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Identification of biomarkers that contribute to complex human disorders is a principal and 

challenging task in computational biology. Prognostic biomarkers are useful for risk assessment 

of disease progression and patient stratification. Since treatment plans often hinge on patient 

stratification, better disease subtyping has the potential to significantly improve survival for 

patients. Additionally, a thorough understanding of the roles of biomarkers in cancer pathways 

facilitates insights into complex disease formation, and provides potential druggable targets in 

the pathways.  

Many statistical methods have been applied toward biomarker discovery, often 

combining feature selection with classification methods. Traditional approaches are mainly 

concerned with statistical significance and fail to consider the clinical relevance of the selected 

biomarkers. Two additional problems impede meaningful biomarker discovery: gene multiplicity 

(several maximally predictive solutions exist) and instability (inconsistent gene sets from 

different experiments or cross validation runs).  

Motivated by a need for more biologically informed, stable biomarker discovery method, 

I introduce an integrated module-based biomarker discovery framework for analyzing high-

throughput genomic disease data. The proposed framework addresses the aforementioned 

challenges in three components. First, a recursive spectral clustering algorithm specifically 
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tailored toward high-dimensional, heterogeneous data (ReKS) is developed to partition genes 

into clusters that are treated as single entities for subsequent analysis. Next, the problems of gene 

multiplicity and instability are addressed through a group variable selection algorithm (T-ReCS) 

based on local causal discovery methods. Guided by the tree-like partition created from the 

clustering algorithm, this algorithm selects gene clusters that are predictive of a clinical outcome. 

We demonstrate that the group feature selection method facilitate the discovery of biologically 

relevant genes through their association with a statistically predictive driver. Finally, we 

elucidate the biological relevance of the biomarkers by leveraging available prior information to 

identify regulatory relationships between genes and between clusters, and deliver the information 

in the form of a user-friendly web server, mirConnX.  
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1.0  INTRODUCTION 

1.1 PERSONALIZED MEDECINE AND BIOMARKER DISCOVERY 

Human diseases such as cancer have been shown to be complex and heterogeneous [1]. They 

often exhibit diverse morphologies, molecular characteristics, and clinical properties. 

Traditionally, a uniform drug regimen is administered to patients displaying similar pathology. 

However, these patients often vary in clinical outcome and responsiveness to drug therapy. This 

one-size-fits-all approach is suboptimal and often ineffective. As such, the biomedical 

community has recognized the need for individualized therapy, and considerable research effort 

have been directed toward the development of personalized medicine.  

Personalized medicine holds one of the greatest promises of modern clinical medicine. 

The term is coined for customized medical decisions or drug products tailored for individual 

patients, often based on emerging technology or diagnostic tools not previously available. In 

reality, personalized medicine is still at its infancy. Treatment plans are not yet routinely devised 

at the granularity of individual patients, but instead at the level of patient cohorts. Since proper 

selection of treatment plans hinges on definition of patient cohorts, accurate diagnosis and 

patient stratification has the potential to significantly improve patient outcome, survival, and 

quality of life [2]. 

Disease diagnosis and subtyping can be achieved by detecting the presence or abundance 

of biomarkers. We define a biomarker to be an entity that can be measured to provide actionable 
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information regarding biological processes, disease progression, or responses to therapeutic 

intervention. Additionally, biomarkers can be used to measure progress and therapeutic response 

of disease after a treatment plan [3]. An ideal biomarker is one that is present or absent only in 

diseased patients versus healthy controls, or one whose relative abundance differ among 

subtypes of diseases.  

Identifying such biomarkers for complex human disorders is a principal and challenging 

task. Not only are prognostic biomarkers useful in assessing risk of disease progression and 

stratifying patients, a thorough understanding of the roles of biomarkers in cancer pathways 

facilitates insights into complex disease formation, and provides potential druggable targets in 

the pathways. The latter is especially crucial, as progress has yet to be achieved in improving 

survival for several common cancers such as lung or colon cancers. Thus, novel therapeutic 

strategies based on a deeper understanding of the cellular and molecular mechanisms of disease 

formation are urgently needed [1].  

An example of a traditional biomarker for complex human disease is 

immunohistochemical (IHC) panel including estrogen receptor (ER), progesterone receptor (PR), 

and human epidermal growth factor receptor 2 (HERs). This set of single biomarkers has been 

used for several years in various aspects of breast cancer management. The presence of absence 

of these markers identifies three main subtypes [4]: luminal (ER+ and/or PR+), HER2-like 

(mainly ER- and HER2+), and basal-like (ER-, PR-, HER2, or triple-negative described by 

Schneider et al.[5]. They vary in their prevalence and prognosis, with triple negative patients 

facing the worst prognosis. These biomarkers have enabled physicians to make informative 

decision on cancer treatment. However, the prognostic ability of these markers is not ideal and 

difficulties still exist in stratifying subtypes of patients [6].  
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Possibilities of novel biomarkers have been proposed in light of the advance of 

microarray, sequencing technologies, and mass spectrometry technologies. These new high-

throughput genomic technologies have facilitated the identification of –omics based biomarkers 

such as gene expression profiles or molecular signatures composed of several dozen to several 

thousand genes [7]–[9], several of which have been made commercially available (Table 1.1). In 

one of the pioneering studies, a molecular signature among breast cancer patients was used to 

predict recurrence of cancer after surgery with significant accuracy[10].  This diagnostic test is 

helpful in guiding the decision of whether the patients require continuing chemotherapy. A very 

recent study [11] also demonstrated the potential of molecular subtyping to guide therapy in 

early-stage, invasive breast cancer. In this study, Gluck and colleagues performed molecular 

subtyping of early-stage breast cancer with the MammaPrint [12] and BluePrint [13] tests to 

identify a group of patients, Luminal A, who do not benefit from neoadjuvant (preoperative) 

chemotherapy and show a high five-year metastases-free survival rate. This group could not be 

identified using traditional clinical tests such as immunohistochemistry and fluorescence in situ 

hybridization (IHC/FISH). We list some of the current commercially available molecular 

diagnostic tests in Table 1.1. The 70-gene assay (MammaPrint, Agendia, Netherlands) and the 

21-gene assay (Oncotype DX, Genomic Health, USA) are the most widely used breast cancer 

multigene classifier assays. A 50-gene assay (PAM50, NanoString, USA) has also shown 

promise. Excellent summaries and review can be found in [14].  

Encouraged by the recent success of molecular diagnostics, we developed a molecular 

biomarker discovery framework that could be used as the first step toward disease subtyping. In 

the next sections, I provide the biological background necessary for further discussion, including 

the measurements and regulation of gene expression. 
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Table 1.1 A list of commercially available molecular diagnostic tests 
 

Test name Platform Features References 
MammaPrint Microarray/Agendia 

BV 
70-gene signature; 
categorizes 
good/poor prognosis 

[12], [15] 

Oncotype DX qRT-
PCR/Genomics 
Health 

21-gene signature; 
recurrence score 
predicts likelihood 
of recurrence in 10 
years 

[10], [16] 

PAM50 qRT-
PCR/NanoString 

50-gene assay; risk 
of relapse and 
likelihood of relapse 

[17] 

1.2 BIOLOGICAL BACKGROUND 

1.2.1 Gene expression and microarray 

The abundance of mRNA products is called gene expression. Gene expression measurement is a 

popular and cheap way to infer the state of cells under a given condition. A genome wide 

measurement of transcription is called an expression profile and reflects the transcription level of 

the genes in the particular condition in which they are extracted from. While in general the gene 

expression measurement is directly correlated with the level at which the genes are being 

transcribed, they do not reflect other aspects of the biological processes such as protein levels 

and their activity. However, mRNA levels are easier to measure than protein levels, thus we use 

gene expression level as a reasonable substitute. As mentioned in the previous section, the 

availability of microarray technology has also enabled the search for molecular biomarkers. 

In the last two decades, technical advances have lead to development of gene expression 

microarrays. Expression microarrays have enabled researchers to measure the abundance of 
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thousands of mRNA targets simultaneously [18], [19], providing a genomic, holistic view of 

gene expression. Microarray technology is based on hybridization: a process in which a strand 

binds to its unique complementary strand. On a microarray, a set of probes is attached to a solid 

surface (chip). A sample containing fluorescently tagged sequences are allowed to interact with 

the probes, and based on intensity of the fluorescence, the (relative) abundance of the targets of 

interests can be determined. There are two broad categories of microarrays: two-channel and 

single channel. Two-channel microarrays allow two individually labeled samples to hybridize 

competitively on the same surface to determine the relative abundance of the genes between the 

two samples. In contrast, one-color microarray only one sample is used. An illustration of the 

two-channel microarray is shown in Figure 1.1. 

The biomedical community has witnessed an exponential growth in gene expression 

profiled from clinical samples, and several large consortiums [20]–[22] in addition to the Gene 

Expression Omnibus(GEO)[23] have systematically collected gene expression measurements 

from patients. Clinical gene expression data that we work with in this dissertation are generally 

extracted from biopsies of tumor samples and healthy tissues taken from patients or volunteers 

that participate in the studies. The gene expression profiles are typically measured on the same 

platforms across samples and common pre-processing steps including background correction, 

imputation, and normalization are performed together.  

Gene expression is a tightly regulated process. The expression of a given gene at any 

given time depends on a complicated series of feedback and regulation that are controlled by 

many factors, including chromatin states, methylation status, transcription factor binding and 

suppression by a family of small RNAs. In the next sections, we focus on the last two types of 

regulation.  
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Figure 1.1 Illustration of a two-color microarray experiment 

http://upload.wikimedia.org/wikipedia/en/c/c8/Microarray-schema.jpg 
 

1.2.2 Transcriptional regulation 

In transcriptional regulation, proteins known as transcription factors (TFs) are recruited by a set 

of protein complexes and Pol II [24] to bind a promoter region of protein coding genes to either 

initiate(activators) or block(repressors) the activation of the gene. The core promoter region 
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typically consists of several hundred base pairs surrounding the transcription start site of a gene, 

and encompass a wide range of characteristics such as the presence of CpG islands, TATA box, 

methylation, and various other sequence elements [25], [26]. The regulatory region outside of the 

core promoter can be bound by TFs that typically contain a DNA binding domain that binds to 

specific set of sequence motifs 6-15bp in length [27]. There are over 2000 TFs that can be 

organized into families based on their structural properties and corresponding binding motifs 

[28], [29]. The TF can regulate its targets alone, in conjunction with other co-regulators, or in 

competition [30]. Identification of transcription factor bindings sites (TFBS) has been a major 

topic of interests for many years in the computational biology community. The short and 

degenerate nature of the motifs makes it a challenging task to identify them in the genomic 

region. Nevertheless, a number of tools and publications have resulted, often taking advantage of 

information such as conservation across species, presence in promoters of co-regulated genes, in 

addition to sequence specificity [31]–[33]. Several databases additionally contain curated 

experimental information that further supports the regulatory relationships of TFs and targets 

[34]–[36].   

TFs are known to participate in cancer and disease formation. A large number of 

transcription factors involved in cell differentiation and apoptosis have been identified over the 

years [37]–[40], perhaps most famous of which is p53 [41], a tumor-suppressor gene, whose 

inactivation is one of the key hallmarks of a tumor. 

1.2.3 Post-transcriptional regulation 

First identified in 1993 by Lee et al. [42], microRNAs(miRNAs) are small (20-23 nt), non-

coding single stranded RNA molecules that play an important role in post-transcriptional 
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regulation of protein-coding genes. The regulations are post-transcriptional, as their regulatory 

event occurs after mRNAs have been transcribed, by binding to the target sites of the 

3’untranslated regions of protein coding genes. miRNAs are believed to be mostly transcribed by 

RNA Polymerase II [43] and less frequently, RNA Polymerase III [44]. The initial full-length 

miRNA forms a hairpin structure, which is then processed by two proteins, Drosha and Dicer, to 

form the final ~22nt product associated with a protein complex containing Argonaut. The 

miRNAs bind to the target sites on the 3’UTRs of target genes through base complementarity 

[45]. This binding can either lead to full degradation of the target mRNA transcript, or the 

blocking of its translation. Exact mechanisms for both are still under investigation, and current 

evidence seems to support both forms of suppression. Each miRNA can target many mRNAs, 

and each mRNA can in turn be the targets of multiple miRNAs [46].  

Many miRNA target prediction algorithms have been developed [47]–[49]. In general, 

they combine sequence information, energy calculations, and various sequence contextual 

information such as position and nucleotide compositions, as well as conservation across species 

to infer possible binding sites of a given miRNA. A comprehensive review and discussion of 

various target prediction methods can be found in [50].  

miRNAs have been found in all animal lineages, and have been implicated as critical 

regulators during disease formation and tumorgenesis [51]. In this dissertation, we are interested 

in both the abundance of miRNAs in disease samples, as well as the target genes and potential 

oncogenes that they regulate. There is mounting evidence that miRNAs can be useful for cancer 

prognosis. miRNA expression profiles for different tumor subtypes are unique due to tissue 

specificity. Using miRNA profiles, Lu et al. were able to correctly classify 12 of 17 poorly 
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differentiated carcinomas [52].  The Table 1.2 highlights some of the miRNAs and targets found 

to be associated with tumors. 

 
Table 1.2 Tumor-associated microRNAs and their validated target genes [51]  

NSCLC: Non-small cell lung cancer; CLL: chronic lymphocytic leukemia; GBM:Glioblastoma multiforme. 
miRs Tumor Type Expression Target Genes 
let-7 NSCLC Down RAS 
miR-15a,miR-
16 

CLL Down BCL2 

miR17-92 
polycistron 

Breast, B-cell 
lymphomas 

Up AIB1,E2F1,TGFBR2,Tspi,CTGF 

miR-21 Breast, GBM Up TPM1 
miR-106a Colon, pancreas, prostate Up TPM1 
miR-221-
222,miR-146b 

Tyroid, papillary Up KIT 

miR-372-373 Testis, germ cell tumors Up LATS2 
 

 

Having introduced the motivation behind biomarker discovery and associated 

introductory concepts in biology, we now turn to the computational aspects of biomarker 

discovery and discuss some of its current limitations. 

1.3 LIMITATIONS OF CURRENT BIOMARKER DISCOVERY METHODS 

We aim to develop biomarker discovery methods that could be used as the first step toward 

disease subtyping. From a statistical perspective, biomarker discovery can be best cast as a 

variable selection problem, and identification of cancer subtype can be viewed as the associated 

classification step. The variables under selection are the molecular attributes of interest, in our 

case genes, genetic variations, or metabolites; the observations are samples from which the 

variables are measured e.g. patients. The goal is to search for the most discriminating features 

with respect to the labels for the observations. 
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Aside from its usefulness in extracting biological information, variable selection is 

critical in our application from a computational perspective. High-throughput genomics data is 

high dimensional, often with tens of thousands of variables measured simultaneously. However, 

the sample size is severely limited compared to the size of the variables. This is known as a 

phenomenon called curse-of-dimensionality [53], where the dimension of the variable space 

increases so fast that the available data becomes extremely sparse in this space. This sparsity is 

problematic for many methods that require statistical significance [54], [55]. Dimensionality 

reduction methods or variable selection are often performed as the first steps in analysis of omics 

data.  

Many variable selection methods have been applied toward biomarker discovery using 

omics data. A review of the existing variable selection methods can be found in Section 3.1. 

Even though numerous computational methods have been proposed for this purpose, clinical 

adoption of these biomarker discovery methods have been slow and limited due to a lack of 

reproducibility of the results. We detail several computational challenges and sources of non-

reproducibility in biomarker discovery for omics data. 

• Heterogeneity 

Cancer is highly heterogeneous with respect to molecular alterations, cellular compositions, and 

clinical outcome [56]. This creates a principal challenge in biomarker discovery.  Individual 

tumors are defined by distinct molecular changes and mechanisms. Further complicating the 

picture is the fact that tumors have a complex tissue structure comprised of malignant cells, 

tumor stromal components, host cells, and adjacent normal tissues. This molecular heterogeneity, 

along with the complex micro environment in which the tumor resides, makes analysis of high-

throughput measurements taken from pooled samples of tumor a very challenging task. 
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Statistically, heterogeneity presents us with the problem of high level of noise. For example, we 

may not see perfect differential expression between normal tissues or patient samples, even if 

stratified with the most discriminative predictor.  

• Multicollinearity (correlation)  

Another intricate challenge in omics data variable selection is that cellular processes are often 

coupled and synchronized due to internal cellular regulation or external signals and stimulations. 

Variables of interest can display similar behavior. For example, many genes regulated by the 

same activator/repressor or whose protein products physically interacting with each other would 

display similar expression patterns across different conditions or across time points. This results 

in a correlation structure among the variables. This correlation structure would break down the 

assumptions of a lot of traditional variable selection methods designed for uncorrelated data [57], 

rendering them unsuitable for the task of biomarker discovery.   

• Multiplicity and Instability 

Two other problems that impede meaningful biomarker discovery are: gene multiplicity and 

instability.  Gene multiplicity alludes to the fact that several maximally predictive solutions 

(gene sets) can co-exist [58], [59]. This may be due to the multicollinearity problem alluded to 

previously, but coexisting maximally predictive solutions may not necessarily be correlated.  

Instability refers to the phenomenon that inconsistent gene sets are selected from different 

research groups, different experiments conducted in the same lab, or even among different 

subsets of the data [60]. Many existing variable selection algorithms are designed with no regard 

to stability, as they seek to optimize only the predictive performance. These two issues are 

tightly coupled with the problem of multicollinearity, heterogeneity, and the high dimension of 

the data relative to sample size, and are possibly the main contributors to a lack of 
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reproducibility in biomarker discovery.  

In addition to these computational challenges, two additional properties are often overlooked 

by biomarker discovery methods developed from a purely computational perspective: 

• Network context 

In recent years, the systems biology community has shifted toward a network-centric view on 

pathogenesis. It has become widely accepted that pathways rather than individual genes 

dictate the course of carcinogenesis and complex human disease formation [61]. Different 

mutations in the same pathway can all result in dysregulation, such as excessive cell 

proliferation, which forms the basis of tumor growth [62], [63]. This fact unfortunately implies 

that the traditional paradigm that relies on features being over-represented in disease samples 

would fail to recognize biomarkers that are only present in subsets of the disease samples.  

• Clinical relevance 

In addition, traditional approaches are mainly concerned with statistical significance and often 

neglect to consider the clinical relevance of the selected biomarkers. While they have been 

applied to the problem of biomarker discovery to varying degree of success, they are usually 

done to optimize toward statistical significance without considering biological importance of the 

features. As a result, a gene with no biological relevance to the specific target variable may be 

selected simply because its expression pattern is similar to the expression pattern of truly 

important genes (multiplicity) and running the same algorithm on different sets of data could 

result in discrepancy in genes selected (instability). 

We provide a motivating example of these issues in the following section. 
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1.4 MOTIVATING EXAMPLE 

We provide an example (Table 1.3 and Figure 1.2) to illustrate some of the challenges alluded to 

in the pervious section. In this breast cancer gene expression data, we are interested in 

identifying genes that differentiate the two cancer subtypes: Basal (24 samples) and Luminal (36 

samples). In 10-fold cross validation, a total of 11 candidate genes are selected by a feature 

selection method (HITON-PC [64]). The top candidate gene, MSN, is consistently selected in all 

cross-validation iterations (Table 1.3), yet it does not seem to directly play a role in tumor 

growth. When we examine its closest neighbors (genes) in terms of similarity in expression 

across the samples, we observe that several are indeed tumor suppressors (CAV1, CAV2, 

CD44).  Similarly, XBP1 is selected in several rounds. While it is not directly known to be 

involved with breast cancer, its closest neighbor FOXA1 is known to be involved in ESR-

mediated transcription in breast cancer cells (Figure 1.2). Interestingly, when we examined the 

local potential regulatory relationships between the selected genes and their top neighbors, we 

found potential XBP1 transcription factor binding sites in the promoter of FOXA1 (Figure 1.2). 

This observation suggests that a method that performs variable selection on groups of variables 

and additionally provides contextual information around the selected groups could provide more 

biologically robust and meaningful biomarkers.  
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Table 1.3 A list of candidate genes that define Basal versus Luminal breast cancer subtypes.  

Marked in red are genes known to be involved with tumorgenesis. Marked in orange are genes known to have 
potential roles in tumor growth and energetic. Rows highlighted in the same color are gene groups that cluster 

together based on their expression profiles. 

 

 
 



 28 

   

 

Figure 1.2 An example of gene multiplicity and its implications.  
(Top) Selected candidate genes and their top neighbors placed in context of regulatory network. Genes in bold borders with a red arrow 
pointing to the class label (Luminal/Basal, yellow node) are those selected, as shown in Table1.3. Their top neighbors with expression 
highly correlated to theirs are connected to them in blue edges. Black arrows indicate potential regulatory relationships based on 
presence of binding motifs in promoters. Orange and red coloring of the nodes indicate their potential role in tumor genesis, consistent 
with color scheme Table 1.3. Finally, the grouping of the nodes and their respective background colors indicate potential clusters, 
consistent with color scheme in Table 1.3. (Bottom) Expression levels of XBP1 (blue) and FOXA1 (green) are plotted across samples. 
XBP1 and FOXA1 have very similar expression patterns, but XBP1 is chosen as the candidate gene. 
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1.5 OUTLINE OF OUR APPROACH 

This dissertation illustrates my attempt to address each of these issues in the form of a three-

component, module-based biomarker discovery framework. 

We conjecture that due to the complex nature of pathogenesis, several sets of molecular 

signatures could be equally predictive of disease state. Furthermore, we hypothesize that 

biologically meaningful variables can be highly correlated with other less relevant but 

statistically discriminative variables, even if the biologically relevant variables themselves are 

not maximally predictive. Since high-dimensional genomics data exhibit an intrinsic correlation 

structure among variables, we argue that it is beneficial to incorporate this information in the 

variable selection process.  

In response to our hypothesis, we aimed to exploit the correlation structure of the 

variables and organize them into modules. Subdividing variables into modules greatly reduces 

the complexity of the model space, partly addressing the dimensionality problem.  In addition, 

this organization can offer insights into the resulting network structure, and points to potential 

molecular functions for the lesser-known members in the system. We approach this task with a 

recursive spectral clustering strategy. Spectral methods are appropriate here since data 

heterogeneity can be somewhat reduced by transformation of the correlation matrix. In addition, 

a recursive design speeds up computation and summons a natural representation of the partition 

in a hierarchical, multi-scale structure.  

We proceed to take advantage of this tree structure to achieve the goal of group feature 

selection. The group feature selection framework directly tackles the multiplicity and instability 

issues. By treating clusters of variables as single entities, multiplicity can be eliminated as 

redundant variables are now summarized by a single group variable. This approach also affords a 
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greater stability in the system, since single, unstable variables will eventually converge to larger 

groups that can be expected to get selected more consistently. Two conditional independence 

tests are designed to collectively determine whether we can accept a substitution of a single 

predictive variable with a group variable without losing significant predictive accuracy. The 

thresholds for these tests can then be used to fine-tune the resolution of the predictive group 

variables we output. 

Finally, we address the issue of clinical relevance in all three components of the 

framework. In the clustering step, a prior incorporation scheme is developed to formally 

incorporate expert prior knowledge. The group feature selection procedure allows the selection 

of biologically informative genes by virtue of association with statistically predictive variables. 

In the final step, we enrich the selected variables with relevant contextual information, including 

regulatory relationships between TFs, miRNAs and genes, and deliver them in the form of an 

integrated network through a user-friendly web interface. The outline of this approach is 

presented in Figure 1.3.  
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Figure 1.3 Overall approach of the proposed module-based biomarker discovery framework 
 

1.6 CONTRIBUTIONS 

Motivated by the abundance of recently available large-scale clinical data, and a need for a more 

biologically informed biomarker discovery method, an integrative, module-based framework for 

biomarker selection is developed and outlined in this dissertation. We highlight some of its key 

contributions. 

ReKS	  

T-‐ReCS	  
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Computationally, this work contributes two novel algorithms to the community, both 

building on sound existing algorithms. The clustering algorithm, Recursive K-means Spectral 

Clustering (ReKS) (Figure 1.3 [1]), is one of the first to apply a recursive form of spectral 

clustering algorithm on high-dimensional clinical expression data. The second algorithm, Tree-

guided Recursive Cluster Selection (T-ReCS) (Figure 1.3 [2]), offers a novel group variable 

selection framework based on local causal discovery theories. The two algorithms are integrated; 

the output of the clustering algorithm can be used to guide the feature selection process. 

Nevertheless, each can also be used separately as standalone algorithms. Aside from the 

application in high-throughput genomics data emphasized in this dissertation, both of these 

algorithms are general-purpose methods also applicable to other high-dimensional datasets with 

correlated variables.  

To serve the biomedical community, we developed an interactive web-server, mirConnX 

(Figure 1.3 [3]), to present an integrated transcriptional and post-transcriptional network. The 

mirConnX network is constructed from a comprehensive compilation of prior regulatory 

relationships and computational predictions, and integrated with user supplied condition-specific 

expression data. Since its introduction, mirConnX has assisted numerous1 users to explore their 

datasets in the context of regulatory relationships. An upcoming release of mirConnX 2.0 will 

further integrate with the aforementioned biomarker discovery framework. The selected 

discriminative gene and miRNA clusters are annotated with curated and putative regulatory 

relationships, and presented in a network context. We hope that through our proposed module-

based biomarker discovery framework, integrated in the mirConnX environment, we will further 

                                                

1As of September 2013, mirConnX has had 2407 unique visitors  
2 Their rule of thumb is that the 𝐺! test is reliable if there are five or more instances per 

degree of freedom of the test 
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assist the biomedical community in generating actionable biological hypothesis and advancing 

toward the ultimate goal of improving understanding of complex disease formation. 

1.7 OVERVIEW AND ORGANIZATION  

This dissertation is organized as follows.  

In Chapter 2, ReKS, a recursive spectral clustering method developed to partition genes 

into a tree structure is described in detail.  The algorithm is evaluated against other popular 

clustering methods on several metrics and on a benchmarking dataset. Its applications to large-

scale clinical datasets are presented.  We also described a formal prior information incorporation 

framework for incorporating prior knowledge such as protein-protein interaction, domain 

knowledge or pathway information. We additionally pointed to a potential future strategy for 

improving stability using a perturbation algorithm. 

Chapter 3 presents the group variable selection algorithm, T-ReCS, which exploits the 

tree structure generated previously to guide its search for discriminative group variables. 

Relevant background concepts are introduced and the rationale for the method is explained in 

detail. The performance of the algorithm is evaluated on simulated, benchmarking and real data.   

In Chapter 4, we describe the details of the method for constructing the backend of the 

integrative web server mirConnX, and highlight several examples of its applications. We also 

provide a demonstration of the proposed integrative analysis on a set of melanoma gene and 

miRNA expression dataset to reveal the utility of our integrated framework, and illustrate our 

vision for the upcoming release of the web server.   

Finally, we provide discussion and future directions in Chapter 5.  
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2.0  REKS: RECURSIVE K-MEANS SPECTRAL CLUSTERING 

Clustering of gene expression data simplifies subsequent data analyses and forms the basis of 

numerous approaches for biomarker identification, prediction of clinical outcome, and 

therapeutic strategies. The most popular clustering methods such as K-means and hierarchical 

clustering are intuitive and easy to use, but they require arbitrary choices on their various 

parameters (number of clusters for K-means, and a threshold to cut the tree for hierarchical 

clustering). Human disease gene expression data are in general more difficult to cluster 

efficiently due to background (genotype) heterogeneity, disease stage and progression 

differences and disease subtyping; all of which cause gene expression datasets to be more 

heterogeneous. Spectral clustering has been recently introduced in many fields as a promising 

alternative to standard clustering methods. The idea is that pairwise comparisons can help reveal 

global features through the eigen techniques. In this paper, we developed a new method (ReKS) 

for clustering disease gene expression data based on a recursive spectral clustering algorithm. 

We benchmarked ReKS on three large-scale cancer datasets and we compared it to different 

clustering methods with respect to execution time, background models and external biological 

knowledge. We found ReKS to be superior to the hierarchical methods and equally good to K-

means, but much faster than them and without the requirement of a priori knowledge of K. 

Overall, we believe that recursive spectral clustering offers an attractive alternative for efficient 

clustering of human disease data. 
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2.1 CLUSTERING OVERVIEW AND MOTIVATING EXAMPLE 

The explosion of gene expression and other data collection from thousands of patients of several 

diseases has created novel questions about their meaningful organization and analysis. The 

Cancer Genome Atlas (TCGA) [22] initiative for example provides large heterogeneous datasets 

from patients with different types of cancers including breast, ovarian and glioblastoma. 

However, unlike data from model organisms and cell lines that inherently contain uniform 

genetic background, and where experiments are conducted under controlled conditions, disease 

samples are typically much more heterogeneous. Differences in the genetic background of the 

subjects, disease stage, progression, and severity as well as the presence of disease subtypes 

contribute to the overall heterogeneity. Discovering genes or features that are most relevant to 

the disease in question and identifying disease subtypes from such heterogeneous data remains 

an open problem.  

Clustering, the unsupervised grouping of data vectors into classes with similar properties 

is a powerful technique that can help solve this problem by reducing the number of features one 

has to analyze and by extracting important information directly from data when prior knowledge 

is not available. As such, it has formed the basis of many feature selection and classification 

methods [65], [66]. Hierarchical and data partitioning algorithms (like K-means) have been used 

widely in many domains [67] including biology [68], [69]. They have become very popular due 

to their intuitiveness, ease of use, and availability of software. Their biggest drawbacks come 

from the usually arbitrary selection of parameters, such as the optimal number of clusters (for K-

means) or an appropriate threshold for cutting the tree (for hierarchical clustering).  

When applied to datasets from model organisms and cell lines, these clustering 

approaches have been quite successful in identifying biologically informative sets of genes [68], 
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[69]. However, the heterogeneity of the disease samples hinders their efficiency in them. Figure 

2.1 shows an example of such a dataset; a dendrogram produced from the breast cancer TCGA 

data, in comparison to dendrogram generated from the less heterogeneous yeast expression data. 

It is obvious that the structure of the data makes it difficult to find a threshold to prune the tree to 

produce a satisfactory number of clusters, since every newly formed cluster is joined with a 

singleton node each time. Thus, despite its popularity, classical hierarchical clustering frequently 

performs poorly in discovering a satisfactory group structure within gene expression data. Tight 

clustering [70] and fuzzy clustering [71] attempt to build more biologically informative clusters 

either by focusing only on closely related genes while ignoring the rest, or by allowing overlap in 

cluster memberships. However, both methods suffer from long execution times. Similarly, 

Affinity Propagation [72] has been applied on gene clustering successfully but a significant 

execution time trade-off exists. 

More recently, spectral clustering approaches have been used for data classification, 

regression and dimensionality reduction in a wide variety of domains, and have also been applied 

to gene expression data [73]. The spectral clustering formulation requires building a network of 

genes, encoding their pairwise interactions as edge weights, and analyzing the eigenvectors and 

eigenvalues of a matrix derived from such a network. To our knowledge, no systematic attempt 

has been made to-date to test and compare the performance of existing clustering methods in 

large-scale disease gene expression data, perhaps due to unavailability of suitable size datasets. 

In this paper, we evaluate the standard K-means and hierarchical clustering methods on three 

large TCGA datasets. The evaluation is performed using intrinsic measures and external 

information. We introduce ReKS (Recursive K-means Spectral clustering), and compare it to the 

two aforementioned methods on the TCGA data. ReKS leverages the global similarity structure 
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that spectral clustering provides, while saving on computing time by performing recursion. At 

each recursion step, we exploit the distribution of eigenvalues to select the optimal number of 

partitions, thus eliminating the need for pre-specifying K. We show that ReKS is very useful in 

deriving important biological information from patient gene expression data. Furthermore, we 

show how to add prior information from KEGG [74] pathway to refine the cluster boundaries. 

 

 

Figure 2.1 Clustering patient data is more difficult than cell-based data.   
Partial views of dendrograms constructed from hierarchical clustering of the TCGA Breast Cancer expression data 
(top) and the yeast expression data (from Spellman et al. [75]). The dendrograms suggest that it is easier to select a 
threshold to prune the tree and generate potentially meaningful clusters for the yeast data but not so for the breast 
cancer data. 

2.2 SPECTRAL CLUSTERING 

The spectral clustering formulation requires building a network of genes, encoding their pairwise 

interactions as edge weights, and analyzing the vectors and eigenvalues of a matrix derived from 

such a network. This procedure is well established in the literature [76] so here we limit our 

discussion to the main points of the algorithm and use a Markov chain perspective to help us 

reason further about the idiosyncrasies of the algorithm when applied to cancer expression data. 
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A convenient framework for understanding the spectral method is to consider the 

partitioning of an undirected graph 𝐺 =< 𝑉,𝐸 > into a set of distinct clusters.  Here the genes 

are represented as vertices 𝑣! for 𝑖 = 1…𝑁 where 𝑁 is the total number of genes and network 

edges have weights 𝑤!" that are non-negative symmetric (𝑤!" = 𝑤!") to encode the strength of 

interaction between a given pair of genes. Affinities denote how likely it is for a pair of genes to 

belong to the same group. Here we used as affinities a modified form of the correlation 

coefficient 𝜌!", calculated on the gene expression vectors:  

 𝑤!" = 𝑒𝑥𝑝   −   𝑠𝑖𝑛 !"##$%(!!")
!

!
 (2.1) 

This is distance measure previously found to give empirical success in the clustering of gene 

expression data [73]. Note that high affinities correspond to pairs of genes that are likely to 

belong in the same group (e.g., participate in a pathway).  In this paper, we ensured that the 

network is connected so that there is a path between any two nodes of the network. Our goal is to 

group genes into distinct clusters so that genes within each group are highly connected to each 

other, while genes in distinct clusters are dissimilar.  

Spectral methods use local (pairwise) similarity (affinity) measurements between the 

nodes to reveal global properties of the dataset. The global properties that emerge are best 

understood in terms of a random walk formulation on the network [77]–[79]. The random walk is 

initiated by constructing a Markov transition matrix over the edge weights. Representing the 

matrix of affinities 𝑤!" by 𝑊 and defining the degree of a node by 𝑑! = 𝑤!"! , a Markov 

transition matrix 𝑀 can be defined over the edge weights by 

     𝑀 =𝑊𝐷!!   (2.2)    
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where 𝐷 is a diagonal matrix stacked with degree values 𝑑!. The transition matrix 𝑀 can be used 

to set up a diffusion process over the network. In particular, a starting distribution 𝑝! of the 

Markov chain evolves to 𝑝 = 𝑀!𝑝! after 𝛽 iterations. As 𝛽  approaches infinity, the Markov 

chain can be shown to approach a stationary distribution:𝑀! = 𝜋1! is an outer product of 1 (a 

column vector of 𝑁 1s) and 𝜋 (column vector of length 𝑁).  It is easy to show that 𝜋 is uniquely 

given by: 𝜋! = 𝑑!/ 𝑑!!   and is the leading eigenvector of 𝑀:𝑀𝜋 = 𝜋 with eigenvalue 1. 

We can analyze the diffusion process analytically by using the eigenvectors and 

eigenvalues of M. From an eigen perspective the diffusion process can be seen as [78]:  

   𝑝! = 𝜋 + 𝜆!
!𝐷!.!𝑢!𝑢!!𝐷!!.!𝑝!!

!  (2.3)  

where the eigenvalue 𝜆! = 1 is associated with stationary distribution 𝜋. The 

eigenvectors are arranged in decreasing order of their eigenvalues, so the second eigenvector 

𝑢!  perturbs the stationary distribution the most as 𝜆! ≥ 𝜆! for 𝑘 > 2. The matrix 𝑢!𝑢!! has 

elements 𝑢!,!×𝑢!,!, which means the genes that share the same sign in 𝑢! will have their 

transition probability increased, while transitions across points with different signs are decreased. 

A straightforward strategy for partitioning the network is to use the sign of the elements in 𝑢! to 

cluster the genes into two distinct groups.  

Ng et al. [80] showed how this property translates to a condition of piecewise constancy 

on the form of leading eigenvectors, i.e. elements of the eigenvector have approximately the 

same value with-in each putative cluster.  Specifically, it was shown that for 𝐾 weakly coupled 

clusters, the leading 𝐾 eigenvectors of the transition matrix 𝑀 will be roughly piecewise 

constant. The K-means spectral clustering method is a particular manner of employing the 

standard K-means algorithm on the elements of the leading 𝐾 eigenvectors to extract 𝐾 clusters 
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simultaneously. We follow the recipe in Ng et al. where instead of using a potentially non-

symmetric matrix 𝑀, a symmetric normalized graph Laplacian 𝐿 = 𝐷!!.!𝑊𝐷!!.!, whose 

eigenvalues and eigenvectors are similarly related to 𝑀, is used for partitioning the graph.   

 Spectral approaches have also some drawbacks. Their basic assumption of piecewise 

constancy in the form of leading eigenvectors need not hold on real data. Much work has been 

done to make this step robust, including the introduction of optimal cut ratios [81] and 

relaxations [82], [83] and highlighting the conditions under which these methods can be expected 

to perform well [78]. Spectral methods can be slow as they involve eigen decomposition of 

potentially large matrices (𝑂(𝑛!)). Recent attempts at addressing this issue include 

implementing the algorithm in parallel [84], speeding eigen decomposition with Nystrom 

approximations [85], building hierarchical transition matrices [86] and embedding distortion 

measures for faster analysis of large-scale datasets [87]. 

2.3 METHOD OVERVIEW 

In this paper, we will pursue a recursive form of K-means spectral clustering (ReKS), apply it on 

cancer expression data from patients and understand the intrinsic structure of the data by 

establishing a baseline clustering result. ReKS first defines an affinity matrix of all pairwise 

similarities between genes. We reduce the computational burden with sparse matrices, such that 

each gene is connected to a small number of its neighbors (default: 15) with varying affinities, 

and extract only a small subspace of eigenpairs (default: 20).  In each recursion step, we 

determine the most appropriate subspace in which to run K-means using the eigengap heuristic, 

which is to compute the ratio of successive eigenvalues and pick K of 𝑎𝑟𝑔𝑚𝑎𝑥! λ! λ!!!, for 𝑖   = 
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1 to 20. We apply the eigengap heuristic at each recursion level to determine the optimal number 

of partitions at that level. In addition, to improve the convergence of the K-means algorithm we 

initiate the algorithm with orthogonal seed points. For each newly formed cluster, we extract the 

corresponding affinity sub-matrix and repeat the procedure.  

 

Figure 2.2 Demonstration of the ReKS method on the GBM dataset. 
(Left) The first two iterations of K-means spectral decomposition recursions: two clusters are visible in the affinity 
map constructed from the entire dataset at the first level. From each, a new affinity matrix is constructed and spectral 
clustering repeated on the sub-affinity matrix.  (Right) Complete tree obtained by ReKS iterations. Each leaf node 
corresponds to a gene cluster in the final partition. 

 

In Figure 2.2(Left) we illustrate the top two levels of ReKS recursion on the GBM 

dataset. At level-1 an obvious partition exists for the original affinity matrix. The genes are split 

into two clusters at this node, and for each cluster, a new affinity matrix is computed. ReKS 

performs this procedure iteratively stopping when further split would cause all clusters to be 35 

or smaller in size. The stopping threshold corresponds to the average number of genes that 

participate in a KEGG pathway. In the end, we arrive at a tree where each leaf node represents a 
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gene cluster. Note that with this procedure clusters of smaller than 35 genes could be obtained, 

for example due to an early split off the tree, as long as there is a cluster that is large in size. 

Figure 2.2(Right) presents the full tree generated by ReKS on the GBM dataset. 

The complexity of ReKS is roughly  𝑂(𝑁!), N being the total number of genes to cluster. 

At every node of the tree, an SVD is performed at 𝑂(𝑑𝑛!), n being the number of genes at the 

node, and k-means is performed at 𝑂(𝑖, 𝑘,𝑛,𝑑), where i is the number of iterations, d is the 

reduced dimension capped at 20, and k is the corresponding number of clusters <= 20. Since i is 

bounded and d and k are fixed to 20 and less, the k-means step is essentially linear to n. 

Assuming a balanced tree with each node having k=20 children, the overall complexity is 

𝑘!𝑂(𝑑 !
!!

!
) ≈!

!!! 𝑂(𝑁!), and 𝑂(𝑁!) in the worst case scenario with an extremely 

unbalanced tree. 

2.4 PERFORMANCE EVALUATION 

2.4.1 Comparison to other methods on TCGA cancer data 

2.4.1.1 Data description 

We applied ReKS on the three most complete TCGA gene expression datasets to date: 

Glioblastoma multiform (GBM) with a total of 575 tumor samples, Ovarian serous 

cystadenocarcinoma (OV) with a total of 590 tumor samples, and Breast invasive carcinoma 

(BRCA) with a total of 799 tumor samples. The level 3, normalized and gene-collapsed data 

obtained from the TCGA portal were downloaded and no further normalization was performed. 
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We	  compare	  our	  method	  against	  four	  other	  partition	  solutions:	  (1)	  average	  linkage	  

hierarchical	  clustering,	  (2)	  average	  linkage	  hierarchical	  clustering	  on	  the	  spectral	  space,	  (3)	  

K-‐means	  and	   (4)	  K-‐means	  on	   the	   spectral	   space.	  These	  algorithms	  are	   chosen	   to	   cover	   a	  

range	  of	  common	  clustering	  techniques	  and	  clustering	  assumptions.	  	  

2.4.1.2 Comparison of ReKS and other clustering strategies on TCGA data 

Agglomerative	   clustering	   methods	   build	   a	   hierarchy	   of	   clusters	   from	   bottom	   up.	   It	   is	  

perhaps	  the	  most	  popular	  on	  gene	  expression	  data	  analysis	  [88],	  due	  to	  its	  ease	  of	  use	  and	  

readily	   available	   implementations.	   We	   performed	   hierarchical	   agglomerative	   clustering	  

using	  Euclidean	  distance	  and	  average	  linkage.	  A	  maximum	  number	  of	  clusters	  is	  specified	  

to	   be	   comparable	   to	   the	   number	   of	   clusters	  K	   obtained	   when	   running	   ReKS.	   Since	   this	  

choice	  might	  be	  considered	  favorable	  to	  ReKS,	  we	  also	  performed	  hierarchical	  clustering	  on	  

the	  top	  three	  eigenvectors	  in	  the	  spectrum,	  using	  cosine	  distances	  to	  measure	  the	  distance	  

on	  the	  resulted	  unit	  sphere.	  Note	  that	  hierarchical	  clustering	  is	  done	  from	  bottom	  up,	  using	  

local	  similarities,	  and	  does	  not	  embed	  the	  global	  structure	  in	  its	  tree.	  	  

Similarly,	   standard	   K-‐means	   and	   K-‐means	   performed	   on	   the	   spectral	   space	   are	  

included	   for	   benchmarking	   purposes.	   Given	   a	   number	   of	   clusters,	   K,	   the	   algorithm	  

iteratively	   assigns	  members	   to	   centroids	   and	   re-‐adjusts	   the	   centroids	   of	   the	   clusters.	  K-‐

means	  tends	  to	  perform	  well	  as	  it	  directly	  optimizes	  the	  intra-‐cluster	  distances,	  but	  tends	  

to	   be	   slow	   especially	   as	  K	   increases.	  Here	  we	   used	   the	   default	   implementation	   of	   the	  K-‐

means	  clustering	  algorithm	  in	  Matlab,	  with	  Euclidean	  distance,	  again	  using	  the	  K	  obtained	  

from	  ReKS.	  We	  also	  ran	  K-‐means	  on	   the	  spectral	   space,	  effectively	  performing	  ReKS	  only	  
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once	  without	  choosing	  an	  optimal	  number	  of	  eigenvectors	  to	  use,	  but	  instead	  using  K	   top	  

eigenvectors.	  	  

Shown	  in	  Figure	  2.3	  are	  the	  distributions	  of	  the	  cluster	  sizes	  when	  applying	  the	  five	  

methods	  to	  the	  three	  TCGA	  datasets.	  Hierarchical	  clustering,	  whether	  in	  the	  original	  or	  the	  

eigenspace,	  produces	  a	  very	  skewed	  distribution	  of	  cluster	  sizes	  that	  is	  possibly	  an	  artifact	  

of	  focusing	  on	  only	  local	  similarities.	  The	  K-‐means	  methods	  and	  ReKS	  produce	  cluster	  sizes	  

that	   span	  roughly	   the	  same	  range.	  However,	   the	  K-‐means	  methods	  produce	  distributions	  

that	   are	   artificially	   Gaussian,	   with	   relatively	   little	   clusters	   that	   contain	   small	   number	   of	  

genes.	  

 
Figure 2.3 Distribution of cluster sizes produced by ReKS and by other methods 
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2.4.1.3 Cluster quality evaluation 

We evaluate the quality of the clusters obtained from each of the five methods (ReKS, K-means, 

K-means spectral, Hierarchical, Hierarchical spectral) using both intrinsic, statistical measures as 

well as external biological evidence, as detailed in the sections below. 

• Calinski-Harabasz 

To evaluate the quality of the clusters, we used the Calinski-H[arabasz measure [89], defined by: 

   𝐶𝐻 = !"#$%&/(!!!)
!"#$%&/(!!!)

     (2.4)    

where	  𝑡𝑟𝑎𝑐𝑒𝐵	  denotes	  the	  error	  sum	  of	  squares	  between	  different	  clusters,	  𝑡𝑟𝑎𝑐𝑒𝑀	   is	  the	  

intra-‐cluster	  square	  differences,	  𝑚	  is	  the	  number	  of	  objects	  assigned	  to	  the	  𝑖!!	  cluster,	  and	  

𝐾	   is	   number	   of	   clusters.	   This	   statistic	   is	   effectively	   an	   adjusted	  measure	   of	   the	   ratio	   of	  

between-‐	   vs.	   within-‐	   group	   dispersion	   matrices.	   A	   larger	   value	   denotes	   a	   higher	  

compactness	  of	  the	  cluster	  compared	  to	  the	  inter-‐cluster	  distances.	  Figure	  2.4(Left)	  shows	  

the	   performance	   of	   ReKS	   compared	   across	   other	   methods.	   Not	   surprisingly,	   ReKS	  

outperforms	  hierarchical	  clustering	  in	  both	  the	  original	  data	  space	  as	  well	  as	  the	  spectral	  

space,	   as	   hierarchical	   clustering	   produces	   some	   very	   large	   clusters	   with	   no	   apparent	  

internal	   cohesion.	   The	   K-‐means	   based	   methods	   and	   ReKS	   are	   comparable	   in	   terms	   of	  

cluster	  separation	  across	  the	  datasets. 
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• GAP Statistic

The Gap statistic was proposed as a way to determine optimal cluster size [90]. In short, it is the 

log ratio of a reference within-cluster sum of square errors over the observed within-cluster sum 

of squares errors. The reference is usually built from a permutated set of genes that form 𝐾 

random clusters. Since we are comparing the (five) methods across the same dataset with the 

same 𝐾, it is fair to compare the performance of the observed within sum-of squares error only. 

With this direct proxy, ReKS performs at the same level as K-means based methods (shown in 

Figure 2.4(Left), and achieved a significantly lower sum-of-square distances than the 

hierarchical methods.  

• Gene Ontology Enrichment

Since no ground truth exists for gene cluster partition, we examine the overall quality of the 

clusters in terms of the amount of enrichment for Gene Ontology (GO) annotations. For each 

Figure 2.4  Performance of ReKS compared to other methods.  
(Left) Cluster validity comparison with other methods using the Calinski-Harabasz and the GAP statistics (Right) Gene 

Ontology(GO) enrichment across different range of p-values	  
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cluster, we test for GO enrichment using a variant of the Fisher’s exact test, as described in the 

weight01 algorithm of the topGO [91] package in R. The significance level of the test indicates 

the degree a particular GO annotation is over-represented in a given cluster. For a partition, we 

calculate the proportion of clusters annotated with a GO term at a 𝑝-value threshold. If a cluster 

has less than five members, the test is not performed. As shown in Figure 2.4(Right), compared 

to hierarchical clustering, we observe that ReKS contains higher percentage of clusters that are 

significant at the specified levels, and especially so with more stringent p-value thresholds, and 

performs roughly the same as K-means methods. Finally, we observe that the spectral methods 

tend to perform better than their non-spectral counter-parts.   

• Execution Time

Table 2.1 shows the execution time of the five methods on a 3.4 GHz Intel Core i7 CPU. ReKS 

is slower than hierarchical clustering but compares favorably to K-means methods. 

Table 2.1 ReKS average execution time compared to other methods 
Methods ReKS K-means K-means 

Spectral 
Hierarchical  Hierarchical 

Spectral 
Execution time 373s 6000s 1774s 90s 22s 

2.4.2 Benchmarking against patient data 

Since gold standard for gene clustering does not exist, we resort to benchmarking ReKS on a set 

of well established microarray data where the goal is to cluster patients into known disease 

subtypes. de Souto et al. [88] compiled a list of 35 datasets from Affymetrix and cDNA 

microarrays . They performed a comprehensive analysis of seven different clustering methods 

and coupled them with seven definitions of proximity measure for clustering cancer tissues.  
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We ran ReKS on each of the datasets compiled in this study, and calculated the corrected 

Rand (cR) index [92] by comparing the actual classes of the tissue samples with the cluster 

assignments of the tissue samples. cR measures the success of algorithm in recovering the true 

partition of the datasets. It takes on values from -1 to 1, with 1 indicating perfect agreement 

between the partitions and 0 being the cluster agreement found by chance. It is defined to be: 

𝑐𝑅 =   
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                                                                                    (2.5)  

where 𝑛!" is the number of members in cluster 𝑢!   and  𝑣!, 𝑛!∙ represents the number of members 

in cluster 𝑢!, and n being the total number of objects.  

We calculate the mean of the cR by enforcing the same number of actual classes present 

in the samples. For a tree, this is accomplished by identifying a level at which the partition would 

yield the closest number to the number of classes, and merging the clusters with the lowest 

eigenvalues. As shown in Figure 2.5, ReKS outperformed all the other methods in combination 

with the proximity measures among the Affy samples, and is comparable to the best performing 

clustering combination- K-means clustering with ranked Euclidean proximity measure, among 

the cDNA samples.  
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Figure 2.5 Benchmarking ReKS on patient data. 
On 35 benchmarking datasets, we calculated the mean of the cR(corrected Rand) index for ReKS (labeled in red) 
partition results and compared it to the other seven clustering methods: single linkage (SL), complete linkage (CL), 
average linkage (AL), K-means (KM), mixture of multivariate Gaussians (FMG), spectral clustering (SPC) and 
shared nearest neighbor-based clustering (SNN). Four proximity measures are used together with these methods: 
Pearson's Correlation coefficient (P), Cosine (C), Spearman's correlation coefficient (SP) and Euclidean Distance 
(E). Regarding Euclidean distance, we employ the data in four different versions: original (Z0), standardized (Z1), 
scaled (Z2) and ranked (Z3) versions. For ReKS, we only include results for Pearson’s Correlation. 

2.5 PRIOR INCORPORATION 

We use existing expert knowledge as prior information (from KEGG pathway [74]) to guide our 

clustering method, aiming to generate partitions that are even more biologically meaningful. The 

KEGG database includes a collection of manually curated pathways constructed from knowledge 

accrued from the literature. For the purposes of ReKS, we assume that the genes in a KEGG 

pathway are fully connected to each other (i.e., should belong in the same cluster). We code this 

prior knowledge in a constraint matrix 𝑈 in which each column 𝑈! is a pathway, and 𝑢!" =

1,𝑢!" = −1 if a pair of genes 𝑖, 𝑗 participate in the same KEGG pathway 𝑐. Similar to what was 
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detailed in Ji et al. [93], where they supplied a prior for document clustering using K-means 

spectral decomposition, we apply a penalty term to the normalized graph Laplacian as follows: 

𝐿′ = 𝐷!!.!(𝑊 + 𝛽𝑈!𝑈)𝐷!!.!     (2.6)    

where β ≥ 0 controls the degree of enforcement of the KEGG prior knowledge. As shown in Ji et 

al., the eigenvectors of the 𝐾 smallest eigenvalues of 𝐿’   form the eigen-space represents a 

transformation of the affinity space embedded with prior information. We then proceeded to 

apply the K-means algorithm within the eigenspace, and iterate recursively as we did with ReKS. 

As shown in Figure 2.6(Left), when we use a large amount of prior, not surprisingly the GO 

significance becomes very large. We observe the significance of the clusters do not drop very 

fast as β decreases. Therefore, small amount of prior at roughly β = 0.2 may be enough to 

enhance the biological significance of the ReKS clustering results. 

We applied ReKS on the TCGA datasets at β=0.2. A total of 715, 639, and 610 clusters 

are obtained for BR, OV, and GBM respectively. As shown in Figure 2.6(Right), we observe that 

there exists a slight anti-correlation between how early a cluster splits off the tree and how 

significant the cluster is (ρ = -0.2112, p <10-7). As a preliminary observation, how early a cluster 

is formed seems to imply the “tightness” of the cluster, this result seems to suggest that there is a 

slightly higher chance the clusters that form early to be more biologically significant. For 

example, in Figure 2.7(Right) there is a tight histone H1 cluster that splits off the BRCA tree at 

the third level on the top. It has been shown that EB1089 treatment of breast cancer cell lines 

(MCF-7, BT20, T47D, and ZR75) is correlated with a reduction in CdK2 kinase activity towards 

phosphorylation of histone H1 and a decrease in DNA synthesis [94]. This cluster does not exist 

in K-means spectral, K-means, and spectral hierarchical clustering results, and only exists in a 

mega-cluster in hierarchical clustering partition. Additionally, upon examining the resulted tree 
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closely, we found that a few genes that have been implicated for breast cancer [95] cluster 

together or close to each other on the tree, as shown in Figure 2.7(Left). When considering a few 

of these sub-clusters together, the top functional categories that emerged are indeed caner and 

p53 pathways. We found several of these examples throughout the tree, all within 12 levels up to 

which the composition of the clusters remains stable when splitting the data into training and test 

sets. We note that PIK3CA, RB1, and RUNX1 do not cluster together in any of the other 

methods we compared to, nor does the rest of the genes we examined. This example suggests 

that the tree structure could be useful for inferring additional previously unknown biomarkers. 

Figure 2.6 ReKS with prior incorporation applied on BRCA dataset. 
(Left) Effect of incorporation of prior information on the GO significance of the obtained clusters. 𝜷 controls the 
degree of enforcement of the KEGG prior knowledge (Right) A sunburst diagram for the BRCA dataset. In this 
alternative representation of the ReKS clustering results, each concentric circle represents a level of the tree. Each 
ring is sub-divided into clusters. The color of a leaf node denotes the GO significance of the cluster. There exists a 
small anti-correlation (𝝆 = -0.2112, p < 10-7) between the level from which a cluster splits off, and its GO 
significance 
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Figure 2.7 Detailed look of BRCA results. 
 (Left) A part of the tree enriched with genes implicated for breast cancer (level 2 and down). (Right) The GO 
significance and categories of the 169 gene super-cluster (grey box). 

2.6 IMPROVING REKS STABILITY USING EIGENCUTS 

We notice that with the high level of heterogeneity in the clinical expression data, the affinity 

maps we observe are in reality very noisy and are presented with a large amount of cluster 

crosstalks.  These crosstalks contribute in part to K-means’ inability to consistently create stable 

partitions, which accounts for all of the instability of the ReKS algorithm.  

Chennubhotla et al. [78] proposed a perturbation algorithm, EigenCuts, for identifying 

and removing such crosstalks. This formulation takes advantage of the Markov transition 

perspective of spectral theories. Recall that we can view a given graph  𝐺 as a Markov transition 

matrix. The flows of probability along the edges of the graph, which is governed by the 

eigenvectors of the Markov transition matrix, are referred to as eigenflows. We can view 𝐺 as a 

set of coupled clusters with eigenflows flowing between the clusters. In this formulation, we can 
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view the aforementioned crosstalks as “bottlenecks” in a system with severely restricted 

eigenflows. Graphs with weakly coupled clusters have eigenflows that can be characterized by a 

slow decay, or a long half-life. Therefore, identification of these bottlenecks can be achieved by 

identifying regions of the graph that is particular sensitive to perturbations to the edge weights. If 

changing the edge weights causes a large change to the eigenflows of the system, we can infer 

that this edge is a bottleneck in the system.   

This idea is captured in the EigenCuts algorithm. It computes the eigenvectors of the 

graph Laplacian and calculates their respective half-lives. For eigenvectors with long enough 

half-lives, their half-life sensitivities for each edge in the graph is computed. Within a given 

neighborhood, an edge with lowest sensitivity that is also below a certain threshold is removed. 

This process can be repeated iteratively until well-separated clusters form.  At this point, we are 

presented with a modified affinity matrix with crosstalks removed.  

We omit the derivations here and instead refer the readers to [78] for detailes. The 

inclusion of the EigenCuts algorithm to ReKS is still ongoing work, and we present here a 

snippet of the preliminary results, shown in Figure 2.8. In this example, EigenCuts was applied 

as a preprocessing step before performing ReKS on the ALS benchmarking dataset described in 

Section 2.4.2. We started out with the original, noisy affinity map on the top right and  “cleaned 

up” the matrix in successive iterations. We can see that the crosstalks between the clusters are 

gradually removed. We can compare the performance of ReKS (measured by cR described in the 

previous section) against that of ReKS with the EigenCuts preprocessing step, across different 

parameter combinations (Figure 2.9). In this particular data, we can see that ReKS performance 

with EigenCuts preprocessing improve substantially toward the lower left as well as another 

isolated region of the parameters. Initial analysis reveals rather inconsistent patterns both across 
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parameter landscape and across datasets. Further work is required to determine the suitability of 

EigenCuts for clinical expression data, and to determine proper parameters and interpretations.  

Figure 2.8 An example of the EigenCuts algorithm. 
The original affinity map for the ALS dataset is displayed on the upper right corner. A distribution of the sensitivity 
values of all edges is plotted, and all the edges below the cutoff threshold (dotted line) and are strictly minimal 
within a neighborhood are removed. The corresponding sensivity are plotted on the the affinity map, and the edges 
flagged to be removed are indicated in white. The resulting affinity map from this iteration is plotted on the far right. 
Iterations 1 and 5 are plotted. 



55 

Figure 2.9 An example of EigenCuts performance across two parameters. 
EigenCuts was applied across five minimum half life parameters (5 to 37) and ten sensitivity cutoff thresholds 
(0.001 to 0.01). The performance of the original ReKS without perturbation is plotted on the left for reference.  

2.7 DISCUSSION AND FUTURE DIRECTIONS 

In this study, we demonstrate the utility of a new recursive spectral clustering method we 

proposed as an alternative to traditional methods for clustering large-scale, human disease 

expression data. Consistent with previous findings [88], hierarchical methods are faster but 

perform relatively poorly. K-means methods can be accurate when the number of groups K is 

known. However, in the case of gene clustering of disease samples we are rather agnostic as to 

the number of the clusters we should expect. ReKS does not require the number of clusters to be 

known a priori, and is an order of magnitude faster than the original K-means algorithm. Also, 

compared to K-means spectral, ReKS enjoy a considerable speed gain by performing the 

decomposition and clustering iteratively, while maintaining a comparable performance even 

without directly minimizing the overall inter- and intra- cluster distances. We demonstrated the 

superior performance on clustering patients using expression data, and we briefly introduced an 
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algorithm, EigenCuts, that can be used to further improve stability of ReKS by removing noise in 

the affinity map.  

By incorporating prior pathway information in the algorithm, ReKS additionally guides 

the clustering process toward a more biologically meaningful partition. We showed that the 

clusters obtained are biologically relevant in their enrichment in GO terms, and the size of the 

clusters has a more natural distribution than that of K-means or hierarchical clustering partitions. 

The clusters, being rather compact and constrained in size, could then be used in subsequent 

studies, where clusters of genes could potentially be used as predictors for disease classification. 

Not only does ReKS provide a partition of the gene space, the resulting tree structure provides a 

hint to the relative tightness of the clusters and potential targets. In the future, we wish to 

investigate the relationship between the relative position of the cluster in the tree and their 

potential strengths in classifying disease labels and other clinical variables. Also, it is possible to 

automatically calculate the optimal number of neighbors to be considered in each recursion level. 

For example, we can use an approach similar to eigengap, where the distribution of similarities 

for each node will be compared to the global distribution to identify the optimal number of 

informative neighbors. The above results indicate that, when applied to large clinical datasets, 

recursive spectral clustering offers an attractive alternative to conventional clustering methods. 
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3.0  T-RECS: TREE-GUIDED CLUSTER SELECTION 

Large-scale, high dimensional datasets have become increasingly abundant in the biomedical 

community. A variety of feature selection methods have been developed to tackle the issue of 

high dimensionality, with a goal of extracting a set of features that is minimal but still maximally 

predictive of the outcome.  

An issue that has been relatively neglected in feature selection algorithms is the stability 

of the methods. Stability is a measure of the sensitivity of a method to variations in the training 

set. Traditional feature selection algorithms applied on high-dimensional, noisy systems are 

known to lack stability [96]. In addition, in the biological system that we study, a large amount 

of co-linearity (redundant information) exists in the variables. It is possible that different training 

samples lead to vastly different variable sets that regardless yield the same predictive 

performance.  

High-throughput measurements of clinical samples have very recently been made 

available through the efforts of several large consortiums with unprecedented sample sizes, 

ranging from hundreds to thousands of patients [20], [22]. The motivation for developing a more 

stable feature selection stems from the need to provide biomedical domain experts with features 

that are minimal, discriminative, and relatively robust to variations in training samples. This is of 

paramount importance as the selected features could provide a basis to distinguish different types 

of pathologies in the clinical samples, or deliver prognosis of patient outcome and survival. 
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Additionally, they pave a way for hypothesis construction for the underlying mechanisms of 

biological processes for pathogenesis, a starting point often followed by considerable amount of 

efforts and time in laboratory research. The burden falls on the shoulders of computational 

biologists to provide feature sets that are stable, minimal in size and maximally discriminative.  

The goal of this work is two-fold: to improve the understanding of the underlying system 

through the process of stable feature selection, and to provide a predictive model of disease 

classification or survival estimation. To this end, we propose a novel feature selection algorithm 

that accepts continuous data as input, and produces clusters that are predictive of categorical or 

survival outcome labels. We apply this algorithm to gene expression input data from patients and 

use disease subtypes or patient survival as the output variables. To bypass multiplicity and 

promote stability, our proposed framework treats clusters as single entities for feature selection, 

and builds upon an existing feature selection algorithm based on local causal Markov Blanket 

induction called Max-Min Parents and Children (MMPC) [97], [98].  

Our framework is motivated by a key hypothesis that biologically meaningful biomarkers 

may not be maximally discriminative, but could be highly correlated with predictive features that 

lack biological interpretation. By first clustering the variables, we anticipate that these 

meaningful biomarkers will be revealed by virtue of association with statistically discriminative 

variables. The resulting algorithm, termed Tree-guided Cluster Selection (T-ReCS), is sound and 

can efficiently process large datasets in the range of tens of thousands of variables. Additionally, 

it is computationally efficient without imposing strict requirement for training size, which makes 

it suitable for high-throughput biological data. 

The chapter is organized as follows. We briefly survey existing single and group feature 

selection methods in Section 3.1. A special type of feature selection, local causal discovery, and 
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relevant concepts are introduced in Section 3.2 as preliminaries for our algorithm. In particular, 

we provide a review of the MMPC algorithm that our work builds upon in Section 3.2.5. In 

Sections 3.3 and 3.4, we introduce our algorithm and evaluation metrics. Results from simulated 

experiment and application to clinical data are provided in Section 3.5. Finally, we provide 

conclusions and future directions in 3.6.  

3.1 VARIABLE SELECTION METHODS 

3.1.1 Traditional variable selection methods 

Traditionally, feature selection has been viewed as a problem of searching for an optimal subset 

of features in order to maximize some evaluation measures. Feature selection methods broadly 

fall into three categories: filter, wrapper, and embedded methods [99]. Filter (univariate) 

methods use measures of intrinsic data characteristics and select subsets of variables as pre-

processing step, independent of the classifier. t-test, Pearson correlation, entropy and other 

similar statistics computed from empirical distributions generally fall into this category and have 

been applied toward biomarker discovery due to the ease of use and the rather straightforward 

intuition behind them [7], [100]. This strategy does not work well when features highly correlate 

or interact with each other, however. Wrapper methods, on the other hand, integrate the 

classification/prediction step and score subsets of variables according to their predictive power, 

selecting the joint set of variables with maximum performance in cross validation [101]. 

Examples include Linear Discriminative Analysis (LDA) and logistic regressions [102]. Since 

searching through the space of all combination of features is generally computationally 

infeasible, heuristics are often utilized to prioritize the feature sets tested. Embedded methods 
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such as random forests and Support Vector Machine (SVM) perform feature selection in the 

process of the training step, and are often specific to the classifier in use [103], [104]. A 

representative model is Recursive Feature Elimination using SVM (SVM-RFE) [104]. 

3.1.2 Efforts toward stable, non-redundant, or group feature selection 

While all of these methods have enjoyed varying degree of success, none of them was 

deliberately designed to achieve stable results. Some efforts have been extended toward 

improving this aspect of feature selection process [96]. Statnikov et al. described the TIE* 

algorithm [59] for resolving in silico redundancy for Markov Boundary discovery. In this paper, 

they provide a careful treatment of the concept of “bioequivalence” and a detailed discussion of 

the notion of molecular signature multiplicity. The method they proposed iteratively discovers 

maximally predictive Markov boundary and then removes the set from consideration in the next 

iteration.  Similarly, Tuv et al. [105] introduced a redundancy elimination procedure that also 

directly aims to generate a compact set of non-redundant features. While it is possible to detect 

weaker features through this process, the goal of this type of methods differs from ours in that 

relationships between redundant features are not explicitly defined thus it is more difficult to 

yield biological interpretation, and the issue of stability is not directly addressed. Yu et al. 

proposed a strategy for selecting stable features via dense feature groups identified by kernel 

density estimation [106]. This strategy, while novel, is sensitive to the bandwidth of the kernel 

estimation and is limited to the dense feature groups selected and may not include some of the 

most relevant features in individual feature rankings, especially in the sparse regions of the data.  

Group Lasso [107], [108], which estimates sparse linear models by minimizing an 

empirical error penalized by a regularization term, is a very popular and successful approach in 
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statistics and machine learning. This formulation attempts to balance a trade-off between 

accuracy in data fitting and parameter regularization. The sparse solution is suitable as the 

number of variables (genes) far exceeds the number of samples. A popular formulation is given 

by Lasso with constraints on the parameter vector using L-1 type penalty. The group Lasso is an 

extension where the variables are partitioned into groups and the goal is to select groups of 

covariates, as we wish to do with the modified MMPC algorithm. Yuan and Lin [107] proposed 

the group lasso penalty where constraints are imposed on the sum of the L-2 norms of the 

parameter vectors of the different groups of covariates, where the L-2 norm ensures that sparsity 

is induced on the group level. This penalty could be viewed as an intermediate between L-1 and 

L-2 type penalties. The drawback of this approach is that an explicit partition (clustering) has to 

be supplied to the model.  

Perhaps a strategy most analogous to ours is a method proposed by Hastie et al. [109]. 

They first create a clustering tree over the variables using hierarchical clustering. Next, using a 

forward stepwise selection method, they gradually include clusters represented by average 

expression profiles into the linear model. However, this method requires iterating over all 

clusters (roughly twice the number of variables) and relies on hierarchical clustering which we 

have shown in the previous chapter to be inferior to our clustering method for high-throughput 

clinical data. Additionally, the level at which clusters are selected are based purely on the 

predictive performance in cross validation, and does not provide any biological insights as to 

whether or not the features are indeed coherent at that level. More importantly, this method, 

along with several similar ones [65], [110]–[112], does not address the stability of feature 

groups.  
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Finally, ensemble methods have been proposed. In this approach, instead of relying on a 

single (unstable) set of feature selection result, a committee of feature selection results is built to 

find the optimal feature set. This can be done either by a) perturbing the data (using random 

samplings of the original data) or b) using a diversity of feature selection algorithms to aggregate 

results. Two recent studies investigated the stability issue of feature selection under small sample 

size, and recommended empirically choosing the most stable feature set by repeated sampling of 

the training data. The computational overhead is high, and this strategy is at best only as stable as 

the pooled results of existing feature selection algorithms employed [113], [114].   

3.2 LOCAL CAUSAL INDUCTION  

Causal structure learning is a particular flavor of feature.  This is an emerging, successful 

approach that performs variable selection in the form of identifying the Markov Blanket, or a 

minimally predictive variable subset, of the target variable. This subset can be regarded as the 

variables we wish to select for a given target variable. We first introduce the basic concepts and 

general algorithmic framework for this formulation, and present an overview and theories of a 

particular algorithm that falls into this category: the MMPC (Max Min Parent-Children) 

algorithm [98].  

3.2.1 Bayesian networks 

 

To facilitate our discussions, we must first briefly introduce the definition and semantics of 

Bayesian network [115], the representation framework in which our algorithm is based on. A 



 63 

Bayesian network is a probabilistic graphical model in which variables appearing in a dataset and 

their conditional independencies are statistically represented through a directed, acyclic graph 

(DAG) 𝐺 =< Φ,𝐸 >. We show an example of such Bayesian network in Figure 3.1(Left). Here, 

the nodes Φ are random variables that could either be observed or latent variables, parameters, or 

even hypotheses. Conditional independences between these variables are encoded by edges; 

nodes that are not connected by edges are (conditionally) independent of each other. Each node 

has a probability distribution that depends on the instantiation of its parents. In other words, 

given the values of the node’s parent variables, a probability function can be defined to output 

the distribution of values that this node can take on. One implication of this definition is that an 

edge between two nodes corresponds to causal influence under broad conditions. Every edge 

from a variable 𝑋 to a variable 𝑌 encodes a probabilistic and direct cause from 𝑋  to 𝑌.  
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A basic component of the probabilistic relations in a Bayesian network is conditional 

independence between variables. We denote conditional independence between two nodes 𝑋 and 

𝑇 given a set of variables 𝑍 as 𝐼𝑛𝑑(𝑋;𝑇|𝑍), and analogously, conditional dependence between 

them given 𝑍 as 𝐷𝑒𝑝(𝑋;𝑇|𝑍) ≡ ¬𝐼𝑛𝑑(𝑋;𝑇|𝑍). Two variables, X and T, are conditionally 

independent given Z if and only if 𝑃 𝑇 𝑋,𝑍 =   𝑃(𝑇|𝑍).  A stronger criterion for independence 

is 𝑑-separation.  

Formally, the joint probability distribution 𝐽 of the data is related to the graph 𝐺 of a 

Bayesian network through the Markov Condition property [116]. This property states that a node 

is conditionally independent of its non-descendants given its parents. Additionally, a node in a 

Bayesian network is conditionally independent of the entire network given its Markov Blanket - a 

special set of neighbors that include its parents, children, and spouses. A faithful Bayesian 

network is one in which only the independencies that are entailed by the Markov condition hold 

 

 

Figure 3.1 Illustrations of a Bayesian Network and Markov Blanket. 
 (Left) An example of a Bayesian Network, and an example of conditional independence between X and T 
given Z. The Parent and Children set of target variable T(in red) are the variables in yellow, and the 
Markov Blanket(shaded in blue) additionally includes the variable in gray. (Right) Biomarker selection 
represented as a Markov Blanket discovery problem. Genes to be selected are represented as nodes, while 
edges represent causal relationship between the expression level of genes and a clinical variable to predict 
(T). The goal is to discover the subset of genes that lie within the Markov Blanket (shaded in blue). 
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in 𝐽. There can be many graphs 𝐺 that are faithful to a given distribution 𝐽. However, they all 

share a unique set of parents and children (neighbors) of a variable 𝑇. 

A particular property of the Bayesian network that we would like to exploit is that, for 

every variable 𝑇 in the network, we will find a special subset of variables that, given knowledge 

of their values, the probability distribution of the variable of interest 𝑇 can be determined, and 

knowledge about other variables becomes redundant. This set of variables coincides with the MB 

of 𝑇 that we just introduced [117]. Since all information for optimally predicting T is contained 

within the MB(𝑇), it seems that the task of feature selection can be roughly translated into 

discovering the MB of a given variable 𝑇. In the next section, we demonstrate how we can pose 

the feature selection problem as a Markov blanket discovery process. 

3.2.2 Feature selection as a Bayesian network structure learning problem  

How can we define the biomarkers selection problem in the context of Bayesian network? In this 

representation, all the features to be selected (e.g., genes), are nodes in a network, and an output 

or target variable 𝑇 (e.g., disease subtypes or survival time) that we attempt to predict is also a 

node in the network, as demonstrated in Figure 3.1(Right). Directed edges between nodes 

represent causal relations. As stated earlier, the goal is to discover a minimal variable set that is 

within the Markov Blanket (MB) of T. Markov Blanket of a variable 𝑇 consists of the parents, 

children, and spouse nodes of 𝑇. All the nodes outside of MB are conditionally independent of 𝑇 

when conditioned on the MB. In other words, the MB(𝑇) shields 𝑇 from the influence of the rest 

of the network. Given the states of nodes within the MB, we will be able to predict the state of 𝑇, 

without knowledge of the rest of the nodes. In this way, identification of the MB could be 
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viewed as a feature selection process. In fact, it was shown that under certain broad conditions, 

the Markov Blanket is the solution to the variable selection problem [118].  

There are multiple advantages in using this kind of framework for our problem. The 

graphical representation lends an intuitive and visually descriptive way to summarize the result. 

We also believe that its graphical representation is particularly suitable for incorporating context 

information such as those demonstrated in Chapter 1, given that additional regulatory 

information that will be added to the selected features are best represented as directional graphs. 

As we will see later, popular MB induction methods employ heuristics that provide for a modular 

environment in which different types of hypothesis tests could be easily plugged in to suit the 

different types of datasets one is interested in. This is especially welcomed for the purpose of 

easy code maintenance and extension. Finally, the theories and nature of the MB induction 

heuristics facilitates the development of our computationally efficient extension to group feature 

selection. 

Algorithms for learning the structure of a Bayesian network generally fall into two broad 

categories: constraint-based algorithms and search-and-score algorithms. Constraint-based 

algorithms view a Bayesian network structure as a representation of independencies, and rely on 

statistical tests to identify structures that are consistent with the conditional independencies 

encoded in the data. The drawback, however, is that the success of the method hinges on the 

accuracy of the conditional independence tests, and failure of even one test could lead to an 

inaccurate structure. Search-and-score algorithms, on the other hand, view a Bayesian network 

structure as parameters for a statistical model and cast the structure-learning task as an 

optimization problem. First, a hypothesis space of potential models is defined, representing the 

set of possible network structures we consider. Given a scoring metric that measures how well 
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the model fits the observed data, the goal is to search through the hypothesis space for 

maximum-scoring structure(s) using heuristic search techniques. This type of methods 

maximizes a score for the entire structure, therefore it is less prone to local mistakes, and 

provides a direct way for regularization to prevent over-specifying the model by incorporating 

too many edges. The problem with this type of methods is that the solutions are often not 

efficient, when searching through a combinatorial space with a super-exponential number of 

structures.  

Algorithms for learning a complete Bayesian network generally do not scale up beyond 

the range of hundred to thousand variables [119]. Moreover, in the case of variable selection we 

are only interested in learning the structure around the variable of our interest. Thus, we focus 

our attention on local structure learning, which not only provides for a scalable alternative to 

learning the entire Bayesian network, but also directly addresses our pursuit of variable selection 

for classification.  

3.2.3 Local structure learning 

The goal of local structural learning is to discover only the local causal structure around a 

variable of interest 𝑇. We state the goal formally: given a probability distribution 𝐽 faithful to 

some BN and a node of interest 𝑇, identify 1) the set of parents and children of T, 𝑃𝐶 𝑇 , or 2) 

the Markov Blanket 𝑀𝐵(𝑇). Identifying the 𝑃𝐶(𝑇) is equivalent to identifying the direct causes 

and effects of 𝑇. In the BN representation, this is equivalent to identifying the incoming and 

outgoing edges to 𝑇. Aliferis et al. [120] presented a comprehensive overview of the general 

algorithmic framework for learning such local causal structure around the target variable of 

interest. 



 68 

While we are interested in discovering the Markov Blanket, we are not as interested in 

defining the exact causal relationship between members of the MB and 𝑇. In other words, we are 

focusing on discovering the skeleton of a BN only, and not orienting the edges. As an example, 

we may discover a biomarker gene set G that is represented as the MB of a clinical label  𝑇. 

While the identities of the gene set G is important to us, deciphering exactly which genes cause 

the observed clinical label 𝑇, and which gene expression changes are caused by 𝑇, is of less 

interest to the biomedical community, and is in reality difficult to distinguish in practice. 

Furthermore, whether one should undertake a strict causal interpretation for the exact directions 

of the edges inside the MB is open to debate, and is beyond the scope of this work. Therefore, 

this work is focused on only identifying the set G (existence of an edge connecting to 𝑇) and not 

on establishing the direct cause and effects (direction of the edges) of 𝑇. In other words, we are 

only interested in identifying the skeleton of a Bayesian network – the set of undirected edges 

encoding potential dependencies between the nodes. 

 

3.2.4 Skeleton identification methods 

A number of undirected skeleton identification methods have been proposed. We briefly 

introduce three that are highly representative of their respective strategies: PC [121], Max-Min 

Parents Children (MMPC) [97], [98], and Three-Phase Dependency Analysis [122]. Spirtes and 

Glymour proposed the PC algorithm as one of the first skeleton identification methods. It 

considers the hypothesis tests in increasing order of conditioning set size until tests can no longer 
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be performed due to restrictions of sample size2 at which point an edge is included by default. 

MMPC is the skeleton identification component of a family of algorithms [64], [98] and 

pioneered the two-phase approach for identifying the parents and children of 𝑇. It uses the Max-

Min heuristic to include variables to the conditioning set, and eliminate any false positives in a 

second stage. The TPDA algorithm is unique in that it uses tests of conditional mutual 

information instead of hypothesis tests to determine independencies. It exhaustively runs all the 

tests through a three-phase process. All three strategies have been adopted and applied to 

different areas [123], [124].  

Constraint-based skeleton identification algorithms such as MMPC and PC utilize a 

series of statistical decisions, or hypothesis tests, to inform the addition or exclusion of an edge 

to the skeleton. In hypothesis testing, we have a null hypothesis that is usually denoted by 𝐻!. In 

the particular case of the conditional independence tests, the null hypothesis is that the variables 

are independent given a set of variables. We want to test whether the data support this null 

hypothesis. Specifically, the hypothesis test takes as input data 𝐷, and outputs an “accept” or 

“reject” decision. To evaluate this decision, one can analyze the probability of false rejection 

probability 𝑝 of the null hypothesis. A standard significance threshold of 𝑝 ≤ 0.05 is usually 

given for a hypothesis test. With this significance threshold, we reject the null hypothesis that the 

variables are independent if the probability of observing the event by random is smaller than 

0.05. If we fail to reject the null hypothesis, then we determine that the variables are 

independent, given the conditioning variable(s). This framework allows for a decision rule that 

                                                

2 Their rule of thumb is that the 𝐺! test is reliable if there are five or more instances per 
degree of freedom of the test 
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acts as building blocks of the local learning algorithms. We delay the discussion of how to 

design such a rule in Section 3.3.2.  

3.2.5 Max-Min Parent Children (MMPC) 

We introduced in the previous section the general framework of local causal discovery. MMPC 

is one such algorithm for learning local causal structure around target variable of interest. Given 

a set of features  Φ and a target variable 𝑇, MMPC aims to discover  𝑃𝐶(𝑇), the parent and 

children of 𝑇 using a two-stage process. 

The reader might wonder why we only focus on discovering the 𝑃𝐶(𝑇), and not the full 

set of MB. It was shown that the full MB does not improve predictions substantially when 

compared to only the parent and children set, while requiring significant computational overhead 

[98]. Up to 200-fold increase in computing time was observed when running MMMB, the 

algorithm for discovering the full set of MB, compared to MMPC. We determine that MMPC 

should achieve the balance between approximating the minimum set of variables that best predict 

the target variable 𝑇 and computational efficiency. We also choose to adopt the MMPC 

algorithm as 1) extensive testing was done over a large collection of datasets of different sizes 

and characteristics, and it was shown to have comparable or superior performance over other 

structure learning algorithm such as Incremental Association Markov Blanket (IAMB) [125], the 

Grow-Shrink (GS) algorithm [126], and the Koller-Sahami algorithm (KS) [127] it is sound in 

the sample limit and scales up to datasets with thousands of variables, and 3) the code for MMPC 

was open-source and made readily available for easy modification and adaptation.  

MMPC uses a two-stage strategy for PC induction. In Phase I, a series of local statistical 

decisions are used to efficiently identify conditional independence relations among variables. 
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The idea is that if one could find a set of variables such that two variables could be shown to be 

independent conditioned on this set, there should not be an edge connecting these variables in the 

final model structure. Therefore, we exclude from our consideration structures that contain an 

edge between these variables. If we cannot demonstrate that two variables could be made 

conditionally independent, then an edge is added to the skeleton between the variables. The 

skeleton structure elimination process acts as a way to constraint the heuristic search, and is thus 

considered constraint-based in this phase of the algorithm.  

We present the pseudocode of MMPC in Figure 3.2. Initially, the candidate Parents and 

Children (𝐶𝑃𝐶) set is empty. In Phase I, or the forward phase, we seek to 1) eliminate any 

variables from consideration that achieve minimum association (independence) with 𝑇 even 

without conditioning on any variables, and 2) produce a candidate list of 𝐶𝑃𝐶 by including 

variables that are most associated with 𝑇 conditioning on 𝑠, some subset of 𝐶𝑃𝐶. We use 

𝑎𝑠𝑠𝑜𝑐(𝑋;𝑇|𝑠) to represent the strength of association of 𝑋 and 𝑇 given 𝑠, and denote 

• 𝐼𝑛𝑑 𝑋;𝑇 𝑠 ⇔ 𝑎𝑠𝑠𝑜𝑐 𝑋;𝑇 𝑠 = 0  

• 𝐷𝑒𝑝 𝑋;𝑇 𝑠 ⇔ 𝑎𝑠𝑠𝑜𝑐 𝑋;𝑇 𝑠 ≠ 0   

Calculation of 𝑎𝑠𝑠𝑜𝑐(𝑋;𝑇|𝑠) is detailed in Section 3.3.2. The rationale for the forward phase is 

the following: if a variable could be made independent of 𝑇 conditioned on some subset, it does 

not belong in the 𝑀𝐵, and will not be considered again. On the other hand, variables that are 

highly associated with 𝑇 despite our best effort to make them conditionally independent of 𝑇 

should be included into the 𝐶𝑃𝐶.  
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MMPC(!;&!;&!;&!)&
//&Input:'Data'!&with&all&variables&!;&Target&!;&maximum&conditioning&set&size&!;&
threshold&for&rejecting&independence&!&
//&Output:'Parent&and&Children&set&!"&
&
//'Phase'I'(forward)'
1&&!"! = ∅&//&Initialize&the&temporary&!"&set&
2&&! = !!&//&variables&to&consider&
3''if'&∃!!! ⊆ !"!, !. !. !"#(!;!|∅)&
4&&&&&&&&&! = !!\ ! //&remove&!&from&consideration&
5&&end'if'
6''repeat'
7&&&&&&for&every&variable&!&in&!!find&
8&&&&&&&&&&!"#$%%&'()* ! =subset&!!of!!"!&that&minimize&!""#$(!;!|!),&|!| !≤ !&
9&&&&&&end'for&
10&&&&!=&variable&of&!!\({!} ∪ !"!)&that&maximizes&!""#$(!;!|!"#$%%&'()* ! )&
11&&&&if&!"#(!;!|!"#$%%&'()* ! )&
12&&&&&&&&&&!"! = !"! ∪ !&//&Include&F&into&!"!&
13!!!!!!!!!!! = !!\ ! //&remove&!&from&consideration&
14&&&&end'if'&
15&until&!"!&has&not&changed&
&
//'Phase'II'(backward)'
&
16&for&all&! ∈ !"!&
17&&&&&if'&∃!!! ⊆ !"!, !. !. !"#(!;!|!),&|!| !≤ !&//&if&!&can&be&made&d"sep&from&!&
18&&&&&&&&&!"! = !"!\{!}&//&Remove&!&from&!"!&&
19&&&&&end'if&&&
20&end'for'
21&&!" = !"!&
22&Return&&!"&&
&
&  

Figure 3.2 The Max-Min Parents and Children (MMPC) Algorithm 

The algorithm of forward phase translates into the following procedure. Initially, 

univariate association between each variable and 𝑇 is calculated to determine an initial set of 

variables to seed the 𝐶𝑃𝐶, as well as eliminate any variables that have zero association with 𝑇 

𝑎𝑠𝑠𝑜𝑐 𝑋;𝑇 𝑠 = 0 .  Next, even with a conditioning set that allows for the maximum 

independence, variables that still have high association with 𝑇 are likely to be the parents and 
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children of 𝑇, and enter the 𝐶𝑃𝐶. This procedure is repeated until no variables outside of the 

𝐶𝑃𝐶 set is eligible for inclusion, and this part of the algorithm terminates. This heuristic is 

admissible - all members of the 𝑃𝐶(𝑇) will be included - since parents and children of 𝑇 will 

always have dependence (i.e., non-zero association) relationship with 𝑇 given some subset of 

variables. Thus, it will eventually be incorporated into 𝐶𝑃𝐶. 

In Phase II, the backward phase, we seek to reduce any false positives in the 𝐶𝑃𝐶 set by 

searching for those variables in the 𝐶𝑃𝐶 that are independent of 𝑇 conditioned on some subset 𝑠 

of the 𝐶𝑃𝐶. This elimination strategy identifies variables within the 𝐶𝑃𝐶 that could still be made 

conditionally independent of 𝑇, which disqualifies their membership in the MB. This procedure 

is done iteratively until no variable in the 𝐶𝑃𝐶 can be removed, at which point the algorithm 

terminates. At the end of the algorithm, 𝐶𝑃𝐶 = 𝑃𝐶(𝑇), and we arrive at a set of parent and child 

nodes that are features most predictive of 𝑇.  

The original MMPC includes a symmetry corrections step that attempts to remove a 

particular type of false positive that could arise. We do not include this step in our 

implementation as Aliferis et al. [59] determined empirically that these cases are rare, and the 

extra computational burden of symmetry correction does not justify for the theoretical benefits. 

We therefore use the implementation of MMPC without the symmetry correction step.  

Two parameters are required in MMPC. The parameter 𝑎 controls the level of 

dependence we are willing to accept. The conditional test of independence returns a p-value; the 

lower the p-value, the higher the association. Parameter a defines the p-value threshold for 

rejection of the null hypothesis of independence. Thus, the lower the threshold a is, the more 

stringent the criteria for inclusion into 𝐶𝑃𝐶. The parameter 𝑘 controls the maximum size of the 

conditioning set we are willing to consider. Ideally, we would like to test all possible subsets of 
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𝐶𝑃𝐶, from the null set in the univariate case to sets of increasing complexity. In reality, however, 

𝑘 is limited by the number of training instances available to reliably measure association; large 𝑘 

would result in inadequate statistical power. To see this, if the data and the target variable are 

both binary, a variable with 𝑛 parents will have 2n combinations of values that the parents can 

take on. We very quickly run out of training instances we could use to construct a reliable 

measure of association. The consequence of this limit is that false positives may enter 𝐶𝑃𝐶. To 

see this, imagine that a variable requires m members of the 𝐶𝑃𝐶 to be d-separated from 𝑇. If we 

only search through subsets of 𝐶𝑃𝐶 up to a maximum size of m−1, the variable would have been 

associated with 𝑇 without the last member of the 𝑚 conditioning variables, and the variable 

would have been erroneously included into the 𝐶𝑃𝐶. Based on experiments in [98], most 

variables not in 𝑃𝐶(𝑇) can be made d-separated from 𝑇 using less than 4 variables. Also, most 

distributions can be described by sparse networks, which suggests that a small value of 𝑘 is 

sufficient for the algorithm3.  

The complexity of MMPC is roughly 𝑂(|𝜙||𝑃𝐶(𝑇)|!) tests of conditional independence, 

assuming the final PC output is roughly the maximum size of 𝑠 in any iteration. Assuming a 

sparse structure (small number of variables in the 𝑃𝐶 set), the complexity grows almost linearly 

to the number of variables.   

                                                

3 Based on conclusion from [134], MMPC does not perform independence tests unless 
there are at least five training instances on average per parameter to be estimated.  
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3.3 TREE-GUIDED CLUSTER SELECTION (T-RECS) 

3.3.1 Method overview 

In this Section, we describe how we adapt an existing variable selection method, MMPC 

(described in detail in Section 3.2.5), to construct a group variable selection framework, T-ReCS.  

T-ReCS has two components. The first is a clustering step that partitions the feature 

space into a tree structure. At the root of the tree is the set of all variables, and each leaf at the 

bottom of the tree is a single variable. Each internal node in the tree represents a cluster of 

variables – in our case genes – whose values (expression) are correlated. The lower in the tree a 

node is, the more similar the patterns of its members are. Conversely, the nodes close to the root 

of the tree are large agglomerates and consequently these members are not expected to display 

similar behavior across samples. We can indeed observe this trend from a later example in Figure  

3.8. For our implementation, we use the tree produced by ReKS from Chapter 2 for this part of 

the algorithm.  

The second component of T-ReCS is feature selection operating on the tree structure 

obtained in the first part of the algorithm. The idea is that the clusters obtained previously are 

treated as entities for feature selection, and we iteratively explore supersets of a selected feature 

to see if the same predictive properties are retained as we traverse up the tree. Every node of the 

tree is “collapsed” into a single vector representing a latent variable 𝑋′. This latent variable is 

used to represent all the members of the nodes. This is akin to the concept of “eigengene” that 

Langfelder and Horvath have proposed [128]. The difference is that here, a partition is first 

created and then a function is applied to members of the partitions to represent the resulting 

latent variable. We expect that the latent variables will cease to represent a predictive feature 
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adequately and would lose its predictive property as we traverse up the tree. Details of the 

various cluster representation methods are found in Section 3.3.3. 

An obvious way to accomplish this goal is to perform feature selection at varying 

variable granularity, i.e. select latent variables that are created at different levels of the tree, and 

then construct a predictive model for each combination to determine performance, as Hastie 

proposed [109]. However, as we mentioned earlier this approach is very inefficient given that a 

ReKS tree typically produces 15-25 levels. Furthermore, it is not clear what is the best way to 

yield a partition from a given ReKS tree for feature selection purposes. In Chapter 2, we used the 

maximum cluster size to guide us in choosing an appropriate partition. For the purpose of 

selecting features that remain predictive of 𝑇, there is no reason to believe clusters of certain size 

would remain congruent.  

Instead, we take advantage of the Markov Blanket/Parent-Children induction heuristics in 

the original MMPC algorithm, and employ a strategy that not only automatically determines a 

suitable partition level for the tree, but also gives us remarkable savings in computational 

efficiency. The strategy is detailed as follows: a round of MMPC is first performed at the leaf 

level of the tree. This is equivalent to conducting the original MMPC to select predictive single 

variables. For each predictive leaf 𝑋 selected, we test to see if they can be replaced by their 

parent node 𝑋′. This is accomplished by concurrently evaluating two tests of conditional 

independence: 𝑑𝑒𝑝 𝑋’;𝑇 𝑆 ,  where  𝑆   ⊆ {  𝑃𝐶\ 𝑋 },  and 𝐼𝑛𝑑(𝑋;𝑇|𝑋’). Essentially, we are testing 

to see (1) whether or not 𝑋’ remains associated with 𝑇, conditioning on subsets of the parent and 

children set excluding its descendant, 𝑋. If 𝑋’ can be made conditional independent of 𝑇 given 

the current conditioning set, then 𝑋’ does not belong to 𝑀𝐵, thus 𝑋’ is not an adequate 

replacement for 𝑋; and (2) whether or not 𝑋 can be made d-separated from 𝑇 conditioning on 𝑋’. 
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If 𝑋 becomes independent of 𝑇 given all the information 𝑋’ already provides, that means 𝑋’ 

contains information equivalent to 𝑋, and we can safely substitute  𝑋 with 𝑋’. In the algorithm, 

we will only replace 𝑋 with 𝑋’ and advance to the next level of the tree if both of these 

conditions hold true. If a 𝑋’ meet the criteria of both of the tests, we then check to see if the same 

conditions hold true for its parents 𝑋’’, relative to 𝑋. This procedure is continued iteratively until 

at least one of the conditions is violated, at which point the procedure terminates and returns the 

last group variable that is still representative of 𝑋. After this process is repeated for each selected 

leaf, the algorithm returns a set of selected single or group features that are seeded from the 

single variables selected in the MMPC round, each with varying sizes and located at different 

levels of the tree. Note that with this strategy, we will only explore the parent nodes of the 

variables that were selected at the initial round of MMPC and not the rest, operating on the 

assumption that other leafs will never become predictive of 𝑇 since 1) if a variable is un-

predictive, the only way it could become predictive is to become aggregated with predictive 

features. However, those predictive features would have been selected in the MMPC round, and 

we would have arrived at the same node from those predictive features anyway; and 2) if a 

variable is predictive, it would only lose its predictive property as more and more members enter 

and “average out” its signal. This reasoning guarantees that we would not miss a predictive 

group feature by disregarding any clusters that stem from the single variables initially deemed 

un-predictive. 

An example of T-ReCS is shown in Figure 3.3.  We also include the pseudocode in 

Figure 3.4. 
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Figure 3.3 An example to illustrate the selection procedure of T-ReCS.  
(Top) We first generate a tree structure from ReKS to partition the variable space. Single variable selection is 
conducted and single variables(leafs) that are predictive of a target variable T are marked in orange. For a predictive 
variable X, we test to see if its parent node represented by X’ still retain the same predictive property of X. (Bottom) 
We employ two tests of conditional independence to determine if X’ can replace X. This is done repeatedly for each 
selected single variable until one of the conditions is not met. The algorithm then returns the group variables marked 
in green circle. 
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MMPConReKS(!;,!;,!;,!,,!!"# !’;! ! ,,!!"#(!;!|!’)),
,
//,Input:'Data'!,with,all,variables,!;,Target,!;,maximum,conditioning,set,size,!;,threshold,
for,single,variable,test,!!"#$%& ,,thresholds,for,group,variable,tests,!!"# !’;! ! ,,!!"#(!;!|!’),
//,Output:'set,of,single,or,group,variables,!,
,
1,,,!!=,ReKS(!),//,call,ReKS,to,obtain,!,,a,tree,partition,of,the,variables,!,
2,,,!",=,MMPC,(!;,!;,!;,,!!"#$%&),//,obtain,predictive,single,variables,!",
,
3,,,for,every,variable,!,in,!",,
4,,,!!!!!′ = !,//,initialize,both,current,and,parent,node,to,the,starting,leaf,node!
5,,,,,,,while,true,
6,,,,,,,,,,,!!=X’,,//,set,current,node,to,the,former,parent,node,
7,,,,,,,,,,,!′=,!"#$%&'()$!(!′),,//,define,new,parent,node,
,,
,,,,,,,,,,,,,//,first,group,variable,conditional,independence,test,
6,,,,,,,,,,,for,all,!! ⊆ !"\{!},, !. !.!!|!| !≤ !,,
7,,,,,,,,,,,,,,,if,!"# !’;! ! ,,or,! !’;! ! !>!!!"# !!’;! ! ,
8,,,,,,,,,,,,,,,,,,,break,//,do,not,replace,!,with,this,group,variable,
9,,,,,,,,,,,,,,,end'if'
10,,,,,,,,,end'for'
'
,,,,,,,,,,,,,,,//,second,group,variable,conditional,independence,test,
11,,,,,,,,,,if,!"#(!;!|!’),,,or,!(!;!|!’),<,!!"#(!;!|!’),
12,,,,,,,,,,,,,,break,//,do,not,replace,!,with,this,group,variable,
13,,,,,,,,,,end'if'
14,,,,,,end'while'
15,,,!!!! = !! ∪ !!!,
16,'end'for'
17,,return'G'
'
,  

Figure 3.4 The T-ReCS algorithm 
 

An observation that can be made is a phenomenon that is analogous to the concept of bias 

and variance tradeoff familiar to many in the Machine Learning field. The cluster size of the 

features selected by T-ReCS is controlled by two parameters: the thresholds for the two tests of 

conditional independence. Varying these thresholds result in final outputs whose cluster sizes 

vary accordingly. A stringent set of thresholds would prevent the procedure from advancing far 

beyond the single variables we start with, while moderate thresholds allow larger group variables 

to be selected. It is easy to see that there are two forces at play that dictate the proper range for 
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these thresholds. At the bottom of the tree, stability of the variable selection should be low. 

However, the accuracy of the predictive model should be relatively high, since variables with the 

highest signals are used to construct the model. The other extreme is the root of the tree; stability 

is very high as variables are lumped into only a few clusters, yet accuracy suffers because the 

signals of the strong predictors have been “diluted” by other variables that join the clusters, and 

would not be as informative as the single variables they start out with. The goal is to find an 

optimal tradeoff that achieves higher stability while minimizing the loss of accuracy of the 

predictive model. To this end, we performed cross validation to identify the range of thresholds 

that produce the best accuracy-stability tradeoff. This procedure is detailed in Section 3.4.4.  

For the clustering component, we reused the code from ReKS described in Chapter 2. For 

the single variable selection component, we used the code available from the Mens X Machina 

Probabilistic Graphical Model Toolbox (http://www.mensxmachina.org/software/). The source 

code for T-ReCS will be made available for download at the laboratory’s web site 

(http://www.benoslab.pitt.edu/) and at Github. 

The complexity of T-Recs is roughly 𝑂(|𝜙|!): 𝑂(|𝜙|!) for ReKS  (See chapter 2), 

𝑂(|𝜙||𝑃𝐶(𝑇)|!) tests of conditional independence for MMPC (the single variable selection 

round), and 𝑂(𝑙𝑜𝑔|𝜙||𝑃𝐶(𝑇)|) tests of conditional independence for the group selection. 

The algorithm we described here is completely modular, and can be applied with 1) 

alternative clustering scheme that gives a tree structure, such as hierarchical clustering, 2) 

alternative statistical tests for conditional independence suitable for the data types, and 3) 

alternative latent variable representation.  
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3.3.2 Tests of conditional independence 

Both the original MMPC and the T-ReCS depend on a series of statistical decisions to determine 

d-separability relations for graphical structure. In MMPC and T-ReCS, these decisions take the 

form of conditional independence tests. The better the test is in capturing the conditional 

independence relations, the better the performance one could expect from the algorithms.  

Suppose we want to test whether 𝑋 and 𝑌 are independent given 𝑍. The null hypothesis 
is: 

𝐻!: 𝐼𝑛𝑑(𝑋;𝑇|𝑍),  or  𝑃 𝑋,𝑌,𝑍 =   𝑃 𝑍 𝑃 𝑋 𝑍 𝑃(𝑌|𝑍)                                              (3.1)  

In Section 3.2.4, we briefly described the evaluation of such test. Here, we provide a 

more detailed discussion of how the decision rules are designed. A common framework for 

creating this decision rule is to measure the deviance 𝑑 from the null hypothesis of 

independence. A large deviance value implies that the data has little support for the null 

hypothesis. Another interpretation for the deviance is a measure of strength of association 

between pairs of variables. The larger the deviance, the greater the departure the data is from 

independence, and the stronger the association is between the variables.  

The measure of deviance can be captured in the framework of a Likelihood Ratio test 

[129]. Intuitively, the Likelihood Ratio test measures the fit of two competing models. Recall 

that the null hypothesis of an independence conditional test 𝐼𝑛𝑑(𝑋;𝑇|𝑍) suggests that once 

information about 𝑍 is given, 𝑋 is not necessary for predicting 𝑇. With this interpretation, we can 

view a conditional independence test exactly as selection procedure between two competing 

models: a predictive model for 𝑇 using both 𝑍 and 𝑋, and a model constructed using only 𝑍 as 

predictors. A log-likelihood ratio, which captures how much more likely the data is under one 
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model versus the other, can be constructed between the two models. This ratio, or equivalently 

its logarithm, can be used to compute the 𝑝-value.  

The log likelihood ratio statistic between the null and alternative hypothesis is defined as: 

𝛬 = −2𝑙𝑜𝑔  (𝐿! 𝐿!)                                                                                                                              (3.2)  

where 𝐿!,  𝐿! are the maximum likelihood for the null (𝐼𝑛𝑑 𝑋;𝑇 𝑍 ) and alternative non-

independent, or 𝐷𝑒𝑝 𝑋;𝑇 𝑍  hypotheses, respectively. Essentially, they correspond to the 

maximum likelihood when we fit a model using only 𝑍 as predictors (𝐿!  ), versus the maximum 

likelihood of a model fitted using both 𝑍 and 𝑋 as predictors (𝐿!). Asymptotically, Λ  has a 𝜒! 

distribution with 𝑑𝑓=1 for continuous data. The 𝑝-value can be calculated from the distribution, 

and the null hypothesis rejected if 𝑝 ≤significance threshold  𝑎.  

MMPC utilizes the Likelihood ratio framework for its skeleton identification step. As a 

natural extension we also base our group variable selection strategy on the same framework. We 

detail the tests for single variable MMPC and group variable MMPC below for select data types 

below.  

3.3.2.1 Conditional independence tests employed by single variable MMPC 
 

For the original, single variable MMPC, we highlight two conditional independence tests that are 

implemented for two types of data that are common in the task of biomarker identification. The 

tests for categorical data in the original MMPC implementation is described in Appendix A. We 

do not include them here, as they are not suitable for biomarker discovery unless discretization is 

first performed on the gene expression values.   

• Continuous data, categorical outcome (target variable) 
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Suppose we would like to test 𝐻!: 𝐼𝑛𝑑 𝑋;𝑇 𝑍  for the case where the data 

(𝐷;  containing  𝑋  and  𝑍) is continuous, and the target variable 𝑇 is categorical. This is the test of 

choice when we attempt to select genes whose expression values (continuous) are predictive of 

categorical clinical labels such as disease subtypes (categorical).  Tsamardinos et al. [130] 

developed a conditional independence test that follows the Likelihood Ratio framework 

described above. The model used here is multinomial logistic regression that maps a set of 

continuous predictors to categorical target variable. When the target variable is binary, we have 

a special case of the regular logistic regression. The test statistic can be calculated by comparing 

the deviance of fit between the null logistic model constructed with 𝑍 only, versus the 

alternative logistic model built with both 𝑋 and 𝑍. Specifically, the likelihood function is: 

𝐿(𝑏) = 𝐼 𝑦! = 𝑗!
!!! 𝑣!" ⋅ 𝑏! − 𝑙𝑜𝑔   𝑒!!"⋅!!!

!!!
!
!!!                                                     (3.3)  

where 𝑛 is the number of training instances, 𝐽 is the number of categories the target variable 

could take on,  𝐼 ∙  is the indicator function, 𝑣!" is a row vector of data, and 𝑏! is a vector of 

parameters specific to category 𝑗. The test statistic then follows the 𝒳!!distribution: 

𝛬 = −2 𝑙𝑜𝑔 𝐿! 𝐿!∪! ∼   𝒳!!                                                                                                                              (3.4)  

Again, 𝑝-value can be calculated using this distribution, and it is negatively related to the 

strength of association. The higher the 𝑝-value, the lower the association. For a detailed 

description of logistic regression and its extension to multinomial data, please refer to [131], 

[132].  

• Continuous data, censored survival outcome (target variable) 

This test was introduced by Tsamardinos et al. in their variant of MMPC for survival data, 

SMMPC [133]. The test was developed specifically for right-censored survival data. This test is 
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useful for the scenario where we attempt to select genes whose expression values (continuous) 

are predictive of the survival time of patients (continuous, right-censored). Again, it follows the 

Likelihood Ratio framework exactly as described earlier, computing a 𝑝-value that reflects the 

deviance statistic between the predictive model built with 𝑍 only versus one built with 𝑍 ∪ 𝑋, 

and uses the Cox regression model for calculation of deviance of fit. We delay the discussion of 

Cox regression model to Section 3.4.1. Assuming that the reader is familiar with the notion of 

censoring, the likelihood function is: 

𝐿(𝑏) = 𝛿! 𝑣! ⋅ 𝑏 − 𝑙𝑜𝑔   𝑒!!⋅!!⊆!(!!)                                                                                                           !
!!! (3.5)  

where 𝑛  is the number of training instances,  𝛿! is the censoring indicator, 𝑓! is the follow-up 

time for individual 𝑖, and 𝑅 𝑓!  is the set of subjects still at risk at time 𝑓!. The test statistic can 

be calculated using Equation 3.4 and follows the same 𝒳!"!!
!   distribution, and the 𝑝-value can 

be calculated using this distribution4. 

3.3.2.2 Conditional independence tests employed by T-ReCS 

Conditional independence tests are also used in our T-ReCS framework to determine whether a 

group variable could replace a single variable while still retaining its predictive property. We use 

two conditional independence tests to determine if a group variable still carries the same 

information as the single predictive feature it includes. The two tests represent slightly different 

criteria: the first checks to see if the group variable carries enough extra information than the 

original 𝑃𝐶 set (excluding the single predictive variable this group variable contains). The 

second test ensures that the group variable holds information that is equivalent to that of the 

                                                

4 A local score test can also be used instead of a log-likelihood ratio test, but Tsamardinos 
et al. showed that log-likelihood ratio test produces better results than the local score test. 
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original single variable. A group variable has to meet both criteria to warrant a substitution of the 

single variable. Depending on the type of data, appropriate prediction model and test statistic 

described in the previous section are employed to compute the 𝑝-values. 

• Test for 𝐷𝑒𝑝 𝑋’;𝑇 𝑆 , 𝑆   ⊆   𝑃𝐶\{𝑋} 

This test was designed to check to see whether the dependency between the group variable 𝑋′ 

and target 𝑇 still exist, even after our best effort to condition out the association using subsets of 

the parent and children set 𝑃𝐶 that does not include 𝑋. If the dependency vanishes, we know that 

𝑋′ does not belong in 𝑀𝐵 (or 𝑃𝐶). This is exactly the procedure that we performed in the second 

(backward) phase of the single variable MMPC, where we remove any variables that become 𝑑-

separated from 𝑇 given some subset of 𝐶𝑃𝐶. We can think of it as having included 𝑋′ in a 

forward phase, and we are trying to determine if it is a false positive. Again, the 𝑝-value 

computed from the test statistic corresponds to the opposite of dependence. The lower the 𝑝-

value, the more associated 𝑋′ is to 𝑇, and the more likely 𝑋′ still belongs in 𝑃𝐶. Therefore, in 

order to move up the tree and have a single variable replaced by its cluster counterpart, we would 

like to see a low 𝑝-value output from the test. The other way to understand this test is from the 

perspective of the likelihood ratio test. Recall that the test statistic represents the deviance from 

the two competing models:   [𝑆   → 𝑇] and [{𝑋! ∪ 𝑆} → 𝑇]. A large difference implies that 𝑋′ is 

providing extra information than the conditioning set alone. Since a large value of the test 

statistic corresponds to a low 𝑝-value, while the 𝑝-value remains within a defined threshold 

𝑎!"# !’;! ! , we can safely assume that 𝑋′ should still belong to the 𝑃𝐶 set.   

• Test for 𝐼𝑛𝑑(𝑋;𝑇|𝑋’) 

This test is designed to check that the single variable 𝑋 and group 𝑋′ contain the same 

information with regard to predicting 𝑇. It is rather intuitive to assume that if 𝑋′ and 𝑋 are 
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similar enough with respect to their predictive properties, we can replace 𝑋 with 𝑋′. To 

determine their similarity, we can again take advantage of the likelihood ratio framework. If the 

deviance between the two competing models [𝑋′   → 𝑇] and [{𝑋 ∪ 𝑋′} → 𝑇] is small enough, then 

we know 𝑋 and 𝑋′ are redundant, and using both of them to predict 𝑇 does not produce any extra 

information than using one of them alone. Since small deviance corresponds to large 𝑝-value, we 

can keep advancing up the tree while the 𝑝-value remains larger than a defined threshold 

𝑎!"#(!;!|!’). In other words, 𝑋’  needs to be conditionally independent of 𝑋 in order for the 

substitution to be valid. 

3.3.3 Choosing latent variable representation 

Up until now, we have not specified how a group variable 𝑋′ can be constructed from its 

members. In this section, we describe several strategies that one can use to collapse a set of 

variables into a single-vector representation. In some cases, we explicitly think of this 

representation as a latent variable that generates the “observations” that we can measure from its 

members. Note that other representations are possible.  

3.3.3.1 Centroid 

Centroid is perhaps the most obvious way to represent the average behavior of a cluster. 

Formally, the centroid of a group of variables {𝑋!,𝑋!,…𝑋!} in ℝ! is: 

𝐶! =
!!!  !!!⋯!!!

!
                                                                                                                                        (3.6)  

It is the geometric center of the 𝑛-dimensional space that each variable (gene) lies on. It has 

previously been applied on gene expression data, for example in a fuzzy K-means clustering 



 87 

algorithms [134] for representing a group of similarly expressed genes. The common concern 

with using the centroid is that it could be subject to the influence of an outlier member. In our 

case, we are less concerned with this problem as the cluster was created from our previous 

clustering algorithm and we expect members of a cluster to display similar behavior especially at 

the bottom portion of the tree.  

3.3.3.2 Medoid 

Medoid is another way to represent a cluster. It is a member of the cluster whose average 

dissimilarity to all the members in the group is minimal. It is similar in concept to centroid, but 

note that a medoid is always an actual member of the cluster. The advantage of this is that we 

have an explicit interpretation of the cluster representation, but as we will see later this property 

may invalidate some of the assumptions we make with our method. The concept of a medoid of a 

group of genes has been applied in the computational biology community as well [135]. The 

medoid is defined as: 

𝑀! = 𝑎𝑟𝑔𝑚𝑖𝑛!∈!    𝑑(𝑚,𝑋!)!!!:!                                                                                             (3.7)  

where 𝑑 is a distance metric.  

3.3.3.3 Principle Component Analysis (PCA) 

Principle component analysis (PCA) [136] is a dimensionality reduction technique that takes a 

set of higher-dimensional data and transforms them into a lower dimensional form, while 

preserving most of the information. Mathematically, PCA tries to find an orthogonal linear 

transformation 𝑊 that projects the data onto a lower dimensional linear space, such that the 

variance of the projected data is maximized. The projection is performed such that the greatest 
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variance lies on the first principle component, and the second greatest variance on the second 

principle component, and so on. In our case, we want to represent a group of genes using only 

one vector. Therefore we use the first principle component, which contains the highest amount of 

variance, to represent the group. The first principle component is given by 

𝑃(!) = 𝑈𝑊(!)                                                                                                                                                            (3.8)  

Where U is the samples (patients) in 𝑘-dimensional space (𝑘 genes), and 𝑊(!) is the first loading 

vector that can be found by maximizing the projected variance subject to the constraint that 𝑤 is 

a unit vector: 

𝑊(!) = 𝑎𝑟𝑔𝑚𝑎𝑥 ! !!{||𝑈𝑊 ! ||!}                                                                                              (3.9)  

𝑊 is essentially the eigenvectors of 𝑈!𝑈 and 𝑊(!) corresponds to the eigenvector with the 

largest eigenvalue. PCA was used to construct eigengenes mentioned earlier [128]. 

3.4 EVALUATION METHODS 

In the following section, we will discuss how we could evaluate the performance of T-ReCS and 

introduce several properties of interest. The primary goal of T-ReCS is to increase the stability of 

traditional single variable selection method while incurring minimal loss of predictive accuracy. 

We would like to investigate how varying the significance thresholds of the conditional 

independence tests, 𝑎!"# !’;! !  and 𝑎!"#(!;!|!’), affects the performance of T-ReCS, against the 

baseline performance of single variable selection. Thus, we are interested in measuring 1) 

accuracy, 2) stability, and 3) cluster size. We describe in detail how each of these is defined in 
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the following section. Additionally, we describe the cross validation procedure for parameter 

selection.   

3.4.1 Accuracy 

We are interested in how good a set of selected features is in predicting 𝑇. In order to do so, we 

need to couple the feature selection method with a regression or classification method to produce 

a predictive model. Depending on the types of data, the predictive models and performance 

metrics differ. The predictive models and the corresponding accuracy measure for the two types 

of data introduced in Section 3.3.2 are defined below.  

3.4.1.1 Continuous data, categorical target variable : SVM and AUC 

With categorical target variables, we pair our feature selection method with a classifier  that takes 

continuous predictors as input and outputs a label assignment. Many classifiers exist that 

accomplish this goal. Here, we adopt Support Vector Machine (SVM)  as our classifier of choice, 

as it is practical, scalable, and was shown to have competitive performance for this type of data 

[120]. Given a set of training samples that we can imagine as points in space, SVM attempts to 

identify a decision boundary that maximally separates the data points of different categories with 

a margin that is as wide as possible. For detailed description of SVM, please refer to [137].  In 

our experimentation, for every training set we train a SVM model using the selected features as 

predictors. The features can either be single variables or group variables represented in the 

collapsed form.  

A commonly used classifier performance measure is the Area Under the ROC Curve 

(AUC) [138]. A receiver operating characteristic (ROC) is a graphical plot that describes the 
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performance of a binary classifier system as its discrimination threshold is varied. On the X-axis 

of the plot is the False Positive Rate (1-specificity, or fraction of false positive out of total actual 

positives), and the Y-axis is the True Positive Rate (sensitivity, fraction of true positive out of 

total actual positives). Each point on the ROC curve is a set of the TPR and FPR measured at a 

specific value of the set of parameters. Intuitively, we would like to achieve a high TPR and a 

low FPR. In other words, we would like for many of the points on the ROC curve to lie close to 

the upper left quadrant of the plot, where the TPR is high and FPR is low. To compare a ROC 

curve to another, we can calculate the area under the ROC curve. The larger the area, the close a 

ROC curve lies toward the upper left quadrant, and the better the performance. A random guess 

would result in a diagonal line running from 0% FPR and TPR to 100% of both, corresponding 

to an AUC value of 0.5.  

Another measure of performance is simply the classification accuracy rate defined as the 

sum of number of true positives and true negatives over total number instances. There exist some 

debates as to which of the two measures is more appropriate under different circumstances [139]. 

Since the types of data we target vary in size and class label proportions (balance), we calculate 

both measures for our experimentation. 

3.4.1.2 Continuous data, censored survival target variable: Cox regression and CI 

In clinical settings, we are frequently interested in relating biomarkers to survival time of 

patients. In this type of problem, the target variable 𝑇 is the survival time (time to event, the 

event could be death or relapse, for example) of a particular patient. A characteristic of this data 

is that at the time of data collection, some patients may still be event-free (for example living or 

relapse free), and the record would only contain the follow-up time but not the exact time the 

event would actually occur. This type is data is termed right-censored survival data and typical 
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regression methods cannot be applied to model the time-to-event 𝑇. A regression method 

specifically designed to handle survival data is Cox regression. Cox regression (or Cox 

Proportional Hazards Model) [140] relates the time that passes before an event occurs to 

predictor variables. In the proportional hazard model, the effect of one unit increase in a 

predictor variable is proportional to the hazard rate. For example, the increase of expression of a 

biomarker by one unit may double the hazard rate (of death) of the patient. We can define 

survival function, or the probability that someone with predictors 𝑋! survive past time t as 

𝑃 𝑡!   >   𝑡 =   𝑆! 𝑡 =   𝑒  ! !! ! !"!
!                                                                                 (3.10)  

where 𝐻!(𝑡)  is the hazard function which expresses the event rate for subject 𝑖 at time 𝑡  and is 

defined as 

𝐻! 𝑡 =   𝐻! 𝑡 ⋅ 𝑒!!⋅!                                                                                                              (3.11)  

𝑏 is the vector of coefficients we try to learn, and 𝐻! is the baseline hazard function that is 

shared by all the subjects. The beauty of this model is that we do not actually need to learn 𝐻! to 

be able to compute the proportional hazard between individuals, as the baseline function cancel 

out in the computation. The model can be learned by maximizing the likelihood function defined 

in Section 3.3.2.   

Compounded by censorship, measuring the performance of a survival regression model is 

also a more difficult task, as the error can be computed exactly only for the uncensored cases. 

Several performance measures have been proposed to deal with the skewed distribution of 

survival times [141]–[143]. We select the Concordance Index (CI) [141] to measure the 

performance of the selected features, as it is one of the most commonly used measures for 

survival models.  Intuitively, the CI measures the fraction of all pairs of patients whose predicted 
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survival time are correctly ordered by the regression model. There are scenarios where order of 

observed survival cannot be determined due to censorship. This can be easily represented by an 

order graph in Figure 3.5(Left). These scenarios are excluded from the calculation. This 

probability of concordance between the predicted and the observed survival can be written as: 

𝐶𝐼 =    !
|!|

𝐼 𝑓 𝑥! < 𝑓 𝑥!                                                                                                 !!"   (3.12)  

where 𝜀   denotes the number of edges in the order graph, 𝐼 ⋅    is the indicator function, and  

𝑓 𝑥!  is the predicted survival time for subject 𝑖 by the model 𝑓. Without the censored data, CI is 

a generalization of the Wilcoxon-Mann-Whitney statistic and can be shown to be equivalent to 

the AUC [144], [145], and we would expect a CI value of 0.5 for a model that orders the patient 

survival by random.  

 

Figure 3.5 An order graph for Concordance Index calculation and bipartite maximum weight matching for 
cluster stability calculation.  
(Left) Two subjects’ survival times can be ordered if 1) both of them are uncensored or if 2) the uncensored time of 
one is smaller than the censored survival time of the other. We represent this by means of an order graph. The set of 
vertices represents all the individuals ordered by increasing value of their survival times with lowest being at the 
bottom. Each filled vertex indicates an uncensored survival time, and an empty circle denotes a censored 
observation. Existence of an edge 𝜺𝒊𝒋 implies that observed survival time 𝑻𝒊 for individual 𝒊 is smaller than that for 
individual 𝑻𝒋. An edge cannot originate from a censored point. (Right) 𝑭𝒊 and 𝑭𝒋 are two selected group or single 
variable sets from cross validation runs 𝒊 and 𝒋. The elements in brackets are members of a given group variable. We 
can perform a maximum weight matching to identify a mapping between them, with darker edges indicating the 
mapping selected. 
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3.4.2 Stability 

For feature selection methods, we are interested in its stability, or how consistently the method 

selects the same variables across different cross validation runs. Typically, stability measure such 

as the Tanimoto set-similarity [146] is used to characterize the agreement or percentage of 

overlap between two sets of variables output from the different runs. Tanimoto set-similarity for 

two sets 𝐶!  and 𝐶! is defined as the intersection over union: 

𝑆 𝐶!,𝐶! = |!!∩!!"|
|!!∪!!|

                                                                                                                                (3.13)  

where a value of 0 indicates an absence of overlap, and a value of 1 suggests the two sets are 

identical. In our case, however, the set of variables output from each cross validation run could 

contain both single- and group-variables, and the Tanimoto set-similarity alone would not 

suffice. How can we determine the amount of overlap between two such variable sets 𝐹! and 𝐹! 

from cross validation runs 𝑖 and 𝑗? We need to first define a mapping between elements in 𝐹! and 

elements in 𝐹!, where these elements can have size greater or equal to one. To do so, we use 

maximum weight matching [147] to build a bipartite graph where one side of the graph contains 

the members of 𝐹!, and the other contains the members of 𝐹!. We attempt to match each member 

in 𝐹! to another member in 𝐹! that is maximally similar to it. This is done as follows: for each 

member 𝑠 in 𝐹! and 𝑤 in 𝐹!, we create an edge between them with weight defined by the 

Tanimoto set difference 𝑆 𝑠,𝑤 . We find the best bipartite matching, and take the normalized 

sum of weights of the selected edges of this matching. This gives us a mapping between the 

members of 𝐹! and 𝐹!. Once we have the mapping, we can compute the stability between 𝐹! and 

𝐹! using the weights, taking the average of sum over all pairs. This definition gives us an 
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opportunity to compare the stability of our method across cross validation runs. The final 

stability is calculated as the average of all pairwise combinations of run 𝑖 and 𝑗, which reflects an 

estimation of the average agreement over the runs. An example is shown in Figure 3.5(Right).  

3.4.3 Cluster Size 

Naturally, the size of the clusters grows as the algorithm ascends the tree. We are interested in 

monitoring how fast the cluster size increases, and how that relates to stability and accuracy. We 

calculate both the average and the maximum cluster size over cross validation runs. 

3.4.4 Choosing suitable parameters: cross validation  

A classical framework for parameter selection is cross-validation. The data is divided into 𝑁-

folds, each with a set of training set and a test set. For each training set, group variable selection 

is performed and a predictive model learned using the selected group variables. Combinations of 

different parameters are used for each training set. Stability is calculated across all pairwise 

combinations, and accuracy is evaluated on the corresponding test set. The set of parameters that 

gives rise to optimal performance is used for learning a final model over the entire set of data.  

3.5 RESULTS 

As a proof of concept, we applied T-ReCS to a set of simulated data, a set of six benchmarking 

gene expression data sets, and a set of large-scale clinical data that includes mRNA and miRNA 

expression. Both categorical and survival target variables are covered in these datasets.  In all 
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cases, we compare the group variable selection performance to a baseline produced by single 

variable selection. Since no group variable selection method is directly comparable to our 

method, we will only compare our method against simple ensemble constructed from features 

selected from different folds of cross validation data. Wherever possible, we perform a 10-fold 

cross validation as long as the sample size allows. For datasets with sample size less than 200, 

we perform two repetitions of 5-fold cross validation. For a fair comparison, the single variable 

MMPC component was run with the same significance threshold 𝑎 and size of maximum 

conditioning set 𝑘.  

3.5.1 Simulated data and results 

In order to evaluate T-ReCS, we created a set of simulated data where the structure of the 

network is known a priori. We generate a linear Gaussian Bayesian network with a target 

variable 𝑇, a set of 25 variables that are ancestors of 𝑇, a set of 25 variables that are descendants 

of 𝑇, and 44 variables that do not have a path to 𝑇. Among the ancestors and descendants of 𝑇, 

three are parents and three are children of 𝑇, and the reset has an average out-degree of 2. The 

parent and children set, 𝑃𝐶, has direct edges connecting to 𝑇 and is the set of variables  that we 

wish to recover through the algorithm. This network structure is shown in Figure 3.6. In this 

particular set up, we expect to have variables that have small or random correlation with 

𝑇  (unconnected varaibles), variables with varying degree of correlation with 𝑇 (ancestors and 

descendants), as well the 𝑃𝐶 set that together will hopefully be maximally predictive of 𝑇. Each 

node has continuous values analogous to that of gene expression data. The target variable we 

observe is binary; this is akin to observing cancer subtypes in patients.  
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Figure 3.6 A simulated linear Gaussian Bayesian network.  
The target variable T is colored in red. Three children (nodes 29,30,31) and three parents (nodes 26,27,28) are 
planted, in addition to 50 other ancestors (green) and descendants (blue). A set of 44 variables are not connected to 
T (yellow). 

 

To generate the data, we model the value of each variable as a linear function of its 

parents with equal weights, with a Gaussian noise of 𝑁(0,1). In order to simulate the effects of 

collinearly between variables that one often observes in biological data, for every variable in the 

dataset we create nine additional copies of itself with increasing amount of Gaussian noise, 

ranging from 𝑁(0,0.05) to 𝑁(0,2.5). We point out a particular subtlety of the design – since we 

do not have a convenient way of generating the values of the binary variable 𝑇 from its 

continuous parents, or generating the continuous values of 𝑇′s children from the mixed discrete 

and continuous values of 𝑇 and its other parents, we resort to modeling the target 𝑇 as a latent 

variable with continuous values, with an observed counter part 𝑇!"#$%& that we generate by 

thresholding 𝑇. A potential caveat of this design is that 𝑇’s parents and children may still be 𝑑-

connected when conditioning on 𝑇!"#$%&, instead of 𝑇. However, this is only a problem for 
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constructing a global Bayesian Network or learning the local causal structure around 𝑇’s parents 

and children, and would not cause errors in the case of learning the 𝑃𝐶 of 𝑇. 

Using the procedure described, we generate 10 training sets with 1000 samples each, and 

1 test set with 5000 samples. Using the 𝑝-value distribution of the two conditional independence 

tests we gathered from a preliminary run, we created 10 different significance thresholds 𝑎 for 

each of the two tests (Appendix B). For each group variable representation, and for each 

combination of significance thresholds, we run T-ReCS to select a set of group variables and 

train an SVM model from the group variables. We then test the trained model on the 

corresponding test set. We calculated the average pairwise stability between all training set pairs, 

and the average accuracy as well as AUC. Additionally, we monitor the growth of cluster size 

across the parameter combinations.  

The result of the simulated experiment can be found in Figure 3.7. We first check to see 

whether T-ReCS can recover the variables in the 𝑃𝐶 set (nodes 26, 27, 28, 29, 30, 31) . Indeed, 

we recovered subsets of the 𝑃𝐶 set in all folds. Half of the cross validation runs contain false 

positives. However, the false positives are almost always the least significant selected variables. 

This confirms that the single variable MMPC is indeed performing as expected and is 

successfully recovering the planted variables. Next, we check that ReKS is correctly clustering 

the noisy copies of the variables together. Again, we confirm that most of the noisy copies of the 

variables do appear in the same clusters selected, and when a cluster contains more than one 

“group variable”, they are often connected by an edge, indicating that there is high correlation 

between them and the clustering is justified. In fact, of all the unique clusters that selected are 

under the most lenient parameter combination, 75.7% are homogenous in that they only contain 

copies of a single “seed” variable, while 18.6% contain “foreign” variables seeded from a 
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different variable, and a mere 5.7% of the selected clusters have copies of variables from more 

than one foreign seed variables. This result confirms that ReKS is indeed creating valid partitions 

on which our method will build on.  

 

 

 

Figure 3.7 Variables selected by T-ReKS over cross validation. 
Group variables selected using three different cluster representation methods are listed. Each row contains group 
variables selected from a given fold. Each cell in the row contains the members of that group variable. The group 
variables (cells) are arranged in the order of significance (left is most significant). The number in the cell indicates 
the identity of the seed variable (see node IDs from Figure 3.6). The number in the bracket immediately after the 
number indicates how many noisy copies of this variable is also present in the cluster. Cells with … contain 
members too numerous to list. Variables marked in red are outside of the Parent and Children set and are considered 
false positives. This table is produced at the most relaxed set of thresholds tested, p(x',T|S) < 8*10-4 AND 
p(x,T|x')>10-4 . (Bottom) Of all the clusters below this threshold, the majority contains only copies of a single seed 
variable, while a small portion (5.7%) contains copies of more than two seed variables, indicating that ReKS is 
indeed producing a valid partition of the variable space. 
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Having confirmed the efficiency of MMPC and ReKS in identifying the correct single 

variables around T and partitioning the data in a meaningful way, we next examine the 

performance of the statistical tests that the group variable selection component of the algorithm 

relies on. Recall that we employ two tests of independence to aid us in making the decision of 

whether or not to replace a single variable by its parent, group variable. What should we expect 

to see, if the two tests are indeed behaving the way we expect them to? For the test for 

𝐷𝑒𝑝(𝑋’;𝑇│𝑆), 𝑆   ⊆   𝑃𝐶\{𝑋}, we expect the 𝑝-value to increase as we ascend the tree, as the 

benefit of including 𝑋′ in the PC declines, since the signal contained in 𝑋′ will decrease with 

increase in its size. On the other hand, for the test for  𝐼𝑛𝑑(𝑋;𝑇|𝑋’), we anticipate the 𝑝-value to 

decrease as we ascend the tree and for 𝑋 and 𝑇 to become associated given 𝑋′, since 𝑋’  would 

carry decreasing amount of signal and would no longer predict 𝑇 equally well as 𝑋. Here, we 

check to see if these two trends indeed exist in our simulated dataset.  
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In Figure 3.8, we plot a ReKS tree example generated from a run of cross validation. We 

use the centroid method to collapse the group variables in this example, and highlighted in green 

is the trace of the variable as it gets collapsed and advances toward the top of the tree. We plot 

the three statistics of interest: log  (𝑃 𝑋’;𝑇 𝑆 ), log  (𝑃 𝑋;𝑇 𝑋’ ), and the size of the cluster. We 

verify that we indeed observe the pattern we were expecting as mentioned. At the bottom of the 

tree, we have only 3 members in the cluster, and 𝑃 𝑋’;𝑇 𝑆  gives a value of 0, indicating that 𝑋′ 

and 𝑇 are strongly dependent, despite our best effort to condition out the dependency. In the 

mean while, 𝑃 𝑋;𝑇 𝑋’   yields a value of 0.9827, displaying a high level of conditional 

independence between 𝑋 and 𝑇 given 𝑋′. These observations suggest that 𝑋 can be replaced by    

𝑋′ without loss of classification accuracy, thus, we advance one level up the tree. As we 

ascend the tree, the first 𝑝-value increases, and the second 𝑝-value decreases. The cluster size 

also increases from 3 members to 163 at the second level from the top. If we were to place a set 

of significance thresholds 10-4 and 10-3 on this path as stopping criteria, for example, we would 

stop at the third level from the bottom, yielding a group variable consisting of 7 members. 
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Figure 3.8 An example of the ReKS tree on simulated data.  
We follow the trace of the most significant variable, marked in green, advancing from the bottom of the tree all the 
way to the root. The numbers in the bracket contain three statistics of interest: log (P(X’;T│S)), log (P(X;T│X’)), and 
the size of the cluster. Consistent with our expectations, the p-value from the first test increases, while the p-value 
from the second test decreases as cluster size increases. The more relaxed the significance thresholds we use, the 
higher up the tree we allow the cluster to grow. 

 
Finally, we investigate the effect of the significance thresholds on algorithm 

performance. In Figure 3.9, we plot the average cross validation accuracy, stability, and cluster 

size against different threshold combinations, first on a YYY plot(top) and then on heatmaps 

showing the pattern across the parameter landscape(bottom). We generally see a trend of 

increasing stability and cluster size toward the top of the tree, with the accuracy displaying more 

subtle variations with a slight spike in the middle region. We plot the baseline stability and 

accuracy in dotted lines in corresponding colors. These are the average performance of single 

variable MMPC across the cross validation runs, and indeed stability is improved dramatically 
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(95% confidence interval 0.331-0.551), while accuracy enjoys a very subtle boost (95% 

confidence interval 0.0121-0.0289). We also investigate the performance of T-ReCS against 

another baseline – simple ensemble of the single variables selected from the 10 cross validation 

runs. We use the union set of these variables as predictors and train SVM models across the 10 

training sets. The average test accuracy is plotted in purple dotted line, and we can see that T-

ReCS’s performance does not depart significantly from the ensemble method (p=0.75) in terms 

of accuracy. All of these methods outperform the baseline model when no variable selection is 

performed (Accuracy = 0.8786±0.014, brown dotted line), and also the baseline model where a 

random set of variables of the same size as the selected variables are used for training a model 

for cross validation (Accuracy = 0.6283±0.119). Lastly, we observe that centroid and PCA seems 

to produce very similar results, while medoid allows for larger clusters to be included, possibly 

because the same member continues to be the “medoid” of the cluster as it advances up the tree, 

masking the “noise” that other members of the cluster may otherwise introduce.  

Having concluded that T-ReCS performs as expected on the simulated data, we now turn 

our attention to its application on real datasets.   
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Figure 3.9 T-ReCS performance on simulated data.  
(Top) Accuracy(blue), Stability(green) and Cluster size(red) across 10 parameter combinations (left to right, most 
stringent to most permissive) for three different cluster representation methods applied on simulated data. Plotted in 
dotted lines in corresponding colors are single variable selection baseline results. The purpose dotted line is the 
ensemble baseline accuracy, and the brown dotted line the no variable selection baseline. (Bottom) The same results 
plotted across all 10 by 10 threshold combinations. The bottom combinations correspond to restricting the group 
variables to the bottom portion of the tree (shown to the right) 

 
Since the simulated data is for binary target variable, so far we have yet to test the 

performance of the conditional independence tests as well as the selected variables on survival 

data. In 2010, Tsamardinos et al. [133] introduced the Survival MMPC (SMMPC) and tested 

extensively its performance against other variable selection methods, and in conjunction with 

various regression techniques, on six clinical data sets [9], [15], [148]–[151]. To see if our 

method could improve on this baseline, we run T-ReCS on the same datasets for comparison. 

The six sets of censored survival data range in size from 86 to 295 cases with 70 to 8810 

variables, and the events of interests are either metastasis or survival (Table 3.1). The YYY plots 
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are shown in Appendix C. In general, stability improves from the baseline by a large margin for 

several datasets. Accuracy hovers around baseline, with small increase or decrease across 

parameter combinations, none statistically significant. The size of the group variables chosen 

largely stays within the range of 10 members. We conclude from this set of experiments that our 

method enjoys gain in stability without severe loss of accuracy, compared to the single variable 

selection baseline.  

Table 3.1 A list of benchmarking datasets used in this evaluation (*significant at 0.05) 

3.5.2 Application: Melanoma gene and miRNA expression 

In this section, we showcase an application of T-ReCS on a large-scale clinical dataset for which 

the algorithm is designed. mRNA and miRNA gene expression were collected from a cohort of 

patients (ECOG-E2603 [152]) with unresectable locally advanced or stage IV Melanoma. A total 

of 105 samples were available with censored progression free survival. We applied T-ReCS on 

the mRNA and miRNA expression data separately, against progression free survival follow-up 

time of the patients. A list of the selected genes for both data can be found in Appendix D. We 

highlight a few instances where we were able to discover biologically meaningful results using 

the group selection strategy we proposed.  

Among the single mRNA genes selected, Plxnb1 has the most significant 𝑝-value, and 

has been shown to act as a tumor suppressor of Melanoma [153]. The group variable additionally 

recruited Rad23, a protein involved in the nucleotide excision repair (NER) mechanism. This 

Dataset #Cases #Cens #Vars Event %Stability %Accuracy 
Vijver 295 207 70 metastasis +19~27.5%* -1.2~1.7% 
Veer 78 44 4751 metastasis +0~9% -1.8~10.6% 
Ros02 240 102 7399 survival +23.5~40.8%* -2.7~0.64% 
Ros03 92 28 8810 survival +100~194%* -5.3~1.2% 
Bullinger 116 49 6283 survival +6.7~19% -1.3~3% 
Beer 86 62 7129 survival +39~80%* -7.3~8.5% 
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protein was found to be a component of the protein complex that specifically complements the 

NER defect of Xeroderma Pigmentosum group C (XP-c) cell extracts in vitro. Patients with 

Xeroderma Pigmentosum have mutations in NER pathway, and have a 1000-fold increase in the 

incidence of skin cancers including melanoma, suggesting a significant role NER plays in 

melanoma genesis and a potential role of Rad23 [154]. Another example is BCMO1, a protein 

that is a key enzyme in beta-carotene metabolism to vitamin A important for skin protection. 

BCMO1 is part of a very significant group variable whose seed variable is LOC389936, an 

shRNA construct with no known association with melanoma.  

Results from group variable selection on microRNA data are equally promising. With 

standard MMPC, only a single miRNA was selected: hsa-miR659-3p. This miRNA is significant 

in that it targets RAS, one of the most important common oncogenes in human cancer [155], and 

BRAF, an oncogene that regulates the MPA kinase pathway and affects cell division, 

differentiation, and secretion, and whose mutations is undergoing active investigation in the 

melanoma community [156]. After running our algorithm, this single selected miRNA was 

grown into a group variable containing three members. The additional members are hsa-miR219-

1-3p and hsa-miR516a-5p. hsa-miR219-1-3p is of special interest to us, as it targets several 

genes of interest, including TGFBR2, a well known signal transduction protein whose mutations 

have been associated with tumor  progression in solid tumors [157], and FGFR1. A number of 

functional studies have implicated FGFR1 signaling in melanoma progression [158]. 

Introduction of antisense oligonucleotides targeted toward FGFR1 into metastatic cell lines 

resulted in decreased proliferation and signs of differentiation [159], [160]. Injection of an 

antisense FGFR1 construct into primary and metastatic melanomas grown in nude mice has also 

been shown to result in inhibition of tumor growth and induction of apoptosis [161], [162]. We 
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examined the Cox regression coefficients of this selected cluster to interrogate our results. 

Indeed, all of these miRNAs are positively associated with survival; higher miRNA expression 

levels are associated with lower expression of their targets, which in this case are all oncogenes. 

This is consistent with our expectation that lower expression of the oncogenes lead to longer 

survivals.    

We note that hsa-miR219-1-3p was never selected in the single variable portion of the 10 

cross validation runs. This suggests that a simple approach such as an ensemble method that 

simply take the union of single variable selection results not have been able to uncover this 

miRNA.   

3.6 DISCUSSION AND FUTURE DIRECTIONS 

In this chapter, we introduced a novel feature selection algorithm for learning predictive group 

features of a target variable, 𝑇. This algorithm builds on top of an existing local causal discovery 

algorithm. We developed two conditional independence tests to identify groups of predictive 

features that are statistically equivalent to single predictive features they contain. A definition for 

group variable stability is proposed to characterize relative stability of this group variable 

selection scheme. We provide implementations of this algorithm for both categorical and 

censored, survival outcome 𝑇. To our knowledge, this is one of the very few that achieves this 

goal without requiring the user to supply an explicit partition of the data a priori, such as the 

strategy employed by group lasso. Instead, we only require a clustering structure in the form of a 

tree, and the size of the clusters selected will be automatically determined. The algorithm is 

sound and can be run efficiently on datasets in the range of tens of thousands of variables. 



 107 

Additionally, it is computationally efficient without imposing strict requirement for training size, 

which makes it suitable for high-throughput biological data. 

We demonstrated the stability improvement of the algorithm over single variable 

selection and ensemble baseline on simulated data. Significant stability improvement was 

achieved while minimum change in accuracy occurred. We also investigated its performance 

over a range of parameter combinations using three distinctive cluster representation methods. 

Similar performance was observed between centroid and PCA, while medoid tends to produce 

slightly more dissimilar behaviors. We suspect that this is because a medoid does not represent 

an “average” behavior of a cluster; it is merely a member of the cluster that is most similar to 

everyone else. As the cluster size increases, the identity of this member could remain unchanged, 

in which case the cluster may be allowed to grow very large without affecting the predictive 

performance, and too many noisy members could be erroneously recruited. On the other hand, 

medoid could also be susceptible to fluctuations of the member composition in the scenario that 

a current cluster joins with a larger, dissimilar cluster and the identity of medoid switches all of a 

sudden. For this reason, we recommend centroid and PCA as the preferred collapsing methods 

since they produce more gradual change in stability across many parameter ranges. We observed 

gain in stability consistent with our expectation as we relax the parameters, with a minimal loss 

in accuracy. The accuracy reflects a tradeoff between overfitting (from the more stringent range 

of the parameters) and loss of predictive signals (in the more relaxed range of the parameters), 

with fluctuations in between.  We note that we do often observe a slight peak in the middle, 

suggesting that this may be a parameter region that is more suitable for the two conditional 

independence tests. For most of the datasets we investigated, this region usually corresponds to 

10-2 to 10-4 for both thresholds. A closer look in the distribution of 𝑝-values (Appendix B) that 
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result from these two tests also confirm that this parameter range is most effective in 

thresholding the clusters in the bottom portion of the tree. Additional tests on large number of 

clinical datasets for both categorical data survival data are required to provide recommendations 

for the most appropriate parameter range for the two tests. Note that we would not expect the 

parameters to be necessarily the same for categorical versus survival data.  Alternatively, cross 

validation can be performed on all input datasets and a set of parameters can be selected 

manually by the users, or output automatically based on a statistic that combines the accuracy 

and stability based on a predefined weight. 

We demonstrated the potential benefits of discovering biologically meaningful 

biomarkers on a set of real clinical data. Results are delivered in the form of clusters of 

maximally predictive genes (includes TFs and miRNAs) for a given disease. This provides a 

small list of candidate genes to be tested on the bench. As a by-product of the algorithm, given a 

new patient sample, we may be able to predict disease classification or clinical outcome using 

the molecular signatures identified. 

We have also begun systematically applying our method on a number of large-scale 

studies, including several in the TCGA initiative as well as that of the Metabric [21] and LGRC 

[20] consortiums. We expect to apply our method on more datasets as they become available, 

and collaborate with domain experts to identify potential areas of improvements. Future 

directions include incorporation of more sophisticated latent variable representation such as 

Factory Analysis and Canonical Correlation analysis; incorporating prior in the ReKS step using 

the prior incorporation scheme we proposed, and investigating its effect on the 𝑝-values and 

predictive performances as we vary the amount of prior network information incorporated.  
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While in this chapter we tested our method in high-throughput gene expression datasets 

only, it can be easily adapted to other high-dimensional systems such as methylation and SNP 

data and beyond to provide predictive models as well as biological intuition. Additionally, the 

modular structure of the algorithms paves the way for a novel group feature selection framework 

in which alternative clustering step, hypothesis tests, and different variants of the causal 

discovery algorithm can be employed. The results presented are promising both in computational 

performances as well as biological implications.  
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4.0  MIRCONNX: CONDITION-SPECIFIC MRNA-MIRNA NETWORK 

INTEGRATOR 

In order to enrich computational results with biological meanings, we developed mirConnX, a 

user-friendly web interface for inferring, displaying and parsing mRNA and microRNA 

(miRNA) gene regulatory networks.  mirConnX combines sequence information with gene 

expression data analysis to create a disease-specific, genome-wide regulatory network. A prior, 

static network has been constructed for all human and mouse genes. It consists of 

computationally predicted transcription factor (TF) – gene associations and miRNA target 

predictions. The prior network is supplemented with known interactions from the literature. 

Dynamic TF-gene and miRNA-gene associations are inferred from user-provided expression 

data using an association measure of choice. The static and dynamic networks are then combined 

using an integration function with user-specified weights. Visualization of the network and 

subsequent analysis are provided via a very responsive graphic user interface. Two organisms are 

currently supported: Homo sapiens, and Mus musculus. The intuitive user interface and large 

database make mirConnX a useful tool for clinical scientists for hypothesis generation and 

explorations. mirConnX is freely available for academic use at 

http://www.benoslab.pitt.edu/mirconnx.  

We have integrated mirConnX with ReKS and T-ReCS to create a fully integrated, 

biologically informed biomarker discovery environment. In the upcoming release, mirConnX2.0, 
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users will have the option of uploading clinical labels, in addition to mRNA and/or miRNA 

expression data, to explore regulatory relationships between computationally prognostic mRNA 

and miRNA clusters.   

4.1 MOTIVATION 

Since its discovery two decades ago, it has become increasingly clear that microRNAs 

(miRNAs) play a crucial role in modulating gene expression at the post-transcriptional level. The 

small, 22 nucleotide long RNA molecules fine-tune gene expression by base pairing to target 

messenger RNAs, resulting in its degradation or causing translational repression. As Pandit et al. 

[163] has shown, deregulation of even a single miRNA may cause complex human diseases. 

Regulatory network reconstruction methods have traditionally involved transcriptional regulation 

only. Incorporating miRNAs thus becomes the next natural step. Only few tools have explored 

ways to associate mRNA and miRNA expression to infer regulations. MMIA [164] and MAGIA 

[165], for example, utilize association metrics such as correlation and mutual information. In a 

different context, Huang et al. [166] employed a Bayesian model to identify miRNA targets from 

sequence features and expression data. However, there are several limitations to these tools. 

MMIA only examines a subset of the miRNAs that are significantly up- or down- regulated, and 

omits those that could potentially be significantly correlated with their targets if they are not 

considered to be differentially expressed, based on the specific threshold. This only limits the 

data to those with a control/disease contrast, excluding possible use of time-series data. 

GenMir++ [166] is a more sophisticated algorithm, but it becomes computationally inefficient 

when a large number of genes are considered. Furthermore, it does not take into account other 
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supporting information such as transcriptional regulation. In fact, none of these tools 

incorporates the full set of transcription factors (TFs) in global network construction. 

Additionally, network motifs such as feed-back and feed-forward loops that are known to have 

an important role in cancer development and other diseases are usually not identified as part of 

the routine analyses of the currently available tools. 

To this end, we developed mirConnX to attempt to address some of the above concerns. 

mirConnX (http://www.benoslab.pitt.edu/mirconnx) takes advantage of prior knowledge (from 

sequence data), and incorporates evidence from gene expression data to create condition-specific 

genome-wide regulatory networks. mirConnX also aims to identify gene network motifs, 

involving transcription factors and miRNAs, that are associated with the corresponding diseases, 

pathogenesis or phenotype of interest.  

4.2 METHOD OVERVIEW 

4.2.1 Method overview 

mirConnX aims to provide an integrated environment that allows the user to infer genome-wide 

transcriptional (TF-gene/miRNA) and post-transcriptional (miRNA-gene/TF) regulatory 

networks for a particular disease or condition. We consider mRNA and miRNA expression data 

measured under the same set of conditions, or at the same time points, or from the same 

corresponding diseased or normal samples (matching samples). The mRNA and miRNA 

expression data are pre-processed to remove genes that are lowly expressed with limited variance 

overall. Then, we connect TFs and miRNAs to genes using a statistical association measure. The 
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association network that is constructed reflects the disease status or the condition of interest. 

This network is an undirected graph, in which an edge exists between two nodes (genes) if an 

interaction has been detected. Note that such association networks do not discriminate between 

direct and indirect interactions.  This network is then superimposed to a pre-compiled, species-

specific prior network, which is derived from TF motif scanning and binding, miRNA target 

predictions, and literature evidence. The prior network is a directed, weighted graph, in which an 

edge between a TF or miRNA and a gene exists if the former is predicted to regulate the latter. 

All the connections in the prior network correspond to direct, predicted or verified interactions. 

Superimposing the two networks via an integration function results in a directed network, which 

is expected to contain significantly fewer indirect interactions (depending on the weight the user 

assigns on the prior network). mirConnX web tool allows easy visualization and exploration of 

the network, and identifies network motifs. In the following sections, we describe the 

construction of the context-dependent (dynamic) association network, the construction of the 

prior (static) network, and their integration. Figure 4.1 presents an overview of the mirConnX 

pipeline. 
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Figure 4.1 Overview of the integrated analysis in mirConnX.  
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4.2.2 Building a prior network 

The prior network is constructed by combining all predictions of TF to gene and TF to miRNA 

interactions and all miRNA target predictions. The network is then enhanced by literature 

evidence that confirms the existence of an edge. This results in a directed network that represents 

the collection of prior knowledge on regulatory potentials between genes. 

4.2.2.1  TF to gene/miRNA regulations 

We define the binding potential (𝑅𝑔!") of a promoter sequence for a given gene/miRNA as the 

maximum score between literature evidence (𝑆!"#) and binding score of a TF (𝑆!"). The binding 

score is calculated using a sliding window method [27] on the promoters of genes and miRNAs, 

The JASPAR [34] and TRANSFAC [35] position weight matrices (PWMs) are used for the 

scanning. A subsequence is considered a binding site for a TF if its PWM score is on the top 1% 

of all scores for this PWM. In addition, UCSC Regulation track Conserved TFBS (𝑆!"#$) scores 

are added to enhance the confidence. The sum of 𝑆!" and 𝑆!"#$ are normalized to a score 

between 0 and 1. Finally, if an experimentally verified binding motif for a given TF is available 

(e.g., in TRANSFAC), we increase the binding potential automatically to 1, as shown below,  

𝑅𝑔!" = 𝑚𝑎𝑥 ( 𝑆!" + 𝑆!"#$ , 𝑆!"#} 

  𝑆!"# ⊆ {0,1}                                                                                                                                  (4.1) 

Regular gene promoters were defined 5kb upstream of TSS obtained from Database of 

Transcription Start Sites (DBTSS) [167], The Eukaryotic Promoter Database (EPD) [168], and 

UCSC genome browser Regulation-Transcription track (Eponine and SwitchGear TSS) [169]. 

miRNA TSSs are defined using a combination of predictions and experiments from 
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CoreBoost_HM [169], Marson et al. [170], and Corcoran et al. [171]. Human (NCBI36/Hg18) 

and mouse (NCBI37/mm9) sequence data were downloaded from UCSC genome browser [36]. 

4.2.2.2 miRNA to gene/TF regulations 

miRNA target prediction algorithms generally do not agree very well. Thus, we used a 

combination of five target prediction algorithms that take into account of seed sequence, flanking 

sequences and context, binding energy, and conservation. These algorithms are: PITA [172], 

miRANDA [46], TargetScan 5.0 [173], RNAhybrid [174], and Pictar [48]. If predictions for 

corresponding genome versions are not available, we ran the algorithms using default parameters 

and cutoffs. We define the regulatory potential (𝑅𝑔!"#) of a miRNA for a gene as the proportion 

of the target prediction algorithms predicting the gene to contain at least one miRNA target site. 

In addition, if the 3’UTR of a gene contains an experimentally verified site from TarBase [175] 

or miRecords [176], the regulatory potential of the gene for a given miRNA is increased to 1, as 

shown below,  

𝑅𝑔!"# = 𝑚𝑎𝑥  {| 𝑆!"#$%&'%() , 𝑆!"#$"%& , 𝑆!"#$%!"#$}  

  𝑆!"#$"%& , 𝑆!"#$%&'() ⊆ {0,1}                                                                                          (4.2)  

Human and mouse 3’UTRs were downloaded from UCSC genome browser.  The list of mature 

and complement miRNAs, as well as their sequences, were obtained from miRBase v.14 [46]. 

4.2.2.3 Gene expression preprocessing 

Standard gene symbol and miRNA ID are used as our primary identifier. Genes and miRNAs 

with multiple probes on the array, or those converted to the same gene symbol/miRNA ID, are 

collapsed into a single medium value. The normalized mRNA and miRNA expression data are 
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pre-processed using three filters for low (1) absolute expression, (2) variance, and (3) entropy. A 

cutoff of 5% is used for mRNA and miRNA expression data individually to remove data that are 

not likely to be important for the network. A list of the genes filtered and excluded from the 

analysis is available for user to download. Finally, all matching conditions or samples between 

the mRNA and miRNA data matrices are retained for analysis. In case of multiple replicates for 

the same condition, the median value between replicates is used.  

4.2.2.4 Constructing association network from gene expression data 

We construct an association network from the user-supplied expression data by measuring the 

strength of all pair-wise interactions between TFs, miRNAs and genes across the 

samples/replicates. A number of parametric and non-parametric association metrics are available 

to the user for defining these interactions. Correlation coefficient is one of the most intuitive, and 

most well received. The different flavors of correlation (Pearson, Spearman, and Kendall) have 

been used successfully in the past and achieved different levels of success, for example in the 

WGCNA R package [177]. Pearson correlation coefficient is often used when a linear 

dependence between the variables exists.  By contrast, Spearman rho correlation coefficient 

applies the Pearson formula on the ranks of the values of the two variables and can detect 

similarities even if non-linear (but monotonic) association exists.  Kendall tau rank correlation 

coefficient also operates on the ranks, but it calculates the probability of concordance or 

discordance of any pair of observations. In general, Spearman and Kendall give similar results, 

but they differ on the magnitude (for more details on correlation measures, please see [178]).  

We implemented these three correlation measures and applied them on pairs of gene, TF, or 

miRNA expression values across matching conditions. The absolute magnitude reflects the level 

of correlation, and the sign suggests positive or negative interaction. Mutual Information is the 
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non-parametric counterpart of the correlation coefficient and it has been implemented in 

algorithms such as ARACNE [179] as the measure of association for genome-wide two-way 

interactions.  Mutual Information does not provide information about the sign of interaction (it is 

non-negative) and is generally computationally intensive and sample-size sensitive, since it 

requires estimation of marginal and joint probabilities of the variables. As a result, we have not 

implemented the mutual information statistic in miRconnX, although we might do so in the 

future. The degree of association, 𝑟!""#$  , is defined as the probability that two genes are 

correlated.  We used the inverse of correlation coefficient significance (1− 𝑝) as the probability 

of nonrandom association. The use of significance, instead of the coefficient itself, takes into 

account of the sample size and allows a fair comparison between networks generated by different 

size of data.   

4.2.3 Network integration 

We currently implement a simple weighted sum of the regulatory potentials (𝑅𝑔!"   or 𝑅𝑔!"#) 

from the prior network and association score (rassoc) as integrated binding score (𝑆) between 

any two genes, as shown below,  

𝑆 =   𝛾!"#$"(𝑅𝑔!" ,𝑅𝑔!"#)+ 𝛾!""#$ 𝑟!""#$                                                                                       (4.3)  

where γ!"#!" is a user defined parameter between 0 and 1, and γ!""#$ = 1 - γ!"#$". The default for 

γ!"#$" is 0.3 (i.e., 30%) and a value less than 0.5 is recommended for the prior information. We 

also allow the user to set a cutoff for the minimum integrated regulation score for an interaction 

to be displayed in the output. This is also number between 0.0 - 1.0, but the higher the more 

stringent the criteria (reduced false positive interactions reported). A value of 0.7 - 0.99 is 
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recommended. We do cap the number of interactions to be displayed on screen at 3000, as 

beyond that the network becomes too large to be efficiently visualized.  

4.3 USER INTERFACE 

4.3.1 Input format 

mirConnX accepts normalized mRNA and miRNA expression data in tab-delimited files where 

the first row contains sample IDs and the first column contains mRNA or miRNA IDs. 

mirConnX supports gene symbols, Ensembl Gene ID, Ensembl Transcript ID, Entrez Gene ID, 

RefSeq DNA ID, and Unigene ID as mRNA identifiers; and miRBase miRNA ID and Accession 

numbers as miRNA identifiers. An example of the matching mRNA-miRNA datasets can be 

found and pre-loaded on the front page. Note that the sample IDs for mRNA and miRNA data 

should match. Any unmatched samples are discarded. mirConnX allows multiple columns with 

the same header in case of biological or technical replicates. The input data sets are stored only 

during a user’s session and are used to construct the association network.  If no miRNA data file 

is included, the resulting network will show only TF-gene interactions. We currently support two 

organisms: human (Homo sapiens), and mouse (Mus musculus), as genome annotation and prior 

information is most abundant for these species. 

4.3.1.1 Submission and waiting time 

Depending on the size of the files (number of genes analyzed) and types of analysis chosen, the 

analysis could take anywhere from minutes to up to an hour. As an example, for 20,000 genes 
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and 500 miRNA, the computing time is roughly 15 minutes using Pearson correlation. While the 

job is running, an execution log will be displayed. The user can close the browser window. When 

the job finishes, the user will receive an email notification and retrieve the results from the link 

provided. 

4.3.1.2 mirConnX output 

Following the link to the result, a visualization of the network is displayed, as shown in Figure 

4.2. Cytoscape Web v0.7.2 [180] is used for network display. The rendering time for a network 

with 1,500 nodes and 2,500 connections is about 15 sec. Once uploaded, browsing the various 

areas of the network is instantaneous.  Users can use the tools at the bottom right corner to zoom 

in/out and edit node placements on the visualization page, and output the visualization as 

graphics. The list of interactions is also displayed with links to external databases such as 

miRBase and Entrez Gene [181] for annotation, PubFocus [182], EBIMed [183], miR2Disease 

[184], and miRo [185] to facilitate clinical research by sifting through large body of literature 

and records, as well as Gene Ontology [186] terms for each genes. We also make available for 

download: (1) list of interactions above the user-defined display cutoff, ranked by regulatory 

score in tab-delimited text file; (2) list of nodes, ranked by degree centrality in text-delimited text 

file; and (3) the network in pdf or GRAPHML graph formats compatible with Cytoscape for 

further exploration. The user can (4) search for a particular node and its targets/regulators 

(through the “List of gene interactions: filtered” drop down menu), a set of particular interaction, 

and highlight or select the corresponding nodes and edges on the graph display. Finally, we 

display all (5) feed-forward loops and their neighbors at the given threshold. In addition, a 

summary of statistics, including the actual number of TFs, miRNAs and genes can be retrieved 

under “execution log”.  
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Figure 4.2 Snapshot of the glioblastoma case study output.  

An example search for the downstream targets of miR-21, a key player in glioblastoma development, is shown in the 
middle. Feed-forward loops are displayed on a separate tab. Links to external databases are provided for every 
coding gene or miRNA.  
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4.4 APPLICATION: TCGA  

The main idea behind mirConnX was first used to analyze lung epithelial gene expression data 

few years ago [163]. In that study we were able to identify a feed-forward-loop that included 

SMAD TFs, let-7d, and HMGA2 gene, which was central in the regulation of epithelial to 

mesenchymal transition (EMT).  Furthermore, we later found that knocking down of let-7d in the 

trachea of mice can cause lung fibrosis few days later [163]. 

Here we present a case study that demonstrates the utility of mirConnX. We downloaded 

a set of publicly available mRNA and miRNA expression profiles from The Cancer Genome 

Atlas (TCGA) pilot project (http://cancergenome.nih.gov/), where a large compendium of tumor 

and normal Glioblastoma mutlforme (GBM, primary brain tumor) expression data is available. 

The choice of this disease is two-fold: in this repository, this is one of the two diseases with both 

tumor and normal cells. Furthermore, recent studies have revealed distinct patterns of miRNA 

expression in tumor compared to normal brain [187], and several miRNA targets have in fact 

been experimentally verified [188]–[190]. The disease samples are characterized by rapid 

proliferation and stem-cell like behavior which is possibly caused by malfunctioning of 

characteristic pathways [191]. Mutations in miRNA and miRNA targets have been postulated to 

be involved in tumorgenesis, but have not been specifically identified in GBM.  

The expression profiles downloaded consist of a total of 58 matched mRNA and miRNA 

samples from the Agilent 244k aCGH platform at data level 3. We used the following parameters 

on mirConnX: Gene Symbols, miRBase ID, Pearson correlation with a prior weight of 0.3, and 
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0.9 as the display cutoff threshold. A total of 56 miRNAs, 29 TFs, and 1180 genes form a 

network with a total of 1851 connections. Of these interactions, 43 are miR-TF regulations, 34 

TF-gene connections, and 1774 miRNA-gene connections.  

Among the top interactions, we were able to identify two hubs miR-21, miR-326 and 

miR-34a and miR-137 that have been verified to be miRNAs involved in Glioblastoma. These 

two miRNAs are also hubs with some of the highest degree centrality [192], sharing many 

targets and TFs with other hubs. miR-21 has been found to be one of the most highly expressed 

miRNAs in many cancer types, and  it has been shown that miR-21 acts as an oncogene  in 

Glioblastoma by suppressing apoptosis [193].  Among the highest ranking targets we predict for 

miR-21, SOX2 [194] and TGFB pathway [195] were shown to be regulated by the miRNA. 

RECK and PDCD4 have been experimentally verified, in vivo and in vitro, to be involved in 

proliferation [196]. In addition, PELI1 and CDC25A have been shown in other cancer types to 

play a role in apoptosis [197]–[199]. Similarly, miR-137 has been shown to be involved in 

proliferation and neuronal differentiation in vitro [119]. Indeed, both CDK6 and MITF, the 

experimentally verified targets from the study were also predicted in our network.  

A thorough literature search on all of the predicted interactions for Glioblastoma is not 

possible here, but we demonstrated that mirConnX is useful for identifying hub genes, their 

regulators, and their targets involved in diseases, the pathways involved, and could potentially be 

a powerful tool for clinical scientists to create a list of top candidate genes and forming 

hypotheses. 
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4.5 MIRCONNX 2.0 

While each of the methods proposed in the first two aims constituted standalone studies and the 

source code will be made available separately, they were all developed toward the same goal of 

deciphering disease complexities and should be integrated. We expanded the mirConnX web 

environment to streamline all the methods to provide an integrated view to enable further user 

exploration and hypothesis generation. Figure 4.3 demonstrates the vision of the end product of 

this effort. As before, users supply mRNA and/or miRNA gene expression. In addition, they 

have the option of uploading clinical labels of interest that correspond to the same samples in the 

gene expression profiles. Examples include disease subtypes, normal/control labels, progression 

free survival, or relapse events.  

Gene expression and miRNA expression, if supplied, are clustered separately by ReKS to 

produce coherent clusters that are candidate molecular signatures, potentially taking advantage of 

pathway information from KEGG pathway using the prior incorporation scheme.  Next, using 

the group variable selection developed in Chapter 3, molecular signatures that are predictive of 

disease subtypes or user-input labels are identified. Finally, transcriptional and post-

transcriptional regulatory information are provided to genes within and between the molecular 

signatures. In summary, a network with genes, miRNAs and TFs is generated with the following: 

(1) expression correlation edges indicating strength and sign of association (2) dynamic 

cluster boundary set by user-defined significance thresholds (3) transcription factor 

regulations and strength, between selected TFs-selected genes/miRs,  otherTFs-selected miRS,  

as well as selected TFs-otherTFs  (4) miRNA regulations and strength, between selected miRs-

selected genes/TFs, selected miRs-co regulators or targest of other selected miRs/genes,  and 

potentially (5) protein-protein interaction or (6) pathway boundary and interaction.  
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Figure 4.3 Integrative analysis with mirConnX2.0 on melanoma. 
mirConnX 2.0, an integrated framework that includes clustering, feature selection, and regulatory relationship 
enrichment, was applied on the Melanoma data detailed in Section 3.5.2.  Genes and miRNA clusters that are 
predictive of patient survival are selected (green). Cluster membership is indicated in light purple boxes. Several 
oncogenes known to be involved in melanoma disease mechanisms are highlighted in gold. Genes are represented 
by squares, miRNAs by triangles, and TFs by circles.  Blue edges indicate TF-> gene regulatory interactions 
supported by literature or computational predictions. Red edges indicate miRNA-> gene targeting supported by 
literature or computational predictions. For visual simplicity, strength of association (regulatory strength plus 
correlation) and sign of association (repression or activation) are omitted in this figure, but are available to display 
as an option. 

 

As a proof of concept, we illustrate the full power of mirConnX 2.0 by revisiting the 

melanoma mRNA and miRNA expression datasets used in the case study in Section 3.5.2. We 

applied mirConnX 2.0 to this dataset, using no prior clustering information. As shown in Figure 

4.3, the nine groups of selected miRNAs and genes are shown in green, inside light purple boxes 

indicating their group memberships. mirConnX 2.0 automatically extract the biological context 

around these variables, including TF-> gene regulatory relationships and miRNA-> gene 

targeting relationships.  
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Several preliminary observations can be made from this powerful analysis: 1) we notice 

several known oncogenes to be jointly regulated by prognostic biomarkers, for example RAS by 

has-miR-659 and LMO2, and a few others jointly by has-miR-219 as well as has-miR-659. 2) 

POU2F1(also known as OCT1) acts a the master regulator in this snapshot of the network, 

regulating both of the hub clusters (has-miR-219/has-miR-659, and LMO2/RPS56KL1). It binds 

to an octamer DNA sequence and is known to have cell type-specific effects on differentiation, 

but no clear association with Melanoma. However, another protein in the same family, 

POU3F2(also known as BRN2/OCT5), has been shown to be linked to melanoma proliferation 

by participating in the Wnt signaling as an early factor in melanoblasts that negatively regulated 

differentiation [230,231]. This observation presents POU2F1 and reinforces POU2F2 to be 

interesting targets for investigation, and one can already start generating interesting hypothesis 

about possible feedback loops they may form with the two hub regulators. 3) On the other hand, 

ISL1 and CTDSPL2 are regulated by both of the selected hub clusters. Neither have apparent 

association with melanoma, but ISL1 is phosphorylated by Rho kinase whose dysregulation 

contributes to the metastatic behavior of many tumor types including melanoma [232,233] and 

this pathway has been targeted by several clinical studies for anticancer therapeutics. Thus, we 

may want to extend our network to additionally include interactive partners of these genes. 

These simple, preliminary observations demonstrate that by placing the selected 

biomarkers in their biological context and linking them through regulatory interactions, a much 

simpler, cleaner organization of the biomarkers and regulatory partners surface. In addition, 

relative biological importance of the biomarkers are immediately clear in a network context, with 

hub clusters being primary interests to many as they are ideal candidates for understanding 

dynamics and mechanism of disease formation, and they present possible points of attacks for 
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potential intervention. Even for a cluster with hundreds of members shown in this example, only 

a subset will be of immediate interests to bench scientists and failure in properly defining a set of 

computational thresholds for cluster selection by the user can be in most part remedied by this 

type of context information “filtering”. Finally, an advantage mirConnX 2.0 has over its 

predecessor is that the size of the final network is now very manageable, as we now focus on the 

part of the network containing mainly prognostic clusters.  

We expect that users will be able to adjust size of the network by adjusting the 

significance thresholds (p-valule for conditional independence tests) in Section 3.3.2.2. The basic 

set of selected genes and miRNAs will remain unchanged. However, the size of the cluster will 

grow and shrink, and members of the clusters as well as regulatory relationships will be shown 

or hidden accordingly.  

Additionally, users will be allowed to upload additional prior grouping information to be 

used in the prior incorporation scheme in Section 2.5. Example of the prior information that a 

user may want to supply include pathway information (from KEGG [88] or Ingenuity[234], for 

example), Protein-protein interaction, regulatory modules or co-regulation information, and 

domain expertise. Not all the prior information would be necessarily suitable, but it will be up to 

the user’s discretion.   

4.6 DISCUSSION AND FUTURE DIRECTIONS 

In recent years, with the availability of condition-specific high-throughput mRNA and miRNA 

expression data, there is an increasing need of integrated environment that combines data 

analyses and visualization in the form of constructing hypothesized networks. While many 
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methods exist for either network generation using only expression data, only binding affinity 

experiments such as ChIP-chip, or even manually curated data from expert knowledge databases, 

an integrated network that maximally exploits information in both domains is lacking. 

Additionally, there has not been many attempts to incorporate both TF and miRNA regulations, 

yet it has become increasingly clear that miRNAs play a crucial role in human diseases. 

mirConnX is a novel web tool developed specifically to fill the niche. The utility of mirConnX 

lies in its ability to integrate user-supplied data with pre-compiled information of miRNA 

targeting and TF binding, and generate a network that reflects characteristics specific to the data 

guided by some prior beliefs. The user-friendly display of interaction networks and other 

downstream analyses also provides an integrated environment for clinical researchers to perform 

further investigation and exploration. 

We present mirConnX, a web tool developed to integrate user-supplied expression data 

with pre-compiled information of miRNA targeting and TF binding, and generate a network that 

reflects characteristics specific to the data guided by some prior beliefs. Coupled with the 

clustering methods developed in Chapter 2 and feature selection method from Chapter 3, we 

expect to have a powerful pipeline for analyzing disease expression data. To the best of our 

knowledge, mirConnX 2.0 will be the only interactive web-stool to date that allows the user to 

explore groups of prognostic biomarkers in the context of regulatory relationships.  The user-

friendly display of the resulting networks and other downstream analyses will also provide an 

integrated environment for clinical researchers to perform further investigation and exploration. 
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5.0  CONCLUSION  

5.1 CONCLUDING REMARKS 

The emerging model of personalized medicine aims to personalize disease risk assessment and 

improve responsiveness to treatments. Treatment plans will only be successful if appropriate 

biomarkers are identified to help guide the selection of the most beneficial treatment for a given 

patient. Traditional biomarkers have been inadequate in providing proper disease subtyping, and 

the community has been looking beyond the traditional assays and diagnostic tests in search for 

novel prognostic biomarkers.  

 The advances in molecular profiling technologies have changed our understandings of 

cancer and led to the identification of such prognostic/predictive gene signatures. Despite the 

huge quantity of information gleaned from these profiling technologies and the increasing 

number of gene signatures proposed, their validation and incorporation into clinical decision 

making is a slow and limited. This is in part due to a number of challenging issues impeding the 

adoption of traditional feature selection algorithms to high-dimensional genomics datasets.  

In my view, current biomarker discovery methods are hampered by several 

complications. Computationally, significant correlation structure exists between the variables of 

interests. Partly as a result, the selected features often occur in redundancy and are highly 

unstable.  Clinically, the data displays a high degree of heterogeneity. Furthermore, existing 
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biomarker discovery methods does not adequately represent the increasingly popular pathway-

centric view of disease formation, and selected variables often lack biological relevance. As a 

whole, these problems present the current challenges of applying feature selection and other 

computational methods to high-throughput genomics data. Individually, many of these issues are 

prevalent among other noisy, high-dimensional systems as well. 

We demonstrated in this dissertation our attempts to address these key issues through a 

novel module-based, biologically informed biomarker discovery framework. Specifically, we 

tackle these issues by developing (1) an efficient clustering algorithm suitable for heterogeneous 

clinical expression data, (2) a novel feature selection method that operates on groups of 

variables, with results delivered in the form of clusters of maximally predictive genes (includes 

TFs and miRNAs) for a given clinical label of interest, and (3) an integrated environment for 

these two methods, enhanced with relevant biological information, delivered in the form of a 

user-friendly web server.  

The deliverables of this combined framework include a small list of candidate genes to be 

tested on the bench, as well as relevant biological organization and regulatory information to 

prioritize the targets of interests. As a by-product of the framework, given a new patient sample, 

we would be able to predict disease classification or clinical outcome using the molecular 

signatures identified. The publicly available web-tool will enable researchers to confirm existing 

biomarkers and generate hypothesis about novel causes for diseases.  

Our algorithms are designed specifically to tackle high-throughput clinical data. While 

we primarily used gene expression data in this dissertation to demonstrate the utility of our 

methods, the same framework could be augmented to achieve variable space partition and group 

variable selection using other types of genomic measurements as features.  
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5.2 FUTURE DIRECTIONS 

The work described here can be refined in several ways.  

Each of these algorithms requires further testing for one to gain a deeper understanding of 

their behaviors across different types of datasets and parameter range. For ReKS, different 

distance measures and affinity definitions will invariably affect the clustering result, and a 

thorough investigation is necessary. Development of a parallelized SVD (personal 

communications with Chennubhotla and Quinn et al.) is currently under way and once available, 

ReKS can adopt the parallelization to allow partitioning of data beyond the current size limits. I 

would like to take the perturbation-based algorithm further to interrogate optimum thresholds for 

producing the most stable partitions. Finally, this approach can potentially be extended toward 

biclustering of heterogeneous clinical genomics datasets.  Similarly, for T-ReCS a specific 

parameter range for which desirable algorithmic behaviors can be expected need to be more 

precisely defined. As feature selection performance is tightly coupled with classification or 

regression methods, a comprehensive study of T-ReCS using combinations of different 

classification and regression methods should be conducted. mirConnX can benefit from 

integration with a wider variety of data types and databases, and addition of common 

bioinformatics practices such as Gene Ontology analysis.  

From a more holistic perspective, I believe that our work paves the way for a larger effort 

in which a variety of genomics data types such as mutation, copy number variation, methylation 

and genome aberrations can be incorporated to create a more comprehensive view on disease 

formation and progression. My long-term vision for our existing web-server is for it to become 

an open-source repository where networks and biomarker clusters generated by users can be 
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deposited and queried, and prognostic analysis automatically generated with each addition of a 

new sample.  

Through the proposed framework, we took a small step toward improving molecular 

biomarker discovery. My hope is that our tools will enable other researchers to take a larger 

stride toward the ultimate goal of improving disease prognosis and deciphering the complex 

underpinning of human diseases. .   
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APPENDIX A 

CONDITIONAL INDEPENDENCE TESTES FOR CATEGORICAL DATA 

Suppose we would like to test 𝐻!: 𝐼𝑛𝑑 𝑋;𝑇 𝑍  for the case where both the data 
(𝐷;  containing  𝑋  and  𝑍) and the target variable 𝑇 are both categorical.  We can create a 
contingency table where each cell in the table holds 𝑆!"#!"#  , the counts of the number of times 
𝑋 = 𝑎,𝑇 = 𝑏, and 𝑍 = 𝑐 appear in the data. Similarly, we can define marginal counts 𝑆!"!",  𝑆!"!" , 
and 𝑆!! , and we can calculate the expected count under the null hypothesis of conditional 
independence as: 

𝑃 𝑋,𝑌,𝑍 =   𝑃 𝑍 𝑃 𝑋 𝑍 𝑃 𝑌 𝑍   

=(𝑆!"!"    ⋅   𝑆!"!") 𝑆!!   

The deviance between the observed counts and the expected count can be defined either 
though the 𝐺! statistic under the likelihood ratio framework [134]: 

𝐺! = 2 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑   𝑙𝑛
𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑
𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 = 2 𝑆!"#!"#   𝑙𝑛

𝑆!"#!"#   
  (𝑆!"!"    ⋅   𝑆!"!") 𝑆!!!,!,!

  

  
Or the 𝜒! statistic as a direct measure of goodness-of-fit: 

𝜒!   =
(𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 − 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑)!

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 =   
(𝑆!"#!"# −   (𝑆!"!"    ⋅   𝑆!"!") 𝑆!!   )!

(𝑆!"!"    ⋅   𝑆!"!") 𝑆!!!,!,!

  

 
They are asymptotically distributed as 𝜒! with degree of freedom 𝑑𝑓:*(foot note: 
assuming no structure zeros. If there are cells with counts of zero, one can either follow 
the practice of Spirtes GS or [125] to calculate the effective number of parameters) 
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𝑑𝑓 =    (|𝐷(𝑋)|− 1) ∙   (|𝐷(𝑇)|− 1)    |𝐷(𝑘)|
!⊆!

  

Where 𝐷(𝑋) is the domain of variable 𝑋, i.e. the values that 𝑋 can take on. The statistic 
with the given degree of freedom produces a 𝑝-value that corresponds to the opposite of 
strength of association. If the 𝑝-value is less than the significance level 𝑎, the null 
hypothesis of conditional independence is rejected.  
 
In the original implementation of MMPC, the 𝜒! statistic is used since it is 
asymptotically correct for discrete multinomial distribution, and is easy to compute. One 
can see that the number of cells increase exponentially with the number of conditioning 
variables, and the number of training samples can become inadequate. For reliable 
estimation, it was recommended that the sample size be at least five times the number of 
cells. This test was implemented in the original MMPC5.  

                                                

5 Note that there are better alternative tests of conditional independence for categorical 
data, for example mutual information and Bayesian test proposed by Margaritis and Thrun [97]. 
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APPENDIX B 

T-RECS SIGNIFICANCE THRESHOLDS 

The following thresholds are used for T-ReCS on the simulated data. 

thresholds(log10) 
p(x',T|s) p(x,T|x') 

-9 -4 
-8 -3.3 
-7 -3 
-6 -2 
-5 -1.3 
-4 -1 

-3.7 -0.7 
-3.4 -0.4 
-3.2 -0.22 
-3.1 -0.097 

 

The following histograms are P-value distributions of the T-ReCS conditional 

independence tests performed on the simulated data, plotted on log10 scale, based on three 

different collapsing methods. The significance levels tested are plotted as blue vertical lines over 

the histograms. 

 

 

 

 



 136 

 

 

 

 

 

  

 

 

  



 137 

APPENDIX C 

SURVIVAL BENCHMARKING DATA YYY PLOTS 

Performance of T-ReCS across 6 benchmarking survival datasets. 
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APPENDIX D 

SELECTED GENES AND MIRNAS FROM MELANOMA DATASET 

The following gene clusters are selected from the melanoma dataset thresholds dep(x',T|s)=10-2 

and ind(x,T|x’)=10-4. Highlighted in red are the seed single variables from which they grew from. 

The clusters are presented in the order of significance. 

{AFAP1L1,PLAC8L1},{PLXNB1,RAD23B},{ADO,BCMO1,BEGAIN,C20ORF7,C21ORF84,C9ORF61,CCT8L2,ERLIN2,LM

O2,LOC389936,LOC440053,MIR99A,OPN1SW,OR9Q2,OSM,PSD4,RNASE9,RPS6KL1,SMPD1,TBCEL,TLR5,TMEM121,

ZNF552},{AAGAB,ACRBP,ACTR3B,ADAL,ADCK4,ADCY10,ADD1,AFP,AK3,AKAP2,AMY2A,ANKRD37,ANKRD43,AP2B

1,APOBEC3C,ARF3,ARHGEF12,ARHGEF7,ARVP6125,ARX,ASB11,ATAD3B,ATE1,ATP2B1,ATP8A1,ATXN8OS,AUH,BA

TF3,BDP1,BLVRA,BST2,BTK,C10ORF113,C11ORF54,C12ORF73,C14ORF112,C14ORF174,C15ORF39,C15ORF42,C15

ORF62,C17ORF85,C19ORF21,C1ORF165,C20ORF86,C21ORF100,C21ORF42,C4ORF15,C4ORF37,C5ORF54,C7ORF6

3,CACNA1I,CALD1,CALML5,CAMKK1,CAPN6,CBL,CCDC54,CCRK,CDC42SE1,CDH23,CEACAM18,CHAT,CHFR,CHMP

4B,CHP2,CIDECP,CISD2,CLIP3,CLN8,CLOCK,CLRN2,CMA1,COX16,COX7A2L,CSF2,CTTNBP2NL,CXCL12,CXXC1,DE

CR1,DEK,DENND3,DKK2,DNAJC27,DPF2,DPM2,DTNA,ECGF1,EDEM2,EDIL3,EHD4,ELK4,ELOVL1,EME2,EPHX2,ERC

C-

00131,ERCC00136,EVI1,FABP2,FADS2,FAM108B1,FAM126A,FAM75B,FBRS,FBXO31,FGF3,FKBP7,FLAD1,FLJ41649,

FLJ45079,FNDC3B,FOXB2,FRMD1,FUS,GAS2L1,GDF7,GFRA1,GJC3,GLMN,GLT1D1,GNPDA1,GPR1,GRRP1,GUCA1B

,HAND1,HAVCR2,HBM,HDGFRP3,HIST1H2BD,HNF1B,HNRNPH3,HOOK1,HPN,HRG,HS3ST6,HSD11B1,ID1,IKZF2,IRS

1,ISL1,ITGB4,JUND,KCNQ2,KLK1,KLRC3,KREMEN2,LBXCOR1,LCMT2,LILRA5,LILRA6,LIN7A,LOC100133144,LOC374

395,LOC388955,LOC400986,LOC401286,LOC554235,LOC641522,LONRF2,LPIN3,LRAT,LRP5L,MANBA,MAPK7,MCF2L

2,MEA1,MED14,MIMT1,MIST,MMP14,MMP24,MOCS1,MORN1,MRPL20,MTF2,MTNR1A,MYBPC2,MYO1C,MYOF,NARS

2,NCCRP1,NDC80,NDUFA1,NFAM1,NFYA,NHLH1,NIF3L1,NKX6-2,NMBR,N-

PAC,NUDT4P1,ODF2,OGDHL,OPRK1,OR11G2,OR11L1,OR12D2,OR51A2,OR5M11,OR5V1,OR7A10,OR7G2,P2RY12,P

BK,PCBD1,PCOTH,PDCD1LG2,PDCD4,PDE6C,PDILT,PEX3,PFN3,PGM5P2,PHF19,PIM1,PIP4K2B,PKD1L2,PLCB3,PL
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EKHA6,PLEKHA8,POF1B,POL3S,PRAMEF13,PRH1,PROCA1,PRSSL1,PSEN2,PSTPIP2,PTPN14,PVRIG,PWWP2B,RA

P1GAP,RASAL3,RBMY1J,RELL1,RFXANK,RG9MTD1,RNF133,RNU15,RNU1A3,ROD1,RPAIN,RPL34,RPS16,RPS3,RXF

P3,SAMD13,SDCCAG10,SDK2,SDSL,SEC24C,,SERAC1,SERPINA3,SERPINA7,SF3B14,SFXN2,SH3BP5,SHD,SKAP2,

SLC12A5,SLC12A7,SLC12A9,SLC17A2,SLC17A8,SLC1A6,SLC25A32,SLC4A5,SLC7A6OS,SNORA7A,SNORD114-

13,SNORD11548,SNORD72,SOCS6,SORCS3,SOST,SOX30,SPACA1,SPATA3,SPNS3,SRP14P1,SST,ST18,STEAP4,TA

L2,TBX5,TCEA3,TCL1A,TIA1,TIMM8A,TK1,TLR9,TMEM132E,TMEM39B,TMEM66,TRAF2,TRERF1,TRIM32,TRIP4,TTTY

17B,TUBB2B,UBE1,UBE2CBP,UBE2V1,UBXN10,UFD1L,ULK2,UTX,VAC14,VSIG1,VWA2,VWF,WDR33,WDR37,WDR52,

WNT7B,ZBTB16,ZFAND6,ZNF131,ZNF526,ZNF639,ZNF703},{AGR2,C16ORF35,CCDC64,CNTD2,CRYBB3,CTDSPL2,H

SPBAP1,OPN1SW,TAAR8},{OR8H3,TRAPPC4},{C6ORF224},{USP51},{FAM23A,FMNL1,LRDD} 

 

The following miRNA cluster is  the only one selected from the melanoma dataset at 

thresholds dep(x',T|s)=10-1 and ind(x,T|x’)=10-2. Highlighted in red are the seed single variables 

from which they grew from.  

{hsa-miR219-1-3p, hsa-miR516a-5p, hsa-miR659-3p} 
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