

)
2i−k . (17)

Proof. A set Z ∈
(

{0,1}�+1

↓p

)
W

can contain either one or both of the strings w0
and w1 for each w ∈ W . The set Z may contain both elements for at most p − i
elements w ∈ W because otherwise |Z| > p. Finally, for each 0 ≤ k ≤ p− i, there
are

(
i
k

)
2i−k ways to select a set Z ∈

(
{0,1}�+1

↓p

)
W

such that Z contains w0 and
w1 for exactly k elements w ∈ W .

Finally, for each A ∈
(

{0,1}b

↓q

)
we require an ⊕-gate that is also designated as an

output gate to implement (11). The number of these gates is
q∑

j=0

(
2b

j

)
. (18)
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The total number of ⊕-gates in the circuit is obtained by combining (15), (16),
(17), and (18). The number of ⊕-gates is thus

p∑
i=0

q∑
j=0

(
2b

i

)(
i

j

)
+

b−1∑
�=0

p∑
i=0

q∑
j=0

(
2�

i

)(
i2b−�

j

)(
p−i∑
k=0

(
i

k

)
2i−k − 1

)
+

q∑
j=0

(
2b

j

)

≤
b∑

�=0

p∑
i=0

q∑
j=0

(
2�

i

)(
i2b−�

j

)
3i ≤

b∑
�=0

p∑
i=0

q∑
j=0

(2�)i

i!
ij(2b−�)j

j! 3i

≤
b∑

�=0

p∑
i=0

q∑
j=0

(2�)max(p,q)

i!
ij(2m−�)max(p,q)

j! 3i

= nmax(p,q)(1 + log2 n)
p∑

i=0

q∑
j=0

ij3i

i!j! .

The remaining double sum is bounded from above by a constant, and thus the
circuit defined by (13), (14), and (12) has size O((np + nq) log n), where the
constant hidden by the O-notation does not depend on p and q.

The circuit can be constructed in time O
(
(p2 + q2)(np + nq) log3 n

)
. We omit

the details.

3 Concluding Remarks and Applications

We have generalised Valiant’s [22] observation that negation is powerless for
computing simultaneously the n different disjunctions of all but one of the given
n variables: now we know that, in our terminology, subtraction is powerless
for (p, q)-disjoint summation for any constant p and q. (Valiant proved this for
p = q = 1.) Interestingly, requiring p and q be constants turns out to be essential,
namely, when subtraction is available, an inclusion–exclusion technique is known
[5] to yield a circuit of size O

(
p
(

n
↓p

)
+ q

(
n
↓q

))
, which, in terms of p and q, is

exponentially smaller than our bound O
(
(np + nq) log n

)
. This gap highlights

the difference of the algorithmic ideas behind the two results. Whether the gap
can be improved to polynomial in p and q is an open question.

While we have dealed with the abstract notions of “monotone sums” or semi-
group sums, in applications they most often materialise as maximisation or min-
imisation, as described in the next paragraphs. Also, in applications local terms
are usually combined not only by one (monotone) operation but two different
operations, such as “min” and “+”. To facilitate the treatment of such applica-
tions, we extend the semigroup to a semiring (S, ⊕, �) by introducing a product
operation “�”. Now the task is to evaluate⊕

X,Y :X∩Y =∅
f(X) � g(Y ) , (19)

where X and Y run through all p-subsets and q-subsets of [n], respectively, and
f and g are given mappings to S. We immediately observe that the expression
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(19) is equal to
⊕

Y e(Y ) � g(Y ), where the sum is over all q-subsets of [n] and
e is as in (1). Thus, by our main result, it can be evaluated using a circuit with
O((np + nq) log n) gates.

Application to k-paths. We apply the semiring formulation to the problem
of counting the maximum-weight k-edge paths from vertex s to vertex t in a
given edge-weighted graph with real weights, where we assume that we are only
allowed to add and compare real numbers and these operations take constant
time (cf. [24]). By straightforward Bellman–Held–Karp type dynamic program-
ming [2,3,16] (or, even by brute force) we can solve the problem in

(
n
↓k

)
nO(1)

time. However, our main result gives an algorithm that runs in nk/2+O(1) time
by solving the problem in halves: Guess a middle vertex v and define f1(X) as
the number of maximum-weight k/2-edge paths from s to v in the graph induced
by the vertex set X ∪ {v}; similarly define g1(X) for the k/2-edge paths from v
to t. Furthermore, define f2(X) and g2(X) as the respective maximum weights
and put f(X) = (f1(X), f2(X)) and g(X) = (g1(X), g2(X)). These values can
be computed for all vertex subsets X of size k/2 in

(
n

k/2

)
nO(1) time. It remains

to define the semiring operations in such a way that the expression (19) equals
the desired number of k-edge paths; one can verify that the following definitions
work correctly: (c, w) � (c′, w′) = (c · c′, w + w′) and

(c, w) ⊕ (c′, w′) =

⎧⎪⎨
⎪⎩

(c, w) if w > w′,
(c′, w′) if w < w′,
(c + c′, w) if w = w′.

Thus, the techniques of the present paper enable solving the problem essentially
as fast as the fastest known algorithms for the special case of counting all the k-
paths, for which quite different techniques relying on subtraction yield

(
n

k/2

)
nO(1)

time bound [7]. On the other, for the more general problem of counting weighted
subgraphs Vassilevska and Williams [23] give an algorithm whose running time,
when applied to k-paths, is O(nωk/3+n2k/3+c), where ω < 2.3727 is the exponent
of matrix multiplication and c is a constant; this of course would remain worse
than our bound even if ω = 2.
Application to Matrix Permanent. Consider the problem of computing the
permanent of a k × n matrix (aij) over a noncommutative semiring, with k ≤ n
and even for simplicity, given by

∑
σ a1σ(1)a2σ(2) · · · akσ(k), where the sum is

over all injective mappings σ from [k] to [n]. We observe that the expression
(19) equals the permanent if we let p = q = k/2 = � and define f(X) as the
sum of a1σ(1)a2σ(2) · · · a�σ(�) over all injective mappings σ from {1, 2, . . . , �} to X
and, similarly, g(Y ) as the sum of a�+1σ(�+1)a�+2σ(�+2) · · · akσ(k) over all injective
mappings σ from {�+1, �+2, . . . , k} to Y . Since the values f(X) and g(Y ) for all
relevant X and Y can be computed by dynamic programming in

(
n

k/2

)
nO(1) time,

our main result yields the time bound nk/2+O(1) for computing the permanent.
Thus we improve significantly upon a Bellman–Held–Karp type dynamic pro-

gramming algorithm that computes the permanent in
(

n
↓k

)
nO(1) time, the best
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previous upper bound we are aware of for noncommutative semirings [8]. It
should be noted, however, that essentally as fast algorithms are already known for
noncommutative rings [8], and that faster, 2knO(1) time, algorithms are known
for commutative semirings [8,20].
Application to Feature Selection. The extensively studied feature selection
problem in machine learning asks for a subset X of a given set of available
features A so as to maximise some objective function f(X). Often the size of X
can be bounded from above by some constant k, and sometimes the selection
task needs to be solved repeatedly with the set of available features A changing
dynamically across, say, the set [n] of all features. Such constraints take place
in a recent work [10] on Bayesian network structure learning by branch and
bound: the algorithm proceeds by forcing some features, I, to be included in X
and some other, E, to be excluded from X . Thus the key computational step
becomes that of maximising f(X) subject to I ⊆ X ⊆ [n] \ E and |X | ≤ k,
which is repeated for varying I and E. We observe that instead of computing
the maximum every time from scratch, it pays off precompute a solution to (p, q)-
disjoint summation for all 0 ≤ p, q ≤ k, since this takes about the same time
as a single step for I = ∅ and any fixed E. Indeed, in the scenario where the
branch and bound search proceeds to exclude each and every subset of k features
in turn, but no larger subsets, such precomputation decreases the running time
bound quite dramatically, from O(n2k) to O(nk); typically, n ranges from tens
to some hundreds and k from 2 to 7. Admitted, in practice, one can expect the
search procedure match the said scenario only partially, and so the savings will
be more modest yet significant.
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Abstract

Inference in Bayesian networks is known to be
NP-hard, but if the network has bounded tree-
width, then inference becomes tractable. Not
surprisingly, learning networks that closely
match the given data and have a bounded
tree-width has recently attracted some atten-
tion. In this paper we aim to lay groundwork
for future research on the topic by studying
the exact complexity of this problem. We
give the first non-trivial exact algorithm for
the NP-hard problem of finding an optimal
Bayesian network of tree-width at most w,
with running time 3nnw+O(1), and provide an
implementation of this algorithm. Addition-
ally, we propose a variant of Bayesian net-
work learning with “super-structures”, and
show that finding a Bayesian network con-
sistent with a given super-structure is fixed-
parameter tractable in the tree-width of the
super-structure.

1 INTRODUCTION

1.1 Bayesian network learning

Bayesian networks are used widely to represent joint
probability distributions. Typically, the first step in
using a Bayesian network to model some problem is
learning the network from the input data. That is, we
have to learn a directed acyclic graph (DAG) and the
parameters associated with each variable, so that the
model describes the original data “well”. Learning the
parameters given a structure is an easy task, so in the
recent years research has mostly focused on learning
the structure. One of the main approaches to structure

Appearing in Proceedings of the 16th International Con-
ference on Artificial Intelligence and Statistics (AISTATS)
2013, Scottsdale, AZ, USA. Volume 31 of JMLR: W&CP
31. Copyright 2013 by the authors.

learning is so-called score-based methods (Cooper and
Herskovits, 1992; Heckerman et al., 1995), where the
idea is to assign each possible structure a score based
on how well it fits the data and try to find a structure
that maximises the score.

In this paper, we study the Bayesian structure learning
as a combinatorial problem using an abstract score-
based framework. In this framework, we are given a
node set N of size n and for each node v ∈ N and each
parent set S ⊆ N \ {v} a local score fv(S). The goal
is to find a DAG A that maximises the sum

f(A) =
∑
v∈N

fv(Av) ,

where Av is the parent set of v, i.e., the set of nodes u
such that there is an arc from u to v in A. This prob-
lem is NP-hard (Chickering, 1996; Chickering et al.,
2004), the best known exact algorithm being a Bell-
man–Held–Karp style dynamic programming that runs
in time 2nnO(1) (Silander and Myllymäki, 2006).

1.2 Learning with bounded tree-width

Once the network has been learned, we want to use
it to compute conditional probabilities of some sets
of variables given some other sets of variables. This
inference problem in Bayesian networks is also NP-
hard (Cooper, 1990). However, if the network (or
more precisely its structure) has low tree-width, exact
inference is tractable even for large networks. Thus,
learning models of bounded tree-width enables us to
limit the time required for inference. Specifically, we
have a trade-off between the fit of the network and
the speed of inference, since if the “true” network has
high tree-width, bounding the tree-width can lead to
under-fitting.

More formally, given local scores fv as before and a
constant w, we want to find a DAG A that maximises
the score f(A) among the DAGs of tree-width at most
w. Here the tree-width of a DAG is defined as the
tree-width of its moralised graph (Elidan and Gould,
2008); the moralised graph of a DAG A is an undirected
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graph that includes an edge {u, v} ∈ E for every arc
uv ∈ A and an edge {u, w} ∈ E for every pair of arcs
uv ∈ A and wv ∈ A. Defined this way, the tree-width
of a network matches its inference complexity1.

While there have been some studies on learning undi-
rected models with bounded tree-width using approxi-
mation algorithms (Karger and Srebro, 2001; Srebro,
2001), heuristics (Bach and Jordan, 2002), and PAC-
learning (Chechetka and Guestrin, 2008), the corre-
sponding problem for Bayesian networks remains poorly
understood. The only result of this vein we are aware
of is a heuristic algorithm for learning bounded tree-
width Bayesian network structures by Elidan and Gould
(2008). Our main motivation for the work presented in
this paper is to fill this gap and lay groundwork for fu-
ture investigations of the topic. Specifically, we aim to
establish basic theoretical results for learning bounded
tree-width Bayesian network structures, especially in
the sense of exact algorithmics.

Unfortunately, learning Bayesian network structures
remains difficult when the tree-width is bounded. While
learning an optimal tree, i.e., a Bayesian network with
tree-width 1, can be done in polynomial time (Chow
and Liu, 1968), a straightforward reduction from a
corresponding result for Markov networks shows that
finding an optimal Bayesian network of tree-width at
most w is NP-hard for any fixed w ≥ 2; see Section 2.3.

1.3 Learning in exponential time

Since learning bounded tree-width Bayesian networks
is NP-hard, the natural question from the perspec-
tive of exact algorithmics is to study exponential-time
algorithms for the problem. As our main result, we
obtain a single-exponential time algorithm for bounded
tree-width Bayesian structure learning.
Theorem 1. Given a node set N of size n, an integer
w and scoring functions fv for each node v ∈ N , we can
find a DAG A with tree-width at most w maximising
score f(A) =

∑
v∈N fv(Av) in time 3nnw+O(1) and

space 2nnw+O(1).

The proof of Theorem 1 is given in Section 5.

Somewhat disappointingly we are not able to match the
2nnO(1) algorithm for unrestricted Bayesian network
structure learning. Indeed, it seems to us that the
added restriction of the bounded tree-width makes the
problem more challenging.

On the practical side, we have implemented the algo-
rithm of Theorem 1, and it works well for small n and

1To avoid confusion, we point out that this definition
differs from the definition of tree-width for directed graphs
given by Johnson et al. (2001).

w. We also experimented with using this implemen-
tation to find small bounded tree-width networks for
real-world data; see Section 6.

Although the exponentiality hinders the application of
the algorithm for all but a small number of nodes, we
argue that having even an exponential exact algorithm
for the problem is essential for further investigations
of the topic. Principally, it provides a baseline against
which approximation algorithms and heuristics can
be tested, and it may also prove to be useful as a
component of such algorithms. Furthermore, being
able to generate examples of optimal bounded tree-
width networks enables explorative studies of their
properties.

We also note that in the recent years there has been a lot
of interest in exponential time algorithms for learning
the structure of a Bayesian network (Ott and Miyano,
2003; Singh and Moore, 2005; Silander and Myllymäki,
2006) and related tasks, like computing posterior prob-
abilities of structural features (Koivisto and Sood, 2004;
Koivisto, 2006; Tian and He, 2009; Kang et al., 2010;
Parviainen and Koivisto, 2011). Most of the algorithms
run in 2nnO(1) time but some of them have running
time 3nnO(1) which matches our algorithm. In line
with our experiments, other algorithms with running
time 3nnO(1) been implemented and tested successfully
with networks of up to 20 nodes (Tian and He, 2009;
Kang et al., 2010; Parviainen and Koivisto, 2011).

1.4 Learning with super-structures

The dynamic programming algorithm of Theorem 1
implicitly contains a subroutine that, given an undi-
rected graph G, finds an optimal DAG whose moralised
graph is a subgraph of G. Indeed, this problem is fixed-
parameter tractable with regard to the tree-width of
the graph G, as formalised in the following theorem,
whose proof we give in Section 4.
Theorem 2. For any fixed w, given an n-vertex graph
G = (N, E) of tree-width at most w and scoring func-
tions fv for each node v ∈ N , we can find a DAG A
whose moralised graph is a subgraph of G maximising
the score in time and space O(n).

Specifically, the running time of our algorithm is
O
(
(w + 1)! · w · 3w · n

)
if we are given a suitable tree-

decomposition of G. As it is usual with algorithms
based on tree-decompositions, the bottle-neck is the
construction of a tree-decomposition from G; see Sec-
tion 2.1.

This observation is related to the super-structure ap-
proach for learning Bayesian networks, presented by
Perrier et al. (2008), where we are given an undirected
graph G, called the super-structure, and the goal is to
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find the highest-scoring DAG such that there is, for
each arc in the DAG, a corresponding undirected edge
in G, i.e. the skeleton of the DAG is a subgraph of the
super-structure. Recently Ordyniak and Szeider (2010)
have shown that in this setting, if both the tree-width
and the maximum degree of the super-structure are
bounded by constants, an optimal DAG can be found
in linear time. However, the tree-width of the super-
structure alone does not bound the running time of
the algorithm or the tree-width of the resulting DAG,
and Ordyniak and Szeider in fact show that learning
optimal Bayesian network with given super-structure is
W [1]-hard when the complexity parameter is the tree-
width of the super-structure. Intuitively, the reason
for this is that the tree-width of a DAG is defined to
be the tree-width of its moralised graph, and moral-
ising can introduce edges that are not present in the
super-structure.

2 PRELIMINARIES

2.1 Tree-width

For an undirected graph G = (V, E), we use the con-
vention that E is a set of two-element subsets of V . We
write {u, v} for an edge between nodes u and v. We
also denote n = |V |.
A tree-decomposition of an undirected graph G = (V, E)
is a pair (X, T ), where X = {X1, X2, . . . , Xm} is a col-
lection of subsets of V and T is a tree on {1, 2, . . . , m},
such that

1.
⋃m

i=1 Xi = V ,

2. for all edges {u, v} ∈ E there exist i with u ∈ Xi

and v ∈ Xi, and

3. for all i, j and k, if j is on the (unique) path from
i to k in T , then Xi ∩ Xk ⊆ Xj .

The width of a tree-decomposition (X, T ) is defined
as maxi |Xi| − 1. The tree-width of an undirected
graph G is the minimum width over all possible tree-
decompositions of G. In a sense, the tree-width of a
graph describes how close the graph is to a tree; graphs
of tree-width 1 coincide with trees. For a fixed w and
graph G with tree-width w, a tree-decomposition of
width w can be found in time O(n) (Bodlaender, 1996).

A nice tree-decomposition of a graph G = (V, E) is a
tree-decomposition (X, T ) along with a fixed root node
r for T such that each node i ∈ {1, 2, . . . , m} is either

1. a leaf with no children and |Xi| = 1,

2. a forget node that has one child j and Xi = Xj \
{v} for some v ∈ Xj ,

3. a introduce node that has one child j and Xi =
Xj ∪ {v} for some v /∈ Xj , or

4. a join node that has two children j and k and
Xi = Xj = Xk.

For fixed w, if we are given a tree-decomposition
of G with width w, we can construct a nice tree-
decomposition of width w and a linear number of nodes
in time O(n) (Kloks, 1994). Thus, if we are given a
graph of tree-width w, we can also obtain a nice tree-
decomposition of width w and a linear number of nodes
in time O(n), since some tree-decomposition of width
w can be found in linear time, as noted above.

We will in particular need the following basic property
of the tree-decompositions.
Lemma 3 (Separation Property). Let G = (V, E) be
a graph with tree-decomposition (X, T ), and let i, j and
k be nodes in T such that j is on the path from i to k.
Then there is no edge {u, v} ∈ E with v ∈ Xi \ Xj and
u ∈ Xk \ Xj.

Finally, we give a well-known alternate characterisa-
tion of tree-width. The family of k-trees is defined
inductively as follows.

1. A (k + 1)-clique is a k-tree.

2. If G = (V, E) is a k-tree and C ⊆ V is a k-clique,
then graph obtained by adding a new vertex v and
an edge uv for each u ∈ C is a k-tree.

The k-trees are maximal graphs with tree-width k,
that is, a graph has tree-width k if and only if it is a
subgraph of some k-tree; see e.g. van Leeuwen (1990).

2.2 Bayesian Networks

Aside from the definitions given in Sections 1.2 and 1.4,
we will use the following conventions when discussing
Bayesian networks and the structure learning problem.

A directed graph is a pair (N, A), where N is the node
set and A ⊆ N × N is the arc set. We write uv for
arc (u, v) ∈ A. When there is no ambiguity about the
node set, we identify a directed graph by its arc set.
Throughout this paper, we denote n = |N |.
A node u is said to be a parent of node v if the arc set
contains an arc from u to v, that is, uv ∈ A. If u is a
parent of v, then v is a child of u. We denote the set
of the parents of v in A by Av.

As a consequence of the definition of the tree-width
of of a DAG (see Section 1.2), we have that if the
tree-width of a DAG is w, then the in-degree must be
bounded by w, as {v} ∪ Av is a clique in the moralised
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graph M , and a graph with k-clique has tree-width at
least k − 1. The reverse does not hold, and a graph
with maximum in-degree Δ can have tree-width larger
than Δ.

In the structure learning problem, we are given the
local scores fv(S) for each node v ∈ N and each parent
set S ⊆ N \ {v} as input. The output is a DAG that
has maximal score. As noted above, parent sets S of
size more than w are not eligible when we want the
DAG to have tree-width at most w. Thus, we assume
that the input consist only of the scores for parent sets
of size at most w and has size O

(
n
(

n
w

))
. For structure

learning with super-structures, we may further assume
that we are given scores only for parent sets that are
compatible with the super-structure, in which case the
input has size O(n2w). We will not, however, consider
the representation of the input in more detail, and
in the rest of the paper we will assume that we can
access scores fv(S) in constant time. This does not
have significant effect on the analysis.

Finally, we define functions f̂v by f̂v(S) =
maxT ⊆S fv(T ). That is, f̂v(S) is the highest local score
when the parents of node v are chosen from S. For
any set X, the values f̂v(S) for all sets S ⊆ X can
be computed from the values of fv in O

(|X|2|X|) time
and O

(
2|X|) space using dynamic programming (Ott

and Miyano, 2003).

2.3 Hardness

Srebro (2000) has shown that the problem of finding a
subgraph of an input graph G with tree-width at most
w and maximum number of edges is NP-hard for any
fixed w ≥ 2. The NP-hardness of learning bounded
tree-width Bayesian network structures follows by a
straightforward reduction.
Theorem 4. Finding an optimal Bayesian network
structure with tree-width at most w under a given scor-
ing function is NP-hard for any fixed w ≥ 2.

Proof. Let G = (V, E) be an undirected graph. Let
N = V ∪E, and define a score function on N by setting
fe({v, u}) = 1 for each edge e = {v, u} ∈ E, and let
fv(S) = 0 for any other node v ∈ N and potential
parent set S ⊆ N \ {v}. This transformation can be
computed in polynomial time.

Now we note that there is a subgraph (V, F ) of G with
|F | = m and tree-width at most w if and only if there
is a DAG D on N with f(D) = m and tree-width
at most w; furthermore, if we are given one, we can
compute the other in polynomial time. Since finding
the maximum bounded tree-width subgraph is known
to be NP-hard, the claim follows.

3 DECOMPOSING DAGS

In this section, we establish results that will be used to
prove the correctness of the algorithms we give later on.
The intuitive idea is that if (N, A) is a DAG of low tree-
width, then there is a small set X ⊆ N whose removal
will split A into two or more connected components.
We can exploit this property by finding optimal DAGs
that can act as these separate components, and then
“glue” these DAGs together at X. We now proceed to
formalise these ideas.

Let N be a set of nodes and let X ⊆ N with |X| = k.
For a permutation σ = σ1σ2 . . . σk of X and a set
S ⊆ X, we say that a DAG A is a (σ, S)-DAG on N if
the node set of A is N , it holds that A is compatible
with σ, that is, A ∪ {σpσp+1 : p = 1, 2, . . . , k − 1} is
acyclic, and for each v ∈ X \ S we have that Av = ∅.
For a (σ, S)-DAG A on N , we define the S-score of A
as fS(A) =

∑
v∈S∪(N\X) fv(Av). That is, the nodes in

X that are required to have empty parent sets do not
contribute to the score.

In the following, we assume that N is some node set,
and X, N1 and N2 are subsets of N such that N1∪N2 =
N and N1 ∩ N2 = X. Furthermore, we assume that σ
is a permutation of X and S ⊆ X.
Lemma 5. Let Z ⊆ S. If A is a (σ, Z)-DAG on N1
and B is a (σ, S \ Z)-DAG on N2, then A ∪ B is a
(σ, S)-DAG on N . Furthermore, we have

fS(A ∪ B) = fZ(A) + fS\Z(B) .

Proof. The claim follows almost directly from the defi-
nitions; the only non-trivial step to verify is that A ∪ B
is in fact acyclic. To see that A ∪ B is acyclic, assume
that there is a directed cycle C in A ∪ B. Since both A
and B are acyclic, there must be a node σi on cycle C.
But since both A and C are compatible with σ, each
maximal segment of C that consists only of edges in A
or only of edges in B goes from a node σj to a node σ�

for j < �, and thus the cycle cannot return to σi.

For a (σ, S)-DAG A on N , we say that a decomposition
of A over N1 and N2 is a pair (B, C), where B is a
(σ, Z)-DAG on N1 and C is a (σ, S \ Z)-DAG on N2
such that A = B ∪ C and Z ⊆ S. Note that if A has
such a decomposition (B, C), then by Lemma 5 we
have fS(A) = fZ(B) + fS\Z(C).
Lemma 6. Suppose that A is an (σ, S)-DAG on N
and suppose there are no arcs in A between N1 \ X and
N2 \X, and no v ∈ N , u ∈ N1 \X and w ∈ N2 \X such
that uv ∈ A and wv ∈ A. Then there is a decomposition
of A over N1 and N2.

Proof. Let Z = {v ∈ S : Av ⊆ N1}. Then the
DAGs B = {uv : v ∈ Z ∪ (N1 \ X)} and C =
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{uv : v ∈ (S \ Z) ∪ (N2 \ X)} clearly have the desired
properties.

Lemma 7. Suppose that A is a family of (σ, S)-DAGs
on N and that for each Z ⊆ S, we have that BZ is a
family of (σ, Z)-DAGs on N1 and CZ a family of (σ, Z)-
DAGs on N2. If each A ∈ A has a decomposition (B, C)
over N1 and N2 such that B ∈ BZ and C ∈ CS\Z for
some Z ⊆ S, and for each Z ⊆ S and DAGs B ∈ BZ

and C ∈ CS\Z it holds that B ∪ C ∈ A, then

max
A∈A

fS(A) = max
Z⊆S

(
max

B∈BZ

fZ(B) + max
C∈CS\Z

fS\Z(C)
)

.

Proof. Fix A ∈ A. Since A decomposes into B ∈ BZ

and C ∈ CS\Z for some Z ⊆ S, we have

fS(A) = fZ(B) + fS\Z(C)
≤ max

B∈BZ

fZ(B) + max
C∈CS\Z

fS\Z(C)

≤ max
Z⊆S

(
max

B∈BZ

fZ(B) + max
C∈CS\Z

fS\Z(C)
)

.

On the other hand, since B ∪ C ∈ A for all B ∈ BZ

and C ∈ CS\Z , there is a DAG in A with S-score

max
Z⊆S

(
max

B∈BZ

fZ(B) + max
C∈CS\Z

fS\Z(C)
)

.

4 LEARNING WITH
SUPER-STRUCTURES

We prove Theorem 2 first. The proof of this theorem
will act as a preliminary for the proof of Theorem 1 in
the next section.

To prove Theorem 2, we use dynamic programming
on the tree-decomposition of the underlying super-
structure. We will assume that parent sets that are
not compatible with the super-structure graph G have
score of −∞ and will thus not be picked by the algo-
rithm. That is, if for v ∈ V we have that S ⊆ V \ {v}
contains a node u such that {u, v} /∈ E, or nodes u and
s such that {u, s} /∈ E, then fv(S) = −∞.

Let G = (V, E) be the super-structure graph and let
(X, T ) be a nice tree-decomposition of G with root r
and X = {X1, X2, . . . , Xm}. For 1 ≤ i ≤ m, we denote
by Vi the union of bags below Xi in the tree.

Intuitively, our algorithm will proceed by computing
for each node i in T an optimal (σ, S)-DAG on Vi for
each permutation σ of Xi and S ⊆ Xi. We will show
that these can be computed by starting from the leaves
of T and proceeding upwards in the tree. Finally, in
the root r, we will have the optimal (σ, Xi)-DAG on
V for each permutation of Xi; taking the one with
the best score gives us the desired optimal Bayesian
network.

To formalise the intuition given above, let i ∈
{1, 2, . . . , m} and let k = |Xi|. For a permutation
σ = σ1σ2 . . . σk of Xi and S ⊆ Xi, we define

gi(σ, S) = max
A

fS(A) , (1)

where A ranges over (σ, S)-DAGs on Vi such that the
moralised graph of A is a subgraph of G[Vi]. It follows
immediately from this definition that the best DAG
on V has score maxσ gr(σ, Xr), where σ ranges over
the permutations of the root bag Xr. Furthermore,
we note that it suffices to show how these scores can
be computed, as the optimal DAG can then be recov-
ered using standard techniques; see e.g., Silander and
Myllymäki (2006).

The values gi(σ, Xi) can be computed using dynamic
programming on the tree-decomposition, starting from
the leaf nodes and going up in the tree. There are four
cases to consider, depending on the type of node Xi.

Leaf: Xi = {v} for v ∈ N . Then we have gi(v, ∅) = 0
and gi(v, {v}) = fv(∅).

Forget: Node i has a child j and Xi = Xj \ {v} for
v ∈ Xj . Now Vi = Vj , and directly by definition we
have that

gi(σ, S) = max
ητ=σ

gj(ηvτ, S ∪ {v}) (2)

for all permutations σ of Xi and S ⊆ Xi. Computing
(2) directly for all σ and S takes O(k2kk!) time.

Introduce: Node i has a child j and Xi = Xj ∪ {v}
for v /∈ Vj . First, we compute values f̂u(S) for u ∈
Xi and S ⊆ Xi \ {u}, which takes O(k2k) time as
noted in Section 2.2. Now suppose that σ = ηvτ is a
permutation of Xi and S ⊆ Xi. Denote by Pσ,u the
set of elements of Xi that appear before u in σ. Then
we have that

gi(σ, S) = max
Z⊆S\{v}

(
gj(ητ, Z) +

∑
u∈S\Z

f̂u(Pσ,u)
)

. (3)

To verify that (3) is correct, consider any (σ, S)-DAG A
on Vi. Since by Lemma 3 there are no edges {u, v} ∈ E
for u ∈ Vi \ Xi, Lemma 6 implies that A interpreted as
a (ητ, S \ {v})-DAG has a decomposition (B, C) over
Vi \ {v} and Xi, where B is a (ητ, Z \ {v})-DAG on
Vi\{v} and C is a (σ, S\Z)-DAG on Xi for some Z ⊆ S.
Furthermore, the moralised graphs of both B and C are
subgraphs of G. Finally, we note that the maximum
score for a (σ, Z)-DAG on Xi is

∑
u∈Z f̂u(Pσ,u). The

correctness of (3) now follows from Lemma 7.

Evaluating (3) for all σ and S can be done in time
O(k3kk!).

Join: Node i has children j and �, and Xi = Xj = X�.
By Lemma 3, there are no edges between Vj \ Xi and
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V� \ Xi in G. Thus any (σ, S)-DAG A on Vi has a
decomposition (B, C) over Vj \ Xi and V� \ Xi. Since
moralised graphs of both B and C are subgraphs of G,
Lemma 7 implies that

gi(σ, S) = max
Z⊆S

(
gj(σ, Z) + g�(σ, S \ Z)

)
. (4)

Evaluating (4) for all σ and S takes O(3kk!) time.

Summing the running times over all nodes in T , we
obtain the following.
Theorem 8. Given a graph G, a nice tree-
decomposition (X, T ) of G, and scoring functions fv

for each node v, we can find a DAG A whose moralised
graph is a subgraph of G maximising the score in time
O
(
(w + 1)! · w · 3w · n

)
, where w is the tree-width of G.

As noted in Section 2.1, a nice tree-decomposition of
the super-structure graph G can be obtained from G in
O(n) time. Thus, we obtain Theorem 2 as a corollary.

5 EXACT LEARNING WITH
BOUNDED TREE-WIDTH

We will now proceed to prove Theorem 1 by giving
a dynamic programming algorithm for the problem.
This algorithm is based on the same ideas as the
super-structure algorithm in Section 4, but here we
perform dynamic programming over all possible tree-
decompositions of width w. In the following, let w be
a fixed tree-width bound.

As noted in Section 2.1, each graph of tree-width w is
a subgraph of a w-tree. It follows that each graph G =
(V, E) of tree-width w has a rooted tree-decomposition
(X, T ) such that each bag Xi has size w + 1, and for
adjacent i and j we have that |Xi ∩ Xj | = w. By
applying an obvious transformation to (X, T ), we have
that G also has a rooted tree-decomposition (Y, Q) such
that each bag has size w + 1 and each node i in Q is
either

1. a leaf with no children,

2. a swap node that has one child j such that Yi =
(Yj \ {u}) ∪ {v} for some u ∈ Yj and v /∈ Yj , or

3. a join node that has two children j and � such
that Yi = Yj = Y�.

Furthermore, by the construction we can assume that
for a join node i with children j and �, both Vj

and V� contain vertices not in Xi. We will call
a tree-decomposition satisfying these conditions fat.
Thus, each graph G of tree-width w has a fat tree-
decomposition of width w.

Let now N be a node set and let X ⊆ N . For a permu-
tation σ of X and S ⊆ X, we say that a (σ, S)-DAG A
on N is rooted if A has a fat tree-decomposition with
root r and Xr = X. Furthermore, we say that A is join-
rooted or swap-rooted if there is a fat tree-decomposition
where the root node is of the corresponding type.

Now for X ⊆ N with |X| = w + 1, a permutation σ of
X, and sets S ⊆ X and M ⊇ X, we want to compute

g(σ, S, M) = max
A

fS(A) ,

where A ranges over rooted (σ, S)-DAGs on M with
tree-width at most w. Computing these values is suf-
ficient for finding an optimal DAG of tree-width w,
as the optimal DAG is rooted at some X ⊆ N with
|X| = w + 1, thus has score maxX,σ g(σ, X, N), where
X ranges over (w + 1)-subsets of N and σ ranges over
permutations of X.

We will now show that these values can be computed
using dynamic programming, starting from sets M ⊆ N
with |M | = w + 1. For any set M with |M | = w + 1
and a permutation σ of M , we note that a (σ, S)-DAG
A on M has a fat tree-decomposition whose root r is a
leaf node with Xr = M . Thus, any (σ, S)-DAG on M
is rooted, and we have that

g(σ, S, M) =
∑
u∈S

f̂u(Pσ,u) ,

as σ completely specifies the order of nodes in any
(σ, S)-DAG on M .

On the other hand, if M ⊆ N with |M | > w + 1, then
the optimal rooted (σ, S)-DAG on M can be either
join-rooted or swap-rooted. Therefore, we compute
values

J(σ, S, M) = max
B

fS(B) ,

where B ranges over join-rooted (σ, S)-DAGs on M
with tree-width at most w, and

K(σ, S, M) = max
C

fS(C) ,

where C ranges over swap-rooted (σ, S)-DAGs on M
with tree-width at most w. Then we have that

g(σ, S, M) = max
{

K(σ, S, M), J(σ, S, M)
}

.

The one special case is the sets M with |M | = w+2, as
then there cannot be a join-rooted (σ, S)-DAG on M .
Thus, for M with |M | = w + 2, we have g(σ, S, M) =
K(σ, S, M).

Join. First, we show how values J(σ, S, M) can be
computed. In the following, let M1 and M2 be sets such
that M1 ∪ M2 = M and M1 ∩ M2 = X. Furthermore,
assume that M1 �= X and M2 �= X.
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Lemma 9. If A is a rooted (σ, Z)-DAG on M1 and
B is a rooted (σ, S \ Z)-DAG on M2, then A ∪ B is a
join-rooted (σ, S)-DAG on M . Moreover, if A and B
have tree-width at most w, so does A ∪ B.

Proof. The claim follows from Lemma 5 and from
the observation that we can obtain the desired
tree-decomposition for A ∪ B by adding the tree-
decompositions of A and B as the children of a new
root node r with Xr = X.

Lemma 10. If A is a join-rooted (σ, S)-DAG on M ,
then there are sets M1 and M2 such that M1∪M2 = M ,
M1 ∩ M2 = X, M1 �= X, M2 �= X and A has a
decomposition (B, C) over M1 and M2 such that both
B and C are rooted at X. Moreover, if A has tree-width
at most w, so does B and C.

Proof. Let (X, T ) be a tree-decomposition of A with
root r such that Xr = X and r is a join node with
children i and j. Let M1 = Vi and M2 = Vj . Now by
Lemma 3 and Lemma 6, A has decomposition (B, C)
over M1 and M2. Noticing that the subtree of (X, T )
rooted at i is a tree-decomposition of B and the sub-
tree of (X, T ) rooted at j is a tree-decomposition of
C completes the proof, as both of these have width w
and root bag X.

For fixed M1 and M2, Lemma 9 implies that we can
apply Lemma 7 similarly as in the join case of the
super-structure algorithm, obtaining that the S-score
of the best join-rooted (σ, S)-DAG that decomposes
over M1 and M2 is

h(M1, M2) = max
Z⊆S

(
g(σ, Z, M1) + g(σ, S \ Z, M2)

)
.

As the optimal join-rooted (σ, S)-DAG on M decom-
poses over some M1 and M2 by Lemma 10, we have
that

J(σ, S, M) = max
M1∩M2=X
M1∪M2=M
M1,M2 �=X

h(M1, M2) . (5)

Evaluating (5) directly for fixed σ, S and M can be
done in time

O
(
n · 2|M\X| · 2|S|) = O

(
n · 2|M |+|S|−(w+1)) .

Swap. We now show how values K(σ, S, M) can be
computed. The following lemmas are analogous to
Lemmas 9 and 10, and we omit their proofs.
Lemma 11. Let Y ⊆ M with |Y | = w, and u ∈ M \Y
and v /∈ M . Furthermore, let σ = ηvτ be a permutation
of Y ∪ {v} and γ = ζuρ be a permutation of Y ∪ {u}
such that ητ = ζρ. If A is a (σ, S1)-DAG on Y ∪ {v}
and B is a rooted (γ, S2)-DAG on M , then A ∪ B is a
swap-rooted (σ, S1 ∪ S2)-DAG on M ∪ {v}. If B has
tree-width at most w, then so does A ∪ B.

Lemma 12. Let A be a swap-rooted (σ, S)-DAG on
M . Then there are nodes v ∈ X and u ∈ M \ X such
that, when we let σ = ηvτ and Y = (X \ {v}) ∪ {u},
there is a permutation γ = ζuρ of Y with ζρ = ητ ,
a (σ, S1)-DAG B on X and a rooted (γ, S2)-DAG C
on M \ {u} such that A = B ∪ C. Furthermore, the
tree-width of C is at most the tree-width of A.

For Y ⊆ M with |Y | = w and a permutation γ of Y ,
we first compute an auxiliary function F defined by

F (γ, Z, M) = max
A

fZ(A) ,

where A ranges over rooted (σ, S)-DAGs on M such
that σ is a permutation of a set X ⊆ M , for some
v ∈ M \ Y we have X = Y ∪ {v} and S = Z ∪ {v},
and σ = ηvτ with ητ = γ. It follows directly from the
definition that we can evaluate F as

F (γ, Z, M) = max
v∈M\Y

max
ητ=γ

g
(
ηvτ, Z ∪ {v}, M

)
. (6)

For a fixed v ∈ X, applying Lemmas 11 and 7 in a
similar fashion as in the introduce case of the super-
structure algorithm, we have that the maximum score
of a swap-rooted (σ, S)-DAG on M with tree-width at
most w such that the new node in the root bag is v is

κ(v) = max
Z⊆S\{v}

(
F (σ, Z, M \{v}) +

∑
u∈S\Z

f̂u(Pσ,u)
)

.

It then follows from Lemma 12 that the maximum score
can be obtained by optimising over v, that is, we have

K(σ, S, M) = max
v∈X

κ(v) . (7)

Finally, we note that evaluating (6) for fixed γ, Z and
M can be done in time O

(
w2), and when the required

values of F have been evaluated beforehand, (7) can
be evaluated in time O

(
2|S|w

)
.

The total number of tuples (σ, S, M) for all X ⊆ N is
(w + 1)!

(
n

w+1

)
2n. By summing the running times over

all these tuples and estimating
(

n
w+1

) ≤ nw+1/(w + 1)!,
we have that the total running time of our exact al-
gorithm is 3nnw+O(1). Furthermore, we note that we
need to store all values of g during the dynamic pro-
gramming, meaning that the total space requirement
of the algorithm is 2nnw+O(1). Thus, we have proven
Theorem 1.
Remark 13. It is possible to recover a tree-
decomposition for width w for the optimal DAG with-
out extra computational cost in an obvious way.
Remark 14. By omitting the join step from the al-
gorithm described in this section we can obtain a
2nnw+O(1) time algorithm for finding networks of
bounded path-width.
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6 EXPERIMENTS

To complement our theoretical results, we constructed
a proof-of-concept implementation of the dynamic pro-
gramming algorithm of Theorem 1 and tested it on
real-world data sets2. In this section, we will discuss
the performance of our implementation and provide
examples of bounded tree-width networks on real-world
data sets.

The implementation was made in Python, using cython
compiler3 to compile the most computationally demand-
ing parts of the code to C, and the experiments were run
under Linux on blade servers with 2.53-GHz processors
and 32 GB of memory. We tested our implementation
on two datasets, Adult (15 variables, 32,561 samples)
and Housing (14 variables, 506 samples), downloaded
from the UCI machine learning repository (Frank and
Asuncion, 2010). We discretised all variables into bi-
nary variables, and as the local scores, we used BDeu
scores with equivalent sample size 1.

Finding optimal networks of tree-width at most 2 with
our algorithm took 13,086 and 3,220 seconds for Adult
and Housing respectively; the reported times are user
times measured using time and they include the dy-
namic programming itself and the recovery of the op-
timal network structure, but exclude the time needed
for computing the local scores. We also benchmarked
the implementation on various variable subsets of the
aforementioned datasets with w = 1, w = 2, and w = 3,
and the results were in line with theoretical bounds
of Theorem 1. For n = 14 and w = 3, our implemen-
tation ran into problems with memory requirements,
but this is mostly caused by an inefficient choice of
data structure for storing dynamic programming values
indexed by triples (σ, S, M), and these limits should
be circumventable by a good choice of data structures
and some careful algorithm engineering.

An example of optimal bounded tree-width networks
for Housing found is shown in Figure 1. The network
with unbounded tree-width is quite complex, with tree-
width at least 6, so the networks with tree-width 1
and 2 are rough approximations. Indeed, the optimal
network has score -3080, while the scores for bounded
tree-width networks are -3295 for w = 2 and -3479 for
w = 1. The optimal network with tree-width 2 has 23
arcs, meaning that is relatively dense, as a tree-width
2 network on 14 nodes can have at most 25 arcs. The
most connected node is NOX, with 9 neighbours, in
contrast to the optimal unbounded network, where
NOX has only 5 neighbours. This hints that the more
complex structure may allow representing dependencies

2The implementation is available at http://www.cs.
helsinki.fi/u/jazkorho/aistats-2013/.

3http://www.cython.org

indirectly. Overall, however, we do not feel that these
examples suggest any hitherto unknown features of
bounded tree-width networks as a model class. A more
thorough study is warranted in the future.
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Figure 1: An optimal network for Housing for tree-
width bound (a) w = 1, (b) w = 2, and (c) unbounded
tree-width.
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Abstract. We study the parameterized complexity of separating a small
set of vertices from a graph by a small vertex-separator. That is, given a
graph G and integers k, t, the task is to find a vertex set X with |X| ≤ k
and |N(X)| ≤ t. We show that

– the problem is fixed-parameter tractable (FPT) when parameterized
by t but W[1]-hard when parameterized by k, and

– a terminal variant of the problem, where X must contain a given
vertex s, is W[1]-hard when parameterized either by k or by t alone,
but is FPT when parameterized by k + t.

We also show that if we consider edge cuts instead of vertex cuts, the
terminal variant is NP-hard.

1 Introduction

We investigate two related problems that concern separating a small vertex set
from a graph G = (V, E). Specifically, we consider finding a vertex set X of size
at most k such that
1. X is separated from the rest of V by a small cut (e.g. finding communities

in a social network, cf. [14]), or
2. X is separated from the rest of V by a small cut and contains a specified

terminal vertex s (e.g. isolating a dangerous node, cf. [11,13]).
We focus on parameterized complexity of the vertex-cut versions of these problems.

Parameterized Vertex Cuts. Our interest in the vertex-cut version stems
from the following parameterized separation problem, studied by Marx [16]. Let
N(X) denote the vertex-neighborhood of X .

Cutting k Vertices
Input: Graph G = (V, E), integers k ≥ 1, t ≥ 0
Parameter 1: k
Parameter 2: t
Question: Is there a set X ⊆ V such that |X| = k and |N(X)| ≤ t?

K. Chatterjee and J. Sgall (Eds.): MFCS 2013, LNCS 8087, pp. 421–432, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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In particular, Marx showed that Cutting k Vertices is W[1]-hard even
when parameterized by both k and t. We contrast this result by investigating the
parameterized complexity of the two related separation problems with relaxed
requirement on the size of the separated set X .

Cutting at Most k Vertices
Input: Graph G = (V, E), integers k ≥ 1, t ≥ 0
Parameter 1: k
Parameter 2: t
Question: Is there a non-empty set X ⊆ V such that |X| ≤ k and |N(X)| ≤ t?

Cutting at Most k Vertices with Terminal
Input: Graph G = (V, E), terminal vertex s, integers k ≥ 1, t ≥ 0
Parameter 1: k
Parameter 2: t
Question: Is there a non-empty set X ⊆ V such that s ∈ X, |X| ≤ k and
|N(X)| ≤ t?

We show that these closely related problems exhibit quite different complex-
ity behaviors. In particular, we show that Cutting at Most k Vertices is
fixed-parameter tractable (FPT) when parameterized by the size of the separa-
tor t, while we need both k and t as parameters to obtain an FPT algorithm
for Cutting at Most k Vertices with Terminal. A full summary of the
parameterized complexity of these problems and our results is given in Table 1.

The main algorithmic contribution of our paper is the proof that Cutting at
most k vertices is FPT when parameterized by t (Theorem 2). To obtain this
result, we utilize the concept of important separators introduced by Marx [16].
However, a direct application of important separators—guess a vertex contained
in the separated set, and find a minimal set containing this vertex that can
be separated from the remaining graph by at most t vertices—does not work.
Indeed, pursuing this approach would bring us to essentially solving Cutting at
most k vertices with terminal, which is W[1]-hard when parameterized by
t. Our FPT algorithm is based on new structural results about unique important

Table 1. Parameterized complexity of Cutting k Vertices, Cutting at Most k
Vertices, and Cutting at Most k Vertices with Terminal

Parameter Cutting k Vertices Cutting ≤ k Vertices Cutting ≤ k Vertices
with Terminal

k W[1]-hard, [16] W[1]-hard, Thm 3 W[1]-hard, Thm 3
t W[1]-hard, [16] FPT, Thm 2 W[1]-hard, Thm 5

k and t W[1]-hard, [16] FPT, Thm 1 FPT, Thm 1
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separators of minimum size separating pairs of vertices. We also observe that it
is unlikely that Cutting at most k vertices has a polynomial kernel.

Edge Cuts. Although our main focus is on vertex cuts, we will also make some
remarks on the edge-cut versions of the problems. In particular, the edge-cut
versions again exhibit a different kind of complexity behavior. Let ∂(X) denote
the edge-boundary of X .

Cutting at Most k Vertices by Edge-Cut
Input: Graph G = (V, E), integers k ≥ 1, t ≥ 0
Parameter 1: k
Parameter 2: t
Question: Is there a non-empty set X ⊆ V such that |X| ≤ k and |∂(X)| ≤ t?

Cutting k Vertices by Edge-Cut with Terminal
Input: Graph G = (V, E), terminal vertex s, integers k ≥ 1, t ≥ 0
Parameter 1: k
Parameter 2: t
Question: Is there a set X ⊆ V such that s ∈ X, |X| ≤ k and |∂(X)| ≤ t?

Results by Watanabe and Nakamura [19] imply that Cutting at most k
vertices by edge-cut can be done in polynomial time even when k and t
are part of the input; more recently, Armon and Zwick [2] have shown that this
also holds in the edge-weighted case. Lokshtanov and Marx [15] have proven
that Cutting at most k vertices by edge-cut with terminal is fixed-
parameter tractable when parameterized by k or by t; see also [5]. We complete
the picture by showing that Cutting at most k vertices by edge-cut with
terminal is NP-hard (Theorem 6). The color-coding techniques we employ in
Theorem 1 also give a simple algorithm with running time 2k+t+o(k+t) · nO(1).

Related edge-cut problems have received attention in the context of approxi-
mation algorithms. In contrast to Cutting at most k vertices by edge-cut,
finding a minimum-weight edge-cut that separates exactly k vertices is NP-hard.
Feige et al. [9] give a PTAS for k = O(log n) and an O(k/ log n)-approximation
for k = Ω(log n); Li and Zhang [14] give an O(log n)-approximation. Approxima-
tion algorithms have also been given for unbalanced s-t-cuts, where s and t are
specified terminal vertices and the task is to find an edge cut (X, V \ X) with
s ∈ X and t ∈ V \ S such that (a) |X | ≤ k and weight of the cut is minimized
[11,14], or (b) weight of the cut is at most w and |X | is minimized [13].

2 Basic Definitions and Preliminaries

Graph Theory. We follow the conventions of Diestel [7] with graph-theoretic
notations. We only consider finite, undirected graphs that do not contain loops
or multiple edges. The vertex set of a graph G is denoted by V (G) and the edge
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set is denoted by E(G), or simply by V and E, respectively. Typically we use n
to denote the number of vertices of G and m the number of edges.

For a set of vertices U ⊆ V (G), we write G[U ] for the subgraph of G induced
by U , and G−U for the graph obtained form G by the removal of all the vertices
of U , i.e., the subgraph of G induced by V (G) \ U . Similarly, for a set of edges
A, the graph obtained from G by the removal of all the edges in A is denoted
by G − A.

For a vertex v, we denote by NG(v) its (open) neighborhood, that is, the set
of vertices which are adjacent to v. The degree of a vertex v is dG(v) = |NG(v)|.
For a set of vertices U ⊆ V (G), we write NG(U) = ∪v∈U NG(v)\U and ∂G(U) =
{uv ∈ E(G) | u ∈ U, v ∈ V (G) \ U}. We may omit subscripts in these notations
if there is no danger of ambiguity.

Submodularity. We will make use of the well-known fact that given a graph
G, the mapping 2V → Z defined by U �→ |N(U)| is submodular. That is, for
A, B ⊆ V we have

|N(A ∩ B)| + |N(A ∪ B)| ≤ |N(A)| + |N(B)| . (1)

Important Separators. Let G be a graph. For disjoint sets X, Y ⊆ V , a vertex
set S ⊆ V \ (X ∪ Y ) is a (vertex) (X, Y )-separator if there is no path from X to
Y in G − S. An edge (X, Y )-separator A ⊆ E is defined analogously. Note that
we do not allow deletion of vertices in X and Y , and thus there are no vertex
(X, Y )-separators if X and Y are adjacent. As our main focus is on the vertex-
cut problems, all separators are henceforth vertex-separators unless otherwise
specified.

We will make use of the concept of important separators, introduced by
Marx [16]. A vertex v is reachable from a set X ⊆ V if G has a path that
joins a vertex of X and v. For any sets S and X ⊆ V \ S, we denote the set
of vertices reachable from X in G − S by R(X, S). An (X, Y )-separator S is
minimal if no proper subset of S is an (X, Y )-separator. For (X, Y )-separators
S and T , we say that T dominates S if |T | ≤ |S| and R(X, S) is a proper subset
of R(X, T ). For singleton sets, we will write x instead of {x} in the notations
defined above.

Definition 1 ([16]). An (X, Y )-separator S is important if it is minimal and
there is no other (X, Y )-separator dominating S.

In particular, this definition implies that for any (X, Y )-separator S there exists
an important (X, Y )-separator T with |T | ≤ |S| and R(X, T ) ⊇ R(X, S). If S is
not important, then at least one of the aforementioned relations is proper.

The algorithmic usefulness of important separators follows from the fact that
the number of important separators of size at most t is bounded by t alone, and
furthermore, these separators can be listed efficiently. Moreover, minimum-size
important separators are unique and can be found in polynomial time. That is,
we will make use of the following lemmas.
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Lemma 1 ([6]). For any disjoint sets X, Y ⊆ V , the number of important
(X, Y )-separators of size at most t is at most 4t, and all important (X, Y )-
separators of size at most t can be listed in time 4t · nO(1).

Lemma 2 ([16]). For any sets X, Y ⊆ V , if there exists an (X, Y )-separator,
then there is exactly one important (X, Y )-separator of minimum size. This sep-
arator can be found in polynomial time.

Parameterized Complexity. We will briefly review the basic notions of pa-
rameterized complexity, though we refer to the books of Downey and Fellows [8],
Flum and Grohe [10], and Niedermeier [18] for a detailed introduction. Param-
eterized complexity is a two-dimensional framework for studying the computa-
tional complexity of a problem; one dimension is the input size n and another
one is a parameter k. A parameterized problem is fixed-parameter tractable (or
FPT) if it can be solved in time f(k) ·nO(1) for some function f , and in the class
XP if it can be solved in time O

(
nf(k)) for some function f .

Between FPT and XP lies the class W[1]. One of basic assumptions of the
parameterized complexity theory is the conjecture that W[1] �= FPT, and it
is thus held to be unlikely that a W[1]-hard problem would be in FPT. For
exact definition of W[1], we refer to the books mentioned above. We mention
only that Indpendent Set and Clique parameterized by solution size are two
fundamental problems that are known to be W[1]-complete.

The basic way of showing that a parameterized problem is unlikely to be
fixed-parameter tractable is to prove W[1]-hardness. To show that a problem is
W[1]-hard, it is enough to give a parameterized reduction from a known W[1]-
hard problem. That is, let A, B be parameterized problems. We say that A is
(uniformly many-one) FPT-reducible to B if there exist functions f, g : N → N,
a constant c ∈ N and an algorithm A that transforms an instance (x, k) of A
into an instance (x′, g(k)) of B in time f(k)|x|c so that (x, k) ∈ A if and only if
(x′, g(k)) ∈ B.

Cutting Problems with Parameters k and t. In the remainder of this
section, we consider Cutting at most k vertices, Cutting at most k ver-
tices with terminal, and Cutting at most k vertices by edge-cut with
terminal with parameters k and t. We first note that if there exists a solution
for one of the problems, then there is also a solution in which X is connected;
indeed, it suffices to take any maximal connected Y ⊆ X . Furthermore, we note
finding a connected set X with |X | = k and |N(X)| ≤ t is fixed-parameter
tractable with parameters k and t due to a result by Marx [16, Theorem 13],
and thus Cutting at most k vertices is also fixed-parameter tractable with
parameters k and t.

We now give a simple color-coding algorithm [1,4] for the three problems
with parameters k and t, in particular improving upon the running time of the
aforementioned algorithm for Cutting at most k vertices.
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Theorem 1. Cutting at most k vertices, Cutting at most k vertices
with terminal, and Cutting at most k vertices by edge-cut with
terminal can be solved in time 2k+t · (k + t)O(log(k+t)) · nO(1).

Proof. We first consider a 2-colored version of Cutting at most k vertices.
That is, we are given a graph G where each vertex is either colored red or blue
(this is not required to be a proper coloring), and the task is to find a connected
red set X with |X | ≤ k such that N(X) is blue and |N(X)| ≤ t. If such a set
exists, it can be found in polynomial time by trying all maximal connected red
sets.

Now let G = (V, E) be a graph. Assume that there is a set X with |X | ≤ k
and |N(X)| ≤ t; we may assume that X is connected. It suffices to find a coloring
of V such that X is colored red and N(X) is colored blue. This can be done
by coloring each vertex v either red or blue independently and uniformly at
random. Indeed, this gives a desired coloring with probability at least 2−(k+t),
which immediately yields a 2k+t ·nO(1) time randomized algorithm for Cutting
at Most k Vertices.

This algorithm can be derandomized in standard fashion using universal sets
(compare with Cai et al. [4]). Recall that a (n, �)-universal set is a collection of
binary vectors of length n such that for each index subset of size �, each of the 2�

possible combinations of values appears in some vector of the set. A construction
of Naor et al. [17] gives a (n, �)-universal set of size 2� · �O(log �) log n that can be
listed in linear time. It suffices to try all colorings induced by a (n, k+t)-universal
set obtained trough this construction.

The given algorithm works for Cutting at most k vertices with termi-
nal with obvious modifications. That is, given a coloring, we simply check if the
terminal s is red and its connected red component is a solution. This also works
for Cutting at most k vertices by edge-cut with terminal, as we have
|N(X)| ≤ |∂(X)|.

3 Cutting at Most k Vertices Parameterized by t

In this section we show that Cutting at Most k Vertices is fixed-parameter
tractable when parameterized by the size of the separator t only. Specifically, we
will prove the following theorem.

Theorem 2. Cutting at Most k Vertices can be solved in time 4t · nO(1).

The remainder of this section consists of the proof of Theorem 2. Note that we
may assume 3

4 t < k < n − t. Indeed, if k ≤ ct for a fixed constant c < 1, then we
can apply the algorithm of Theorem 1 to solve Cutting at Most k Vertices
in time 4tnO(1). On the other hand, if k ≥ n − t, then any vertex set X of size
k is a solution, as |N(X)| ≤ n − k ≤ t.

We start by guessing a vertex u ∈ V that belongs to a solution set X if one
exists; specifically, we can try all choices of u. We cannot expect to necessarily
find a solution X that contains the chosen vertex u, even if the guess is correct,
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as the terminal variant is W[1]-hard. We will nonetheless try; turns out that the
only thing that can prevent us from finding a solution containing u is that we
find a solution not containing u.

With u fixed, we compute for each v ∈ V \ ({u} ∪ N(u)) the unique minimum
important (u, v)-separator Sv. This can be done in polynomial time by Lemma
2. Let V0 be set of those v with |Sv| ≤ t, and denote R(v) = R(v, Sv). Finally, let
X be a set family consisting of those R(v) for v ∈ V0 that are inclusion-minimal,
i.e., if R(v) ∈ X, then there is no w ∈ V0 such that R(w) � R(v). Note that we
can compute the sets V0, R(v) and X in polynomial time.

There are now three possible cases that may occur.

1. If V0 = ∅, we conclude that we have no solution containing u.
2. If there is v ∈ V0 such that |R(v)| ≤ k, then X = R(v) gives a solution, and

we stop and return a YES-answer.
3. Otherwise, X is non-empty and for all sets A ∈ X we have |A| > k.

We only have to consider the last case, as otherwise we are done. We will show that
in that case, the sets A ∈ X can be used to find a solution X containing u if one
exists. For this, we need the following structural results about the sets R(v).

Lemma 3. For any v, w ∈ V0, if w ∈ R(v) then R(w) ⊆ R(v).

Proof. Let A = R(v) and B = R(w). Since Sv = N(A) is a (u, v)-separator of
minimum size, we must have |N(A ∪ B)| ≥ |N(A)|. By (1), we have

|N(A ∩ B)| ≤ |N(A)| + |N(B)| − |N(A ∪ B)| ≤ |N(B)| .

Because w ∈ A, the set N(A ∩ B) is a (u, w)-separator. Thus, if B �= A ∩ B,
then N(A ∩ B) is a (u, w)-separator that witnesses that Sw is not an important
separator. But this is not possible by the definition of Sw, so we have B =
A ∩ B ⊆ A.

Lemma 4. Any distinct A, B ∈ X are disjoint.

Proof. Assume that A, B ∈ X are distinct and intersect. Then there is v ∈ A∩B.
Since v ∈ A, the set N(A) is a (u, v)-separator of size at most t, and v ∈ V0.
Recall that X contains inclusion-minimal sets R(w) for w ∈ V0. But by Lemma 3,
R(v) is a proper subset of both A and B, which is not possible by the definition
of X.

Now assume that the input graph G has a solution for Cutting at Most k
Vertices containing u. In particular, then there is an inclusion-minimal set
X ⊆ V with u ∈ X satisfying |X | ≤ k and |N(X)| ≤ t. Let us fix one such
set X .

Lemma 5. For all A ∈ X, the set A is either contained in X ∪ N(X) or does
not intersect it.
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Proof. Suppose that there is a set A ∈ X that intersects both X ∪ N(X) and its
complement. Let Y = V \ (X ∪ N(X)).

Now let v ∈ A ∩ Y . By Lemma 3, we have R(v) = A. If |N(A ∪ Y )| > |N(Y )|
then it follows from (1) that

|N(A ∩ Y )| ≤ |N(A)| + |N(Y )| − |N(A ∪ Y )| < |N(A)| .

However, this would imply that N(A ∩ Y ) is a (u, v)-separator smaller than
Sv = N(A).

Thus, we have |N(A ∪ Y )| ≤ |N(Y )|. But X ′ = X \ (A ∪ Y ∪ N(A ∪ Y )) is a
proper subset of X ; furthermore, any vertex of N(X ′) that is not in N(A∪Y ) is
also in N(X)\ N(Y ), so we have |N(X ′)| ≤ |N(X)| ≤ t. This is in contradiction
with the minimality of X .

Lemma 6. Let Z be the union of all A ∈ X that do not intersect X ∪ N(X).
Then Z �= ∅ and there is an important (Z, u)-separator S of size at most t such
that |R(u, S)| + |S| ≤ k + t.

Proof. Let S = N(X). Consider an arbitrary v ∈ V \ (X ∪S); such vertex exists,
since k + t < n. Since S separates v from u, the set R(v) is well-defined.

Suppose now that R(v) is not contained in R(v, S). Let B = R(u, Sv). Since Sv

is a minimum-size (u, v)-separator we have |N(B)| = |N(R(v))|. But N(X ∪ B)
also separates u and v, so we have |N(X ∪ B)| ≥ |N(R(v))| = |N(B)|. By (1),
we have

|N(X ∩ B)| ≤ |N(X)| + |N(B)| − |N(X ∪ B)| ≤ |N(X)| ≤ t .

But since R(v) is not contained R(v, S), it follows that X ∩ B is a proper subset
of X , which contradicts the minimality of X .

Thus we have R(v) ⊆ R(v, S). It follows that R(v, S) contains a set A ∈ X,
which implies that Z �= ∅ and v ∈ R(A, S) ⊆ R(Z, S). Furthermore, since
v ∈ V \ (X ∪ S) was chosen arbitrarily, we have that R(Z, S) = V \ (X ∪ S).

If S is an important (Z, u)-separator, we are done. Otherwise, there is an
important (Z, u)-separator T with |T | ≤ |S| and R(Z, S) ⊆ R(Z, T ). But then
we have |T | ≤ t, and R(u, T ) ∪ T ⊆ X ∪ S, that is, |R(u, T ) ∪ T | ≤ k + t.

Recall now that we may assume |A| > k for all A ∈ X. Furthermore, we have
|X ∪ N(X)| ≤ k + t <

(
2 + 1

3

)
k and the sets A ∈ X are disjoint by Lemma 4.

Thus, at most two sets A ∈ X fit inside X ∪N(X) by Lemma 5. This means that
if we let Z be the union of all A ∈ X that do not intersect X ∪ N(X), then as we
have already computed X, we can guess Z by trying all O(n2) possible choices.

Assume now that X is a minimal solution containing u and our guess for Z
is correct. We enumerate all important (Z, u)-separators of size at most t. We
will find by Lemma 6 an important (Z, u)-separator S such that |S| ≤ t and
|R(u, S)| + |S| ≤ k + t. If |R(u, S)| ≤ k, we have found a solution. Otherwise,
we delete a set S′ of |R(u, S)| − k elements from R(u, S) to obtain a solution
X ′. To see that this suffices, observe that N(X ′) ⊆ S′ ∪ S. Therefore, |N(X ′)| ≤
|S′| + |S| = |R(u, S)| − k + |S| ≤ t. As all important (Z, u)-separators can be
listed in time 4t · nO(1) by Lemma 1, the proof of Theorem 2 is complete.
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4 Hardness Results

We start this section by complementing Theorem 2, as we show that Cutting
at Most k Vertices is NP-complete and W[1]-hard when parameterized by
k. We also show that same holds for Cutting at Most k Vertices with
Terminal. Note that both of these problems are in XP when parameterized by
k, as they can be solved by checking all vertex subsets of size at most k.

Theorem 3. Cutting at Most k Vertices and Cutting at Most k Ver-
tices with Terminal are NP-complete and W[1]-hard with the parameter k.

Proof. We prove the W[1]-hardness claim for Cutting at Most k Vertices
by a reduction from Clique. Recall that this W[1]-complete (see [8]) problem
asks for a graph G and a positive integer k where k is a parameter, whether G
contains a clique of size k. Let (G, k) be an instance of Clique, n = |V (G)|
and m = |E(G)|; we construct an instance (G′, k′, t) of Cutting at Most k
Vertices as follows. Let HV be a clique of size n3 and identify n vertices of HV

with the vertices of G. Let HE be a clique of size m and identify the vertices of
HE with the edges of G. Finally, add an edge between vertex v of HV and vertex
e of HE whenever v is incident to e in G. Set k′ =

(
k
2

)
and t = k + m − (

k
2

)
. The

construction is shown in Fig. 1 a).
If G has a k-clique K, then for the set X that consists of the vertices e of HE

corresponding to edges of K we have |X | =
(

k
2

)
and |NG′(X)| = k + m − (

k
2

)
.

On the other hand, suppose that there is a set of vertices X of G′ such that
|X | ≤ k′ and |NG′(X)| ≤ t. First, we note that X cannot contain any vertices of
HV , as then NG′(X) would be too large. Thus, the set X consists of vertices of
HE . Furthermore, we have that |X | =

(
k
2

)
. Indeed, assume that this is not the

case. If |X | ≤ (
k−1

2

)
=
(

k
2

) − k, then, since X has at least one neighbor in HV ,
we have

|NG′(X)| ≥ m − |X | + 1 ≥ m −
(

k

2

)
+ k + 1 ,

and if
(

k−1
2

)
< |X | <

(
k
2

)
, then X has at least k neighbors in HV , and thus

|NG′(X)| ≥ m − |X | + k > m −
(

k

2

)
+ k .

Thus, we have that X only consist of vertices of HE and |X | =
(

k
2

)
. But then

the vertices of HV that are in NG′(X) form a k-clique in G.
The W[1]-hardness proof for Cutting at Most k Vertices with Termi-

nal uses the same arguments. The only difference is that we add the terminal s
in the clique HE and let k′ =

(
k
2

)
+ 1 (see Fig. 1 b).

Because Clique is well known to be NP-complete [12] and our parameterized
reductions are polynomial in k, it immediately follows that Cutting at Most
k Vertices and Cutting at Most k Vertices with Terminal are NP-
complete.
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While we have an FPT-algorithm for Cutting at Most k Vertices when
parameterized by k and t or by t only, it is unlikely that the problem has a
polynomial kernel (we refer to [8,10,18] for the formal definitions of kernels). Let
G be a graph with s connected components G1, . . . , Gs, and let k ≥ 1, t ≥ 0 be
integers. Now (G, k, t) is a YES-instance of Cutting at Most k Vertices if
and only if (Gi, k, t) is a YES-instance for some i ∈ {1, . . . , s}, because it can
always be assumed that a solution is connected. By the results of Bodlaender et
al. [3], this together with Theorem 3 implies the following.

Theorem 4. Cutting at Most k Vertices has no polynomial kernel when
parameterized either by k and t or by t only, unless NP ⊆ coNP/poly.

s

n

HV

u v

HE e = uv

n

HV

u v

HE e = uvs

a) b)

u v

E e = uv

V

c)

Fig. 1. Constructions of G′ in the proofs of Theorems 3 and 5

We will next show that when we consider the size of the separator t as the sole
parameter, adding a terminal makes the problem harder. Indeed, while Cutting
at Most k Vertices with Terminal with parameter t is trivially in XP, we
next show that it is also W[1]-hard, in contrast to Theorem 2.

Theorem 5. Cutting at Most k Vertices with Terminal is W[1]-hard
with parameter t.

Proof. Again, we prove the claim by a reduction from Clique. Let (G, k) be a
clique instance, n = |V (G)| and m = |E(G)|; we create an instance (G′, k′, t, s) of
Cutting at Most k Vertices with Terminal. The graph G′ is constructed
as follows. Create a new vertex s as the terminal. For each vertex and edge of G,
add a corresponding vertex to G′, and add an edge between vertices v and e in
G′ when e is incident to v in G. Finally, connect all vertices of G′ corresponding
to vertices of G to the terminal s, and set k′ = n − k + m − (

k
2
)

+ 1 and t = k.
The construction is shown in Fig. 1 c).

If G has a k-clique K, then cutting away the k vertices of G′ corresponding
to K leaves exactly n − k + m − (

k
2

)
+ 1 vertices in the connected component of

G′ − K containing s. Now suppose that X ⊆ V (G′) is a set with s ∈ X such
that |X | ≤ k′ and |NG′(X)| ≤ t, and let S = NG′(X). Note that the elements of
V (G′) that do not belong to X are exactly the elements v ∈ S and the vertices
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corresponding to e = uv such that u, v ∈ S and e /∈ S; denote this latter set of
elements by E0. Since X is a solution, we have |S| + |E0| ≥ (

k
2

)
+ k, and thus

|E0| ≥ (
k
2

)
. But this is only possible if S is a k-clique in G.

Finally, we show that Cutting at most k vertices by edge-cut with
terminal is also NP-hard.

Theorem 6. Cutting at most k vertices by edge-cut with terminal
is NP-complete.

Proof. We give a reduction from the Clique problem. It is known that this prob-
lem is NP-complete for regular graphs [12]. Let (G, k) be an instance of Clique,
with G being a d-regular n-vertex graph. We create an instance (G′, k′, t, s) of
Cutting k Vertices by Edge-Cut with Terminal as follows. The graph
G′ is constructed by starting from a base clique of size dn. One vertex in this
base clique is selected as the terminal s, and we additionally distinguish d spe-
cial vertices. For each v ∈ V (G), we add a new vertex to G′, and add an edge
between this vertex and all of the d distinguished vertices of the base clique. For
each edge e = uv in G, we also add a new vertex to G′, and add edges between
this vertex and vertices corresponding to u and v. The construction is shown in
Fig. 2. We set k′ = dn + k +

(
k
2

)
and t = dn − 2

(
k
2

)
.

E

d

s

u v

e = uv

base clique

V

Fig. 2. Construction of G′ in the proof of Theorem 6

If G has a k-clique K, then selecting as X the base clique and all vertices of
G′ corresponding to vertices and edges of K gives a solution to (G′, k′, t, s), as
we have |X | = dn + k +

(
k
2

)
and |∂(X)| = (dn − dk) +

(
dk − 2

(
k
2

))
= dn − 2

(
k
2

)
.

For the other direction, consider any solution X to instance (G′, k′, t, s). The
set X must contain the whole base clique, as otherwise there are at least dn − 1
edges inside the base clique that belong to ∂(X). Let V0 ⊆ V and E0 ⊆ E be the
subsets of X corresponding to vertices and edges of G, respectively. If E0 = ∅,
then |∂(X)| = dn. Assume now that V0 is fixed, and consider how adding vertices
to E0 changes |∂(X)|. For each edge e ∈ E(G), if neither of the endpoints of e
is in V0, then adding e to E0 adds 2 to |∂(X)|. If exactly one of the endpoints
of e is in V0, then adding e to E0 does not change |∂(X)|. Finally, if both of the
endpoints of e are in V0, then adding e to E0 reduces |∂(X)| by 2. Thus, in order
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to have |∂(X)| ≤ dn − 2
(

k
2

)
, we must have that |E0| ≥ (

k
2

)
and the endpoints of

all edges in E0 are in V0. But due to the requirement that |X | ≤ dn + k +
(

k
2

)
,

this is only possible if V0 induces a clique in G.
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Abstract. Given a Boolean function as input, a fundamental problem is to find a
Boolean circuit with the least number of elementary gates (AND, OR, NOT) that
computes the function. The problem generalises naturally to the setting of mul-
tiple Boolean functions: find the smallest Boolean circuit that computes all the
functions simultaneously. We study an NP-complete variant of this problem ti-
tled Ensemble Computation and, especially, its relationship to the Boolean satisfi-
ability (SAT) problem from both the theoretical and practical perspectives, under
the two monotone circuit classes: OR-circuits and SUM-circuits. Our main re-
sult relates the existence of nontrivial algorithms for CNF-SAT with the problem
of rewriting in subquadratic time a given OR-circuit to a SUM-circuit. Further-
more, by developing a SAT encoding for the ensemble computation problem and
by employing state-of-the-art SAT solvers, we search for concrete instances that
would witness a substantial separation between the size of optimal OR-circuits
and optimal SUM-circuits. Our encoding allows for exhaustively checking all
small witness candidates. Searching over larger witness candidates presents an
interesting challenge for current SAT solver technology.

1 Introduction

A fundamental problem in computer science both from the theoretical and practical per-
spectives is program optimisation, i.e., the task of finding the most efficient sequence
of elementary operations that carries out a specified computation. As a concrete exam-
ple, suppose we have eight variables x1, x2, . . . , x8 and our task is to compute each
of the eight sums depicted in Fig. 1. What is the minimum number of SUM gates that
implement this computation?

This is an instance of a problem that plays a key role in Valiant’s study [18] of
circuit complexity over a monotone versus a universal basis; Fig. 1 displays Valiant’s
solution. More generally, the problem is an instantiation of the NP-complete Ensemble
Computation problem [8]:

(SUM-)Ensemble Computation. Given as input a collection Q of nonempty
subsets of a finite set P and a nonnegative integer b, decide (yes/no) whether
there is a sequence

Z1 ← L1 ∪R1, Z2 ← L2 ∪R2, . . . , Zb ← Lb ∪Rb

� This research is supported in part by Academy of Finland (grants 132812 and 251170 (MJ),
252083 and 256287 (PK), and 125637 (MK)), and by Helsinki Doctoral Programme in Com-
puter Science - Advanced Computing and Intelligent Systems (JK).

A. Cimatti and R. Sebastiani (Eds.): SAT 2012, LNCS 7317, pp. 369–382, 2012.
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x₁
x₂
x₃
x₄
x₅
x₆
x₇
x₈

  x₂ + x₃ + x₄ + x₅ + x₆ + x₇ + x₈
x₁       + x₃ + x₄ + x₅ + x₆ + x₇ + x₈
x₁ + x₂       + x₄ + x₅ + x₆ + x₇ + x₈
x₁ + x₂ + x₃       + x₅ + x₆ + x₇ + x₈
x₁ + x₂ + x₃ + x₄       + x₆ + x₇ + x₈

  x₁ + x₂ + x₃ + x₄ + x₅       + x₇ + x₈
x₁ + x₂ + x₃ + x₄ + x₅ + x₆       + x₈
 x₁ + x₂ + x₃ + x₄ + x₅ + x₆ + x₇

Fig. 1. An instance of ensemble computation (right) and a circuit that solves it (left)

of union operations, where
(a) for all 1 ≤ j ≤ b the sets Lj and Rj belong to {{x} : x ∈ P} ∪
{Z1, Z2, . . . , Zj−1},

(b) for all 1 ≤ j ≤ b the sets Lj and Rj are disjoint, and
(c) the collection {Z1, Z2, . . . , Zb} containsQ.

It is also known that SUM-Ensemble Computation remains NP-complete even if the
requirement (b) is removed, that is, the unions need not be disjoint [8]; we call this vari-
ant OR-Ensemble Computation. Stated in different but equivalent terms, each set A in
Q in an instance of SUM-Ensemble Computation specifies a subset of the variables in
P whose sum must be computed. The question is to decide whether b arithmetic gates
suffice to evaluate all the sums in the ensemble. An instance of OR-Ensemble Compu-
tation asks the same question but with sums replaced by ORs of Boolean variables, and
with SUM-gates replaced by OR-gates. We will refer to the corresponding circuits as
SUM-circuits and OR-circuits.

Despite the fundamental nature of these two variants of monotone computation, little
seems to be known about their relative power. In particular, here we focus the following
open questions:

(Q1) Given an OR-circuit for a collection Q, how efficiently can it be rewritten as a
SUM-circuit?

(Q2) Are there collections Q that require a significantly larger SUM-circuit than an
OR-circuit?

Answering these questions would advance our understanding of the computational ad-
vantage of, in algebraic terms, idempotent computation (e.g. the maximum of variables)
over non-idempotent computation (e.g. the sum of variables); the ability to express the
former succinctly in terms of the latter underlies recent advances in algebraic and combi-
natorial algorithms [2]. Interestingly, it turns out that the questions have strong connec-
tions to Boolean satisfiability (SAT) both from the theoretical and practical perspectives,
as will be shown in this paper.
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As the main theoretical contribution, we establish a connection between (Q1) and the
existence of non-trivial algorithms for CNF-SAT. In particular, we show (Theorem 2)
that the existence of a subquadratic-time rewriting algorithm implies a nontrivial algo-
rithm for general CNF-SAT (without restrictions on clause length), i.e., an algorithm
for CNF-SAT that runs in time O(2cnm2n) for a constant 0 < c < 1 that is indepen-
dent of the number of variables n and the number of clauses m. It should be noted that
the existence of such an algorithm for CNF-SAT is a question that has attracted sub-
stantial theoretical interest recently [3,14,16,21]. In particular, such an algorithm would
contradict the Strong Exponential Time Hypothesis [11], and would have significant im-
plications also for the exponential-time complexity of other hard problems beyond SAT.
Intuitively, our result suggests that the relationship of the two circuit classes may be
complicated and that the difference in the circuit sizes could be large for some collec-
tionsQ. Furthermore, we show (Proposition 2) that our main result is tight in the sense
that (Q1) admits an quadratic-time algorithm.

Complementing our main theoretical result, we address (Q2) from the practical per-
spective. While it is easy to present concrete instances for which the difference in size
between optimal SUM-circuits and OR-circuits is small, finding instances that witness
even a factor-2 separation between the number of arithmetic gates is a non-trivial chal-
lenge. In fact, our best construction (Theorem 1) achieves this factor only asymptoti-
cally, leaving open the question whether there are small witnesses achieving factor 2.
As the main practical contribution, we employ state-of-the-art SAT solvers for studying
this witness finding task by developing a SAT encoding for finding the optimal circuits
for a given ensemble. We show experimentally that our encoding allows for exhaus-
tively checking all small witness candidates. On the other hand, searching over larger
witness candidates presents an interesting challenge for current SAT solvers.

As for related earlier work, SAT solvers have been suggested for designing small cir-
cuits [4,6,7,12,13], albeit of different types than the ones studied in this work. However,
our focus here is especially in circuits implementing an ensemble of Boolean functions.
A further key motivation that sets this work apart from earlier work is that our inter-
est is not only to find efficient circuits, but also to discover witnesses (ensembles) that
separate SUM-circuits and OR-circuits.

2 OR-Circuits, SUM-Circuits, and Rewriting

We begin with some key definitions and basic results related to OR- and SUM-circuits
and the task of rewriting an OR-circuit into a SUM-circuit: We show that a SUM-circuit
may require asymptotically at least twice as many arithmetic gates as an OR-circuit, and
present two rewriting algorithms, one of which rewrites a given OR-circuit with g gates
in O(g2) time into a SUM-circuit. In particular, a SUM-circuit requires at most g times
as many arithmetic gates as an OR-circuit.

2.1 Definitions

For basic graph-theoretic terminology we refer to West’s introduction [19]. A circuit is
a directed acyclic graph C whose every node has in-degree either 0 or 2. Each node of
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C is a gate. The gates of C are partitioned into two sets: each gate with in-degree 0 is
an input gate, and each gate with in-degree 2 is an arithmetic gate. The size of C is the
number g = g(C) of gates in C. We write p = p(C) for the number of input gates in C.
For example, the directed acyclic graph depicted on the left in Fig. 1 is a circuit with 26
gates that partition into 8 input gates and 18 arithmetic gates.

The support of a gate z in C is the set of all input gates x such that there is a directed
path in C from x to z. The weight of a gate z is the size of its support. All gates have
weight at least one, with equality if and only if a gate is an input gate. For example,
in Fig. 1 the five columns of gates consist of gates that have weight 1, 2, 4, 6, and 7,
respectively.

In what follows we study two classes of circuits, where the second class is properly
contained within the first class. First, every circuit is an OR-circuit. Second, a circuit C
is a SUM-circuit if for every gate z and for every input gate x it holds that there is at
most one directed path in C from x to z.

We adopt the convention of using the operator symbols “∨” and “+” on the arithmetic
gates to indicate the type of a circuit. Fig. 2 below displays an example of both types of
circuits. We observe that the circuit on the left in Fig. 2 is not a SUM-circuit because the
bottom right gate can be reached from the input x1 along two distinct directed paths.

x₁
x₂
x₃
x₄
x₅ x₁ ∨ x₂ ∨ x₃ ∨ x₄ ∨ x₅

∨ x₁ ∨ x₂
x₁ ∨ x₂ ∨ x₃
x₁ ∨ x₄
x₁ ∨ x₄ ∨ x₅

∨

∨

∨

∨

x₁
x₂
x₃
x₄
x₅ x₁ + x₂ + x₃ + x₄ + x₅

x₁ + x₂
x₁ + x₂ + x₃
x₁ + x₄
x₁ + x₄ + x₅

Fig. 2. An OR-circuit (left) and a SUM-circuit (right)

Let (P,Q) be an instance of ensemble computation, that is, let P be a finite set and
let Q be a set of nonempty subsets of P . We adopt the convention that for a SUM-
ensemble all circuits considered are SUM-circuits, and for an OR-ensemble all circuits
considered are OR-circuits. We say that a circuit C solves the instance (P,Q) if (a) the
set of input gates of C is P ; and (b) for each A ∈ Q, there exists a gate in C whose
support is A. The size of the solution is the size of C. A solution to (P,Q) is optimal
if it has the minimum size over all possible solutions. A circuit C′ implements a circuit
C if for every gate z of C there is a gate z′ of C′ such that z and z′ have the same
support. A circuit rewriting algorithm takes as input a circuit C and outputs (i) a circuit
C′ that implements C; and (ii) a mapping z �→ z′ that identifies each gate z in C with
a corresponding gate z′ in C′.

2.2 Bounds for Separation

The size of an optimal solution to an instance (P,Q) is dependent on whether we are
considering an OR-ensemble or a SUM-ensemble. To see this, let us consider Fig. 2.
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Observe that both circuits solve the same instance (P,Q), but only the circuit on the
right is a SUM-circuit. We claim that both circuits are optimal. Indeed, observe that the
instance has five distinct sets of size at least 2. At least one arithmetic gate is required
for each distinct set of size at least 2. Thus, the circuit on the left in Fig. 2 is optimal.
Analogously, on the right in Fig. 2 at least four arithmetic gates are required to compute
the first four sets in the instance, after which at least two further SUM-gates are required
to produce the fifth set because the first four sets intersect pairwise.

The following construction shows that asymptotically (that is, by taking a large
enough h and w) at least twice the number of arithmetic gates may be required in an
optimal SUM-circuit compared with an optimal OR-circuit.

Theorem 1. For all h,w = 1, 2, . . . there exists an ensemble whose optimal OR-circuit
has (h + 1)w − 1 arithmetic gates and whose optimal SUM-circuit has (2w − 1)h
arithmetic gates.

Proof. Take P = {x0} ∪ {xi,j : i = 1, 2, . . . , h; j = 1, 2, . . . , w} and let Q consist of
the following sets. For each j = 1, 2, . . . , w and for each i = 1, 2, . . . , h, insert the set
{x0, x1,j , x2,j , . . . , xi,j} toQ. Let us say that this set belongs to chain j. Finally, insert
the set P into Q. Let us call this set the top. In total Q thus has hw + 1 sets, and the
largest set (that is, the top) has size hw + 1.

Every OR-circuit that solves (P,Q) must use one OR-gate for each element in each
chain for a total of hw gates. Excluding the element x0 which occurs in all sets in Q,
the top has size hw, and the largest sets in each chain have size h. Thus, at least w − 1
OR-gates are required to construct the top. In particular, an optimum OR-circuit that
solves (P,Q) has hw + w − 1 = (h+ 1)w − 1 arithmetic gates.

Next consider an arbitrary SUM-circuit that solves (P,Q). Observe that each chain
requires h distinct SUM-gates, each of which has x0 in its support. There are hw such
SUM-gates in total, at most one of which may be shared in the subcircuit that computes
the top. Such a shared SUM-gate has weight at most h+ 1, whereas the top has weight
hw + 1. Thus the subcircuit that computes the top can share weight at most h+ 1 and
must use non-shared SUM-gates to accumulate the remaining weight (if any), which
requires h(w − 1) gates. Thus, the SUM-circuit requires at least hw + h(w − 1) =
(2w − 1)h arithmetic gates.

Remark 1. Traditional nonconstructive tools for deriving lower bounds to circuit size
appear difficult to employ for this type of separation between two monotone circuit
classes. Indeed, it is easy to show using standard counting arguments that most en-
sembles (P,Q) with |P | = |Q| = r require Ω(r2/ log r) gates for both OR- and
SUM-circuits, but showing that there exist ensembles where the required SUM-circuit
is significantly larger than a sufficient OR-circuit appears inaccessible to such tools.

2.3 Upper Bounds for Rewriting

Let us now proceed to study the algorithmic task of rewriting a given OR-circuit into a
SUM-circuit. In particular, our interest is to quantify the number of extra gates required.
We start with the observation that no extra gates are required if all gates in the given
OR-circuit have weight at most 4.
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Proposition 1. Every OR-circuit with g gates of weight at most 4 can be rewritten into
a SUM-circuit with g gates. Moreover, there is an algorithm with running time O(g)
that rewrites the circuit.

Proof. Let C be an OR-circuit with g gates given as input. First, topologically sort the
nodes of C in time O(g). Then, compute the support of each gate by assigning unique
singleton sets at the input gates and evaluating the gates in topological order. Finally,
proceed in topological order and rewrite the gates of the circuit using the following
rules. Input gates do not require rewriting. Furthermore, every OR-gate of weight 2 can
be trivially replaced with a SUM-gate. Each OR-gate z with weight 3 either has the
property that the in-neighbours z1, z2 of z have disjoint supports (in which case we
may trivially replace z with a SUM-gate) or z1, z2 have weight at least 2. In the latter
case, if at least one of z1, z2 has weight 3 (say, z1), we may delete z and replace it with
z1; otherwise rewrite z so that one of its in-neighbours is z1 and the other in-neighbour
is the appropriate input gate. Each OR-gate z with weight 4 either has in-neighbours
z1, z2 with disjoint supports or z1, z2 have weight at least 3 and at least 2, respectively.
Again we may either delete z or rewrite z so that one of its in-neighbours is z1 and the
other in-neighbour is the appropriate input gate. It is immediate that this rewriting can
be carried out in time O(g).

Next we observe that an OR-circuit can always be rewritten into a SUM-circuit with at
most g times the number of gates in the OR-circuit.

Proposition 2. There exists an algorithm that in time O(g2) rewrites a given OR-circuit
with g gates into a SUM-circuit.

Proof. The algorithm operates as follows. Let C be an OR-circuit with g gates and p
input gates given as input. Topologically sort the nodes of C in time O(g). Suppose
the input gates of C are x1, x2, . . . , xp. Associate with each of the g gates an array of
p bits. Then, iterate through the gates of C in topological order. For each input gate
xj , initialise the bit array associated with xj so that the jth bit is set to 1 and the other
bits are set to 0. For each OR-gate z with in-neighbours z1, z2, assign the bit array
associated with z to be the union of the bit arrays associated with z1 and z2. This step
takes time O(gp). Finally, iterate through the gates of C. For each arithmetic gate z,
output a SUM-circuit that computes the sum of the at most p inputs specified by the
bit array associated with z. This requires at most p − 1 SUM-gates for each z. The
algorithm takes O(gp) time and outputs a circuit with O(gp) gates. The claim follows
because p ≤ g.

3 Subquadratic Rewriting Implies Faster CNF-SAT

Complementing the quadratic-time algorithm in Proposition 2, this section studies the
possibility of developing fast (subquadratic-time) algorithms for rewriting OR-circuits
as SUM-circuits. In particular, we show that the existence of such a subquadratic-time
rewriting algorithm would, surprisingly, yield a non-trivial algorithm for general CNF-
SAT (cf. Refs. [16,21] and [20, Theorem 5]).
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Theorem 2. Let 0 < ε ≤ 1. If there is an algorithm that in time O(g2−ε) rewrites a
given OR-circuit with g gates into a SUM-circuit, then there is an algorithm that solves
CNF-SAT in time O

(
2(1−ε/2)nm2−εn

)
, where n is the number of variables and m is

the number of clauses.

Proof. Let 0 < ε ≤ 1 be fixed and let A be a circuit rewriting algorithm with the
stated properties. We present an algorithm for CNF-SAT. Let an instance of CNF-SAT
given as input consist of the variables x1, x2, . . . , xn and the clauses C1, C2, . . . , Cm.
Without loss of generality (by inserting one variable as necessary), we may assume
that n is even. Call the variables x1, x2, . . . , xn/2 low variables and the variables
xn/2+1, xn/2+2, . . . , xn high variables. The algorithm operates in three steps.

In the first step, the algorithm constructs the following OR-circuit. First let us observe
that there are 2n/2 distinct ways to assign truth values (0 or 1) to the low variables. Each
of these assignments indexes an input gate to the circuit. Next, for each clause Ci, we
construct a subcircuit that takes the OR of all input gates that do not satisfy the clause
Ci, that is, the input gate indexed by an assignment a to the low variables is in the OR
if and only if no literal in Ci is satisfied by a. For each Ci, this subcircuit requires at
most 2n/2 − 1 OR-gates. Let us refer to the output gate of this subcircuit as gate Ci.
Finally, for each assignment b to the high variables, construct a subcircuit that takes
the OR of all gates Ci such that the clause Ci is not satisfied by b. Let us refer to the
output gate of this subcircuit as gate b. The constructed circuit has p = 2n/2 inputs and
g ≤ m(2n/2 − 1) + 2n/2(m − 1) = O(2n/2m) gates. The construction time for the
circuit is O(2n/2mn).

In the second step, the algorithm rewrites the constructed OR-circuit using
algorithm A as a subroutine into a SUM-circuit in time O(g2−ε), that is, in time
O(2(1−ε/2)nm2−ε). In particular, the number of gates in the SUM-circuit is G =
O(2(1−ε/2)nm2−ε). For a gate z in the OR-circuit, let us write z′ for the corresponding
gate in the SUM-circuit.

In the third step, the algorithm assigns the value 1 to each input a′ in the SUM-circuit
(any other inputs are assigned to 0), and evaluates the SUM-circuit over the integers using
O(2(1−ε/2)nm2−ε) additions of O(n)-bit integers. If there exists a gate b′ that evaluates
to a value less than 2n/2, the algorithm outputs “satisfiable”; otherwise the algorithm
outputs “unsatisfiable”. The running time of the algorithm is O(2(1−ε/2)nm2−εn).

To see that the algorithm is correct, observe that in the OR-circuit, the input a occurs
in the support of b if and only if there is a clause Ci such that neither a nor b satisfies
Ci. Equivalently, the assignment (a, b) into the n variables is not satisfying (because it
does not satisfy the clause Ci). The rewrite into a SUM-circuit enables us to infer the
presence of an a′ that does not occur in the support of b′ by counting the number of a′

that do occur in the support of b′. SUM-gates ensure that each input in the support of b′

is counted exactly once.

Theorem 2 thus demonstrates that unless the strong exponential time hypothesis [11]
fails, there is no subquadratic-time algorithm for rewriting arbitrary OR-circuits into
SUM-circuits.
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4 Finding Small Circuits Using SAT Solvers

We next develop a SAT encoding for deciding whether a given ensemble has a circuit
of a given size.

4.1 SAT Encoding

We start by giving a representation of an OR- or SUM-circuit as a binary matrix. This
representation then gives us a straightforward way to encode the circuit existence prob-
lem as a propositional formula.

Let (P,Q) be an OR- or SUM-ensemble and let C be a circuit of size g that solves
(P,Q). For convenience, let us assume that |P | = p, |Q| = q and P = {1, 2, . . . , p}.
Furthermore, we note that outputs corresponding to sets of size 1 are directly provided
by the input gates, and we may thus assume thatQ does not contain sets of size 1. The
circuit C can be represented as a g × p binary matrix M as follows. Fix a topological
ordering z1, z2, . . . , zg of the gates of C such that zi = i for all i with 1 ≤ i ≤ p (recall
that we identify the input gates with elements of P ). Each row i of the matrix M now
corresponds to the support of the gate zi so that for all 1 ≤ j ≤ p we have Mi,j = 1
if j is in the support of zi and Mi,j = 0 otherwise. In particular, for all 1 ≤ i ≤ p we
have Mi,i = 1 and Mi,j = 0 for all j 	= i. Figure 3 displays an example.

x₁
x₂
x₃
x₄
x₅ x₁ ∨ x₂ ∨ x₃ ∨ x₄ ∨ x₅

∨ x₁ ∨ x₂
x₁ ∨ x₂ ∨ x₃
x₁ ∨ x₄
x₁ ∨ x₄ ∨ x₅

∨

∨

∨

∨

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 1 0
1 0 0 1 1
1 1 0 0 0
1 1 1 0 0
1 1 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Fig. 3. An OR-circuit (left) and a matrix describing the circuit (right)

Now, C (viewed as an OR-circuit) solves (P,Q) if and only if the matrix M satisfies

(a) for all i with 1 ≤ i ≤ p it holds that Mi,i = 1 and Mi,j = 0 for all j 	= i,
(b) for all i with p+ 1 ≤ i ≤ g there exist k and � such that 1 ≤ k < � < i and for all

j with 1 ≤ j ≤ p it holds that Mi,j = 1 if and only if Mk,j = 1 or M�,j = 1, and
(c) for every set A in Q there exists an i with 1 ≤ i ≤ g such that for all j with

1 ≤ j ≤ p it holds that Mi,j = 1 if j ∈ A and Mi,j = 0 otherwise.

Similarly, C (viewed as a SUM-circuit) solves (P,Q) if and only if the matrix M satis-
fies conditions (a), (c), and

(b’) for all i with p + 1 ≤ i ≤ g there exist k and � such that 1 ≤ k < � < i and for
all j with 1 ≤ j ≤ p it holds that Mi,j = 1 if and only if Mk,j = 1 or M�,j = 1
and that Mk,j = 0 or M�,j = 0.
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Based on the above observations, we encode an ensemble computation instance as SAT
instance as follows. Given an OR-ensemble (P,Q) and integer g as input, we construct
a propositional logic formula ϕ over variables Mi,j , where 1 ≤ i ≤ g and 1 ≤ j ≤ p,
so that any assignment into variables Mi,j satisfying ϕ gives us a matrix that satisfies
conditions (a)–(c). We encode condition (a) as

α =

p∧
i=1

(
Mi,i ∧

∧
j �=i

¬Mi,j

)
.

Similarly, we encode the conditions (b) and (c), respectively, as

β =

g∧
i=p+1

i−2∨
k=1

i−1∨
�=k+1

p∧
j=1

(
(Mk,j ∨M�,j)↔Mi,j

)
, and

γ =
∧
A∈Q

g∨
i=p+1

[(∧
j∈A

Mi,j

)
∧
(∧
j /∈A
¬Mi,j

)]
.

The desired formula ϕ is then ϕ = α∧ β ∧ γ. For a SUM-ensemble, we replace β with

β′ =
g∧

i=p+1

i−2∨
k=1

i−1∨
�=k+1

p∧
j=1

(
((Mk,j ∨M�,j)↔Mi,j) ∧ (¬Mk,j ∨ ¬M�,j)

)
.

4.2 Practical Considerations

There are several optimisations that can be used to tune this encoding to speed up SAT
solving. The resulting SAT instances have a high number of symmetries, as any circuit
can be represented as a matrix using any topological ordering of the gates. This makes
especially the unsatisfiable instances difficult to tackle with SAT solver. To alleviate this
problem, we constrain the rows i for p + 1 ≤ i ≤ g appear in lexicographic order, so
that any circuit that solves (P,Q) has a unique valid matrix representation. Indeed, we
note that the lexicographic ordering of the gate supports (viewed as binary strings) is a
topological ordering. We insert this constraint to the SAT encoding as the formula

g∧
i=p+2

i−1∧
k=p+1

[
(Mi,1∨¬Mk,1)∧

p∧
j1=2

((j1−1∧
j2=1

(Mi,j2 ↔Mk,j2)
)
→ (Mi,j1 ∨¬Mk,j1 )

)]
.

We obtain further speedup by constraining the first t arithmetic gates to have small
supports. Indeed, the ith arithmetic gate in any topological order has weight at most
i+ 1. Thus, we fix t = 6 in the experiments and insert the formula

t∧
i=1

∧
S⊆P
|S|=i+2

¬
(∧
j∈S

Mp+i,j

)
.

Further tuning is possible if Q is an antichain, that is, if there are no distinct A,B ∈ Q
with A ⊆ B. In this case an optimal circuit C has the property that every gate whose
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support is in Q has out-degree 0. Thus, provided that we do not use the lexicographical
ordering of gates as above, we may assume that the gates corresponding to sets in Q
are the last gates in the circuit, and moreover, their respective order is any fixed order.
Thus, ifQ = {A1, A2, . . . , Aq} is an antichain, we can replace γ with

q∧
i=1

[( ∧
j∈Aj

Mg−q+i,j

)
∧
( ∧
j /∈Aj

¬Mg−q+i,j

)]

to obtain a smaller formula. Finally, we note that we can be combine this with the
lexicographic ordering by requiring that only rows i for p + 1 ≤ i ≤ g − q are in
lexicographic order.

5 Experiments

We report on two series of experiments with the developed encoding and state-of-the-
art SAT solvers: (a) an exhaustive study of small ensembles aimed at understanding the
separation between OR-circuits and SUM-circuits, and (b) a study of the scalability of
our encoding by benchmarking different solvers on specific structured ensembles.

5.1 Instance Generation and Experimental Setup

For both series of experiments, the problem instances given to SAT solvers were gener-
ated by translating the encoding in Sect. 4 into CNF. We used the symmetry breaking
constraints and antichain optimisations described in Sect. 4.2; without these, most in-
stances could not solved by any of the solvers.

The formula encoding an input ensemble (P,Q) and a target number of gates g was
first translated into a Boolean circuit and then into CNF using the bc2cnf encoder
(http://users.ics.tkk.fi/tjunttil/circuits/), which implements the stan-
dard Tseitin encoding [17]. The instance generator and a set of interesting handpicked
CNF-level benchmark instances are available at

http://cs.helsinki.fi/u/jazkorho/sat2012/.

When working with an ensemble, the size of the optimal OR-circuit or optimal SUM-
circuit is not generally known. Thus, we structured the experiments for a given ensem-
ble (P,Q) with |P | = p and |Q| = q as a sequence of jobs that keeps the ensemble
(P,Q) fixed and varies the target number of gates g. We start from a value of g for
which a circuit is known to exist (p(1 + q)) and then decrease the value in steps of 1
until we hit an unsatisfiable instance at g = u; an optimal circuit then has g = u + 1
gates.

The experiments were run on Dell PowerEdge M610 blade servers with two quad-
core 2.53-GHz Intel Xeon processors and 32 GB of memory. We report the user times
recorded via time under Linux (kernel version 2.6.38). In the timed benchmarking
runs we ran one simultaneous job on a single server, but in the explorative experiments
we ran multiple jobs per server in parallel. SAT solvers used were Minisat 2.2.0 [5]
and Lingeling 587f [1] (two CDCL solvers among the best for application instances),
Clasp 2.0.4 [9] (CDCL solver, one of the best for crafted instances), and March rw [10]
(a DPLL-lookahead solver, one of the best for unsatisfiable random instances).
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5.2 Optimal Circuits for All Small Ensembles

We say that two ensembles (P,Q1) and (P,Q2) are isomorphic if there is a permutation
of P that takesQ1 toQ2. The optimal circuit size is clearly an isomorphism invariant of
an ensemble, implying that in an exhaustive study it suffices to consider one ensemble
from each isomorphism class.

We carried out an exhaustive study of all nonisomorphic ensembles (P,Q) across
the three parameter ranges (i) p = 5 and 2 ≤ q ≤ 7, (ii) p = 6 and 2 ≤ q ≤ 7, and (iii)
p = 7 and 2 ≤ q ≤ 6 subject to the following additional constraints: (a) every set in Q
has size at least 2, (b) every set inQ contains at least two points in P that each occur in
at least two sets inQ, and (c) the ensemble is connected (when viewed as a hypergraph
with vertex set P and edge set Q). We generated the ensembles using the genbg tool
that is part of the canonical labelling package nauty [15].

For all of the generated 1,434,897 nonisomorphic ensembles, we successfully deter-
mined the optimum OR-circuit size and the optimum SUM-circuit size in approximately
4 months of total CPU time using Minisat. Among the instances considered, we found
no instance where the gap between the two optima is more than one gate. The smallest
ensembles in terms of the parameters p and q where we observed a gap of one gate
occurred for p = 5 and q = 5, for exactly 3 nonisomorphic ensembles; one of the en-
sembles with accompanying optimal circuits is displayed in Fig. 2. A further analysis
of the results led to Theorem 1 and Proposition 1.

After this work the next open parameters for exhaustive study are p = 7 and q = 7
with 13,180,128 nonisomorphic ensembles.

In general, the large number of isomorphism classes for larger p and q makes an
exhaustive search prohibitively time-consuming. A natural idea would be to randomly
sample ensembles with given parameters to find an ensemble witnessing a large sepa-
ration between optimal OR- and SUM-circuits. However, as highlighted in Remark 1,
most ensembles require both a large OR-circuit and a large SUM-circuit, suggesting
that random sampling would mostly give instances with small difference between op-
timal OR- and SUM-circuits. This intuition was experimentally supported as follows.
We generated random ensembles (P,Q) by setting P = {1, 2, . . . , p} and drawing uni-
formly at random aQ consisting of q subsets of P of size at least 2. We generated 1,000
instances for p = q = 9 and for p = q = 10. Among these instances, we found only
one instance (with p = q = 10) where the gap between the optimal OR-circuit and and
the optimal SUM-circuit was 2, while we know that instances with larger separation do
exist for these parameters. However, there were 49 instances with p = q = 10 where
the optimal circuit sizes were not found within a 6-hour time limit.

5.3 Scaling on Structured Ensembles

To test the scalability of our encoding and to benchmark different solvers, we also stud-
ied two parameterised families of structured ensembles for varying family parameters
and target number of gates g. The first family is illustrated by the Valiant’s construc-
tion in Fig. 1 for p = 8. This family is parameterised by the number of inputs p, with
P = {1, 2, . . . , p} and Q = {P \ {i} : i ∈ P}. As benchmarks we generated CNF in-
stances for p = 8, 9, 10, 11 and g = 2p, 2p+ 1, . . . , 2p+ 20 using the SUM-encoding
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and the antichain optimisation. The second family is given in Theorem 1 and is pa-
rameterised by two parameters h and w. As benchmarks we generated CNF instances
for h = 3 and w = 5 and g = 32, 33, . . . , 52 using both the OR-encoding and the
SUM-encoding.

The results for the two benchmark families are reported in Figs. 4 and 5. The solver
March rw was omitted from the second benchmark due to its poor performance on
the first benchmark family. In an attempt to facilitate finding upper bounds for even
larger instances, we also tested the local search solver SATTIME2011, which performed
notably well on satisfiable crafted instances in the 2011 SAT Competition. However, in
our experiments on instances from the satisfiable regime, SATTIME2011 was unable to
find the solution within the 3600-second time limit already for the ensembles in Fig. 4
with p = 8 and g = 26, 27, 28.
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Fig. 4. Solution times for different SAT solvers as a function of the number of gates on SUM-
ensembles corresponding to Valiant’s construction (Fig. 1). The data points highlighted with
larger markers and a vertical dashed line indicate the smallest circuits found. The horizontal
dashed line at 3600 seconds is the timeout limit for each run. As the instance size p grows, the un-
satisfiable instances with g just below the size of the optimal circuit rapidly become very difficult
to solve.
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Fig. 5. Solution times for different SAT solvers as a function of the number of gates on OR- and
SUM-ensembles from Theorem 1 with parameters w = 5 and h = 3. The data points highlighted
with larger markers and a vertical dashed line indicate the smallest circuits found. The horizontal
dashed line at 3600 seconds is the timeout limit for each run. The optimal OR circuit is small,
and SAT solvers have no difficulty in finding it.

6 Conclusions

We studied the relative power of OR-circuits and SUM-circuits for ensemble compu-
tation, and developed tight connections to Boolean satisfiability from both the theoret-
ical and practical perspectives. As the main theoretical contribution, we showed that,
while OR-circuits can be rewritten in quadratic-time into SUM-circuits, a subquadratic-
time rewriting algorithm would imply that general CNF-SAT has non-trivial algorithms,
which would contradict the strong exponential time hypothesis. From the practical per-
spective, we developed a SAT encoding for finding smallest SUM- and OR-circuits
for a given ensemble. State-of-the-art SAT solvers proved to be a highly useful tool
for studying the separation of these two circuit classes. Using the developed encod-
ing, we were able to exhaustively establish the optimum OR-circuit and SUM-circuit
sizes for all small instances, which contributed to our analytical understanding of the
problem and led to the theoretical results presented in this paper. Our publicly avail-
able instance generator may also be of independent interest as a means of generating
interesting benchmarks.

Larger, structured instances provide interesting challenges for current state-of-the-
art SAT solver technology. Further developments either on the encoding or the solver
level—including tuning SAT solvers especially for this problem—would allow for pro-
viding further understanding to the problem of separating different circuit classes.

Acknowledgment. We thank Teppo Niinimäki for insight concerning the construction
in Theorem 1.
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