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Abstract. This paper is focused on an analysis of rotating systems with fluid-film bearings, especially on their
nonlinear behaviour in the course of developing fluid-induced instability. The studied system consists of Jeffcott
rotor supported by a fluid-film bearing characterised by the Reynolds equation. The steady state response of
the system is investigated by means of an approximate analytical solution of the Reynolds equation while the
transient response of the system is investigated using a complex numerical solution. Results suggest that the
rotor exercise a bounded chaotic motion if it becomes unstable. If the fluid-induced instability further develops,
the motion actually becomes less chaotic and can be characterised as quasi-periodic.

1 Introduction

Fluid film bearings are widely used for supporting of va-
rious rotating machines because of their favourable pro-
perties, specifically low friction and wear and vibration-
reducing capabilities. However, it has been known for
more than 90 years that a fluid-induced instability can de-
velop in a poorly designed bearing [1]. The quality of the
bearing design can be expressed by Sommerfeld number
S 0 = ( p̄ψ2/ηω0, where p̄, ψ are a rated load relative clea-
rance of the bearing, η is a dynamic viscosity of a fluid
film and ω0 is a rotor speed [2]. In general, bearings with
low S 0 – i.e. not enough loaded bearings, bearings with
high-speed rotors or bearings with highly viscous films –
are prone to the the fluid-induced instability.

The instability, also known as oil whirl, was mathema-
tically described at the turn of the 50s and 60s [3, 4]. Both
authors also expressed a stability criterion for a linearised
rotor-bearing system which is based on the Routh-Hurwitz
criterion. The occurrence of the fluid-induced instability
and the processes accompanying it were studied experi-
mentally in the early 80s [5–7].

The oil whirl starts when hydrodynamical (HD) for-
ces in the fluid film become higher than loading forces,
which are predominantly caused by static loads. When
this occurs, the HD forces start to push a journal – a part
of a shaft, which rests in a bearing – in a forward circular
motion around the bearing. The journal runs about the be-
aring with a period which in general lasts slightly longer
than two revolutions. Therefore the oil whirl can be ea-
sily recognized by frequency which is 0.42–0.49 to journal
speed [6].
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HD forces are determined by a pressure distribution of
the fluid film, which is governed by a partial differential
equation known as the Reynolds equation (RE) [8]. The
exact analytical solution of RE has not been known until
2012 [9], however, approximate analytical solutions for
infinitely short [10, 11] and infinitely long bearings [11]
have been known since the 50’s and later many researchers
used perturbation methods in order to obtain approximate
analytical solutions of full RE [12, 13]. As the compu-
ting power of personal computers had been rising, robust
numerical methods including finite differential [14], finite
element [14, 15], finite volume [16] and element-based fi-
nite volume methods [17] were also employed.

Although all mentioned methods capture the pheno-
menon of oil whirl, there are relatively small number of
studies which focus on nonlinear behaviours of rotors ope-
rated close to the instability threshold speed. A transient
state which occurs in rotor-bearing system when a journal
pass the threshold speed is studied in [13], where small
amplitude perturbations are assumed in the bearing. The
transient state of Jeffcott rotor supported by a gas bearing
and accompanying bifurcations are studied in [18].

The main focus of this work is to perform an in-depth
analysis of the transient state for Jeffcott rotor supported
by journal bearing with consideration of all terms which
are presented in RE. This may lead to better understanding
of the oil whirl instability, and hence to understand how to
design rotor systems which are operated in the unstable
regime.

The rest of the article is outlined as follows. Section 2
presents a simple model on which computations of steady-
state response were performed. Section 3 contains a brief
description of an extended model for transient analysis.
Model and simulation parameters, and results are discus-
sed in sections 4 and 5, respectively. Finally, section 6
draws some conclusions.
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2 Model for steady-state analysis
A general mathematical model of a simple rigid rotor
which rotates at a constant angular velocity and is suppor-
ted by a generic journal bearing is described in this section.

2.1 Equation of motion for a rigid rotor

We assume the rigid rotor of mass m which rotates at a
constant angular velocity ω0 and is subject to constant gra-
vitational and out-of-balance forces fg and fu and to a vec-
tor of hydrodynamic forces fhd (see fig. 1). The equili-
brium of acting and inertia forces can be written as [2]

M q̈ = fg + fu + fhd, (1)

where M is a mass matrix and q̈(t) is an acceleration vec-
tor. If we further assume that the rotor does not perform
yaw and pitch movements then its motion is given by ho-
rizontal displacement and vertical displacement x = x(t)
and y = y(t) and Eq. (1) can be written in the form
[
m 0
0 m

] [
ẍ
ÿ

]
=
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0
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+ Ust ω

2
0
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cosω0 t
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x
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where g is the gravitational constant, Ust is the static un-
balance and Fhd

x and Fhd
y are horizontal and vertical com-

ponents of vector fhd [2].
Alternatively, the motion of the rotor can be characte-

rised by eccentricity e = e(t) and angle to the eccentricity
φ = φ(t), which are related to x and y as follows
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Figure 1. A rigid rotor supported by a journal bearing.

2.2 Hydrodynamic forces in a journal bearing

Hydrodynamic forces are obtained by integrating hydro-
dynamic pressure in an oil film over a surface of the be-
aring. Hydrodynamic pressure p = p(s, z, t) is given by
the Reynolds equation [8]

∂

∂s

(
h3

µ

∂p
∂s

)
+
∂

∂z

(
h3

µ

∂p
∂z

)
= 6ω0 r

∂h
∂s
+ 12

∂h
∂t
, (7)

where s and z are circumferential and axial coordinates,
respectively, h = h(s, z, t) is a gap between the journal
and the bearing and µ is dynamic viscosity of the oil film.

The Reynolds equation (7) can be solved under various
assumptions. Let us assume the half Sommerfeld conditi-
ons [10] and consider the following relations

h = cr − e cos
( s

r
− φ
)

and l→ 0, (8)

where l is the bearing length. Then radial and tangen-
tial components of hydrodynamic forces Fhd,sb

rad and Fhd,sb
tan

shown in Fig. 1 can be expressed as [11]
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where ε = e/cr is the relative eccentricity. Equations (9)
and (10) approximate the analytical solution of Reynolds
equation (7) reasonably accurately if l < r holds [11]. If
l is from interval 〈r, 4 r〉, the components of hydrodyna-
mic forces have to be corrected. Bastani proposed [11]
corrective functions in the form

Fhd
rad =

(
f1 ε3 + f2 ε2 + f3 ε + f4

)
Fhd,sb

rad , (11)

Fhd
tan =

(
g1 ε

2 + g2 ε + g3

)
Fhd,sb

tan , (12)

where fi, gi are cubic or quartic polynomial functions
which are dependant on l/r and are expressed in [11].

Hydrodynamic forces Fhd
rad and Fhd

tan are derived in a ro-
tated coordinate system shown in fig. 1 and can be trans-
formed to a fixed coordinate system from equation of mo-
tion (2) using relations

Fhd
x = Fhd

rad cos φ − Fhd
tan sin φ, (13)

Fhd
y = Fhd

rad sin φ + Fhd
tan cos φ. (14)

2.3 Solution strategy

Equation of motion (2) can be formally rewritten as

M q̈ = f, (15)

where f = f(q̇, q, t) is a vector of all acting forces.
Eq. (15) can be further transformed to the state-space; the
resulting equation is then

u̇ =
[

q̇
M−1 f

]
, where u̇ =

[
q̇
q̈

]
. (16)

The equation of motion in this form can be integrated nu-
merically by means of the Runge-Kutta method.
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ẍ
ÿ
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x ẏ − y ẋ
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3 Model for transient analysis

An extension to the previous model allowing a transient
analysis for ω0 � const. is described in this section.

3.1 Equation of motion

Let us assume that the angular speed of the rigid rotor from
section 2.1 is time-dependant variable ϕ̇ = ϕ̇(t). Since we
want to be able to control ϕ̇, we introduce a controller and
couple the controlle and the rotor with a rotational spring
as shown in Fig. 2. The rotation of the rotor in such confi-
guration is given by the equation

I ϕ̈ + dr (ϕ̇ −Ω) + kr (ϕ − Φ) = Mf ric, (17)

where I is a moment of inertia of the rotor to the axis of ro-
tation, dr, kr are rotational damping and stiffness of the ro-
tational spring, respectively,Φ = Φ(t) andΩ = Ω(t) are ar-
bitrary functions of controller’s angular displacement and
angular velocity and Mf ric is a frictional moment [2].

Since frictional moment Mf ric is of no concern because
we do not analyse losses due friction nor thermodynamics
of the oil film, Mf ric is further neglected. With respect to
the fact that angular velocity of the rotor ϕ̇ is not constant,
equations of motion are

m ÿ = Ust ϕ̇
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y , (18)

m z̈ = −m g + U ϕ̇2 sinϕ + FEMFhd
z , (19)
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y are obtained from finite-element-based nume-

rical solution of the Reynolds equation [15].
In the first step of the solution process, hydrodynamic

pressure p is obtained from Reynolds equation (7) under
the assumptions tha i) the bearing is fully-flooded, ii) there
is constant ambient pressure pa at edges of the bearing,
and c) if hydrodynamic pressure p in any node of FE mesh
drops below the predefined value ps, then p = ps is set in
that particular node.

In the second step, p is integrated over the bearing sur-
face. This integral yields FEMFhd

x and FEMFhd
y [9].

Note that the approximate analytical solution of Eq.
(7) which is described in section 2.2 is derived under the
assumption that the angular speed of the journal is constant
and therefore cannot be used for transient analysis.
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Figure 2. A rigid rotor coupled to a controller.

3.2 Solution strategy

The system of eqs. (18) has to be transformed to the
state-space in order to be integrable by standard numeri-
cal solvers. The transformation was briefly described in
section 2.3.

4 Model and simulation parameters

Parameters of the system and their respective symbols for
both steady-state and transient analysis can be found in
tab. 1. The parameters are chosen so that the fluid-induced
instability arises at ca. 2300 rpm.

The rotor was considered perfectly balanced in the
case of the steady-state analysis. The simulations were
performed in the speed interval n ∈ 〈2000, 2900〉 with the
step 5 rpm. Time integration was performed in the interval
t ∈ 〈0, 1.5〉 s with a variable time step. The results were
then transformed to time series with the constant time step
10−4 s. Only the time interval t ∈ 〈0.5, 1.5〉 s was subjected
to subsequent post-processing.

The transient analysis was performed in the speed in-
terval n ∈ 〈800, 4000〉 rpm with several values of con-
stant angular acceleration and static unbalance Ust. The
selected values of Ust correspond with balance quality gra-
des G0, G6.3 and G16 per ISO 1940. Time integration was
performed with a variable time step ∆t ∈ 〈5 × 10−7, 5 ×
10−5〉 s and the results were then transformed to time se-
ries with the constant time step 10−4 s.

Table 1. Parameters of analysed system. Items denoted with
asterisk symbol (∗) are used only during transient analysis.

Parameter Symbol (unit) Value
rotor mass m (kg) 3
moment of inertia∗ I (kg·m2) 0.03
rotor speed n (rpm) variable
gravitational constant g (m·s−2) 9.81
static unbalance G0 Ust (g·mm) 0
static unbalance G6.3∗ Ust (g·mm) 45
static unbalance G16∗ Ust (g·mm) 120
bearing radius r (mm) 23.69
bearing length l (mm) 47.37
radial clearance cr (mm) 0.9
oil viscosity µ (Pa·s) 0.07
ambient pressure∗ pa (bar) 0
saturation pressure∗ pc (bar) 0
rotational stiffness∗ kr ( kN·m·rad) 1
rotational damping∗ dr (N·m·rad−1·s−1) 1

Table 2. Summary of performed simulations.

Analysis: steady-state transient
Static unbalance: 0 g·mm 0, 45, 120 g·mm
Speed: const. const.

const. angular acc.
Min. speed: 2000 rpm 800 rpm
Max. speed: 2900 rpm 4000 rpm
Simulation length: 1.5 s 15, 30, 60, 120 s
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Figure 3. Results of brute force bifurcation. Depicted are a) local extremes of steady-state responses and b) values of relative rotating
displacement ψ if relative rotating displacement χ is 0. Relative rotating displacements are defined in Eqs. (21) and (22). Fig. 3b can
be also perceived as the intersection of rotating trajectories with nψ plane. The intersection is highlighted in fig. 4b.
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Figure 4. Trajectories (obtained from steady-state analysis) of the rotor at selected speeds are depicted in a) fixed coordinates and b)
rotating coordinates. Black dots show the position of the rotor at the beginning of each turn. There are also shown responses in the
frequency domain in fig. 4c.

5 Results and discussion

The results of the aforementioned steady-state and tran-
sient analysis are presented and discussed in this section.

5.1 Steady-state analysis

Fig. 3a shows the results of the steady-state response ana-
lysis, more precisely there are plotted local maxima and

minima of relative eccentricity ε. We assume that de-
picted trajectories are reasonably close to trajectories in
respective limit cycles.

It is apparent that until ca. 2350 rpm the system is wor-
king at its equilibrium. If the rotor speed further grows, the
trajectory will become elliptic as shown in fig. 4a. This el-
liptic motion is happening at a frequency which is slightly
lower than half of the rotor speed and might actually be
chaotic because significant broadband noise is present [19]
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Figure 4. Trajectories (obtained from steady-state analysis) of the rotor at selected speeds are depicted in a) fixed coordinates and b)
rotating coordinates. Black dots show the position of the rotor at the beginning of each turn. There are also shown responses in the
frequency domain in fig. 4c.

5 Results and discussion

The results of the aforementioned steady-state and tran-
sient analysis are presented and discussed in this section.

5.1 Steady-state analysis

Fig. 3a shows the results of the steady-state response ana-
lysis, more precisely there are plotted local maxima and

minima of relative eccentricity ε. We assume that de-
picted trajectories are reasonably close to trajectories in
respective limit cycles.

It is apparent that until ca. 2350 rpm the system is wor-
king at its equilibrium. If the rotor speed further grows, the
trajectory will become elliptic as shown in fig. 4a. This el-
liptic motion is happening at a frequency which is slightly
lower than half of the rotor speed and might actually be
chaotic because significant broadband noise is present [19]
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Figure 5. The results of transient analysis show that a) the threshold speed for the fluid-induced instability is dependent on the angular
acceleration of the system and b) the static unbalance introduces new local extremes but almost does not influence the threshold speed.
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Figure 6. Trajectories (obtained from transient analysis) of the balanced rotor at selected speeds through 4 turns are depicted in a) fixed
coordinates and b) rotating coordinates. Black dots show the position of the rotor at the beginning of each turn. There are also shown
responses in the frequency domain through 6 turns in fig. 6c.

as can be seen in fig. 4c. It is safe to assume that around
2350 rpm a threshold speed of the fluid-induced instability
can be found. After 2500 rpm mark is passed, the system
comes into quasi-periodic motion with apparent response
at the rotor speed and at even higher speed the motion is
clearly limited by bearing clearance and the fluid-induced
instability becomes fully developed.

We can study the trajectories more rigorously, if we
transform them to a coordinate system (χ, ψ) which rotates
around z axis at the same speed as the rotor [19].

χ = χ(t) and ψ = ψ(t) are defined as follows

χ = x cosϕ − y sinϕ, (21)
ψ = x sinϕ + y cosϕ. (22)

We further refer to the transformed trajectories as rotating
trajectories. Fig. 4b shows that there are three distinct
types of the rotating trajectories in the zone delimited by
the threshold speed of the instability and by the speed at
which the instability is fully-developed (we call this zone
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the transient zone in the following text). Firstly, there
is almost circular trajectory which shows properties of a
bounded chaotic motion [19]. If the speed increases, the
system comes into stable period doubling and tripling mo-
tion with less significant noise, possibly indicating quasi-
periodic solution [13]. Finally, when the instability fully
develops, the rotating trajectory is circular and the rotor
covers roughly 540◦ in one cycle.

All described phenomena are exhibited in the results of
both steady-state and transient analysis with zero angular
acceleration. However, all qualitative changes happen at
higher speeds in the case of the transient analysis.

5.2 Transient analysis

Fig. 5a shows how the threshold speed of the instability
is influenced by angular acceleration of the rotor. Appa-
rently, if the angular acceleration is higher, the system will
became unstable at higher speed. Fig. 5b shows that the
influence of static unbalance on the threshold speed is rat-
her small.

Fig. 6 demonstrates there are three distinct types of ro-
tating trajectories not only if the rotor is spinning at con-
stant speed but also if its speed is increasing. Note that tra-
jectories and spectra depicted in fig. 6 are taken from the
simulation of the perfectly balanced rotor with the lowest
angular acceleration because this simulation offers the best
frequency resolution of frequency analysis.

Similar trajectories are to be found in all simulated ca-
ses. However, if the rotor is unbalanced, there is an additi-
onal synchronous (1X) component present in the response.

6 Conclusions

This paper provided a brief yet coherent theory for dyna-
mic behaviour of rigid rotors supported by fluid-film be-
arings occurring in the so called transient zone delimited
by the threshold speed of the fluid-induced instability and
by the speed at which the instability is fully-developed.

There are three distinct types of the rotor motion in the
transient zone. The first type appears as a bounded chaotic
motion. Interestingly, later two types are less chaotic and
tend to be quasi-periodic. This behaviour is presumably
caused by the fact that these motions are more limited by
the geometry of the bearing. The later two types of motion
are also characteristic by the response with synchronous
(1X) components even if the rotor is perfectly balanced.

These three types of motion can be find not only if the
rotor is analysed at constant speed but also if the angu-
lar speed is being constantly increased and if the rotor is
unbalanced.

Preliminary studies suggest that the presented conclu-
sions are valid also for journals of flexible rotors which
are supported by multiple journal bearings. However, to

prove that such phenomena happen in general is left to fu-
ture work.
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