
AN INTEGRATIVE COMPUTATIONAL

FRAMEWORK FOR DEFINING ASTHMA

ENDOTYPES

by

J. A. Howrylak, MD

Submitted to the Graduate Faculty of

the University of Pittsburgh School of Medicine, Department of

Computational Biology in partial fulfillment

of the requirements for the degree of

M.D., University of Michigan Medical School, 2003

University of Pittsburgh

2013



UNIVERSITY OF PITTSBURGH

DEPARTMENT OF COMPUTATIONAL BIOLOGY

This dissertation was presented

by

J. A. Howrylak, MD

It was defended on

November 22nd 2013

and approved by

Naftali Kaminski, Department of Medicine, Pulmonary, Critical Care and Sleep Medicine,

Yale University

Eric P. Xing, Department of Computer Science, Machine Learning, Language Technology

Institute School of Computer Science, Carnegie Mellon University

Panayiotis V. Benos, Department of Computational Biology University of Pittsburgh

School of Medicine

Benjamin A. Raby, Department of Medicine, Channing Division of Network Medicine,

Division of Pulmonary and Critical Care Medicine Brigham and Women’s Hospital,

Harvard Medical School

Augustine M.K. Choi, Department of Medicine Weill Cornell Medical College

Dissertation Advisors: Naftali Kaminski, Department of Medicine, Pulmonary, Critical

Care and Sleep Medicine, Yale University,

ii



Eric P. Xing, School of Computer Science, Carnegie Mellon University, Department of

Computer Science, Machine Learning, Language Technology Institute

iii



AN INTEGRATIVE COMPUTATIONAL FRAMEWORK FOR DEFINING

ASTHMA ENDOTYPES

J. A. Howrylak, MD, PhD

University of Pittsburgh, 2013

The rapid pace of drug development in recent years has led to the recognition that new

pharmacotherapies do not have the same effect on all patients. This is particularly true in

the case of complex common diseases such as hypertension, diabetes and asthma, where a

diversity of pathogenetic factors may interact to produce the same disease, resulting in a

large degree of heterogeneity in the response to medical therapy. For this reason, the ability

to differentiate between different disease endotypes is of increasing importance to clinical

medicine.

In the case of asthma, initial studies have hinted at the presence of multiple disease

endotypes with different clinical characteristics. Additional studies have identified novel

genetic risk factors and differences in gene expression among asthmatic patients with different

disease endotypes. Despite the presence of large-scale clinical and molecular datasets from

asthmatic patients, limited efforts have been made to integrate these different formats to

develop a systems-level understanding of disease mechanism.

In this thesis, we develop a computational framework for addressing the problem of dis-

ease heterogeneity by integrating data from multiple sources, including the genome, phenome

and transcriptome in order to define clinically-relevant disease subtypes, and we demonstrate

its application in a cohort of asthmatic children. First we perform a cluster analysis of clin-

ical phenotypic data and detect the presence of multiple disease endotypes in a cohort of

children with mild-to-moderate asthma. We evaluate the clinical significance of these endo-

types by demonstrating their longtudinal stability and association with differential response
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to pharmacotherapy. Next, we develop a transcriptional network from the gene expression

profiles of these patients and identify the relationship between discrete patterns of expres-

sion and asthma endotypes. Finally, we combine longitudinally-derived clinical phenotypes

with genetic data to uncover novel genetic associations corresponding to changes in gene

expression and the expression of longitudinal clinical traits.

Keywords: computational biology, genomics, bioinformatics, machine learning, cluster anal-

ysis, genome-wide association study, gene expression profiling, disease endotypes, child-

hood asthma.
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1.0 INTRODUCTION

1.1 MOTIVATION

The rapid development of computational methods in the field of statistical machine learn-

ing has provided us with the ability to recognize the distinctive patterns inherent in large

electronic datasets, with applicability to fields as diverse as high finance, text mining and

biomedicine. However, the complexity of biological systems, and in particular the human

body, has made it difficult to link disease patterns to systems-level pathogenesis until very

recently. There have been several high-profile developments in both computational meth-

ods and biomedical applications that have led to the unprecedented opportunity to leverage

massive amounts of electronic medical data for widespread clinical use. For example, the

electronic medical record (EMR) makes it possible to perform large-scale data mining of

patient clinical characteristics. Similarly, the development of high-throughput technologies

to assay the human genome and transcriptome through next generation sequencing and

oligonucleotide microarrays provide a wealth of genetic and genomic data. Co-incident with

these biomedical advances has been development of powerful data-mining algorithms, made

possible due to the increased computational ability of modern computers. The integration

of these algorithms with the vast array of biomedical data creates the ability to develop de-

tailed clinical and molecular profiles for individual patients that could be accessed through

the EMR.

One application for advanced data-mining techniques has been in disease phenotyping,

where cluster analysis has recently become popular [169] in a model-free setting [136]. Clus-

tering techniques were initially described as an application for disease diagnosis over 20 years

ago [50], however such methods were not successfully applied to large clinical datasets until

1



recent advances in both computing power and algorithmic efficiency made these methods

more scaleable, and their use more widely applicable. Eisen and colleagues were the first to

use clustering as a method of disease phenotyping [46]. Many subsequent papers have used

a similar approach to disease phenotyping, most notably for identifying asthma endopheno-

types [60, 118, 48], and all have been primarily descriptive in nature, using clustering as a

form of exploratory data analysis. The widespread adoption of these methods in the clinical

setting has been limited for several reasons, including the problems of quality control and

cluster validation, which make it difficult to move beyond pattern recognition toward using

the results of cluster analysis for risk-stratification and clinical decision-making [85].

An additional application for machine learning methods is relating genetic associations to

disease phenotypes. In recent years, much progress has been made toward understanding the

genetic underpinnings of complex diseases, such as asthma. For asthma, studies of disease

concordance among twins suggesting that asthma is a highly heritable condition [43, 73, 35,

163, 175, 42, 36, 126, 127, 99, 154]. This observation has led to a large-scale interrogation of

the human genome, resulting in the discovery of novel asthma-related genes, replicated in

multiple populations [143,69,47,71,117,147,63]. Yet, despite the preponderance of evidence

for the heritability of asthma, the previous genome-wide association studies (GWAS) have

determined only a small fraction of the total estimated heritability. A major issue leading

to this missing heritability is related to the fact that asthma is an enormously dynamic

disease, often with inter-individual differences manifesting as changes in severity measures

over time. Genetics studies that evaluate for associations at a single point in time are

underpowered to capture genetic effects that contribute to a disease trajectory, and not

simply a quantitative trait measurement at a specific point in time. The natural history

of asthma has an enormous amount of variability, and different individuals have different

clinical trajectories. Future efforts to identify associations with significant effects will be

more successful if we can incorporate dynamic changes in phenotypic traits into GWAS

analysis. Further, although asthma GWAS have discovered many novel associations, they

have not done much to explain or reveal the mechanisms behind this complex disease.

The integration of multiple large-scale datasets is another application for machine learn-

ing in biomedicine. There have been several early efforts to integrate transcriptional data,

2



obtained from microarray analysis with genetic association analysis to determine the genes

associated with changes in gene expression. One advantage to this approach is that it uti-

lizes intermediate phenotypes, and by integrating molecular data into association analyses,

brings us closer to discovering the genetic underpinnings of disease mechanisms. Several

studies have utilized this approach to better understand the disease mechanisms behind

asthma. Raby and colleagues integrated gene expression profiles from CD4+ T lymphocytes

with genetic data to identify several novel genetic determinants of gene expression levels

in asthmatic subjects [119]. Hao and colleagues performed large-scale genotyping and gene

expression profiling on a cohort of over 1,000 subjects and identified several novel genetic

variants significantly associated with changes in the expression of multiple asthma-related

gene transcripts [62]. In the same analysis, Hao et. al., integrated the gene expression with

cis-acting eSNPs to create a Bayesian network that allowed them to identify several genes

that were“key drivers” behind the molecular mechanisms involved in asthma. The utilization

of novel machine learning methods to further integrate multiple data types should provide

additional insights into asthma pathogenesis and novel therapeutic targets.

1.2 DISSERTATION OVERVIEW

The goal of this work is to create a computational framework for the integration of multiple

types of clinical and molecular data to better understand complex diseases. We apply this

framework to clinical, genetic and gene expression data from a cohort of children with mild-

moderate asthma to create predictive models for identifying disease endotypes with different

molecular mechanisms and responses to pharmacotherapy. A schematic of this framework is

depicted in Figure 1.1.

In Chapter 1, we provide background on the development cluster analysis as a computa-

tional tool. We describe its use in the biological and medical settings and its current use as a

tool for identifying clinical phenotypes. We describe the computational limitations of cluster

analysis as a clinical tool. In Chapter 2, we demonstrate an application of cluster analysis

to a childhood asthma dataset, with attention to limitations outlined earlier. We identify
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Figure 1.1: Graphical overview of integrative computational framework.

five distinct phenotypic clusters of asthmatics with discrete baseline clinical characteristics.

We validate our clusters by demonstrating their longitudinal consistency and demonstrating

marked between-cluster differences in long-term asthma control rates, pulmonary function

and response to anti-inflammatory asthma therapy, suggesting an potential role for cluster

analysis in the classification and clinical management of asthma.

In Chapter 3, we begin by describing biotechnological developments in gene expression

profiling, ending with an introduction to high-throughput assays. We highlight the statistical

challenges involved in the analysis of high-throughput datasets, and review the application of

this technology to disease phenotyping, with an emphasis on asthma. We end by introducing

recent computational advances in network analysis and potential applications to transcrip-

tional datasets. In Chapter 4, we demonstrate differential gene expression profiles among

asthmatic patients with different endotypes. Through a subsequent co-expression network

analysis, we identify a common motif within a module of highly correlated gene transcripts.

We also show capability of this module to predict the presence of atopy in an independent

4



cohort of asthmatic patients.

In Chapter 5, we introduce the current state-of-the-art in genome wide association studies

(GWAS) and the statistical challenges present in such analyses. We describe computational

techniques such as time-series analysis and sparse regression for feature selection that may

be used to increase the power and improve the results and implications of GWAS. We end by

introducing a novel computational approach to GWAS, temporally-smoothed lasso (TESL)

used to leverage the time-dependencies present in longitudinal clinical data to increase the

power of GWAS. In Chapter 6, we apply TESL to a longitudinal asthma endotype and

demonstrate the presence of several novel and confirmatory asthma associations. We inte-

grate gene expression profiles obtained from GWAS subjects to show that several associations

correspond to novel expression quantitative trait loci (eQTLs).

The results of this work demonstrate the advantages of data integration in the biomedical

setting. Using the available data, we demonstrate the presence of multiple disease endotypes

among asthmatic children and show that different endotypes correspond to long-term differ-

ences in response to several well-known asthma medications. We also identify relationships

between these disease endotypes and molecular mechanisms through the integration of ge-

netic associations and transcriptional profiles.
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2.0 CLUSTER ANALYSIS AND ENDOTYPES

2.1 CLUSTER ANALYSIS

2.1.1 Definition

Clustering, or unsupervised learning, is a form of exploratory data analysis that involves

identifying subgroups within a set of objects. Clustering methods are useful for identifying

secondary patterns within a dataset. Mathematically, clustering involves iteratively optimiz-

ing an objective function such that the objects within a cluster subgroup are more similar

to each other than the objects outside of that cluster.

2.1.2 Methods of Clustering

There are multiple different methods of cluster analysis, with most variation occurring in the

formulation of the objective function. There are two general approaches to clustering. One

approach begins with each set of objects being assigned to its own cluster. As the algorithm

progresses, objects are iteratively assigned to larger and larger clusters. This method of

clustering is known as agglomerative, or “bottom up”. An alternative approach begins with

all objects being assigned to the same cluster. As the algorithm progresses, objects are

iteratively partitioned to smaller and smaller clusters. This method of clustering is known

as divisive, or “top down”.

2.1.2.1 Hierarchical Clustering Hierarchical clustering is characterized by a hierarchy

of subsets within a set of objects, and represents an agglomerative style of clustering. For

hierarchical clustering, there are two necessary metrics. The first is a distance metric, which
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is used to determine the degree of dissimilarity between two objects. There are multiple

distance metrics that may be used for clustering. One example is the Euclidean distance

metric, which is defined for two objects (a and b) as: ‖a − b‖2 =
√∑

i(ai − bi)2. Another

commonly used example, is the Manhattan distance metric: |a − b|1 =
∑

i |(ai − bi)|. The

second is a linkage metric, which is used to determine the distance between objects in different

clusters. For example, for average linkage clustering, at each iteration, the distance between

any two clusters, A and B is considered to be the average over all the distances between

all pairs of objects (a in A and b in B), or the mean distance between elements within

each cluster. Average linkage clustering is seen with the Unweighted Pair Group Method

with Arithmetic Mean (UPGMA) algorithm [148], popular in cluster gene expression data

generated from microarrays [37]. An alternative linkage metric is minimum, or single-linkage

clustering, in which the distance between two clusters A and B is determined by the distance

between the two objects in each cluster (a in A and b in B) that are closest to each other.

Limitations of hierarchical clustering include difficulty in interpreting the hierarchy, the

deterministic nature of the method, which prevents reevaluation after data points are grouped

into a node [5]. Furthermore, the tree structure can frequently lock in irrelevant features,

reflecting idiosyncrasies of the clustering rules, and early errors can lead to larger and larger

systematic clustering errors [159].

2.1.2.2 K-means Clustering K-means clustering is a divisive clustering method that

partitions a set of n objects into k clusters. In k-means clustering algorithms, k cluster

centers are initialized. Next each object is assigned to the nearest center based upon a

chosen distance metric. Finally the cluster centers are re-centered such that they become

the centroid of the set of points assigned to their respective cluster. These steps are iterated

until either the distance between the points in each cluster and the center is minimized,

or the maximal number of iterations has occurred. K-means optimizes the following error

function: F (µ,C) =
∑m

j=1 ‖µC(j) − xj‖2, where µC(j) is the center of cluster C and xj is

a datapoint (out of m datapoints) assigned to cluster C. K-means clustering is popular

due to its intuitive simplicity and speed. However, there are several drawbacks to this

method. First, the number of k clusters that are initialized must be determined in advance.
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Because clustering frequently serves as a method for hypothesis generation, the optimal

number of clusters is often not known a priori. Second, because the initial location for

cluster centers is random, the results are not deterministic and may vary between different

clustering runs [122]. Third, k-means clustering is sensitive to outliers, and performs poorly

when clusters have a non-convex shape, or are non-linearly separable [84].

2.1.2.3 Spectral Clustering Spectral clustering is a relatively recent development in

the field of pattern recognition that has become popular due to its ability to outperform

alternative forms of clustering, such as k-means. In spectral clustering, data are encoded in

the form of an undirected graph G = (V,E), with data points encoded as vertices, vi for

i = 1...N where N is the total number of data points, and the relationship between data

points is encoded as edges, with weights wij encoding the strength of pairwise interaction

between two data points. The set of pairwise comparisons between data points forms an affin-

ity matrix, understood in spectral clustering as a weighted, undirected and fully-connected

graph. Because G is undirected, the weights are symmetric, wij = wji. The spectral ter-

minology comes from graph theory, and the spectral analysis of graphs. The calculation of

affinities between data points may vary depending on the structure of the data and the goals

of cluster analysis [110].

The details of clustering based upon the graph vary depending on the particular algorithm

used. One well-known spectral clustering algorithm continues by determining the degree

matrix, D [122]. D is a diagonal matrix, defined to be Dii =
∑n

i Gij where the ith diagonal

element of D is the sum of the ith row of G. The next step is to calculate the Laplacian graph

L = D−G. The Laplacian is semi-definite, and may be decomposed into its eigenvalues and

eigenvectors, and thus encodes the connectedness of pairwise interactions between different

data points in the dataset. For example, if there are three dominant clusters in a set of data

points, the Laplacian will demonstrate three dominant eigenvectors. Next, the Laplacian is

normalized to scale the entries to a similar range L̂ = D−1/2LD−1/2 and the eigenvectors are

extracted from the normalized Laplacian. A new matrix E is constructed that is composed

of the top k eigenvectors in the dataset, where k represents the putative number of clusters

present in the dataset. K-means clustering is then used to cluster the data points in E into

8



k clusters.

The method of spectral clustering has many advantages over other clustering methods,

such as hierarchical and k-means clustering. One of the main advantages to spectral clus-

tering is that it does not make strong assumptions about the shapes of the clusters, which

is a major limitation of k-means clustering. In other words, the process of determining the

eigenvectors of the Laplacian matrix and clustering those eigenvectors allows the data points

to be assigned to the cluster to which they have the most connected relationship as opposed

to the most proximal cluster [122]. Thus, spectral clustering has the capacity to cluster many

different shapes and sizes of clusters that cannot be accurately cluster by other methods.

The main disadvantages of spectral clustering are related to the use of k-means clustering

and include sensitivity to initial parameter choices, such as the choice of k and the random

initialization of cluster centers for k-means clustering [38].

2.1.3 Defining the Optimal Number of Clusters

An open problem in cluster analysis is defining the optimum number of clusters present

in a dataset. Although cluster analysis is a pattern recognition tool that is of benefit in

learning more about the properties present in a dataset, most clustering method require

the user to define the number of clusters to be found within the dataset prior to beginning

any data analysis. This is problematic because early in the process of pattern recognition

and evaluation of a dataset, the optimum number of clusters is unknown, and little prior

knowledge is available. To address this problem, several techniques for determining the

optimal number of clusters in a dataset have recently been developed.

2.1.3.1 The Elbow Point One such method for determining the optimal number of

clusters involves evaluating the percentage of variance explained as a function of the number

of clusters. The number of clusters should be such that adding one more cluster does not lead

to measurable improvement in the percent of variance explained by the number of clusters.

In practice this method involves evaluating a plot of percent variance as a function of cluster

number. The point in the plot where the marginal improvement in percent variance begins
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to levels off, or the so-called “elbow” of the plot should represent the point where the number

of clusters is optimal [95]. However, it can often be difficult to pinpoint exactly where this

“elbow” occurs.

2.1.3.2 The Silhouette Width The optimal number of cluster may also be estimated

by using the silhouette width. The silhouette width is a measure of how closely the data

points within a cluster are related to each other as opposed to how they are related to data

points in other clusters [141]. To calculate the silhouette width, for each data point i, we

let a(i) be the average dissimilarity of i with all other data within the same cluster. We

can interpret a(i) based on how well matched i is to the cluster to which it is assigned. We

then find the average dissimilarity of i using the data from another cluster. We repeat this

process for every cluster for which i is not a member and consider the lowest similarity to i to

be b(i). The cluster with the lowest similarity is considered to be the cluster that neighbors

i. Measure of similarity and dissimilarity are most commonly based upon an appropriately

chosen distance metric. After a(i) and b(i) have been found, the silhouette width can be

calculated by the following equation:

s(i) =
b(i)− a(i)

max{a(i), b(i)}
(2.1)

Where s(i) values close to 1 imply more accurate clusters.

2.1.3.3 The Gap Statistic A newer method for calculating the optimal number of

clusters involves using the gap statistic. The way the gap statistic is calculated is by selecting

a range of values 1...N for the number of clusters present. Then, clustering is performed

on the original data points to find k clusters. A dispersion sum is calculated by summing

the distance between all data points and the mean of their assigned cluster. Next, a set

of reference data points similar in size to the original is created. This is typically done by

sampling from a rectangle formed from the original dataset’s principal components. Then

the dispersion sum of the reference set is calculated. Finally the gap statistic is calculated,

which is the log (mean dispersion of reference data points) - log (dispersion of original data
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points). This process is iterated over each range of values 1...N , and the optimal number of

clusters is determined from the value of k that leads to the largest gap statistic [165].

2.2 APPLICATIONS TO ASTHMA PHENOTYPING

In the past several decades, there has been a significant amount of progress in the treat-

ment of childhood asthma. The Global Initiative for Asthma (GINA) guidelines [10] and

multiple large-scale clinical trials [82,150,106], have helped to guide current evidence-based

treatments for this complex syndrome. The current stepwise therapeutic approach is de-

signed to maximize the overall level of asthma control and medication compliance while

minimizing treatment cost and adverse side effects. However, it is widely recognized that

clusters of asthmatic children not only respond differently to medications [158, 130], but

also exhibit markedly different disease trajectories, with many children outgrowing their

asthma by early adolescence, while others (often with more frequent exacerbations) show

disease progression [133, 93, 125, 144] or decreased lung function in adulthood [155]. The

lack of common or distinct histological features or reliable quantitative biomarkers suggests

that asthma may represent a collection of discrete disorders with some shared phenotypic

characteristics, but with distinct etiologies and natural histories. Such heterogeneity poses

significant clinical challenges, particularly in regards to long-term prognostication and treat-

ment decision-making.

Clustering methods have become popular in medicine as a way to explore the hetero-

geneity that is increasingly recognized to be present among patients with complex diseases.

For example, asthma has increasingly been recognized as a heterogeneous disease [173], and

several cluster analyses of patients with asthma have been performed to explore the presence

of disease-relevant subgroups within diverse cohorts of asthmatic patients. Numerous clas-

sification schemes based on specific presenting [140, 26, 27] or etiological [130, 120] features,

have been proposed. Though tailored treatment strategies are suggested for patients with

distinct forms (for example, the timing of long-acting bronchodilator use for the management

of exercise-induced bronchoconstriction), most classification schemes have limited utility in
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guiding management strategies or reliably predicting long-term morbidity. Recognition of

these limitations has motivated the development of multivariate models that consider many

patient characteristics simultaneously [120, 30, 49, 65]. More recently, a newer generation

of data mining procedures that leverage unsupervised machine learning approaches, have

been applied to large asthma cohorts, with early success in defining previously unrecognized

clusters of asthma patients [48,60,118]. However, these studies were limited by their lack of

prospective follow-up data, precluding assessment of the utility of these classification schemes

in informing treatment decision-making or disease prognostication.

2.3 LIMITATIONS OF PRIOR CLUSTER ANALYSES

There have been limitations to prior cluster analyses of asthmatic patients. One limitation

involved the use of naive clustering methods, such as k-means [60] and hierarchical cluster-

ing [118]. The limitations of these methods were described in the preceding sections, and we

sought to address this limitation by using spectral clustering in our approach. As described

above, spectral clustering has many advantages over hierarchical and k-means clustering,

including the ability to discern clusters of differing size and shape, which represents an ad-

vantage over k-means clustering. In addition, spectral clustering does not possess the same

vulnerability to outliers as hierarchical clustering.

In additional limitation of prior cluster analyses was the lack of a principled approached

for determining the optimal number of clusters. Moore and colleagues used hierarchical

clustering to partition a cohort of asthmatic patients into smaller subgroups [118]. However,

they did not specify a procedure for determining the cut points for different clusters in the

hierarchy. Haldar and colleagues used k-means clustering to cluster patients, but likewise did

not specify their procedure for optimizing the number of clusters. In the following analysis,

we sought to address this limitation by incorporating a formal procedure for optimizing the

cluster number into our workflow. We used the gap statistic over a range of cluster numbers

to determine the optimal number of clusters for our dataset [165].
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Although cluster analysis is useful for identifying patterns within a dataset, it does not

provide explanation of why such patterns might exist. Thus, the utility of phenotypic clusters

must be based upon the clinical relevance of observed clinical differences between clusters

to either risk-stratification or the more rational use of pharmacologic therapies. We address

this in our analysis by exploring the cross-sectional clinical differences between clusters,

which was done in earlier analyses. We also build upon earlier studies by exploring the

longitudinal consistency of clusters over time and differential response to medical therapy

between clusters.
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3.0 MULTIVARIATE ASTHMA ENDOTYPES

3.1 INTRODUCTION

We performed cluster analysis on a heterogeneous dataset of children with asthma in order

to explore the presence of distinct phenotypic cluster corresponding to clinically meaningful

differences between patients. In this analysis, we attempt to address many of the compu-

tational and clinical limitations of earlier cluster analyses performed on asthmatic children.

For this analysis, we evaluated participants in the Childhood Asthma Management Program

(CAMP) study [81, 82]. CAMP was a 4.5-year multi-center randomized, double-masked

clinical trial evaluating the long-term effects of inhaled budesonide vs. inhaled nedocromil

vs. placebo in 1,041 children with mild to moderate childhood asthma. In the primary

analysis, no differences in lung function improvement (the primary outcome) were observed

between treatment arms, though participants randomized to inhaled budesonide demon-

strated markedly improved long-term symptom control and reduced exacerbation rates as

compared to participants randomized to either inhaled nedocromil or placebo. In contrast

to prior phenotype clustering efforts [48, 60, 118], the availability of both extensive baseline

phenotypic data (collected following a 28-day screening period when participants were off all

asthma controller medications) and 48 months of prospective follow-up clinical trial data,

CAMP provides an opportunity to evaluate whether computational approaches can define

meaningful clusters with distinct clinical trajectories and/or treatment responses.
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3.2 METHODS

3.2.1 Study Population

The CAMP study design and primary outcomes have been described [81,82]. Subjects aged

5 to 12 years were deemed eligible for enrollment if they (i) had mild-to-moderate persistent

asthma, defined by the presence of symptoms, the use of an inhaled bronchodilator at least

twice weekly, or the use of daily medication for asthma; (ii) exhibited airway responsiveness

to methacholine; and (iii) they had no other clinically significant conditions. Participants

were randomized blindly to receive budesonide 200 µg twice daily (Pulmicort, AstraZeneca,

Westborough, MA; n = 311), nedocromil sodium 8 mg twice daily (Tilade, RhonePoulenc

Rorer, Collegeville, Pa.; n = 312), or matching placebo (n = 418). Subjects were evaluated

every four months, for a total of 48 months. Asthma exacerbations were treated by short

courses of oral prednisone. The addition of beclomethasone dipropionate (168 µg twice daily;

Vanceril, Schering-Plough, Kenilworth, N.J.) was allowed if asthma control was inadequate.

If control remained unsatisfactory, replacement or addition of medications was allowed.

3.2.2 Selection of Phenotypes

Phenotypic characteristics, including measurements of lung function, laboratory values,

asthma symptoms, and exacerbating factors were measured on each subject prior to and

at the time of randomization. From an initial list of 48 clinical variables (Table 3.1), we

selected a set of variables, representative of each childs degree of asthma burden, as inputs

to a clustering algorithm. Ten variables were excluded from consideration due to an excess

of missing data (greater than 10% of values missing). Due to the inherent strong correlation

between pre- and post- bronchodilator spirometric measures, we considered only one of the

two measurements (either pre- or post-bronchodilator) for FEV1, FVC, their ratio, and peak

flow. In addition, due to the subjective nature of many of the provocative variables, such as

animal dander worsens asthma, these variables were excluded from further analysis (Table

3.1). The resultant list for consideration included 18 variables. In contrast to prior studies,

potential asthma risk factors, such as gender, ethnicity and environmental exposure were
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purposely excluded from consideration for model building.

3.2.3 Preprocessing of Phenotypic Variables

Following variable selection, missing values were imputed using a k-nearest neighbor algo-

rithm from the pamr package of Bioconductor 2.51 [164]. Due to the fact that clustering

results may be affected by differences in scale among variables [33], vector normalization was

performed to scale each variable to a unit vector.

3.2.4 Cluster and Classification Analysis

We used spectral clustering [122], as implemented by the spec function of the kernlab pack-

age [89] of R 2.10.1, to partition the cohort into phenotypic clusters. In recognition that the

outcome of clustering methods is dependent on user-defined inputs, we used a data-driven,

iterative approach to define both the number of clinical variables to consider and the optimal

number of clusters to form. We considered a range of 1 to 10 for the number of clusters to

be constructed and, for each iteration, a set of initial cluster centers was generated from

a random set of rows in the data eigenvector matrix. We used the gap statistic [165] to

select the optimal number of clusters. We used the decision tree method [19, 138] to grow

a classification tree by binary recursive partitioning using the 18 variables from the above

clustering model to predict the phenotype cluster assignments.

3.2.5 Cluster Validation

3.2.5.1 Comparison to a Univariate Approach to Clustering We assessed the ef-

fect of using a single variable for cluster analysis on determining the final cluster assignments.

That is, Instead of using a multivariate model with 18 variables for cluster analysis, we used

each variable separately to perform the clustering. For the continuous variables, we specified

the formation of five clusters, to allow for comparison to the multivariate model. Using each

categorical variable independently led to the formation of two clusters. In order to compare

the univariate and multivariate approaches to clustering, we evaluated the ability of both

approaches to predict future exacerbations (ie. the time to first use of oral prednisone).
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Medical History Reason for Exclusion

*Age of asthma onset included in model

Primary Caregiver’s assessment of asthma too subjective for model

*Atopic dermatitis included in model

*Positive allergy skin test included in model

*Prior hospitalizations for asthma included in model

*Emergency room visits for asthma included in model

*Hay fever included in model

Factors worsening Asthma Reason for Exclusion

House dust or Animals or Tobacco smoke < 10% missing values (cold air, aspirin),

or Emotional factors or Exercise or Certain foods remainder considered too subjective

or Respiratory infections or Dampness

or Changes in the weather or Cold air or Aspirin

Clinical Presentation Reason for Exclusion

Provoked by exercise These variables were considered

Provoked by allergy to be too subjective for use

Age at first symptoms in the clustering model

Symptom Burden Reason for Exclusion

Age when child began wheezing with shortness of breath > 10% missing values

Prior awakening from sleep due to cough or wheeze > 10% missing values

Awakening from sleep due in the past 6 months OR in past week > 10% missing values

Cough or wheeze during the day unrelated to exercise too subjective

Cough or wheeze during the day due to exercise > 10% missing values

Cough or phlegm with or without an upper respiratory infection > 10% missing values

Wheezing present on most days too subjective

Wheezing present with or without an upper respiratory infection too subjective

Wheezing present with shortness of breath too subjective

Two or more episodes of wheezing with shortness of breath > 10% missing values

Received a prescription medication for wheezing with shortness of breath > 10% missing values

Normal breathing between attacks of wheezing with shortness of breath > 10% missing values

Anthropomorphic Measurements Reason for Exclusion

*Body Mass Index All variables were included

* Waist / hip ratio in the model

Pulmonary Function Reason for Exclusion

*FEV1/ FVC All variables were

*post-BD FEV1 pre-BD FEV1/ included in the model

pre-BD FEV1 (BDR)

*Methacholine PC20 (natural log)

*Baseline peak expiratory flow rate

*Post-BD FVC as a percentage of

the predicted value (post-BD FVC % predicted)

*Pre-PD FEV1 as a percentage of

the predicted value (pre-BD FEV1 % predicted)

Peripheral blood measures Reason for Exclusion

*Total serum IgE level (log10) All variables were

*Absolute serum eosinophils (log10) included in the model

*Absolute serum lymphocyte count

*Absolute serum neutrophil count

Baseline clinical variables considered for cluster analysis. From an initial list of 48 variables shown in
the table, we selected 18 clinical variables (denoted by ∗) as inputs to the spectral clustering algorithm.

Table 3.1: Baseline clinical variables considered for cluster analysis.
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3.2.5.2 Comparison to an Alternative Clustering Algorithm In order to evaluate

the reproducibility of our cluster assignments we repeated the unsupervised analysis in the

CAMP cohort using a different clustering algorithm. As an alternative clustering method,

we selected hierarchical clustering because this was the method used in two well-known

studies of clustering in asthmatics patients, the Severe Asthma Research Program (SARP)

adult [118] and childhood [48] cohorts. These prior studies used hierarchical clustering with

Wards minimum distance as an agglomeration method, and we chose to use this clustering

method for validation of our clustering results. We used the hclust function of the stats

package in R 2.10.1 to generate five specified clusters and compared the composition of these

new clusters to our original cluster assignments. We also performed an outcomes analysis

with these new clusters and compared this to our original outcomes analysis.

3.3 RESULTS OF CLUSTER ANALYSIS

3.3.1 Phenotypes

Clinical phenotype data was available for all 1,041 participants. The baseline characteristics

assessed following a 28-day screening period off all anti-inflammatory asthma medications,

are presented in Table 3.2. As previously reported [81, 82], the demographic composition of

the CAMP cohort is consistent with that of childhood asthma in North America, including

a higher proportion of boys, early age of onset, and high prevalence of atopic features.

3.3.2 Cluster Analysis

Spectral clustering with 18 asthma-related baseline phenotypic characteristics observed many

high gap statistics; however, the maximum statistic was observed when considering five clus-

ters (Figure 3.1). Testing the model by leaving out one variable for each iteration confirmed

the importance of all 18 variables in the final model, as exclusion of any one resulted in

substantial subgroup fragmentation and inferior model performance (as measured by the

gap statistic, Table 3.3).
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Variable Count or Mean

Sex

Male (%) 621 (59.7)

Female (%) 420 (40.3)

Age (years) 8.94 ± 2.12

Self-reported race

White (%) 711 (68.3)

Black (%) 138 (13.3)

Hispanic (%) 98 (9.41)

Other (%) 94 (9.03)

Family history of asthma (%)

Yes 574 (55.1)

No 444 (42.7)

Missing 23 (2.21)

Family history of atopy (%) 724 (69.5)

History of tobacco smoke exposure (%) 439 (42.2)

Household income

< $30,000 242 (23.2)

≥ $30,000 758 (72.8)

Missing 41 (3.94)

Age of asthma onset, years 3.07 ± 2.44

Hospitalized for asthma (%) 320 (30.7)

ER visits for asthma, no./100 person-year 648 ± 62.2

History of atopic dermatitis (%) 298 (28.6)

History of hay fever (%) 557 (53.5)

History of positive skin test (%) 914 (87.8)

Pre-bronchodilator FEV1, L (range) 1.65 (0.42-3.31)

Pre-bronchodilator FEV1/FVC ratio (range) 80 (52-100)

FEV1 bronchodilator response, L (range) 0.10 (-3.77-2.59)

Total serum IgE levels, IU/L (range) 484 (0-5304)

Peripheral blood eosinophil count, log10 /L (range) 2.50 (0-3.72)

Waist to hip ratio 0.88 ± 0.061

Body Mass Index, kg/m2 18.2 ± 3.52

Table 3.2: Baseline features of 1,041 CAMP asthmatics.
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We also repeated the clustering analysis with consideration of subjects of self-reported

white ethnicity only (the largest ethnic group in the study), and found no differences in

cluster assignment (data not shown). Hence, our final model is optimal with respect to

the number of variables and clusters, and does not appear to be confounded by systematic

ethnicity-specific phenotypic differences.

Figure 3.2 presents a heat map of the clinical phenotypes grouped by cluster. Though

several variables segregate rather discretely by cluster grouping, all but five of the variables

included in the final model demonstrated significant differences in distribution across the

clusters (all p < 0.0001, denoted by * in Figure 3.2 and Table 3.4). Despite their prominence

in previously described asthma classification schemes, neither anthropomorphic measures

(BMI & waist:hip ratio) nor circulating leukocyte levels (neutrophil or lymphocyte levels)

were differentially distributed across the five clusters in this study.

3.3.3 Phenotypic characterization of the asthma clusters

Table 3.5 presents the distribution of asthma-related phenotypes across the observed clusters

and Table 3.5 provides a summary of the characteristic features of each cluster. The clusters

can be characterized best with respect to three groups of factors: (i) atopic burden (preva-

lence of atopic dermatitis, allergic rhinitis or skin test reactivity, total serum IgE and periph-

eral blood eosinophil levels); (ii) lung function and airway lability (pre-bronchodilator FEV1,

FEV1/FVC, bronchodilator response and methacholine airways hyper-responsiveness); and

(iii) baseline exacerbation rates (hospitalization and ED visit rates). Using these three groups

of variables, we constructed an Atopy-Obstruction-Exacerbation (AOE) classification scheme

by scoring each phenotype group as Low, Medium, or High. For clarity of subsequent dis-

cussion, although prospective long-term asthma control was not considered in the clustering

procedures (only baseline variables were considered), the cluster groups are also numbered in

ascending rank order of poor long-term asthma control (i.e. 1 = best control and 5 = worst,

as defined by need for oral steroid therapy during the ∼4.5 years of follow-up observation,

see below).

The largest group of patients (Cluster 1, 28.8% of cohort) represents the mildest cases,
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Figure 3.1: The gap statistic as a function of the number of clusters.
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Variable Range of Values Optimal number of clusters

for each variable with variable removed†

Age of onset (years) 0-12 10

Hospitalized for asthma 9

Missing 0

Yes 320

No 721

ER visits for asthma (number in past year) 0-12 3

History of atopic dermatitis 7

Missing 1

Yes 298

No 742

History of a positive skin test 10

Missing 0

Yes 914

No 127

FEV1 bronchodilator response (L)

Methacholine PC20 (natural log) -3.77-2.59 3

Peripheral blood eosinophils (log10) 0-3.72 6

Pre-bronchodilator FEV1/FVC (% predicted) 52-100 6

Pre-bronchodilator peak flow (L/min) 100-550 6

Waist to hip ratio 0.62-1.48 3

Total serum IgE levels (log10) 0.30-4.61 9

Body Mass Index (kg/m2) 12.7-34.3 3

Pre-bronchodilator FEV1 (% predicted) 44-148 4

Post-bronchodilator FVC (% predicted) 69-162 2

History of hay fever 10

Missing 5

Yes 557

No 479

Lymphocytes (%) 4-78 6

Neutrophils (%) 14-86 6

†Clustering robustness analysis. Each of the 18 variables used to perform the clustering analysis were
removed from the model one by one and the remaining 17 variables were used to perform the clustering.
Shown are the number of optimal clusters as determined by the gap statistic when a particular variable
was removed from the model.

Table 3.3: Range of Baseline Features of CAMP Asthmatics.
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Neutrophils

Lymphocytes

Post BD FVC % pred*

Log 10 eosinophils*

Waist/hip ratio

BMI

BD response*

Natural log PC20*

Pre BD peak flow

Pre BD FEV1/FVC*

Pre BD FEV1 %pred*

Log 10 IgE*

Positive skin test*

Hay fever history*

Atopic dermatitis*

ER visits*

Hospital history*

Age of onset*

1 2 3 4 5

The above heatmap depicts the differences among normalized clinical variables used for clustering and
the different cluster sub-groups. The cluster assignments are grouped along the horizontal axis and the
variables used to determine the cluster assignments appear along the vertical axis.

Figure 3.2: Heatmap of phenotypic trait distribution by cluster.
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Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 P-value

(n=300) (n=202) (n=218) (n=225) (n=96)

AOE Classification LLL HLM HHM MHH HHH

Asthma history

Age of asthma onset (years) 3.52 ± 2.63 3.09 ± 2.40 3.66 ± 2.62 2.21 ± 1.89 2.27 ± 1.80 < 0.001

Total hospitalized for asthma 0 (0) 0 (0) 1 (0.46) 225 (100) 94 (97.9) < 0.001

(%)

ER visits for asthma 44.3 47.0 70.2 75.6 101 < 0.001

(visits / 100 person-years)

Atopic Features

History of atopic dermatitis 0 (0%) 202 (100%) 2 (0.1%) 0 (0%) 94 (97.9%) < 0.001

(%)

History of hay fever (%) 61 (20.3%) 132 (65.3%) 191 (87.6%) 119 (52.9%) 54 (56.3%) < 0.001

History of positive skin test 230 (76.7%) 185 (91.6%) 209 (95.9%) 198 (88%) 92 (95.8%) < 0.001

(%)

Total serum IgE levels (log10) 2.37 ± 0.70 2.72 ± 0.72 2.79 ± 0.58 2.64 ± 0.61 2.81 ± 0.63 < 0.001

Spirometry

Pre-bronchodilator FEV1 96.4 ± 12.7 97.7 ± 14.8 89.7 ± 13.9 91.4 ± 13.8 92.0 ± 16.1 < 0.001

(% predicted)

Pre-bronchodilator FEV1/FVC 81.8 ± 7.68 81.5 ± 7.59 77.6 ± 8.54 77.8 ± 8.24 78.6 ± 9.60 < 0.001

(% predicted)

Pre-bronchodilator peak flow 276.1 ± 67.3 274.3 ± 73.3 276.7 ± 69.1 276.4 ± 70.8 255.6 ± 73.3 0.12

Airway responsiveness

Methacholine PC20 (natural log) 0.71 ± 1.03 0.14 ± 1.11 -0.54 ± 1.00 0.038 ± 1.14 -0.23 ± 1.17 < 0.001

FEV1 bronchodilator response 0.077 ± 0.07 0.097 ± 0.08 0.12 ± 0.11 0.12 ± 0.11 0.16 ± 0.14 < 0.001

(L)

Anthropomorphic features

BMI 18.1 ± 3.46 18.6 ± 3.83 18.5 ± 3.66 17.8 ± 3.19 17.6 ± 3.38 0.07

Waist/hip ratio 0.882 ± 0.06 0.885 ± 0.07 0.881 ± 0.06 0.874 ± 0.05 0.877 ± 0.07 0.80

Peripheral blood counts

Eosinophils (log10) 2.35 ± 0.55 2.54 ± 0.53 2.57 ± 0.52 2.50 ± 0.49 2.71 ± 0.41 < 0.001

Lymphocytes (%) 42.1 ± 11.5 40.9 ± 9.82 41.1 ± 10.9 41.7 ± 10.5 40.8 ± 9.78 0.67

Neutrophils (%) 45.5 ± 12.2 44.5 ± 11.0 44.6 ± 11.5 44.7 ± 11.5 43.1 ± 11.0 0.62

Table 3.4: Distribution of Traits Across Phenotypic Clusters.
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with the lowest baseline exacerbation rates, lowest prevalence of atopic features, and pre-

served lung function (AOE classification LLL). The smallest cluster, Cluster 5 (9.3%), con-

sists of the most severe cases, with the highest baseline exacerbation rates, a very high atopic

burden, and reduced lung function (AOE group HHH). The three remaining clusters reflect

subsets with intermediate levels of severity and more heterogeneous clinical features. Clus-

ter 2 (19.3%) includes those subjects with high atopic burden but preserved lung function

(relative to the other groups) and intermediate airways hyperresponsiveness. This group has

an intermediate baseline exacerbation rate, with no reports of hospitalization (AOE group

HLM). Patients in Cluster 3 (20.9%) have high atopy burden, the most compromised lung

function, and extreme airways hyperresponsiveness, but have intermediate baseline exacer-

bation rates (AOE group HHM). In contrast, though patients in Cluster 4 (21.6%) are less

atopic to those of Cluster 2 (including lower rates of allergic rhinitis and skin test reactivity,

and lower serum IgE and peripheral blood eosinophil levels), and have reduced lung function

at levels similar to individuals in Cluster 3, they have very high exacerbation rates, partic-

ularly with respect to hospitalizations (AOE group MHH). It is clear that no one feature is

sufficient to characterize these groups.

3.3.4 Phenotypic clusters, long-term asthma control and response to specific

inhaled anti-inflammatory controller medications

To assess whether the derived cluster designations have clinical relevance regarding subse-

quent risk of exacerbations, we performed survival analysis of time to asthma exacerbation

over approximately 4.5 years follow-up. Consistent with the effective randomization of treat-

ment assignment, treatment group did not differ between clusters (p = 0.91, Table 3.6, Table

3.7), enabling unbiased assessment of the relationship between cluster grouping and long-

term asthma control (Figure 3.3). Kaplan-Meier analysis confirmed that cluster grouping

was strongly predictive of time to first course of oral prednisone (Figure 3.10a, Kaplan-

Meier log-rank p < 0.0001) and time to initiation of additional asthma controller therapies

(Figure 3.10b, p = 0.001). The most striking differences were observed within the first

12 months post-randomization, by which time the majority of subjects in Clusters 4 and 5
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Cluster 1: Relatively mild asthmatics with a low atopic burden (LLL)

• The largest subgroup of patients (28.8%)

• No history of atopic dermatitis, lowest prevalence of hay fever or skin prick test reactivity, lowest

IgE levels

• Preserved lung function(highest FEV1/FVC ratio)

• Lowest bronchodilator response, intermediate airway hyperresponsiveness.

• No prior hospitalization for asthma and the lowest reported prevalence of ED visits

• Lowest risk of poor long-term asthma control**

Cluster 2: Highly atopic asthmatics with preserved lung function (HLM)

• Universally report atopic dermatitis, high prevalence of allergic rhinitis and skin test reactivity

• Preserved lung function (highest FEV1)

• Intermediate bronchodilator response and airways hyper responsiveness

• No prior hospitalization, but intermediate rates of prior ED visits

• Low-intermediate risk of poor long-term asthma control**

Cluster 3: Highly atopic asthmatics with reduced lung function and severe airways

hyperresponsiveness (HHM)

• Rarely report atopic dermatitis (in contrast to HLM cluster),but highest prevalence of allergic

rhinitis and skin test reactivity

• Most reduced lung function (low FEV1/FVC ratio)

• High bronchodilator response and most severe airways hyper responsiveness

• Few prior hospitalizations, but intermediate rates of prior ED visits (similar to HLM cluster)

• Intermediate risk of poor long-term asthma control**

Cluster 4: Asthmatics with reduced lung function and high exacerbation rates, but

lower atopic burden (MHH)

• No history of atopic dermatitis, intermediate prevalence of hay fever (52.9%), lower IgE levels

• Most reduced lung function (low FEV1/FVC ratio, similar to HHH cluster)

• High bronchodilator response and most severe airways hyper responsiveness

• Most reports of prior hospitalization

• Intermediate risk of poor long-term asthma control**

Cluster 5: Asthmatics with most severe disease at baseline, high atopic burden, highest

exacerbation rates (HHH)

• Smallest subgroup of patients (9.3%)

• Nearly universal atopic dermatitis, highest prevalence of skin test reactivity, highest IgE levels,

highest eosinophilia, intermediate prevalence of allergic rhinitis

• Reduced lung function (low FEV1/FVC ratio) (similar to MHH cluster)

• Highest bronchodilator response and severe airways hyperresponsiveness

• Most reports of prior hospitalization and highest rate of ER visits

• Highest risk of poor long-term asthma control**

* Atopy-Obstruction-Exacerbation classification denoted in parenthesis.

** Poor long-term asthma control risk is defined from prospective survival analysis of time to first

course of oral prednisone. This variable was derived using the defined cluster groupings and was

therefore not considered in the spectral cluster analyses used to define the clusters.

Table 3.5: Summary of clinical characteristics of phenotypic clusters.
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(66% and 64%, respectively) had required at least one course of oral steroids, as compared

to only 56% and 54% of subjects in Clusters 3 and 2, and only 46% of patients in Cluster 1.

These established trends persisted for the remainder of the trial, with greater separation of

cluster groupings over time. At the end of the 4-year trial observation period, about a 3-fold

difference in the percentage of subjects not requiring oral prednisone was observed between

the two most extreme groups (32% in Cluster 1 vs. 11% in cluster 5, p < 0.0001). Simi-

lar relationships were noted for time to initiation of additional asthma controller therapies

(Figure 3.10b).

We next assessed whether treatment response to specific inhaled anti-inflammatory con-

troller medications differed by cluster group. As originally reported in the primary outcomes

assessment of the CAMP trial [82], use of inhaled budesonide, compared to placebo, sig-

nificantly reduced the number of asthma exacerbations Further, it was found that for the

entire cohort nedocromil did not significantly reduce exacerbation rates or additional con-

troller therapies compared to placebo. However, in a post hoc evaluation stratified by cluster

grouping, significant heterogeneity in treatment response rates to both medications is found

(Figure 3.4, Table 3.6, Table 3.7, 3.8, 3.9, 3.10): whereas subjects stratified to the three

more mild clusters demonstrated treatment response patterns similar to those reported in

the cohort as a whole, the therapeutic efficacy of nedocromil was similar to that of budes-

onide (as significantly greater than placebo) among subjects in the two most severe clusters

(Clusters 4 and 5) - those with the highest risk of exacerbation. Subjects in Cluster 4 those

with the lowest atopic burden, worst lung function, and high baseline exacerbation rates

demonstrated significant reductions in exacerbation rates when randomized to nedocromil

(1.7 fold reduction compared to placebo at 12 months, 1.6 fold reduction at 4 years) that was

similar to the reduction in exacerbation observed among those randomized to budesonide

(1.6 fold reduction compared to placebo at 12 months, 1.4 fold reduction at 4 years). In

this group, there was no difference in exacerbation reduction between those randomized to

nedocromil or budesonide (p = 0.96). Similar effects were noted in Cluster 5 (p = 0.22 for

difference between nedocromil and budesonide groups), though the magnitude of treatment

effect (compared to placebo) was substantially lower than for subjects in Cluster 4. For

subjects in Cluster 5- those with a high atopic burden, low lung function and the highest
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Kaplan-Meier plots by cluster of the cumulative probability of a first course of prednisone A: or initiation
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period of the CAMP trial.

Figure 3.3: Survival analysis for phenotypic clusters.
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baseline exacerbations there was no decrease in exacerbation rate for subjects randomized

to either nedocromil (p = 0.56) or budesonide (p = 0.12).

3.3.5 Demographic, environmental, and familial determinants of phenotypic

clusters

We next assessed for associations between the observed clusters and known demographic,

environmental and familial features implicated in asthma pathogenesis that were not con-

sidered during clustering. Descriptions of demographic, environmental and familial clinical

variables across phenotypic clusters are presented in Table 3.11. Although trends for higher

proportions of non-Hispanic white subjects in the mildest group, and blacks in the most

severe groups were noted, these differences were not statistically significant. In contrast,

enlightening differences across clusters were observed for numerous environmental and fa-

milial factors. For example, though environmental tobacco smoke exposure was reported by

subjects in all five clusters, the prevalence was greatest among individuals in Clusters 4 and

5 those with the highest baseline exacerbation rates. However, among subjects in the less

severe clusters, a direct relationship between severity and smoke exposure was not observed:

those with the lowest childhood smoke exposure (Cluster 2, 30.2%) had higher baseline

exacerbation and greater airways hyperresponsiveness than subjects in Cluster 1 who had

significantly higher childhood smoke exposure (39.7%),and exacerbation rates, lung function,

and airways responsiveness were markedly different between Clusters 1 and 3 despite very

similar childhood smoke exposure rates (39.7% vs. 37.6%, respectively).

Similarly, though differences in aeroallergen exposure and in familial burden of both

asthma and atopy were observed across the five phenotypic clusters, obvious linear corre-

lations between risk factor exposure and severity of disease were not observed. Thus, with

the exception of age, where statistically significant differences were observed across cluster

groups, demographic variables including sex or socioeconomic indicators did not differ be-

tween clusters, suggesting that although environmental and genetic factors likely contribute

to the underlying pathobiological processes that determine cluster designation, none of these

variables are sole etiological determinants.
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Figure 3.4: Kaplan-Meier estimate by treatment group of the cumulative probability of

prednisone use during four years of follow-up, stratified by asthma cluster.
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Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 P-value

(n=300) (n=202) (n=218) (n=225) (n=96)

AOE Classification LLL HLM HHM MHH HHH

Budesonide (n = 311, 29.9%)

2 months 0.06 ± 0.34 0.19 ± 0.61 0.18 ± 0.39 0.30 ± 0.90 0.19 ± 0.19 0.13

4 months 0.12 ± 0.22 0.30 ± 0.31 0.34 ± 0.41 0.54 ± 0.46 0.58 ± 0.36 0.003

8 months 0.39 ± 0.63 0.53 ± 0.52 0.71 ± 0.72 1.09 ± 0.82 0.92 ± 0.36 0.01

12 months 0.61 ± 0.67 0.72 ± 0.54 0.91 ± 0.58 1.44 ± 0.64 1.29 ± 0.31 0.004

16 months 0.78 ± 0.44 0.95 ± 0.65 1.21 ± 0.76 1.63 ± 0.42 2.22 ± 0.78 0.01

20 months 0.85 ± 0.38 1.15 ± 0.38 1.46 ± 0.58 1.87 ± 0.69 2.70 ± 0.44 0.01

24 months 1.07 ± 0.89 1.35 ± 0.72 1.57 ± 0.48 2.07 ± 0.44 3.04 ± 0.37 0.04

28 months 1.24 ± 0.46 1.47 ± 0.36 1.76 ± 0.50 2.39 ± 0.93 3.40 ± 0.38 0.04

32 months 1.39 ± 0.45 1.69 ± 0.58 1.96 ± 0.68 2.54 ± 0.47 3.63 ± 0.27 0.05

36 months 1.61 ± 0.62 1.98 ± 0.54 2.19 ± 0.48 2.85 ± 0.73 4.05 ± 0.42 0.03

40 months 1.75 ± 0.46 2.13 ± 0.39 2.33 ± 0.48 3.14 ± 0.74 4.52 ± 0.28 0.03

44 months 1.78 ± 0.31 2.23 ± 0.36 2.56 ± 0.49 3.03 ± 0.59 4.71 ± 0.20 0.02

48 months 1.94 ± 0.46 2.42 ± 0.63 2.86 ± 0.48 3.38 ± 0.52 5.00 ± 0.28 0.04

Nedocromil (n = 312, 30.0%)

2 months 0.21 ± 0.55 0.29 ± 0.65 0.22 ± 0.60 0.35 ± 0.65 0.54 ± 0.83 0.91

4 months 0.37 ± 0.43 0.55 ± 0.64 0.54 ± 0.56 0.61 ± 0.61 1.13 ± 1.18 0.06

8 months 1.03 ± 1.03 0.94 ± 0.52 1.12 ± 1.14 1.02 ± 0.68 1.59 ± 0.73 0.78

12 months 1.38 ± 0.70 1.26 ± 0.95 1.52 ± 0.78 1.46 ± 0.95 2.14 ± 0.99 0.66

16 months 1.71 ± 0.92 1.76 ± 1.11 1.94 ± 0.70 1.89 ± 0.80 2.78 ± 1.10 0.60

20 months 2.05 ± 0.51 2.10 ± 0.69 2.38 ± 0.79 2.15 ± 0.61 3.00 ± 0.52 0.55

24 months 2.33 ± 0.41 2.42 ± 0.69 2.92 ± 1.93 3.37 ± 0.60 3.50 ± 1.15 0.55

28 months 2.48 ± 0.47 2.74 ± 0.95 3.42 ± 2.07 2.53 ± 0.47 3.91 ± 0.83 0.62

32 months 2.65 ± 0.45 3.20 ± 0.94 3.74 ± 0.68 2.82 ± 0.65 4.29 ± 0.51 0.56

36 months 2.87 ± 0.60 3.27 ± 0.39 4.09 ± 0.65 3.29 ± 1.26 4.85 ± 0.58 0.28

40 months 3.14 ± 0.63 3.51 ± 0.40 4.29 ± 0.60 2.53 ± 0.63 5.15 ± 0.76 0.26

44 months 3.25 ± 0.35 3.78 ± 0.69 4.46 ± 0.67 3.80 ± 0.64 5.40 ± 0.64 0.22

48 months 3.56 ± 0.50 4.17 ± 0.67 4.67 ± 0.36 4.02 ± 0.82 5.42 ± 0.63 0.34

Placebo (n = 418, 40.1%)

2 months 0.30 ± 0.77 0.45 ± 0.86 0.37 ± 0.72 0.34 ± 0.71 0.41 ± 0.72 0.49

4 months 0.53 ± 0.52 0.84 ± 0.75 0.77 ± 0.65 0.83 ± 0.84 0.76 ± 0.69 0.16

8 months 1.07 ± 0.92 1.32 ± 0.81 1.21 ± 0.73 1.45 ± 0.96 1.61 ± 1.25 0.29

12 months 1.47 ± 0.93 1.80 ± 0.95 1.56 ± 0.66 2.12 ± 0.88 2.29 ± 1.47 0.04

16 months 1.97 ± 0.81 1.92 ± 0.50 1.71 ± 0.43 2.85 ± 0.97 2.77 ± 0.78 0.01

20 months 2.37 ± 1.03 2.30 ± 0.88 1.99 ± 0.58 3.65 ± 1.02 3.80 ± 1.72 <0.001

24 months 2.81 ± 0.95 2.84 ± 0.98 2.54 ± 1.06 4.23 ± 0.93 4.26 ± 0.78 <0.001

28 months 3.38 ± 2.47 3.14 ± 0.55 2.82 ± 0.51 4.75 ± 0.95 4.86 ± 0.92 <0.001

28 months 3.38 ± 2.47 3.14 ± 0.55 2.82 ± 0.51 4.75 ± 0.95 4.86 ± 0.92 <0.001

32 months 3.79 ± 0.96 3.42 ± 0.54 3.10 ± 0.70 5.30 ± 0.96 5.46 ± 0.92 <0.001

36 months 3.98 ± 0.51 4.09 ± 2.78 3.30 ± 0.43 6.01 ± 2.98 5.89 ± 0.70 <0.001

40 months 4.18 ± 0.49 4.34 ± 0.69 3.53 ± 0.53 6.32 ± 0.65 6.40 ± 0.71 <0.001

44 months 4.42 ± 0.63 4.64 ± 0.67 3.75 ± 0.55 6.65 ± 0.71 6.82 ± 0.78 <0.001

48 months 4.69 ± 0.52 4.72 ± 0.78 3.91 ± 0.46 6.89 ± 0.53 7.42 ± 0.86 <0.001

P-values

Budesonide vs. Nedocromil 0.0006 0.008 0.054 0.96 0.22

Budesonide vs. Placebo 0.0007 0.001 0.022 0.005 0.13

Nedocromil vs. Placebo 0.39 0.45 0.65 0.006 0.82

The cumulative number of subjects experiencing asthma exacerbations as demonstrated by the need for
oral prednisone therapy, at each study time point, stratified by treatment group. Shown are the mean
(±sd) cumulative number of prednisone bursts per person from the onset of the study period, p-values for
between-cluster differences in outcome (far right), and pairwise comparisons of within-cluster differences
in outcomes (bottom level).

Table 3.6: Number of prednisone bursts.
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Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 P-value

(n=300) (n=202) (n=218) (n=225) (n=96)

AOE Classification LLL HLM HHM MHH HHH

Budesonide (n = 311, 29.9%)

2 months 0.01 ± 0.11 0.04 ± 0.21 0.03 ± 0.18 0.00 ± 0.71 0.00 ± 0.72 0.32

4 months 0.01 ± 0.11 0.05 ± 0.21 0.03 ± 0.18 0.00 ± 0.84 0.04 ± 0.69 0.43

8 months 0.01 ± 0.12 0.06 ± 0.30 0.03 ± 0.18 0.06 ± 0.96 0.04 ± 1.25 0.66

12 months 0.03 ± 0.16 0.06 ± 0.39 0.07 ± 0.26 0.11 ± 0.88 0.13 ± 1.47 0.24

16 months 0.04 ± 0.20 0.06 ± 0.40 0.11 ± 0.31 0.13 ± 0.97 0.17 ± 0.78 0.21

20 months 0.05 ± 0.28 0.10 ± 0.43 0.13 ± 0.33 0.16 ± 1.02 0.17 ± 1.72 0.43

24 months 0.06 ± 0.29 0.10 ± 0.43 0.13 ± 0.33 0.18 ± 0.93 0.17 ± 0.78 0.38

28 months 0.10 ± 0.34 0.10 ± 0.43 0.15 ± 0.36 0.25 ± 0.95 0.26 ± 0.92 0.46

32 months 0.11 ± 0.36 0.10 ± 0.43 0.19 ± 0.44 0.26 ± 0.96 0.26 ± 0.92 0.43

36 months 0.18 ± 0.52 0.11 ± 0.45 0.21 ± 0.50 0.35 ± 2.98 0.30 ± 0.70 0.52

40 months 0.24 ± 0.64 0.11 ± 0.45 0.27 ± 0.63 0.51 ± 0.65 0.36 ± 0.71 0.27

44 months 0.25 ± 0.65 0.13 ± 0.47 0.31 ± 0.67 0.54 ± 0.71 0.38 ± 0.78 0.18

48 months 0.66 ± 0.92 0.37 ± 0.64 0.50 ± 0.71 0.82 ± 0.53 0.70 ± 0.86 0.27

Nedocromil (n = 312, 30.0%)

2 months 0.00 ± 0.00 0.02 ± 0.13 0.00 ± 0.00 0.02 ± 0.00 0.04 ± 0.00 0.33

4 months 0.00 ± 0.00 0.09 ± 0.35 0.02 ± 0.12 0.05 ± 0.00 0.17 ± 0.20 0.002

8 months 0.06 ± 0.23 0.19 ± 0.62 0.12 ± 0.38 0.11 ± 0.24 0.23 ± 0.20 0.20

12 months 0.13 ± 0.43 0.28 ± 0.94 0.14 ± 0.39 0.17 ± 0.36 0.36 ± 0.34 0.17

16 months 0.22 ± 0.60 0.41 ± 1.42 0.18 ± 0.46 0.26 ± 0.38 0.59 ± 0.48 0.15

20 months 0.30 ± 0.78 0.48 ± 1.58 0.23 ± 0.56 0.30 ± 0.55 0.68 ± 0.48 0.24

24 months 0.35 ± 0.93 0.52 ± 1.61 0.45 ± 0.94 0.40 ± 0.56 0.82 ± 0.48 0.27

28 months 0.38 ± 0.99 0.64 ± 1.80 0.62 ± 1.12 0.37 ± 0.67 0.86 ± 0.75 0.29

32 months 0.42 ± 1.11 0.69 ± 1.85 0.79 ± 1.36 0.49 ± 0.75 1.00 ± 0.75 0.19

36 months 0.48 ± 1.72 0.76 ± 1.95 0.86 ± 1.46 0.60 ± 0.88 1.15 ± 0.82 0.23

40 months 0.59 ± 1.44 0.84 ± 2.10 0.95 ± 1.59 0.69 ± 1.15 1.15 ± 1.00 0.29

44 months 0.65 ± 1.50 1.00 ± 2.45 1.05 ± 1.87 0.75 ± 1.13 1.15 ± 1.02 0.48

48 months 0.94 ± 1.66 1.27 ± 2.59 1.20 ± 1.79 1.00 ± 1.20 1.26 ± 1.22 0.92

Placebo (n = 418, 40.1%)

2 months 0.30 ± 0.77 0.45 ± 0.86 0.37 ± 0.72 0.34 ± 0.71 0.41 ± 0.72 0.49

4 months 0.53 ± 0.52 0.84 ± 0.75 0.77 ± 0.65 0.83 ± 0.84 0.76 ± 0.69 0.16

8 months 1.07 ± 0.92 1.32 ± 0.81 1.21 ± 0.73 1.45 ± 0.96 1.61 ± 1.25 0.29

12 months 1.47 ± 0.93 1.80 ± 0.95 1.56 ± 0.66 2.12 ± 0.88 2.29 ± 1.47 0.04

16 months 1.97 ± 0.81 1.92 ± 0.50 1.71 ± 0.43 2.85 ± 0.97 2.77 ± 0.78 0.01

20 months 2.37 ± 1.03 2.30 ± 0.88 1.99 ± 0.58 3.65 ± 1.02 3.80 ± 1.72 <0.001

24 months 2.81 ± 0.95 2.84 ± 0.98 2.54 ± 1.06 4.23 ± 0.93 4.26 ± 0.78 <0.001

28 months 3.38 ± 2.47 3.14 ± 0.55 2.82 ± 0.51 4.75 ± 0.95 4.86 ± 0.92 <0.001

28 months 3.38 ± 2.47 3.14 ± 0.55 2.82 ± 0.51 4.75 ± 0.95 4.86 ± 0.92 <0.001

32 months 3.79 ± 0.96 3.42 ± 0.54 3.10 ± 0.70 5.30 ± 0.96 5.46 ± 0.92 <0.001

36 months 3.98 ± 0.51 4.09 ± 2.78 3.30 ± 0.43 6.01 ± 2.98 5.89 ± 0.70 <0.001

40 months 4.18 ± 0.49 4.34 ± 0.69 3.53 ± 0.53 6.32 ± 0.65 6.40 ± 0.71 <0.001

44 months 4.42 ± 0.63 4.64 ± 0.67 3.75 ± 0.55 6.65 ± 0.71 6.82 ± 0.78 <0.001

48 months 4.69 ± 0.52 4.72 ± 0.78 3.91 ± 0.46 6.89 ± 0.53 7.42 ± 0.86 <0.001

P-values

Budesonide vs. Nedocromil 0.0006 0.008 0.054 0.96 0.22

Budesonide vs. Placebo 0.0007 0.001 0.022 0.005 0.13

Nedocromil vs. Placebo 0.39 0.45 0.65 0.006 0.82

The cumulative number of subjects experiencing asthma exacerbations as demonstrated by the need for
additional asthma controller therapy in the form of beclomethasone for each study time point strat-
ified by treatment group. Shown are mean values with standard deviations. Shown are p-values for
between-cluster differences in outcome (far right) and pairwise comparisons of within-cluster differences
in outcomes (bottom level). Mean (±sd) cumulative number of exacerbations per person from the onset
of the study period

Table 3.7: Need for additional asthma controller medications.
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Initiation of Initiation of additional

oral prednisone asthma controller therapies

Cluster

(reference is Cluster 1)

Cluster 2 0.03 0.50

Cluster 3 0.001 0.98

Cluster 4 < 0.0001 0.03

Cluster 5 < 0.0001 0.003

Treatment group

(reference is placebo)

Budesonide < 0.0001 < 0.0001

Nedocromil 0.32 0.53

Overall Interaction of

Cluster and Treatment Group 0.17 0.16

Age 0.08 0.35

Sex 0.50 0.53

Height 0.45 0.93

Cox proportional hazards models for risk of future asthma exacerbations using cluster assignment, age,
sex, height, and treatment group as predictor variables under an additive model. Cluster 1 was used
as the reference for cluster assignment. Shown are the p-values for the degree of risk each variable
contributes to the model.

Table 3.8: Summary of p-values for Cox proportional hazards modeling of risk of asthma

exacerbation.

Initiation of Budesonide Nedocromil Budesonide

oral prednisone (ref = placebo) (ref = placebo) (ref = nedocromil)

Drug < 0.001 0.28 < 0.001

Cluster 2 0.12 0.12 0.17

Cluster 3 0.03 0.03 0.06

Cluster 4 < 0.001 < 0.001 0.006

Cluster 5 < 0.001 < 0.001 < 0.001

Cox proportional hazards models for risk of future asthma exacerbations using cluster assignment and
treatment group as predictor variables under an additive model. Cluster 1 was used as the reference
group for cluster assignment. Shown are the p-values for the degree of risk each variable contributes to
the model.

Table 3.9: Summary of p-values for Cox proportional hazards modeling of risk of asthma

exacerbation.
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Initiation of Budesonide Nedocromil Budesonide

oral prednisone (ref = placebo) (ref = placebo) (ref = nedocromil)

Drug*Cluster 2 0.94 0.93 0.99

Drug*Cluster 3 0.93 0.87 0.97

Drug*Cluster 4 0.98 0.05 0.05

Drug*Cluster 5 0.92 0.60 0.50

Cox proportional hazards models for risk of future asthma exacerbations using cluster assignment and
treatment group as predictor variables under an interaction model. Cluster 1 was used as the reference
group for cluster assignment. Shown are the p-values for the interaction terms.

Table 3.10: Summary of p-values for Cox proportional hazards modeling of drug by cluster

interaction.

3.3.6 Decision-tree Algorithm for Efficient Patient Classification

To facilitate implementation of the AOE classification clinically without the need of machine

learning software, we screened combinations of the 18 cluster-building variables as candidates

to build a simple-to-use classifier. At least one variable from each of the three AOE classes

was considered in each model. The most accurate classifier (97% accuracy) included a his-

tory of previously being hospitalized for asthma (exacerbation), history of atopic dermatitis

(atopy), history of hay fever (atopy) and the natural log of the FEV1 PC20 (Figure 3.5.

Given that PC20 is not routinely obtained clinically in the pediatric setting, we assessed the

performance of the model by either removing PC20, or substituting PC20 with other variables

(including bronchodilator responsiveness). These maneuvers worsened model performance

(second best classification accuracy of 91.4%), with most misclassification occurring between

Clusters 1 and Cluster 3 (Figure 3.6), suggesting that airway hyperresponsiveness, is a key

factor in distinguishing cluster membership.

3.3.7 Cluster Validation

3.3.7.1 Longitudinal consistency in phenotype clusters With four years of prospec-

tive follow-up as part of the CAMP clinical trial, we were able to assess the consistency over

time in variable distribution across the five identified clusters. As demonstrated in Figure

3.7), quantitative measures of lung function and airways responsiveness were consistently
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Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 P-value

(n=300) (n=202) (n=218) (n=225) (n=96)

AOE Classification LLL HLM HHM MHH HHH

Sex 0.45

Male 173 (57.7%) 115 (56.9%) 130 (59.6%) 146 (64.9%) 57 (59.4%)

Female 127 (42.3%) 87 (43.1%) 88 (40.4%) 79 (35.1%) 39 (40.6%)

Age 0.003

Years, mean(± SD) 8.79 (±2.05) 8.83 (±2.12) 9.38 (±2.13) 9.03 (±2.08) 8.46 (±2.25)

Self-reported race 0.19

White 217 (72.3%) 137 (67.8%) 140 (64.2%) 150 (66.7%) 67 (69.8%)

Black 36 (12.0%) 27 (13.4%) 26 (11.9%) 35 (15.6%) 14 (14.6%)

Hispanic 27 (9.0%) 13 (6.4%) 31 (14.2%) 21 (9.3%) 6 (6.3%)

Other 20 (6.7%) 25 (12.4%) 21 (9.6%) 19 (8.4%) 9 (9.4%)

Annual Household Income 0.31

Less than $30,000 70 (23.3%) 40 (19.8%) 45 (20.6%) 66 (29.3%) 21 (21.9%)

Highest Household Education 0.13

Less than high school 1 (0.33%) 1 (0.50%) 2 (0.92%) 1 (0.44%) 0 (0.00%)

High school 5 (1.7%) 5 (2.5%) 4 (1.8%) 5 (2.2%) 4 (4.2%)

Higher education 125 (41.7%) 78 (38.6%) 87 (39.9%) 101 (44.9%) 48 (50.0%)

Family history

Asthma (Any) 154 (51.3%) 114 (56.4%) 137 (62.8%) 110 (48.9%) 59 (61.5%) 0.07

Asthma (Maternal) 64 (21.3%) 46 (22.8%) 70 (32.1%) 50 (22.2%) 32 (33.3%) 0.02

Asthma (Paternal) 40 (13.3%) 49 (24.3%) 58 (26.6%) 46 (20.4%) 15 (15.6%) 0.0009

Atopy (Any) 189 (63.0%) 158 (78.2%) 162 (74.3%) 139 (61.8%) 76 (79.2%) 0.0004

Atopy (Maternal) 114 (38.0%) 110 (54.5%) 112 (51.4%) 98 (43.6%) 53 (55.2%) 0.0009

Atopy (Paternal) 87 (29.0%) 90 (44.6%) 84 (38.5%) 73 (32.4%) 37 (38.5%) 0.05

Environmental Exposures

Tobacco smoke 119 (39.7%) 61 (30.2%) 82 (37.6%) 105 (46.7%) 46 (47.9%) 0.01

Dust mite 60 (20.0%) 36 (17.8%) 61 (28.0%) 44 (19.6%) 16 (16.7%) 0.30

Cockroach 1 (0.33%) 3 (1.49%) 1 (0.46%) 0 (0.00%) 0 (0.00%) 0.04

Randomized treatment arm 0.091

in CAMP clinical trial

Budesonide 86 (28.7%) 68 (33.7%) 60 (27.5%) 68 (30.2%) 29 (30.2%)

Nedocromil 94 (31.3%) 60 (29.7%) 66 (30.3%) 67 (29.8%) 25 (26.0%)

Placebo 120 (40.0%) 74 (36.6%) 92 (42.2%) 90 (40.0%) 42 (43.8%)

Table 3.11: Distribution of Non-classifying Features Across Phenotypic Clusters.
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B.      C. 

Cluster	  	  
1	   2	   3	   4	   5	  

Sensitivity	   97.0	   100	   95.4	   100	   96.9	  
Specificity	   98.9	   99.6	   98.9	   99.9	   99.9	  
PPV	   97.3	   98.5	   95.8	   99.6	   98.9	  
NPV	   98.8	   100	   98.8	   100	   99.7	  
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94 40 27 16 145     
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cluster 4 (MHH)
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Log−rank  p < 0·0001

	  

A: Decision tree model for asthma classification. Nodes represent numbers of study subjects, branches
represent cut-points for clinical variables used in the model (shown at left). End-nodes are colored
corresponding to the cluster groupings in Figures 1 and 2. B: Performance of decision tree model in
classifying subjects into asthma clusters. C: Kaplan-Meier plot of the cumulative probability of a first
course of prednisone for the cluster assignments, as defined by the decision tree.

Figure 3.5: Asthma classification model.
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 Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 
Sensitivity 79.7 100 88.1 100 96.9 
Specificity 96.8 99.6 92.6 99.9 99.9 
PPV 90.9 98.5 75.9 99.6 98.9 
NPV 92.2 100 96.7 100 99.7 
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104
1 
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226	   94 

Cluster 5 Cluster 4 

226 205 
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Yes No Yes No 

516 

263 253 

No Yes 

Prior hospitalization for asthma 

Prior atopic dermatitis 
	  

Cluster 1 

Cluster 2 
Prior hay fever 

Nodes represent numbers of study subjects, branches represent cut-points for clinical variables used in
the model (shown at left). Decisions trees was constructed without the PC20 variable.

Figure 3.6: Decision tree model for asthma classification.

separated across cluster groupings. These patterns persisted over the four-year period of

observation. For example, although methacholine PC20 is known to demonstrate marked

within-subject variability over time (for instance, the intra-class correlation of methacholine

PC20 during the CAMP clinical trial was 0.426, 95% confidence interval, 0.391 to 0.463 ),

the clear separation of methacholine PC20 across many of the clusters persisted over the
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four years of observation. A notable exception was pre-bronchodilator FEV1, which demon-

strated marked instability in cluster ranking, particularly towards the end of the observation

period. In contrast, post-bronchodilator FEV1 exhibited more consistent separation, similar

to other spirometric measures.

3.3.7.2 Comparison of univariate vs. multivariate cluster analysis We compared

our multivariate cluster analysis using 18 variables to a univariate approach, using each of

the 18 variables by itself. To evaluate the difference in the ability of each of these methods to

predict future exacerbations, as measured by the time to first use of prednisone, we performed

a survival analysis for each of the models. We found that the single variable with the best

predictive accuracy for future exacerbations was that of history of prior hospitalizations

for asthma exacerbations (Figures 3.8, 3.9). This variable was the only single variable to

outperform the multivariate phenotypic clusters in terms of its ability to predict future

exacerbations. However, despite this finding, we believe that the phenotypic clusters serve

as an improvement on the single variable approach in terms of their ability to capture the

total constellation of symptoms involved in asthma, for which exacerbation symptoms are

one of many important disease features, and atopic features and obstructive symptoms serve

as other important descriptors.

3.3.7.3 Reproducibility of cluster assignments using different clustering algo-

rithms Using hierarchical clustering, we were able to generate clusters quite similar in

composition to our original clusters in terms of AOE grouping (Table 3.12). To assess

whether the new cluster assignments also demonstrated longitudinal consistency similar to

the original clusters, we repeated our survival analysis of time to asthma exacerbation using

the four years of follow-up data generated as part of the CAMP clinical trial. For the survival

analysis, we found that the clusters generated using hierarchical clustering demonstrated a

similar natural history to our original clusters (Figure 3.10).
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Figure 3.7: Mean pulmonary function measurements by asthma cluster over four years of

follow up. P-values < 0.0001 calculated using linear mixed-effects models.
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Kaplan-Meier plots by cluster of the cumulative probability of a first course of prednisone during the
four-year follow-up period of the CAMP trial. Clusters were determined based upon a single clinical
variable, indicated at the top of each figure.

Figure 3.8: Survival analysis for single variable cluster analysis.
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Kaplan-Meier plots by cluster of the cumulative probability of a first course of prednisone during the
four-year follow-up period of the CAMP trial. Clusters were determined based upon a single clinical
variable, indicated at the top of each figure.

Figure 3.9: Survival analysis for single variable cluster analysis.

New

1 2 3 4 5

Old 1 188 2 7 29 2

2 0 164 0 37 1

3 57 0 130 27 4

4 3 1 1 3 217

5 0 0 0 20 76

Table 3.12: Comparison of phenotypic clusters generated by hierarchical clustering (new

clusters) vs. spectral clustering (old clusters).
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(b) Need for additional therapy

Kaplan-Meier plots by cluster of the cumulative probability of a first course of prednisone A: or initiation
of additional asthma controller therapies (beclomethasone or other) B: during the four-year follow-up
period of the CAMP trial for hierarchical clusters.

Figure 3.10: Survival analysis for hierarchical clusters.
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3.4 DISCUSSION

The clinical heterogeneity of asthma has motivated the use of machine-learning algorithms

for the classification of patients using data-driven, unbiased criteria. While earlier work [60,

118,48] established the feasibility of this approach, many important questions remain unad-

dressed, including issues of reproducibility, generalizability and clinical relevance. Without

longitudinal follow-up, which was unavailable in prior reports, it is unclear whether the de-

fined clusters have clinical utility. It is in this context that the results of our phenotypic

clustering efforts and longitudinal analysis can be summarized.

First, we demonstrate the longitudinal consistency of our phenotypic clusters. When we

developed the clusters, we limited ourselves to the clinical data obtained during the baseline

assessment of CAMP participants. Next we evaluated for changes in cluster membership over

the 48 month study-period, and found remarkable consistency in phenotypic distributions

over time, particularly with regard to airway hyperresponsiveness, obstruction and exacer-

bation rates. These findings echo those of a recent longitudinal cluster analysis that found

membership in phenotypic clusters to be extremely stable over time [17]. An additional

finding of our study was that different inhaled anti-inflammatory medications appeared to

have no statistically significant effect on cluster membership over time, suggesting although

these medications may affect day-to-day symptoms, they have minimal effect on the natural

history of childhood asthma.

Second, we demonstrate the clinical utility of our phenotypic clusters. We found impor-

tant between-cluster differences in response to inhaled asthma therapies, with one cluster

(Cluster 4) showing decreased rates of exacerbations with both budesonide and nedocromil

therapy, while another cluster (Cluster 5) showed poor response with both budesonide and

nedocromil therapy. Our data suggest that although inhaled corticosteroids such as budes-

onide should serve as the primary treatment choice for asthma control in children with mild

to moderate asthma, there are several subgroups of patients, including those with the poor-

est level of baseline asthma control, who appear to respond to nedocromil at levels similar to

budesonide. Given safety concerns, particularly in children, regarding the long-term expo-

sure to inhaled glucocorticoid therapy, identification of phenotypic clusters that could benefit
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similarly from non-steroidal therapies would be of great value. While retrospective nature of

the current study and the small size of several of the clusters limits our ability to draw firm

clinical conclusions about the current results, our findings serve as the foundation for future

prospective clinical trials investigating personalized responses to inhaled anti-inflammatory

medications.

Finally, despite notable differences in the compositions of the patient populations, com-

putational algorithms employed, and the variables considered in generating the clusters, our

results show remarkable consistency with those obtained in the pediatric and adult SARP

populations, both with respect to the number of phenotypic clusters identified (5-6 clusters

in CAMP and SARP cohorts) and the patient characteristics of individual clusters. The

similarity of our phenotypic clusters to those of other cohorts provides further evidence for

the potential generalizability of clustering as a method of phenotyping asthmatic patients.

Observed differences in the degree of atopy and airway obstruction present in the pediatric

compared to the adult clusters lend further support to the hypothesis of etiological differences

between childhood and adult asthma.

Our study had several limitations. First, we evaluated only children, and reports have

shown that pediatric and adult asthma may represent two different disease states, with

different pathogenic mechanisms and natural histories [105]. For this reason, the clinical

implications of this cluster analysis may not be widely applicable to an adult asthmatic

population. Second, our study did not include severe childhood asthmatics. Because our

original population was ascertained for the purposes of a clinical trial, it included children

with mild-moderate persistent asthma, and specifically excluded those with more severe

asthma. Thus, there is a possibility that there is a severe childhood asthmatic phenotypic

that was missed with our analysis, although the strong similarities in observed clusters with

the childhood SARP study (which included a broader spectrum of disease severity) provides

reassurance that the results of our cluster analysis are more widely applicable. Third, the

conclusions that we can draw from the clinical outcomes of our clusters are limited due

to their small sample size. For example, the children in Cluster 5 had a limited response

to inhaled budesonide and nedocromil compared to placebo, suggesting that the children in

this cluster may have some resistance to corticosteroid therapy. However, because there were
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only 96 children in this cluster, we were underpowered to draw more clinically meaningful

conclusions from this particular analysis. It will be necessary to validate some of these

preliminary findings in future prospective studies to determine whether the children in this

cluster are truly steroid-resistant.

In conclusion, our results suggest support the use of computationally-inferred phenotypic

classifications of asthma as having clinical utility. These models define subsets of patients

with unique clinical attributes, discrete clinical trajectories, and variable responsiveness to

anti-asthma controller medications. Recognition of these clusters, and their clinical relevance

should motivate novel strategies in both the research and clinical settings. More refined phe-

notypic classification may better inform treatment decisions: as suggested by the results of

our treatment responsiveness analysis, cluster assignment identifies two subsets of patients

who respond similarly to both budesonide and nedocromil, providing clinicians with viable

treatment options for patients at risk for corticosteroid-related complications. The observed

between-cluster differences in environmental and genetic factors suggest that important eti-

ological differences underlie the configuration of different asthma subgroups. Future studies

that consider more homogenous subsets of patients should improve research precision in

characterizing the genetic and environmental etiologies. Thus, in addition to helping inform

clinical management, these more refined phenotypic classification schemes should help ac-

celerate research efforts in defining the molecular and environmental underpinnings of this

complex airways disease.
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4.0 GENE EXPRESSION AND ASTHMA ENDOTYPES

4.1 MEASUREMENT OF GENE EXPRESSION

In linking clinical phenotypes to mechanisms of disease, it is helpful to have biological as

well as clinical data to formulate hypotheses and make inferences. For human studies, this

involves obtaining either genetic material, proteins or other metabolites to explore associa-

tions between clinical symptoms and biomarkers. Gene transcripts, which may be stabilized

and isolated from biological specimens are useful because they represent the genes which

are actively being transcribed and are thus “turned on”. Although they do not provide

the amount of functional information provided by proteins and metabolites, they provide

a larger sense of the active processes involved in cellular metabolism than that provide by

exclusively studying the DNA genetic blueprint.

4.1.1 Molecular Biology Techniques

The ability to simultaneously profile large numbers of genes from patient samples is a rel-

atively recent development. Traditionally, levels of gene expression have been measured by

northern blotting. Northern blotting is a molecular biology technique that involves using

electrophoresis to separate RNA samples by size and detection with a hybridization probe

that is complementary to all or part of the target RNA sequence. After an RNA sample is

separated on an electrophoresis gel, capillary transfer is used to transfer the separated RNA

sequences to a blotting membrane [166]. The name for northern blotting is derived from

its relationship to Southern blotting, developed by Edwin Southern as an assay for DNA

sequences [151].
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Northern blotting continues to be in widespread use, however one of the limitations of

this approach is its relatively low throughput. Northern blotting is time-consuming, and

also unable to assay more than a few RNA sequences at any one time. In order to address

these limitations, Southern began researching techniques for multiplexing the assay of RNA

sequences. The results of his efforts led to the development of DNA microarray technology.

DNA Microarrays are used to measure the expression of large quantities of gene transcripts

simultaneously. Although the specifics vary depending on the particular microarray platform

used, DNA microarrays involve assembling a series of DNA probes onto a solid surface. Then

RNA is isolated from a biological specimen and is used to synthesized its complementary

cDNA sequence, which is more stable than RNA, which degrades rapidly after isolation. The

cDNA sequence is then hybridized to the DNA attached to the solid surface, and the hy-

bridization is detected and quantified using either fluorphore, or chemiluminescence-labeled

targets to determine the relative abundance of nucleic acid sequences that have hybridized

to the surface, (Figure 4.1) [152].

4.1.2 Adjustment for Multiple Testing

Along with the development of microarray technology, which has allowed for high through-

put gene expression profiling, has come the development of new statistical techniques to

analyze the vast quantities of data available. Although microarray results may be assessed

using traditional statistical techniques, such as the parametric ANOVA and Student’s t-test,

and non-parametric Kruskal-Wallis and Wilcoxon rank sum, adjustments must be made due

to the large number of statistical tests performed simultaneously when thousands of genes

are assayed at once. In statistical inference, when multiple statistical tests are performed

simultaneously, hypothesis tests that incorrectly reject the null hypothesis become increas-

ingly likely to occur. To address this issue, new statistical techniques have been developed

to prevent this occurrence, and allow significance levels for single and multiple comparisons

to be compared.
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Reprinted from “DNA microarrays for comparison of gene expression profiles between diagnosis and
relapse in precursor-B acute lymphoblastic leukemia: choice of technique and purification influence the
identification of potential diagnostic markers,” by F.J.T Staal et. al, 2003, Leukemia, 17, p. 1324-32.
Copyright 2003 by the Nature Publishing Group. Reprinted with permission.

Figure 4.1: Depiction of DNA microarray workflow.
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4.1.2.1 Control of the Familywise Error Rate One of the first techniques to address

the issue of multiple comparisons was the Bonferroni method [44]. This method involves

control of the familywise error rate (FWER). The FWER is the probability of making one or

more false discoveries, or type I errors when performing multiple hypothesis testing, that is,

FWER = Pr(V ≥ 1) where V is the number of false positive results. The goal of methods

like the Bonferroni method is to assure that the FWER is less than or equal some value, α,

such that the probability of making even one type I error within a family is controlled at

level α. In statistical inference, a family is understood to be the smallest set of items in an

analysis from which statistical inferences may be made.

Methods that control the FWER may control it in the weak sense, such as when control of

the FWER at level α is guaranteed only when all null hypotheses are true, or when m = m0,

where m is the total number of hypotheses and m0 is the number of null hypotheses. In this

case, the global null hypothesis is true, or may control the FWER in the strong sense, such

as when control of the FWER at levelα is guaranteed for any distribution of null hypotheses,

including the global null hypothesis.

For the Bonferroni method, let H1...Hm be a family of hypotheses and p1...pm be the

corresponding p-values resulting from significance testing, and let I0 be the subset of the

true null hypotheses, having m0 members. The FWER is the probability of rejecting at least

one of the members in I0. The Bonferroni correction demonstrates that rejecting all pi <
α
m

will control the FWER ≤ α, where m is the total number of hypotheses. The proof follows

directly from Boole’s inequality:

FWER = Pr

{⋃
i0

(pi ≤
α

m
)

}
≤
∑
i0

{
Pr(pi ≤

α

m
)
}
≤ m0

α

m
≤ m

α

m
= α (4.1)

The Bonferroni method of correction is useful in situations where it is unsuitable to have

just one false positive value. However, in practice, this is often not the case. Furthermore,

this particular method of correction controls the rate of false positives at the expense of

increasing the number of false negative results.

49



4.1.2.2 Control of the False Discovery Rate For the analysis of microarrays, control

of the familywise error rate is often too stringent, and results in an unacceptable level of false

negative results. In order to address this problem and increase the power of statistical analy-

ses, Benjamini and Hochberg developed a method to control the false discovery rate (FDR),

as opposed to the familywise error rate. This approach involves controlling the expected

proportion of false positives [12]. For the FDR method, Q is defined as the proportion of

false discoveries among the total discoveries (Q = V
R

), where V is the number of false positive

results, and R is the number of rejected null hypotheses, or discoveries. Assuming that S is

the number of true positive discoveries, the FDR is:

FDR = Qe = E[Q] = E

[
V

V + S

]
= E

[
V

R

]
(4.2)

Where V
R

is defined to be 0 when R = 0. Thus, the FDR may be controlled at a level

α, or q, where the q-value is equivalent to the p-value in the FDR setting. The q-value

of an individual hypothesis test is the minimum FDR at which the test may be considered

significant. For the analysis of microarray data, it is common to directly estimate q-values

as opposed to fixing the level at which to control the FDR [153].

For the Benjamini-Hochberg (BH) method to control the FDR at level α:

1. For a given α, we find the largest k such that P(k) ≤ k
m
α

2. Reject all H(i) for i = 1, ..., k

The BH method is valid when the m hypothesis tests are independent as well as situations

of dependence that satisfy the following inequality [13]:

E(Q) ≤ m0

m
α ≤ α (4.3)
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4.2 GENE EXPRESSION APPLICATIONS TO ASTHMA PHENOTYPING

Gene expression profiling and microarray technology have become popular in recent years

as an unbiased way to understanding relationships between disease states and the levels of

gene transcripts. This technology has been widely adopted in the study of asthma due to

its potential to uncover novel genes and pathways involved in disease pathogenesis. One of

the main applications of gene expression profiling to the study of asthma has been through

profiling gene transcripts in different cell types in order to understand the mechanisms of

asthma pathogenesis in different compartments.

Several early studies in asthmatic patients obtained bronchial biopsy specimens from

patients with asthma. One of the earliest gene expression profiling studies was one by

Dolganov and colleagues using real-time polymerase chain reaction (PCR) to quantify tran-

scripts [39]. In another study, Laprise and colleagues performed a microarray analysis on

bronchial biopsy specimens obtained from patients and compared levels of gene expression

between those with mild asthma and non-asthmatic controls [104]. They found differential

levels of gene expression among multiple genes, including some like nitric oxide synthase

2A (NOS2A), that had been previously implicated in asthma, and others, like arachidonate

15-lipoxygenase (ALOX15), not previously implicated in asthma pathogenesis. Other gene

expression profiling studies performed on bronchial biopsy specimens include a recent study

by Choy and colleagues that evaluated a large cohort of asthmatic and non-asthmatic sub-

jects [25], and an RNA sequencing study by Yick and colleagues that uncovered differential

expression of multiple novel and confirmatory asthma-related gene transcripts [186].

Gene expression profiling among asthmatic subjects has included multiple leukocyte

cell types, including polymorphonuclear leukocytes [59, 3, 156, 16, 145], neutrophils [6], ba-

sophils [187], alveolar macrophages [112], CD8+ T lymphocytes [167] and CD4+ T lympho-

cytes [61, 88, 78]. Other physiologic compartments that have been studied include airway

epithelial cells [177,178] and airway smooth muscle [157]. All of the aforementioned studies

describe both novel and confirmatory asthma-related changes in gene expression profiles, as

well as imply the clinical utility of gene expression profiles as biomarkers for asthma pheno-

types, particularly in situations where gene transcripts are assayed by non-invasive means,
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such as induced sputum [7].

In addition to demonstrating differential gene expression between patients with and with-

out asthma and with different asthma phenotypes, several studies have used classification

and clustering methods to identify predictive signatures for asthma phenotypes. For ex-

ample, Shin and colleagues used multiple logistic regression to optimize a gene expression

signature with the power to discriminate between asthmatic and non-asthmatic subjects

with high sensitivity and specificity [145]. Woodruff and colleagues performed an unsu-

pervised hierarchical cluster analysis of gene expression profiles of asthmatic patients and

evaluated for correlations between gene expression clusters and clinical characteristics [178].

Similarly, Baines et. al, performed hierarchical clustering on gene expression profiles from

induced sputum specimens of asthmatic patients and correlated several clusters with clinical

characteristics, such as the degree of airway obstruction present among study subjects [7].

However, all of the above studies stop short of validating their gene profiles in an independent

population, limiting their clinical utility.

4.3 LIMITATIONS OF PRIOR GENE EXPRESSION ANALYSIS

As described in the previous section, there have been a large number of studies evaluating

differential gene expression levels among asthmatic patients. However, there is limited infor-

mation with respect to the relationships between the gene transcripts. The gene expression

profiles of thousands of genes afford the unique opportunity to evaluate gene-gene interactions

using computational algorithms to “reverse-engineer” gene networks. Such networks could

be used to identify sets of gene transcripts with similar expression patterns, which could then

be used to explore the presence of common regulatory transcription factors (gene-sequence

interactions). Gene expression networks could also be used to explore common molecular

pathways among gene transcripts (gene-gene interactions) [53]. Prior studies have evaluated

gene clusters and signatures for enrichment in different molecular pathways, but none have

expressly studied the relationships between profiled transcripts and associations with asthma

phenotypes.
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4.4 GENE EXPRESSION NETWORKS

When studying gene expression profiles of large numbers of genes in patient samples, it is

useful to move beyond the detection differential expression levels between different patient

groups and toward the exploration of interactions between sets of genes. An advantage to

this approach is that it is more closely related to physiologic processes in which networks

of genes transcribe proteins that are active in metabolic pathways. The hypothesis is that

variation in gene expression leads to differences in these gene networks that is related to the

development of disease. Gene networks thus help to provide insight into the physiology of

cellular processes at the mRNA level. To this end, multiple methods have been developed

in an attempt to identify functionally related gene co-expression networks.

Gene networks display causal relationships between gene transcripts and are often rep-

resented by undirected graphs where the nodes of the graph are genes and the edges are

the causal relationships between genes. Gene networks can also be represented by adjacency

matrices. An adjacency matrix of a finite graph, G on n vertices is the nxn matrix where

the non-diagonal entry aij is the number of edges from vertex i to vertex j, and the diagonal

entry, ajj is the number of edges from vertex j to itself.

4.4.1 Early Methods of Inferring Gene Networks

Some of the earliest methods developed to identify gene networks were developed by the

work of Kauffman [91] and Thomas [162] on random Boolean gene networks. However, the

assumption that gene networks have a random topology has increasingly been questioned and

more recent assumptions are that gene networks possess scale-free [9] and small-world [170]

topologies, with a power law distribution for node connectivities.

Experimental mRNA levels obtained through microarray technology can provide a “snap-

shot” of the molecular state of cell populations at the transcript level, and are thus rich in

information that may be used to reverse engineer gene networks [18]. Understanding con-

nections between genes with similar expression patterns may help to reveal the structure

behind the process of transcriptional regulation. A relatively simple method for identify-
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ing potentially interacting genes has been termed the “guilt by association” method. In this

method, gene associations are explored through clustering algorithms [46] and principal com-

ponent analysis [68] and genes with similar expression patterns are grouped together. These

methods provide a corse-grained approximation of gene-gene interactions that may then be

followed up with more extensive analysis of the function of genes within the networks. These

methods work well in networks with a small number of connections, but the interpretation

becomes more ambiguous in the case of heavily connected networks.

4.4.2 Bayesian Networks

Other methods that have been used to develop gene networks include Bayesian belief net-

works [51,132,80]. Bayesian belief networks are probabilistic graphical models that represent

a set of random variables and their conditional dependencies in the form of a directed acyclic

graph (DAG), G [131]. In a Bayesian network graph, the nodes, X1, ...., Xn , represent vari-

ables, and the edges represent conditional dependencies between nodes. The component,

θ, describes a conditional distribution for each variable, given its parents in G. Thus, two

nodes that are not connected by an edge are considered to be conditionally independent.

Each node is associated with a probability function that takes as input a set of values from

the node’s parent variables and provides as output the probability of the variable represented

by the node.

The graph, G, encodes the Markov assumption, such that each variable Xi is independent

of its non-descendants, given its parents in G. Because G represents a series of conditional

independencies, any joint distribution that satisfies the Markov assumption may be decom-

posed into its product form. For example, consider a finite set χ = {X1, ...., Xn} of random

variables where each variable Xi can take on a value xi from the domain V al(Xi), then, we

may say:

P (X1, ...., Xn) =
n∏
i=1

P (Xi|PaG(Xi)), (4.4)

Where PaG(Xi) is the set of parents of Xi in G. To specify the joint distribution,

the product form of each of the conditional probabilities must also be specified, such that
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P (Xi|PaG(Xi)) for each variable Xi. The parameters that specify these distributions are

denoted by θ. Figure 4.2 depicts a sample Bayesian network structure and its conditional

independence relationships.

In the case of gene expression, the gene network can be used to compute the probabilities

of gene-gene interactions. The probability distribution is considered over all possible experi-

mental conditions, and the state of the system is described using random variables, where the

random variables represent the expression levels of individual genes. The complexity of these

models may be increased by adding additional attributes, such as experimental conditions,

temporal indicators, cellular locations, etc. Such models can be used to answer questions

related to the dependence of a particular gene on an experimental condition and the genes

that mediate direct and indirect dependencies.

Modeling Bayesian networks requires two stages: model selection (structure learning)

and parameter learning. Model selection involves learning a network structure and param-

eter learning involves estimating the probability values associated with each network node.

Bayesian networks may be learned from gene expression data by splitting the dataset into

a training set, D = x[1], ...., x[M ] of independent samples from an unknown distribution,

P (X), and estimating this distribution using G [132]. G may be learned by introducing a

statistically motivated scoring function to evaluate each network with respect to the training

data and searching for the optimal network according to this score [67]. One scoring func-

tion is based upon Bayesian reasoning scores candidate graphs by their posterior probability

given the data. From this network, it is possible to infer subnetworks of closely related genes

and to model perturbations in experimental conditions and effects on the genes within the

network.

Learning the Bayesian network structure may be reduced to an optimization problem

in the space of all DAGs. The number of such graphs is super exponential in the number

of variables and an exhaustive search of this space is thus intractable (NP-hard). For this

reason, in practice several heuristics must be employed, such as local optimization algorithms.

For example, for the sparse candidate algorithm, one identifies a small number of candidate

parents for each gene from simple correlations. The one restricts the search to networks

in which only the candidate parents of a variable can be its parents [51]. However, this
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A	  

E	  

DC	  

B	  

This network demonstrates the following conditional independence relationships: I(A;B), I(C;D|A,B),
I(E;A,B,D|C), I(D;A,C,E|B), I(A;B,D), and the following joint distribution: P (A,B,C,D,E) =
P (A)P (B)P (C|A,B)P (D|B)P (E|C).

Figure 4.2: A simple Bayesian network.
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method may result in an overly restricted search space. An additional limitation of Bayesian

networks when applied to gene expression datasets is that the number of genes is often much

larger than the number of samples. The consequence of this is that it leads to a diffused

posterior probability over an extremely large model space that cannot possibly list all of the

plausible networks, given the data. To address this difficulty, smaller sets of features from

within the network may be sampled using Monte Carlo strategies to estimate the posterior

probability of those features, given the data [194,174,96].

4.4.3 Correlation Networks

An alternative method of inferring relationships between genes assayed using high-throughput

methods, such as microarrays is to infer the pair-wise correlations between genes [4]. The

pair-wise correlations between genes can be used to construct a gene relevance network,

where the network nodes correspond to gene expression, and the ith gene expression profile,

xi, is a vector whose components represent the gene expression values across m microar-

rays [76]. The co-expression similarity sij between genes i and j is defined as the absolute

value of the correlation coefficient between their expression profiles:

sij = |cor(xi, xj)| (4.5)

A thresholding procedure may be used to transform the co-expression similarity into a

measure of connection strength (adjacency) such that an unweighted network adjacency aij

between gene expression profiles is defined by hard thresholding the co-expression similarity

sij as follows:

aij =

1 if sij ≥ τ

0 otherwise

(4.6)

where τ is the hard threshold parameter. Two genes are related (aij = 1) if the absolute

correlation between their expression profiles exceeds the hard threshold τ . The advantage
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of this approach is that it leads to simple network concepts, but it may lead to the loss of

information when genes with correlations below τ are labeled as (aij = 0), even though there

is some weak correlation between them. To address this potential loss of information, it is

possible to define a weighted co-expression network that preserves the continuous nature of

the co-expression information. A weighted co-expression network may be defined as:

aij = sβij (4.7)

with β ≥ 1. This soft threshold leads to a weighted gene co-expression network that em-

phasizes strong correlations while punishing weak correlations [189, 74]. A limitation of

this method is that it may lead to highly connected and dense networks of gene expression

values, which may be difficult to interpret. Therefore, with this method, after learning a

co-expression network it is often necessary to cluster the network into smaller more highly

correlated modules of genes. Genes within modules may be explored for functional relation-

ships and involvement in similar molecular pathways.
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5.0 USING GENE CO-EXPRESSION NETWORKS TO DEFINE ASTHMA

ENDOTYPES

5.1 INTRODUCTION

An important implication of recent advances in our understanding of asthma phenotypic

clusters is that we may use these clusters to uncover associated differences in pathogenetic

mechanism, and thus have the potential to identify new therapeutic targets, with increased

treatment specificity as well as new molecular biomarkers for improved clinical detection.

Several studies have furthered our current understanding of the relationship between pheno-

typic clusters and molecular mechanism. Woodruff and colleagues profiled a selected subset

of gene expression levels in asthmatic subjects and found that differences in gene expression

corresponded to differences in multiple clinical measures of asthma severity, demonstrating

a link between clinical phenotype and molecular mechanism [178]. Baines and colleagues

subsequently found a correspondence between transcriptional profiles and different clinical

characteristics in an asthmatic population. However, the cross-sectional nature of these

studies limits the clinical applicability of the findings [7].

In the current analysis, our goal was to link differences in gene expression levels to

longitudinally stable clinical phenotypes with demonstrated differences in response to medical

therapy. In a prior analysis, we evaluated for the presence of phenotypic clusters in a cohort

of children with mild-moderate persistent asthma obtained from the Childhood Asthma

Management Program (CAMP) study [82]. Among these children, we identified 5 distinct

phenotypic clusters with different degrees of airflow obstruction, rates of exacerbation and

atopic characteristics. We further found that these clusters demonstrated both longitudinal

consistency over the 48 month study period and differences in response to medical therapy. In
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the current study we extend our earlier analysis through an exploration of differences in gene

expression between different phenotypic clusters, with the goals of identifying novel molecular

biomarkers corresponding to different phenotypes and further elucidating the differences in

molecular mechanism between subjects in different clusters [77]. We uncovered the presence

of distinct gene co-expression modules in CD4+ lymphocytes isolated from the peripheral

blood of a subset of CAMP participants. Gene expression levels within these modules were

associated with different phenotypic clusters and were highly predictive of multiple clinical

characteristics, such as levels of atopy and asthma control. We validated these results in

an independent population, and evaluated for the presence of shared transcription factor

binding sites among the genes of each module.

5.2 METHODS

5.2.1 Study Population

CD4+ lymphocytes were isolated from peripheral blood samples collected from 299 subjects

from four clinical centers (Baltimore, Boston, Denver, St. Louis) participating in the Child-

hood Asthma Management Program (CAMP) Continuation Study, part 2 (CAMPCS/2).

CAMP was a multi-center randomized, double-masked clinical trial of the long-term effects

of three inhaled treatments for mild to moderate childhood asthma, with 1041 subjects en-

rolled [81]. Two subsequent 4-year observational follow-up studies of CAMP participants,

CAMPCS/1 and CAMPCS/2 were carried out upon completion of the original CAMP study.

Blood samples and clinical data for the current study were obtained during a routine CAM-

PCS/2 clinical visit between May 1, 2004 and July 31, 2007. The study visit included

questionnaire assessments of asthma symptoms and medication use.

5.2.2 RNA Extraction and Microarray Preprocessing

We isolated CD4+ T cells from the collected mononuclear cell layer using anti-CD4+ mi-

crobeads by column separation (Miltenyi Biotec, Auburn, CA) [86, 193]. Total RNA was
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extracted using the RNeasy Mini Protocol (Qiagen, Gaithersburg, MD) [22,57,58]. Expres-

sion profiles were generated with the Illumina HumanRef8 v2 BeadChip arrays (Illumina, San

Diego, CA) according to protocol. Arrays were read using the Illumina BeadArray scanner

and analyzed using BeadStudio (version 3.1.7) without background correction. Raw expres-

sion intensities were processed using the lumi package [40] of Bioconductor with background

adjustment with Robust Multi-Array Average (RMA) convolution [83] and log2 transforma-

tion of each array. The combined samples were quantile normalized. The complete raw and

normalized microarray data are available through the GeneExpression Omnibus of the Na-

tional Center for Biotechnology Information (http://www.ncbi.nlm.nih.gov/geo/, accesion

ID GSE22324).

5.2.3 Identification of differentially expressed genes

In order to classify gene expression levels from multiple phenotypic clusters into differential

expression patterns, we used an empirical Bayes hierarchical modeling approach to calcu-

late the posterior probability of each gene expression value fitting a particular pattern of

expression [121, 94, 188]. For example, for this analysis, we were interested in patterns of

differential expression of genes across different phenotypic clusters. We developed a set of

49 theoretical pattern assumptions (Table 5.1), such as the assumption of the null hypoth-

esis of no differential expression across clusters for a gene, or the assumption of differential

expression across all cluster for a gene, and then calculated the posterior probability of each

gene fitting a particular pattern of expression. We assigned genes to the gene pattern with

maximum posterior probability.

5.2.4 Identification of gene co-expression modules

To identify dense subnetworks of genes with highly correlated expression levels, we used

the gene transcripts to model a weighted co-expression network [102]. The advantage of the

weighted co-expression network is that it does not rely upon arbitrary thresholds to determine

the presence of a connection between two transcripts. Instead, the weighted network uses all

correlations to develop a soft threshold. For transcripts that were identified as differentially
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Pattern Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Interpretation

number

1 1 1 1 1 1 null hypothesis (none different)

2 1 2 3 4 5 all different

3 2 1 1 1 1 cluster 1 different, others similar

4 1 2 1 1 1 cluster 2 different, others similar

5 1 1 2 1 1 cluster 3 different, others similar

6 1 1 1 2 1 cluster 4 different, others similar

7 1 1 1 1 2 cluster 5 different, others similar

8 2 2 1 1 1 cluster 1, 2 similar, others similar

9 2 1 2 1 1 cluster 1, 3 similar, others similar

10 2 1 1 2 1 cluster 1, 4 similar, others similar

11 2 1 1 1 2 cluster 1, 5 similar, others similar

12 1 2 2 1 1 cluster 2, 3 similar, others similar

13 1 2 1 2 1 cluster 2, 4 similar, others similar

14 1 2 1 1 2 cluster 2, 5 similar, others similar

15 1 1 2 2 1 cluster 3, 4 similar, others similar

16 1 1 2 1 2 cluster 3, 5 similar, others similar

17 1 1 1 2 2 cluster 4, 5 similar, others similar

18 1 2 3 1 1 cluster 1, 4, 5 similar, others different

19 1 1 2 3 1 cluster 1, 2, 5 similar, others different

20 1 1 1 2 3 cluster 1, 2, 3 similar, others different

21 2 3 1 1 1 cluster 3, 4, 5 similar, others different

22 2 2 3 1 1 cluster 1, 2, similar, cluster 4, 5 similar

23 2 2 1 3 1 cluster 1, 2, similar, cluster 3, 5 similar

24 2 2 1 1 3 cluster 1, 2, similar, cluster 3, 4 similar

25 2 3 2 1 1 cluster 1, 3, similar, cluster 4, 5 similar

26 2 1 2 3 1 cluster 1, 3, similar, cluster 2, 5 similar

27 2 1 2 1 3 cluster 1, 3, similar, cluster 2, 4 similar

28 2 1 1 2 3 cluster 1, 4, similar, cluster 2, 3 similar

29 2 3 1 2 1 cluster 2, 4, similar, cluster 3, 5 similar

30 2 1 3 2 1 cluster 2, 4, similar, cluster 2, 5 similar

31 2 1 1 3 2 cluster 1, 5, similar, cluster 2, 3 similar

32 2 1 3 1 2 cluster 1, 5, similar, cluster 2, 4 similar

33 2 3 1 1 2 cluster 1, 5, similar, cluster 3, 4 similar

34 1 1 2 3 4 cluster 1, 2, similar, others different

35 1 2 1 3 4 cluster 1, 3, similar, others different

36 1 2 3 1 4 cluster 1, 4 similar, others different

37 1 2 3 4 1 cluster 1, 5, similar, others different

38 2 1 1 3 4 cluster 2, 3, similar, others different

39 2 1 3 1 4 cluster 2, 4, similar, others different

40 2 1 3 4 1 cluster 2, 5, similar, others different

41 2 3 1 1 4 cluster 3, 4, similar, others different

42 2 3 1 4 1 cluster 3, 5, similar, others different

43 2 3 4 1 1 cluster 4, 5, similar, others different

44 1 1 2 1 3 cluster 1, 2, 4 similar, others different

45 1 2 1 3 1 cluster 1, 3, 5 similar, others different

46 1 2 1 1 3 cluster 1, 3, 4 similar, others different

47 2 1 3 1 1 cluster 2, 4, 5 similar, others different

48 2 1 1 3 1 cluster 2, 3, 5 similar, others different

49 2 1 1 1 3 cluster 2, 3, 4 similar, others different

Table 5.1: Description of Gene Pattern Interpretations.
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expressed (DE), we constructed an adjacency matrix. Each entry in the adjacency matrix

was determined by the absolute value of the Pearson’s correlation coefficient between two

gene transcripts (xi, xj), adjusted so that the overall network was scale-free. The pairwise

connection strength between different transcripts (xi, xj) was calculated by the adjacency

function aij = |cor(xi, xj)|β, using the estimated power parameter, β to form a weighted

co-expression network.

We developed a soft threshold by selecting the parameters leading to a scale-free net-

work. We used the top transcripts from this network in a topological overlap matrix (TOM)

calculation, and 1-TOM was used as a distance matrix for subsequent hierarchical clustering

to form highly correlated co-expression modules.

5.2.5 Identification of Shared Regulatory Regions within Gene Co-Expression

Modules

In order to identify regulatory motifs among the genes within highly correlated co-expression

modules, we obtained the genomic coordinates for each transcript within each module and the

corresponding promoter sequence by querying the UCSC Genome Bioinformatics [168] and

BioMart data resources [15]. We searched position frequency matrices (PFMs) corresponding

to transcription factor motif matches within each promoter sequence using data from publicly

available sources, including the Human Protein DNA Interactome (hPDI) database [184],

and JASPAR. [142] We next mapped the PFMs corresponding to each binding motif back to

our set of promoter sequences to obtain sequence matches to the binding motif among our

set of promoters. We used a multinomial model with a Dirichlet conjugate prior to calculate

a probability score for each promoter-motif match, and considered a match successful if the

minimum score was greater than 90%.

5.2.6 Gene Ontology Enrichment Analysis

We performed a Gene Ontology (GO) enrichment analysis on the differentially expressed

transcripts in each gene co-expression modules. For each gene co-expression module, we

calculated all enrichments in the specified ontologies (CC = cellular component, MF =
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molecular function, BP = biological process), and collected information about the terms

with highest enrichment. We calculated an enrichment p-value for each GO term identified

using a Fisher exact test to evaluate the number of co-expression module genes present in

a particular GO ontology compared to the total number of background genes in that GO

category. As background we used all genes present in all of the GO categories (in any of the

ontologies).

5.2.7 Validation in an Independent Cohort

To assess the generalizability of the association between the gene co-expression modules and

atopy, we evaluated whether the genes in the blue module could be used to predict atopic

status in an independent cohort (N = 88) of atopic (N = 72) and non-atopic (N = 16) subjects

with (N = 68) and without asthma (N = 20). We used a gene expression dataset that was

publicly available on the GEO website (GSE473) and has been previously described [116].

We used the genes present in the blue module to grow a binary recursive partitioning decision

tree to predict phenotype cluster assignments within our patient population [20,139].

5.3 RESULTS

5.3.1 Distribution of phenotypic traits

Clinical phenotype data was available for all 299 participants. The characteristics assessed

within one month of the time blood was obtained for microarray analysis are presented

in Table 5.2. The clinical characteristics presented in the table represent follow up data

obtained between 9-14 years after the onset of the original CAMP study. The mean age

of study subjects was 20.4 years of age, compared to 5-12 years in the original study. The

ethnic and gender distributions were similar to those of the original study (Table 5.2).

Several measures of atopic burden were obtained at the time of sample collection, in-

cluding serum IgE and eosinophil levels. As was observed at the onset of the original study,

the degree of atopy was highest in Clusters 2,3 and 5 and lowest in Cluster 1 and Cluster
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4. Similarly, the spirometric values show a similar distribution to that obtained at baseline,

with Cluster 4 and Cluster 5 showing the highest levels of airway obstruction.

The number of active smokers represented a minority of this cohort (11.4%), with the

highest percentage of smokers in Cluster 3 (16.3%) and the lowest percentage of smokers in

Cluster 4 (4.3%).

5.3.2 Gene Transcripts Demonstrate Atopic Patterns of Expression

In order to understand the relative contribution of different genes to the formation of the

asthma phenotypic clusters, we performed gene expression profiling of individuals from dif-

ferent phenotypic clusters to detect patterns of expression. For the set of phenotypic clusters,

gene expression levels could be sorted into 49 distinct theoretical patterns (Table 5.1).

For each transcript in each phenotypic cluster, we calculated the posterior probability for

each of the 49 patterns and assigned the transcript to the expression pattern with maximum

posterior probability (MPP). Differentially expressed (DE) transcripts were defined as those

with MPP greater than a specific threshold set to limit the false discovery rate (FDR) to

< 0.05 for each of the DE patterns (2-49 in the table). Using this approach, we found that

99.7 percent of the DE transcripts were confined to 2 of the 49 possible DE patterns.

The expression pattern containing the highest number differentially expressed transcripts

(22,119 of 22,184 total transcripts) was the null hypothesis expression pattern, or the pattern

of no difference in expression between the different phenotypic clusters. The expression

pattern containing the second highest number differentially expressed transcripts (501 of

22,184 total transcripts) was the pattern of similar expression between Clusters 1 and 4 and

between Clusters 2, 3 and 5. Our earlier analysis of the clinical data from the CAMP study

demonstrated that Cluster 1 and Cluster 4 had the lowest atopic burden of the phenotypic

clusters. That is, at the time of initial recruitment to the CAMP study, clusters 1 and 4

had the lowest levels of atopic dermatitis (Cluster 1 = Cluster 4 = 0%), the lowest history

of hay fever (Cluster 1 = 20.3%, Cluster 4 = 52.9%), the lowest history of a positive skin

test (Cluster 1 = 76.7%, Cluster 4 = 88%), and the lowest log10 total serum IgE levels

(Cluster 1 = 2.37, Cluster 4 = 2.64). Thus, a large number of differentially expressed genes
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Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

N=102 N=50 N=49 N=70 N=28

AOE Classification LLL HLM HHM MHH HHH

Demographics

Age (years) 20.1 ± 2.0 20.3 ± 2.2 21.0 ± 2.2 20.7 ± 2.1 19.9 ± 2.4

Male (%) 59 (57.8) 37 (74.0) 24 (49.0) 44 (62.9) 20 (71.4)

Female (%) 43 (42.2) 13 (26.0) 25 (51.0) 26 (37 .1) 8 (28.6)

White (%) 84 (82.4) 35 (70.0) 34 (69.4) 53 (75.7) 21 (75.0)

African American (%) 11 (10.8) 13 (26.0) 10 (20.4) 16 (22.9) 6 (21.4)

Hispanic (%) 7 (6.9) 2 (4.0) 5 (10.2) 1 (1.4) 1 (3.6)

Atopic Features

Serum IgE 2.33 ± 0.66 2.85 ± 0.54 2.53 ± 0.60 2.60 ± 0.54 2.69 ± 0.52

(log10)

Serum Eosinophils 2.17 ± 0.50 2.37 ± 0.46 2.42 ± 0.35 2.34 ± 0.32 2.44 ± 0.31

(log10)

Spirometry

Pre-bronchodilator FEV1 98.2 ± 13.2 98.5 ± 10.9 98.4 ± 11.3 94.1 ± 13.7 97.0 ± 11.1

(% predicted)

Pre-bronchodilator FVC1/FVC 78.5 ± 7.67 78.5 ± 7.89 78.6 ± 7.55 76.2 ± 7.57 75.3 ± 9.64

(% predicted)

Pre-bronchodilator peak flow 576.6 ± 144.5 634.0 ± 157.1 564.0 ± 147.0 579.8 ± 137.8 598.8 ± 162.7

Airway responsiveness

Methacholine PC20 1.09 ± 0.56 0.91 ± 0.53 0.75 ± 0.47 0.92 ± 0.52 0.96 ± 0.58

(natural log)

Environmental

Exposures

Tobacco Smoking (%)

Yes 14 (13.7) 7 (14.0) 8 (16.3) 3 (4.3) 2 (7.1)

No 76 (74.5) 38 (76.0) 34 (69.4) 60 (85.7) 21 (75.0)

Average cigarettes

smoked per day 1.3 ± 4.1 1.2 ± 3.7 1.9 ± 4.7 0.5 ± 2.8 0.5 ± 2.1

Table 5.2: Characteristics of Study Subjects.
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demonstrated an expression pattern that was associated with the degree of atopic burden

present among study subjects at the time of enrollment in the CAMP study, suggesting

atopic status was the primary driver of the change in gene expression for these transcripts.

5.3.3 Atopic Patterns of Expression form Highly Correlated Co-Expression

Modules

We explored the relationship between the 501 genes associated with atopic status by de-

termining whether this set of genes could be clustered into tightly correlated co-expression

modules with similar function and regulatory mechanisms. We calculated the correlation

coefficient among all of the transcripts that were differentially expressed for the atopic pat-

tern. We next partitioned these transcripts into co-expression network modules using the

previously described method [102,92] because previous work has demonstrated such modules

to be related to biological function [21,54,55,75].

In order to construct our weighted co-expression network, we determined the appropri-

ate soft-thresholding power β to which co-expression similarity is raised to calculate adja-

cency [190] based on the criterion of approximate scale-free topology. We chose a set of

candidate powers and examined the scale independence and mean connectivity for different

power thresholds. The result is shown in Figure 5.1. We chose a power of 16, which was

the lowest power for which the scale-free topology fit index reached 0.90.

Next we calculated the adjacencies between transcripts, using the soft-thresholding power

of 16. To minimize the effects of noise and spurious associations, we transformed the adja-

cency matrix into a Topological Overlap Matrix (TOM), and calculated the corresponding

dissimilarity. We used hierarchical clustering to produce a hierarchical clustering tree den-

drogram of gene transcripts.

In the dendrogram, each leaf (short vertical line) corresponds to a specific transcript.

Branches of the dendrogram group together densely interconnected, highly co-expressed

genes. In order to identify network modules, shown qualitatively as branches of the den-

drogram, we needed to partition the branches of the dendrogram, which we did by using

the Dynamic Tree Cut algorithm [103]. A representation of the gene co-expression network
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The left panel shows the scale-free fit index (y-axis) as a function of the soft-thresholding power (x -axis).
The right panel shows the mean connectivity (degree, y-axis) as a function of the soft thresholding power
(x -axis).

Figure 5.1: Analysis of network topology for different soft-thresholding powers.

clustered into highly correlated modules within that network is shown in Figure 5.2. Cluster

analysis grouped the gene co-expression network into 3 modules, shown in blue, turquoise

and grey. The most notable module of highly correlated gene transcript is the blue module,

while the relationship between genes within the grey and turquoise modules are more diffuse.

5.3.4 Gene Co-expression Modules Have Similar Regulatory Domains

To explore the presence of a common regulatory molecule for the genes in each co-expression

module, we evaluated for common motifs in the promoter region of genes within each module.

For the blue module, we identified 10 binding motifs with matches to the promoter region

of genes within that module. We used the PWMs for each binding motif to find sequences

matches within the promoter region of module genes. We found two motifs located within

the Zinc finger protein 3 gene (ZNF3) with 373 and 308 matches to promoter sequences,

depicted in Figure 5.3. These two motifs were similar in composition and each had multiple

matches to the promoter regions of the 63 gene transcripts within the co-expression mod-

ule, suggesting the possibility that either ZNF3 or a related protein may be a dimeric or

68



Network heatmap plot, all genes

Higher levels of correlated expression are shown in red. The axes display the clustering map with a
color bar for each module. Within the network are several modules, with the blue module showing a
highly correlated cluster of gene transcripts. A small highly correlated cluster is also present within the
turquoise module.

Figure 5.2: Representation of the atopic gene co-expression network and its modules.

69



multimeric transcription factor.

5.3.5 Enrichment Analysis of Module Genes

Among the gene transcripts represented in our atopic expression pattern, we identified 3

distinct co-expression modules. The module assignment is plotted under the gene dendro-

gram in Figure 5.4. In order to better characterize the function of the 501 genes associated

with atopic burden in these 3 co-expression modules, we performed an enrichment analysis

to determine whether the set of genes in each module was enriched in different biological

processes, molecular functions and cellular locations. We assessed the Gene Ontology (GO)

annotations for the genes present in each of the modules. Table 5.3 depicts each module and

the primary GO categories for which each one was enriched. The blue and grey modules

were enriched for multiple immunologic categories, and we performed further analysis on

these modules because we hypothesized that the functional categories suggested potential

mechanisms of asthma pathogenesis.

5.3.6 Differentially Expressed Genes are Associated with Different Clinical Out-

comes

To explore the clinical relevance of these gene co-expression modules, we used linear model

to detect associations between genes within each co-expression module and a range of clinical

outcomes. We found that for the blue co-expression module, there was a subset of genes

that were significantly associated with self-reported activity limitation. (see Table 5.4)

5.3.7 Gene Co-expression Modules are Predictive of Atopic Status

The atopic signature developed from the blue module of gene expression profiles in the CAMP

dataset was predictive of atopic status in an independent dataset (see Table 5.5, Figure 5.5).

Of the 63 genes present in the blue module, five select genes successfully classified all of

the atopic patients in an independent cohort with a sensitivity of 100%. The genes in the

atopic signature were highly enriched for multiple immunologic pathways (see Table 5.6).

Evaluation of the genes present within the blue module revealed that of the 63 genes present
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Module Size P-value Bonferroni Genes in Ontology GO Term Name

Correction Term

blue 62 2.2e-05 2.9e-01 21 CC nuclear part

blue 62 6.8e-05 9.1e-01 5 BP pattern recognition receptor signaling p

blue 62 7.2e-05 9.6e-01 4 BP TRIF-dependent toll-like receptor signal

blue 62 7.9e-05 1.0e+00 5 BP innate immune response-activating signal

blue 62 8.0e-05 1.0e+00 4 BP MyD88-independent toll-like receptor

blue 62 1.0e-04 1.0e+00 4 BP toll-like receptor 3 signaling pathway

blue 62 1.0e-04 1.0e+00 5 BP activation of innate immune response

blue 62 1.2e-04 1.0e+00 54 CC intracellular

blue 62 1.5e-04 1.0e+00 4 BP Toll signaling pathway

blue 62 1.8e-04 1.0e+00 6 BP immune response-regulating signaling

grey 22 2.4e-04 1.0e+00 2 BP response to gonadotropin stimulus

grey 22 3.4e-04 1.0e+00 2 MF tumor necrosis factor receptor binding

grey 22 5.3e-04 1.0e+00 2 BP defense response to Gram-positive bacteria

grey 22 5.6e-04 1.0e+00 2 BP response to activity

grey 22 5.8e-04 1.0e+00 9 BP phosphate-containing compound metabolic

grey 22 7.2e-04 1.0e+00 2 MF tumor necrosis factor receptor superfamily

grey 22 8.0e-04 1.0e+00 2 BP leukocyte cell-cell adhesion

grey 22 1.1e-03 1.0e+00 1 BP negative regulation of L-glutamate

grey 22 1.1e-03 1.0e+00 1 BP positive regulation of translational

grey 22 1.1e-03 1.0e+00 1 BP negative regulation of branching

turquoise 413 1.0e-16 1.3e-12 342 CC intracellular

turquoise 413 3.7e-15 5.0e-11 305 CC intracellular organelle

turquoise 413 7.6e-15 1.0e-10 285 CC intracellular membrane-bounded organelle

Table 5.3: GO Enrichment Analysis.

Name Symbol p-value BH adjusted p-value

phospholipase C β2 PLCB2 0.01 0.22

mannosidase, α, class 2B, member 1 MAN2B1 0.02 0.22

SH3KBP1 binding protein 1 SHKBP1 0.02 0.22

SWI/SNF related, matrix associated, SMARCC2 0.02 0.22

actin dependent regulator of chromatin,

subfamily c, member 2

chromosome 19 open reading frame 24 C19orf24 0.02 0.22

mediator complex subunit 25 MED25 0.03 0.22

adrenocortical dysplasia homolog (mouse) ACD 0.03 0.22

ubiquinol-cytochrome c reductase UQCRC1 0.03 0.22

core protein I

calcineurin binding protein 1 CABIN1 0.04 0.22

poly (ADP-ribose) polymerase family, PARP10 0.04 0.22

member 10

proline-serine-threonine phosphatase PSTPIP1 0.04 0.24

interacting protein 1

BH = Benjamini-Hochberg adjustment for multiple testing.

Table 5.4: Blue Module Genes Associated with Activity Limitation.

73



Metric (%)

Sensitivity (%) 100

Specificity (%) 87.5

Positive Predictive Value 100

(PPV) (%)

Negative Predictive Value 87.5

(NPV) (%)

Table 5.5: Accuracy of Atopic Gene Signature in an Independent Population.

in the module, a greater proportion of genes were underrepresented (Table 5.7) by the atopic

clusters than overrepresented Table 5.8.

5.4 DISCUSSION

Our analysis of gene expression profiles obtained from CAMP participants 9-14 years from

the study onset was notable for several key findings. First, regarding our previous cluster

analysis, in which we detected 5 phenotypic clusters using the baseline clinical data from

study subjects, we found that even after 9-14 years there continued to be longitudinal consis-

tency in the clinical characteristics of subjects within different phenotypic clusters. Second,

subjects with a higher degree of atopic features demonstrated differential expression in a

subset of genes enriched for immunologic processes closely tied to asthma pathogenesis. A

subset of these differentially expressed genes formed an atopic signature that we used to

successfully determine atopic status from gene expression profiles obtained from an inde-

pendent population of asthmatic subjects. Third, from our co-expression module of atopic

genes, we were able to define several highly correlated subnetworks with similar expression

levels. Evaluation of a selected subnetwork revealed the presence of a common motif among

the promoter regions of genes within the network that corresponded to a binding site for a

zinc-finger transcription factor.

In an earlier cluster analysis we performed using clinical data from participants in the

CAMP study, we found that children could be characterized in terms of 5 distinct pheno-
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|SRM < 6.78738

IDH3G < 7.37639

TRAT1 < 8.25116 PFKL < 7.18729

TAB1 < 5.36377

atopic

non-atopic atopic

atopic

atopic non-atopic

Figure 5.5: Decision Tree Classification Model for Atopic Status.
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Name Symbol Atopic expression GO Annotation

relative to non-atopic

spermidine synthase SRM down-regulated GO:0003824:catalytic activity

isocitrate dehydrogenase IDH3G down-regulated GO:0006099:tricarboxylic acid cycle

3 (NAD+) gamma GO:0004449:IDH (NAD+) activity

GO:0000287:magnesium ion binding

T cell receptor associated TRAT1 up-regulated GO:0006968:cellular defense response

transmembrane adaptor 1 GO:0007173:EGFR receptor signaling

GO:0038095:Fc-epsilon receptor

signaling pathway

GO:0008543:fibroblast growth factor

receptor signaling

GO:0008543:innate immune response

GO:0001920:negative regulation of

receptor recycling

GO:0051051:negative regulation of transport

GO:0048011:neurotrophin TRK receptor

signaling pathway

GO:0048015:phosphatidylinositol-

mediated signaling

GO:0050850:positive regulation of

calcium-mediated signaling

GO:0050862:positive regulation of T cell

receptor signaling pathway

phosphofructokinase, liver PFKL down-regulated

TGF-beta activated kinase 1/ TAB1 down-regulated GO:0000187:activation of MAPK activity

MAP3K7 binding protein 1 GO:0000185:activation of MAPKKK activity

GO:0038095:Fc-epsilon receptor

signaling pathway

GO:0003007:heart morphogenesis

GO:0007249:I-kappaB kinase/

NF-kappaB cascade

GO:0001701:in-utero embryonic development

GO:0045087: innate immune response

GO:0007254:JNK cascade

GO:0030324:lung development

GO:0002755:MyD88-dependent toll-like

receptor signaling pathway

GO:0002756:MyD88-independent toll-like

receptor signaling pathway

GO:0035872:nucleotide-binding domain,

leucine rich repeat containing

receptor signaling pathway

GO:0070423:nucleotide-binding oligomerization

domain containing signaling pathway

GO:0051092:positive regulation of

NF-kappaB transcription factor activity

GO:0051403:stress-activated MAPK cascade

GO:0034166:toll-like receptor 10

signaling pathway

GO:0034134:toll-like receptor 2

signaling pathway

GO:0034138:toll-like receptor 3

signaling pathway

Table 5.6: Gene Signature Predictive of Atopy.
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Name Symbol Fold Change p-value BH adjusted p-value
RAB4B, member RAS oncogene family RAB4B 0.89 0.002 0.04

ITGA5 integrin, alpha 5 ITGA5 0.87 0.003 0.04
(fibronectin receptor, alpha polypeptide)

ubiquinol-cytochrome c reductase core protein I UQCRC1 0.85 0.004 0.04
isocitrate dehydrogenase 3 (NAD+) gamma IDH3G 0.85 0.004 0.04

solute carrier family 22, member 18 SLC22A18 0.86 0.004 0.04
proline-serine-threonine PSTPIP1 0.84 0.005 0.04

phosphatase interacting protein 1
chromosome 19 open reading frame 24 C19orf24 0.87 0.006 0.04

flotillin 1 FLOT1 0.86 0.007 0.04
canopy 3 homolog (zebrafish) CNPY3 0.87 0.007 0.04
mediator complex subunit 25 MED25 0.88 0.007 0.04

unc-45 homolog A (C. elegans) UNC45A 0.85 0.008 0.04
DEAD (Asp-Glu-Ala-Asp) DDX41 0.85 0.01 0.04

box polypeptide 41
cytochrome b561 family, CYB561A3 0.87 0.01 0.04

member A3
microspherule protein 1 MCRS1 0.87 0.01 0.04

phenylalanyl-tRNA synthetase, FARSA 0.88 0.01 0.04
alpha subunit

interleukin 17 receptor A IL17RA 0.85 0.01 0.04
TGF-beta activated kinase 1/ TAB1 0.87 0.01 0.04
MAP3K7 binding protein 1

nudix (nucleoside diphosphate linked NUDT16L1 0.87 0.02 0.04
moiety X)-type motif 16-like 1
cleavage and polyadenylation CPSF3L 0.87 0.02 0.04

specific factor 3-like
exocyst complex component 3 EXOC3 0.89 0.02 0.04
UPF1 regulator of nonsense UPF1 0.86 0.02 0.04
transcripts homolog (yeast)

spermidine synthase SRM 0.86 0.02 0.04
ribosomal protein S6 kinase, RPS6KB2 0.88 0.02 0.04

70kDa, polypeptide 2
nuclear prelamin A recognition factor NARF 0.87 0.02 0.04
DENN/MADD domain containing 1C DENND1C 0.88 0.02 0.04

HECT domain containing E3 HECTD3 0.89 0.02 0.04
ubiquitin protein ligase 3

nuclear protein localization 4 NPLOC4 0.86 0.02 0.04
homolog (S. cerevisiae)

adrenocortical dysplasia homolog (mouse) ACD 0.89 0.02 0.04
mannosidase, alpha, class 2B, member 1 MAN2B1 0.84 0.02 0.04

ATPase type 13A1 ATP13A1 0.88 0.02 0.04
phospholipase C, beta 2 PLCB2 0.85 0.02 0.04

zinc finger and BTB domain containing 17 ZBTB17 0.89 0.02 0.044
solute carrier family 25 SLC25A1 0.88 0.026 0.044

(mitochondrial carrier; citrate transporter),
member 1

coiled-coil domain containing 124 CCDC124 0.89 0.027 0.045
coiled-coil domain containing 124 CCDC124 0.89 0.027 0.045

VPS9 domain containing 1 VPS9D1 0.89 0.027 0.045
zinc finger protein 3 ZNF3 0.88 0.03 0.047

zinc finger protein 692 ZNF692 0.88 0.033 0.048
zinc finger protein 692 ZNF692 0.89 0.033 0.048

BRCA1 associated protein-1 BAP1 0.89 0.035 0.049
(ubiquitin carboxy-terminal hydrolase)

phosphofructokinase, liver PFKL 0.87 0.036 0.049
A kinase (PRKA) anchor protein 8-like AKAP8L 0.88 0.037 0.049
SWI/SNF related, matrix associated, SMARCC2 0.86 0.037 0.049

actin dependent regulator of chromatin,
subfamily c, member 2

ATP-binding cassette, sub-family F (GCN20), ABCF3 0.88 0.038 0.049
member 3

BH = Benjamini-Hochberg adjustment for multiple testing.

Table 5.7: Blue Module Genes Under-expressed by Atopic Clusters.
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Name Symbol Fold Change p-value BH adjusted p-value

T cell receptor associated TRAT1 1.23 0.008 0.04

transmembrane adaptor 1

Mdm4 p53 binding protein MDM4 1.15 0.02 0.04

homolog (mouse)

MyoD family inhibitor domain containing MDFIC 1.20 0.02 0.04

ribosomal protein S6 kinase, RPS6KA3 1.14 0.029 0.047

90kDa, polypeptide 3

caspase 8, apoptosis-related CASP8 1.19 0.03 0.047

cysteine peptidase

myeloid cell leukemia sequence 1 MCL1 1.18 0.038 0.049

(BCL2-related)

BH = Benjamini-Hochberg adjustment for multiple testing.

Table 5.8: Blue Module Genes Over-expressed by Atopic Clusters.

typic clusters, which differed in terms of atopic burden, airway obstruction and rates of

exacerbation. In this analysis, we found that an average of 12 years after the original study,

participants continued to exhibit cluster-specific differences in several clinical characteris-

tics, including differences in atopic features, spirometry and airway responsiveness. This

is notable because at this time, in contrast to the physiologic differences, many of these

patients described relatively mild symptoms. Furthermore, this finding, from the largest

randomized, placebo-controlled clinical trial with extended follow-up for children with mild-

moderate asthma, [29] suggests that the decreased symptoms many childhood asthmatics

describe as they age does not correspond to disease remission. In fact, the original patho-

genetic mechanisms appear to persist into young adulthood, albeit with minimal subjective

symptoms.

Gene expression profiles from CD4+ T cells collected from the same set of patients further

confirm the persistence of physiologic differences between asthmatics assigned to different

clusters. A set of 501 out of 22,184 total genes assayed displayed an expression pattern that

correlated with atopic status, and a subset of these genes formed a signature that was highly

predictive of atopy in an independent population of mild-moderate asthmatics, a finding

that lends further credibility to the hypothesis that different phenotypic clusters correspond

to differences in the underlying pathobiological mechanisms of asthma, as well as validating

the biological relevance of our longitudinal phenotypic clusters.
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Within our set of atopic genes, we were able to distinguish 3 highly-correlated gene co-

expression modules, corresponding to differences in multiple gene ontologic process groups.

Within one of these co-expression modules, we identified a transcription-factor binding site

motif that was present in the promoter region of most of the genes within the co-expression

module. The transcription factor motif was complementary to a binding site located in the

protein encoded by the zinc-finger 3 gene (ZNF3), or a protein with a similar structure. Al-

though the ZNF3 gene has not previously been linked to asthma, other zinc-finger proteins

have been associated with modulation of Th2 cell differentiation [98] and secretion of the

IL-17 cytokine, [109] both of which have documented associations to asthma pathogenesis.

Furthermore, the family of zinc-finger proteins forms a large class of transcription factors

with the potential to serve as therapeutic targets. [56,179] This finding has potential impli-

cations for the future of asthma drug development pipelines, that could focus efforts toward

developing drugs to target transcription factors that modulate widespread changes in the

gene expression levels of genes within a co-expression modules.

Our study had several limitations. One limitation was that while we identified a predic-

tive biomarker signature for atopy, this particular population of patients was largely asymp-

tomatic, reducing its potential for immediate clinical use. The availability of longitudinal

gene expression data from prospective studies could help to elucidate temporal changes in

the expression of these genes and their role in the pathogenesis of childhood asthma. An

additional limitation is that although we were able to identify a transcription factor binding

site motif in the promoter region of multiple genes within a co-expression module, we have

no experimental evidence validating this finding. Further work is necessary to validate the

existence of this motif within the co-expression module and its binding affinity for the ZNF3

protein.

In summary, our findings lend further support to the hypothesis that asthma pheno-

typic clusters are associated with differences in the underlying molecular mechanisms of

asthma pathogenesis. This finding has implications for drug development and personalized

approaches to the treatment of this complex disease. Further work will be necessary to val-

idate these early findings and explore the mechanistic differences between different clusters.
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6.0 GENETIC ASSOCIATIONS AND ENDOTYPES

6.1 QUANTITATIVE TRAITS

Variability in disease endotypes is hypothesized to be the result of multiple factors that are

both genetic and environmental. To improve risk-stratification and refine treatment options,

it is useful to identify genetic variants associated with disease endotypes. Defining variants

associated with specific endotypes will allow us to screen patients at risk for specific disease

manifestations. Disease endotypes may be described by variety of clinical traits that are

both discrete (hospitalized vs. not-hospitalized) and continuous (body weight and blood

pressure). Continuous traits often show a wide range of variation across a population that

may be attributed to genetic factors. These traits are referred to as quantitative traits, and

the causal genetic variants are referred to as quantitative trait loci (QTLs). In order to

model the genetic contribution to quantitative traits, we often assume that the phenotypic

value, y is a simple summation of genetic and environmental factors:

y = m+G+ E (6.1)

where m is a constant, G denotes the effect of all genes contributing to the phenotype, and

E denotes the environmental effects [146]. Both E and G are assumed to have mean = 0,

so that m represents the average phenotypic value. We may also assume that both E and G

are uncorrelated, and that the variance of G is σ2
G, and the variance of E is σ2

E. The variance

of y is the sum of σ2
G and σ2

E. The heritability, h, is defined as the percentage of phenotypic

variation with a genetic origin and is defined as the ratio of
σ2
G

σ2
y

.
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If we consider a specific locus as bi-allelic, with alleles A and a, at any given locus, the

genotype is defined as either AA, Aa or aa. If we let xM denote the number of A alleles (0

or 1) inherited from the mother, and xF denote the number of A alleles (0 or 1) inherited

from the father, then we may state that x = xM + xF . Thus, the total number of A alleles

in a particular genotype may be either 0, 1 or 2. We may thus model a quantitative trait as

follows:

y = µ+ α(xM + xF ) + δ|xM + xF |+ e (6.2)

where e is a random variable with mean = 0. The µ term is the mean value of y when an

individual is an aa− homozygote. The mean level of y for an AA− homozygote is µ + 2a,

and the mean level of y for an Aa−heterozygote is µ+α+δ. If δ = 0, the locus is considered

to be additive, which means that each A allele adds to the average value of the phenotype,

y. If δ = α, the locus is considered to be dominant, and a single A allele produces the full

genetic effect on the phenotype, y. Conversely, if δ = −α, the locus is considered to be

recessive, and a single A allele produces no effect on the phenotype, y, while two A alleles

are necessary to produce a full effect.

The number of A alleles in an individual is x = xM +xF , with xM and xF being Bernoulli

random variables. If we assume that each allele is independent with the same probability p

of an A allele, then the distribution of x is binomial, such that:

Pr(x = 2) = p2, P r(x = 1) = 2p(1− p), P r(x = 0) = (1− p)2 (6.3)

where p is the frequency of A in the population. Thus, the mean value of x is 2p2 + 2p(1−

p) + 0 = 2p, and the mean value of the phenotype, y, is m = µ + 2pα + 2p(1 − p)δ. The

variable e is assumed to incorporate all other factors contributing to trait variability. We

may rewrite the value of the phenotype as:

y = m+ {α + (1− 2p)δ}x[(xM − p) + (xF − p)]− {2δ}x[(xM − p)(xF − p)] + e (6.4)
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where [(xM − p) + (xF − p)] and [(xM − p)(xF − p)] are uncorrelated because xM and xF are

independent. Thus, the variance of y is:

σ2
y = σ2

A + σ2
D + σ2

e (6.5)

where

σ2
y = sp(1− p)[α + (1− 2p)δ]2, σ2

D = 4p2(1− p)2δ2, σ2
e = var(e) (6.6)

where σ2
A is considered to be the additive variance, σ2

D is the dominance variance and the

locus specific heritability, h2 is
σ2
A+σ2

D

σ2
y

.

6.2 MAPPING QUANTITATIVE TRAIT LOCI

6.2.1 Early Methods

In practice, we consider the contribution of multiple potential loci to a particular phenotype.

To model the contribution of a genotype, g to a complex phenotype, y, we may consider a

small number of QTLs with genotypes g1, ..., gp, such that there are 2p distinct genotypes.

In this case, the mean value for the phenotype, y is:

E(y|g) = µg1,...,gp (6.7)

and the variance for y is:

var(y|g) = σ2
g1,...,gp

(6.8)

If we assume additivity:

µg1,...,gp = µ+

p∑
j=1

∆jgj (6.9)

where (gj = 1 or 0) We also assume a constant variance, σ2
g ≡ σ2 and normally distributed

residual variation, y|g ∼ N(µg, σ
2). Under this model, the simplest method of detecting ge-

netic associations to complex traits is through marker regression. That is, we split individuals
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into groups according to the genotype at each marker. We next perform a hypothesis test,

either a t-test or an ANOVA, depending on the number of genotypes, to determine whether

there are differences in the mean value of the phenotype, y between individuals in different

genotype groups. This process may be repeated for each locus in the association analysis.

This approach is relatively simple, and easily incorporates additional covariates. However,

when using this approach, it is necessary to exclude individuals with missing data. In addi-

tion, this method does not take into account the location of a particular locus in relation to

other loci and only considers one QTL at a time.

6.2.2 Interval Methods

Interval methods improve upon earlier methods for identifying QTL associations. The major

innovation of interval methods was to move beyond the evaluation of single loci in isolation

and incorporates the spatial relationships between genetic loci into association mapping.

Interval methods take missing genotype data into account and also incorporate the marker

location and relationships by making use of a genetic map of typed loci and interpolating

between them [100]. For this model, we assume a single causal QTL. For each position

in the genome, one locus at a time is posited as the putative QTL, and we assume the

phenotype y ∼ N(µz, σ). If the QTL genotype is BB/AB, we let x = 1/0. Given genotypes

at linked markers, we assume y is distributed as a mixture of normal distributions, with

mixing proportion Pr(z = 1|marker data), such that:

QTL genotype

M1 M2 BB AB

BB BB (1− rL)(1− rR)/(1− r) rLrR/(1− r)
BB AB (1− rL)/rr/r rL(1− rR)/r

AB BB rL(1− rR)/r (1− rL)rR/r

AB AB rLrR/(1− r) (1− rL)(1− rR)/(1− r)
M1 and M2 represent two different markers, and rL and rR represent two different alleles.

If we let pi = Pr(zi = 1|marker data) and assume yi|zi ∼ N(µzi, σ
2), we may conclude that:

Pr(yi|marker data, µ0, µ1, σ) = pif(yi;µ1, σ) + (1− pi)f(yi;µ+ 0, σ) (6.10)

where f(y;µ, σ) = exp[−(y − µ)2σ2]/
√

2πσ2 and the log likelihood is:
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l(m0, µ1, σ) =
∑
i

logPr(yi|marker data, µ0, µ1, σ) (6.11)

The maximum likelihood estimates (MLEs) of µ0,mu1, σ are values for which the log like-

lihood function is maximized. The maximum values for µ0,mu1, σ may be determined by

utilizing the expectation-maximum algorithm [34].

The strength of evidence for the presence of a QTL at a particular location is determined

by a LOD score, where:

LOD(γ) = log10 likelihood ratio of QTL at position γ to no QTL (6.12)

= log10{
Pr(y|QTL atγ, µ̂0, µ̂1, σ̂)

Pr(y|no QTL, µ̂, σ̂)
} (6.13)

Assuming a single QTL at position γ, µ̂0γ, µ̂1γ, σ̂γ are the MLEs.

The advantages to interval mapping are that this method takes into account missing

data, allows examination of positions between markers, and gives improved estimates of

QTL effects. Disadvantages include increased computation time and that QTLs are still

considered one at a time.

6.3 GENOME WIDE ASSOCIATION STUDIES (GWAS)

The development of cost-effective methods for genotyping larger and larger numbers of single

nucleotide polymorphism (SNP) markers together with the development of dense maps of

genetic loci within the human genome have made possible large-scale genetic association

studies involving comprehensive genome-wide surveys, referred to as genome-wide association

studies (GWAS). GWAS further exploit the spatial relationships between genetic loci that

are spaced in close proximity along the chromosome. Such loci are said to be in linkage

disequilibrium (LD), with a higher probability of being inherited together.

Several high-profile genome-wide association studies (GWAS) has been widely used to

detect novel genetic associations in complex diseases [124, 41, 115]. The GWAS approach

84



is particularly advantageous because it provides greater power to find disease-associated

genetic variants than conventional linkage studies [64], and also provides a way to identify

previously unsuspected potentially causal genetic loci, compared to earlier candidate gene

studies [113]. Along with the development of GWAS technology, new statistical methods

have arisen to analyze GWAS output.

6.3.1 Multiple Linear Regression for GWAS

In quantitative genetics, a multiple linear regression model is often used to describe the

relationship between phenotypes and genetic markers. One advantage of this model is that

all marker effects may be estimated simultaneously and then used to perform hypothesis

testing to identify the QTL signal. A typical regression model is:

yi = β0 +

p∑
j=1

xijβj + ei (6.14)

where yi (i = 1, ..., n) is the phenotypic value of the ith individual in the mapping population,

β0 is the intercept, xij is the genotypic value of the jth marker for individual i, βj is the effect

of marker j, and ei is the random error assumed to follow a normal distribution N(0, σ2
e)

with mean zero and variance σ2
e independently for i = 1, ..., n. The genotype, xij, is defined

as:

xij =


1 if genotype is AA

0 if genotype is AB

−1 if genotype is BB

(6.15)

For QTL mapping with a dense set of markers, as in GWAS, we are interested in estimating

the effects of markers, β = {β1, ..., βp} and identifying markers in linkage disequilibrium

(LD) with QTLs.

85



6.3.2 Limitations of Multiple Linear Regression for GWAS

Ordinary least squares (OLS) is a statistical method used to estimate regression coefficients.

In the case of QTL mapping, there are several problems with this method. Although OLS

gives an unbiased estimate of regression coefficients, there is often a great deal of variation,

which leads to inaccuracy in predicted values. In addition, OLS is not available in situations

where the number of exploratory variables is larger than the number of observations, the

p > n problem. In GWAS, it is common to have a dense set of SNP markers that is much

larger than the number of individuals ascertained for analysis. In this case, most of the SNP

markers assayed have minimal effects on the phenotypic trait studied. This results in a loss

of power, when all SNP markers are considered in a multiple linear regression QTL mapping

analysis. In practice, multiple linear regression is seldom used for all but the simplest genetic

association studies. Instead, univariate linear regression is used repeatedly on each marker

across the genome to avoid the p > n problem and analytical intractability inherent in

estimating the for such a large regression analysis. However, splitting the multivariate

regression problem into a series of univariate regression analyses results in a large number

of statistical tests necessitating adjustment for multiple testing. For this reason, it is often

useful to obtain a sparse model to increase the analytical power of the QTL mapping and

avoid the computational pitfalls involved in multivariate regression to solve for a large number

of .

6.3.3 Sparse Regression for GWAS

6.3.3.1 Ridge Regression Ridge regression is a form of penalized multiple linear regres-

sion [72]. Ridge regression adopts the l2 norm penalty function, λ
∑p

j=1 β
2
j . The regression

coefficients, β = {β1, ..., βp}, are estimated by minimizing the penalized sum of squares∑n
i=1(yi−β0−

∑p
j=1 xijβj)

2 +λ
∑p

j=1 β
2
j . The penalty function, λ

∑p
j=1 β

2
j , Ridge regression

is a specialized case of regularized regression that puts constraints on the size of coefficients

to control large variances associated with resulting estimates. It works by “shrinking” the

effect of redundant variables, such as redundant genetic markers, by imposing a penalty on

the size of their coefficients. In addition, ridge regression prevents any one regression coef-
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ficient from getting very large and thus protects against overfitting and the high variance

that often result from multiple linear regression with highly correlated variables.

6.3.3.2 LASSO regression Lasso regression was developed as a method of variable

selection, and is particularly useful in addressing the p > n problem. In lasso regression, the

regression coefficients, β = {β1, ..., βp}, are estimated by minimizing the penalized sum of

squares
∑n

i=1(yi−β0−
∑p

j=1 xijβj)
2 +λ

∑p
j=1 |βj|. The sum of absolute values, the so-called

l1 norm of the regression coefficients, λ
∑p

j=1 |βj| is the penalty function, and λ ≥ 0 is the

shrinkage factor, specified at the onset. When the penalty function is added to the residual

sum of squares and λ > 0, lasso is able to shrink the least squares estimators toward zero

and thereby decrease their variance. This approach is useful for GWAS, where only a small

number of SNP markers are related to the phenotype of interest. However, lasso has several

drawbacks compared to ridge regression. First, when the explanatory variables are collinear,

lasso will select only a single variable at random from a group of highly correlated variables.

This is a problem as GWAS are performed with densely spaced SNP markers, that are often

highly correlated and in linkage disequilibrium. Second, when p > n, the largest number of

explanatory variables that may be selected from the model is n, which may lead to the loss

of important variables and interacting loci in genetic association studies.

6.4 INTRODUCTION TO TEMPORALLY-SMOOTHED LASSO (TESL)

6.4.1 A Local Autoregressive Model for Dynamic Traits

While standard lasso addresses the problem of selecting disease-associated SNPs from a

large number of SNPs, it does not account for the correlation across d-traits at many time

points. To address this critical gap, we first use a local autoregressive model to characterize

the temporal correlation across the T time points in the d-trait. We then incorporate this

information within our algorithm, termed temporally-smoothed lasso (TESL) [97]. That is,

we incorporate the parameters of the local autoregressive model into a structured penalized
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regression method in order to find the regression coefficients.

The assumption of the local autoregressive model is that each d-trait is modeled locally,

as a function of the trait value at the previous time point. Assuming a linear model for local

temporal dependency, and given measurements of the d-trait at two adjacent time points t

and t+ 1, 1 ≤ t < T , we have:

yt+1 = αtyt + α0
t1 + εt, (6.16)

where the αt represents the slope for the multiplicative dependency of d-trait value at time

t+1 on the value at the previous time point, α0
t corresponds to the intercept, 1 is a vector of

1’s of length N , and εt is an N -vector of the noise terms with mean 0 and constant variance.

The parameters αt in the above model describes the local linear dependency, and the set

{αt’s for t = 1, . . . , T −1} represents the overall shape in the d-trait. We note that although

a linear relationship is assumed locally for adjacent time points, the set of models described

by αt’s does not assume any particular functional form globally for the d-traits, and can

capture a wide variety of non-stationary dynamic trends, including locally-linear, logistic,

and cyclic trends. This flexibility is an improvement upon methods that assume parametric

functions for the shape of the trajectory [181].

After centering the d-trait data yt by subtracting the mean ȳt to obtain yct = yt− ȳt, the

parameters αt and α0
t in Eq. (6.16) can be estimated from the mean-centered data, using

the standard least square method as follows:

α̂t = argmin (yct+1 − αtyct)> · (yct+1 − αtyct).

We are only concerned with the slope parameters αt’s since they represent the temporal

dependency of the magnitudes of a d-trait between two time points. The estimate for αt is

given as:

α̂t =
(yct)

> · yct+1

(yct)
> · yct

. (6.17)

The estimates of αt’s describe the local temporal dependencies for each d-trait. The αt’s

are then incorporated into the penalty in TESL. Recall that the αt’s encode the strength of

dependence of a d-trait between two adjacent time points.
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6.4.2 Formulation and Parameter Estimation for the Temporally-Smoothed

Lasso

In TESL, we use the αt’s to design a penalty for regularized regression that enforces a

temporal structure in the estimated association strengths βt’s. The additional penalty is

added to the lasso objective function as shown below:

B̂ = argmin
∑
t

(yt −Xβt)
>(yt −Xβt) + λ

∑
t

‖ βt ‖1 +γT (B), (6.18)

where T (·) denotes the autoregressive fusion penalty:

T (B) =
T−1∑
t=1

‖ βt+1 − α̂tβt ‖1 . (6.19)

The regularization parameter λ controls the sparsity of the estimated βt. A larger value

of λ yields a solution that is more sparse while a smaller value of λ yields a solution that

has fewer non-zero elements. The regularization parameter γ on the autoregressive fusion

penalty controls the difference in association strengths between βt+1 and α̂tβt. A large

value of γ encourages this difference to be zero. This implies that the non-stationary linear

dependencies between the d-traits at two adjacent time points t and t + 1, as described

by the local autoregressive model, are reflected in the temporal dependencies between the

association strengths βt+1 and βt through the parameter α̂t. For instance, if there is a large

increase between the d-trait values at time t and t+ 1, then αt will be a large positive value,

and there will be a noticeable difference in the association strengths βt+1 and βt. Both

regularization parameters λ and γ can to be selected via cross-validation.

We require a fast optimization procedure for this problem since a genome-wide scan

contains a huge number of SNPs. While this problem is convex, the autoregressive fusion

penalty poses a challenge to attaining efficient optimization because it is not smooth. Thus,

we use the smoothing proximal gradient method [23] whereby the strategy is to reformulate

the autoregressive fusion penalty via the dual norm to decouple the non-separable terms.

Then, a smooth approximation to the reformulated penalty is derived. The result is an
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objective function with a smooth square loss term, the smooth approximation to the autore-

gressive fusion penalty and the non-smooth lasso penalty. Since the reformulated objective

consists of simply a smooth component and the non-smooth lasso penalty, we can optimize

this efficiently with the fast iterative shrinkage-thresholding algorithm (FISTA) [11].

6.4.3 Selection of Regularization Parameters

To select the best model, we need to determine the optimal values for the two regularization

parameters: λ for the lasso penalty and γ for the autoregressive fusion penalty. The stan-

dard procedure for selecting these regularization parameters is to do cross-validation. This

has also been described in the setting of penalized regression for genome-wide association

mapping [183]. We split the data into a training set (90%) and a test set (10%) and do

cross-validation to select the (λ, γ) regularization parameter set with the lowest test error.

Once we obtain the βt’s from the best model, the selected SNPs were those with a non-zero

regression coefficient (association strength). We then reestimate the regression coefficients

using only the selected variables with standard least squares, which removes the bias imposed

by the penalties.

6.4.4 Simulation Study

We demonstrate our method on simulated datasets, and compare its performance with those

from the standard univariate association test and lasso that do not take into account temporal

structures in the d-traits.

6.4.4.1 Experimental Setup of Simulations We simulated datasets as follows. In

order to generate the genotype data, we first selected a segment of 50 SNPs randomly from

chromosome 7 of HapMap CEU panel [161] after removing the SNPs with MAF less than

0.10. In addition to the 60 individuals in the HapMap CEU panel, we generated additional

90 individuals by randomly mating the original 60 individuals to obtain genotypes for 150

individuals in total. Assuming that observations for a d-trait are obtained over 10 time

points, we generated the true association strengths by randomly selecting three SNPs and
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setting the association strengths for these SNPs to non-zero values that vary linearly or

cyclically over time. We set the association strengths for all of the other SNPs to zero. For the

linear d-trait, the association strength βj1 of each association SNP at the first time point was

randomly drawn from a uniform distribution [0.05, 0.1], and the association strengths of the

same SNP at subsequent time points were set to βj1× t, where t = 2, . . . , 10. For the cyclical

dynamic trait, we assume that the association strength of each SNP changes according to a

sinusoid functional form with 1.5 cycles and with the peak amplitude randomly sampled from

a uniform distribution [0.80, 0.85]. Given these genotypes and true association strengths, we

generated the d-trait values using a linear model with noise distributed as N(0, 1.0). In our

simulation study, we assume that all of the temporal correlation in the d-trait is induced by

the temporally changing genetic effects.

6.4.4.2 Illustrative Examples of Dynamic-Trait Associations In order to illustrate

the genetic effects on a d-trait, the simulated d-trait data under the scenario of linear growth

are shown in Figures 6.1A-D. While Figure 6.1A shows the d-trait trajectories for all of

the 150 individuals in a single simulated dataset, those same individuals are grouped into

three subsets according to the genotypes of the true association SNPs in Figures 6.1B-D.

The thick blue curves in Figures 6.1B-D indicate the mean trajectories within the group.

Figure 6.1B shows individuals with no mutations in any of the three association loci. Since

these individuals do not possess the genetic variants that can drive a temporal change in

the d-trait, the trajectories do not show any trend over time. As we introduce one or

two mutations in the genetic loci, a trend of linear growth starts emerging as shown in

Figure 6.1C. Figure 6.1D shows those individuals with more than three mutations, and this

pattern of linear growth becomes more apparent.

Given the d-trait data in Figure 6.1A simulated from the genotype data and the true

association strengths in Figure 6.1E, we perform a d-trait association mapping using a uni-

variate association test and lasso applied to each time point separately as well as our proposed

method, and show the results in Figures 6.1F-H, respectively. When the true association

signals are very weak at the early time points, all of the methods are unsuccessful in de-

tecting the signal. However, the results from univariate analysis and lasso contain many
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false positives at these early time points, whereas our method has significantly fewer false

positives. As the true association signals increase over time, our method starts detecting it

at earlier time points for the SNP on the third row than other methods, because it can take

into account the temporal correlation and infer from the observations at the adjacent time

points that the weak signal is indeed a true association.

Similarly, an illustration of the simulation scenario with a cyclical dynamic is shown in

Figure 6.2. The d-trait values have a cyclical trajectory over time in Figures 6.2C and D,

because of the periodic change in the genetic effects of the association variants as shown in

Figure 6.2E. When the individuals have no mutations at any of the three association SNPs,

the d-trait measurements do not show a cyclic trend, as can be seen in Figure 6.2B. Overall,

the association results show that our method in Figure 6.2H finds fewer false positives than

the univariate test in Figure 6.2F and lasso in Figure 6.2G. When the association signal is

weak between the peak and valley of the cycle, our method is able to borrow information from

the adjacent time points and infer the presence of associations, whereas the other methods

simply miss the signals.

6.4.4.3 Accuracies for Detecting True Associations We perform a systematic and

quantitative comparison of the performance of different association analysis methods in terms

of type I errors and powers for detecting true associations by generating 50 simulated datasets

as described above and averaging the results over these datasets. Assuming that association

strengths are indicated by -log(p-values) for univariate tests and the absolute values of the

estimated regression coefficients for lasso and our proposed method, we sort the estimated

association strengths and compare the top 5% values of the sorted list with the list of known

true associations to compute type I errors and powers. The average type I errors and powers

over time are shown in Figures 6.3A and B for the scenario of linear dynamic. Across all

time points, our proposed method has significantly lower type I errors and higher powers

than other methods that do not take advantage of the temporal correlation structure in the

d-traits. This gap in the performance is significantly greater at early time points when the

association signals are weak. Thus, our method can be potentially used to detect the genetic

effects of the associated variant on a d-trait at an early stage for a diagnostic purpose.
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For the scenario of a cyclic dynamic, we show the type I errors and powers averaged

over 50 simulated datasets in Figure 6.4. Again, our method outperforms other methods

across all time points. Especially when the association signals are weak between the peak

and valley of each cycle, the performance gap is significantly greater. This is because our

method can learn the presence of associations between peaks and valleys by exploiting the

temporal correlation in the d-trait.

We vary the number of association SNPs to 3, 7, and 10, and compare the performance

of different association methods in Figure 6.5, under the scenario of linear dynamic. Type

I errors are shown in Figures 6.5A-C for the number of association SNPs 3, 7, and 10,

respectively, and powers are shown in Figures 6.5D-F. The results are averaged over 50

simulated datasets, and top 10% with the highest estimated association strengths are used.

Our method has significantly lower type I errors and powers than any other methods across

all time points. Although the performance of all methods tends to increase over time as

the association strengths of the association SNPs increase, our method can still detect the

associations significantly better than other methods at the early time points.
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Using a simulated dataset for a d-trait with a linear dynamic. A: Trait measurements over 10 time points
for 150 individuals. B: Trait measurements for the individuals with no mutations in all of the three
causal genetic loci. These are unaffected individuals with no specific trend in the trajectories over time.
The thick blue curve indicates the mean trajectory among these individuals. C: Trait measurements
for the individuals with one or two mutations on causal genetic loci. The trend of a linear increase
starts to emerge as these mutations drive the temporal change in the d-trait. D: Trait measurements
for the individuals with more than three mutations on causal genetic loci. As more causal mutations
are introduced, the linear trend is stronger with steeper slope than in Panel C. E: True association
strengths used to generate this simulation dataset. F: -log(p-values) from single-SNP association tests.
G: The absolute values of the estimated association strengths from lasso. H: The absolute values of the
estimated association strengths from d-trait lasso.

Figure 6.1: Illustration of d-trait association mapping.
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Using a simulated dataset for a d-trait with a cyclic dynamic. A: Trait measurements over 10 time points
for 150 individuals. B: Trait measurements for the individuals with no mutations in all of the three causal
genetic loci. These are unaffected individuals with no specific trend in the trajectories over time. The
thick blue curve indicates the mean trajectory among these individuals. C: Trait measurements for the
individuals with one or two mutations on causal genetic loci. The cyclic trajectory starts to emerge as
these mutations drive the temporal change in the d-trait. D: Trait measurements for the individuals with
more than three mutations on causal genetic loci. As more causal mutations are introduced, the cyclic
trend is stronger with higher peaks and lower valleys than in Panel C. E: True association strengths
used to generate this simulation dataset. F: -log(p-values) from single-SNP association tests. G: The
absolute values of the estimated association strengths from lasso. H: The absolute values of the estimated
association strengths from d-trait lasso.

Figure 6.2: Illustration of d-trait association mapping.
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Data were simulated assuming a linear dynamic in d-traits. A: Type I errors over the 10 time points.
B: Powers. Results were averaged over 50 simulated datasets.

Figure 6.3: Comparisons of different methods for a d-trait association analysis using simu-

lated datasets.
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Data were simulated assuming a cyclic dynamic in d-traits. A: Type I errors over the 10 time points.
B: Powers. Results were averaged over 50 simulated datasets.

Figure 6.4: Comparisons of different methods for a d-trait association analysis using simu-

lated datasets.
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Data were simulated assuming a linear dynamic in d-traits. Type I errors over the 10 time points are
shown for A: S=3, B: S=7, C: S=10. Powers over the 10 time points are shown for D: S=3, E: S=7,
F: S=10. Results were averaged over 50 simulated datasets.

Figure 6.5: Comparisons of different methods for a d-trait association analysis using simu-

lated datasets when the number of causal loci S varies.

6.4.4.4 Prediction Accuracy Finally, we compare the performance of the different

methods in terms of the prediction errors in Figure 6.6. We generate test data for additional

100 individuals, and compute the squared differences between the predicted values based on

the estimated regression coefficients and the observed values. The prediction error is defined

as an average of these squared differences over 100 individuals in the test set. We repeat

this process for 50 simulated datasets, and show the prediction errors averaged over these

datasets in Figures 6.6A and B for the two scenarios of dynamic growth and cyclic trend,

respectively. We find that our method has significantly lower prediction errors than lasso

that does not combine information across time.

6.4.4.5 Non-dynamic Genetic Effects in Dynamic Trait Association While the

simulation studies above considered the d-trait association scenarios with dynamic genetic

effects, where the size of genetic effects on d-traits changes over time, we now consider
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A: A linear dynamic in d-traits. B: A cyclic dynamic in d-traits. Results were averaged over 50 simulated
datasets.

Figure 6.6: Test errors using simulated datasets.

association scenarios with non-dynamic effects of SNPs on d-traits such as constant genetic

effect sizes over time or genetic effects only at a single time point. In order to simulate data,

we obtained 721 SNPs on chromosome 22 for 721 individuals from HapMap 3 data [160] after

filtering out SNPs with MAF less that 0.05 and SNPs with pairwise correlation greater than

0.88 between neighboring SNPs. Then, assuming three association SNPs and the number of

time points T = 5, we set the true values for association strengths as follows. For the case

of constant genetic effects over time, the strength of each of the three association SNPs was

sampled randomly from the uniform distribution [0.1, 0.5]. For the case of a genetic effect

at a single time point, the association SNPs were assumed to influence the d-trait only at

t = 3, and the association strengths were randomly sampled from a uniform distribution [0.1,

0.8]. All of the results were obtained by choosing 360 samples randomly as a training set,

performing 10-fold cross-validation to select the regularization parameters, and computing

the prediction errors on the remaining 361 samples.

In Figure 6.7, we compare the performance of our method with the standard lasso in terms

of the type I errors, powers, and prediction errors averaged over 50 simulated datasets. The

left and right columns in Figure 6.7 show results from each of the two simulation scenarios,

constant and single-time-point genetic effects, respectively. We find that our new method

gives lower type I errors than lasso in both of the scenarios (the top row in Figure 6.7).

This shows the benefit of the smoothing effect of the autoregressive fusion penalty that sets

the association strengths of SNPs with no associations to zeros across time points. For the
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scenario of the constant genetic effects, this smoothing effect of our penalty also slightly

increases the power, whereas it slightly decreases the power for the case of genetic effects

at a single-time point (the middle row in Figure 6.7). For both of the scenarios, the TESL

method gave lower prediction errors than lasso, showing that the benefit of the smoothing

effect of our method generally outweighs their potential disadvantages.
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A: Genetic effects of association SNPs were assumed to be constant across all time points. B: Association
SNPs were assumed to influence the d-trait only at a single time point (t=3). Type I errors, powers,
and prediction errors are shown in the top, middle, and bottom rows, respectively.

Figure 6.7: Results on simulated datasets under scenarios for non-dynamic genetic effects.
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6.4.4.6 Null Distribution To assess the type I error of our method, we have performed

null simulations and computed the type I error for both TESL and standard lasso. For this

experiment, we used the 721 individuals with 721 SNPs on chromosome 22 from HapMap

3 data [160] with MAF > 0.05 previously described in Section 6.4.4.5. To simulate the null

distribution, we set the association strengths for all SNPs at all time points to zero so that

there are no true associations. We then generated the d-trait values using a linear model

with noise distributed as N(0, 1.0). We compare the type I error between our method and

standard lasso. After thresholding the association strengths at different levels 0.15, 0.1, 0.05,

and 0, the type I error is shown in Figures 6.8A-D, respectively. These results were averaged

over 50 simulated data sets. As can be observed from Figure 6.8D, the type I error < 0.05. In

addition, the magnitude of the association strengths βt of the false positives are very small.

At |βt| > 0.15, as shown in Figure 6.8A, the type I error is zero at all time points.
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A: regression β=0.15 B: regression β=0.1 C: regression β=0.05 D: regression β=0.

Figure 6.8: Type I error for different regression coefficient thresholds.
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6.4.4.7 Computation Time In order to assess the feasibility of running TESL on a

large dataset, we measure the computation time for running our method and the standard

lasso on datasets of varying sizes and show the results in Figure 6.9. In Figure 6.9A, we

vary the number of SNPs while fixing the number of time points at 10. In Figure 6.9B, we

vary the number of time points, fixing the number of SNPs at 1000. The results show that

our method can efficiently handle datasets of thousands of SNPs and up to a hundred time

points in a few minutes. For example, a dataset with 8000 SNPs measured over 10 time

points could be handled in less than 7 minutes. The project page along with available code

for TESL may be accessed at: http://cogito-b.ml.cmu.edu/dynamictraits/.
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Figure 6.9
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7.0 GENETIC ASSOCIATIONS AND DYNAMIC ASTHMA ENDOTYPES

7.1 INTRODUCTION

Current GWAS are limited in that they only consider associations between genotypes and

static phenotypes — snapshots of traits at a single time point — when more information

is often available. For example, clinical trials typically record longitudinal traits such as

BMI [31], triglycerides [192] and blood glucose levels [129]. We refer to a longitudinal trait

that changes value over time as a dynamic trait or d-trait. A particular genotype can cause a

trait not only to vary across individual, but also to change over time for the same individual;

and the potential for such information, if available, to identify disease-related genes can be

significant. If d-trait data is accessible, it is desirable to use this information to identify

genetic loci that drive the temporal evolution of the trait. Such a method of association

analysis can utilize the complete trajectory for a particular clinical trait which increases the

power of GWAS. To provide some insight into the intuition behind this problem, consider

the situation where two individuals with different genotypes have the same measurement of

a trait at a specific time point (Fig. 7.1A). In this situation, GWAS would not detect any

contributing genetic variations. However, these individuals may have completely different

trajectories for this trait (Fig. 7.1B). Thus, using dynamic information, it is more probable

that these variations will be detected.

The concept of finding associations between regions of the genome and longitudinal traits

has been previously investigated. Techniques such as repeated measures analysis [135, 28,

32, 129], averaging of traits across time points [79] and identifying principal components

[101] to capture the temporal information of complex traits have been used with a modest

degree of success. However, such techniques may result in loss of information, particularly
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the information contained in the trajectory of a particular trait. To address this problem,

more sophisticated methods have been proposed, such as non-parametric approaches based

on Legendre orthogonal polynomials [31] and adaptive splines [192], to model longitudinal

data. This is a promising direction, but these methods are different from our proposed

method in that they do not explicitly impose the sparsity of associations between genotype

and phenotype, which is crucial in elevating the stringency of detection in high-dimensional

(large number of candidate predictors) and high-noise cases. In the literature of quantitative

trait locus (QTL) mapping for linkage analysis, the problem of finding a linkage between a

genetic locus and a d-trait has been broadly termed as functional mapping [111,182,172] and

the standard mixture model for QTL mapping for a static trait has been extended to address

this problem. However, the mixture model for functional mapping was designed for linkage

analysis, and does not extend to the general problem of association mapping of unrelated

individuals with a relatively dense set of genetic markers.

7.2 APPLICATION OF TESL TO A COHORT OF ASTHMATIC

CHILDREN

7.2.1 Description of Study Subjects and Dynamic Trait

The current study utilized GWAS data from 466 non-Hispanic white children who partic-

ipated in the Childhood Asthma Management Program (CAMP). Characteristics of the

study subjects are presented in Table 7.1. CAMP was a multi-center randomized, double-

masked clinical trial of the long-term effects of three inhaled treatments for mild to moderate

asthma, with 1,041 subjects enrolled and followed for a period of 48 months. Inclusion cri-

teria and protocols for collection of baseline phenotypic data have been described in detail

elsewhere [82,81].

As part of the study, several measures of pulmonary function were evaluated at regular

intervals. We chose one of these measures, the forced expiratory volume measured after the

administration of an inhaled bronchodilator medication (post-bronchodilator FEV1) to use
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Figure 7.1: Illustration of association analysis.
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study month FEV1

Mean (SD) [Range]

0 103.0 (12.8) [62, 154]

2 104.9 (13.1) [67, 145]

4 104.3 (12.8) [46, 151]

12 104.4 (12.6) [50, 151]

16 103.0 (12.6) [46, 136]

24 103.3 (12.4) [66, 137]

28 103.0 (12.2) [62, 141]

36 103.1 (13.0) [48, 142]

40 103.2 (12.2) [66, 143]

48 102.7 (12.9) [56, 142]

FEV1 = One-second forced expiratory volume. SD = Standard deviation.

Table 7.1: Characteristics of FEV1 D-trait Over Time.

for association analysis. The post-bronchodilator FEV1 is a sensitive measure of the degree of

airway obstruction present in asthmatics after the administration of a corrective medication.

For this reason it is thought to be representative of an asthmatic child’s intrinsic level of

lung function that is not responsive to medical therapy [137]. The units of measurement for

the FEV1 are typically in liters. However, as the expected value for the FEV1 can vary with

height, the FEV1 is typically reported as a percentage of the value predicted for a certain age

and height, which is what we used for the current study. In the original CAMP study, study

subjects were evaluated at regular intervals and measures of pulmonary function, including

the FEV1, were obtained. Over the 48-month period of the study, each subject’s FEV1

was measured a total of 10 times, approximately once every four months. The exact study

months are listed in Table 7.1. We adjusted the FEV1 trait for baseline imbalances in age,

sex, height, height squared and the clinical location from which the subjects were recruited.

The residuals obtained after making these adjustments were used as inputs to TESL.

7.2.2 Preprocessing of Genetic Data

Of the original CAMP participants, 968 provided DNA and 299 provided RNA for genetic

studies as part of the CAMP Genetics Ancillary Study. Of the 968 participants who pro-
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vided DNA, 466 were non-Hispanic white children. The Institutional Review Boards of the

Brigham and Women’s Hospital (Boston, MA) and of the other CAMP study centers ap-

proved this study. Informed assent and consent were obtained from the study participants

and their parents to collect material for genetic studies.

Details of genotyping and quality control have been described previously [70]. Genome-

wide genotyping for CAMP subjects was performed on the HumanHap550 Genotyping

BeadChip or Infinium HD Human610-Quad BeadChip by Illumina, Inc (San Diego, CA)

at the Channing Laboratory. Data from those subjects genotyped using Illumina tech-

nologies was combined into a primary dataset of SNPs having missingness < 1%, passing

Hardy-Weinberg Equilibrium (HWE) (p-value threshold of 1x10−3), and having minor allele

frequency (MAF)>0.05.

To expand the association results, imputation of all SNPs available in the June 2010

release of the 1000 Genome Project (1000GP) data using MaCH [176] was performed for

the genotype data. A set of 6,216,972 imputed SNPs had a MAF>0.05 and a ratio of

empirically observed dosage variance to the expected (binomial) dosage variance greater

than 0.5, indicating good quality of imputation.

We performed pruning of highly correlated SNP markers. PLINK was used to prune

SNPs based upon the degree of linkage disequilibrium, with the goal of generating a pruned

subset of SNPs in approximate linkage equilibrium to each other. The multiple correlation

coefficient for each SNP being regressed simultaneously on all other SNPs within a sliding

window of 150 SNPs was calculated, and SNPs were pruned if the calculated multiple cor-

relation coefficient was below the variance inflation factor (VIF) threshold (1.85). The total

number of SNPs remaining after this step was 306,025. A genomic inflation factor (GIF)

was obtained for each time point of the FEV1 from unadjusted Chi-square values for allelic

association. The GIF was 1.000, indicating minimal population stratification. To improve

the computational time required for the genome-wide analysis, we divided each chromosome

into sections of approximately 3500 SNPS and then ran our method on each chromosome

section. All genetic and phenotypic data are available in the database of Genotypes and

Phenotypes (dbGaP) accession phs000166.v2.p1.
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7.3 ANALYSIS OF THE CAMP COHORT WITH TESL

We applied the TESL to a GWAS of SNPs and FEV1 values from non-Hispanic white par-

ticipants in the CAMP study. To select the regularization parameters for TESL, we chose

a range of λ and γ parameters and examined the cross-validation test error. We calculated

the cross-validation test error for each pair (λ, γ) of the regularization parameters, and se-

lected the values resulting in the minimum cross-validation test error. Running TESL on

each section for a single regularization parameter set (λ, γ) took approximately 1.3 minutes.

Thus, cross-validating over a possible 200 parameter sets yielded a runtime of approximately

5 hours per section.

For the optimal regularization parameter set (λ, γ), TESL identified 271 non-zero asso-

ciations (SNPs with non-zero regression coefficients for at least one time point) from 306,025

SNPs tested. Although the 271 associations were spread across the genome, several chromo-

somes contained multiple non-zero associations, including chromosomes 2, 8, 9, 12 and 16.

To prioritize the non-zero associations, we calculated the mean of the absolute values of the

association strengths (regression coefficients) across all time points to generate a single asso-

ciation strength value for each SNP. We ranked these values in order of magnitude and used

the values to prioritize the non-zero associations. A Manhattan plot of mean association

strengths over time for TESL is shown in Figure 7.2. Because we used a sparse regression

method, the majority of the association strengths in the Manhattan plot were zero, while

271 associations were non-zero. The top 10 associations as ranked by association strength

are displayed in Table 7.2.

7.3.1 Functional Analysis of Temporally-Smoothed Lasso Associations

In order to evaluate the functional significance of the non-zero associations, we performed

a gene ontology (GO) enrichment analysis on all genes neighboring the associated genomic

regions. The 271 non-zero associations were within 100 kb of 554 genes. We performed a

hypergeometric test to determine whether the set of genes neighboring significant associations

was enriched for specific biological processes (BP) compared to that expected for a randomly
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The black and gray striations denote different chromosomes.

Figure 7.2: Manhattan plot of mean association strengths for each chromosome.

selected set of genes. Genes annotated to GO terms received weights based on the scores of

neighboring GO terms, and significance scores of connected components were compared to

detect the most significant local terms within the GO hierarchy [1]. We found that the genes

neighboring non-zero associations were functionally enriched in multiple biological processes

of known relevance to asthma, including multiple pathways related to innate immunity and

inflammation (Table 7.3). The observation that our non-zero associations were in close

proximity to genes with functional relevance to asthma lends further support to the validity

of our method and its ability to detect asthma-relevant associations.
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SNP CHR BP MAF Mean |(βj)|
chr8:4233416 8 4233416 0.068 6.47

rs576967 9 1701524 0.061 4.76

chr12:94963945 12 94963945 0.075 3.26

rs10828784 10 18828279 0.29 3.18

chr9:91083694 9 91083694 0.058 3.17

chr12:19567609 12 19567609 0.070 3.16

chr9:124655498 9 124655498 0.10 3.14

rs7023886 9 114767890 0.13 3.05

rs2229320 16 10909244 0.14 3.03

chr16:66927184 16 66927184 0.10 2.97

Table 7.2: Top 10 significant SNPs from in CAMP dataset identified by TESL.

We next performed a targeted enrichment analysis on the genes neighboring the (cis-

acting) non-zero associations that demonstrated differential expression between different

alleles. We used a linear model to detect differences in gene expression levels between subjects

with different alleles, and select the genes with the highest level of differential expression (p-

value < 0.10) for enrichment analysis. Of 22,184 genes assayed on the microarray chip, 554

were within 100 kb of non-zero SNP associations and 43 of these were differentially expressed

between subjects with different alleles, with 37 having available GO annotations that could

be used for analysis.

We evaluated these 37 genes for functional enrichment in the BP ontology as described

above, and the top GO annotations detected by this method are presented in Table 7.4. We

detected several significant GO terms with established relevance to asthma pathogenesis,

such as the response to glucocorticoid stimulus (GO:0051384), which was underrepresented

in our set of genes. Glucocorticoid medications are one of the mainstays of asthma ther-

apy and numerous clinical trials highlight the benefits of these medications in children with

asthma [24]. The genes associated with this GO term were G protein-coupled receptor

83 (GPR83) on chromosome 11, and transcription factor AP-4 (TFAP4) on chromosome 16.

Both of these genes were located in cis to SNPs with non-zero associations and demonstrated

differential expression between subjects with different alleles. Another GO term relevant to

asthma pathogenesis was positive regulation of TGF beta production (GO:0071636), which
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was also underrepresented for our set of genes. The gene associated with this GO term

was glucosidase, beta (bile acid) 2 (GBA2), located on chromosome 9 and also differentially

expressed between subjects with different alleles. TGF beta has been liked to airway re-

modeling and the pathogenesis of asthma [45], so the presence of this GO term among the

significant annotations suggests a functional link between this genomic region and allelic

differences in asthma pathogenesis.

GO ID Term Annotated Significant Expected p-value

GO:0034122 negative regulation of toll-like receptor signaling 13 4 0.24 0.00014

GO:0050777 negative regulation of immune response 53 7 0.96 0.00025

GO:0002062 chondrocyte differentiation 69 7 1.26 0.00079

GO:0032695 negative regulation of interleukin-12 production 11 3 0.2 0.00153

GO:0009581 detection of external stimulus 101 8 1.84 0.00266

GO:0006953 acute-phase response 45 5 0.82 0.00299

GO:0006925 inflammatory cell apoptotic process 14 3 0.25 0.00322

GO:0034260 negative regulation of GTPase activity 14 3 0.25 0.00322

GO:0007062 sister chromatid cohesion 34 4 0.62 0.00636

GO:0030199 collagen fibril organization 36 4 0.66 0.00781

GO:0032088 negative regulation of NF-kappaB transcription 57 5 1.04 0.00826

GO:0006833 water transport 38 4 0.69 0.00946

GO:0071385 cellular response to glucocorticoid stimulus 22 3 0.4 0.01195

GO:1900449 regulation of glutamate receptor signaling 22 3 0.4 0.01195

GO:0021983 pituitary gland development 43 4 0.78 0.01452

GO:0048333 mesodermal cell differentiation 24 3 0.44 0.01521

GO:0048147 negative regulation of fibroblast proliferation 24 3 0.44 0.01521

GO:0019319 hexose biosynthetic process 67 5 1.22 0.01596

GO:0032873 negative regulation of stress-activated MAPK cascade 25 3 0.46 0.017

GO:0010862 positive regulation of pathway-restricted 26 3 0.47 0.01891

SMAD protein phosphorylation

The ‘Significant’ column refers to the number of significant genes associated with a particular GO term.
The ‘Expected’ column refers to the percentage of significant genes expected to be associated with a GO
term assuming a random distribution.

Table 7.3: Statistics for Significant GO Terms for Genes Neighboring Non-zero Associations.

7.3.2 Description and Functional Significance of Top SNP Association

The SNP with the largest association strength was located at chr8:4233416 (Table 7.2). The

FEV1 trajectory for this SNP is shown in Figure ??. For this SNP, subjects with different

alleles had very different trajectories over the 48-month duration of the study. Subjects

possessing two copies of the minor allele had relatively high values of the FEV1 (mean FEV1
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GO ID Term Annotated Significant Expected p-value

GO:2000278 regulation of DNA biosynthetic process 15 2 0.03 0.00056

GO:0050679 positive regulation of epithelial cell proliferation 114 3 0.24 0.00247

GO:0071695 anatomical structure maturation 40 2 0.09 0.00403

GO:0002040 sprouting angiogenesis 48 2 0.10 0.00577

GO:0006987 activation of signaling protein activity... 63 2 0.13 0.00976

GO:0030198 extracellular matrix organization 202 3 0.43 0.01206

GO:0051329 interphase of mitotic cell cycle 397 4 0.85 0.01415

GO:0045766 positive regulation of angiogenesis 89 2 0.19 0.01883

GO:0072203 cell proliferation involved in metanephros development 10 1 0.02 0.02345

GO:0071157 negative regulation of cell cycle arrest 10 1 0.02 0.02345

GO:0060041 retina development in camera-type eye 103 2 0.22 0.02474

GO:0008652 cellular amino acid biosynthetic process 104 2 0.22 0.02519

GO:0046479 glycosphingolipid catabolic process 11 1 0.02 0.02576

GO:0045601 regulation of endothelial cell differentiation 11 1 0.02 0.02576

GO:0071636 positive regulation of TGF-beta production 11 1 0.02 0.02576

GO:0090136 epithelial cell-cell adhesion 11 1 0.02 0.02576

GO:0043923 positive regulation by host of viral transcription 11 1 0.02 0.02576

GO:0051384 response to glucocorticoid stimulus 108 2 0.23 0.02701

GO:0015669 gas transport 12 1 0.03 0.02807

GO:0044319 wound healing, spreading of cells 12 1 0.03 0.02807

The ‘Significant’ column refers to the number of significant genes associated with a particular GO term.
The ‘Expected’ column refers to the percentage of significant genes expected to be associated with a GO
term assuming a random distribution.

Table 7.4: Statistics for Significant GO Terms for Differentially Expressed Genes.

= 140%) at the beginning compared to subjects with two copies of the major allele (mean

FEV1 = 103%) and heterozygotes (mean FEV1 = 100%). However, for subjects with two

copies of the minor allele, the FEV1 declined linearly during the study to levels similar to

those of subjects possessing two copies of the major allele (FEV1 = 115%, minor allele, FEV1

= 103%, major allele) and heterozygotes (mean FEV1 = 101%). Conversely, the subjects

with two copies of the major allele and the heterozygotes had relatively stable values of

FEV1 over the study period, that were consistently lower than the FEV1 values for subjects

with two copies of the minor allele.

The SNP chr8:4233416 is located on the short arm of chromosome 8, and upstream from

the gene for defensin β-1 (DEFB1). The DEFB1 protein is expressed in airway epithelial

tissue and has been found to play a role in host defense against respiratory pathogens [52].

Prior studies have linked polymorphisms in the gene for DEFB1 with an increased risk of
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asthma [108, 107]. Although we did not observe differential expression of DEFB1 between

subjects with different alleles, it is plausible that variation in the upstream region leads

to regulatory changes with an effect on DEFB1, such as enhanced degradation. Further

work will be necessary to validate these early findings in an independent population and to

characterize the functional significance of this variation.

This SNP and the associated d-trait trajectory serve to illustrate the advantage of TESL.

If we were to perform a cross-sectional analysis exploring associations between this SNP and

the FEV1 at discrete points in time, the potential to detect a significant association would

be reduced. However, because we were able to leverage the dynamic change in the trajectory

across time, we had increased power to detect this association. Furthermore, not only did

the value of the FEV1 vary between subjects with different allelic variants, but the trajectory

of the trait also varied among different subjects. Heterozygotes and subjects with two copies

of the major allele had a relatively stable FEV1 trajectory, while subjects with two copies

of the minor allele had an FEV1 trajectory that declined linearly over the duration of the

study period, suggesting that the variant exerts an effect on asthma pathophysiology that

occurs over an extended period of time.

7.3.3 Non-Zero Associations Correspond to Differences in Gene Expression

In order to investigate the functional significance of the associations identified by TESL, we

evaluated for the presence of differential gene expression levels between different allele types,

and associations with the FEV1 trajectory. Of the 554 genes we investigated, we found 6

genes with significant (adjusted p-value < 0.05) differences in expression after adjustment

for multiple testing (Table 7.5). Two of these genes were of particular interest due to their

putative role in asthma pathogenesis, and we have provided a detailed review of our findings

below.

One gene of interest was DENN/MADD domain containing 5B (DENND5B), located

within 100 kb of SNP marker rs7313158 on chromosome 12. For this gene, the SNP marker

rs7313158 was located approximately 100 kb downstream from the coding region of the

DENND5B gene. We found that subjects possessing two copies of the major allele had
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SNP Gene Chr Minor Allele Heterozygote Major Allele p-value Adj. p-value

Av. Expression Av. Expression Av. Expression

rs1752380 SELENBP1 1 7.24 7.23 7.32 0.0029 0.032

rs1752380 TUF1 1 7.87 7.84 7.77 0.016 0.089

rs2728436 PEX2 8 9.78 9.64 9.77 0.0027 0.0053

rs4741755 KIAA0020 9 9.42 9.39 9.46 0.012 0.037

rs7313158 DENNDB5 12 7.20 7.18 7.24 0.004 0.008

rs4026608 IRAK3 12 7.85 7.85 8.16 0.0075 0.03

Table 7.5: List of Genes With Differential Allelic Expression Patterns.

higher levels of expression of this gene compared to subjects with two copies of the minor

allele and heterozygotes (Benjamini-Hochberg (BH) adjusted p-value = 0.008) as shown in

Figure 7.4). Subjects with different alleles also had differences in their FEV1 trajectory over

time. Those with two copies of the major allele had relatively higher FEV1 levels early in the

course of the study (mean FEV1 = 104%, major allele, FEV1 = 103%, minor allele, FEV1 =

102%, heterozygote), but FEV1 levels for the major allele decreased over time (mean FEV1

= 102% at 48 months) (Fig. 7.4). Conversely, the FEV1 of subjects with two copies of the

minor allele and heterozygotes did not demonstrate this decline in FEV1 over time.

The rs7313158 SNP locus was associated with the DENND5B gene, which is located

on the reverse strand of chromosome 12. The eQTL locus is downstream from DENND5B,

and suggests the presence of a functional regulatory locus within this region. There are no

existing associations between the DENND5B gene and asthma or atopy, although variants

in the DENND1B gene have been associated with childhood asthma [147]. Like DENND1B,

DENND5B contains a GTPase binding domain, however it’s function in normal physiology

is not completely characterized [114].

Another gene that demonstrated differential expression for different alleles was the interleukin-

1 receptor-associated kinase 3 (IRAK3) gene, located within 100 kb of SNP marker rs4026608.

For the IRAK3 gene, subjects with the major allele had relatively higher levels of expression

of this gene compared to subjects with two copies of the minor allele and heterozygotes (BH

adjusted p-value = 0.03) (Fig. 7.5). Subjects with different alleles also had corresponding

differences in their FEV1 trajectory. Those with two copies of the major allele had con-
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A: Gene expression levels of DENND5B for subjects with different alleles for SNP rs7313158. Subjects
with two copies of the major allele (0) have relatively higher levels of DENND5B expression than subjects
with two copies of the minor allele (2) and heterozygotes (1), Benjamini-Hochberg (BH) adjusted p
= 0.008. B: Post-bronchodilator FEV1 trajectory for subjects with different alleles for SNP marker
rs7313158. At the beginning of the time course, the FEV1 for subjects with the major allele is relatively
higher than the FEV1 for subjects with the minor allele and heterozygotes. However, as time progresses,
the FEV1 for subjects with the major allele decreases and becomes more similar to that of subjects with
the minor allele and heterozygotes.

Figure 7.4: Gene expression for DENND5B and FEV1 trajectory for cis-associated eQTL

rs7313158.

sistently lower FEV1 values than those with two copies of the minor allele (mean FEV1 =

103%, major allele, mean FEV1 = 104%, minor allele at study onset; mean FEV1 = 101%,

major allele, mean FEV1 = 102%, minor allele at 48 months) (Fig. 7.5).

The rs4026608 SNP locus was associated with the IRAK3 gene, also located on chromo-

some 12. This SNP locus is located upstream from the IRAK3 gene, and may also indicate

the presence of a nearby regulatory factor for this gene. IRAK3 variants have previously

been implicated in asthma pathogenesis [8, 134]. A recent study has shown that IRAK3

can inhibit Toll-like receptor 2 (TLR2), leading to increased susceptibility to infections in

asthmatic patients [180], suggesting a role for this protein in mucosal immunity and the
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A: Gene expression levels of IRAK3 for subjects with different alleles for SNP rs4026608. Subjects with
two copies of the major allele (0) have relatively higher levels of IRAK3 expression than subjects with
two copies of the minor allele (2) and heterozygotes (1), Benjamini-Hochberg (BH) adjusted p = 0.03.
B: Post-bronchodilator FEV1 trajectory for subjects with different alleles for SNP marker rs4026608.
Throughout the duration of the study period, the FEV1 for subjects with the major allele is consistently
lower than the FEV1 for subjects with the minor allele and heterozygotes.

Figure 7.5: Gene expression for IRAK3 and FEV1 trajectory for cis-associated eQTL

rs4026608.

development of asthma and atopy.

7.3.4 Comparison of Temporally-Smoothed Lasso with Univariate and Lasso

Association Methods

We applied two other GWAS methods, univariate regression and standard lasso for compar-

ison. We first used univariate regression to identify associations between SNPs and FEV1

values. We evaluated for associations at each time point individually, and did not identify

any SNPs that reached genome wide significance (p-value < 5× 10−8) [128,2, 149,90,87].

We next used standard lasso to identify associations between SNPs and FEV1 values. A

Manhattan plot of the mean association strengths for lasso regression across time is shown
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in Figure 7.6. Standard lasso found fewer associations than TESL (92 vs. 271 non-zero

associations), indicating that lasso had a reduced sensitivity for detecting associations, com-

pared to TESL. However, there were 28 SNPs that were identified by both standard lasso

and TESL, depicted in Table 7.6.

The black and gray striations denote the different chromosomes.

Figure 7.6: Manhattan plot of all the mean association strengths across time for every

chromosome using lasso.

Among the SNPs identified by both lasso and TESL, rs10828784 on chromosome 10 had

the largest association strength. The FEV1 trajectory for this marker is shown in Figure 7.7A.

However, lasso was unable to identify any of the top 10 associations identified by TESL, such

as that for rs576967 on chromosome 9 and shown in Figure 7.7B. We believe that lasso was
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SNP CHR BP Mean |(β)| Mean |(β)|
lasso d-trait

rs12741361 1 149612957 1.25 2.65

rs1752380 1 149614370 0.61 2.32

rs1980769 1 96660789 0.31 1.99

rs9726107 1 166451806 0.26 2.05

rs6721668 2 37906399 0.40 0.95

rs11693474 2 83722702 0.30 0.30

rs956966 2 102954007 0.26 0.86

rs6745725 2 172163179 0.26 0.36

chr2:4100198 2 4100198 0.28 0.28

rs62134811 2 55032629 0.42 0.37

chr2:96998163 2 96998163 1.16 2.04

chr2:173923930 2 173923930 0.30 0.80

rs275510 5 6912895 0.61 2.16

rs4741755 9 2657929 0.33 2.52

chr9:25554159 9 25554159 0.33 2.25

rs13290170 9 8882736 0.45 1.75

chr9:120368912 9 120368912 0.30 0.95

rs10828784 10 18828279 2.98 3.18

rs12411340 10 66707498 0.98 2.01

rs11818488 10 66708116 0.92 2.10

chr11:24580358 11 24580358 0.29 1.76

rs1946151 16 53302612 1.51 2.70

rs1728778 16 67186352 0.49 1.88

rs7194083 16 9497354 0.91 1.44

rs13335305 16 10263717 0.25 0.86

rs1881220 16 84999403 0.24 1.95

rs1940289 18 951825 0.57 2.05

chr19:19145018 19 19145018 0.47 1.23

Table 7.6: List of positive associations identified by both lasso and d-trait.

able to detect an association with rs10828784 but not rs576967 due to differences in the rate

of change of the FEV1 trajectories. Although the FEV1 trajectories for subjects with different

variants of rs10828784 and rs576967 both demonstrate allelic variation, the trajectory for

subjects with different variants of rs576967 shows a much steeper rate of change between

time points than the trajectory for subjects with different variants of rs10828784. TESL was

able to capture this temporal fluctuation whereas standard lasso was not.
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A: Post-bronchodilator FEV1 trajectory for subjects with different alleles for SNP marker rs10828784.
This marker was identified as positively associated with FEV1 by both standard lasso and temporally
smoothed lasso. Across time, the subjects with two copies of the major allele have relatively stable
values of FEV1, that are lower than the heterozygotes and those with two copies of the minor allele.
The subjects with two copies of the minor allele have significantly more variability in the value of their
FEV1, and the trait experiences many more fluctuations over time compared to subjects possessing the
other alleles. B: Post-bronchodilator FEV1 trajectory for subjects with different alleles for SNP marker
rs576967. This marker was identified as positively associated with FEV1 only by temporally smoothed
lasso and not by standard lasso. Across time, the subjects with two copies of the major allele and the
heterozygotes have relatively stable values of FEV1. Conversely, the subjects with two copies of the
minor allele have a much greater point-to-point fluctuation in the FEV1 values that is identified by the
temporally-smooth lasso method.

Figure 7.7: Comparison of d-traits with associations detected by TESL and standard lasso.

7.4 DISCUSSION

Asthma is a disease that is characterized by chronic airway inflammation, airway hyperre-

sponsiveness and reversible airflow limitation [66]. Although progress has been made toward

understanding the genetic underpinnings of childhood asthma [123], the task of identifying

the genes contributing to asthma’s missing heritability and linking associated genes to dis-

ease mechanisms still remains. The current paper strives to address these goals through

the recognition that many genotype to phenotype associations remain undetected because
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GWAS only map to trait measurements at a single time point. By using TESL, we were

able to identify genomic regions that would not have been detected with traditional statisti-

cal methods by exploiting the information contained in the trajectory of phenotype values.

In addition, the positive associations we identified using TESL were linked to statistically

significant changes in the trajectory of the FEV1 trait in patients with different alleles, and

in several cases these associations were cis eQTLs, with different alleles showing different

patterns of gene expression.

We demonstrated several methodological advantages to TESL. First, using this method

with longitudinal measurements, we were able to leverage the joint effects of SNPs across

time and increase our power to identify associations that could not be identified using either

conventional univariate regression or standard lasso. Second, by identifying positive associa-

tions that correspond to allelic differences in a d-trait, the dynamic trait association analysis

provides some insight into the potential function of associations. For example, we identi-

fied several positive associations between genetic loci and a relative decrease in the value of

the FEV1, suggesting that the associated genetic region was involved in the development of

increased airway obstruction and worsening asthma.

In addition, the quantity of genome-wide genotype data available for analysis continues to

increase. Current datasets contain millions of SNPs, more densely sampled from the genome

than ever before. However, many of the SNPs are in LD with each other, and thus are highly

correlated. In our model, we use the lasso (l1 penalty) to encourage sparsity in the selected

predictors. However, while lasso is known to perform well in high-dimensional settings where

there is minimal correlation among predictor variables [14,191,171], it has been shown that

it can be unstable when a high degree of correlation exists. This means that when two

predictors are highly correlated, lasso cannot distinguish between them, leading to issues

of repeatability and generalizability [185]. This is potentially problematic for association

analyses where there is a preference for large numbers of correlated SNPs that allow for

increased precision in mapping associations to particular regions of the genome.

For this particular analysis, we made several modifications to the original data set in

order to avoid any stability problems caused by the structure inherent in the data. We

first pruned the SNPs in LD. However, the disadvantage associated with heavily pruning
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SNPs is that it becomes more difficult to map associations to a particular location of the

genome and reduces the overall likelihood of identifying potentially causative SNPs. Thus,

to increase the number of SNPs we include in our analysis, we create multiple data sets of

the same chromosome, each data set containing near independent SNPs. Moving forward,

investigating how to account for this structure in the model and algorithm would contribute

significantly to achieving robust and generalizable association results that may be replicated

in similar populations.

Finding associations between genetic variants and phenotypic measurements given the

high-dimensional nature of GWAS data is a challenging problem. While the strength of the

method presented is the ability to accommodate d-traits, there are also certain limitations.

For example, similar to other GWAS methods, we assume a common disease, common variant

model. Thus, we are limited to markers with a MAF>5%. Future work should address how

to increase the sensitivity of the algorithm to detect rare variants in a setting where dynamic

trait data is available. A second limitation is that a d-trait may be influenced by multiple

genetic loci, each having different types of trajectories in its genetic effect on the d-trait,

such as a mixture of cyclic and linear genetic effects on d-traits. In such a case, the local

autoregressive model would capture only the mixture of different types of genetic effects, and

TESL would not be able to separate the different types of genetic effects. A third limitation

is that our model assumes the d-trait measurements and the SNP effects on these d-traits

are synchronized in time across subjects. As longitudinal data collected for one individual

can be shifted in time compared to the data for a different individual, it is important to

take into account such shifts during analysis. Future work can also address whether using

higher order autoregressive models would be advantageous for this application. A method

that can overcome these limitations and reliably detect d-trait associations will be key to

understanding the genetic basis of d-traits.

In conclusion, we have introduced a novel method for identifying associations between

genetic loci and d-traits that vary over time. We have also demonstrated through simulations

that the d-trait method has a low type I error rate and higher power to detect significant asso-

ciations than lasso or univariate regression methods. Finally, we applied the d-trait method

to a population of children with persistent asthma and identified several loci associated with
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allelic differences in FEV1 trajectories over time. Multiple loci were also associated with

statistically significant allelic differences between levels of gene expression. Thus, we be-

lieve this method represents a new standard for association analysis of longitudinal dynamic

traits.

122



8.0 CONCLUSIONS

8.1 SUMMARY

In this thesis, we introduced an integrative computational framework that may be used

to identify complex disease endotypes. We began by using cluster analysis to define five

endotypes among children with mild-moderate asthma using a selected set of clinical traits.

We next explored the relationship between these endotypes and levels of gene expression in

CD4+ T-lymphocytes, and found a set of genes with expression patters that were closely

associated with our endotypes, particularly the degree of atopy present. We grouped this set

of genes into highly correlated modules, and found that one module could be used to predict

the degree of atopy present in an independent cohort of asthmatic patients. Within this

module, we also identified a common motif corresponding to a common regulatory molecule.

Finally, among our endotypes, we found that there was one that was strongly linked to low

lung function. To further investigate the genetic basis of this endotype, we used a novel

method to identify genetic associations with this longitudinal trait. We identified several

novel and confirmatory associations, and found that several associations were ( cis)-eQTLs,

corresponding to changes in gene expression that varied among subjects with different alleles.

Our results support the use of an integrative computational framework to identify endo-

types of complex diseases. We have developed predictive models that defines discrete patient

subsets with unique clinical attributes, discrete clinical trajectories, and variable responsive-

ness to anti-asthma controller medications. Recognition of these endotypes and their clinical

relevance should motivate novel strategies in both the research and clinical settings. Though

asthma has long been recognized as a clinically and etiologically heterogeneous disorder, our

results, together support the presence of no more than 5-6 asthma phenotypic clusters, and
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suggest that the heterogeneity is perhaps not as daunting as previously anticipated. The

observed between-cluster differences in the prevalence of specific environmental and genetic

factors suggest that important etiological differences underlie the configuration of different

asthma phenotypic clusters. Integration of gene expression profiles and genetic data al-

lowed us to identify multiple genes and genetic variants with plausible links to molecular

mechanisms underlying asthma pathogenesis. Thus, in addition to helping inform clinical

management, these integrated multivariable phenotypic classification schemes should help

accelerate research efforts in defining the molecular and environmental underpinnings of this

complex airways disease.

8.2 FUTURE DIRECTIONS

Moving forward, it will be necessary to validate the findings described in this thesis. Al-

though we identified several clinical asthma endotypes in a large cohort of asthmatic children,

prospective validation will be necessary before this framework is ready for widespread use

in the clinical setting. Further validation of gene expression and genetic endotypes will also

need to be performed in larger and more heterogeneous populations. In addition, further

investigation of genetic variants and gene expression profiles corresponding to different endo-

types should be performed to identify common regulatory molecules as potential novel drug

targets.

The integrative computational framework described in this thesis suggests the possibility

that multiple types of data may one day be incorporated into routine clinical care. In order

for this to happen, it will be crucial to develop user-friendly, web-based applications that can

be administered and interpreted easily. In clinic visits, patients specific clinical information

could be obtained from clinicians, along with genetic and gene expression profiles. Targeted

software could be used to assign patients to specific disease endotypes based upon this infor-

mation, and everything could be integrated into the EMR for appropriate risk-stratification

and selection of customized pharmacologic treatments. Such a program could move us closer

to a more efficient and personalized model of medical practice.
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Maŕıa José Torres-Galván, Ruperto González, Almudena Corrales, Orlando Acosta-
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Sterk. Transcriptome sequencing (rna-seq) of human endobronchial biopsies: asthma
versus controls. Eur Respir J, 42(3):662–70, Sep 2013.

[187] Lama A Youssef, Mark Schuyler, Laura Gilmartin, Gavin Pickett, Julie D J Bard,
Christy A Tarleton, Tereassa Archibeque, Clifford Qualls, Bridget S Wilson, and
Janet M Oliver. Histamine release from the basophils of control and asthmatic subjects
and a comparison of gene expression between ”releaser” and ”nonreleaser” basophils.
J Immunol, 178(7):4584–94, Apr 2007.

143



[188] Ming Yuan and Christina Kendziorski. A unified approach for simultaneous gene
clustering and differential expression identification. Biometrics, 62(4):1089–98, Dec
2006.

[189] Bin Zhang and Steve Horvath. A general framework for weighted gene co-expression
network analysis. Stat Appl Genet Mol Biol, 4:Article17, 2005.

[190] Bin Zhang and Steve Horvath. A general framework for weighted gene co-expression
network analysis. Stat Appl Genet Mol Biol, 4, 2005.

[191] P. Zhao and B. Yu. On model selection consistency of lasso. The Journal of Machine
Learning Research, 7:2541–2563, 2006.

[192] Wensheng Zhu, Kelly Cho, Xiang Chen, Meizhuo Zhang, Minghui Wang, and Heping
Zhang. A genome-wide association analysis of framingham heart study longitudinal
data using multivariate adaptive splines. BMC Proc, 3 Suppl 7:S119, 2009.

[193] Emmanuel Zorn, David B Miklos, Blair H Floyd, Alex Mattes-Ritz, Luxuan Guo,
Robert J Soiffer, Joseph H Antin, and Jerome Ritz. Minor histocompatibility antigen
dby elicits a coordinated b and t cell response after allogeneic stem cell transplantation.
J Exp Med, 199(8):1133–42, Apr 2004.

[194] Min Zou and Suzanne D Conzen. A new dynamic bayesian network (dbn) approach for
identifying gene regulatory networks from time course microarray data. Bioinformatics,
21(1):71–9, Jan 2005.

144


	Titlepage
	Abstract
	Contents
	Tables
	Figures
	1.0 INTRODUCTION
	1.1 Motivation
	1.2 Dissertation Overview

	2.0 CLUSTER ANALYSIS AND ENDOTYPES
	2.1 Cluster Analysis
	2.1.1 Definition
	2.1.2 Methods of Clustering
	2.1.2.1 Hierarchical Clustering
	2.1.2.2 K-means Clustering
	2.1.2.3 Spectral Clustering

	2.1.3 Defining the Optimal Number of Clusters
	2.1.3.1 The Elbow Point
	2.1.3.2 The Silhouette Width
	2.1.3.3 The Gap Statistic


	2.2 Applications to Asthma Phenotyping
	2.3 Limitations of Prior Cluster Analyses

	3.0 MULTIVARIATE ASTHMA ENDOTYPES
	3.1 Introduction
	3.2 Methods
	3.2.1 Study Population
	3.2.2 Selection of Phenotypes
	3.2.3 Preprocessing of Phenotypic Variables
	3.2.4 Cluster and Classification Analysis
	3.2.5 Cluster Validation
	3.2.5.1 Comparison to a Univariate Approach to Clustering
	3.2.5.2 Comparison to an Alternative Clustering Algorithm


	3.3 Results of Cluster Analysis
	3.3.1 Phenotypes
	3.3.2 Cluster Analysis
	3.3.3 Phenotypic characterization of the asthma clusters
	3.3.4 Phenotypic clusters, long-term asthma control and response to specific inhaled anti-inflammatory controller medications
	3.3.5 Demographic, environmental, and familial determinants of phenotypic clusters
	3.3.6 Decision-tree Algorithm for Efficient Patient Classification
	3.3.7 Cluster Validation
	3.3.7.1 Longitudinal consistency in phenotype clusters
	3.3.7.2 Comparison of univariate vs. multivariate cluster analysis
	3.3.7.3 Reproducibility of cluster assignments using different clustering algorithms


	3.4 Discussion

	4.0 GENE EXPRESSION AND ASTHMA ENDOTYPES
	4.1 Measurement of Gene Expression
	4.1.1 Molecular Biology Techniques
	4.1.2 Adjustment for Multiple Testing
	4.1.2.1 Control of the Familywise Error Rate
	4.1.2.2 Control of the False Discovery Rate


	4.2 Gene Expression Applications to Asthma Phenotyping
	4.3 Limitations of Prior Gene Expression Analysis
	4.4 Gene Expression Networks
	4.4.1 Early Methods of Inferring Gene Networks
	4.4.2 Bayesian Networks
	4.4.3 Correlation Networks


	5.0 USING GENE CO-EXPRESSION NETWORKS TO DEFINE ASTHMA ENDOTYPES
	5.1 Introduction
	5.2 Methods
	5.2.1 Study Population
	5.2.2 RNA Extraction and Microarray Preprocessing
	5.2.3 Identification of differentially expressed genes
	5.2.4 Identification of gene co-expression modules
	5.2.5 Identification of Shared Regulatory Regions within Gene Co-Expression Modules
	5.2.6 Gene Ontology Enrichment Analysis
	5.2.7 Validation in an Independent Cohort

	5.3 Results
	5.3.1 Distribution of phenotypic traits
	5.3.2 Gene Transcripts Demonstrate Atopic Patterns of Expression
	5.3.3 Atopic Patterns of Expression form Highly Correlated Co-Expression Modules
	5.3.4 Gene Co-expression Modules Have Similar Regulatory Domains
	5.3.5 Enrichment Analysis of Module Genes
	5.3.6 Differentially Expressed Genes are Associated with Different Clinical Outcomes
	5.3.7 Gene Co-expression Modules are Predictive of Atopic Status

	5.4 Discussion

	6.0 GENETIC ASSOCIATIONS AND ENDOTYPES
	6.1 Quantitative Traits
	6.2 Mapping Quantitative Trait Loci
	6.2.1 Early Methods
	6.2.2 Interval Methods

	6.3 Genome Wide Association Studies (GWAS)
	6.3.1 Multiple Linear Regression for GWAS
	6.3.2 Limitations of Multiple Linear Regression for GWAS
	6.3.3 Sparse Regression for GWAS
	6.3.3.1 Ridge Regression
	6.3.3.2 LASSO regression


	6.4 Introduction to Temporally-Smoothed Lasso (TESL)
	6.4.1 A Local Autoregressive Model for Dynamic Traits
	6.4.2 Formulation and Parameter Estimation for the Temporally-Smoothed Lasso
	6.4.3 Selection of Regularization Parameters
	6.4.4 Simulation Study
	6.4.4.1 Experimental Setup of Simulations
	6.4.4.2 Illustrative Examples of Dynamic-Trait Associations
	6.4.4.3 Accuracies for Detecting True Associations
	6.4.4.4 Prediction Accuracy
	6.4.4.5 Non-dynamic Genetic Effects in Dynamic Trait Association
	6.4.4.6 Null Distribution
	6.4.4.7 Computation Time



	7.0 GENETIC ASSOCIATIONS AND DYNAMIC ASTHMA ENDOTYPES
	7.1 Introduction
	7.2 Application of TESL to a Cohort of Asthmatic Children
	7.2.1 Description of Study Subjects and Dynamic Trait
	7.2.2 Preprocessing of Genetic Data

	7.3 Analysis of the CAMP Cohort with TESL
	7.3.1 Functional Analysis of Temporally-Smoothed Lasso Associations
	7.3.2 Description and Functional Significance of Top SNP Association
	7.3.3 Non-Zero Associations Correspond to Differences in Gene Expression
	7.3.4 Comparison of Temporally-Smoothed Lasso with Univariate and Lasso Association Methods

	7.4 Discussion

	8.0 CONCLUSIONS
	8.1 Summary
	8.2 Future Directions

	BIBLIOGRAPHY

