

Scheduling a batching machine

Citation for published version (APA):
Brucker, P., Gladky, A., Hoogeveen, J. A., Kovalyov, M. Y., Potts, C. N., Tautenhahn, T., & Velde, van de, S. L.
(1997). Scheduling a batching machine. (Memorandum COSOR; Vol. 9704). Eindhoven: Technische Universiteit
Eindhoven.

Document status and date:
Published: 01/01/1997

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:

www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl

providing details and we will investigate your claim.

Download date: 11. May. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/192050343?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://research.tue.nl/en/publications/scheduling-a-batching-machine(3b2831ef-1066-4456-a26d-8349d42cf190).html

Memorandum COSOR 97-04, 1997, Eindhoven University of Technology

SCHEDULING A BATCHING MACHINE�

Peter Brucker

FB Mathematik�Informatik� Universit�at Osnabr�uck
D����	� Osnabr�uck� Germany

Andrei Gladky

Institute of Engineering Cybernetics�

���
 Minsk� Belarus

Han Hoogeveen

Department of Mathematics and Computing Science
Eindhoven University of Technology

P�O� Box
	��� Eindhoven� The Netherlands

Mikhail Y� Kovalyov

Institute of Engineering Cybernetics�

���
 Minsk� Belarus

Chris Potts

Faculty of Mathematical Studies� University of Southampton
Southampton� SO�� �BJ� United Kingdom

Thomas Tautenhahn�

Fakult�at f�ur Mathematik� Otto�von�Guericke�Universit�at Magdeburg
Postfach ��
�� D�����	 Magdeburg� Germany

Steef van de Velde

Faculty of Mechanical Engineering� University of Twente
P�O� Box
��� �
�� AE Enschede� The Netherlands

�� February� ����

�Supported by INTAS �Project INTAS������� and INTAS��������Ext	
�Supported by Deutscher Akademischer Austauschdienst

ABSTRACT

We address the problem of scheduling n jobs on a batching machine to minimize regular scheduling
criteria that are non�decreasing in the job completion times� A batching machine is a machine that
can handle up to b jobs simultaneously� The jobs that are processed together form a batch� and all
jobs in a batch start and complete at the same time� The processing time of a batch is equal to the
largest processing time of any job in the batch� We analyze two variants� the unbounded model�
where b � n� and the bounded model� where b � n�

For the unbounded model� we give a characterization of a class of optimal schedules� which leads
to a generic dynamic programming algorithm that solves the problem of minimizing an arbitrary
regular cost function in pseudopolynomial time� The characterization leads to more e�cient dy�
namic programming algorithms for speci�c cost functions� a polynomial algorithm for minimizing
the maximum cost� an O�n�� time algorithm for minimizing the number of tardy jobs� an O�n��
time algorithm for minimizing the maximum lateness� and an O�n logn� time algorithm for mini�
mizing the total weighted completion time� Furthermore� we prove that minimizing the weighted
number of tardy jobs and the total weighted tardiness are NP�hard problems�

For the bounded model� we derive an O�nb�b���� time dynamic programming algorithm for
minimizing total completion time when b � �� for the case with m di�erent processing times�
we give a dynamic programming algorithm that requires O�b�m�
m� time� Moreover� we prove
that due�date based scheduling criteria give rise to NP�hard problems� Finally� we show that an
arbitrary regular cost function can be minimized in polynomial time for a �xed number of batches�

The problem of scheduling n independent jobs on a batching machine to minimize regular
scheduling criteria is considered� A batching machine or batch processing machine is a machine
that can process up to b jobs simultaneously� and a regular scheduling criterion is one that is
non�decreasing in the job completion times� The jobs that are processed together form a batch�
Speci�cally� we are interested in the so�called burn�in model� in which the processing time of a
batch is equal to the maximum processing time of any job assigned to it� All jobs contained in the
same batch start and complete at the same time� since the completion time of a job is equal to
the completion time of the batch to which it belongs� This model is motivated by the problem of
scheduling burn�in operations for large scale integrated circuit manufacturing� see Lee et al� ����
��

Webster and Baker ����
� present an overview of algorithms and complexity results for schedul�
ing batch processing machines� They distinguish three types of models� the burn�in model� the
model in which the processing time of a batch is equal to the sum of the processing times of its
jobs �see also Albers and Brucker� ������ and the model in which the processing time of a batch is
a constant� independent of the jobs it contains �see also Ahmadi et al�� ���
��

We analyze two variants of the burn�in model� the unbounded model� in which b � n so that
there is e�ectively no upper bound on the number of jobs that can be processed in the same batch�
and the bounded model� in which b is a constant smaller than n so that there is a restrictive upper
bound� The unbounded model arises for instance in situations where compositions need to be
hardened in kilns� and the kiln is su�ciently large that it does not restrict batch sizes� We assume
throughout that the jobs and the machine are available from time zero onwards� or equivalently�
the jobs have equal release dates� Note that the special case b � � concurs with the classical
single�machine scheduling model in which the machine can handle no more than one job at a
time� Accordingly� the bounded model gives rise to problems that are at least as di�cult as their
traditional counterparts�

For the unbounded model� we give a characterization of a class of optimal schedules� which leads
to a generic dynamic programming algorithm for minimizing any regular cost function

Pn
j�� fj � This

algorithm requires O�n�P � time and O�nP � space� where P is the sum of the job processing times�
The characterization forms the basis of polynomial dynamic programming algorithms for speci�c
cost functions� We present an O�n�� time algorithm for minimizing the number of tardy jobsPn

j�� Uj � an O�n logn� time algorithm for minimizing total weighted completion time
Pn

j�� wjCj�
and an O�n�� time algorithm for minimizing the maximum lateness Lmax� The latter algorithm can
be used to construct a polynomial algorithm for minimizing the maximum cost fmax� Furthermore�
we prove that minimizing the weighted number of tardy jobs

Pn
j�� wjUj and the total weighted

tardiness
Pn

j�� wjTj are NP�hard problems�
As to the bounded model� Lee et al� ����
� and Uzsoy ����
� present polynomial algorithms

for minimizing the number of tardy jobs
Pn

j�� Uj and the maximum lateness Lmax under a number
of assumptions on the relationship between processing times� job release dates� and due dates� see
also Cheng and Kovalyov ����
�� Minimizing total completion time

Pn
j�� Cj is undoubtedly the

most vexing bounded problem� Chandru et al� �����a� ����b� present heuristics and a branch�and�
bound algorithm as well as an O�m�bm��� time dynamic programming algorithm for the case of
m di�erent job processing times �m � n�� Hochbaum and Landy ������ present a faster algorithm
that requires O�m��m� time and O�m�m� space�

We prove that minimizing total completion time
Pn

j�� Cj is solvable in polynomial time for �xed

b� where b � �� by deriving an O�nb�b���� time dynamic programming algorithm for its solution�
�The special case where b � � is a classical scheduling problem that is solvable in O�n logn�

�

time�� For the case of m di�erent processing times� we give a more e�cient dynamic programming
algorithm than that of Hochbaum and Landy� ours requires O�b�m�
m� time� Furthermore� we
prove that other criteria give rise to NP�hard problems� There are two exceptions� minimizing
makespan Cmax is solvable in minfO�n logn�� O�n��b�g time� while minimizing total completion
time

Pn
j��Cj for arbitrary b� and minimizing total weighted completion time

Pn
j�� wjCj for �xed

and arbitrary b are open problems� Finally� we give a polynomial algorithm for minimizing any
regular cost function for the special case in which the number of batches is �xed�

Table � summarizes our main results� For sake of comparison� we have included the time
complexities of the classical scheduling problems� i�e�� problems with b � �� see also Lawler et al�
�������

Objective Unbounded Bounded
function b � n b � � b �

fmax polynomial O�n�� unary NP�hard

Cmax O�n� O�n� minfO�n logn�� O�n��b�g

Lmax O�n�� O�n logn� unary NP�hard

O�n�P �Pn
j�� fj binary NP�hard

unary NP�hard unary NP�hard
Pn

j�� Cj O�n logn� O�n logn� O�nb�b����Pn
j�� wjCj O�n logn� O�n logn� openPn
j�� Uj O�n�� O�n logn� unary NP�hard

O�n�P � O�nP �Pn
j�� wjUj binary NP�hard binary NP�hard

unary NP�hard

O�n�P � O�n�P �Pn
j�� Tj open binary NP�hard

unary NP�hard

O�n�P �Pn
j�� wjTj binary NP�hard

unary NP�hard unary NP�hard

Table �� Overview of time complexities for problems with equal release dates�

The plan of the rest of paper is as follows� In Section �� we give a formal description of the model�
introduce our notation� and give some de�nitions� We analyze the unbounded model in Section

and the bounded model in Section �� In Section �� we conclude by summarizing our results and
point out the consequences for problems with unequal release dates and parallel machines�

� Problem description� notation� and de�nitions

The scheduling model that we analyze is as follows� There are n independent jobs J�� � � � � Jn that
have to be scheduled on a single batching machine� Each job Jj �j � �� � � � � n� requires processing
during at least a given non�negative uninterrupted time pj � and is available for processing from
time zero onwards� Also� each job Jj has a cost function fj � where fj�t� denotes the cost incurred
if the job is completed at time t� Throughout this paper� we consider only regular cost functions�
i�e�� we assume that fj�t� is a non�decreasing function of t� for j � �� � � � � n� Sometimes� each job
Jj has a due date dj by which it should ideally be completed� a deadline �dj by which it must be
completed� and a weight wj which is a measure of its importance� when there is ambiguity� we state

explicitly whenever due dates� deadlines or weights are present� The weights and due dates are
typically used to de�ne cost objective functions� the deadlines restrict the availability of jobs� The
batching machine is available from time zero onwards and can process up to b jobs simultaneously�
All jobs in a batch start and complete at the same time� The processing time of a batch is equal
to the largest processing time of any job in the batch� Without loss of generality� we assume that
the job parameters are integral� unless stated otherwise�

For problems of minimizing a regular objective function without job release dates� we know that
there must be at least one optimal solution in which the batches are processed contiguously from
time zero onwards� Throughout the paper� we restrict attention to solutions with this property�
Thus� a schedule � is a sequence of batches � � �B�� � � � �Br�� where each batch Bl �l � �� � � � � r� is
a set of jobs� The processing time of batch Bl is p�Bl� � maxJj�Blfpjg and its completion time is

C�Bl� �
Pl

q�� p�Bq�� Note that the completion time of job Jj in �� for each Jj � Bl and l � �� � � � � r�
is Cj��� � C�Bl�� When there is no ambiguity� we abbreviate Cj��� to Cj�

The aim is to minimize the scheduling cost� measured either by a regular minmax objective func�
tion fmax � max��j�nffj�Cj�g� or by a regular minsum objective function

Pn
j�� fj �

Pn
j�� fj�Cj��

Speci�c regular objective functions that we consider are the makespan Cmax� de�ned as Cmax �
max��j�nfCjg� maximum lateness Lmax� de�ned as Lmax � max��j�nfCj � djg� total weighted
completion time

Pn
j�� wjCj � total weighted tardiness

Pn
j�� wjTj � where Tj � maxfCj �dj � �g� and

weighted number of tardy jobs
Pn

j�� wjUj � where Uj is an ��� indicator variable that takes the
value � if Jj is tardy� i�e�� if Cj � dj � and the value � if Jj is on time� i�e�� if Cj � dj � We also
provide results for the unweighted versions of these minsum objective functions in which wj � �
for j � �� � � � � n�

� The unbounded model

In this section� we assume that b � n and hence that the batching machine can process any number
of jobs at the same time� Note that the problem of minimizing the makespan is solved trivially by
putting all jobs in one batch B�� The minimum makespan is then Cmax � p�B�� � max��j�nfpjg�

For the remainder of this section� we assume throughout that the jobs have been re�indexed
according to the shortest processing time �SPT� rule so that p� � � � �� pn�

��� Fundamentals

We �rst derive a most useful characterization of a class of optimal solutions for minimizing any
regular objective function�

Lemma � For minimizing any regular objective function� there exists an optimal schedule �B�� � � � �Br��
where under the SPT indexing Bl � fJjl � Jjl��� � � � � Jjl����g and � � j� � j� � � � � � jr � jr�� �
n� ��

Proof� Consider any optimal schedule � � �B�� � � � �Bl� � � � �Bq� � � � �Br�� where � � l � q � r�
with Jk � Bl� Jj � Bq� and pk � pj � Consider now the schedule �� � �B�� � � � �Bl � fJjg� � � � �Bq n
fJjg� � � � �Br� that is obtained from � by moving job Jj to batch Bl� Since pj � pk� we have that
p�Bl�fJjg� � p�Bl� and p�Bq nfJjg� � p�Bq�� Accordingly� the completion time of job Jj decreases
from C�Bq� to C�Bl�� while the completion times of the other jobs do not increase� Since the

�

objective function is regular� the new schedule �� is also optimal� A �nite number of repetitions of
this procedure yields an optimal schedule of the required form�

Lemma � shows that an optimal schedule is speci�ed by the jobs that start each batch� since
the complete schedule can then be formed by the SPT rule� We refer to such a schedule as an SPT�
batch schedule� The observation that we may restrict our search to SPT�batch schedules forms the
basis of a pseudopolynomial dynamic programming algorithm for minimizing any regular minsum
objective function

Pn
j�� fj � and a polynomial algorithm for minimizing a class of regular minmax

objective functions fmax�
A dynamic programming algorithm can be built around di�erent types of enumeration schemes�

We can use either a forward scheme in which jobs or batches are successively added to the end
of the current �partial� schedule� or a backward scheme in which jobs or batches are added to the
beginning� The schedule can be constructed by adding either complete batches or single jobs�

We start by explaining in general terms the optimality principle and the working of a generic
forward dynamic programming algorithm with batch enumeration for a regular minsum objective
function

Pn
j�� fj or a regular minmax objective function fmax� Consider any feasible SPT�batch

schedule containing jobs J�� � � � � Jj with the property that the last batch completes at time t� We
de�ne such a schedule to be in state �j� t�� Of course� to schedule the remaining jobs Jj��� � � � � Jn�
we need to consider only a schedule that has minimum objective value among all schedules in this
state�

Let � be an SPT�batch schedule with minimum objective value from among all schedules in
state �j� t�� To achieve this state from a previous state� the following decision must be taken to
create ��

� add a batch containing Jj� A batch fJi��� � � � � Jjg� where � � i � j� is added to the end of
some previous schedule that contains jobs J�� � � � � Ji� Since batch fJi��� � � � � Jjg has processing
time pj � the previous state is �i� t� pj�� Adding this batch to the previous schedule increases

the total cost by
Pj

k�i�� fk�t�� the maximum cost of jobs Ji��� � � � � Jj is maxi���k�jffk�t�g�

This optimality principle leads to a pseudopolynomial O�n�
Pn

j�� pj� time dynamic program�
ming algorithm for minimizing any regular objective function� since the state variables are �j� t� for
j � �� � � � � n and t � �� � � � �

Pn
i�� pi� and there are j possible batches that can be added to achieve

state �j� t�� To implement this algorithm more e�ciently for an arbitrary regular minsum objective
function� partial sums

Pj
k�� fk�t� are evaluated and stored in a preprocessing step� which reduces

the time complexity to O�n�
Pn

j�� pj�� Details of such an algorithm are given in Section
�
�
To minimize the number of tardy jobs� we develop a polynomial algorithm by eliminating the

state variable t� Since the number of tardy jobs cannot exceed n� we reverse the role of the state
variable t and the objective function value� To achieve the O�n�� time complexity� we build the
schedule by adding single jobs instead of complete batches� Full details are presented in Section
���

To construct a polynomial algorithm for other objective functions� we develop a generic backward
dynamic programming algorithm which allows us to avoid the state variable t� In a backward
algorithm� the batches are constructed in the reverse order to which they appear in the schedule�
Using this approach� we obtain polynomial algorithms for minimizing the total weighted completion
time

Pn
j�� wjCj and the maximum lateness Lmax�

We de�ne a cost function fj to be additive if fj�t � �� � fj�t� � fj��� for any �� and to
be incremental if fj�t � �� � fj�t� � � for any �� An objective function is additive if each fj

�

is additive� and is incremental if each fj is incremental �j � �� � � � � n�� Note that total weighted
completion time is additive� and maximum lateness is incremental�

A backward dynamic programming algorithm with batch enumeration for an additive regular
minsum objective function

Pn
j�� fj or an incremental regular minmax objective function fmax works

as follows� Let � be an SPT�batch schedule for the jobs Jj � � � � � Jn� where processing of the �rst
batch starts at time zero� we de�ne such a schedule to be in state j� To achieve this state from a
previous state� the following decision must be taken to create ��

� add a batch containing Jj� A batch fJj � � � � � Jk��g� where j � k � n � �� is inserted at the
beginning of some previous schedule in state k� Since batch fJj � � � � � Jk��g has processing
time pk��� jobs Jk � � � � � Jn are completed pk�� units later when this batch is added� For
an additive objective function� the total cost increases by

Pn
i�j fi�pk���� for an incremental

objective function� the maximum cost of jobs Jk� � � � � Jn increases by pk��� and the maximum
cost of jobs in batch fJj � � � � � Jk��g is maxj�i�k��ffi�pk���g�

Using a backward recursion� we obtain an O�n logn� algorithm for minimizing total weighted
completion time in Section
��� and an O�n�� algorithm for minimizing the maximum lateness in
Section
�
�

��� Minimizing a regular minsum function

In this section� we formalize the generic forward dynamic programming algorithm with batch enu�
meration that is outlined in Section
�� for the problem of minimizing an arbitrary regular minsum
objective function

Pn
j�� fj � We show that this problem can be solved in O�n�P � time and O�nP �

space� where P �
Pn

j�� pj �
Let Fj�t� be the minimum objective value for SPT�batch schedules containing jobs J�� � � � � Jj

subject to the condition that the last batch completes at time t� Recall from Section
�� that�
given Fj�t� and any SPT�batch schedule corresponding to this value� batch fJi��� � � � � Jjg� for some
i where � � i � j� appears in the last position�

We are now ready to give our dynamic programming recursion� The initialization is

F	�t� �

�
�� if t � ��
� otherwise�

and the recursion for j � �� � � � � n and t � pj � � � � �
Pj

k�� pk is

Fj�t� � min
	�i�j��

n
Fi�t� pj� �

jX
k�i��

fk�t�
o
�

The optimal solution value is equal to minpn�t�P fFn�t�g� and the corresponding optimal schedule

is found by backtracking� To implement the algorithm e�ciently� the partial sums
Pj

k�� fk�t� are

evaluated and stored for j � �� � � � � n and t � pj � � � � �
Pj

k�� pk in a preprocessing step in O�nP �
time� Then� each application of the recursion equation requires O�n� time� Thus� the dynamic
algorithm requires O�n�P � time and O�nP � space�

��� Minimizing the number of tardy jobs

In this section� we present an O�n�� time dynamic programming algorithm for the problem of
minimizing the number of tardy jobs� It is a forward algorithm that di�ers from the generic
pseudopolynomial procedure of Section
�� on two counts� First� we use the objective value as a
state variable and the makespan as the value of a state� this swap alone is su�cient to develop
an O�n�� algorithm� Second� to obtain an O�n�� time algorithm� we build the schedule by adding
single jobs instead of complete batches and �x the last job to be scheduled in the current batch�

We de�ne a schedule for jobs J�� � � � � Jj to be in state �j� u� k�� where u � j � k� if it contains
exactly u tardy jobs� and the last batch is to be enlarged by including jobs Jj��� � � � � Jk� but no
others� Thus� a schedule is to be created in which jobs Jj � � � � � Jk are contained in the same batch�
and this batch has processing time pk� Let Fj�u� k� be the minimum makespan for SPT�batch
schedules in state �j� u� k�� A schedule in state �j� u� k� with value Fj�u� k�� is created by taking one
of the following decisions in a previous state�

� add job Jj so that it does not start the last batch� The last batch to which Jj is added includes
job Jj�� and has processing time pk� This processing time pk contributes to the makespan
of the previous state� which is Fj���u� k� or Fj���u � �� k� depending on whether Jj is on
time or tardy� If Fj���u� k� � dj � then we consider �j � �� u� k� as a previous state with Jj
scheduled to be on time� if Fj���u� �� k�� dj � then we consider �j� �� u� �� k� as a previous
state with Jj scheduled to be tardy�

� add job Jj so that it starts the last batch� The previous batch ends with job Jj�� and the
processing time of the new batch is pk� After adding the contribution from the previous state�
the makespan becomes Fj���u� j � �� � pk or Fj���u� �� j � �� � pk� depending on whether
Jj is on time or tardy� If Fj���u� j � �� � pk � dj � then we consider �j � �� u� j � �� as a
previous state with Jj scheduled to be on time� if Fj���u��� j����pk � dj � then we consider
�j � �� u� �� j � �� as a previous state with Jj scheduled to be tardy�

We are now ready to give the dynamic programming recursion� The initialization is

F	�u� k� �

�
�� if u � � and k � ��
�� otherwise�

and the recursion for j � �� � � � � n� u � �� � � � � j� and k � j� � � � � n is

Fj�u� k� � min

������
�����

Fj���u� k�� if Fj���u� k� � dj �
Fj���u� �� k�� if Fj���u� �� k� � dj �
Fj���u� j � �� � pk� if Fj���u� j � �� � pk � dj �
Fj���u� �� j � �� � pk� if Fj���u� �� j � �� � pk � dj �
�� otherwise�

The minimum number of tardy jobs is then equal to the value smallest value u for which Fn�u� n� �
�� and the corresponding optimal schedule is found by backtracking� Note that the algorithm
requires O�n�� time and O�n�� space�

��� Minimizing total weighted completion time

In this section� we present an O�n logn� time dynamic programming algorithm for minimizing the
total weighted completion time

Pn
j�� wjCj � Since we have an additive minsum objective function�

the generic backward dynamic programming algorithm of Section
�� can be used�

	

Let Fj be the minimum total weighted completion time for SPT�batch schedules containing
the last n � j � � jobs Jj � � � � � Jn� Processing of the �rst batch in the schedule starts at time
zero� Furthermore� whenever a new batch is added to the beginning of this schedule� there is a
corresponding delay to the processing of all batches� Suppose that a batch fJj � � � � � Jk��g� which has
processing time pk��� is inserted at the start of a schedule for jobs Jk � � � � � Jn� The total weighted
completion time of jobs Jk� � � � � Jn increases by pk��

Pn
i�k wi� while the total weighted completion

time for jobs Jj � � � � � Jk�� is pk��
Pk��

i�j wi� Thus� the overall increase in total weighted completion
time is pk��

Pn
i�j wi�

We are now ready to give the dynamic programming recursion� The initialization is

Fn�� � ��

and the recursion for j � n� n� �� � � � � � is

Fj � min
j�k�n��

n
Fk � pk��

nX
i�j

wi

o
�

The optimal solution value is then equal to F�� and the corresponding optimal schedule is found by
backtracking� Under the most natural implementation� the algorithm requires O�n�� time and O�n�
space� if we compute and store the values

Pn
i�j wi for j � �� � � � � n in a preprocessing step� However�

since our dynamic program has a structure which allows geometric techniques to be applied �van
Hoesel et al�� ������ the time complexity can be reduced to O�n logn��

��� Minimizing maximum lateness and maximum cost

In this section� we present an O�n�� dynamic programming algorithm for minimizing the maximum
lateness Lmax� This algorithm serves as a subroutine for a polynomial algorithm that minimizes
the maximum cost fmax� Since Lmax is an incremental minmax objective function� we employ a
backward recursion of the type given in Section
���

Let Fj be the minimum value of the maximum lateness for SPT�batch schedules containing
the last n � j � � jobs Jj � � � � � Jn� where processing starts at time zero� If a batch fJj � � � � � Jk��g�
which has processing time pk��� is inserted at the start of a schedule for jobs Jk� � � � � Jn� then
the maximum lateness of jobs Jk� � � � � Jn increases by pk��� while the maximum lateness for jobs
Jj � � � � � Jk�� is maxj�i�k��fpk�� � dig�

We are now ready to give the dynamic programming recursion� The initialization is

Fn�� � ���

and the recursion for j � n� n� �� � � � � � is

Fj � min
j�k�n��

n
maxfFk � pk��� max

j�i�k��
fpk�� � digg

o
�

The optimal solution value is then equal to F�� and the corresponding optimal schedule is found
by backtracking� Note that the algorithm requires O�n�� time and O�n� space�

We now show how to construct a polynomial algorithm for minimizing fmax using the O�n��
algorithm for minimizing Lmax as a subroutine� First� note that the problem of minimizing fmax can
be viewed as a �nite series of decision problems of the type �is fmax � k��� where k is repeatedly
adjusted by binary search over an appropriate interval for k� Hence� if the decision problem is

�

solvable in polynomial time� then minimizing fmax is solvable in polynomial time if the optimal
solution value is an integer whose logarithm is polynomially bounded in the size of the input� We
assume that this is so� The question �is fmax � k�� can be answered in polynomial time as follows�
Observe that the upper bound k induces a deadline �dj on the completion time of each job Jj � for
j � �� � � � � n� Each deadline can be determined in O�logP � time by binary search over the P � �
possible completion times� Once the deadlines have been determined� we can use the algorithm for
minimizing Lmax to �nd out if there is a solution in which each job is completed before its deadline
by treating the deadlines as due dates� if Lmax � �� then a schedule exists in which no deadlines are
violated� otherwise� no such schedule exists� Hence� the question �is fmax � k�� can be answered
in O�n��n logP � time� which is polynomial� and the problem of minimizing fmax can be solved in
polynomial time�

��� Minimizing the weighted number of tardy jobs

In Section
�
� we establish that problems of minimizing a regular minsum function
Pn

j�� fj � such
as the weighted number of tardy jobs� can be solved by a pseudopolynomial dynamic programming
algorithm in O�n�P � time� Also� the algorithm in Section
�� can be generalized to minimize the
weighted number of tardy jobs in O�n�

Pn
j�� wj� time� In this section� we show that there exists no

polynomial algorithm for this problem� unless P � NP� we prove here that this problem is NP�hard
in the ordinary sense�

Theorem � The unbounded problem of minimizing the weighted number of tardy jobs
Pn

j�� wjUj

is binary NP�hard�

Proof� Our proof proceeds by a reduction from the binary NP�complete problem Partition�

Partition

Given a set fa�� � � � � amg of m positive integers� is it possible to partition the index set f�� � � � � mg
into two disjoint subsets X and Y such that

P
j�X aj � A� where A �

Pm
j�� aj�
�

Given an instance of Partition� we de�ne an instance of the unbounded weighted number of
tardy jobs problem with n �
m jobs and b � n� For each j �j � �� � � � � m�� we de�ne a �light� job
Jj with pj �
jA� aj � wj � aj � and dj � �j�� j � ��A� and a �heavy� job Jm�j with pm�j �
jA�
wm�j � A � �� and dm�j � �j� � j � ��A� Note that Jj and Jm�j have the same due date� for
j � �� � � � � m�

We show that Partition has a solution if and only if there exists a schedule for the corre�
sponding instance of the weighted number of tardy jobs problem with

Pn
j�� wjUj � A�

First� suppose that X and Y de�ne a solution to Partition� Consider a schedule with m� �
batches which is constructed as follows� Each �light� job Jj � for j � �� � � � � m� is assigned to batch
Bj if j � X � and is assigned to batch Bm�� if j � Y � The �heavy� jobs Jm��� � � � � J�m are assigned to
batches B�� � � � �Bm respectively� The processing time of batch Bj � for j � �� � � � � m� is either
jA�aj
or
jA depending on whether or not j � X � Since C�Bj� �

Pj
i��
iA �

P
i�X ai � dj � dm�j

for j � �� � � � � m� each �heavy� job and each �light� job Jj for j � X are on time� Therefore�Pn
j�� wjUj �

P
j�Y wj � A�

Conversely� suppose that there exists a schedule with
Pn

j�� wjUj � A� In such a schedule� all
�heavy� jobs have to be on time� Hence� Jm�� has to be processed in batch B�� and neither job Jj
nor Jm�j with j � � can be processed together with it in B�� Accordingly� Jm�� is processed in

batch B�� which cannot begin before time
A� the earliest possible completion time of B�� Since
Jm�� has to be completed by its due date �A� neither job Jj nor Jm�j with j �
 can be processed
together with it in B�� Further� the earliest completion time of B� is 	A� so job J� is tardy if it is
processed in B�� Repeating this line of reasoning� we deduce that each �heavy� job Jm�j and each
on�time �light� job Jj are assigned to batch Bj � for j � �� � � � � m� Moreover� we assume without loss
of generality that each tardy �light� job is assigned to batch Bm���

If job Jj is assigned to batch Bj � then p�Bj� �
jA � aj � otherwise� p�Bj� �
jA� Let X and
Y denote the set of indices j �j � �� � � � � m� for which Jj � Bj and Jj �� Bj � respectively� To
ensure that job J�m is on time� we require that C�Bm� �

Pm
j��
jA�

P
j�X aj � �m� �m� ��A�

Thus�
P

j�X aj � A� The condition
Pn

j�� wjUj � A implies that
P

j�Y aj � A� or equivalentlyP
j�X aj � A� Therefore�

P
j�X aj � A� which shows that X and Y de�ne a solution to Partition�

��� Minimizing total weighted tardiness

For minimizing the total weighted tardiness� we obtain a similar result to that for minimizing the
weighted number of tardy jobs� This problem is solvable in pseudopolynomial time O�n�P �� which
is shown in Section
�
� and is NP�hard in the ordinary sense� which we prove here� Hence� a
pseudopolynomial algorithm for its solution is the best we can achieve� unless P � NP�

Theorem � The unbounded problem of minimizing the total weighted tardiness
Pn

j�� wjTj is bi�
nary NP�hard�

Proof� Our proof proceeds again by a reduction from Partition� see Section
�	� For �our�
convenience� we describe the construction using fractional weights� By multiplying all weights with
a suitable number� however� we can obtain a proof with integral parameters only�

Given an instance of Partition� we construct an instance of the unbounded total weighted
tardiness problem with n �
m jobs and b � n� For each j �j � �� � � � � m�� we de�ne a �light� job
Jj with pj �
jmA� � aj � wj � aj��
�j � ��mA��� and dj � A � j�j � ��mA�� and a �heavy� job
Jm�j with pm�j �
jmA�� wm�j � A� �� and dm�j � A � j�j � ��mA�� Note that Jj and Jm�j

have the same due date� for j � �� � � � � m�
We prove that Partition has a solution if and only if there is a schedule for the corresponding

instance of the total weighted tardiness problem with
Pn

j�� wjTj � A�
First� suppose that X and Y de�ne a solution to Partition� We assume without loss of

generality that m � X � Consider a schedule with m batches which is constructed as follows� Each
�light� job Jj � for j � �� � � � � m� is assigned to batch Bj if j � X � and is assigned to batch Bj��

if j � Y � The �heavy� jobs Jm��� � � � � J�m are assigned to batches B�� � � � �Bm respectively� The
processing time of batch Bj � for j � �� � � � � m� is either
jmA��aj or
jmA

� depending on whether

or not j � X � Since C�Bj� �
Pj

i��
imA
��

P
i�X ai � dj � dm�j for j � �� � � � � m� each �heavy� job

and each �light� job Jj for j � X are on time� Moreover� each �light� job Jj for j � Y is completed

at time Cj � C�Bj���� where C�Bj��� �
Pj��

i��
imA
� � dj and is therefore tardy� Further�

Cj �
Pj��

i��
imA
� �

P
i�X ai � dj�� for j � Y � Therefore�

Pn
j�� wjTj �

P
j�Y wj�dj�� � dj� �P

j�Y wj�
j �
�mA� �
P

j�Y aj � A�
Conversely� assume that there exists a schedule with

Pn
j�� wjTj � A� In any such schedule� all

�heavy� jobs have to be on time� Also� as in the proof of Theorem �� it is straightforward to show
that in any such schedule each �heavy� job Jm�j and each on�time �light� job Jj are assigned to

�

batch Bj � and each tardy �light� job is assigned to one of the batches Bj��� � � � �Bm��� where Bm��

is a �nal batch that contains only tardy jobs�
If job Jj is assigned to batch Bj � then p�Bj� �
jmA� � aj � otherwise� p�Bj� �
jmA�� Let X

and Y denote the set of indices j �j � �� � � � � m� for which Jj � Bj and Jj �� Bj � respectively� To
ensure that job J�m is on time� we require that C�Bm� �

Pm
j��
jmA

��
P

j�X aj � A�m��m���A��
Thus�

P
j�X aj � A�

Each tardy �light� job Jj � where j � Y � is assigned to one of the batches Bj��� � � � �Bm��� Hence�

for j � Y � we have Cj �
Pj��

i��
imA
�� Tj �
�j � ��mA� �A and wjTj � aj � aj���
j �
�mA� �

aj����
m�� Therefore�
Pn

j�� wjTj �
P

j�Y�aj����
m���
P

j�Y aj��� Since the aj �s are integral
and

Pn
j�� wjTj � A� we must have also that

P
j�Y aj � A� or equivalently

P
j�X aj � A� Therefore�P

j�X aj � A� which shows that X and Y de�ne a solution to Partition�

� The bounded model

In this section� we analyze problems in which b is restrictively small� we assume that b � n� These
bounded problems are at least as di�cult as their traditional counterparts� since for the special case
b � � the machine can handle no more than one job at a time� They are also inherently much
more di�cult than their unbounded counterparts� mainly for reason that we can no longer restrict
ourselves to SPT�batch schedules in the search for an optimal schedule� There is one exception�
for minimizing makespan� there is a still an SPT�batch schedule that is optimal�

For the bounded problem of minimizing the makespan� we assume that n is an integer multiple
of b and that n � br� This assumption is justi�ed by the observation that dummy jobs with
zero processing time can be introduced without a�ecting the minimum makespan� The problem
is solved by assigning the b jobs with smallest processing times to B�� the b jobs with the next
smallest processing times to B�� and so on� until the b jobs with largest processing times are
assigned to Br� Hence� we can solve the problem in O�n logn� time� if we �rst order the jobs using
the SPT rule� Alternatively� we can solve the problem in O�rn� time� if we use linear time median
�nding techniques �Blum et al�� ����� Schonh�age et al�� ���	�� More precisely� we can determine
B� � � � � � Bl� for l � �� � � � � r� by �nding some job Jj in O�n� time such that jfijpi � pjgj � bl
and jfijpi � pjgj � b�r � l� and then introducing a subset of fijpi � pjg into the �rst set so that
its cardinality is exactly equal to bl� Under this implementation� the problem is solved in O�n��b�
time�

In Section ���� we analyze the problem of minimizing total completion time� We show that the
problem can be solved in O�nb�b���� time by dynamic programming for b � �� Furthermore� we
give an O�b�m�
m� time algorithm for the case of m di�erent processing times�

We also provide complexity results for scheduling with due dates� Speci�cally� we show in
Section ��
 that �nding whether there is a feasible solution to the bounded problem in which the
jobs have deadlines is NP�complete in the strong sense� even if b �
� This result implies that
minimizing the maximum lateness� the number of tardy jobs� and the total tardiness are all unary
NP�hard problems�

Finally� Section ��� addresses the special case in which the number of batches to be used is
�xed� We show that bounded problems of this type can be solved in O�nr��� time� where r is the
given number of batches�

��

��� Minimizing total completion time

The bounded problem of minimizing total completion time is introduced by Chandru et al� �����a��
who present a branch�and�bound algorithm and some heuristics� We show in Section ����� that
the general problem is solvable in O�nb�b���� time and O�nb�b���� space for b � �� For the case
of m di�erent job types �where m � n�� Chandru et al� �����b� present an O�m�bm��� time
dynamic programming algorithm� Hochbaum and Landy ������ present a more e�cient algorithm
that requires O�m��m� time and O�m�m� space� In Section ����
� we present an algorithm with a
further gain in e�ciency� our algorithm requires O�b�m�
m� time and O�bm�� space�

Throughout this section� we again assume that the jobs have been re�indexed according to the
SPT rule so that p� � � � � � pn� The following result shows that there exists an optimal schedule
in which each batch contains jobs with consecutive indices�

Lemma � There exists an optimal schedule �B�� � � � �Br� for which� under the SPT indexing� Bl �
fJil � � � � � Jjlg� where � � il � jl � n� for l � �� � � � � r�

Proof� Consider any optimal schedule � � �B�� � � � �Bl� � � � �Br�� where � � l � r� with Ji� Jj � Bl�
where i � j��� and Jj�� �� Bl� Suppose that Jj�� � Bq for some q �� l� Consider now the schedule ��

that is obtained from � by interchanging jobs Ji and Jj��� thereby changing Bl to Bl�fJj��gnfJig
and Bq to Bq � fJig n fJj��g� Since pi � pj�� � pj � we have that p�Bl � fJj��g n fJig� � p�Bl�
and p�Bq � fJig n fJj��g� � p�Bq�� Thus� no batch has a larger completion time in �� than in ��
and batch sizes are the same in � and ��� It follows that the total completion time for �� does not
exceed that for �� and the new schedule �� is also optimal� A �nite number of repetitions of this
procedure yields an optimal schedule of the required form�

We now present a result of Chandru et al� �����b� which extends the classical SWPT rule for
sequencing jobs on a single machine to the sequencing of batches�

Lemma 	 �Chandru et al�� ����b� For given batches B�� � � � �Br� an optimal sequence is �B�� � � � �Br�
if and only if

p�B���jB�j � � � �� p�Br��jBrj� ���

We de�ne a batch to be full if it contains exactly b jobs� otherwise� it is non�full� Also� a batch
Bl is deferred with respect to another batch Bq if Bl is sequenced after Bq and p�Bl� � p�Bq��

We now derive a result relating to deferred batches�

Lemma � In any optimal schedule� there is no batch that is deferred with respect to a non�full
batch�

Proof� Consider any schedule which contains a batch Bl which is deferred with respect to a non�full
batch Bq� Any job in Bl can be moved to Bq without a�ecting feasibility and without increasing
the processing time of batch Bq� Since such a transformation decreases the total completion time�
the desired result is established�

In our subsequent analysis� we only consider schedules that are consistent with the above lem�
mas� each batch contains jobs with consecutive indices� batches are ordered according to ���� and
no batch is deferred with respect to a non�full batch�

��

	���� A polynomial algorithm for
xed b

In this subsection� we derive a polynomial algorithm for the bounded problem of minimizing the
total completion time� The special case b � � is equivalent to the corresponding classical scheduling
problem for which the SPT rule provides an optimal solution in O�logn� time� Thus� we assume
that b �
� and derive an O�nb�b���� dynamic programming algorithm� This algorithm relies an
upper bound on the number of deferred batches� which we establish next�

Lemma � In any optimal schedule� the number of deferred batches with respect to any full batch
does not exceed b� � b� ��

Proof� Consider any schedule � for which the number of deferred batches with respect to some
full batch Bl is at least b

� � b� We show that � cannot be an optimal schedule�
We �rst note from Lemma � that all full batches are sequenced in non�decreasing order of their

processing times� consequently� any deferred batch is non�full� Suppose that the deferred batches
with respect to batch Bl in � are divided into two groups so that the �rst group comprises the
�rst �b� ��� � � of these batches and the second group comprises the remainder of these deferred
batches� We observe that� in the �rst group� there are at least b deferred batches containing the
same number of jobs� let a denote the number of jobs in each of these batches� where a � b�

It is useful to represent � in the form

� � �S	�A��S��A�� � � � �Sb���Ab�Sb��

where Ai� for i � �� � � � � b� is a batch that contains a jobs and is deferred with respect to batch
Bl� and where Si� for i � �� � � � � b� is a block of batches� Note that block S	 contains batch Bl and
block Sb contains all deferred batches of the second group� Moreover� p�A�� � � � � � p�Ab� from
Lemma �� Let p�Si� and jSij denote the total processing time of the batches in block Si and the
number of jobs in block Si� respectively� for i � �� � � � � b� Since the number of deferred batches with
respect to batch Bl is at least b

� � b� there are at least b� � b� �b� ��� � � � b�
 batches in Sb�
and consequently jSbj � b�
�

Suppose that we construct full batches A�
b�a��� � � � �A

�
b from batches Ab�a��� � � � �Ab by adding

the a jobs from each of the batches A�� � � � �Ab�a� For example� the a respective jobs of batch Ai�
could be added to batches Ab�a��� � � � �Ab� for i � �� � � � � b� a� We now de�ne the schedule

�� � �S	�A
�
b�a��� � � � �A

�
b�S�� � � � �Sb��

Our analysis also uses two arti�cial schedules �� and ��� for related problems in which some
batches are removed and replaced by duplicates of other batches in the schedule� Speci�cally�
schedule �� is obtained from � by the following transformation� First� we replace each batch Ai for
i � �� � � � � b� a with A�� and each batch Ai for i � b� a� �� � � � � b� with Ab� Second� we sequence
the b � a batches of type A� in adjacent positions� and also sequence the a batches of type Ab in
adjacent positions� with blocks S�� � � � �Sb�� in between� Thus�

�� � �S	 �A�� � � � �A��� �z 	
b�a batches

S��S�� � � � �Sb�� �Ab� � � � �Ab�� �z 	
a batches

Sb��

Schedule ��� is constructed from �� by replacing each batch A�
i� for i � b � a � �� � � � � b� with A�

b�
hence�

��� � �S	 �A
�
b� � � � �A

�
b�� �z 	

a batches

S��S�� � � � �Sb���Sb��

�

Assume that � is an optimal schedule� We prove the lemma by deriving two contradictory
inequalities relating

Pn
j�� Cj��

�� and
Pn

j�� Cj��
�
��� First� we establish that

nX
j��

Cj��
�� �

nX
j��

Cj��
�
��� �
�

Comparing schedules ��� and ��� we observe that there is an increase in processing time of p�A�
b��

p�A�
i� when batch A�

i is substituted by A�
b� for i � b� a� �� � � � � b� and this increase also delays all

subsequent jobs in ���� From the construction of A�
i from Ai� for i � b � a � �� � � � � b� we observe

that p�A�
i� � p�Ai�� Thus� we deduce that

nX
j��

Cj��
�
�� �

nX
j��

Cj���� �
bX

i�b�a��

�p�Ab�� p�Ai��

�b� i� ��b�

bX
l��

jSlj
�
� ���

We now compare schedules �� and �� First� observe that replacing batch Ai� for i � �� � � � �
b � a� with A� does not increase the total completion time since p�A�� � p�Ai� from Lemma ��
Moreover� Lemma � also shows that reordering these A� batches so that they are sequenced in
adjacent positions does not increase the total completion time either� To obtain an upper bound
on the increase in total completion time when batch Ai is substituted by Ab� for i � b�a��� � � � � b�
we assume that the increase in processing time of p�Ab��p�Ai� causes a delay to each of the blocks
S�� � � � �Sb� Thus� we obtain

nX
j��

Cj��
�� �

nX
j��

Cj��� �
bX

i�b�a��

�p�Ab�� p�Ai��

�b� i� ��b�

bX
l��

jSlj
�
� ���

Subtracting ��� from ��� yields

nX
j��

Cj��
���

nX
j��

Cj��
�
�� �

nX
j��

Cj����
nX

j��

Cj���� � ��

where the latter inequality holds due to the optimality of �� Therefore� we have established the
desired inequality �
��

To obtain the required contradiction� it is su�cient to prove that
nX

j��

Cj��
�� �

nX
j��

Cj��
�
��� �
�

Let K denote the total completion time of jobs in the schedule de�ned by �S	� � � � �Sb�� In schedule
���� each of the blocks S�� � � � �Sb is delayed by time ap�A�

b�� Since p�A
�
b� � p�Ab�� we deduce that

nX
j��

Cj��
�
�� � K � abp�S	� � ab�a� ��p�Ab��
 � ap�Ab�

bX
l��

jSlj� �	�

Performing similar calculations for schedule ��� we obtain

nX
j��

Cj��
�� � K � a�b� a�p�S	� � a�b� a��b� a� ��p�A���
 � �b� a�p�A��

bX
l��

jSlj

�a�

b��X
l�	

p�Sl� � �b� a�p�A��
�
� a��a� ��p�Ab��
 � ap�Ab�jSbj� ���

��

Subtracting �	� from ��� yields

nX
j��

Cj��
���

nX
j��

Cj��
�
�� � �b� a�p�A��

a�b� a� ���
 �

bX
l��

jSlj
�

�ap�Ab�

�a� ���b� a��
 �

b��X
l��

jSlj
�
� a�

b��X
l��

p�Sl�� � �

Rearranging � �� we obtain

nX
j��

Cj��
���

nX
j��

Cj��
�
�� � �b� a�p�A����a

� � a � b��
 � jSbj��

��bp�A��� ap�Ab��

�a� ���b� a��
 �

b��X
l��

jSlj
�

�a

a
b��X
l��

p�Sl�� p�A��
b��X
l��

jSlj
�
� ���

Using our previous observation that jSbj � b �
� together with b �
 and a � �� shows that
�a� � a� b��
� jSbj � �� Thus� the �rst term in equation ��� is non�negative� Applying Lemma �
to the batches Bl and A� in �� we obtain p�Bl��b � p�A���a� Since batch Ab is deferred with respect
to batch Bl� we have that p�Ab� � p�Bl�� Combining these inequalities yields p�Ab��b � p�A���a�
Thus� the second term in equation ��� is strictly positive� A further application of Lemma � to batch
A� and to all of the batches in blocks S�� � � � �Sb�� in � yields p�A���a �

Pb��
l�� p�Sl��

Pb��
l�� jSlj�

This establishes that the third term in equation ��� is non�negative�
We have now proved that inequality �
� holds� which contradicts �
�� Therefore� � is not an

optimal schedule� This implies that the number of deferred batches with respect to any full batch
in an optimal schedule is at most b� � b� ��

We now present a backward dynamic programming algorithm� that uses state variables to
identify deferred batches� Lemma
 establishes an upper bound on the number of state variables
of this type� Recall our assumption that the jobs have been re�indexed according to the shortest
processing time �SPT� rule� We also assume that all processing times are distinct� which can be
achieved if necessary by perturbation�

Let � be a schedule that contains jobs Jj � � � � � Jn� but not Jj��� and also contains non�full batches
B�� � � � �Br� where p�B�� � � � �� p�Br�� which are deferred with respect to the batch containing job
Jj�� that remains to be scheduled� Processing of the �rst batch in � starts at time zero� From
Lemma
� we may assume that Bl � fJjl � � � � � Jj�

l
g� where j�l � jl�� for l � �� � � � � r and jr�� � j�

Further� Lemma � shows that these deferred batches may be assumed to appear in � in the order
B�� � � � �Br� We also assume that r � b� � b � � in accordance with Lemma
� If r �� �� then
Lemma � shows the batch containing Jj�� must be full� therefore� this batch is fJj�b� � � � � Jj��g�
and j�r � j � b�

We claim that knowledge of the indices of initial jobs j�� � � � � jr allows us to identify� in O�r�
time� the indices of �nal jobs j��� � � � � j

�
r� and consequently the exact contents of each of the batches

B�� � � � �Br� To justify this claim� we show how to construct Bl� for l � �� � � � � r� The set fJjl � � � � � Jjl����g
comprises batch Bl and possible other full batches� except for Bl� there are no non�full batches since

��

the resulting schedule would not be consistent with Lemma �� Thus� the number of jobs in batch Bl

is �jl���jl� mod b� from which we deduce that j�l � jl����jl���jl� mod b� Since we do not allow
empty batches� the choice of initial job indices must satisfy �jl�� � jl� mod b �� � for j � �� � � � � r�
We have now established our claim�

We de�ne � to be in state �j� j�� � � � � jr�� If r � �� then we write the state as �j� 	�� where 	 is a
symbol for empty� A schedule in state �j� 	� is created by taking one of the following decisions in a
previous state�

� add a batch containing job Jj � A full or non�full batch fJj � � � � � Jk��g� where j�� � k � j�b�
is inserted at the beginning of some previous schedule in state �k� 	��

� add a full batch that does not contain job Jj� A full batch fJk� � � � � Jk�b��g� where j � k �
n � b� �� is inserted at the beginning of some previous schedule in state �k � b� j�� � � � � jr��
where the corresponding deferred batches B�� � � � �Br satisfy the relationship B� � � � �� Br �
fJj � � � � � Jk��g�

In the latter case� the previous schedule has batches B�� � � � �Br that are deferred with respect to the
batch that contains job Jk�b�� � When the full batch fJk� � � � � Jk�b��g is scheduled� these batches
are no longer deferred� Similarly� to create a schedule in state �j� j�� � � � � jr� for r �� �� we take one
of the following decisions�

� add batch B�� Batch B� is inserted at the beginning of some previous schedule in state
�j� j�� � � � � jr��

� add a full batch containing job Jj � A full batch fJj � � � � � Jj�b��g is inserted at the beginning
of some previous schedule in state �j � b� j�� � � � � jr��

� add a full batch that does not contain job Jj� A full batch fJk � � � � � Jk�b��g� where j � k � n�
b��� is inserted at the beginning of some previous schedule in state �k�b� j�� � � � � jr� j�� � � � � jr��
where the corresponding deferred batches B�� � � � �Br satisfy the relationship B� � � � �� Br �
fJj � � � � � Jk��g�

Using the above observations� we can use the state variables to compute j��� � � � � j
�r and n��

where n� is the number of jobs in �� We assume that such computations are performed for every
state that we consider�

Let Fj�j�� � � � � jr�� and Fj�	�� be the minimum total completion time among all schedules that
achieve state �j� j�� � � � � jr� for r �� �� and �j� 	�� respectively� From our previous observations� we
can use the state variables to compute j��� � � � � j

�r� the �nal job indices of deferred batches� and n��
where n� is the number of scheduled jobs� We assume that such computations are performed for
every state that we consider� In our dynamic programming algorithm� the initialization is

Fn���	� � ��

For j � n� n� �� � � � � �� we have recursion equations

Fj�	� � min

���
��

min
j���k�j�b

fFk�	� � n�pk��g�

min
j���k�n�b����j������jr��Hk

fFk�b�j�� � � � � jr� � n�pk�b��g�

�

Also� for j � n� �� n� � � � � �� r � �� � � � � b�� b� �� and j�� � � � � jr such that j� � � � � � jr � j � b and
�jl�� � jl� mod b �� � for l � �� � � � � r� where jr�� � j� the recursion equations are

Fj�j�� � � � � jr� � min

����
���
Fj�j�� � � � � jr� � n�pj�

�
�

Fj�b�j�� � � � � jr� � n�pj�b���
min

j���k�n�b����j������jr��Hk

fFk�b�j�� � � � � jr� j�� � � � � jr� � n�pk�b��g�

where Hk is the set of vectors �j�� � � � � jr� that contain the indices of the initial jobs of deferred
batches B�� � � � � Br� where � � r � b� � b� �� r� such that B� � � � �� Br � fJj � � � � � Jk��g� Note
that j� � j� The optimal solution value is equal to F��	�� and the corresponding optimal schedule
is found by backtracking�

We now discuss the time and space complexity of our dynamic programming algorithm� There
are O�nr��� state variables �j� j�� � � � � jr�� and consequently O�nb�b���� state variables overall� The
two terms in the recursion equation for Fj�	� are computed in in O�b� time and O�nb

��b��� time�
respectively� The �rst two terms in the equation for Fj�j�� � � � � jr� are computed in constant time�

while the third term is computed in O�nb
��b���r� time� Thus� the algorithm requires O�nb�b����

time and O�nb�b���� space�
We have established that the bounded problem of minimizing the total completion time is

polynomially solvable for �xed b� However� when b is arbitrary� the complexity remains unresolved�

	���� The case of m di�erent processing times

In this subsection� we present an O�b�m�
m� time dynamic programming algorithm for minimizing
total completion time for the case of m di�erent job processing times� Before proceeding� we
introduce some notation that is speci�cally needed for the development of this algorithm� Let the
distinct processing times be �p� � � � � � �pm� and let Sj be the set of all jobs with processing time
equal to �pj � for j � �� � � � � m� Moreover� let bj � bjSjj�bc� for j � �� � � � � m� so that bj represents the
maximum number of full batches containing jobs in Sj only� We call a job a j�job if its processing
time is �pj � and we call a batch a j�batch if its longest job is a j�job� We call a j�batch pure if the
batch is full and contains j�jobs only� otherwise� it is non�pure�

In accordance with Lemmas � and �� we restrict our search to schedules in which batches are
sequenced in order of non�decreasing ratios p�Bl��jBlj� and no batch is deferred with respect to a
non�full batch� Instead of using Lemma
� however� we characterize a set of optimal solutions by
properties stipulated in the following lemma�

Lemma
 There exists an optimal schedule with the following properties�

�i� �Chandru� Lee and Uzsoy� ����b� there are bj pure j�batches� for j � �� � � � � m�

�ii� there is at most one non�pure j�batch� for j � �� � � � � m�

Proof� To prove property �ii�� consider any optimal schedule with more than one non�pure j�batch�
for some j� and bj pure j�batches in accordance with property �i�� Let B denote one of the non�pure
j batches� By interchanging each j�job in a non�pure j�batch other than B with a non�j�job in
batch B� we obtain an alternative optimal schedule with one non�pure j�batch�

Property �i� states that there are bj pure j�batches� for j � �� � � � � m� which from Lemma �
must be sequenced in order of non�decreasing �pj � For the remaining jobs� we enumerate all possible

�	

con�gurations of full non�pure batches� Since property �ii� shows that we may restrict our attention
to schedules which have either zero or one full non�pure j�batch for each j �j � �� � � � � m�� we need
to consider
m possible combinations� We represent a given con�guration of full non�pure batches
by the set of indices X
 f�� � � � � mg� where j � X if and only if there is a full non�pure j�batch�
We introduce indicator variables aj�X � where

aj�X �

�
� if j � X �
� otherwise�

Given a set X � we propose a batch �lling procedure which �nds all other jobs in the corresponding
full non�pure batches� Consider any index j� where j � X � Since a j�batch is required to have �pj
as its processing time� it must contain a j�job and be �lled with jobs with processing times at most
�pj � Apart from this upper bound on the processing time� we are free to assign any other b� � jobs�
although it is best to �ll the batch with jobs having processing times as large as possible� This
observation leads to the batch �lling procedure described below�

Batch Filling Procedure

Input� Any set X of batch indices�

Step 	� Initially� set nj�X � jSj j � bjb if j �� X � and nj�X � jSj j � bjb� � if j � X � for j � �� � � � � m�
Note that nj�X represents the number of j�jobs that remain to be assigned to the non�pure j�batches�
Set h � ��

Step
� Determine the smallest index j such that j � X and j � h� If no such index exists� then
terminate the procedure with an optimal set of full non�pure batches�

Step �� If
Pj

i�� ni�X � b � �� then terminate the procedure� it is not possible to �ll all non�pure
batches speci�ed by X �

Let i be the largest index i � j for which

ni�X � ni���X � � � �� nj���X � nj�X � b� �� ����

Fill the non�pure j�batch with all unassigned jobs from the set Si��� � � � �Sj and with b � � �Pj
k�i�� nk�X unassigned i�jobs� Accordingly� we update ni�X � ni�X � b � � �

Pj
k�i�� nk�X and

nk�X � � for k � i� �� � � � � j�

Step �� Set h � j� and go to Step ��

This procedure can be implemented to run in O�m� time for any given set X �
The remaining issue is how to form non�full batches with the remaining jobs� which have not

been assigned by the batch �lling procedure� and how to interleave these non�full batches with the
full batches to minimize total !ow time� For ease of exposition� assume that the remaining jobs are
J�� � � � � Jn� � where these jobs have been indexed according to the SPT rule� Let pj be the processing
time of Jj � for each j � �� � � � � n�� Note that n� � m�b� ��� The following result establishes that
there exists an optimal schedule in which� after removal of all full batches� jobs J�� � � � � Jn� form an
SPT�batch schedule�

Lemma � There exists an optimal schedule in which the sequence of batches formed by jobs
J�� � � � � Jn� is �B�� � � � �Br�� where under the SPT indexing Bl � fJjl � Jjl��� � � � � Jjl����g and jl�� �
jl � b� for j � �� � � � � r� and � � j� � j� � � � � � jr � jr�� � n� � ��

��

Proof� The argument used in the proof of Lemma
 shows that there exists an optimal schedule in
which the non�full batches contain jobs with consecutive indices� Lemma � establishes that these
batches are sequenced in order of increasing processing times�

We can restrict our search for an optimal schedule to one which has the following properties�

�a� the full batches appear in order of non�decreasing processing times� which follows from
Lemma ��

�b� the remaining jobs form non�full batches� where each such batch contains jobs with consecutive
indices� and the batches are sequenced in SPT order� which follows from Lemma ��

�c� a complete schedule is found be interleaving the full and non�full batches�

If the non�full batches are known� the interleaving can be performed using Lemma �� However� we
propose a dynamic programming algorithm that forms the non�full batches and interleaves the full
and non�full batches�

For any given X � we apply a backward dynamic programming algorithm in which complete
batches� either full or non�full� are added to the beginning of some previous schedule� This algorithm
implicitly enumerates all schedules that have properties �a� and �b�� Since we are minimizing total
completion time� it will automatically give an optimal schedule that possesses property �c� as well�

Let � be a schedule that satis�es properties �a� and �b�� that contains all of the full k�batches�
for k � i� � � � � m� and the jobs Jj � � � � � Jn� in non�full batches� Processing of the �rst batch starts
at time zero� We de�ne such a schedule to be in state �i� j�� Let Fi�j� be the minimum total
completion time for schedules in state �i� j�� A schedule in state �i� j� is created by taking one of
the following decisions in a previous state�

� add all full i�batches� The number of full i�batches is equal to bi � ai�X �which may be zero��
Inserting these batches at the beginning of some previous schedule in state �i� �� j� delays
the jobs that are already scheduled by �bi � ai�X ��pi units� and therefore increases the total
completion time by �bi�ai�X ��bi�ai�X���b�pi�
��n��j���b

Pm
k�i���bk�ak�X ���bi�ai�X ��pi�

� add a batch containing Jj � A non�full batch fJj � � � � � Jk��g� where j � k � minfn���� j�b��g�
is inserted at the beginning of some previous schedule in state �i� k�� Since this batch has
processing time pk��� the previously scheduled jobs are completed pk�� units later when this
batch is added� and total completion time increases by �n� � j � � � b

Pm
k�i�bk � ak�X ��pk���

We are now ready to give the dynamic programming algorithm for computing an optimal
schedule for any given X � The initialization is

Fm���n
� � �� � ��

and the recursion for i � m � �� m� � � �� � and j � n� � �� n�� � � � � � �where either i � m � � or
j � n� � �� is

Fi�j� � min

������
�����

Fi���j� � �bi � ai�X ��bi � ai�X � ��b�pi�

��n� � j � �� b
mP

k�i��
�bk � ak�X ���bi � ai�X ��pi

min
j�k�minfn����j�b��g

fFi�k� � �n� � j � � � b
mP
k�i

�bk � ak�X ��pk��g�

�

The optimal solution value for a given set X is F���� and the corresponding optimal schedule is
found by backtracking�

To implement the algorithm e�ciently� the partial sums
Pm

k�i�bk � ak�X � are evaluated and
stored for i � �� � � � � m in a preprocessing step in O�m� time� Then� each value Fi�j� is determined
in O�b� time� Since n� � �m���b� the recursion requires O�b�m�� time and O�bm�� space altogether
for a given X � To solve the problem� we need to run the recursion for all feasible sets X � of which
there are at most
m� Hence� the overall time requirement for the algorithm is O�b�m�
m�� and
the space requirement is O�bm���

��� Scheduling with due dates is NP	hard

In this section� we prove that bounded problems with due dates or deadlines are NP�hard in the
strong sense� even if b �
�

Theorem 	 Finding a feasible solution to a bounded problem with deadlines is unary NP�complete�
even if b �
�

Proof� The proof is based upon a reduction from the unary NP�complete problem ��Partition�

��Partition

Given a set fa�� � � � � a�mg of �m positive integers with
P�m

j�� aj � mA and A�� � aj � A�
 for
j � �� � � � � �m� is it possible to partition the index set f�� � � � � �mg into m mutually disjoint subsets
X�� � � � �Xm such that

P
i�Xj

ai � A for j � �� � � � � m�

Given an instance of ��Partition� we construct the following instance of our bounded deadlines
problem with 	m� jobs and b �
� For i � �� � � � � �m and j � �� � � � � m� there is a job Ji�j with
processing time pi�j and deadline �dj for j �� � and deadline �dm for j � �� where

pi�j � iW � �m� j�ai�

�dj �
jX

h��

 �mX
i��

iW � �m� h�mA� hA
�
�

and W � m�A� Also� for i � �� � � � � �m and j �
� � � � � m� there is a job J�m�i�j with processing
time p�m�i�j � pi�j and deadline �dj � Any job Ji�j for j � �� � � � � m� and J�m�i�j for j �
� � � � � m is
of type i� Further� the jobs Ji�j � and the jobs J�m�i�j �for j �� �� ��� for i � �� � � � � �m� form group j�
Note that groups � and � each contain �m jobs� while all other groups contain 	m jobs�

We prove that ��Partition has a solution if and only if there is a feasible solution to this
scheduling instance with deadlines�

First� suppose that X�� � � � �Xm de�nes a solution to ��Partition� Consider a schedule which
comprises m blocks of batches� where each block contains �m batches� In block j� for j � �� � � � � m�
there are three batches fJi�j � Ji�	g for i � Xj and �m � � batches fJi�j � J�m�i�jg �for j �� �� or
fJi�j � J�m�i�j��g� depending on whether job J�m�i�j �for j �� �� is scheduled in a previous block�
for i �� Xj � Note that all jobs in group � are scheduled in block �� and all jobs in group j� for
j �
� � � � � m� are scheduled either in block j � � or block j� The completion of processing of block
j occurs at time

jX
h��

�mX
i��

iW �
X
i�Xh

mai �
X
i��Xh

�m� h�ai
�
�

��

which can be expressed as

jX
h��

�mX
i��

iW � �m� h�mA� hA
�
� �dj �

Therefore� each job is completed by its deadline� and the schedule is feasible�
Conversely� suppose that there exists a feasible schedule� We show �rst that each batch contains

exactly two jobs which are of the same type� If this is not the case� then the completion time T of
the last batch in the schedule satis�es

T �
mX
h��

�mX
i��

iW �W�

Using the inequality �m� h�mA� hA � m�A in the expression for �dm yields

�dm �
mX
h��

�mX
i��

iW �m�A�

which shows that T � �dm� and the schedule is not feasible�
Jobs Ji��� for i � �� � � � � �m� are each contained in di�erent batches which are completed by

time �d�� Since
P�m

i�� pi�� �
P�m

i�� iW � �d� � �m� ��mA� A � d� �W � these �m batches must be
sequenced in the �rst �m positions of the schedule� It is not possible for both Ji�� and J�m�i�� to
be scheduled in the �rst block of �m batches� Since Ji�� and J�m�i�� are identical� we may assume
that jobs J��i� for i � �� � � � � �m� are each contained in di�erent batches which are not sequenced
in the �rst �m positions� To achieve the deadline �d�� these batches must form a second block
which are sequenced in positions �m � �� � � � � 	m� Repetition of this argument shows that there
is a block of �m batches which contain jobs Ji�j for i � �� � � � � �m that are sequenced in positions
��j� ��m� �� � � � � �jm� respectively� for j � �� � � � � m� Moreover� the batch containing job Ji�j also
contains either Ji�	� J�m�i�j or J�m�i�j�� �for j �� m��

The batch containing job Ji�j has processing time pi�j unless it contains job Ji�	 in which case it
has processing time pi�	� We identify the batches to which jobs J��	� � � � � J�m�	 are assigned in order
to de�ne a partition X�� � � � �Xm of the index set f�� � � � � �mg� Speci�cally� i � Xj if fJi�j � Ji�	g is a
batch� Since all batches containing jobs Ji�j for i � �� � � � � �m must be completed by time �dj � we
obtain

jX
h��

X
i��Xh

pi�h �
X
i�Xh

pi�	
�
� �dj � j � �� � � � � m�

which can be expressed as

jX
h��

h

A�

X
i�Xh

ai
�
� �� j � �� � � � � m� ����

Suppose that at least one of the inequalities in ���� is strict� Then by forming a linear combination
of the m inequalities with positive coe�cients ��j � ���j � �� for j � �� � � � � m� �� and ��m for
j � m� we obtain a strictly positive value� This relationship is expressed as

m��X
j��

�
j
�

�

j � �

� jX
h��

h

A�

X
i�Xh

ai
�
�

�

m

mX
h��

h

A�

X
i�Xh

ai
�
� ��

�

which can be rewritten as

mX
h��

h

A�

X
i�Xh

ai
�
m��X

j�h

�
j
�

�

j � �

�
�

�

m

�
� mA�

mX
h��

X
i�Xh

ai � ��

However� this inequality contradicts
P�m

i�� ai � mA� which is obtained from the de�nition of ��
Partition� Therefore� the left�hand side of each inequality in ���� is equal to zero� This implies
that

P
i�Xj

ai � A for j � �� � � � � m� which shows that X�� � � � �Xm de�ne a solution to ��Partition

Corollary � The bounded problems of minimizing the maximum lateness Lmax� the number of
tardy jobs

Pn
j�� Uj � and the total tardiness

Pn
j�� Tj are unary NP�hard� even if b �
�

��� Restricted number of batches

In this section� we consider the bounded problem of minimizing any regular objective function when
the schedule is constrained to contain at most r batches� We show that this problem can be solved
in �nr��� time� which is polynomial when r is �xed�

Note that� if the longest job of each batch is speci�ed along with the order in which the r
batches are sequenced� then it is straightforward to compute the processing times p�B��� � � � � p�Br�
and completion times C�B��� � � � � C�Br� of the batches� The problem then reduces to one of assigning
each of the remaining jobs to the r batches so that no batch contains more than b jobs and no job
is assigned to a batch whose designated longest job would be smaller� If job Jj has a deadline �dj �
then we must also ensure that Cj � �dj �

"From the above observations� the cost cij of assigning any of the n � r remaining jobs Jj
�j � �� � � � � n� to batch Bi �i � �� � � � � r� is

cij �

�
�� if p�Bi� � pj or C�Bi� � �dj �
fj�C�Bi��� otherwise�

Thus� the problem of minimizing a minsum cost function for given batch processing times and a
given processing order of the r batches reduces to a bipartite weighted matching problem� which
can be solved in O�n�� time �Lawler� ���	��

To select the designated longest jobs� each of the
�n
r

possible choices must be considered� For

each selection� there are r# batch sequences� For �xed r� there are O�nr� selections of longest jobs
and batch processing orders� each of which requires a a bipartite weighted matching problem to be
solved� Thus� the problem is solvable in O�nr��� time� which is polynomial�

To minimize a regular minmax objective function� we adopt a similar approach� except that it is
necessary to solve a minmax bipartite weighted matching problem� Since this matching problem is
solvable in O�n�� time �Lawler� ���	�� the overall time requirement for a minmax objective function
is also O�nr����

� Concluding remarks

This paper is a �rst step towards providing a complexity mapping of single�machine batching
problems� in which the processing time of a batch is dictated by its longest job� We refer to Table �

�

in the introduction for a summary of our results� The mapping is not complete� since the following
complexity issues remain open� binary NP�hardness for the unbounded problem of minimizing the
total tardiness

Pn
j�� Tj �which is pseudopolynomially solvable�� and binary and unary NP�hardness

for the bounded problems of minimizing the total completion time
Pn

j�� Cj for arbitrary b and of
minimizing the total weighted completion time

Pn
j�� wjCj for �xed and arbitrary b�

Our analysis does not consider problems with unequal job release dates� For the unbounded
model� a di�erent approach to that in Section
 is required� since we may no longer restrict our
search to SPT�batch schedules� These problems are therefore likely to be much more di�cult
than their counterparts with equal job release dates� There is one exception� since the problem of
minimizing the makespan subject to unequal job release dates is the mirror image of minimizing
the maximum lateness with equal release dates� we can solve the makespan problem in O�n�� time
using the algorithm for minimizing the maximum lateness that is presented in Section
�
�

For the bounded model with unequal release dates� all criteria that we consider give rise to
unary NP�hard problems� Table � shows that most such problems are already unary NP�hard with
equal release dates �cf� Table ��� while minimizing the total completion time subject to release
dates is unary NP�hard even if b � � �Lenstra et al�� ������ Minimizing the makespan subject
to release dates is unary NP�hard as well� since we have shown in Section ��
 that the equivalent
mirror image problem of minimizing the maximum lateness is unary NP�hard for b �
 �

Another extension to the model involves scheduling jobs with equal release dates on m identical
parallel machines� For the unbounded model� it is not di�cult to prove that there exists an
optimal solution which is an SPT�batch schedule for an arbitrary regular objective function� We
claim therefore that any such parallel�machine batching problems for which the SPT�batch property
still holds can be solved by dynamic programming in pseudopolynomial time for a
xed number of
machines�

References

Ahmadi� J�H�� R�H� Ahmadi� S� Dasu and C�S� Tang� ����� Batching and scheduling jobs
on batch and discrete processors� Operations Research 	�� �
�$�	��

Albers� S� and P� Brucker� ����� The complexity of one�machine batching problems� Discrete
Applied Mathematics ��� �$����

Blum� N�� R�W� Floyd� V� Pratt� R�L� Rivest and R�E� Tarjan� ��	�� Time bounds for
selection� Journal of Computer and Systems Sciences �� �� $�	��

Chandru� V�� C��Y� Lee and R� Uzsoy� ����a� Minimizing total completion time on batch
processing machines� International Journal of Production Research 	��
���$
�

�

Chandru� V�� C��Y� Lee and R� Uzsoy� ����b� Minimizing total completion time on a batch
processing machine� Operations Research Letters �	� 	�$	
�

Cheng� T�C�E� and M�Y� Kovalyov� ���
� Addendum to C��Y� Lee� R� Uzsoy and L�A�
Martin�Vega �
����� Working Paper� Institute of Engineering Cybernetics� Minsk� Belarus�

Hochbaum� D�S� and D� Landy� ����� Algorithms and heuristics for scheduling semiconductor
burn�in�operations� Technical report� Engineerings Systems Research Center� University of
California� Berkeley�

Lawler� E�L� ��	�� Combinatorial Optimization� Networks and Matroids� Holt� Rinehart and
Winston� New York�

Lawler� E�L�� J�K� Lenstra� A�H�G� Rinnooy Kan and D�B� Shmoys� ����� Sequenc�
ing and scheduling� algorithms and complexity� S�C� Graves� P�H� Zipkin� A�H�G� Rinnooy
Kan �eds��� Logistics of Production and Inventory� Handbooks in Operations Research and
Management Science� Vol� �� North�Holland� Amsterdam� ��
$

�

Lee� C��Y�� R� Uzsoy and L�A� Martin�Vega� ����� E�cient algorithms for scheduling
semiconductor burn�in operations� Operations Research ��� �	�$��
�

Lenstra� J�K�� A�H�G� Rinnooy Kan and P� Brucker� ��		� Complexity of machine
scheduling problems� Annals of Discrete Mathematics �� ���$�	
�

Schonh
age� A�� M� Patterson and N� Pippenger� ��	�� Finding the median� Journal of
Computer and Systems Sciences �	� � �$����

Uzsoy� R� ���
� Scheduling batch processing machines with incompatible job families� Interna�
tional Journal of Production Research 		�
	
$
�� �

van Hoesel� S�� A� Wagelmans� and B� Moerman� ����� Using geometric techniques to
improve dynamic programming algorithms for the economic lot�sizing problem and extensions�
European Journal of Operational Research ��� ��
$����

Webster� S� and K�R� Baker� ���
� Scheduling groups of jobs on a single machine� Operations
Research �	� 	�
$����

�

