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Effectiveness of mid-infrared spectroscopy to predict fatty acid
composition of Brown Swiss bovine milk
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Mid-infrared spectroscopy (MIR) is used to predict fatty acid (FA) composition of individual milk samples (n 5 267) of Brown Swiss
cows. FAs were analyzed by gas chromatography as a reference method. Samples were scanned (4000 to 900 cm21) by MIR, and
predictive models were developed using modified partial least squares regressions with full cross-validation. The methods using a
first derivative or multiplicative scatter corrected plus first derivative resulted, on average, in the best predictions. Coefficients of
correlation between measured and predicted C8:0, C10:0, C12:0, C14:0, anteiso-C17:0, c9-C18:1, and medium- and long-chain FA,
and saturated, monounsaturated and unsaturated FA ranged from 0.71 to 0.77, suggesting that prediction models can be
implemented in milk recording schemes to routinely collect information on FA composition from the whole Brown Swiss
population for breeding purposes.
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Implication

Mid-infrared spectroscopy demonstrated the potential to
predict fatty acid (FA) composition by non-destructive, low
cost and fast analysis. The prediction models were able to
identify high and low values of individual and groups of FA in
milk. Models developed in this study might be used in Brown
Swiss population breeding programs aimed at improving the
value of milk for human health and nutrition.

Introduction

Milk fat is a mix of glycerides, complex lipids and liposoluble
substances, and the main components (96% to 98%) are the
triglycerides (Jensen, 2002). According to their saturation,
fatty acids (FAs) are classified as saturated (SFA), mono-
unsaturated (MUFA) and polyunsaturated (PUFA). Fat of
bovine milk is composed of 70% SFA, 25% MUFA and 5%
PUFA (Grummer, 1991; Shingfield et al., 2003).

Milk quality aspects are gaining interest among con-
sumers, particularly those related to human health. The
SFA increase blood cholesterol, which in turn is associated
with increased cardio-vascular diseases, risk of obesity,
atherosclerosis and coronary heart diseases (Mensink and

Katan, 1992; German et al., 2009), whereas the unsaturated
FA (UFA) reduce the level of cholesterol in blood (Haug et al.,
2007); among them, PUFA decrease the cholesterol content
more strongly than MUFA (Williams, 2000). In addition,
milk fat is the major source of conjugated linoleic acid
(CLA; c9,t11-C18:2) in human diet, accounting for 70% of
total daily CLA intake (Bauman et al., 2005). Experimental
evidences suggest that CLA may have anticarcinogenic,
antiatherosclerotic, antidiabetic and immunomodulating
effects (Bhattacharya et al., 2006). Because of the relevance
of milk fat on health aspects, it would be interesting to
enhance the production of favorable FA through feeding of
cows (Chilliard and Ferlay, 2004; Mele, 2009) and breeding
(Arnould and Soyeurt, 2009).

Several studies estimated genetic variation of FA (Soyeurt
et al., 2007; Stoop et al., 2008; Mele et al., 2009) but gas
chromatography (GC) is an expensive and time-consuming
analysis; hence, a rapid method to determine FA in milk is
crucial to extend the collection of phenotypic records at the
population level.

Mid-infrared spectroscopy (MIR) is widely used in official
milk recording schemes to determine the chemical compo-
sition of milk (Lynch et al., 2006). Its potential has also been
demonstrated to predict coagulation properties of bovine
milk (Dal Zotto et al., 2008; De Marchi et al., 2009b), detail
milk protein composition (De Marchi et al., 2009a) and- E-mail: mauro.penasa@unipd.it
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acetone content for the detection of subclinical ketosis
(Heuer et al., 2001). Soyeurt et al. (2006) and Rutten et al.
(2009) demonstrated the accuracy of the prediction of FA
composition using MIR, but only for the most representative
FA. Recently, Coppa et al. (2010) reported that near-infrared
spectroscopy might be used to predict FA of oven-dried milk,
whereas less satisfactory results are obtained for liquid milk.

The aim of this research was to predict individual and
selected categories of FA of bovine milk using MIR.

Material and methods

Sample collection
Samples used for GC analysis (n 5 267) were randomly selec-
ted from 1200 Italian Brown Swiss cows involved in a wide
research project conducted in northern Italy from June 2006 to
July 2007 (for details, see Cecchinato et al., 2009). Briefly, the
project was based on the collection of individual milk samples
from cows of different parity and stage of lactation, progeny of
50 AI sires, and reared in 30 herds located in the plain, hill and
mountain. Herds largely differed in terms of feeding systems,
particularly when comparing those from mountain and plain.
The later used mainly silages and concentrates, whereas the
former were mainly based on hay and fewer concentrates. After
collection, samples destined to GC analysis were stored at
2208C without any preservative and transferred to the milk
quality laboratory of the University of Pisa (Pisa, Italy).

FA analysis
Milk fat was extracted according to Mele et al. (2009).
Methyl esters of medium- and long-chain FA were prepared
by the alkali-catalyzed trans-methylation procedure in
Christie (1982) with C9:0 and C23:0 methyl esters (Sigma
Chemical Co., St. Louis, MO) as the internal standards. FA
composition was determined by GC using a ThermoQuest
(Milan, Italy) gas chromatograph equipped with a flame
ionization detector and a high polar fused silica capillary
column (Chrompack CP-Sil 88 Varian, Middelburg, the
Netherlands; 100 m 3 0.25 mm i.d.; film thickness 0.20 mm).
Helium was used as the carrier gas at a flow of 1 ml/min. The
split ratio was 1 : 100. An aliquot of the sample was injected
under the following GC conditions: the oven temperature
was programmed at 608C and held for 4 min, then increased
to 1208C at a rate of 108C/min, held for 1 min, increased to
1808C at a rate of 28C/min, held for 18 min, increased to
2008C at a rate of 28C/min, held for 1 min, increased at
2308C at a rate of 58/min and maintained at this temperature
for 19 min. The injector temperature was set at 2708C,
whereas the detector temperature was at 3008C. Individual
FA methyl esters were identified by comparing them with a
standard mixture of 52 Component FAME Mix (Nu-Chek
Prep, Inc., Elysian, MN, USA), and the identification of C18:1
isomers was based on a commercial standard mixture
(Supelco, Bellefonte, PA, USA) and on chromatograms pub-
lished by Kramer et al. (2008). All the methods that used
peak normalization and that expressed results as a relative

percentage of the area of the analyzed peaks were subject to
overestimation because the small peak areas were not
considered. To avoid this problem, two internal standards
were used: C9:0 for FA from C:4 to C:13 and C23:0 for FA
from C:14 to C:24. Milk FA composition was determined by
GC and expressed as g/kg of milk. For each FA, response
factors to flame ionization detector and inter- and intra-
assay coefficients of variation were calculated by using a
reference standard butter (CRM 164, Community Bureau of
Reference, Brussels, Belgium). Intra-assay coefficients of
variation ranged from 0.5% to 1.5%, whereas inter-assay
coefficients of variation ranged from 1.5% to 2.5%.

Only major FA with carbon chain no longer than 20 and
categories of FA were studied. In particular, FA were grouped
according to either the length of the carbon chain: medium-
chain FA (MCFA; from C11 to C17); long-chain FA (LCFA;
from C18 to C22); or to the saturation degree: SFA; MUFA;
PUFA; UFA; or to the characteristics of the carbon chain:
branched-chain FA (BCFA; iso-14:0, anteiso-C15:0, iso-
C16:0, anteiso-C17:0); trans FA (TFA; t6,8-C18:1, t9-C18:1,
t10-C18:1, t11-C18:1, t12-C18:1,c9,t11-C18:2).

Mid-infrared spectra acquisition and multivariate
data analysis
Mid-infrared spectra were collected on the day of sampling in
the Food Lab of the Department of Animal Science (University
of Padova) from 0.25 ml of milk over the spectral range of
4000 to 900 cm21 using a Milko-Scan FT120 (Foss Electric A/S,
Hillerød, Denmark). Duplicate spectra were captured for each
individual sample using the calibration mode and averaged
before data analysis. Principal component analysis (PCA)
and partial least squares (PLS) regressions were carried
out through the Unscrambler software (version 9.6; Camo
A/S, Oslo, Norway), and a new smaller set of variables called
principal components and loadings (L#) were obtained.
A graphical representation of similarities and differences
between spectra was derived from PCA; this allowed the
identification of possible outliers in the spectral data set
(Martens and Naes, 1989). Prediction models were computed
by PLS regression and confirmed using full cross-validation,
and prediction residuals were combined to calculate the
root mean square error of cross-validation (RMSECV; Hubert
and Vanden Branden, 2003). Besides the untreated spectra,
two mathematical treatments were tested: first derivative
(Savitzky-Golay, three data points each side) and multiplicative
scatter corrected (MSC) plus first derivative (Savitzky-Golay,
three data points each side) spectra. The accuracy of the
prediction models was evaluated using RMSECV, the correlation
coefficient in cross-validation (rCV) and the optimum number of
L# (Hubert and Vanden Branden, 2003).

The range error ratio (RER), calculated as the ratio
between the range and the RMSECV of the parameter (Wil-
liams, 2001), was used to test the practical utility of the
prediction models. RER is a method of standardizing the
RMSECV by relating it to the range of the reference data. For
example, RER values of less than six indicate very poor
classification and are not recommended for any application;

De Marchi, Penasa, Cecchinato, Mele, Secchiari and Bittante

1654



RER values between 7 and 20 classify the model as poor to fair
and indicate that the model could be used in a screening
application; and RER values between 21 and 30 indicate a good
classification suggesting that the model would be suitable for a
role in a quality control application (Williams, 2001). However,
calibrations with lower statistical performance may still be useful
depending on the accuracy required in field conditions.

Results

FA composition
Mean, standard deviation (s.d.), coefficient of variation (CV)
and range of individual FA and of selected categories are
presented in Tables 1 and 2. The C16:0 (10.52 g/kg) and
c9-C18:1 (6.81 g/kg) were the major FA in milk, followed by
C14:0 (4.27 g/kg) and C18:0 (3.28 g/kg). As expected, SFA
represented the prevalent fraction (21.84 g/kg), followed by
MCFA (19.00 g/kg) and LCFA (12.82 g/kg). All FA and selected
categories showed large variability with CV that ranged from
0.21 (C16:0) to 0.47 (iso-C14:0) for individual FA (Table 1),
and from 0.20 (SFA) to 0.28 (TFA) for groups of FA (Table 2).

MIR spectra
Figure 1 shows an example of MIR spectrum. A portion of
the spectrum was truncated before the analysis due to its
low signal-to-noise ratio (Pillonel et al., 2003); two spectra

regions (3470 to 3040 cm21 and 1700 to 1600 cm21) were
omitted from PLS analysis. The high level of noise at these
wavelengths may be the consequence of the absorption of
water in the spectral regions (Hewavitharana and Brakel,
1997; Jørgensen and Næs, 2004). The principal MIR regions
used to estimate FA composition of milk were located between
1736 and 1805 cm21 and between 2823 and 3016 cm21.
Coates (2000) and Lefèvre and Subirade (2000) indicated
that 1745, 2928 and 2855 cm21 are the frequencies correlated
with the vibration of the FA carbonyl group. The wavenumbers
between approximately 1050 and 1600 cm21 are associated
with several specific chemical bonds such as C–H bending
(1493 cm21) and C–O stretching. PCA of the untreated spectra
allowed for the investigation of the influence plot and hence
the identification of possible outliers.

Prediction models
Tables 3 and 4 summarized the RMSECV, rCV, L# and RER of
each calibration equation built from spectra and FA contents.
Prediction models were developed using spectra in several
forms: untreated, first derivative and MSC plus first deriva-
tive giving three models for each predicted trait. A normal-
ized and second derivative pre-treatment offered no
improvement of prediction; hence, these results are not
reported. The RMSECV, rCV and L# were used to compare

Table 1 Descriptive statistics of individual FA (expressed in g/kg of
milk) determined by GC analysis

FA Mean s.d. CV Range

C8:0 0.41 0.11 0.26 0.15 to 0.85
C10:0 1.09 0.30 0.28 0.34 to 2.28
C12:0 1.36 0.39 0.29 0.40 to 2.90
iso-C14:0 0.04 0.02 0.47 0.01 to 0.10
C14:0 4.27 0.95 0.22 1.42 to 7.56
C14:1-c9 0.35 0.11 0.33 0.10 to 0.73
anteiso-C15:0 0.17 0.04 0.24 0.06 to 0.32
C15:0 0.37 0.10 0.27 0.15 to 0.73
iso-C16:0 0.09 0.03 0.37 0.03 to 0.18
C16:0 10.52 2.23 0.21 3.41 to 15.85
C16:1-c9 0.44 0.15 0.34 0.14 to 1.00
anteiso-C17:0 0.06 0.02 0.35 0.01 to 0.12
C17:0 0.15 0.03 0.23 0.06 to 0.29
C18:0 3.28 1.06 0.32 0.75 to 7.85
t6,8-C18:1 0.08 0.02 0.33 0.02 to 0.16
t9-C18:1 0.10 0.03 0.25 0.04 to 0.17
t10-C18:1 0.16 0.06 0.38 0.04 to 0.60
t11-C18:1 0.34 0.11 0.33 0.09 to 0.84
t12-C18:1 0.14 0.04 0.27 0.04 to 0.27
c9-C18:1 6.81 1.70 0.25 2.61 to 12.55
c11-C18:1 0.15 0.06 0.37 0.05 to 0.37
c12-C18:1 0.16 0.04 0.29 0.05 to 0.31
c6-C18:2 0.84 0.20 0.24 0.35 to 1.47
c9,t11-C18:2 0.18 0.05 0.30 0.05 to 0.38
C18:3n-3 0.16 0.06 0.41 0.05 to 0.46
C20:0 0.03 0.01 0.33 0.01 to 0.10

FA 5 fatty acids; GC 5 gas chromatography; CV 5 coefficient of variation.

Table 2 Descriptive statistics of FA categories (expressed in g/kg of
milk) determined by GC analysis

FA category Mean s.d. CV Range

MCFA 19.00 3.95 0.21 6.34 to 30.63
LCFA 12.82 3.07 0.24 5.26 to 23.22
SFA 21.84 4.28 0.20 7.61 to 31.47
MUFA 8.91 2.07 0.23 3.41 to 15.44
PUFA 1.35 0.30 0.22 0.55 to 2.22
UFA 10.26 2.29 0.22 3.99 to 17.32
BCFA 0.36 0.09 0.26 0.13 to 0.64
TFA 0.84 0.23 0.28 0.22 to 1.65

FA 5 fatty acids; GC 5 gas chromatography; CV 5 coefficient of variation;
MCFA 5 medium-chain FA; LCFA 5 long-chain FA; SFA 5 saturated FA; MUFA 5
monounsaturated FA; PUFA 5 polyunsaturated FA; UFA 5 unsaturated FA;
BCFA 5 branched-chain FA; TFA 5 trans FA.
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Figure 1 Example of algorithm unprocessed MIR spectrum for milk.
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models for accuracy. If two models produced similar results
for a given trait, the preferred model was that with the
lowest RMSECV, the highest rCV and the lowest number of L#.

Prediction models were calculated using FA concentration
in milk and FA concentration in fat as reference data. Overall,
the pre-treated MIR spectra with first derivative or MSC plus

first derivative gave the best results. The PLS method using
untreated spectra provided good outcomes only for the
prediction of iso-C14:0, C16:0, C17:0 and C18:0.

The rCV of FA ranged from 0.51 (t10-C18:1 and C18:3n-3) to
0.77 (C14:0) for individual FA (Table 3), and from 0.63 (TFA)
to 0.76 (LCFA) for groups of FA. Williams (2003) suggested

Table 3 PLS predictions for individual FA (expressed in g/kg of milk) using untreated and pretreated mid-infrared spectra (preferred model in bold)

Untreated data First derivativea MSC 1 first derivative

FA RMSECV rCV L# RER RMSECV rCV L# RER RMSECV rCV L# RER

C8:0 0.07 0.69 6 9.51 0.07 0.71 6 9.96 0.07 0.74 6 10.10
C10:0 0.20 0.72 10 9.63 0.20 0.73 7 9.80 0.19 0.73 7 10.10
C12:0 0.26 0.72 9 9.65 0.25 0.75 7 10.08 0.25 0.74 7 9.90
iso-C14:0 0.01 0.56 5 6.57 0.01 0.50 5 6.26 0.01 0.48 4 6.49
C14:0 0.62 0.75 10 9.97 0.60 0.77 6 10.23 0.64 0.72 7 9.55
C14:1-c9 0.08 0.66 12 7.55 0.08 0.68 7 7.81 0.08 0.64 5 7.77
anteiso-C15:0 0.03 0.60 5 7.62 0.03 0.64 5 7.91 0.03 0.64 6 8.15
C15:0 0.08 0.62 11 7.76 0.07 0.63 7 7.85 0.08 0.56 5 7.51
iso-C16:0 0.03 0.53 5 5.88 0.03 0.52 4 5.73 0.03 0.58 8 6.04
C16:0 1.59 0.70 8 7.82 1.63 0.68 6 7.62 1.67 0.67 7 7.46
C16:1-c9 0.11 0.57 7 7.54 0.11 0.60 5 7.77 0.11 0.60 5 7.81
anteiso-C17:0 0.01 0.73 12 8.02 0.01 0.73 7 8.10 0.01 0.72 5 7.91
C17:0 0.03 0.56 2 8.39 0.03 0.55 2 8.31 0.03 0.49 1 7.64
C18:0 0.75 0.65 9 9.48 0.74 0.66 6 9.55 0.74 0.66 6 9.53
t6,8-C18:1 0.02 0.49 4 6.85 0.02 0.59 6 7.55 0.02 0.55 6 7.29
t9-C18:1 0.02 0.60 4 6.57 0.02 0.63 5 6.73 0.02 0.62 6 6.63
t10-C18:1 0.05 0.46 14 10.49 0.05 0.48 9 10.58 0.04 0.51 7 14.60
t11-C18:1 0.09 0.51 5 8.02 0.09 0.54 6 8.21 0.09 0.56 6 8.01
t12-C18:1 0.03 0.48 4 6.78 0.03 0.55 4 7.33 0.03 0.63 5 8.01
c9-C18:1 1.17 0.71 8 8.47 1.14 0.73 7 8.68 1.13 0.73 7 8.80
c11-C18:1 0.04 0.59 14 7.48 0.04 0.57 7 7.37 0.04 0.59 8 7.56
c12-C18:1 0.04 0.40 7 6.15 0.04 0.38 6 6.09 0.04 0.52 6 7.12
c6-C18:2 0.74 0.50 6 1.52 0.17 0.54 5 6.64 0.17 0.50 4 6.41
C18:3n-3 0.05 0.48 8 8.55 0.05 0.49 6 8.58 0.04 0.51 5 10.34
C20:0 0.01 0.51 9 9.27 0.01 0.53 5 9.47 0.01 0.54 6 9.78
c9,t11-C18:2 0.05 0.46 7 7.27 0.05 0.45 7 7.42 0.04 0.58 7 8.23

PLS 5 partial least squares; FA 5 fatty acids; MSC 5 multiplicative scatter correction; RMSECV 5 root mean square error of cross-validation; rCV 5 coefficient of
correlation of cross-validation; L# 5 number of partial least squares loadings; RER 5 range error ratio.
aSavitzky–Golay, three data points each side.

Table 4 PLS predictions for FA categories (expressed in g/kg of milk) using untreated and pretreated mid-infrared spectra (preferred model in bold)

Untreated data First derivativea MSC 1 first derivative

FA category RMSECV rCV L# RER RMSECV rCV L# RER RMSECV rCV L# RER

MCFA 2.71 0.72 11 8.96 2.66 0.73 6 9.15 2.66 0.73 7 9.12
LCFA 2.18 0.70 6 8.24 2.03 0.73 6 8.83 1.94 0.76 6 9.27
SFA 3.15 0.69 5 7.70 2.97 0.72 6 8.06 3.36 0.66 6 7.16
MUFA 1.56 0.64 1 7.69 1.39 0.74 7 8.62 1.50 0.68 5 7.99
PUFA 0.25 0.55 5 6.82 0.24 0.59 5 7.09 0.22 0.64 5 7.66
UFA 1.79 0.62 6 7.45 1.73 0.66 5 7.72 1.57 0.71 5 8.51
BCFA 0.08 0.58 6 6.79 0.07 0.68 6 7.60 0.07 0.63 5 7.39
TFA 0.19 0.56 5 7.43 0.19 0.59 5 7.60 0.18 0.63 6 7.93

PLS 5 partial least squares; FA 5 fatty acids; MSC 5 multiplicative scatter correction; RMSECV 5 root mean square error of cross-validation; rCV 5 coefficient of
correlation of cross-validation; L# 5 number of partial least squares loadings; RER 5 range error ratio; MCFA 5 medium-chain FA; LCFA 5 long-chain FA;
SFA 5 saturated FA; MUFA 5 monounsaturated FA; PUFA 5 polyunsaturated FA; UFA 5 unsaturated FA; BCFA 5 branched-chain FA; TFA 5 trans FA.
aSavitzky–Golay, three data points each side.
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that rCV between 0.70 and 0.80 indicate that discrimination
between high and low values can be made. Prediction models
for C8:0, C10:0, C12:0, C14:0, anteiso-C17:0, c 9-C18:1, MCFA,
LCFA, SFA, MUFA and UFA allowed for discrimination between
high and low FA values. For these prediction models, the
number of L# ranged from five to seven; ideally, a lower num-
ber of L# would be preferable. The RER values for models used
to predict C8:0, C10:0, C12:0, C14:0, t10-C18:1, and C18:3n-3
showed fair practical utility (Williams, 2001).

The relationship between FA concentration and modeling
success is shown in Figure 2. Although major individual FA
and FA groups (concentration . 5.0 g/kg of milk) presented
acceptable rCV, the minor FA and categories exhibited quite
variable results. In particular, MCFA and anteiso-C17:0
exhibited rCV similar to those of major FA and categories.

Discussion

FA composition
The FA composition of Brown Swiss milk was consistent
with findings from Mele et al. (2009) for Holstein Friesian
cows reared in north Italy, but it was slightly lower than
results reported by DePeters et al. (1995) on Brown Swiss
milk in a study aimed at comparing the variation of FA
composition among three breeds fed and managed similarly
in the United States. Regarding the saturation of milk fat, as
reported in Table 2, SFA was the most important group of
FA followed by MUFA and PUFA; this is in accordance with
the literature that reported a normal presence of SFA, MUFA
and PUFA of 70%, 25% and 5%, respectively (Grummer,
1991). Regarding the chain length, the MCFA was the most
represented group according to Jensen et al. (1991). The iso-
C14:0, C18:3n-3, t10-C18:1, iso-C16:0 and c11-C18:1
showed the largest CV (0.47, 0.41, 0.38, 0.37 and 0.37,
respectively). The CLA c9,t11-C18:2 showed lower CV than
Mele et al. (2009) and Stoop et al. (2008).

Prediction models
Prediction models refer to FA concentration in milk (g/kg of
milk), which provided better results with respect to prediction
models developed for FA concentration in fat (data not

shown). This could be explained by a different distribution of
values of FA in milk and fat. Moreover, the prediction of FA
by MIR is the combined effect of predicting fat content
and fat composition and it is performed on milk samples,
whereas the reference methods for FA determination (GC) is
performed on fat extracted from milk, which means that
their relationship is affected by the variation in fat percen-
tage (Soyeurt et al., 2006).

On average, the accuracy of the prediction models for
major FA was better than for minor FA. This was found also
by Soyeurt et al. (2006) and Rutten et al. (2009), who
reported a clear relationship between FA concentration and
coefficient of determination (R2).

Overall, the pre-treated MIR spectra with first derivative
or MSC plus first derivative gave the best results; the
same mathematical treatments were also the best to predict
coagulation properties of milk (De Marchi et al., 2009b).

Predictions of FA from our study were slightly less accu-
rate compared with Soyeurt et al. (2006) and Rutten et al.
(2009), probably because of less data availability and low
variability of several FA. In particular, the accuracy of pre-
diction models for C10:0, C12:0, C14:0, C16:0 and C18:0
were worse than prediction of the same FA in Soyeurt et al.
(2006) and Rutten et al. (2009); however, similar or better
results were found for C8:0, C15:0, t11-C18:1, C18:3n-3,
c9,t11-C18:2, t9-C18:1 and c11-C18:1. Regarding the cate-
gories of FA, we detected lower accuracy of prediction
models for SFA, MUFA and UFA and similar accuracy for
PUFA compared with results from Soyeurt et al. (2006). The
differences in the accuracy of predictions compared with
results reported in literature could be related to several
reasons: the variability of the reference data (Rutten et al.,
2009), the reference method to determine FA composition,
the spectra treatments and statistical procedures used to
develop the models.

The present study confirmed the potential of MIR for the
rapid and non-destructive measurement of several FA. The
proposed models are not enough accurate to be transferred
to the dairy industry for quality control, but they might
become interesting for breeding purposes. Recent studies on
milk coagulation properties (Cecchinato et al., 2009) and
meat physical traits (Cecchinato et al., 2011) reported that,
despite the accuracy of prediction models being quite low,
the genetic response for these traits predicted by MIR was
comparable with that obtained using the reference data.
Thus, the implementation of models developed in the pre-
sent study in routine milk recording schemes would allow
for selection strategies aiming at improving the FA profile
of milk.

Conclusion

The potential of MIR to predict several FA was demonstrated
using individual milk samples. The prediction models devel-
oped for C8:0, C10:0, C12:0, C14:0, C16:0, anteiso-C17:0,
c9-C18:1, MCFA, LCFA, SFA, MUFA and UFA were able to
identify high and low values of these FA in milk. The methods
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Figure 2 Relationship between fatty acids (expressed in g/kg of milk) and
modeling success expressed as g/kg v. rCV (coefficient of correlation of
cross-validation).
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using a first derivative or MSC plus first derivative resulted,
on average, in the best predictions. Nevertheless, for some
FA the improvement in the accuracy was negligible and thus
untreated data might be used. However, results evidenced
that MIR is not directly applicable to predict detailed milk FA
for milk payment system, as suggested by other studies, but
the implementation of such models might be evaluated in
the future as a tool for breeding programs aimed at enhan-
cing FA content of milk.
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