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ABSTRACT

A new Bayesian tool for nonlinear model fitting has been developed, that

employs a parallel tempering Markov Chain Monte Carlo algorithm with a novel

statistical control system. The algorithm has been used to re-analyze precision

radial velocity data for HD 73526. For a single planet model, three possible

orbits were found with periods of 127.88+0.37
−0.09, 190.4+1.8

−2.1 and 376.2+1.4
−4.3 days. The

128 day orbit, with an eccentricity of 0.56 ± 0.03, has a maximum value of prior

× likelihood which is 16 times larger than for the next highest solution at 376

days. However, the 376 day orbit, with an eccentricity of 0.10+0.05
−0.10, is formally

more probable because for this sparse data set there is a much larger volume

of parameter space with a significant probability density in the vicinity of the

376 day peak. The previously reported orbit (Tinney et al. 2003) of 190.5 ± 3.0

days corresponds to our least probable orbit. The analysis highlights the need

for measurements around phase 0.5 for the 376 day period.

Subject headings: Bayesian methods, time series analysis, extrasolar planets:

individual( HD 73526)

1. Introduction

Since the discovery of the extra-solar planet orbiting 51 Peg (Mayor & Queloz 1995),

high-precision radial-velocity measurements of the reflex radial velocity of the host star have

lead to the discovery of over 130 planetary candidate companions to solar-type stars both

in single and multiple star systems (e.g., Eggenberger et al. 2004). Most of these planets

have M sin i comparable to or greater than Jupiter, where M is the mass of the planet and

i is the angle between the orbital plane and a plane perpendicular to the line of sight to the
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planetary system. However, as Doppler precision increases, lower mass planets to the level

of Neptune are also being discovered (McArthur et al. 2004, Fischer et al. 2003).

Existing orbital solutions are based on the use of nonlinear-least squares methods which

typically require a good initial guess of the parameter values. Frequently, the first indication

of a periodic signal comes from a periodogram or epoch folding analysis of the data. These

periodogram methods do not make use of relevant prior information about the known shape

of the periodic signal. In the extrasolar planet Kepler problem, the mathematical form of the

periodic signal is well known and is readily built into a Bayesian analysis. In this work, we

re-analyze recently published high-precision radial-velocity measurements using a Bayesian

Markov Chain Monte Carlo (MCMC) algorithm that is effective for both detecting and

characterizing the orbits of extrasolar planets. This approach has the following advantages:

a) Good initial guesses of the parameter values are not required. A MCMC is capable

of efficiently exploring all regions of joint prior parameter space having significant

probability 1. There is thus no need to carry out a separate search for the orbital

period(s).

b) The method is also capable of fitting a portion of an orbital period, so search periods

longer than the duration of the data are possible.

c) The built-in Occam’s razor in the Bayesian analysis can save considerable time in

deciding whether a detection is believable. More complicated models contain larger

numbers of parameters and thus incur a larger Occam penalty, which is automatically

incorporated in a Bayesian model selection analysis in a quantitative fashion. The

analysis yields the relative probability of each of the models explored.

d) The analysis yields the full marginal posterior probability density function (PDF) for

each model parameter, not just the maximum a posterior (MAP) values and a Gaussian

approximation of their uncertainties.

In 2003 Tinney et al. reported the detection of four new planets orbiting HD 2039,

30177, 73526, and 76700. Our results for HD 3029, together with some of the details of the

Bayesian MCMC approach, were presented in Chapter 12 of Gregory (2005). In this paper

we describe a modified form of the Bayesian MCMC approach and report the results of our

re-analysis of the HD 73526 data which differ significantly from the conclusions of Tinney

et al. (2003). For another application of MCMC methods to extrasolar planet detection see

Ford (2004).

1It may fail to detect pathologically narrow probability peaks in a reasonable number of iterations.



– 3 –

2. Planetary Orbital Models

There are two questions of interest. Initially, we are interested in whether the reflex

motion of the host star provides evidence for 0, 1, 2, 3, · · · planets. Secondly, we are interested

in the orbital parameters of each planet detected.

2.1. Model Space

The starting point for any Bayesian analysis is Bayes’ theorem given by equation (1).

p(Mi|D, I) =
p(Mi|I) p(D|Mi, I)

p(D|I)
(1)

where p(Mi|D, I) is the posterior probability that model Mi is true, given the new data D and

prior background information I. The logical conjunction D, I is a proposition representing

our current state of knowledge that is relevant for computing the probability of the truth of

the models in question. A Bayesian analysis is an encoding of our current state of knowledge

into a probability distribution concerning the hypothesis space of interest. Of course, as our

state of knowledge changes (e.g., we acquire new data) so in general will the probabilities.

The posterior is proportional to p(Mi|I), the prior probability that Mi is true, times the

likelihood function, p(D|Mi, I). The likelihood is the probability that we would have gotten

the data D that we did, if Mi is true. The likelihood is often written as L(Mi).

In a well posed problem the prior (background) information (I) specifies the hypothesis

space of interest (model space), and how to compute the likelihood function. In general, the

models have parameters that are discussed below. Table 1 summarizes the hypothesis space

of interest. For multiple planet models, there is no analytic expression for the exact radial

velocity perturbation 2. In many cases, the radial velocity perturbation can be well modeled

as the sum of multiple independent Keplerian orbits which is what has been assumed in this

paper.

In the case of model M0, the star is moving away or towards the observer with an

unknown velocity. Note, the radial velocities published by Tinney et al. (2003) have an

2The deviations from the simple sum of Keplerian models can be divided into two types (Brown 2005):
short-period interactions and secular interactions. The magnitude of the short-period interactions is often
small compared to the magnitude of the Keplerian perturbation and the observational uncertainties. The
secular interactions are typically modeled as changes in the Keplerian orbital parameters. While the secular
interactions can have large effects on the observed radial velocities, the timescales are typically much longer
than the time span of observations.
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arbitrary zero point determined by a template observation, so the V in our analysis is just

a constant velocity term. Model M0s assumes that there is an extra noise term in addition

to the known measurement uncertainties. The nature of this extra noise term is discussed

below. The simplest single planet model would have a circular orbit with four unknown

parameters. Although the circular model is simpler, we will focus only on elliptical orbits

because the prior probability of an orbit with eccentricity of precisely zero is considered to

be extremely small.

We illustrate the calculations for models M0, M0s, M1, and M1s. Much of the background

material needed to appreciate the current analysis is presented in Chapter 12 of Gregory

(2005).

We can represent the measured velocities by the equation

vi = fi + ei + e0i, (2)

where ei is the noise component arising from known but unequal measurement errors with

an assumed Gaussian distribution, The term e0i accounts for any additional unknown mea-

surement errors 3 plus any real signal in the data that cannot be explained by the model

prediction fi. For example, suppose that the star actually has two planets, and the model

assumes only one is present. In regard to the single planet model, the velocity variations

induced by the unknown second planet acts like an additional unknown noise term. In ad-

dition, researchers have attempted to empirically quantify additional sources of error in the

measured velocities, referred to as jitter, which is due in part to flows and inhomogeneities

on the stellar surface (e.g., Wright 2005). Jitter would also contribute to this extra noise

term. In general, nature is more complicated than our model and known noise terms. In the

absence of detailed knowledge of the sampling distribution for e0i, other than that it has a

finite variance, the maximum entropy principle tells us that a Gaussian distribution would

be the most conservative choice (i.e., maximally non committal about the information we

don’t have). We will assume the noise variance is finite and adopt a Gaussian distribution

for e0i with a variance s2. Thus, the combination of ei + e0i has a Gaussian distribution

with variance = σ2
i + s2. Marginalizing s has the desirable effect of treating anything in

the data that can’t be explained by the model as noise, leading to the most conservative

3In Gregory (2005), we made use of an unknown noise scale parameter b, instead of e0i. The one advantage
of using b is that it can allow for the possibility that the measurement errors have been overestimated. A
possible disadvantage is that it assumes that relative weight to be assigned to each point is the same as that
based only on the known measurement errors alone. For example, if the effective noise is dominated by real
signal due to additional planets, that are not accounted for in the model, then we would prefer to weight
the points more equally.
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estimates of orbital parameters (see Sections 9.2.3 and 9.2.4 of Gregory (2005) for a tutorial

demonstration of this point).

The term e0i also plays a significant role in model comparison. To usefully claim the

detection of a planet we want

p(M1|D, I) > both p(M0|D, I) and p(M0s|D, I). (3)

If p(M1|D, I) > p(M0|D, I) but not > p(M0s|D, I), then we would be saying that the addition

of an independent Gaussian random component was more successful in accounting for the

velocity variations than the reflex motion due to a planet.

Similarly, to claim the detection of a second planet we want

p(M2|D, I) > both p(M1|D, I) and p(M1s|D, I). (4)

The predicted model radial velocity, fi, for one planet is given by equation (5) and

involves 6 unknowns.

fi = V + K[cos{θ(ti + χP ) + ω} + e cosω], (5)

where

V = a constant velocity.

K = velocity amplitude = 2πP−1(1 − e2)−1/2 a sin i.

P = the orbital period.

a = the semi-major axis of the orbit.

e = the orbital eccentricity.

i = the inclination of the orbit.

ω = the longitude of periastron.

χ = the fraction of an orbit, prior to the start of data taking, that periastron occurred

at. Thus, χP = the number of days prior to ti = 0 that the star was at periastron, for

an orbital period of P days.

θ(ti + χP ) = the angle of the star in its orbit relative to periastron at time ti, also

called the true anomaly.
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The dependence of θ on ti, which follows from the conservation of angular momentum,

is given by the solution of

dθ

dt
− 2π[1 + e cos θ(ti + χ P )]2

P (1 − e2)3/2
= 0. (6)

To fit equation (5) to the data, we need to specify the 6 model parameters, P,K, V, e, ω, and

χ.

2.2. Model probabilities

To decide if a planet has been detected, we will compare the one planet model with

constant velocity model. The equations that follow pertain to models M1s and M0s. From

Bayes’ theorem, we can write

p(M1s|D, I) =
p(M1s|I) p(D|M1s, I)

p(D|I)
= C p(M1s|I) p(D|M1s, I), (7)

where C = 1/p(D|I) is the normalization constant. The quantity, p(D|M1s, I), is called a

global likelihood because it is not conditional on any particular choice of the model parame-

ters. The global likelihood is obtained from the conditional likelihood , given by equation (8),

by a process known as marginalization. It is equal to the weighted average of the conditional

likelihood, weighted by the prior probability distribution of the model parameters and s.

p(D|M1s, I) =

∫
dP

∫
dK

∫
dV

∫
de

∫
dχ

∫
dω

∫
ds p(P,K, V, e, χ, ω, s|M1s, I)

× p(D|M1s, P,K, V, e, χ, ω, s, I), (8)

where p(P,K, V, e, χ, ω, s|M1s, I) is the joint prior for the model parameters and

p(D|M1s, P,K, V, e, χ, ω, s, I) is the conditional likelihood.

For independent Gaussian errors, the likelihood is a product of N Gaussians, one for

each data point.

p(D|M1s, P,K, V, e, χ, ω, I) = A × exp

[
−

N∑

i=1

(vi − fi)
2

2(σ2
i + s2)

]
, (9)

where

A = (2π)−N/2

[
N∏

i=1

(σ2
i + s2)−1/2

]
. (10)
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The probability of model M0s is given by

p(M0s|D, I) = C p(M0s|I) p(D|M0s, I). (11)

Since M0s has two parameter V plus s,

p(D|M0s, I) =

∫
dV

∫
ds p(V |M0s, I) p(s|M0s, I) p(D|M0s, V, s, I), (12)

assuming independent priors, and

p(D|M0s, V, I) = (2π)−N/2

[
N∏

i=1

(σ2
i + s2)−1/2

]
exp

[
−

N∑

i=1

(vi − V )2

2 (σ2
i + s2)

]
. (13)

We are now in a position to compute the ratio of the posterior probabilities for M1s and

M0s. The ratio, O1s0s = p(M1s|D, I)/p(M0s|D, I), is called the odds ratio in favor of model

M1s over the no planet model M0s. Application of Bayes’s theorem leads to,

O1s0s =
p(M1s|I)

p(M0s|I)

p(D|M1s, I)

p(D|M0s, I)
≡ p(M1s|I)

p(M0s|I)
B1s0s (14)

where the first factor is the prior odds ratio, and the second factor is called the Bayes factor.

The Bayes factor is simply the ratio of the global likelihoods of the models.

Bayesian model comparison relies on the ratio of global likelihoods, not maximum likeli-

hoods. The marginalization procedure automatically introduces a quantified Occam’s factor

(one for each parameter) that penalizes the model for wasted prior parameter space that gets

ruled out by the data (see Gregory and Loredo 1992 and Gregory 2005). Thus, the overall

Occam’s factor depends not only on the number of model parameters but also on the prior

range for each parameter. In other words, the more uncertain we are about the true value of

a parameter the greater is the Occam’s penalty. Because the global likelihood is a weighted

average of the conditional likelihood, weighted by the prior probability distribution of the

model parameters and s, it is important to completely specify these priors which we do in

Section 3.1.

If we determine that O1s0s > 1 then we are interested in computing the marginal PDF

for each of the parameters of M1s. For example, consider the marginal PDF for the orbital

period. From Bayes’ theorem we can write

p(P |D,M1s, I) ∝ p(P |M1s, I)

∫
dK

∫
dV

∫
de

∫
dχ

∫
dω

∫
ds p(K,V, e, χ, ω, s|M1s, I)

× p(D|M1s, P,K, V, e, χ, ω, s, I). (15)
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3. Parameter Estimation

3.1. Data and model parameter priors

The radial velocity data of Tinney et al. (2003) for HD 73526 is shown in Figure 1. The

sampling is very nonuniform with a minimum sample interval of ≈ 1 day and an average

sample interval of 73 days. Our Bayesian analysis does not require uniform sampling and

does not introduce a spurious bulges in power at low frequencies (wavelengths comparable

to gaps) which is common experience with schemes that attempt to interpolate missing

data. However, the sparseness of the data can result in a multitude of orbital periods that

cannot be ruled out with the current data. This point is discussed further in Section 6. One

advantage of nonuniform sampling is to increase the effective bandwidth (G. L. Bretthorst

1988, 2001a), namely the largest spectral window free of aliases, compared to the same

number of uniform samples in the same time window. The aliasing phenomenon returns at

a sufficiently high frequency due to one of the following reasons. (a) The sampling times ti,

although nonuniform, are all integer multiples of some small interval δT , because the times

are all derived from some finite clock interval. (b) The data are only recorded to a finite

number of decimal places which has the same effect as (a). The Nyquist period (= (2 δT ))

corresponding to (b) is ∼ 17 s. The shortest search period used was 0.5 days 4. The method

is also capable of fitting portions of an orbital period so we set the upper limit equal to 3732

days or ∼ 3 times the duration of the data (1243 days).

Before we can proceed further, we need to specify the priors for the parameters of M1s.

In this analysis, we assume the prior for each parameter is independent of the prior for any

other parameter. Table 2 summarizes our choice of prior and prior ranges for the 6 model

parameters and s. Two of the 6 model parameters, P and K, as well as s, that characterizes

a possible extra noise term, are scale parameters so we used a Jeffreys prior for these. The

Jeffreys prior corresponds to assigning equal probability per decade (scale invariance) which

is particularly useful if the prior range in a parameter spans several decades. In contrast, a

uniform prior would strongly favor the upper decade 5. Since the prior lower limits for K

4The selection of the lower bound on P and upper bound on K were motivated by the fact that for a
circular orbit a Jupiter sized planet would be tidally disrupted for an orbital period of ∼ 0.2 days.

5Provided the upper and lower prior boundaries are well outside the region of parameter space that
the likelihood function argues for, the exact choice of prior is not important in most parameter estimation
problems. However, for model selection purposes the choice of prior can have a significant effect on the
conclusions.
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Table 1. Model space

Symbol Model Number of parameters

M0 constant velocity V 1

M0s constant velocity V + extra noise term 1 + s

M1 V + elliptical orbit 6

M1s V + elliptical orbit + extra noise term 6 + s

M2 V + 2 elliptical orbits 11

M2s V + 2 elliptical orbits + extra noise term 11 + s

M3 V + 3 elliptical orbits 16

M3s V + 3 elliptical orbits + extra noise term 16 + s

etc.

Table 2. Parameter priors used in models M1 and M1s

Parameter Prior Lower bound Upper bound

P (d) Jeffreys 0.5 3732

K (m s−1) Modified Jeffreys 0 (Ka = 1) 400

V (m s−1) Uniform improper prior all reals

e Uniform 0 1

χ Uniform 0 1

ω Uniform 0 2π

s (m s−1) Modified Jeffreys 0 (sa = 1) 100
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and s include zero, we used a modified Jeffrey’s prior of the form

p(K|M1s, I) =
1

K + Ka

1

ln
(

Ka+Kmax

Ka

) (16)

For K � Ka, p(K|M1s, I) behaves like a uniform prior and for K � Ka it behaves like a

Jeffreys prior. The ln
(

Ka+Kmax

Ka

)
term in the denominator ensures that the prior is normal-

ized in the interval 0 to Kmax. For this analysis, we set Ka and sa equal to 1 m s−1, which

is one tenth of the typical radial velocity measurement error.

For the V parameter, we use a uniform prior which spans all real values and set

p(V |M1s, I) = 1. While this is an ‘improper’ (non-normalized) prior, the normalization

cancels when comparing different models, since it appears exactly once in each model.
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Fig. 1.— The radial velocity data for HD73526 (Tinney et al. 2003).

The joint prior for the model parameters, assuming independence, is given by

p(P,K, V, e, χ, ω, s|M1s, I) =
1

P ln
(

Pmax

Pmin

) 1

(K + Ka) ln
(

Ka+Kmax

K0

)

× 1

(emax − emin)

1

2π

1

(s + sa) ln
(

sa+smax

sa

) . (17)

4. MCMC Implementation

To compute p(D|M1s, I), we need to carry out the seven-dimensional integral indicated

by equation (8). Similarly, the computation of any the marginal posterior distributions
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involves integration in six dimensions. To handle a two planet model would require inte-

gration over an additional 5 parameters. In this analysis we utilize a Markov Chain Monte

Carlo (MCMC) approach to efficiently evaluate the multi-dimension integrals required in our

Bayesian analysis of models with many parameters.

In straight Monte Carlo integration, independent samples are randomly drawn from

the volume of the parameter space. The price that is paid for independent samples is that

too much time is wasted sampling regions where posterior probability density is very small.

Suppose in a one-parameter problem the fraction of the time spent sampling regions of high

probability is 10−1. Then in an M-parameter problem, this fraction could easily fall to 10−M .

MCMC algorithms avoid the requirement for completely independent samples, by con-

structing a kind of random walk in the model parameter space such that the number of

samples in a particular region of this space is proportional to a target posterior density for

that region. The target probability distribution for model M1s is given by

p(P,K, V, e, χ, ω, s|D,M1s, I) = C ′ p(P,K, V, e, χ, ω, s|M1s, I)×p(D|M1s, P,K, V, e, χ, ω, s, I),

(18)

where C ′ is the normalization constant. For the purposes of this discussion, we will represent

the set of model parameters by X so we can rewrite equation (18) as

p(X|D,M1s, I) = C ′ p(X|M1s, I)× p(D|M1s,X). (19)

The random walk is accomplished using a Markov chain, whereby the new sample, Xt+1,

depends on previous sample Xt according to a time independent entity called the transition

kernel, p(Xt+1|Xt). The remarkable property of p(Xt+1|Xt) is that after an initial burn-in

period (which is discarded) it generates samples of X with a probability density equal to the

desired posterior p(X|D,M1s, I) (see Chapter 12 of Gregory 2005 for details).

This is achieved by proposing a new sample Y from a proposal distribution, q(Y |Xt),

which is easy to evaluate and is centered on the current sample Xt. The proposal distribution

can have almost any form. A common choice for q(Y |Xt) is a multivariate normal (Gaus-

sian) distribution. With such a proposal distribution, the probability density decreases with

distance away from the current sample. The new sample Y is accepted with a probability r

given by

r = max

[
1,

p(Y |D, I)

p(Xt|D, I)

q(Xt|Y )

q(Y |Xt)

]
, (20)

where q(Xt|Y ) = q(Y |Xt) for a symmetrical proposal distribution. If the proposal is not

accepted the current sample value is repeated.
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4.1. Parallel tempering

A simple Metropolis-Hastings MCMC algorithm can run into difficulties if the target

probability distribution is multi-modal with widely separated peaks. It can fail to fully

explore all peaks which contain significant probability, especially if some of the peaks are

very narrow. This problem is very similar to the one encountered in finding a global minimum

in a nonlinear model fitting problem. One solution to finding a global minimum is to use

simulated annealing by introducing a temperature parameter T which is gradually decreased.

In this work we use an related process called tempering. For tempering we create a discrete

set of progressively flatter versions of the target distribution using a temperature parameter.

For T = 1, the distribution is the desired target distribution which is referred to as the

cold sampler. For T � 1, the distribution is much flatter. The basic idea is that by

repeatedly heating up the distribution (making it flatter), the new sampler can escape from

local modes and increase its chance of reaching all regions of the target distribution that

contain significant probability. Typical inference is based on samples drawn from the cold

sampler. The samples from the hotter distributions are in principle useful in evaluating the

Bayes factors needed for model selection, as discussed in Section 5.3.

Mathematically, we can describe these tempering distributions by adapting equation (19)

which we repeat here.

p(X|D,M1, I) = C ′ p(X|M1, I) × p(D|M1,X, I),

where the normalization constant, C ′, is unimportant and will be dropped. We can construct

other flatter distributions as follows:

π(X|D,β,M1, I) = p(X|M1, I)p(D|M1,X, I)β

= p(X|M1, I) exp(β ln[p(D|M1,X, I)]), for 0 < β < 1

(21)

Rather than use a temperature which varies from 1 to infinity, we use its reciprocal which

we label β and refer to as the tempering parameter. Thus β varies from 1 to zero.

In parallel tempering, multiple copies of the simulation are run in parallel, each at a

different temperature (i.e., a different β = 1/T ). One of the simulations, corresponding

to β = 1/T = 1, is the desired target probability distribution. The other simulations

correspond to a ladder of higher temperature distributions indexed by i. Let nβ equal the

number of parallel MCMC simulations. At intervals, a pair of adjacent simulations on this

ladder are chosen at random and a proposal made to swap their parameter states. A Monte

Carlo acceptance rule determines the probability for the proposed swap to occur.
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This swap allows for an exchange of information across the population of parallel sim-

ulations. In the higher temperature simulations, radically different configurations can arise,

whereas in higher β (lower temperature) states, a configuration is given the chance to refine

itself. By making exchanges, we can capture and improve the higher probability config-

urations generated by the population by putting them into higher β simulations. Some

experimentation is needed to refine suitable choices of βi values. Adjacent simulations

need to have some overlap to achieve a sufficient acceptance probability for an exchange

operation. For the current analysis we ran nβ = 11 parallel simulations (chains) with

β = {0.01, 0.03, 0.05, 0.09, 0.15, 0.25, 0.35, 0.45, 0.55, 0.75, 1.0}, which achieved a typical ac-

ceptance rate between adjacent levels of ∼ 50%. The mean number of iterations between

swap proposals was set = 10.

4.2. Choosing the σ’s for the Gaussian proposal distributions

In this analysis, we used independent Gaussian proposal distributions which requires

specifying a σ for each parameter. In general, the σ’s will be different because the parameters

can be very different entities. Also if the σ’s are chosen to small, successive samples will be

highly correlated and it will require many iterations to obtain an equilibrium set of samples.

If the σ’s are too large, then proposed samples will very rarely be accepted. Based on

empirical studies, Roberts, Gelman and Gilks (1997) recommend calibrating the acceptance

rate to about 25% for a high-dimensional model and to about 50% for models of 1 or 2

dimensions.

The process of choosing a set of useful proposal σ’s when dealing with a large num-

ber of different parameters can be very time consuming. The current analysis employs an

automated version of this process based on a statistical control system (Gregory 2005) in

which the error signal is proportional to the difference between the current acceptance rate

and a target acceptance rate, typically 25% . The control system steers the proposal σ’s to

desirable values during the burn-in stage of a single MCMC run. The initial set of Gaussian

proposal σ’s (one for each parameter) are set ≈ 20% of the prior range for the parameter.

In the latest implementation of the algorithm, the control system steers the proposal σ’s for

each of the 11 parallel chains independently, in order to achieve an acceptance rate of 25%

in each chain. Figure 2 shows an example of the evolution of the control system error signal

for all 11 chains. The control system is turned off as soon as the error signals for all chains

are less than a measure of the statistical fluctuations expected for a zero mean error, which

in this example occurred in the first ∼ 125, 000 iterations of a 600,000 iteration run.

Although inclusion of the control system may result in a somewhat longer effective burn-
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Fig. 2.— A statistical control system automatically steers the Gaussian proposal σ’s to

achieve a desirable acceptance rate of ∼ 25%. The evolution of the control system error

signal for all eleven parallel chains is illustrated in this figure.

in period, there is a huge saving in time because it eliminates many trial runs to manually

establish a suitable set of proposal σ’s. In practice, it is important to repeat the operation

for a few different choices of initial parameter values, to ensure that the MCMC results

converge.

One of the difficulties encountered by any integration scheme is how to deal with ex-

tremely narrow probability peaks. This is particularly a problem for the orbital period

parameter, P , which spans the greatest number of decades. In general, the sharpness of the

peak depends in part on how many periods fit within the duration of the data. It proved

useful to use a proposal distribution for P which was a Gaussian in the logarithmic of P .

This resulted in a constant fractional period resolution instead of a fixed absolute resolution,

increasing the probability of detecting narrow spectral peaks at smaller values of P .

5. Results for Model M1

5.1. Results with s = 0

We first show results from MCMC runs carried out with the extra noise parameter, s,

set equal to zero. Five MCMC runs were carried out with durations ranging for 600,000
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to 900,000 iterations 6, with different starting points in parameter space. Three of the runs

exhibited 3 probability peaks at P = 128 , 190 and 376 days. For two runs only the 190

and 376 day peaks appeared. As we demonstrate below, the 128 day probability peak was

very much narrower than the other two which is probably why it was not detected on two

MCMC runs. However, the fact that the three periods were not found on all five runs clearly

indicates that we have not converged to a stationary or equilibrium distribution. For the

moment we will focus on the three runs that yielded all 3 period peaks. Of course, the prior

parameter ranges used in the calculation of the target probability distribution within each

of these three search spaces, are those given in Table 2.

Figure 3 show the parameter values for every 500th iteration for the β = 1.0 chain of an

MCMC run of 600,000 iterations. The upper left panel shows the value of the prior × the

likelihood versus iteration number, and the upper right panel shows a blow up of the y-axis,

neglecting the first 5000 iterations. We used a burn-in period of 125,000 iterations for this

run. The large jumps in P values signify multiple peaks of probability.

It is instructive to examine a plot of Log10[prior× (likelihood)β] versus P , for the β = 1

chain. This is shown in Figure 4. For this plot, the prior× likelihood values have been scaled

so that the maximum Log10[prior×likelihood] = 0. The individual points correspond to every

100th MCMC iterations with a value of the scaled Log10[prior×likelihood] ≥ −5.0. The upper

envelope of the points is the projection of the joint posterior for all the parameters onto the

period-Log10[prior× likelihood] plane. Three peaks are clearly present at ∼ 128, 190, and 376

days. To determine if the three peaks are harmonically related, solid vertical lines are shown

at periods corresponding to 1/2, 1, 3/2, 2, 3 times the period of the highest peak. The

resolution of the peaks indicates the three orbital solutions are not exact harmonics. We also

note that all three orbital solutions have very different eccentricities (see Table 4). From a

comparison of the 376 day peak with the dashed vertical line at 365.25 days, it appears that

we can rule out the possibility that the 376 day period is an artifact of the earth’s orbital

motion.

The peak at 128 days has the highest projected probability (and smallest fit residuals)

and is clearly very narrow. One way to roughly estimate the relative volume occupied by

6All calculations were performed using Mathematica on a Pentium M processor with a clock speed of 1.7
GHz and 1.5 Giga-bytes of memory. A 600,000 iteration MCMC run with eleven values of β required 3.4
hours of computation.
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Fig. 3.— MCMC parameter iterations for a 600,000 iteration run. The upper left panels is

plot of the prior × likelihood versus iteration number, and the upper right panel shows a

blow-up of the y-axis.
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Fig. 4.— A plot of Log10[prior× likelihood] versus orbital period P for the β = 1 simulation.

The upper envelope of the points is the projection of the joint posterior for the parameters

onto the period-Log10[prior× likelihood] plane. The solid vertical lines are located at 1/2, 1,

3/2, 2, 3 times the period of the highest peak. The dashed vertical line corresponds to the

earths orbital period.
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each peak in parameter space is to compute the quantity

∆128 =

∫
∆128

dP dK dV de dχ dω p(P,K, V, e, χ, ω, |M1, I) p(D|M1, P,K, V, e, χ, ω, I)

pmax(D|M1, P,K, V, e, χ, ω, I)
,

(22)

where the numerator is the contribution to the global likelihood due to the 128 day peak,

and the denominator is the maximum likelihood for the 128 day peak. The value of the

numerator can be obtained from Table 5 and the the value of the denominator comes from

Table 3. Then ∆128 : ∆190 : ∆376 are in the ratio 1 : 59 : 330. Since the 128 day probability

peak was only detected on 3 out of 5 runs, it almost qualifies as a pathologically narrow

peak.

In their analysis, Tinney et al. (2003) reported an orbital period of 190 days, which

corresponds to the weakest of our three peaks. Table 3 demonstrates that even though we

did not converge on a stationary distribution, the probability distribution maxima for the

three runs which did detect all three peaks agree very closely. The table gives the maximum

value of the prior × likelihood for each peak and for each run. We also give the peak

values for the 190 and 376 day peaks for the other two runs. It is apparent that the peak

values are quite robust. Although the projected probability distribution is instructive, the

relative probability of the three periods in a Bayesian analysis is based on marginalization

(integration) rather than projection, which allows for the volume of probability in parameter

space. This is treated in Section 5.3.

Figures 5, 6 and 7 show the maximum a posterior (MAP) model radial velocity curves

versus phase and time for the three periods, together with the residuals. Actually, these

three figures are the MAP fits based on the results obtained after marginalizing s, which is

discussed in Section 5.2, but they are not significantly different from the results obtained

Table 3. Probability distribution peaks

Run Iterations P = 128 day P = 190 day P = 376 day

prior × likelihood prior × likelihood prior × likelihood

1 900,000 3.8 × 10−37 1.9 × 10−39 2.3 × 10−38

2 600,000 3.7 × 10−37 1.8 × 10−39 2.3 × 10−38

3 700,000 3.9 × 10−37 1.9 × 10−39 2.3 × 10−38

4 600,000 2.0 × 10−39 2.2 × 10−38

5 600,000 1.8 × 10−39 2.3 × 10−38
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with s = 0. The RMS residuals from the MAP fits for the 128, 190, and 376 day periods

are 10.6, 14.7, and 13.7 m s−1, respectively.

5.2. Results with s 6= 0

We repeated the calculations described in Section 5.1 only this time assuming a prior

range for s = 0 to 100 m s−1. As discussed in Section 2.1 marginalizing over the extra noise

parameter, s, has the desirable effect of treating anything in the data that can’t be explained

by the model as noise, leading to the most conservative estimates of orbital parameters.

However, with the inclusion of the extra s parameter, we were unable to detect the narrow

128 day peak in repeated MCMC runs when the search range for P spanned the full range

of 0.5 to 3732 days. Thus for runs which incorporate the whole prior parameter range and

include s as an additional free parameter, the 128 day period solution is a real life example

of a pathologically narrow peak. Instead, separate MCMC runs were executed by restricting

the period search range to a fractional period interval of 0.47 centered on each of the three

period peaks.

The run for each period was repeated several times, using different starting parameters,

to check for convergence to the same equilibrium sampling distribution. Several tests of

convergence were carried. The first was a simple graphical comparison of the parameter

iterations from different runs. Figure 8 shows one example for two 128 day period runs. We

also used the Gelman-Rubin (GR) convergence statistic (Gelman et al. 1992), which tests if

the variance across the runs is the same as the variance within the runs. The GR statistic

should be close to 1.0 for convergence. The GR statistic was computed for repeated runs on

all three period ranges and in all cases the GR statistic was ≤ 1.02.

Figures 9, 10, and 11 show the marginal posteriors for the 6 model parameters and

s for the three periods. The maximum values of the prior × likelihood are 6.1 × 10−38,

3.9 × 10−40, and 3.9 × 10−39 for the 128, 190, and 376 day orbital solutions, respectively.

Thus the maximum value of the prior × likelihood is 16 times larger for the 128 day orbit

than for the next highest solution at 376 days.

It is a simple matter to compute the PDF for any derived quantity that depends on

one or more of the model parameters. Examples of these derived quantities are the planets

projected semi-major axis, a sin i, and M sin i, the mass of the planet times the sin of the

angle of inclination.

a sin i (km) = 1.38 × 105K P
√

1 − e2, (23)
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Fig. 5.— Panel (a) shows the best (MAP) fit 128 day orbit versus orbital phase with the

raw data overlaid. The second cycle is a repeat of the first. Panel (b) shows the best fit

orbit versus Julian Day number. Panel (c) shows the residuals from the MAP fit.
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Fig. 6.— Panel (a) shows the best (MAP) fit 190 day orbit versus orbital phase with the

raw data overlaid. The second cycle is a repeat of the first. Panel (b) shows the best fit

orbit versus Julian Day number. Panel (c) shows the residuals from the MAP fit.



– 22 –

0 200 400 600 800 1000 1200

Julian day number H- 2,451,212.1302L

-30

-20

-10

0

10

20

30

R
es

id
u

al
s
Hm

s-
1
L

HcL

0 200 400 600 800 1000 1200

Julian day number H- 2,451,212.1302L

-200

-150

-100

-50

0

50

V
el

o
ci

ty
Hm

s-
1
L

HbL

0 0.5 1 1.5 2

Orbital phase

-200

-150

-100

-50

0

50
V

el
o

ci
ty
Hm

s-
1
L

HaL

Fig. 7.— Panel (a) shows the best (MAP) fit 376 day orbit versus orbital phase with the

raw data overlaid. The second cycle is a repeat of the first. Panel (b) shows the best fit

orbit versus Julian Day number. Panel (c) shows the residuals from the MAP fit.
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Fig. 8.— Comparison of MCMC parameter iterations for two different runs for model M1s

after removal of the burn in period. The upper left panels is plot of the prior × likelihood

versus iteration number.
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Fig. 9.— The marginal PDF’s for model M1s parameters corresponding to the 128 day peak.
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Fig. 10.— The marginal PDF’s for model M1s parameters corresponding to the 190 day

peak.
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Fig. 11.— The marginal PDF’s for model M1s parameters corresponding to the 376 day

peak.
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where K is in units of m s−1 and P is in days.

M sin i = 4.91 × 10−3(M∗)
2/3 K P 1/3

√
1 − e2, (24)

where M is the mass of the planet measured in Jupiter masses, and M∗ is the mass of the

star in units of solar masses. Equation (24) assumes M << M∗. For example, to obtain the

posterior PDF for a sin i one simply evaluates equation (23) for every set of K,P, e parameter

values obtained from the MCMC iterations, and then plots a histogram of the a sin i values.

The posterior PDF for a sin i is just this histogram, normalized to have unit area. Figure 12

shows the posterior PDF for these two derived quantities for the 128 day orbital solution.
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Fig. 12.— The posterior PDF’s for a sin i and M sin i for the 128 day orbital solution.

The final model parameter values are given in Table 4, along with values of a sin i,

M sin i, and the Julian date of periastron passage, that were derived from the parameter

values. We summarize the results for each parameter by specifying the MAP value and

upper and lower bounds of the 68% credible region. Note: the systematic velocities are

relative to a zero point defined by a template observation that was not included in the paper

by Tinney et al. (2003). The last line of Table 4 gives our final probability assignments for

the three one planet orbital solutions as derived in Section 5.3.
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Table 4. Parameter values and 68% credible regions for M1s parameters

Parameter Tinney et al. P = 128 d P = 190 d P = 376 d

(2003)

P (d) 190.5 ± 3.0 127.880.37
−0.09 190.4+1.8

−2.1 376.2+1.4
−4.3

K (m s−1) 108 ± 8.0 131+5
−7 106.2+6

−13 132+56
−7

V (m s−1) −26.3+1.7
−5.3 −6.2+4.1

−6.8 −77+6
−39

e 0.34 ± 0.08 0.56+.03
−.03 0.33+.06

−.07 0.10+.05
−.1

χ 0.030+.009
−.009 0.37+.03

−.05 −0.17+.064
−.30

ω (deg) 207 ± 30 259.2+6
−6 205+10

−17 49+309
−46

a sin i (106 km) 0.265 ± 0.01 0.191+.007
−.011 0.263+.013

−.032 0.67+.29
−.04

M sin i (MJ ) 3.0 ± 0.3 2.78+.09
−.16 2.93+.09

−.34 4.9+2.0
−0.5

Periastron passage 951 ± 12 1079.9+1.1
−1.3 952+9

−7 905+50
−231

(JD - 2,450,000)

RMS residuals (m s−1) 18 10.6 14.7 13.7

Probability 0.044 0.029 0.926
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5.3. Model selection calculation

In principle, the samples from all (nβ) simulations can be used to calculate the global

likelihood of a model, that is needed to evaluate the Bayes factors (equation (14)) used in

model selection. The global likelihood of the model is given by (e.g., see Gregory 2005)

ln[p(D|M1s, I)] =

∫
dβ〈ln[p(D|M1s, P,K, V, χ, e, ω, s, I)]〉β. (25)

In words, for each of the nβ parallel simulations, compute the expectation value (average)

of the natural logarithm of the likelihood for post burn-in MCMC samples. Of course to

do this, it is necessary to save the value of ln[p(D|M1s, P,K, V, χ, e, ω, s, I)], along with

the parameter values, for each iteration. This procedure requires us to employ a sufficient

number of tempering levels that we can estimate the above integral by interpolating values

of

〈ln[p(D|M1s, P,K, V, χ, e, ω, s, I)]〉β =
1

n

∑

t

ln[p(D|M1s, P,K, V, χ, e, ω, s, I)]β, (26)

in the interval from β = 0 to 1, from the finite set. There are at least two difficulties with

this approach. Firstly, any errors in ln[p(D|M1s, I)] are then magnified when we compute the

desired global likelihood p(D|M1s, I) by exponentiating ln[p(D|M1s, I)]. This may require

many more than the eleven tempering levels used in the current analysis. Secondly, it

is necessary to establish that the samples for each tempering level have converged to a

stationary distribution.

From the results of Section 5.1, it is clear that we did not achieve convergence with

MCMC runs that explored the full prior range so we are not able to use the above method

for model selection calculations. However, we were able to identify three possible orbital

solutions with periods of 128, 190 and 376 days. Subsequent MCMC runs explored these

three peaks regions and defined ranges of parameter space where the target probability

distribution has a significant probability density. For each of the three ranges we can compute

the contribution to the global likelihood by straight Monte Carlo integration. As discussed

in Section 4, Monte Carlo (MC) integration can be very inefficient in exploring the whole

prior parameter range, but once we have established the significant regions of parameter

space with the MCMC results, this is no longer the case.

The outer borders of the MCMC marginal parameter distributions (for each peak) were

used to delineate the boundaries of the volume of parameter space to be used in the Monte

Carlo integration. Again, the prior parameter ranges used in the calculation of the target

probability distribution within each of these three volumes, are those given in Table 2.
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Table 5 summarizes our model selection calculations. Since, models M0 and M0s involved

only one and two unknown parameters, respectively, the required integrals were performed

numerically. The global likelihood, p(D|M1, I), is just the sum of the contributions from the

three period peaks 7, and similarly for p(D|M1s, I). Assuming equal prior probabilities for

models M0,M0s,M1, and M1s, the probability of model M1s is given by

p(M1s|D, I) =
p(D|M1s, I)

p(D|M0, I) + p(D|M0s, I) + p(D|M1, I) + p(D|M1s, I)
, (27)

The probabilities of the other 3 models are calculated in a similar fashion. The Bayes factor

is just the ratio of the global likelihood of a particular model to model M0s, taken as a

reference.

Examination of Table 5 indicates that a one planet model is strongly favored over M0

and M0s. Thus, there is very strong evidence for the existence of one planet. In spite of an

additional Occam penalty associated with the s parameter, p(D|M1s) is slightly greater than

p(D|M1), which suggests there is an additional source of variability in the radial velocity

data. One possible explanation is that there is an additional planet(s) tugging on the star.

Within the M1s model, the probabilities of the three orbital periods are proportional to

their contribution to the global likelihood. If we designate p(M1s(P128)|D, I) as the probability

of the 128 day orbit, then

p(M1s(P128)|D, I) =
p(D|M1s(P128), I)

p(D|M1s(P128), I) + p(D|M1s(P190), I) + p(D|M1s(P376), I)
(28)

The probability for the other two orbital solutions were computed in a similar fashion.

Similarly, for model M1 we can write

p(M1(P128)|D, I) =
p(D|M1(P128), I)

p(D|M1(P128), I) + p(D|M1(P190), I) + p(D|M1(P376), I)
(29)

Since, the relative probabilities of M1 and M1s are not very different, we will base our final

probability of the 128 day orbital solution, designated p(M128|D, I) on a weighted sum of

equations (28) and (29). Thus, p(M128|D, I) is given by

p(M128|D, I) = p(M1s|D, I) ∗ p(M1s(P128)|D, I) + p(M1|D, I) ∗ p(M1(P128)|D, I) (30)

The last line of Table 4 gives our final probability assignments for the three one planet

orbital solutions based on equations (28) to (30).

7This assumes that there are no other solutions within the prior parameter space that were missed by
the MCMC algorithm, perhaps because they are pathologically narrow.
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6. Discussion

In their paper, Tinney et al. (2003) report that they used a nonlinear-least squares

analysis which typically requires a good initial guess of the parameters to avoid from be-

coming stuck in a local minimum of χ2. No mention is made of what periodogram was used

to obtain an initial estimate of the orbital period. In an attempt to understand the period

discrepancy, we computed the Lomb-Scargle (LS) periodogram for the same data with the

mean velocity subtracted, which is shown in the upper panel of Figure 13. This is a widely

used periodogram for dealing with sparsely sampled time series. All three peaks are present

in the LS periodogram together with a multitude of smaller peaks at shorter periods. The

190 day period is clearly the biggest. In this paper we have been concerned with probabil-

ities and probability density distributions which are not directly comparable to the power

spectrum given in Figure 13. However, there is a useful Bayesian generalization of the LS

periodogram due to Bretthorst (2001b) which yields the PDF for the period. This is shown

in the middle panel of Figure 13 and only serves to emphasize the 190 day period. The

logarithm of the PDF is shown in the lower panel and is roughly similar in appearance to

the LS periodogram in the upper panel.

Why do the two approaches: a) the method outlined in this paper and b) LS periodogram

plus nonlinear-least squares, lead to such different conclusions? Firstly, the LS periodogram

makes no use of the strong prior information that we have about the mathematical form of

the periodic signal to be expected from a Keplerian orbit. This knowledge is built into our

MCMC analysis while the LS periodogram assumes that the periodic signal is sinusoidal. A

second possible contributing reason is that the common implementation of the LS algorithm

weights all points the same but in fact the errors range from 14.9 to 6.3 m s−1.

Although our 128 day period has the lowest MAP fit residuals, the global likelihood

favors the 376 day period. At first sight, it appears surprising that the 68% credible regions

for the parameters like K, V, and eccentricity are so much broader for the 376 day peak

than for the other two less probable peaks. It is a simple matter to take the MCMC samples

and look for correlations between parameter estimates. Figure 14 demonstrates that there

are strong correlations between velocity amplitude K, eccentricity, and V for this period.

Examination of the MAP fit versus phase in Figure 7 suggests a possible reason for the

correlations. There are no samples which provide a strong bound on the region of the

minimum velocity excursion which results in a wide range of orbital parameters that are

consistent with the available data. Clearly, the addition of even one extra point in this

region could significantly reduce the range of viable parameter space (see Loredo and Chernoff

(2003) for a Bayesian strategy for adding extra points). Since HD 73526 is not circumpolar

at the Anglo-Australian Telescope site, there will inevitably be a window of phase that is
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Fig. 13.— The upper panel shows the Lomb-Scargle periodogram for the HD 73526 data.

The middle panel is a plot of the probability density for the period computed from a Bayesian

generalization of the LS periodogram due to Bretthorst (2001b). The lower panel is a plot

of the log10 (probability density).
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Fig. 14.— The left panel demonstrates a strong correlation between the radial velocity

amplitude K and the eccentricity for MCMC points associated with the 376 day period.

The right panel demonstrates the correlation between V and eccentricity.

unobservable in any given year. Because of the difference between the orbital period and

one year the 376 day orbital phase will shift by approximately 0.029 per year so it will be

possible to fill in the region around the predicted velocity minimum within ∼ 7 years.

Of course, only one of the three periods is correct and some readers may wonder if there

is some way to discern, without the use of additional data, whether any of the solutions

is clearly an alias that can be discounted. To answer this question, we simulated three

data sets using the MAP parameters found for the 128, 190, and 376 day solutions. Each

simulated radial velocity curve was sampled at the same times as the HD 73526 data set, and

independent Gaussian random noise was added corresponding to the quadrature sum of the

HD 73526 measurement errors and the mean value of s determined for that solution. The four

panels in Figure 15 compare the simulated data sets to the HD 73526 data set. The Bayesian

generalization (Bretthorst 2001b) of the LS periodogram was run on each simulated data set

and the results are shown in Figure 16 compared to the result for the HD 73526 data. All four

periodograms look very similar. They all show peaks at 128, 190 and 376 days (plus others

at lower periods) and the relative heights of the peaks are very similar. Both the Bayesian

MCMC method and the Lomb-Scargle method involve fitting nonlinear signal models to a

sparse data set (with no interpolation), the signal models just happen to be different. It is

well known that nonlinear models can yield multiple solutions (peaks in probability). Any

judgment of which solution is correct is based on a measure of the probability associated

with each peak. As the simulation demonstrates, we have no other basis for judging which is

the correct solution. In the Bayesian case, the final probabilities of the different solutions are

simply an encoding of our current state of knowledge into a probability distribution about

the hypothesis space of interest, which in this case is an hypothesis space of orbital periods.

As our state of knowledge changes (more data are acquired) so in general will the encoded
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Table 5. Model probabilities and Bayes factors

Model Period Mean s p(D|Model, I) Bayes factor Probability

days (m s−1)

M0 0 9.6 × 10−232 3.4 × 10−188 2 × 10−149

M0s 69 2.8 × 10−44 1.0 6 × 10−7

M1 128 0 7.5 ± 0.03 × 10−40

M1 190 0 2.2 ± 0.02 × 10−40

M1 376 0 1.5 ± 0.2 × 10−38

M1 All 0 1.6 ± 0.2 × 10−38 5.7 × 105 0.36

M1s 128 7 1.2 ± 0.03 × 10−39

M1s 190 11 1.1 ± 0.01 × 10−39

M1s 376 8 2.6 ± 0.3 × 10−38

M1s All 8 2.8 ± 0.3 × 10−38 9.3 × 105 0.64
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Fig. 15.— The four panels compare the three simulated data sets, one for each orbital

solution, to the HD 73526 data set.
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Fig. 16.— The four panels compare the logarithm of the probability density for the three

simulated data sets, one for each orbital solution, and the HD 73526 data set.

probability distribution.

7. Conclusions

In this paper, we outlined a Bayesian approach to the analysis of precision radial velocity

data for use in detecting extrasolar planets, and provided an independent analysis of the

data of Tinney et al. (2003). The analysis was based on a parallel tempering MCMC

algorithm that incorporates as prior information the mathematical form of any possible

Keplerian planetary signal embedded in the host star’s reflex motion. The algorithm is

capable of efficiently exploring all regions of the joint prior parameter space having significant

probability, with the exception of pathologically narrow peaks, starting from an arbitrary

location in the prior parameter space. This is in contrast to nonlinear least squares analysis

which requires a good initial estimate of the starting parameter values. The MCMC analysis

also yields the full marginal posterior probability distribution function (PDF) for each model

parameter and any derived quantity like Mj sin i, not just the maximum a posterior (MAP)

values and a Gaussian approximation of their uncertainties. The built-in Occam’s razor in

the Bayesian analysis provides a more rigorous approach to deciding whether a detection is

believable. The method is capable of fitting a portion of an orbital period, so search periods

longer than the duration of the data are possible. The MCMC algorithm incorporates a
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novel statistical control system that automates the selection of suitable Gaussian proposal

distribution σ’s. This can result in huge saving in time because it eliminates many trial runs

to manually establish a suitable set of proposal σ’s.

Based on our prior information and the data reported in the 2003 paper by Tinney et

al., the one planet model M1s has the highest probability. Three possible orbits were found

with periods of 128, 190, and 376 days. For model M1s, the maximum value of the prior

× likelihood is 16 times larger for the 128 day orbit than for the next highest solution at

376 days. Although the 128 day orbit with an eccentricity of 0.56 ± 0.03 has the smallest

residuals, formally the most probable orbit has a period of 376.2+1.4
−4.3 days and an eccentricity

of 0.10+0.05
−0.10. This is because there is a much greater volume of parameter space with a

significant probability density in the vicinity of the 376 day peak. This arises because there

are no measurements that provide a strong bound on the minimum velocity excursion for

the 376 day period, which results in a wide variety of possible Keplerian orbits which fit the

existing data well. The addition of even one extra point in this region could significantly

reduce the range of viable parameter space. The current Bayesian probabilities for the 376,

128, and 190 day orbital solutions are 0.93, 0.04, 0.03, respectively. The previously reported

orbit (Tinney et al. 2003) of 190.5 ± 3.0 days corresponds to our least probable orbit.

For all three orbital solutions there is evidence for an excess velocity residual in the

range 7 to 11 km s−1. This may indicate the presence of additional planets. In an attempt

to identify a second planet, we reran our one planet Bayesian MCMC algorithm on the MAP

residuals. We also repeated the analysis for a two planet model, M2, using the original data.

In all cases, the Bayes factor was less than one when compared to model M1s. On the basis

of our current state of knowledge, we are unable to demonstrate the existence of a second

planet.

Mathematica versions of the MCMC algorithm, Lomb-Scargle algorithm, Bayesian gen-

eralization of LS, together with other useful tools for data analysis and plotting, are included

with the software that accompanies the book, “Bayesian Logical Data Analysis for the Physi-

cal Sciences,” published by Cambridge University Press (Gregory 2005). Although this paper

focuses on extrasolar planet detection, the software can be easily modified to deal with other

nonlinear model fitting problems.

This research was supported in part by grants from the Canadian Natural Sciences and

Engineering Research Council at the University of British Columbia.
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