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Abstract

Background This article addresses the choice of state structure

in a cost-effectiveness multi-state model. Key model outputs,

such as treatment recommendations and prioritisation of future

research, may be sensitive to state structure choice. For

example, it may be uncertain whether to consider similar dis-

ease severities or similar clinical events as the same state or as

separate states. Standard statistical methods for comparing

models require a common reference dataset but merging states

in a model aggregates the data, rendering these methods invalid.

Methods We propose a method that involves re-expressing a

model with merged states as a model on the larger state space in

which particular transition probabilities, costs and utilities are

constrained to be equal between states. This produces a model

that gives identical estimates of cost effectiveness to the model

with merged states, while leaving the data unchanged. The

comparison of state structures can be achieved by comparing

maximised likelihoods or information criteria between con-

strained and unconstrained models. We can thus test whether

the costs and/or health consequences for a patient in two states

are the same, and hence if the states can be merged. We note

that different structures can be used for rates, costs and utilities,

as appropriate.

Application We illustrate our method with applications to two

recent models evaluating the cost effectiveness of prescribing

anti-depressant medications by depression severity and the cost

effectiveness of diagnostic tests for coronary artery disease.

Conclusions State structures in cost-effectiveness models

can be compared using standard methods to compare

constrained and unconstrained models.

Key Points for Decision Makers

State-transition cost-effectiveness models with different

state structures can give different recommendations on

treatment decisions or research prioritisation. To date,

there have been no formal statistical methods described

for comparing different state structures.

Merging two states in a transition model, such as similar

types of event, is practically equivalent to constraining

the outward transition probabilities, costs and utilities to

be equal for the two states. Thus, the state structures can

be compared by assessing whether these constraints are

reasonable. This can be done using standard methods for

comparing statistical models, and suitable data.

For example, comparing transition probabilities requires

data consisting of the numbers of patients observed to

transition out of the states of interest to each potential

destination. To compare costs and utilities between

states, individual-level samples are required. Maximum

likelihood and Akaike’s information criterion can then

be used to assess the constraints. If such data are not

available, they might be derived from published

summaries, or the comparison can be made informally.

The original version of this article was revised due to a retrospective
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1 Introduction

Health economic evaluations rely on cost-effectiveness

models, such as Markov multi-state models [1], to produce

accurate comparative assessments of the costs and health

effects of different interventions for the management of

disease. Given a cost-effectiveness model, there may be

uncertainty about the correct transition probabilities, costs

or utilities. This is commonly termed parameter uncertainty

and managed by probabilistic sensitivity analysis [2, 3].

Research recommendations can also be guided by the

expected value of perfect information (EVPI) and expected

value of partial perfect information, comparing the benefits

in terms of costs and monetised health effects gained from

a decision based on evidence, where parameter uncertainty

is removed or reduced, with that based on current evidence

[4].

However, all models are idealised representations and

the choice of structure for the model may be uncertain.

Moreover, different choices can change decision recom-

mendations, as found in models for breast cancer and in

varicella vaccination [5, 6]. In this article, we consider

uncertainty about the choice of states in a state-transition

health economic model, a subject which has, to our

knowledge, not yet been formally addressed. An example

in coronary artery disease (CAD) is the choice between a

model with split and merged severities of CAD, illustrated

in Fig. 1. The split-state model divides the ‘CAD’ state into

‘high-risk CAD’ and ‘low-risk CAD’, as severity may have

an effect on costs, health utilities and the probability of

death. These structural choices are currently made infor-

mally, on the basis of clinical opinion and the availability

of data [7]. Guidelines recommend scenario analyses or

parameterising structural uncertainties [2, 8, 9], but it is

often unclear how they can be parameterised.

Formal statistical approaches for comparing model

structures against the data used to build them include the

Akaike information criterion (AIC) [10, 11] and, for

Bayesian models, the deviance information criterion

[12, 13]. These trade off the fit to the data, represented by

the likelihood, with the complexity, related to the effective

number of parameters, of the models. Thus, they can find

the optimal balance between the risk of bias (from

excluding important events or predictors) and the reduced

uncertainty in the estimates from a smaller model. These

criteria can also be used to construct weighted averages

over the possible structures [11, 14]. However, these

methods are only valid for models fit to the same datasets

and it has been shown that multi-state models with dif-

ferent state structures use different datasets [15]. Another

approach is to split the model into a series of sub-functions

and add discrepancy parameters to the outputs of these

functions to represent state structure uncertainty [16].

However, the discrepancies do not indicate which

assumptions are more plausible and can be difficult to

interpret for complex models. A further approach is to

compare the ability of the models to predict the events

represented by both models [15, 17], in the above CAD

example, this would be CAD and death. However, calcu-

lating the appropriate measure of fit for the restricted

information criteria described in this article is technically

demanding. State structures might also be compared by

informal validation against external data if available.

We propose a method that allows the choice between

state structures to be parameterised, and for which standard

likelihood-based model selection criteria are valid. This

enables us to compare structures under the principle that

similar states may be merged if the consequences of

occupying them are the same. Here, the ‘consequences’ for

a patient consist of the potential exit states, the probabili-

ties of transition to these exit states, the costs and the

utilities. We show that smaller models can be reformulated

into practically equivalent models on the larger state space

by constraining the outward transition probabilities, costs

and utilities to be the same for the ‘merged’ states. The

model choice is then a matter of assessing whether each of

these constraints is reasonable, based on the fit to data. We

also consider using ‘partially merged’ models with differ-

ent state structures for transition probabilities, costs and

utilities, depending on the most appropriate choice for each

consequence; for example, we may assume the costs in

high-risk CAD (cH) to be the same as those in low-risk

CAD (cL) but that the transition probabilities to the dead

state (PHD and PLD) are different. We illustrate our

Low risk CAD 
(L)

High risk CAD 
(H)

CAD (C)Dead (D) Dead (D)

Fig. 1 Coronary artery disease (CAD) models with split and merged CAD severity. PXY is the probability of making a transition from state X to

state Y in a cycle
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approach in models comparing treatment strategies for the

management of depression, and diagnostic tests for CAD.

2 Methods for Comparing State Structures
by Assessing Parameter Constraints

Suppose we have data consisting of the numbers of indi-

viduals who are observed to make a transition between

each pair of states over a particular time interval, and

corresponding denominators of the total number of patients

at risk. The models are fitted to these data by maximum

likelihood or Bayesian estimation, giving estimates of

transition probabilities between states over one cycle of a

discrete-time model [18]. If such data are not explicitly

available, they might be derived from related data (such as

published relative risks of death) under weak assumptions,

and we discuss an example in Sect. 4. Costs and utilities for

states are estimated from samples of individual-level costs

and utilities, or from published unit costs combined with

assumptions, expert beliefs or data on individual resource

use.

2.1 Merging Two States with One Common Exit

State

Consider again the split- and merged-state models for CAD

presented in Fig. 1. It is intuitive that if we impose the

constraint:

PHD ¼ PLD ¼ PD; ð1Þ

the fitted models should give the same predictions of

expected survival. We prove this formally in Appendix 1 in

ESM by showing that the likelihood of the split-state

model, subject to the above constraint, is proportional to

that of the merged-state model, with a proportionality

factor that is independent of PD. Thus, the estimate of PD,

and thus the expected survival over any time horizon, will

be identical under both the constrained split- and merged-

state models. This also applies to Bayesian estimation if the

prior on PD is the same in the merged and constrained

models, and to ‘reversible’ models where the transition

back from high to low is permitted because the probability

of death PDwould remain independent of the disease state.

Furthermore, if we also constrain the costs and utilities of

the states to be equal, as cH ¼ cL ¼ c and uH ¼ uL ¼ u, the

models will give the same predictions of lifetime costs and

quality-adjusted survival, and hence the same decision

recommendations.

Thus, the uncertainty regarding state structure has been

parameterised, as a choice of whether these three constraints

are reasonable. If all three are supported by the data, the

merged model can be used because it is equivalent to the

constrained split model. If all constraints are invalid, then the

fully split model is most appropriate. A ‘partially merged’

model can also be recommended, for example, if the transition

probabilities but not the costs are found to be equivalent.

2.2 Merging Any Number of States with Any

Number of Exit States

The principle and procedure outlined above apply to models

in which the states to be merged have any number of ‘exit

states’, for example, different causes of death, provided the

exit states are common to the states to be merged. Figure 2

illustrates two models; one splits states A and B while the

second merges these states. The exit states, E1; . . .;Em, are

the same for states A and B. To make the split-state model

equivalent to the merged state-model, we use the constraints

PAEi
¼ PBEi

;

for i ¼ 1; . . .;m, where PAEi
and PBEi

are the probability of

transiting to state Ei from A and B, respectively, and

constrain the costs and utilities as before, cA ¼ cB ¼ c and

uA ¼ uB ¼ u. Thus, the model choice involves determin-

ing, for each i, whether the probability of death from cause

i, the cost and the utility depends on the disease status

being A or B.

A further generalisation is illustrated in Fig. 3. In this

case, we consider merging n states A1; . . .;An with transi-

tions to m states E1; . . .;Em. The necessary constraints are

PA1Ei
¼ PA2Ei

¼ � � � ¼ PAnEi
; ð2Þ

for i ¼ 1; . . .;m, and again cAj
¼ c and uAj

¼ u; for j ¼
1; . . .; n: The model can be fully reversible and any tran-

sitions can be allowed between the merging states Aj. The

A B A or B

VS

Fig. 2 Merging states with any number of exit states. States A and B are the states under consideration for merging while Ei is a set of arbitrary

exit states
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constrained likelihood of the split-state model is propor-

tional to that of the merged-state model, as proven formally

in Appendix 2 in ESM.

The states Aj may represent severities of disease, and the

Ei different causes of death, but this result is entirely

general to problems of whether to split or combine a set of

states A1; . . .;An for which the potential destination states

after leaving the set are the same for each i ¼ 1; . . .; n. The

‘split’ and ‘merged’ models shown in Fig. 3 may both be

part of a common larger state structure, for example, there

may also be transitions into the Aj, or into and out of the Ei.

However, only the constraints (2) on the outward transition

probabilities, costs and utilities are required to effectively

‘merge’ the states. Thus, the choice of structures is

parameterised as a choice of whether the outward transition

probabilities, costs and utilities are common between

A1; . . .;An.

2.3 Merging States with Different Exit Transitions

An adaptation is required when the states being merged

have different exit states, as illustrated by models (a) and

(b) in Fig. 4. This is a special case of the structure in Fig. 1,

where we know that the probabilities of death are different

(P13 ¼ 0 and P23 6¼ 0) between the states being considered

for merging. In discrete time, there is no choice of

parameters for which model (a) is equivalent to (b) as a

patient in state 2 may exit directly to state 3, but even with

P12 ¼ 1, a patient starting in state 1 would take at least two

cycles to reach state 3.

However, we can extend model (a) by including a non-

zero transition between states 1 and 3 (P13 6¼ 0) to obtain

model (c) in Fig. 4. This model can be constrained to

model (a) by setting P13 ¼ 0 or to model (b) by setting

P13 ¼ P23. A comparison between models (a) and (b) is

then possible by assessing these constraints on model (c).

3 Application to a Markov Model with Individual
Patient Data: PANDA

In this section, we present an application to a health eco-

nomic model for patients with symptoms of depression for

whom their general practitioner is considering prescribing

anti-depressant medication. The model was used to com-

pare the cost effectiveness of severity thresholds above

which to treat patients with depression with anti-depressant

medication, and to estimate the value of a proposed ran-

domised controlled trial to compare severity thresholds.

The severity of symptoms was measured on the Hamilton

Depression Rating (HAMD) scale, and three alternative

treatment thresholds (HAMD[ 2, HAMD[ 15 or

HAMD[ 25) are compared with a policy of no treatment.

3.1 Model for Cost Effectiveness of Anti-Depressant

Treatment by Depression Severity

The model consists of a short- and a long-term component.

The short-term model uses linear regression based on

published studies [19–21] to predict a patient’s HAMD

score over the first 12 weeks after treatment initiation. The

long-term component is a discrete-time Markov multi-state

model with a 12-week cycle length and a time horizon of

96 weeks (eight cycles). Patients move between four states

of severity: well 0–7 HAMD, mild 8–13 HAMD, moderate

14–18 HAMD and severe/very severe 19–30 HAMD.

These are standard categories defined by the American

or…or 

VS

Fig. 3 Merging any number of states with any number of exit transitions. States Aj are the states under consideration for merging and Ei is a set

of arbitrary exit states

1 2 3

VS

1 / 2 3

1 2 3

Must extend model (a)

(a)

(b)

(c)

Fig. 4 Comparison of two models (a) and (b) where the states to be

merged (1 and 2) have different exit states. These can be compared by

comparing constrained versions of the model (c), an extended version

of model (a). PXY is the probability of making a transition from state

X to state Y in a cycle
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Psychiatric Association [22]. This four-state model is

illustrated in Fig. 5. The joint likelihood of the observed

data is the product of the probabilities of making the

transitions we observed, along with terms for the likeli-

hoods of observed costs and health valuations of observed

state occupancies. The transition probabilities are esti-

mated by maximum likelihood from the numbers of indi-

viduals observed to move between each pair of states in

merged data from the control arms of the IPCRESS,

THREshold for AntiDepressant response (THREAD) and

TREAD studies [23–25]. Log-normal distributions were

used for state costs. These depended on dosing and moni-

toring regimes inferred from expert clinical opinion and

publicly available drug and services costs [26, 27]. As

clinical evidence and opinion was that anti-depressant

medications have no effect on transition probabilities

beyond the initial 12-week period [28], we used the same

probabilities between the categories of depression severity

in the treated and untreated components. However, the

distributions of HAMD at 12 weeks will differ between

treated and untreated patients, as will their costs. Owing to

a lack of reliable evidence, state utilities were not modelled

directly. We instead mapped incremental gains in HAMD,

defined as the difference between the mid-points of the

category range, to incremental health utilities using pub-

lished evidence [29–31].

3.2 Alternative Model Structures and Results

The transition probabilities between the four states are

informed only by the individual transition history data, and

there is no prior clinical belief regarding, for example, how

the transition probability to well differs between mild,

moderate and severe. Therefore, it is possible that, for these

data, a more parsimonious structure that merges two or

more of these states could give more precise estimates of

cost effectiveness. Thus, we consider a ‘two-state’ model

merging all depression states, a ‘Mod-Severe’ model

merging the moderate and severe states, and a ‘Mild-Mod’

model merging the mild and moderate states. Merged

IPCRESS, THREAD and TREAD data were re-analysed to

estimate these transition probabilities for each structure.

Costs for merged health states are estimated as weighted

averages of their constituent costs, with weights defined by

the baseline prevalence of the four depression states. The

same prevalence was assumed for each cycle as the

available prevalence estimate was representative of an

average distribution over time. Utilities were mapped from

incremental gains in HAMD. These models with ‘fully

merged’ states ignore any prior clinical belief that costs or

utilities are different between the states (Table 3). Finally,

we consider ‘partially merged’ models, where outward

transition probabilities across states are assumed to be

equal but costs and HAMD, and therefore utilities, asso-

ciated with the states are assumed to be different.

The HAMD[2 threshold was the most cost effective at a

willingness-to-pay threshold of £20,000 for all but the two-

state model, where ‘‘no treatment at any HAMD threshold’’

was most cost effective (Table 1). The lower cycle costs

for mild depression (£110 treated, £49 untreated) than for

depression of any severity in the two-state model (£186

treated, £149 untreated) explain the substantial difference

Well (1) 

Moderate 
(3) Mild (2) Severe (4) 

Well (1) 

Moderate or Severe (3|4) Mild (2) 

Well (1) 

Mild, Moderate or Severe (2|3|4) 

Well (1) 

Mild or Moderate (2|3) Severe (4) 

4-state 2-state 

doM-dliMetats-3ereveS-doMetats-3

Fig. 5 Alternative state structures for the PANDA multi-state depression model. The same structure is assumed for the treated and untreated

component of the longer-term PANDA depression model. PANDA Prescribing ANtiDepressants that will leAd to a clinical benefit study
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in decision recommendation (Table 2). The EVPI results

indicate a short-term trial with a 12-week follow-up is cost

effective under all models, though the absolute EVPI

estimates vary from approximately £70 to £95 million

between the models. A long-term trial, with 2 years of

follow-up to better inform the Markov model components,

is not likely to be cost effective under any of the models

except the two-state model. However, when costs and

utilities differ but the outward transition probabilities are

merged, the decision and research recommendations are the

same across all models (Table 1).

3.3 Comparison of State Structures Using

Constraints

We compare models by constraining parameters in the full

(four-state) model to produce models that are equivalent to

those with two or three states. We label the four health

states as 1 (well), 2 (mild), 3 (moderate) and 4 (severe).

The multi-state models being compared are illustrated in

Fig. 5.

The four-state model is equivalent to the two-state

model if the ‘recovery rates’ are constrained to be inde-

pendent of depression severity, thus P21 ¼ P31 ¼ P41, and

if the costs and HAMD/utilities of the mild, moderate and

severe states are assumed to be equal to those of the single

depressed state in the two-state model. To constrain the

four-state model to be equivalent to the three-state ‘Mod-

Severe’ model, we constrain the recovery rates to ‘well’

and the rates to ‘mild’ to be the same, P31 ¼ P41 and

P32 ¼ P42, respectively, and constrain the costs and

HAMD/utilities of the states to be equal. Likewise, the

four-state model is constrained to the three-state ‘Mild-

Mod’ model by constraining the recovery rates to ‘well’

and the progression rates to ‘severe’, P21 ¼ P31, P24 ¼ P34,

along with the costs and HAMD/utilities for the mild and

moderate states. Other transition probabilities, such as the

probabilities of relapse (P12, P13;P14), are unaffected by

the constraints.

Each constraint is assessed by comparing the likeli-

hood and AIC contributions, describing how well the

resulting model fits when estimated using corresponding

observed transitions between states. Full details of this

method are given in Appendix 3 in ESM. The log-like-

lihood and AIC for each potential constraint are given in

Table 2. An example code to conduct the comparisons in

the R statistical software [32] is presented in Appendix 6

in ESM.

Table 1 Results of cost-effectiveness value of information analyses for PANDA based on possible models for depression

Model Optimal

strategy

INB (£) of optimal strategy at

willingness to pay £20,000a
P(CE) of optimal

strategy at

willingness to pay

£20,000b

EVPI

(£million)

EVPPI short

term (£million)

EVPPI long

term

(£million)

Four-state (full) HAMD[ 2 223 (-217 to 798) 0.64 80.04 67.29 0

Two-statec No

treatment

NA 0.61 95.61 103.62 4.11

Three-state (Mod-

Severe)

HAMD[ 2 224 (-213 to 805) 0.67 74.88 62.26 0

Three-state (Mild-Mod) HAMD[ 2 234 (-205 to 830) 0.68 70.70 60.53 0

Two-state unconstrained

costsd
HAMD[ 2 225 (-214 to 812) 0.65 77.95 65.45 0

Three-state (Mod-

Severe) unconstrained

costs

HAMD[ 2 224 (-212, 813) 0.65 77.41 64.88 0

Three-state (Mild-Mod)

unconstrained costs

HAMD[ 2 228 (-205, 830) 0.65 77.06 64.61 0

CE cost-effective, EVPI expected value of perfect information, EVPPI expected value of partial perfect information, HAMD Hamilton Depression

Rating scale, INB incremental net benefit, Mod-Severe moderate-severe, NA, PANDA Prescribing ANtiDepressants that will leAd to a clinical

benefit study
a Expected INB of treatment if HAMD[ 2 strategy vs. no treatment
b P(CE) is probability of treatment if HAMD[ 2 strategy has highest net benefit
c No treatment was the most CE strategy under the two-state model with P(CE) = 0.61, treat if HAMD[ 25 was second most CE with INB of -

2 (-24, 26) and P(CE) = 0.32, while HAMD[ 2 had an INB of -306 (-757, 289) and P(CE) of 0.01 under the two-state model
d Unconstrained costs models use four states for costs and HAMD/utilities but merged/constrained models for transition probabilities
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Under the unconstrained four-state model, the estimated

recovery rates to well are substantially different for a

patient with severe depression, thus P41 6¼ P31 and

P41 6¼ P21. This is shown formally by the lower AIC for

P21 6¼ P31 6¼ P41 compared with the constraints where

P31 ¼ P41 or P21 ¼ P41. However, the recovery rates are

similar between mild and moderate, thus the AIC is not

changed substantially when moving between P21 ¼ P31

and P21 6¼ P31. The differences between P32 and P42 and

between P24 and P34 under the four-state model are less

striking. This is confirmed by the small difference in AIC

between P32 ¼ P42and P32 6¼ P42, and between P24 ¼ P34

and P24 6¼ P34. Thus, on the basis of transition probabili-

ties, there is a negligible difference between the three-state

Mild-Mod and four-state models, and these are both

preferred over the two- and three-state Mod-Severe mod-

els, as expected.

Second, we compare the costs informally because these

were based on expert belief. The treated costs are the same,

though the untreated costs are slightly different, between

mild and moderate. Thus, there is some evidence that a

model with unconstrained costs is more appropriate. The

costs for severe depression are substantially different from

mild and moderate depression, arguing against the two-

state and ‘Mod-Severe’ models. Prior judgement deemed

that utilities are primarily determined by severity of

depression, which broadly favours models that have finer

classifications of HAMD.

Based on the chosen model, ‘treat if HAMD[ 2’ is the

optimal strategy. Because the model extrapolates beyond

Table 2 Comparison of transition probabilities and costs for the four Markov cost-effectiveness depression models

Using Parameter Constraints to Choose State Structures in Cost-Effectiveness Modelling 957



HAMD-D scores included in trials, we conclude that anti-

depressant medications are cost effective over the range of

HAMD scores included in the trials. We also conclude that

there is likely to be value in a short-term trial that recruits

patients with milder disease (lower HAMD scores); how-

ever, a long-term follow-up is not likely to be cost

effective.

4 Application to a Model Informed by Published
Parameters: CECaT

In this application, there are no individual-level data.

Instead, the transition probabilities out of the states being

considered for merging are obtained from published esti-

mates. To formally compare the state structures, we have to

derive the implicit transition counts underlying the pub-

lished data.

The Cost-Effectiveness of non-invasive Cardiac Testing

(CECaT) study [33] was a randomised trial of diagnostic

strategies for CAD, comparing angiography alone with

three non-invasive functional tests (followed by

confirmatory angiography if positive). Following the trial,

a Markov multi-state health economic model was devel-

oped, based on previous models by Mowatt et al. [34, 35]

and Kuntz et al. [36]. The full structure and assumptions

are detailed by Thom [17]. Briefly, a patient with suspected

CAD receives one of five alternative diagnostic test

strategies and is assigned a diagnosed severity, as a result

of which they may receive either medical management or

revascularisation. The diagnosed severity may be incorrect

because the tests are not perfect and vary in their sensitivity

and specificity. The model then proceeds with an annual

cycle for 30 years, and at each cycle, a patient may have a

myocardial infarction and/or die from any cause.

In these models, CAD severity is categorised into dis-

crete states, representing the increasing risk of myocardial

infarction and death, and the increasing need for revascu-

larisation. Mowatt et al. [34, 35] used three risk states: low

(no CAD), medium (CAD in one or two vessels excluding

the left main stem) or high (CAD in three or more vessels

and poor left-ventricular function, or disease in the left

main stem). We compare the three-state categorisation with

a model where medium- and high-risk states are merged,

Table 2 continued

For each destination state (well, mild, moderate, severe) the likelihood and AIC are given corresponding to the constraint on the probabilities of

transition into this state implied by each model. Models with lower AIC are preferred. Shaded cells indicate parameters that are constrained to be

equal in each model

AIC Akaike information criterion

P24 is unconstrained in the Mod-Severe model; P42 is unconstrained in the Mild-Mod model
a Values are mean and 95% credible intervals
b Clinical opinion was that costs for mild and moderate treated patients in the four-state model should be the same
c Costs for well patients receiving antidepressants is only the cost of the drug, which is fixed by the British National Formulary list price
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giving two states representing no CAD or CAD. While the

three-state representation is typically used in the literature,

it relies on having sufficient information about the differ-

ences between medium and high risk to justify separating

them. Under the two models, the optimal diagnostic strat-

egy at conventional cost-effectiveness thresholds, and

extent of decision uncertainty, are different [17].

Table 3 shows published data used in the full model.

The risk of death relative to no CAD differs (significantly)

between the two risk groups, but the probability of non-

fatal myocardial infarction, the costs and the utilities are

similar between the medium- and high-risk groups. The

95% confidence intervals for the state-specific relative risks

of death do not overlap, suggesting that they are different

enough to merit separation in the model. For a more formal

comparison, we derive the implicit data from which these

relative risks were obtained: the numbers of people dying

in 1 year, and associated denominators, for medium and

high risk. Appendix 4 in ESM details how this is done. The

problem can then be framed as a comparison of two sta-

tistical models for a pair of binomially distributed obser-

vations (126 deaths out of 571 in medium risk, and 259 out

of 754 in high risk): one model with different probabilities

of death, and one where the death probability is constrained

to be the same, between medium and high risk. These

models have AICs of 17.4 and 39.6, respectively, strongly

favouring separate risk states (Table 3).

A similar analysis is performed for the risk of non-fatal

myocardial infarction, which has overlapping confidence

intervals between medium and high risk, though this does

not necessarily imply a non-significant difference. An AIC

difference of -0.6, however, mildly favours a common risk

between the ‘medium’ and ‘high’ states.

The costs and utilities used for the medium- and high-risk

states in the economic model (excluding the costs of

revascularisation) were estimated from the subset of patients

in the CECaT trial whose CAD severity was known. With

only 19 of these patients in high risk and 59 in medium risk,

it is not clear from the data in Table 3 whether we can

assume that expected cost and utility are different between

medium and high risk. To assess this formally, generalised

linear regression models were fitted to the individual-level

cost and utility outcomes by maximum likelihood in R [32],

using a gamma distribution for the costs, and a truncated

normal distribution for the utilities. The AIC marginally

favours a model with different mean costs (AIC difference

1.4) and a model with common mean utility (AIC difference

-1.4) between medium and high risk.

Thus, in this model, separating medium- and high-risk

states is strongly justified based on their different mortality

rates. Though within this structure, there is some evidence

that constraining the myocardial infarction rates and utilities

to be common between the states will lead to a better trade-

off between model fit and model complexity, or bias and

precision. Appendix 7 in ESM provides an example R code

for all the likelihood and AIC calculations in this example.

5 Discussion

Currently, state structure choices are made informally,

based upon clinical opinion or availability of data, or

compared through simple scenario analyses [2, 7–9]. In this

article, we have developed a formal statistical basis to

compare state structures in cost-effectiveness models.

Specifically, two or more similar states in a transition

model can be merged if they have the same consequences

for a patient who enters them. The models are then com-

pared by assessing a constraint on these consequences

using standard statistical methods, if the parameters are

Table 3 Published and derived data on parameters of the CECaT model of coronary artery disease, and AIC difference assessing the constraint

that the corresponding parameters are equal between medium- and high-risk states (positive AIC difference favours different parameters)

Medium risk High risk AIC (medium = high)

- AIC (medium = high)

Published parameter estimates (with 95% CI)

Relative risk of death (vs. no CAD) 2.3 (1.9–2.8) 3.6 (3.1–4.1)

Annual risk of non-fatal MI 0.022 (0.016–0.029) 0.028 (0.021–0.035)

Derived event count data

Number/denominator of deaths in 1 year (%) 126/571 (22) 259/754 (34) 22.2

Number/denominator of non-fatal MIs (%) 39/1717 (2.2) 62/2159 (2.8) -0.6

Summary of individual-level data (mean, SD, sample size)

Costs 1530, 880, n = 59 1930, 1070, n = 19 1.4

Utilities 0.81, 0.12, n = 59 0.78, 0.21, n = 19 -1.4

AIC Akaike information criterion, CAD coronary artery disease, CI confidence interval, CECaT Cost Effectiveness of non-invasive Cardiac

Testing, MI myocardial infarction, SD standard deviation
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estimated from data, or by expert belief. Thus, we can

decide whether the risk of bias in a more parsimonious

model outweighs the reduced uncertainty from such a

model. While assessing constraints on parameters is com-

mon practice, we have shown that models with merged

states and models with constrained parameters can be used

interchangeably. We proved that this method works for

comparing any pair of structures where the states to be

merged have the same exit states (Sect. 2.2) and that the

method can be adapted to work if they have different exit

states (Sect. 2.3). We also showed this method to be

valuable even if state structure uncertainties do not affect

the current treatment decision as the value of further

research, quantified by the EVPI, expected value of partial

perfect information or the expected value of sample

information, may be sensitive to structural choices [14].

Statistical methods to assess the equality of model

parameters require that the data used to estimate those

parameters are available, to form the likelihood. For transition

probabilities, the number of individuals who are observed to

move between each pair of states in a time period, and

denominators are required. The Prescribing ANtiDepressants

that will leAd to a clinical benefit (PANDA) study used ran-

domised controlled trials but our methods apply to any source,

including registries or cohort studies, which provide the data

necessary to estimate transition probabilities. We recommend

using the data to choose the appropriate state structure before

building the full model. Individual patient data were not

available for the CECaT model. W recreated the numerators

and denominators by assuming that the split between risk

groups was the same across randomised arms of the trial,

which should approximately hold if randomisation was ade-

quate. To aid such calculations, we recommend that data of

this form are published routinely.

Constraints for state selection can also be applied to

continuous time multi-state models, which have been

advocated for use in health economic modelling [37, 38],

as we show in Appendix 5 in ESM, and to the selection of

structures for patient-level simulation and heterogeneity

models through the inclusion of covariates on the transition

probabilities and comparing their effects between states.

The principle should also extend to non-Markov multi-state

models but this needs to be investigated. In a Bayesian

model comparison, expert belief can be used by placing

prior probabilities on parameters or model structures and

combining with data via Bayes theorem.

Conversely, our method deals only with comparing multi-

state structures. Further research into formal statistical

methods for other forms of structural uncertainty is required.

The choice between continuous and discrete outcome

models is difficult. A multi-state model for changes in dis-

ease severity is essentially a continuous outcome model,

where ranges of the outcome are constrained to have

equivalent costs, utilities and future disease progression.

However, there is no routinely applicable method to con-

strain a multi-level regression model, for example, to be

equivalent to a multi-state model. Consideration is also

required for more complex models, such as dynamic trans-

mission models in infectious diseases [6, 39].

6 Conclusion

We have developed a formal method to parameterise state

structure uncertainty using constraints on the parameters of

the most complex model and have illustrated its wide

applicability through examples in depression and CAD.

Further research is required for structural uncertainty in

non-multi-state cost-effectiveness models.

Author contributions All authors conceived and designed the

study. Howard Thom developed the general methods in conjunction

with Chris Jackson, Nicky Welton and Linda Sharples. Howard Thom

and Nicky Welton developed the PANDA depression model and

Howard Thom conducted the model comparison. Chris Jackson

applied the methods to CECaT. Howard Thom drafted the paper and

all authors critically reviewed and agreed to it as submitted.

Compliance with ethical standards

Funding Chris Jackson was fully funded and Linda Sharples and

Howard Thom were partly funded by the Medical Research Council

(MRC) Programme Grant U015232027. Howard Thom and Nicky

Welton also received support from the MRC ConDuCT-II Hub

(Collaboration and innovation for Difficult and Complex randomised

controlled Trials In Invasive procedures—MR/K025643/1). The

CECaT study was funded by a Grant from the UK National Institute

for Health Research (NIHR) Health Technology Assessment Program

(Project No. 99/26/04). The PANDA depression study was funded by

the NIHR Programme Grants for Applied Research Award (Grant

Reference No. RP-PG-0610-10048). The views expressed are those of

the authors and not necessarily those of the MRC, National Health

Service, the NIHR or the Department of Health.

Conflict of interest Howard Thom, Chris Jackson, Nicky Welton

and Linda Sharples declare they have no financial or non-financial

conflicts of interest that are directly relevant to the content of this

article.

Data availability statement The datasets used for model comparison

during the current study are included in this published article (within

Table 3 for the heart disease example and in the code provided in

Appendix 6 in ESM for the depression example). Further code and

data, to generate the cost-effectiveness results, are available from the

corresponding author on reasonable request.

Open Access This article is distributed under the terms of

the Creative Commons Attribution 4.0 International License

(http://creativecommons.org/licenses/by/4.0/), which permits use,

duplication, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original

author(s) and the source, provide a link to the Creative Commons

license and indicate if changes were made.

960 H. Thom et al.



References

1. Brennan A, Chick SE, Davies R. A taxonomy of model structures

for economic evaluation of health technologies. Health Econ.

2006;15(12):1295–310.

2. Briggs AH, et al. Model parameter estimation and uncertainty

analysis: a report of the ISPOR-SMDM Modeling Good Research

Practices Task Force Working Group-6. Med Decis Making.

2012;32:722–32.

3. National Institute for Health and Care Excellence. Guide to the

methods of technology appraisal: process and methods guides.

http://publications.nice.org.uk/pmg9.

4. Raiffa H, Schlaifer R. Applied statistical decision theory. Wiley

Classics Library Ed. New York: Wiley; 2000. p. 356.

5. Frederix GW, et al. The impact of structural uncertainty on cost-

effectiveness models for adjuvant endocrine breast cancer treat-

ments: the need for disease-specific model standardization and

improved guidance. Pharmacoeconomics. 2014;32(1):47–61.

6. Brisson M, Edmunds WJ. Impact of model, methodological, and

parameter uncertainty in the economic analysis of vaccination

programs. Med Decis Making. 2006;26(5):434–46.

7. Siebert U, et al. State-transition modelling: a report of the

ISPOR-SMDM Modelling Good Research Practices Task Force-

3. Value Health. 2012;15:812–20.

8. Jackson CH, et al. A framework for addressing structural

uncertainty in decision models. Med Decis Making.

2011;31(4):662–74.

9. Pitman R, et al. Dynamic transmission modeling: a report of the

ISPOR-SMDM Modeling Good Research Practices Task Force-5.

Value Health. 2012;15(6):828–34.

10. Akaike H. A new look at the statistical model identification. IEEE

Trans Autom Control. 1974;19(6):716–23.

11. Jackson CH, Thompson SG, Sharples LD. Accounting for

uncertainty in health economic decision models by using model

averaging. J R Stat Soc Ser A. 2009;172(2):383–404.

12. Spiegelhalter DJ, et al. Bayesian measures of model complexity

and fit. J R Stat Soc Ser B. 2002;64(4):583–639.

13. Jackson CH, Sharples LD, Thompson SG. Structural and

parameter uncertainty in Bayesian cost-effectiveness models. J R

Stat Soc Ser C. 2010;59(2):233–53.

14. Price M, et al. Model averaging in the presence of structural

uncertainty about treatment effects: influence on treatment deci-

sion and expected value of information. Value Health.

2011;14(2):205–18.

15. Thom H, et al. State selection in Markov models for panel data

with application to psoriatic arthritis. Stat Med.

2015;34(16):2456–75.

16. Strong M, Oakley JE, Chilcott J. Managing structural uncertainty

in health economic decision models: a discrepancy approach. J R

Stat Soc Ser C. 2012;61(1):25–45.

17. Thom H. Structural uncertainty in cost-effectiveness models.

Cambridge: MRC Biostatistics Unit, University of Cambridge;

2013.

18. Briggs AH, Ades A, Price M. Probabilistic sensitivity analysis for

decision trees with multiple branches: use of the Dirichlet dis-

tribution in a Bayesian framework. Med Decis Making.

2003;23(4):341–50.

19. Kirsch I, et al. Initial severity and antidepressant benefits: a meta-

analysis of data submitted to the Food and Drug Administration.

PLoS Med. 2008;5(2):e45.

20. Fournier JC, et al. Antidepressant drug effects and depression

severity. JAMA. 2010;303(1):47–53.

21. Gibbons RD, et al. Benefits from antidepressants. Arch Gen

Psychiatry. 2012;69(6):572–9.

22. American Pychiatric Assocation. Handbook of pyschiatric mea-

sures. Washington, DC: American Psychiatric Association; 2000.

23. Kessler D, et al. Therapist-delivered internet psychology for

depression in primary care: a randomised controlled trial. Lancet.

2009;374(9690):628–34.

24. Kendrick T, et al. Randomised controlled trial to determine the

clinical effectiveness and cost-effectiveness of selective serotonin

reuptake inhibitors plus supportive care, versus supportive care

alone, for mild to moderate depression with somatic symptoms in

primary care: the THREAD (THREshold for AntiDepressant

response) study. Health Technol Assess. 2009;13(22):1–159.

25. Chalder M, et al. Facilitated physical activity as a treatment for

depressed adults: randomised controlled trial. BMJ. 2012;344:e2758.

26. Curtis L. Unit costs of health and social care 2013. Canterbury:

Personal Social Services Research Unit, University of Kent; 2014.

27. British national formulary. London: BMG Group and Pharma-

ceutical Press; 2013.

28. Henssler J, et al. Long-term acute-phase treatment with antide-

pressants, 8 weeks and beyond: a systematic review and meta-

analysis of randomized, placebo-controlled trials. J Clin Psychi-

atry. 2017. doi:10.4088/JCP.15r10545 (Epub ahead of print).
29. Kounali D, Lewis G, Ades A. Instrument responsiveness to

treatment effects in depression: a meta-analytic approach. Clin

Epidemiol. 2016.

30. Ades AE, et al. Simultaneous synthesis of treatment effects and

mapping to a common scale: an alternative to standardisation.

Res Synth Methods. 2015;6(1):96–107.

31. Lu G, Kounali D, Ades AE. Simultaneous multioutcome syn-

thesis and mapping of treatment effects to a common scale. Value

Health. 2014;17(2):280–7.

32. R Core Team. R: a language and environment for statistical com-

puting. Vienna: R Foundation for Statistical Computing; 2015.

33. Thom H, et al. Cost-effectiveness of initial stress cardiovascular

MR, stress SPECT or stress echocardiography as a gate-keeper

test, compared with upfront invasive coronary angiography in the

investigation and management of patients with stable chest pain:

mid-term outcomes from the CECaT randomised controlled trial.

BMJ Open. 2014;4(2):e003419.

34. Mowatt G, et al. Systematic review of the effectiveness and cost-

effectiveness, and economic evaluation, or myocardial perfusion

scintigraphy for the diagnosis and management of angina and

myocardial infarction. Health Technol Assess. 2004;8(30):iii–iv,

1–207.

35. Mowatt G, et al. Systematic review of the clinical effectiveness

and cost-effectiveness of 64-slice or higher computed tomogra-

phy angiography as an alternative to invasive coronary angiog-

raphy in the estimation of coronary artery disease. Health

Technol Assess. 2008;12(17):iii–iv, ix–143.

36. Kuntz KM, et al. Cost-effectiveness of diagnositc strategies for

patients with chest pain. Ann Intern Med. 1999;130(9):709–18.

37. Welton N, Ades A. Estimation of Markov chain transition

probabilities and rates from fully and partially observed data:

uncertainty propagation, evidence synthesis, and model calibra-

tion. Med Decis Making. 2005;25(6):633–45.

38. Price M, Welton N, Ades A. Parameterization of treatment effects

for meta-analysis in multi-state Markov models. Stat Med.

2011;30(2):140–51.

39. Bilcke J, et al. Accounting for methodological, structural, and

parameter uncertainty in decision-analytic models: a practical

guide. Med Decis Making. 2011;31(4):675–92.

40. Yusuf S, et al. Effect of coronary artery bypass graft surgery on

survival: overview of 10-year results from randomised trials by

the Coronary Artery Bypass Graft Surgery Trialists Collabora-

tion. Lancet. 1994;344(8922):563–70.

Using Parameter Constraints to Choose State Structures in Cost-Effectiveness Modelling 961

http://publications.nice.org.uk/pmg9
http://dx.doi.org/10.4088/JCP.15r10545


41. Norris JR. Markov chains. 1st ed. Cambridge series on statistical

and probabilistic mathematics. Cambridge: Cambridge Univer-

sity Press; 1998. p. 237.

42. Cox DR, Miller HD. The theory of stochastic processes. New

York: Wiley Publications; 1965. p. 398.

43. Lunn D, et al. The BUGS book: a practical introduction to

Bayesian analysis. Texts in statistical science. Boca Raton: CRC

Press; 2013. p. 381.

962 H. Thom et al.


	Using Parameter Constraints to Choose State Structures in Cost-Effectiveness Modelling
	Abstract
	Background
	Methods
	Application
	Conclusions

	Introduction
	Methods for Comparing State Structures by Assessing Parameter Constraints
	Merging Two States with One Common Exit State
	Merging Any Number of States with Any Number of Exit States
	Merging States with Different Exit Transitions

	Application to a Markov Model with Individual Patient Data: PANDA
	Model for Cost Effectiveness of Anti-Depressant Treatment by Depression Severity
	Alternative Model Structures and Results
	Comparison of State Structures Using Constraints

	Application to a Model Informed by Published Parameters: CECaT
	Discussion
	Conclusion
	References




