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Mathematical models can assist in the design and understanding of vaccination strategies when resources are limited. Here we
propose and analyse an SIR epidemicmodelwith a nonlinear pulse vaccination to examine how a limited vaccine resource afects the
transmission and control of infectious diseases, in particular emerging infectious diseases.he threshold condition for the stability
of the disease free steady state is given. Latin Hypercube Sampling/Partial Rank Correlation Coeicient uncertainty and sensitivity
analysis techniques were employed to determine the key factors which are most signiicantly related to the threshold value.
Comparing this threshold value with that without resource limitation, our results indicate that if resources become limited pulse
vaccination should be carried out more frequently than when suicient resources are available to eradicate an infectious disease.
Once the threshold value exceeds a critical level, both susceptible and infected populations can oscillate periodically. Furthermore,
when the pulse vaccination period is chosen as a bifurcation parameter, the SIR model with nonlinear pulse vaccination reveals
complex dynamics including period doubling, chaotic solutions, and coexistence of multiple attractors. he implications of our
indings with respect to disease control are discussed.

1. Introduction

Epidemiology is the study of the spread of diseases with
the objective of tracing factors that are responsible for or
contribute to their occurrence and serves as the foundation
and logic of interventionsmade in the interest of public health
and preventive medicine. Mathematical models describing
the population dynamics of infectious diseases have played
an important role in better understanding epidemiological
patterns and disease control for a long time. Various epidemic
models have been proposed and explored extensively and
considerable progress has been achieved in the studies of
disease control and prevention (see [1–3] and the references
therein).

Outbreaks of infectious diseases have not only caused
the loss of billions of lives but have oten also rapidly dam-
aged social economic systems, bringing about much human
misery. Consequently, the focus of our research has been
on how to prevent and cure infectious diseases efectively.
It is well known that one of the most important concerns

in the analysis of epidemic logical models is the eicacy of
vaccination programmes. his subject gained prominence as
a result of highly successful application of vaccinations for
the worldwide eradication of smallpox and the restriction of
diseases such as poliomyelitis, measles, tetanus, diphtheria,
pertussis, and tuberculosis. Vaccination is one of the most
cost efective of health investments as it can prevent or
ameliorate morbidity due to infections. he efectiveness of
vaccination has been widely studied and veriied for the
inluenza vaccine [4], the HPV vaccine [5], the chicken pox
vaccine [6], and others.

In particular, Agur et al. [7] irst proposed a pulse vaccina-
tion strategy (PVS),which consists of periodical repetitions of
impulsive vaccinations of all the age cohorts in a population,
which has been conirmed as an important and efective
strategy for the elimination of infectious diseases. At each
vaccination time a constant fraction � of susceptible people is
vaccinated. his kind of vaccination is called impulsive since
all the vaccine doses are applied within a very short time,
with respect to the dynamics of the target disease. PVS allows
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the eradication of a disease with some practical advantages,
as discussed in [7–9]. Recently, epidemic models with pulse
vaccination have been the subject of intense theoretical
analysis. For example, the dynamical behaviors of various
epidemic models with PVS are studied in [8, 10–13]. he
theoretical results show that PVS can be distinguished from
the conventional strategies in leading to disease eradication
at relatively low values of vaccination (see [7]).

Traditional epidemic models with PVS of population
dynamics have assumed that the pulse vaccination propor-
tion � is constant, which implies that medical resources
such as drugs, vaccines, hospital beds, and isolation units
are suicient for the infectious disease in question. However,
in reality, every community or country has an appropriate
or limited capacity for treatment, especially for emerging
infectious diseases, and so understanding resource limitation
is critical to efective management.

During the last decade, the outbreaks of SARS in 2003
and avian inluenza among humans (H5N1 in 2003, H1N1 in
2009, andH7N9 in 2013) emphasized the need to enhance the
capacity to ight emerging infectious diseases, which remains
a challenge for public health. Several diferent vaccines have
been developed speciically targeting avian inluenza among
humans, but limited production has exposed weaknesses
[14–16]. A lack of suicient vaccine at the outset of a new
pandemic is to be expected, given the crucial lag between
the timing of the emergence of a new strain and when a
vaccine has been developed and is ready for distribution.
Although most vaccination programmes aim to vaccinate as
many susceptible individuals as possible, this is not always the
case for emerging infectious diseases due to limited vaccine
availability, particularly in developing countries.

However, resource limitation is diicult to quantify partly
because it is a dynamic process (see [17]). Recently, continu-
ous SIR models concerning limited medical resources have
been developed and investigated (see [18, 19]). Chow et al.
[18] explored the dynamics of an SIR epidemic model to
understand how limited medical resources and their supply
eiciency afect the transmission of infectious diseases. Zhou
and Fan [19] studied a multigroup SIR epidemiological
model to explore the efects of limited medical resources
and group-targeted vaccination strategies on disease control
and prevention. To the best of our knowledge, no work
has been done for the efects of resource limitation on an
SIR model with PVS. In order to investigate the efect of
limited vaccine availability on the spread of infectious disease,
a saturation phenomenon of limited medical resources is
considered.hat is, we will study the dynamic behavior of an
SIR epidemic model with nonlinear pulse vaccination. Such
mathematical models are suitable for simulating processes
with short duration perturbations during their development
(see [20]).

In this paper, the dynamical behavior of an SIR epidemic
model with nonlinear pulse vaccination is proposed and ana-
lyzed. he main purpose is to address and understand how a
limited vaccine resource afects the transmission and control
of infectious diseases. he rest of this paper is organized as
follows. In the next section, an SIR epidemic model with
nonlinear PVS is introduced. In Section 3, we investigate the

existence and stability of the disease-free periodic solution
by using the method of diferential inequality, qualitative
analysis, a discrete dynamical system determined by the stro-
boscopic map, and comparison theorem. Meanwhile, Latin
Hypercube Sampling (LHS)/Partial Rank Correlation Coef-
icients (PRCCs) uncertainty and sensitivity analysis tech-
niques are employed to investigate the key control parameters
which are most signiicantly related to threshold values (see
[21–23]). Section 4 focuses on inding the suicient condition
underwhich the endemic periodic solution exists by using the
bifurcation theorem. he paper ends with some interesting
biological conclusions and numerical bifurcation analyses,
which complement the theoretical indings.

2. Model Formulation

In the classical epidemiological model (see [24–26]), the total
population � is composed of three groups of individuals:
susceptible (�), infective (�), and recovered (�). Let �(�)
denote the number ofmembers of a population susceptible to
the disease at time �; �(�) represents the number of infective
members; and �(�) denotes the number of members who
have been removed from the population. his leads to the
following SIR model:

d� (�)
d� = � − �� (�) � (�) − �� (�) ,

d� (�)
d� = �� (�) � (�) − �� (�) − �� (�) ,

d� (�)
d� = �� (�) − �� (�) .

(1)

In model (1), we assume that the three classes of subpop-
ulations have the same constant birth and death rates �
(i.e., the total population has a constant size), which can be
normalized to unity; that is,�(�) = �(�)+ �(�)+�(�) = 1, and
the infectious individuals recover at a rate � > 0, so that 1/�
is the mean infectious period. Susceptibles become infected
at a rate ��, where � > 0 is the transmission rate. In practice,
the equation for d�(�)/d� is redundant because �(�) can be
obtained from�(�) = 1. A detailed description of model (1)
and its dynamics may be found in [9, 27, 28].

Let � > 0 be the time between two consecutive pulse
vaccinations and let �(�) (0 ≤ �(�) < 1) be the fraction of
susceptible subjects who are inoculated with vaccine, which
depends on the number of susceptibles in the population at
time �. his yields the following model with PVS [8, 9]:

d� (�)
d� = � − �� (�) � (�) − �� (�) ,

d� (�)
d� = �� (�) � (�) − �� (�) − �� (�) , � ̸= ��, � ∈N,
� (�+) = (1 − � (�)) � (�) ,

� (�+) = � (�) , � = ��, � ∈N,
(2)

hereN = {0, 1, 2, . . .}.
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Table 1: Parameter deinitions, values and source for model (4).

Parameter Deinition Value Source� Rate of natural birth or death rate of the population (year−1) 0.02 [33]� Probability of transmission per contact (year−1) 1800 [33]� Natural recovery rate of the infective individuals (year−1) 100 [33]�
max

hemaximal vaccination proportion (year−1) [0, 1) [8, 9]� he half saturation constant [0, 1] Assumption� Period of pulse vaccination (year) [0, 20] [8, 9]

he formula for �(�) plays a key role in investigating the
efect of the limited capacity for treatment on the spread of
infectious disease. To do this we assume, without loss of gen-
erality, that the PVS is implemented in a developing country
but one in which vaccines are relatively abundant. Note that
there are oten major shortages of medical personnel in rural
areas and in certain specialities such as surgery, paediatrics,
and obstetrics [14]. Let vaccination pulses occur every � time
units. When a pulse day occurs, the medical personnel have
to go out into the rural population and vaccinate as many
susceptibles as they can ind on that particular day. If there
are very few susceptibles, then it will be hard to ind them, so
the vaccination coverage will be low. he more susceptibles
there are, the easier it is to ind them, so the coverage per pulse
will be greater. But there is a limit to how fast the medical
team can ind and handle each susceptible, and this causes
the vaccination rate �(�) to saturate, that is, a saturation
phenomenon of limited medical resources. By employing
the Holling type II functional response for a predator-prey
model, we can deine �(�) as follows:

� (�) = �max� (�)� (�) + � , 0 ≤ �max < 1, (3)

where �max denotes the maximal vaccination proportion and� is the half saturation constant. Note that the vaccination
coverage is less than 100% and in practice a vaccine eicacy
is also less than 100%, which lead to the parameter �max < 1.
Furthermore generalized formulae such as the Hill function
[29] can be employed to characterize the saturation phe-
nomenon of the limited medical resources.

Taking into account the resource limitation and satura-
tion efects, for convenience and simpliication, then model
(2) can be rewritten as

d� (�)
d� = � − �� (�) � (�) − �� (�) ,

d� (�)
d� = �� (�) � (�) − �� (�) − �� (�) , � ̸= ��, � ∈N,

� (�+) = (1 − �max) �2 (�) + �� (�)� (�) + � ,
� (�+) = � (�) , � = ��, � ∈N,

(4)

where the parameters �, �, �, and �max, � are deined in mod-
els (1) and (3), respectively. Note that model (4) is reduced to
the classical SIRmodel with constant pulse vaccination when� = 0, which was investigated by Agur et al. [7], Stone et al.

[8], and Shulgin et al. [9].he parameter deinitions of model
(4) are summarized in Table 1.

3. Existence of the Disease-Free
Periodic Solution

We irst demonstrate the existence of a disease-free periodic
solution of model (4), in which infectious individuals are
entirely absent from the population permanently; that is,�(�) = 0 for a suiciently long time. Under some threshold
conditions, we show below that the susceptible population
oscillates with period � in synchronization with the periodic
pulse vaccination and the infectious class will die out eventu-
ally.hus, in this section, we focus on determining the global
attraction of this disease-free periodic solution. To address
this, we irst consider the following submodel over the time
interval �� < � ≤ (� + 1)�:

d� (�)
d� = � − �� (�) , � ̸= ��,

� (�+) = (1 − �max) �2 (�) + �� (�)� (�) + � , � = ��,
� (0+) = �0.

(5)

Integrating the irst equation of model (5) between pulses
yields

� (�) = [� (��+) − 1] e−�(�−��) + 1 (6)

for �� < � ≤ (� + 1)�. It follows from the second equation of
model (5) that

� ((� + 1) �+) = (1 − �max) �2 ((� + 1) �) + �� ((� + 1) �)� ((� + 1) �) + � .
(7)

Substitution of (6) into (7) gives

� ((� + 1) �+) = ((1 − �max) {[� (��+) − 1] e−�� + 1}2
+ � {[� (��+) − 1] e−�� + 1})
× ([� (��+) − 1] e−�� + 1 + �)−1.

(8)
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Denote �(��+) = �� then the previous equation can be
rewritten as the following diference equation:

��+1
= (1 − �max) [(�� − 1) e−�� + 1]2 + � [(�� − 1) e−�� + 1](�� − 1) e−�� + 1 + �
≐ � (��) ,

(9)

which is the so-called stroboscopic map of model (5), and it
describes the relations of the number of susceptibles in the
population between any two successive pulse vaccinations.
Consequently, the existence of the positive steady state of
model (9) implies the existence of a positive periodic solution
of model (5). herefore, we irst discuss the conditions which
guarantee the existence of a positive steady state of (9). Taking
the derivative of �(��) with respect to �� yields
�� (��) = {(1 − �max) + �max�2[(�� − 1) e−�� + 1 + �]2} e−��,

(10)

and it is easy to see that 0 < ��(��) < 1 holds true.
For convenience, we denote the positive ixed point of

the stroboscopic map (9) by �̃, which satisies the following
equation:

�1�̃2 + �1�̃ + �1 = 0, (11)

where

�1 = e−�� [1 − (1 − �max) e−��] > 0,
�1 = (e−�� − 1) [2 (1 − �max) e−�� − (� + 1)] ,

�1 = − [(1 − �max) (1 − e−��)2 + � (1 − e−��)] < 0.
(12)

Obviously, (11) has a unique positive root; that is,

�̃ = −�1 + √�21 − 4�1�12�1 , (13)

which is stable due to 0 < ��(�̃) < 1.
According to the above discussion on the relations

between a ixed point of the stroboscopic map (9) and the
periodic solution of model (5), we conclude that the sub-
model (5) has a unique nontrivial positive periodic solution
denoted by �∗(�), and
�∗ (�) = (�̃ − 1) e−�(�−��) + 1, for �� < � ≤ (� + 1) � (14)

and it follows from 0 < ��(��) < 1 and [30] that we have the
following lemma.

Lemma 1. Model (5) has a positive periodic solution �∗(�), and
for any solution �(�) of (5), we have |�(�) − �∗(�)| → 0 as� → +∞.
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Figure 1: he efects of resource limitation parameter � and pulse
vaccination period � on the threshold value �10 with �max

= 0.75.
All other parameter values are given in Table 1.

By using Lemma 1, we have thus shown that the unique

ixed point �̃ of (9) is globally stable.
In the following, we will present the suicient condition

for the global attraction of the disease-free periodic solution(�∗(�), 0) of model (4).

heorem 2. he disease-free periodic solution (�∗(�), 0) of
model (4) is globally asymptotically stable in the irst quadrant

provided that �10 < 1, where
�10 = � [(�̃ − 1) (1 − e−��) + ��]�� (� + �) , (15)

here �̃ is deined in (13).

he proof of heorem 2 is given in Appendix A.

Note that although the threshold value �10 depends on
all parameters of model (4), the most interesting parameters
here are pulse vaccination period �, maximum proportion of
pulse vaccination �max, and the parameter related to resource
limitation, that is, �. In order to address how those factors (�
and �) afect the threshold value �10, we irst note that

lim
�→0

�10 = lim
�→0

� [(�̃ − 1) (1 − e−��) + ��]�� (� + �) = 0, (16)

which indicates the importance of the frequency of vaccina-
tion in eradicating an infectious disease.hen letting � and �
vary and ixing all other parameters as those in Figure 1, we

see that the threshold value �10 is a monotonically increasing
function of � for ixed �, and it is a monotonically increasing
function of � for ixed period �. Moreover, there are some
critical values of � and � such that �10 = 1, which indicate
that there exists one maximum allowable period of pulse

vaccination ��
max

such that �10 < 1 for all � < ��max
. Moreover,

the larger � the smaller the value that��
max

has. Unfortunately,
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we cannot get its analytical expression due to the complexity

of �10. So we turn to ind some approximations for ��
max

in the
following.

If the PVS is applied frequently enough such that
d�(�)/d� ≤ 0 for all � > 0 in model (4), then the number
of infectious individuals is a decreasing function of time. It
is possible to satisfy this condition if pulsing ensures that�(�) ≤ �� ≐ (� + �)/� for all �; that is, pulse vaccination
is applied every time once the �(�) approaches the threshold
value �� (see [7, 27] and the references therein).

It follows from the irst equation of model (4) that

d� (�)
d� ≤ � − �� (�) . (17)

Consider the following comparison equation:

d� (�)
d� = � − �� (�) , � (0) = (1 − �max) �2� + ����� + � , (18)

which gives

� (�) = 1 + ((1 − �max) �2� + ����� + � − 1) e−��. (19)

Hence

� (�) ≤ � (�) = 1 + ((1 − �max) �2� + ����� + � − 1) e−�� ≤ ��,
(20)

and solving the above inequality with respect to � yields
0 ≤ � ≤ 1� ln(1 + �max�2�(�� + �) (1 − ��)) , (21)

which indicates that

��
max

= 1� ln(1 + �max�2�(�� + �) (1 − ��)) . (22)

hus, if the nonlinear pulse vaccination strategy is applied

periodically with a period less than ��
max

, then the number
of infectious in the population will decrease forever and
eventually die out.

We also note that if � = 0, the maximum allowable
period ��

max
becomes �0

max
= (1/�) ln(1 + ((�max��)/(1 −��))), and this is the case studied in [7, 9] for a constant

proportion pulse vaccination strategy. Obviously, ��
max

is a
monotonically decreasing function with respect to �, which
gives that ��

max
< �0

max
. his theoretical result indicates that if

we aim to eradicate an infectious disease, then it is necessary
to carry out pulse vaccination programs more frequently
under resource limitation than when necessary resources
are available. When various nonlinear factors including�max, � are seriously considered, our results show that it is
getting more and more diicult to eliminate the endemic
diseases. It also conirms that getting vaccinated is by far
the most efective action that susceptibles can take to protect

themselves and their family from infectious disease. Other
options available to health practitioners in response to limited
medical resources include the release of prescriptive health
education, training vaccinators, and promoting the use of
vaccine-delivery patchwith dissolvingmicroneedles (see [14–
16] for details).

A typical solution of the SIR model with a nonlinear
pulse vaccination strategy is shown in Figure 2, where we
observe how the variable �(�) oscillates in a stable cycle
(as shown in Figure 2(a)). In contrast, the infection �(�)
rapidly decreases to zero (Figure 2(b)) if we set � = 0.
hat is, without resource limitation the infectious disease
is eventually eradicated (Figure 2(b)). However, if there is
resource limitation, that is, the parameter � is larger than
zero, then both susceptible and infected populations oscillate
periodically, as shown in Figures 2(c) and 2(d) with � = 0.2.

herefore, if we have enough vaccine and vaccinators to
combat the infectious disease, then it is reasonable that the
susceptible population vaccinated each time is assumed to be
proportional to the number of susceptible individuals (here�max). However, this approximation cannot relect the real
case if we aim to mitigate the emerging infectious disease.
Usually, the number of susceptible individuals needing to
be vaccinated may exceed the capacity of local medical
conditions due to shortages of vaccine and doctors, especially
in rural areas in many developing countries, where reaching
all of the target population may be diicult. For instance
in 2010 in Lesotho, diphtheria, tetanus toxoid and, pertussis
(DTP3) immunization coverage among 1-year-olds was only83% (but an improvement on 78% in 2001, see [31]) and both
the measles and tuberculosis (BCG) vaccination programs
were hampered by supplies of vaccine running out in some
parts of the country and then allowing vaccinations only for
children born in hospitals and not for those born elsewhere
in the communities. hus, it is important to design pulse
vaccination campaigns carefully. For example, how frequently
should the vaccination strategy be applied? And how can the
size of the susceptible population be evaluated?hose are key
issues for evaluating vaccination coverages and the distribu-
tion of vaccines. herefore, with the help of mathematical
models the vaccination strategy can be properly designed.

It is well known that in order to eradicate an infectious
disease, the vaccination strategy must be designed such that

the threshold value �10 is less than 1, which is equivalent to�20 < 0, where
�20 = � (�̃ − 1) (1 − e−��)� + (� − � − �) �. (23)

In the following we employ the formula �20 to investigate
the important factors which afect the threshold values most
signiicantly by using uncertainty and sensitivity analysis
(see [21, 22, 32]). Sensitivity analysis of the most signiicant
parameters including the birth or death rate (�), the contact
rate (�), the maximum proportion vaccinated (�max), and the
pulse vaccination period (�) was performed by evaluating
the PRCCs for various input parameters against the threshold

condition �20 with the LHS method [21, 22, 32]. By using
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Figure 2: he efects of resource limitation on dynamics of model (4) with �
max

= 0.5, � = 2, and all other parameter values are given in
Table 1. (a and b) � = 0; (c and d) � = 0.2.

LHS with 3,000 samples, uncertainty and sensitivity analyses
for all parameters in model (4) were determined. A uniform
distribution function was used and tested for signiicant
PRCCs for all parameters with wide ranges, such as � ∼�(0.001, 0.1), � ∼ �(1000, 2500), � ∼ �(0.1, 20), and � ∼�(0, 1), and the baseline values of all parameters are given
in the igure legend of Figure 3. Note that for comparative
purposes, we chose the same baseline parameter values as
those used in literatures [8, 9, 33]. Unfortunately, we do not
have the realistic ranges of parameter values and we chose
those parameter ranges just for illustrative purposes only and
then provided a scientiic basis for disease control.

Figure 3(a) shows the PRCC results which illustrate the

dependence of �20 on each parameter, and PRCC scatter
plots for each parameter are given in Figures 3(b)–3(g),
respectively. We considered absolute values of PRCC values
which belong to (0.4, 1), (0.2, 0.4), and (0, 0.2) as indicating
very important,moderate, or correlations of little signiicance
between input parameters and output variables, respectively.
he positive signs of their PRCCs indicate that if the param-

eters are increased, the value of �20 increases (vice versa).

he negative sign suggests that if increased, the value of �20
decreases (vice versa).

herefore, the parameters �, �, �, and � are responsible

for increasing the values of �20, so decreasing all those four
parameters can reduce the threshold value and consequently
are beneicial for infectious disease control. As the parameter
maximum proportion of pulse vaccination �max changes, it
is negatively and signiicantly correlated with large PRCCs.
hus, increasing this parameter will result in signiicantly
reducing the threshold value. he most signiicant control
parameters are �, �, �max, and � (as shown in Figures 3(b),
3(c), 3(e), and 3(g)). It is interesting to note that the period,�,
and the maximum proportion vaccinated, �max, are strongly

correlated with the threshold value �20, which indicates that
carefully designing a pulse vaccination strategy is crucial for
infectious disease control.

4. Existence of Endemic Periodic Solution and
Complex Dynamics

An important issue is how the infectious disease develops if
the threshold condition �10 is larger than one. In particular,
what types of dynamic behavior maymodel (4) have once the
period of pulse vaccination exceeds certain threshold levels.
herefore, in this section we irst focus on the existence of an
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Figure 3: PRCC results and PRCC scatter plots of the baseline parameters as those shown in Table 1. Here we ix �
max

= 0.75, � = 0.2, � = 5.
(a) PRCC results. (b–g) PRCC scatter plots. he title of each plot represents the PRCC value with the corresponding P value.

endemic periodic solution, that is, to investigate under what
conditions will the infected population oscillate periodically
with small amplitude, and then we choose the period of
pulse vaccination as a bifurcation parameter to investigate the
complex patterns of the infectious disease dynamics.

Next, we analyze the existence of an endemic periodic
solution of model (4) near the disease-free periodic solution(�∗(�), 0) using bifurcation theory [34] and set the impulsive
period � as bifurcation parameter. For ease of narrative, we
rewrite the model (4) as

d� (�)
d� = � − �� (�) � (�) − �� (�) ≐ �1 (� (�) , � (�)) ,

d� (�)
d� = �� (�) � (�) − �� (�) − �� (�) ≐ �2 (� (�) , � (�)) ,

� ̸= ��, � ∈N,

� (�+) = (1 − �max) �2 (�) + �� (�)� (�) + � ≐ Θ1 (� (�) , � (�)) ,
� (�+) = � (�) ≐ Θ2 (� (�) , � (�)) ,� = ��, � ∈N.

(24)

According to the bifurcation theorem in [34], we can
obtain the following result.

heorem 3. If there exists a �0 > 0 satisfying �10(�0) = 1 and
all the parameters in model (24) satisfy

� (�̃ (�0) − 1) e−��0 ( ��0�31 − �3e−��0 − 1) < � − � − �, (25)

where �3 = 1 − �max + ((�2�max)/(� + �∗(�0))2), then there
exists a supercritical branch at the point �0.
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Figure 4: Bifurcation diagrams of model (4) with respect to bifurcation parameter �. Here �
max

= 0.75 and all other parameter values are
given in Table 1. (a) � = 0 which are reproduced from [9]; (b) � = 0.2; (c and d) a magniied part of Figure 4(b).

he existence of �0 has been indicated in Figure 1 and the
proof ofheorem 3 is given in Appendix B.heorem 3 shows
that there exists an endemic periodic solution under some
conditions, providing that the disease-free periodic solution
becomes unstable. It follows from heorem 3 that if � > �0
and is close to �0, the endemic periodic solution of model (4)
is stable.

To investigate the complex dynamics that model (4) can
have, we chose the pulse period � as a bifurcation parameter
and ixed all other parameters as those in Figure 4 for two
diferent � values. Figure 4(a) is a bifurcation diagram with-
out resource limitation; that is, � = 0, which was obtained
by Shulgin et al. [9]. Figure 4(b) is a bifurcation diagram
with resource limitation; that is, � = 0.2. Comparing those
two bifurcation diagrams we conclude that the nonlinear
pulse vaccination can produce more complex dynamics than
those for the model with linear pulse vaccination. Once the

pulse period � exceeds ��
max

deined in (22), both susceptible
and infected populations can oscillate periodically with a
large amplitude that corresponds to periodic outbreaks of
epidemics. As the pulse period is further increased, a series of
complex and interesting bifurcation phenomena are observed
(see Figures 4(a) and 4(b)). Figures 4(b)–4(d) indicate that
the dynamical behavior of model (4) is very complex,
including period doubling bifurcation, chaotic attractors,

multistability, periodic-adding, chaos crisis, and periodic
windows.Meanwhile, bifurcation analyses (i.e., Figures 4(b)–
4(d)) also indicate that the model (4) has several diferent
attractors which can coexist for a wide range of parameters.
For example, Figure 5 provides an example of two attractor
coexistence when � = 7.8. Multiple attractor coexistence
indicates that the infectious outbreak patterns depend on
the initial values, which may cause diiculties for infectious
disease control.

5. Discussion and Biological Conclusions

In order to understand the efect of resource limitation, in
particular lack of vaccine, on the transmission of infectious
disease, we deliberately investigated the dynamical behavior
of an SIR epidemic model which incorporates a nonlinear
pulse vaccination strategy. To this end, we introduced a
nonlinear form �(�) = (�max�(�))/(�(�) + �) as vaccination
proportion.his resulted in interesting and dramatic changes
in the dynamical behavior of solutions and they becamemore
and more complicated, which means that it is a very diicult
task to control infectious diseases, in particular emerging
infectious diseases, under resource limitation. We discussed
the control strategy based on the threshold value in more
detail through theoretical analysis, numerical studies, and
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Figure 5: Coexistence of two stable attractors of model (4). Here �
max

= 0.75, � = 0.2, � = 7.8, and all other parameter values are given in
Table 1. (a and b) he initial value (�0, �0) = (0.12, 0.05); (c and d) the initial value (�0, �0) = (0.1, 0.02).
sensitivity analysis. As pointed out byAgur et al. [7], the costs,
risks, and the eicacy of the pulse vaccinations are key factors
in eliminating transmission of the measles virus. In order
to depict those factors, the nonlinear resource limitations
should be taken into account [9], and the main purpose of
the present work is to formulate the disease model to address
the efects of resource limitations on disease control.

he results indicate that vaccination as an approach to
controlling epidemics must be committed to a long-term
strategy, especially when resources arelimited. To understand
the interactions amongst �(�) and �(�) which are important
for successful control of the spread of infectious disease,
we have proposed detailed modeling methods involving
vaccination on �(�) and determining the most signiicant

parameters for the basic reproductive number �20 by using
LHS/PRCC uncertainty and sensitivity analysis techniques
(see Figure 3). Our results indicate that we should pay
more attention to the vaccination period and vaccination
proportion which reduce the threshold value �20 or �10 to
prevent the outbreak of disease. Our results clarify that it
is more signiicant to improve immunization programs (i.e.,
vaccinations as mentioned in [15, 16]) under conditions of
resource limitation.

he results also indicate that the dynamic behavior of
model (4) may be dramatically afected by small changes in

the value of initial densities of susceptible and infected with
resource limitation. Bifurcation diagrams shown in Figure 4
indicate that there are many forms of complexities in model
(4), which are related to chaotic bands with periodic win-
dows and attractor crises, and Figure 5 reveals that the
occurrence of multiple attractors is a common property of
the SIR model with resource limitation, which can help us
to further understand the application of a nonlinear pulse
vaccination strategy in an SIR model (for more information
about bifurcation diagrams of impulsive control strategies,
see [35, 36]). Some complexities are related to the long-term
behavior of population dynamics, characterized either by
well behaving relatively simple or very complicated strange
attractors. We also found that the routes to chaos are very
complicated. For instance, with resource limitation there are
several hidden factors that can adversely afect the control
strategy. he increasing number of potential complexities
predicted by the theory does not seem to make this task
any easier. Nevertheless, identifying complicated, possibly
chaotic, dynamics in population data has remained a major
challenge in epidemiology studies. In particular, the sug-
gestion that the dynamics of measles are chaotic has been
much debated (e.g., see [37]) and, when seeking to establish
whether measles dynamics in New York City were chaotic
or not, Sugihara and May [38] omitted data from ater 1963
when vaccinations were introduced, as the immunisations
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had altered the intrinsic dynamics. However, our results
imply that even with immunisations, disease dynamics could
be chaotic under some circumstances and so a reanalysis of
the New York data including the vaccination period might be
worthwhile.

In the present paper, we have focused on studying
the efects of dynamical behaviors on the SIR model with
nonlinear pulse vaccination. For our simple model, we have
assumed that the maximal vaccination proportion �max is
a constant and the pulse period � can be varied. However,
due to limited vaccine availability, the maximal vaccination
proportion �max should depend on the vaccine obtained in
each pulse period. hus, to describe the impact of a limited
vaccine stockpile, a separate diferential equation for the
amount of vaccine, denoted by �(�), could be included in
the model, and then �(�) should be a function of �(�) and�(�). Meanwhile, it is essential to link the costs of developing
and implementing controls to population dynamic modeling
of disease epidemics in order to consider other resource
limitations such as quantities of drugs, availability of isolation
units, numbers of hospital beds, and equipment.hese topics
will be considered in further work in the future.

Appendices

A. Proof of Theorem 2

Firstly, we prove the local stability of a periodic solution(�∗(�), 0), which may be determined by considering the
behavior of small amplitude perturbations of the solution.

Deine

� (�) = � (�) + �∗ (�) , � (�) = � (�) , (A.1)

here�(�), �(�) are small perturbations, whichmay be written
as

(� (�)� (�)) = Φ (�) (� (0)� (0)) , 0 ≤ � < �, (A.2)

where the fundamental matrixΦ(�) satisies
dΦ (�)
d� = (−� −��∗ (�)0 ��∗ (�) − � − �)Φ (�) , (A.3)

and Φ(0) = � is the identity matrix. So

Φ (�) = ( e−�� �0 e∫
�
0 (��
∗(�)−�−�)d� ) , (A.4)

where � is not necessarily computed in detail as it is not
required in the following analysis.

he resetting impulsive conditions of model (4) become

(� (��+)� (��+)) = (1 − �max + �2�max(� + �∗ (��))2 00 1)(
� (��)� (��))

≐ � (��) (� (��)� (��)) .
(A.5)

Hence, according to Floquet theory, if the moduli of both
eigenvalues of the matrix

� = � (�)Φ (�)
= (1 − �max + �2�max(� + �∗ (��))2 00 1)
× ( e−�� �0 e∫

�
0 (��
∗(�)−�−�)d� )

(A.6)

are less than one, then the periodic solution (�∗(�), 0) is
locally stable. In fact, two Floquet expressions multiplied are
thus

�1 = (1 − �max + �2�max(� + �∗ (�))2) e−��,
�2 = e∫

�
0 (��
∗(�)−�−�)d�.

(A.7)

It is obvious that 0 < �1 < 1. hus, the stability of (�∗(�), 0)
is decided by whether �2 < 1 or not. So we conclude that
the disease-free periodic solution (�∗(�), 0) is locally stable if∫�0 (��∗(�) − � − �)d� < 0; that is,
1� ∫
�

0
�∗ (�) d� = (�̃ − 1) (1 − e−��) + ���� < � + �� , (A.8)

and by simple calculation we have

� [(�̃ − 1) (1 − e−��) + ��]�� (� + �) < 1, (A.9)

which holds true due to �10 < 1. herefore, we can draw

a conclusion from the above analysis that if �10 < 1, the
disease-free periodic solution (�∗(�), 0) of model (4) is locally
asymptotically stable.

Next, we will prove the global attraction of the disease-

free periodic solution (�∗(�), 0) of model (4). Since �10 < 1,
we can choose �1 > 0 suiciently small such that

1� ∫
�

0
(�∗ (�) + �1) d� < � + �� . (A.10)

It follows from model (4) that

d� (�)
d� ≤ � − �� (�) , � ̸= ��,

� (�+) = (1 − �max) �2 (�) + �� (�)� (�) + � , � = ��. (A.11)

Consider the comparison equation

d� (�)
d� = � − �� (�) , � ̸= ��,

� (�+) = (1 − �max) �2 (�) + �� (�)� (�) + � , � = ��. (A.12)



Abstract and Applied Analysis 11

From Lemma 1 and the comparison theorem on impul-
sive diferential equations, we have �(�) ≤ �(�) and �(�) →�∗(�) as � → +∞. Hence, there exists a �1 > 0 such that

� (�) ≤ � (�) < �∗ (�) + �1, (A.13)

for all � ≥ �1; here �1 > 0 is small enough.
From the second equation of model (4) and (A.13) we get

d� (�)
d� ≤ (� (�∗ (�) + �1) − � − �) � (�) , (A.14)

for � > �1; then we consider the following comparison
equation with pulses:

d�1 (�)
d� = (� (�∗ (�) + �1) − � − �) �1 (�) , � ̸= ��,

�1 (�+) = �1 (�) , � = ��. (A.15)

Integrating model (A.15) between pulses (��, (� + 1)�], we
have

�1 ((� + 1) �) = �1 (��) e∫(�+1)��� [�(�
∗(�)+�1)−�−�]d�

= �1 (��) e∫�0 [�(�∗(�)+�1)−�−�]d�.
(A.16)

hen by using step by step iterations

�1 (��) = �1 ((� − 1) �) e∫�0 [�(�∗(�)+�1)−�−�]d�
= �1 ((� − 2) �) e2 ∫�0 [�(�∗(�)+�1)−�−�]d�
= ⋅ ⋅ ⋅
= �1 (0) e� ∫�0 [�(�∗(�)+�1)−�−�]d�,

(A.17)

where �1(0) = �1(0+) > 0, we obtain lim�→∞�1(��) =0 according to (A.10). On the other hand, integrating and
solving the irst equation of model (A.15) between pulses, it
gives

�1 (�) = �1 (��) e∫���[�(�∗(�)+�1)−�−�]d�, � ∈ (��, (� + 1) �] ,
(A.18)

incorporating into the boundedness of e∫
�
��[�(�

∗(�)+�1)−�−�]d�

due to �10 < 1, we have lim�→∞�1(�) = 0.
Let (�(�), �(�)) be any solution of model (4) with initial

value (�0, �0), and �0 = �(0+) > 0, �0 = �(0+) =�1(0) > 0, according to the comparison theorem we have
lim�→∞ sup �(�) ≤ lim�→∞ sup�1(�) = 0. Incorporating into
the positivity of �(�), we know that lim�→∞�(�) = 0.

Consequently, there exists a �2 > �1 such that 0 < �(�) ≤ �2
for � ≥ �2, and �2 is small enough. Further, we have

� − (��2 + �) � (�) ≤ d� (�)
d� ≤ � − �� (�) , (A.19)

for all � > �2, from which we can obtain the following
equation:

d�2 (�)
d� = � − (��2 + �) �2 (�) , � ̸= ��,

�2 (�+) = (1 − �max) �22 (�) + ��2 (�)�2 (�) + � , � = ��. (A.20)

By employing the same methods as used for the proof of
Lemma 1 we get that the model (A.20) has a positive periodic
solution �∗2 (�), which is globally attractive, where

�∗2 (�) = (�̃2 − ���2 + �) e−(��2+�)(�−��) + ���2 + � ,
� ∈ (��, (� + 1) �] ,

�̃2 = �2 (��+) = �∗2 (0+) = −�2 + √�22 − 4�2�22�2 ,
�2 = e−(��2+�)� [ ���2 + � − (1 − �max) e−(��2+�)�] ,
�2 = (e−(��2+�)� − ���2 + �)

× [2 (1 − �max) e−(��2+�)�− (� + ���2 + �)] ,
�2 = −[(1 − �max) ( ���2 + � − e−(��2+�)�)2

+ �( ���2 + � − e−(��2+�)�)] .

(A.21)

It follows from the comparison theorem on impulsive difer-
ential equations that �2(�) ≤ �(�) ≤ �(�). Moreover, �2(�) →�∗2 (�) and �(�) → �∗(�) as � → +∞. Consequently, there
exists a �3 for �3 small enough such that �3 ≥ �2 and�∗2 (�) − �3 < � (�) < �∗ (�) + �3 (A.22)

for � ≥ �3. Let �2 → 0. hen

�∗ (�) − �3 < � (�) < �∗ (�) + �3. (A.23)

herefore, �(�) → �∗(�) as � → +∞. hus, we
have proved the global stability of the disease-free periodic
solution (�∗(�), 0) of model (4). his completes the proof.

B. Proof of Theorem 3

In order to apply the bifurcation theory of [34] in the main
text, we make the following calculations:

��0 = 1 − e∫
�0
0 (��

∗(�)−�−�)d�. (B.1)

If ��0 = 0, then �0 satisies the following equation:
� [(�̃ − 1) (1 − e−��0) + ��0]� (� + �) �0 = 1, (B.2)
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which indicates that there exists a�0 such that �10 = 1 and the
disease-free periodic solution � = (�∗(�), 0) loses its stability.

Further,

�Φ1 (�0, �0)�� = e−��0 > 0,
�Φ2 (�0, �0)�� = e∫

�0
0 (��

∗(�)−�−�)d� > 0,
�Φ1 (�0, �0)�� = −∫�0

0
��∗ (V) e−�(�0−V)e∫V0 (��∗(�)−�−�)d�dV

≐ � < 0,
��0 = 1 − �3e−��0 ,
��0 = 1 − �3�,

�2Φ2 (�0, �0)���� = ��0e∫�00 (��∗(�)−�−�)d� > 0,
�2Φ2 (�0, �0)��2
= −�2 ∫�0

0
{e∫�0V (��∗(�)−�−�)d�
× ∫V

0
{�∗ (�) e∫�0 (��∗(�)−�−�)d�−�(V−�)} d�} dV

< 0,
�2Φ2 (�0, �0)���� = (��∗ (�0) − � − �) e∫�00 (��∗(�)−�−�)d�,

�Φ1 (�0, �0)�� = −� (�̃ − 1) e−��0 ,
� = {���0 �3e−��01 − �3e−��0 (�̃ (�0) − 1) − (��∗ (�0) − � − �)}

× e∫
�0
0 (��

∗(�)−�−�)d�,
� = �2 ∫�0

0
{e∫�0V (��∗(�)−�−�)d�
× ∫V

0
{e−�(�−�)�∗ (�) e∫�0 (��∗(�)−�−�)d�} d�} dV

+ 2��0 1 − �3�1 − �3e−��0 e∫
�0
0 (��

∗(�)−�−�)d� > 0.
(B.3)

It follows that �� < 0 and we get the condition, that is, if the
parameters satisfy condition � < 0, then the model (4) has a
supercritical branch at �0.

In fact,

e∫
�0
0 (��

∗(�)−�−�)d� > 0. (B.4)

herefore, � < 0 is equivalent to
���0 �3e−��01 − �3e−��0 (�̃ (�0) − 1) − (��∗ (�0) − � − �) < 0.

(B.5)

Obviously, � < 0 due to (25). he proof is completed.
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