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ABSTRACT

We address the problem of scheduling n jobs on a batching machine to minimize regular scheduling
criteria that are non�decreasing in the job completion times� A batching machine is a machine that
can handle up to b jobs simultaneously� The jobs that are processed together form a batch� and all
jobs in a batch start and complete at the same time� The processing time of a batch is equal to the
largest processing time of any job in the batch� We analyze two variants� the unbounded model�
where b � n� and the bounded model� where b � n�

For the unbounded model� we give a characterization of a class of optimal schedules� which leads
to a generic dynamic programming algorithm that solves the problem of minimizing an arbitrary
regular cost function in pseudopolynomial time� The characterization leads to more e�cient dy�
namic programming algorithms for speci�c cost functions� a polynomial algorithm for minimizing
the maximum cost� an O�n�� time algorithm for minimizing the number of tardy jobs� an O�n��
time algorithm for minimizing the maximum lateness� and an O�n logn� time algorithm for mini�
mizing the total weighted completion time� Furthermore� we prove that minimizing the weighted
number of tardy jobs and the total weighted tardiness are NP�hard problems�

For the bounded model� we derive an O�nb�b���� time dynamic programming algorithm for
minimizing total completion time when b � �� for the case with m di�erent processing times�
we give a dynamic programming algorithm that requires O�b�m�
m� time� Moreover� we prove
that due�date based scheduling criteria give rise to NP�hard problems� Finally� we show that an
arbitrary regular cost function can be minimized in polynomial time for a �xed number of batches�



The problem of scheduling n independent jobs on a batching machine to minimize regular
scheduling criteria is considered� A batching machine or batch processing machine is a machine
that can process up to b jobs simultaneously� and a regular scheduling criterion is one that is
non�decreasing in the job completion times� The jobs that are processed together form a batch�
Speci�cally� we are interested in the so�called burn�in model� in which the processing time of a
batch is equal to the maximum processing time of any job assigned to it� All jobs contained in the
same batch start and complete at the same time� since the completion time of a job is equal to
the completion time of the batch to which it belongs� This model is motivated by the problem of
scheduling burn�in operations for large scale integrated circuit manufacturing� see Lee et al� ����
��

Webster and Baker ����
� present an overview of algorithms and complexity results for schedul�
ing batch processing machines� They distinguish three types of models� the burn�in model� the
model in which the processing time of a batch is equal to the sum of the processing times of its
jobs �see also Albers and Brucker� ������ and the model in which the processing time of a batch is
a constant� independent of the jobs it contains �see also Ahmadi et al�� ���
��

We analyze two variants of the burn�in model� the unbounded model� in which b � n so that
there is e�ectively no upper bound on the number of jobs that can be processed in the same batch�
and the bounded model� in which b is a constant smaller than n so that there is a restrictive upper
bound� The unbounded model arises for instance in situations where compositions need to be
hardened in kilns� and the kiln is su�ciently large that it does not restrict batch sizes� We assume
throughout that the jobs and the machine are available from time zero onwards� or equivalently�
the jobs have equal release dates� Note that the special case b � � concurs with the classical
single�machine scheduling model in which the machine can handle no more than one job at a
time� Accordingly� the bounded model gives rise to problems that are at least as di�cult as their
traditional counterparts�

For the unbounded model� we give a characterization of a class of optimal schedules� which leads
to a generic dynamic programming algorithm for minimizing any regular cost function

Pn
j�� fj � This

algorithm requires O�n�P � time and O�nP � space� where P is the sum of the job processing times�
The characterization forms the basis of polynomial dynamic programming algorithms for speci�c
cost functions� We present an O�n�� time algorithm for minimizing the number of tardy jobsPn

j�� Uj � an O�n logn� time algorithm for minimizing total weighted completion time
Pn

j�� wjCj�
and an O�n�� time algorithm for minimizing the maximum lateness Lmax� The latter algorithm can
be used to construct a polynomial algorithm for minimizing the maximum cost fmax� Furthermore�
we prove that minimizing the weighted number of tardy jobs

Pn
j�� wjUj and the total weighted

tardiness
Pn

j�� wjTj are NP�hard problems�
As to the bounded model� Lee et al� ����
� and Uzsoy ����
� present polynomial algorithms

for minimizing the number of tardy jobs
Pn

j�� Uj and the maximum lateness Lmax under a number
of assumptions on the relationship between processing times� job release dates� and due dates� see
also Cheng and Kovalyov ����
�� Minimizing total completion time

Pn
j�� Cj is undoubtedly the

most vexing bounded problem� Chandru et al� �����a� ����b� present heuristics and a branch�and�
bound algorithm as well as an O�m�bm��� time dynamic programming algorithm for the case of
m di�erent job processing times �m � n�� Hochbaum and Landy ������ present a faster algorithm
that requires O�m��m� time and O�m�m� space�

We prove that minimizing total completion time
Pn

j�� Cj is solvable in polynomial time for �xed

b� where b � �� by deriving an O�nb�b���� time dynamic programming algorithm for its solution�
�The special case where b � � is a classical scheduling problem that is solvable in O�n logn�

�



time�� For the case of m di�erent processing times� we give a more e�cient dynamic programming
algorithm than that of Hochbaum and Landy� ours requires O�b�m�
m� time� Furthermore� we
prove that other criteria give rise to NP�hard problems� There are two exceptions� minimizing
makespan Cmax is solvable in minfO�n logn�� O�n��b�g time� while minimizing total completion
time

Pn
j��Cj for arbitrary b� and minimizing total weighted completion time

Pn
j�� wjCj for �xed

and arbitrary b are open problems� Finally� we give a polynomial algorithm for minimizing any
regular cost function for the special case in which the number of batches is �xed�

Table � summarizes our main results� For sake of comparison� we have included the time
complexities of the classical scheduling problems� i�e�� problems with b � �� see also Lawler et al�
�������

Objective Unbounded Bounded
function b � n b � � b � 


fmax polynomial O�n�� unary NP�hard

Cmax O�n� O�n� minfO�n logn�� O�n��b�g

Lmax O�n�� O�n logn� unary NP�hard

O�n�P �Pn
j�� fj binary NP�hard

unary NP�hard unary NP�hard
Pn

j�� Cj O�n logn� O�n logn� O�nb�b����Pn
j�� wjCj O�n logn� O�n logn� openPn
j�� Uj O�n�� O�n logn� unary NP�hard

O�n�P � O�nP �Pn
j�� wjUj binary NP�hard binary NP�hard

unary NP�hard

O�n�P � O�n�P �Pn
j�� Tj open binary NP�hard

unary NP�hard

O�n�P �Pn
j�� wjTj binary NP�hard

unary NP�hard unary NP�hard

Table �� Overview of time complexities for problems with equal release dates�

The plan of the rest of paper is as follows� In Section �� we give a formal description of the model�
introduce our notation� and give some de�nitions� We analyze the unbounded model in Section 

and the bounded model in Section �� In Section �� we conclude by summarizing our results and
point out the consequences for problems with unequal release dates and parallel machines�

� Problem description� notation� and de�nitions

The scheduling model that we analyze is as follows� There are n independent jobs J�� � � � � Jn that
have to be scheduled on a single batching machine� Each job Jj �j � �� � � � � n� requires processing
during at least a given non�negative uninterrupted time pj � and is available for processing from
time zero onwards� Also� each job Jj has a cost function fj � where fj�t� denotes the cost incurred
if the job is completed at time t� Throughout this paper� we consider only regular cost functions�
i�e�� we assume that fj�t� is a non�decreasing function of t� for j � �� � � � � n� Sometimes� each job
Jj has a due date dj by which it should ideally be completed� a deadline �dj by which it must be
completed� and a weight wj which is a measure of its importance� when there is ambiguity� we state






explicitly whenever due dates� deadlines or weights are present� The weights and due dates are
typically used to de�ne cost objective functions� the deadlines restrict the availability of jobs� The
batching machine is available from time zero onwards and can process up to b jobs simultaneously�
All jobs in a batch start and complete at the same time� The processing time of a batch is equal
to the largest processing time of any job in the batch� Without loss of generality� we assume that
the job parameters are integral� unless stated otherwise�

For problems of minimizing a regular objective function without job release dates� we know that
there must be at least one optimal solution in which the batches are processed contiguously from
time zero onwards� Throughout the paper� we restrict attention to solutions with this property�
Thus� a schedule � is a sequence of batches � � �B�� � � � �Br�� where each batch Bl �l � �� � � � � r� is
a set of jobs� The processing time of batch Bl is p�Bl� � maxJj�Blfpjg and its completion time is

C�Bl� �
Pl

q�� p�Bq�� Note that the completion time of job Jj in �� for each Jj � Bl and l � �� � � � � r�
is Cj��� � C�Bl�� When there is no ambiguity� we abbreviate Cj��� to Cj�

The aim is to minimize the scheduling cost� measured either by a regular minmax objective func�
tion fmax � max��j�nffj�Cj�g� or by a regular minsum objective function

Pn
j�� fj �

Pn
j�� fj�Cj��

Speci�c regular objective functions that we consider are the makespan Cmax� de�ned as Cmax �
max��j�nfCjg� maximum lateness Lmax� de�ned as Lmax � max��j�nfCj � djg� total weighted
completion time

Pn
j�� wjCj � total weighted tardiness

Pn
j�� wjTj � where Tj � maxfCj �dj � �g� and

weighted number of tardy jobs
Pn

j�� wjUj � where Uj is an ��� indicator variable that takes the
value � if Jj is tardy� i�e�� if Cj � dj � and the value � if Jj is on time� i�e�� if Cj � dj � We also
provide results for the unweighted versions of these minsum objective functions in which wj � �
for j � �� � � � � n�

� The unbounded model

In this section� we assume that b � n and hence that the batching machine can process any number
of jobs at the same time� Note that the problem of minimizing the makespan is solved trivially by
putting all jobs in one batch B�� The minimum makespan is then Cmax � p�B�� � max��j�nfpjg�

For the remainder of this section� we assume throughout that the jobs have been re�indexed
according to the shortest processing time �SPT� rule so that p� � � � �� pn�

��� Fundamentals

We �rst derive a most useful characterization of a class of optimal solutions for minimizing any
regular objective function�

Lemma � For minimizing any regular objective function� there exists an optimal schedule �B�� � � � �Br��
where under the SPT indexing Bl � fJjl � Jjl��� � � � � Jjl����g and � � j� � j� � � � � � jr � jr�� �
n� ��

Proof� Consider any optimal schedule � � �B�� � � � �Bl� � � � �Bq� � � � �Br�� where � � l � q � r�
with Jk � Bl� Jj � Bq� and pk � pj � Consider now the schedule �� � �B�� � � � �Bl � fJjg� � � � �Bq n
fJjg� � � � �Br� that is obtained from � by moving job Jj to batch Bl� Since pj � pk� we have that
p�Bl�fJjg� � p�Bl� and p�Bq nfJjg� � p�Bq�� Accordingly� the completion time of job Jj decreases
from C�Bq� to C�Bl�� while the completion times of the other jobs do not increase� Since the

�



objective function is regular� the new schedule �� is also optimal� A �nite number of repetitions of
this procedure yields an optimal schedule of the required form�

Lemma � shows that an optimal schedule is speci�ed by the jobs that start each batch� since
the complete schedule can then be formed by the SPT rule� We refer to such a schedule as an SPT�
batch schedule� The observation that we may restrict our search to SPT�batch schedules forms the
basis of a pseudopolynomial dynamic programming algorithm for minimizing any regular minsum
objective function

Pn
j�� fj � and a polynomial algorithm for minimizing a class of regular minmax

objective functions fmax�
A dynamic programming algorithm can be built around di�erent types of enumeration schemes�

We can use either a forward scheme in which jobs or batches are successively added to the end
of the current �partial� schedule� or a backward scheme in which jobs or batches are added to the
beginning� The schedule can be constructed by adding either complete batches or single jobs�

We start by explaining in general terms the optimality principle and the working of a generic
forward dynamic programming algorithm with batch enumeration for a regular minsum objective
function

Pn
j�� fj or a regular minmax objective function fmax� Consider any feasible SPT�batch

schedule containing jobs J�� � � � � Jj with the property that the last batch completes at time t� We
de�ne such a schedule to be in state �j� t�� Of course� to schedule the remaining jobs Jj��� � � � � Jn�
we need to consider only a schedule that has minimum objective value among all schedules in this
state�

Let � be an SPT�batch schedule with minimum objective value from among all schedules in
state �j� t�� To achieve this state from a previous state� the following decision must be taken to
create ��

� add a batch containing Jj� A batch fJi��� � � � � Jjg� where � � i � j� is added to the end of
some previous schedule that contains jobs J�� � � � � Ji� Since batch fJi��� � � � � Jjg has processing
time pj � the previous state is �i� t� pj�� Adding this batch to the previous schedule increases

the total cost by
Pj

k�i�� fk�t�� the maximum cost of jobs Ji��� � � � � Jj is maxi���k�jffk�t�g�

This optimality principle leads to a pseudopolynomial O�n�
Pn

j�� pj� time dynamic program�
ming algorithm for minimizing any regular objective function� since the state variables are �j� t� for
j � �� � � � � n and t � �� � � � �

Pn
i�� pi� and there are j possible batches that can be added to achieve

state �j� t�� To implement this algorithm more e�ciently for an arbitrary regular minsum objective
function� partial sums

Pj
k�� fk�t� are evaluated and stored in a preprocessing step� which reduces

the time complexity to O�n�
Pn

j�� pj�� Details of such an algorithm are given in Section 
�
�
To minimize the number of tardy jobs� we develop a polynomial algorithm by eliminating the

state variable t� Since the number of tardy jobs cannot exceed n� we reverse the role of the state
variable t and the objective function value� To achieve the O�n�� time complexity� we build the
schedule by adding single jobs instead of complete batches� Full details are presented in Section 
���

To construct a polynomial algorithm for other objective functions� we develop a generic backward
dynamic programming algorithm which allows us to avoid the state variable t� In a backward
algorithm� the batches are constructed in the reverse order to which they appear in the schedule�
Using this approach� we obtain polynomial algorithms for minimizing the total weighted completion
time

Pn
j�� wjCj and the maximum lateness Lmax�

We de�ne a cost function fj to be additive if fj�t � �� � fj�t� � fj��� for any �� and to
be incremental if fj�t � �� � fj�t� � � for any �� An objective function is additive if each fj

�



is additive� and is incremental if each fj is incremental �j � �� � � � � n�� Note that total weighted
completion time is additive� and maximum lateness is incremental�

A backward dynamic programming algorithm with batch enumeration for an additive regular
minsum objective function

Pn
j�� fj or an incremental regular minmax objective function fmax works

as follows� Let � be an SPT�batch schedule for the jobs Jj � � � � � Jn� where processing of the �rst
batch starts at time zero� we de�ne such a schedule to be in state j� To achieve this state from a
previous state� the following decision must be taken to create ��

� add a batch containing Jj� A batch fJj � � � � � Jk��g� where j � k � n � �� is inserted at the
beginning of some previous schedule in state k� Since batch fJj � � � � � Jk��g has processing
time pk��� jobs Jk � � � � � Jn are completed pk�� units later when this batch is added� For
an additive objective function� the total cost increases by

Pn
i�j fi�pk���� for an incremental

objective function� the maximum cost of jobs Jk� � � � � Jn increases by pk��� and the maximum
cost of jobs in batch fJj � � � � � Jk��g is maxj�i�k��ffi�pk���g�

Using a backward recursion� we obtain an O�n logn� algorithm for minimizing total weighted
completion time in Section 
��� and an O�n�� algorithm for minimizing the maximum lateness in
Section 
�
�

��� Minimizing a regular minsum function

In this section� we formalize the generic forward dynamic programming algorithm with batch enu�
meration that is outlined in Section 
�� for the problem of minimizing an arbitrary regular minsum
objective function

Pn
j�� fj � We show that this problem can be solved in O�n�P � time and O�nP �

space� where P �
Pn

j�� pj �
Let Fj�t� be the minimum objective value for SPT�batch schedules containing jobs J�� � � � � Jj

subject to the condition that the last batch completes at time t� Recall from Section 
�� that�
given Fj�t� and any SPT�batch schedule corresponding to this value� batch fJi��� � � � � Jjg� for some
i where � � i � j� appears in the last position�

We are now ready to give our dynamic programming recursion� The initialization is

F	�t� �

�
�� if t � ��
� otherwise�

and the recursion for j � �� � � � � n and t � pj � � � � �
Pj

k�� pk is

Fj�t� � min
	�i�j��

n
Fi�t� pj� �

jX
k�i��

fk�t�
o
�

The optimal solution value is equal to minpn�t�P fFn�t�g� and the corresponding optimal schedule

is found by backtracking� To implement the algorithm e�ciently� the partial sums
Pj

k�� fk�t� are

evaluated and stored for j � �� � � � � n and t � pj � � � � �
Pj

k�� pk in a preprocessing step in O�nP �
time� Then� each application of the recursion equation requires O�n� time� Thus� the dynamic
algorithm requires O�n�P � time and O�nP � space�






��� Minimizing the number of tardy jobs

In this section� we present an O�n�� time dynamic programming algorithm for the problem of
minimizing the number of tardy jobs� It is a forward algorithm that di�ers from the generic
pseudopolynomial procedure of Section 
�� on two counts� First� we use the objective value as a
state variable and the makespan as the value of a state� this swap alone is su�cient to develop
an O�n�� algorithm� Second� to obtain an O�n�� time algorithm� we build the schedule by adding
single jobs instead of complete batches and �x the last job to be scheduled in the current batch�

We de�ne a schedule for jobs J�� � � � � Jj to be in state �j� u� k�� where u � j � k� if it contains
exactly u tardy jobs� and the last batch is to be enlarged by including jobs Jj��� � � � � Jk� but no
others� Thus� a schedule is to be created in which jobs Jj � � � � � Jk are contained in the same batch�
and this batch has processing time pk� Let Fj�u� k� be the minimum makespan for SPT�batch
schedules in state �j� u� k�� A schedule in state �j� u� k� with value Fj�u� k�� is created by taking one
of the following decisions in a previous state�

� add job Jj so that it does not start the last batch� The last batch to which Jj is added includes
job Jj�� and has processing time pk� This processing time pk contributes to the makespan
of the previous state� which is Fj���u� k� or Fj���u � �� k� depending on whether Jj is on
time or tardy� If Fj���u� k� � dj � then we consider �j � �� u� k� as a previous state with Jj
scheduled to be on time� if Fj���u� �� k�� dj � then we consider �j� �� u� �� k� as a previous
state with Jj scheduled to be tardy�

� add job Jj so that it starts the last batch� The previous batch ends with job Jj�� and the
processing time of the new batch is pk� After adding the contribution from the previous state�
the makespan becomes Fj���u� j � �� � pk or Fj���u� �� j � �� � pk� depending on whether
Jj is on time or tardy� If Fj���u� j � �� � pk � dj � then we consider �j � �� u� j � �� as a
previous state with Jj scheduled to be on time� if Fj���u��� j����pk � dj � then we consider
�j � �� u� �� j � �� as a previous state with Jj scheduled to be tardy�

We are now ready to give the dynamic programming recursion� The initialization is

F	�u� k� �

�
�� if u � � and k � ��
�� otherwise�

and the recursion for j � �� � � � � n� u � �� � � � � j� and k � j� � � � � n is

Fj�u� k� � min

������
�����

Fj���u� k�� if Fj���u� k� � dj �
Fj���u� �� k�� if Fj���u� �� k� � dj �
Fj���u� j � �� � pk� if Fj���u� j � �� � pk � dj �
Fj���u� �� j � �� � pk� if Fj���u� �� j � �� � pk � dj �
�� otherwise�

The minimum number of tardy jobs is then equal to the value smallest value u for which Fn�u� n� �
�� and the corresponding optimal schedule is found by backtracking� Note that the algorithm
requires O�n�� time and O�n�� space�

��� Minimizing total weighted completion time

In this section� we present an O�n logn� time dynamic programming algorithm for minimizing the
total weighted completion time

Pn
j�� wjCj � Since we have an additive minsum objective function�

the generic backward dynamic programming algorithm of Section 
�� can be used�

	



Let Fj be the minimum total weighted completion time for SPT�batch schedules containing
the last n � j � � jobs Jj � � � � � Jn� Processing of the �rst batch in the schedule starts at time
zero� Furthermore� whenever a new batch is added to the beginning of this schedule� there is a
corresponding delay to the processing of all batches� Suppose that a batch fJj � � � � � Jk��g� which has
processing time pk��� is inserted at the start of a schedule for jobs Jk � � � � � Jn� The total weighted
completion time of jobs Jk� � � � � Jn increases by pk��

Pn
i�k wi� while the total weighted completion

time for jobs Jj � � � � � Jk�� is pk��
Pk��

i�j wi� Thus� the overall increase in total weighted completion
time is pk��

Pn
i�j wi�

We are now ready to give the dynamic programming recursion� The initialization is

Fn�� � ��

and the recursion for j � n� n� �� � � � � � is

Fj � min
j�k�n��

n
Fk � pk��

nX
i�j

wi

o
�

The optimal solution value is then equal to F�� and the corresponding optimal schedule is found by
backtracking� Under the most natural implementation� the algorithm requires O�n�� time and O�n�
space� if we compute and store the values

Pn
i�j wi for j � �� � � � � n in a preprocessing step� However�

since our dynamic program has a structure which allows geometric techniques to be applied �van
Hoesel et al�� ������ the time complexity can be reduced to O�n logn��

��� Minimizing maximum lateness and maximum cost

In this section� we present an O�n�� dynamic programming algorithm for minimizing the maximum
lateness Lmax� This algorithm serves as a subroutine for a polynomial algorithm that minimizes
the maximum cost fmax� Since Lmax is an incremental minmax objective function� we employ a
backward recursion of the type given in Section 
���

Let Fj be the minimum value of the maximum lateness for SPT�batch schedules containing
the last n � j � � jobs Jj � � � � � Jn� where processing starts at time zero� If a batch fJj � � � � � Jk��g�
which has processing time pk��� is inserted at the start of a schedule for jobs Jk� � � � � Jn� then
the maximum lateness of jobs Jk� � � � � Jn increases by pk��� while the maximum lateness for jobs
Jj � � � � � Jk�� is maxj�i�k��fpk�� � dig�

We are now ready to give the dynamic programming recursion� The initialization is

Fn�� � ���

and the recursion for j � n� n� �� � � � � � is

Fj � min
j�k�n��

n
maxfFk � pk��� max

j�i�k��
fpk�� � digg

o
�

The optimal solution value is then equal to F�� and the corresponding optimal schedule is found
by backtracking� Note that the algorithm requires O�n�� time and O�n� space�

We now show how to construct a polynomial algorithm for minimizing fmax using the O�n��
algorithm for minimizing Lmax as a subroutine� First� note that the problem of minimizing fmax can
be viewed as a �nite series of decision problems of the type �is fmax � k��� where k is repeatedly
adjusted by binary search over an appropriate interval for k� Hence� if the decision problem is

�



solvable in polynomial time� then minimizing fmax is solvable in polynomial time if the optimal
solution value is an integer whose logarithm is polynomially bounded in the size of the input� We
assume that this is so� The question �is fmax � k�� can be answered in polynomial time as follows�
Observe that the upper bound k induces a deadline �dj on the completion time of each job Jj � for
j � �� � � � � n� Each deadline can be determined in O�logP � time by binary search over the P � �
possible completion times� Once the deadlines have been determined� we can use the algorithm for
minimizing Lmax to �nd out if there is a solution in which each job is completed before its deadline
by treating the deadlines as due dates� if Lmax � �� then a schedule exists in which no deadlines are
violated� otherwise� no such schedule exists� Hence� the question �is fmax � k�� can be answered
in O�n��n logP � time� which is polynomial� and the problem of minimizing fmax can be solved in
polynomial time�

��� Minimizing the weighted number of tardy jobs

In Section 
�
� we establish that problems of minimizing a regular minsum function
Pn

j�� fj � such
as the weighted number of tardy jobs� can be solved by a pseudopolynomial dynamic programming
algorithm in O�n�P � time� Also� the algorithm in Section 
�� can be generalized to minimize the
weighted number of tardy jobs in O�n�

Pn
j�� wj� time� In this section� we show that there exists no

polynomial algorithm for this problem� unless P � NP� we prove here that this problem is NP�hard
in the ordinary sense�

Theorem � The unbounded problem of minimizing the weighted number of tardy jobs
Pn

j�� wjUj

is binary NP�hard�

Proof� Our proof proceeds by a reduction from the binary NP�complete problem Partition�

Partition

Given a set fa�� � � � � amg of m positive integers� is it possible to partition the index set f�� � � � � mg
into two disjoint subsets X and Y such that

P
j�X aj � A� where A �

Pm
j�� aj�
�

Given an instance of Partition� we de�ne an instance of the unbounded weighted number of
tardy jobs problem with n � 
m jobs and b � n� For each j �j � �� � � � � m�� we de�ne a �light� job
Jj with pj � 
jA� aj � wj � aj � and dj � �j�� j � ��A� and a �heavy� job Jm�j with pm�j � 
jA�
wm�j � A � �� and dm�j � �j� � j � ��A� Note that Jj and Jm�j have the same due date� for
j � �� � � � � m�

We show that Partition has a solution if and only if there exists a schedule for the corre�
sponding instance of the weighted number of tardy jobs problem with

Pn
j�� wjUj � A�

First� suppose that X and Y de�ne a solution to Partition� Consider a schedule with m� �
batches which is constructed as follows� Each �light� job Jj � for j � �� � � � � m� is assigned to batch
Bj if j � X � and is assigned to batch Bm�� if j � Y � The �heavy� jobs Jm��� � � � � J�m are assigned to
batches B�� � � � �Bm respectively� The processing time of batch Bj � for j � �� � � � � m� is either 
jA�aj
or 
jA depending on whether or not j � X � Since C�Bj� �

Pj
i�� 
iA �

P
i�X ai � dj � dm�j

for j � �� � � � � m� each �heavy� job and each �light� job Jj for j � X are on time� Therefore�Pn
j�� wjUj �

P
j�Y wj � A�

Conversely� suppose that there exists a schedule with
Pn

j�� wjUj � A� In such a schedule� all
�heavy� jobs have to be on time� Hence� Jm�� has to be processed in batch B�� and neither job Jj
nor Jm�j with j � � can be processed together with it in B�� Accordingly� Jm�� is processed in

 



batch B�� which cannot begin before time 
A� the earliest possible completion time of B�� Since
Jm�� has to be completed by its due date �A� neither job Jj nor Jm�j with j � 
 can be processed
together with it in B�� Further� the earliest completion time of B� is 	A� so job J� is tardy if it is
processed in B�� Repeating this line of reasoning� we deduce that each �heavy� job Jm�j and each
on�time �light� job Jj are assigned to batch Bj � for j � �� � � � � m� Moreover� we assume without loss
of generality that each tardy �light� job is assigned to batch Bm���

If job Jj is assigned to batch Bj � then p�Bj� � 
jA � aj � otherwise� p�Bj� � 
jA� Let X and
Y denote the set of indices j �j � �� � � � � m� for which Jj � Bj and Jj �� Bj � respectively� To
ensure that job J�m is on time� we require that C�Bm� �

Pm
j�� 
jA�

P
j�X aj � �m� �m� ��A�

Thus�
P

j�X aj � A� The condition
Pn

j�� wjUj � A implies that
P

j�Y aj � A� or equivalentlyP
j�X aj � A� Therefore�

P
j�X aj � A� which shows that X and Y de�ne a solution to Partition�

��� Minimizing total weighted tardiness

For minimizing the total weighted tardiness� we obtain a similar result to that for minimizing the
weighted number of tardy jobs� This problem is solvable in pseudopolynomial time O�n�P �� which
is shown in Section 
�
� and is NP�hard in the ordinary sense� which we prove here� Hence� a
pseudopolynomial algorithm for its solution is the best we can achieve� unless P � NP�

Theorem � The unbounded problem of minimizing the total weighted tardiness
Pn

j�� wjTj is bi�
nary NP�hard�

Proof� Our proof proceeds again by a reduction from Partition� see Section 
�	� For �our�
convenience� we describe the construction using fractional weights� By multiplying all weights with
a suitable number� however� we can obtain a proof with integral parameters only�

Given an instance of Partition� we construct an instance of the unbounded total weighted
tardiness problem with n � 
m jobs and b � n� For each j �j � �� � � � � m�� we de�ne a �light� job
Jj with pj � 
jmA� � aj � wj � aj��
�j � ��mA��� and dj � A � j�j � ��mA�� and a �heavy� job
Jm�j with pm�j � 
jmA�� wm�j � A� �� and dm�j � A � j�j � ��mA�� Note that Jj and Jm�j

have the same due date� for j � �� � � � � m�
We prove that Partition has a solution if and only if there is a schedule for the corresponding

instance of the total weighted tardiness problem with
Pn

j�� wjTj � A�
First� suppose that X and Y de�ne a solution to Partition� We assume without loss of

generality that m � X � Consider a schedule with m batches which is constructed as follows� Each
�light� job Jj � for j � �� � � � � m� is assigned to batch Bj if j � X � and is assigned to batch Bj��

if j � Y � The �heavy� jobs Jm��� � � � � J�m are assigned to batches B�� � � � �Bm respectively� The
processing time of batch Bj � for j � �� � � � � m� is either 
jmA��aj or 
jmA

� depending on whether

or not j � X � Since C�Bj� �
Pj

i�� 
imA
��

P
i�X ai � dj � dm�j for j � �� � � � � m� each �heavy� job

and each �light� job Jj for j � X are on time� Moreover� each �light� job Jj for j � Y is completed

at time Cj � C�Bj���� where C�Bj��� �
Pj��

i�� 
imA
� � dj and is therefore tardy� Further�

Cj �
Pj��

i�� 
imA
� �

P
i�X ai � dj�� for j � Y � Therefore�

Pn
j�� wjTj �

P
j�Y wj�dj�� � dj� �P

j�Y wj�
j � 
�mA� �
P

j�Y aj � A�
Conversely� assume that there exists a schedule with

Pn
j�� wjTj � A� In any such schedule� all

�heavy� jobs have to be on time� Also� as in the proof of Theorem �� it is straightforward to show
that in any such schedule each �heavy� job Jm�j and each on�time �light� job Jj are assigned to

�



batch Bj � and each tardy �light� job is assigned to one of the batches Bj��� � � � �Bm��� where Bm��

is a �nal batch that contains only tardy jobs�
If job Jj is assigned to batch Bj � then p�Bj� � 
jmA� � aj � otherwise� p�Bj� � 
jmA�� Let X

and Y denote the set of indices j �j � �� � � � � m� for which Jj � Bj and Jj �� Bj � respectively� To
ensure that job J�m is on time� we require that C�Bm� �

Pm
j�� 
jmA

��
P

j�X aj � A�m��m���A��
Thus�

P
j�X aj � A�

Each tardy �light� job Jj � where j � Y � is assigned to one of the batches Bj��� � � � �Bm��� Hence�

for j � Y � we have Cj �
Pj��

i�� 
imA
�� Tj � 
�j � ��mA� �A and wjTj � aj � aj���
j � 
�mA� �

aj����
m�� Therefore�
Pn

j�� wjTj �
P

j�Y�aj����
m���
P

j�Y aj��� Since the aj �s are integral
and

Pn
j�� wjTj � A� we must have also that

P
j�Y aj � A� or equivalently

P
j�X aj � A� Therefore�P

j�X aj � A� which shows that X and Y de�ne a solution to Partition�

� The bounded model

In this section� we analyze problems in which b is restrictively small� we assume that b � n� These
bounded problems are at least as di�cult as their traditional counterparts� since for the special case
b � � the machine can handle no more than one job at a time� They are also inherently much
more di�cult than their unbounded counterparts� mainly for reason that we can no longer restrict
ourselves to SPT�batch schedules in the search for an optimal schedule� There is one exception�
for minimizing makespan� there is a still an SPT�batch schedule that is optimal�

For the bounded problem of minimizing the makespan� we assume that n is an integer multiple
of b and that n � br� This assumption is justi�ed by the observation that dummy jobs with
zero processing time can be introduced without a�ecting the minimum makespan� The problem
is solved by assigning the b jobs with smallest processing times to B�� the b jobs with the next
smallest processing times to B�� and so on� until the b jobs with largest processing times are
assigned to Br� Hence� we can solve the problem in O�n logn� time� if we �rst order the jobs using
the SPT rule� Alternatively� we can solve the problem in O�rn� time� if we use linear time median
�nding techniques �Blum et al�� ����� Schonh�age et al�� ���	�� More precisely� we can determine
B� � � � � � Bl� for l � �� � � � � r� by �nding some job Jj in O�n� time such that jfijpi � pjgj � bl
and jfijpi � pjgj � b�r � l� and then introducing a subset of fijpi � pjg into the �rst set so that
its cardinality is exactly equal to bl� Under this implementation� the problem is solved in O�n��b�
time�

In Section ���� we analyze the problem of minimizing total completion time� We show that the
problem can be solved in O�nb�b���� time by dynamic programming for b � �� Furthermore� we
give an O�b�m�
m� time algorithm for the case of m di�erent processing times�

We also provide complexity results for scheduling with due dates� Speci�cally� we show in
Section ��
 that �nding whether there is a feasible solution to the bounded problem in which the
jobs have deadlines is NP�complete in the strong sense� even if b � 
� This result implies that
minimizing the maximum lateness� the number of tardy jobs� and the total tardiness are all unary
NP�hard problems�

Finally� Section ��� addresses the special case in which the number of batches to be used is
�xed� We show that bounded problems of this type can be solved in O�nr��� time� where r is the
given number of batches�

��



��� Minimizing total completion time

The bounded problem of minimizing total completion time is introduced by Chandru et al� �����a��
who present a branch�and�bound algorithm and some heuristics� We show in Section ����� that
the general problem is solvable in O�nb�b���� time and O�nb�b���� space for b � �� For the case
of m di�erent job types �where m � n�� Chandru et al� �����b� present an O�m�bm��� time
dynamic programming algorithm� Hochbaum and Landy ������ present a more e�cient algorithm
that requires O�m��m� time and O�m�m� space� In Section ����
� we present an algorithm with a
further gain in e�ciency� our algorithm requires O�b�m�
m� time and O�bm�� space�

Throughout this section� we again assume that the jobs have been re�indexed according to the
SPT rule so that p� � � � � � pn� The following result shows that there exists an optimal schedule
in which each batch contains jobs with consecutive indices�

Lemma � There exists an optimal schedule �B�� � � � �Br� for which� under the SPT indexing� Bl �
fJil � � � � � Jjlg� where � � il � jl � n� for l � �� � � � � r�

Proof� Consider any optimal schedule � � �B�� � � � �Bl� � � � �Br�� where � � l � r� with Ji� Jj � Bl�
where i � j��� and Jj�� �� Bl� Suppose that Jj�� � Bq for some q �� l� Consider now the schedule ��

that is obtained from � by interchanging jobs Ji and Jj��� thereby changing Bl to Bl�fJj��gnfJig
and Bq to Bq � fJig n fJj��g� Since pi � pj�� � pj � we have that p�Bl � fJj��g n fJig� � p�Bl�
and p�Bq � fJig n fJj��g� � p�Bq�� Thus� no batch has a larger completion time in �� than in ��
and batch sizes are the same in � and ��� It follows that the total completion time for �� does not
exceed that for �� and the new schedule �� is also optimal� A �nite number of repetitions of this
procedure yields an optimal schedule of the required form�

We now present a result of Chandru et al� �����b� which extends the classical SWPT rule for
sequencing jobs on a single machine to the sequencing of batches�

Lemma 	 �Chandru et al�� ����b� For given batches B�� � � � �Br� an optimal sequence is �B�� � � � �Br�
if and only if

p�B���jB�j � � � �� p�Br��jBrj� ���

We de�ne a batch to be full if it contains exactly b jobs� otherwise� it is non�full� Also� a batch
Bl is deferred with respect to another batch Bq if Bl is sequenced after Bq and p�Bl� � p�Bq��

We now derive a result relating to deferred batches�

Lemma � In any optimal schedule� there is no batch that is deferred with respect to a non�full
batch�

Proof� Consider any schedule which contains a batch Bl which is deferred with respect to a non�full
batch Bq� Any job in Bl can be moved to Bq without a�ecting feasibility and without increasing
the processing time of batch Bq� Since such a transformation decreases the total completion time�
the desired result is established�

In our subsequent analysis� we only consider schedules that are consistent with the above lem�
mas� each batch contains jobs with consecutive indices� batches are ordered according to ���� and
no batch is deferred with respect to a non�full batch�

��



	���� A polynomial algorithm for 
xed b

In this subsection� we derive a polynomial algorithm for the bounded problem of minimizing the
total completion time� The special case b � � is equivalent to the corresponding classical scheduling
problem for which the SPT rule provides an optimal solution in O�logn� time� Thus� we assume
that b � 
� and derive an O�nb�b���� dynamic programming algorithm� This algorithm relies an
upper bound on the number of deferred batches� which we establish next�

Lemma � In any optimal schedule� the number of deferred batches with respect to any full batch
does not exceed b� � b� ��

Proof� Consider any schedule � for which the number of deferred batches with respect to some
full batch Bl is at least b

� � b� We show that � cannot be an optimal schedule�
We �rst note from Lemma � that all full batches are sequenced in non�decreasing order of their

processing times� consequently� any deferred batch is non�full� Suppose that the deferred batches
with respect to batch Bl in � are divided into two groups so that the �rst group comprises the
�rst �b� ��� � � of these batches and the second group comprises the remainder of these deferred
batches� We observe that� in the �rst group� there are at least b deferred batches containing the
same number of jobs� let a denote the number of jobs in each of these batches� where a � b�

It is useful to represent � in the form

� � �S	�A��S��A�� � � � �Sb���Ab�Sb��

where Ai� for i � �� � � � � b� is a batch that contains a jobs and is deferred with respect to batch
Bl� and where Si� for i � �� � � � � b� is a block of batches� Note that block S	 contains batch Bl and
block Sb contains all deferred batches of the second group� Moreover� p�A�� � � � � � p�Ab� from
Lemma �� Let p�Si� and jSij denote the total processing time of the batches in block Si and the
number of jobs in block Si� respectively� for i � �� � � � � b� Since the number of deferred batches with
respect to batch Bl is at least b

� � b� there are at least b� � b� �b� ��� � � � b� 
 batches in Sb�
and consequently jSbj � b� 
�

Suppose that we construct full batches A�
b�a��� � � � �A

�
b from batches Ab�a��� � � � �Ab by adding

the a jobs from each of the batches A�� � � � �Ab�a� For example� the a respective jobs of batch Ai�
could be added to batches Ab�a��� � � � �Ab� for i � �� � � � � b� a� We now de�ne the schedule

�� � �S	�A
�
b�a��� � � � �A

�
b�S�� � � � �Sb��

Our analysis also uses two arti�cial schedules �� and ��� for related problems in which some
batches are removed and replaced by duplicates of other batches in the schedule� Speci�cally�
schedule �� is obtained from � by the following transformation� First� we replace each batch Ai for
i � �� � � � � b� a with A�� and each batch Ai for i � b� a� �� � � � � b� with Ab� Second� we sequence
the b � a batches of type A� in adjacent positions� and also sequence the a batches of type Ab in
adjacent positions� with blocks S�� � � � �Sb�� in between� Thus�

�� � �S	 �A�� � � � �A��� �z 	
b�a batches

S��S�� � � � �Sb�� �Ab� � � � �Ab�� �z 	
a batches

Sb��

Schedule ��� is constructed from �� by replacing each batch A�
i� for i � b � a � �� � � � � b� with A�

b�
hence�

��� � �S	 �A
�
b� � � � �A

�
b�� �z 	

a batches

S��S�� � � � �Sb���Sb��

�




Assume that � is an optimal schedule� We prove the lemma by deriving two contradictory
inequalities relating

Pn
j�� Cj��

�� and
Pn

j�� Cj��
�
��� First� we establish that

nX
j��

Cj��
�� �

nX
j��

Cj��
�
��� �
�

Comparing schedules ��� and ��� we observe that there is an increase in processing time of p�A�
b��

p�A�
i� when batch A�

i is substituted by A�
b� for i � b� a� �� � � � � b� and this increase also delays all

subsequent jobs in ���� From the construction of A�
i from Ai� for i � b � a � �� � � � � b� we observe

that p�A�
i� � p�Ai�� Thus� we deduce that

nX
j��

Cj��
�
�� �

nX
j��

Cj���� �
bX

i�b�a��

�p�Ab�� p�Ai��


�b� i� ��b�

bX
l��

jSlj
�
� ���

We now compare schedules �� and �� First� observe that replacing batch Ai� for i � �� � � � �
b � a� with A� does not increase the total completion time since p�A�� � p�Ai� from Lemma ��
Moreover� Lemma � also shows that reordering these A� batches so that they are sequenced in
adjacent positions does not increase the total completion time either� To obtain an upper bound
on the increase in total completion time when batch Ai is substituted by Ab� for i � b�a��� � � � � b�
we assume that the increase in processing time of p�Ab��p�Ai� causes a delay to each of the blocks
S�� � � � �Sb� Thus� we obtain

nX
j��

Cj��
�� �

nX
j��

Cj��� �
bX

i�b�a��

�p�Ab�� p�Ai��


�b� i� ��b�

bX
l��

jSlj
�
� ���

Subtracting ��� from ��� yields

nX
j��

Cj��
���

nX
j��

Cj��
�
�� �

nX
j��

Cj����
nX

j��

Cj���� � ��

where the latter inequality holds due to the optimality of �� Therefore� we have established the
desired inequality �
��

To obtain the required contradiction� it is su�cient to prove that
nX

j��

Cj��
�� �

nX
j��

Cj��
�
��� �
�

Let K denote the total completion time of jobs in the schedule de�ned by �S	� � � � �Sb�� In schedule
���� each of the blocks S�� � � � �Sb is delayed by time ap�A�

b�� Since p�A
�
b� � p�Ab�� we deduce that

nX
j��

Cj��
�
�� � K � abp�S	� � ab�a� ��p�Ab��
 � ap�Ab�

bX
l��

jSlj� �	�

Performing similar calculations for schedule ��� we obtain

nX
j��

Cj��
�� � K � a�b� a�p�S	� � a�b� a��b� a� ��p�A���
 � �b� a�p�A��

bX
l��

jSlj

�a�

b��X
l�	

p�Sl� � �b� a�p�A��
�
� a��a� ��p�Ab��
 � ap�Ab�jSbj� ���

��



Subtracting �	� from ��� yields

nX
j��

Cj��
���

nX
j��

Cj��
�
�� � �b� a�p�A��



a�b� a� ���
 �

bX
l��

jSlj
�

�ap�Ab�


�a� ���b� a��
 �

b��X
l��

jSlj
�
� a�

b��X
l��

p�Sl�� � �

Rearranging � �� we obtain

nX
j��

Cj��
���

nX
j��

Cj��
�
�� � �b� a�p�A����a

� � a � b��
 � jSbj��

��bp�A��� ap�Ab��


�a� ���b� a��
 �

b��X
l��

jSlj
�

�a


a
b��X
l��

p�Sl�� p�A��
b��X
l��

jSlj
�
� ���

Using our previous observation that jSbj � b � 
� together with b � 
 and a � �� shows that
�a� � a� b��
� jSbj � �� Thus� the �rst term in equation ��� is non�negative� Applying Lemma �
to the batches Bl and A� in �� we obtain p�Bl��b � p�A���a� Since batch Ab is deferred with respect
to batch Bl� we have that p�Ab� � p�Bl�� Combining these inequalities yields p�Ab��b � p�A���a�
Thus� the second term in equation ��� is strictly positive� A further application of Lemma � to batch
A� and to all of the batches in blocks S�� � � � �Sb�� in � yields p�A���a �

Pb��
l�� p�Sl��

Pb��
l�� jSlj�

This establishes that the third term in equation ��� is non�negative�
We have now proved that inequality �
� holds� which contradicts �
�� Therefore� � is not an

optimal schedule� This implies that the number of deferred batches with respect to any full batch
in an optimal schedule is at most b� � b� ��

We now present a backward dynamic programming algorithm� that uses state variables to
identify deferred batches� Lemma 
 establishes an upper bound on the number of state variables
of this type� Recall our assumption that the jobs have been re�indexed according to the shortest
processing time �SPT� rule� We also assume that all processing times are distinct� which can be
achieved if necessary by perturbation�

Let � be a schedule that contains jobs Jj � � � � � Jn� but not Jj��� and also contains non�full batches
B�� � � � �Br� where p�B�� � � � �� p�Br�� which are deferred with respect to the batch containing job
Jj�� that remains to be scheduled� Processing of the �rst batch in � starts at time zero� From
Lemma 
� we may assume that Bl � fJjl � � � � � Jj�

l
g� where j�l � jl�� for l � �� � � � � r and jr�� � j�

Further� Lemma � shows that these deferred batches may be assumed to appear in � in the order
B�� � � � �Br� We also assume that r � b� � b � � in accordance with Lemma 
� If r �� �� then
Lemma � shows the batch containing Jj�� must be full� therefore� this batch is fJj�b� � � � � Jj��g�
and j�r � j � b�

We claim that knowledge of the indices of initial jobs j�� � � � � jr allows us to identify� in O�r�
time� the indices of �nal jobs j��� � � � � j

�
r� and consequently the exact contents of each of the batches

B�� � � � �Br� To justify this claim� we show how to construct Bl� for l � �� � � � � r� The set fJjl � � � � � Jjl����g
comprises batch Bl and possible other full batches� except for Bl� there are no non�full batches since

��



the resulting schedule would not be consistent with Lemma �� Thus� the number of jobs in batch Bl

is �jl���jl� mod b� from which we deduce that j�l � jl����jl���jl� mod b� Since we do not allow
empty batches� the choice of initial job indices must satisfy �jl�� � jl� mod b �� � for j � �� � � � � r�
We have now established our claim�

We de�ne � to be in state �j� j�� � � � � jr�� If r � �� then we write the state as �j� 	�� where 	 is a
symbol for empty� A schedule in state �j� 	� is created by taking one of the following decisions in a
previous state�

� add a batch containing job Jj � A full or non�full batch fJj � � � � � Jk��g� where j�� � k � j�b�
is inserted at the beginning of some previous schedule in state �k� 	��

� add a full batch that does not contain job Jj� A full batch fJk� � � � � Jk�b��g� where j � k �
n � b� �� is inserted at the beginning of some previous schedule in state �k � b� j�� � � � � jr��
where the corresponding deferred batches B�� � � � �Br satisfy the relationship B� � � � �� Br �
fJj � � � � � Jk��g�

In the latter case� the previous schedule has batches B�� � � � �Br that are deferred with respect to the
batch that contains job Jk�b�� � When the full batch fJk� � � � � Jk�b��g is scheduled� these batches
are no longer deferred� Similarly� to create a schedule in state �j� j�� � � � � jr� for r �� �� we take one
of the following decisions�

� add batch B�� Batch B� is inserted at the beginning of some previous schedule in state
�j� j�� � � � � jr��

� add a full batch containing job Jj � A full batch fJj � � � � � Jj�b��g is inserted at the beginning
of some previous schedule in state �j � b� j�� � � � � jr��

� add a full batch that does not contain job Jj� A full batch fJk � � � � � Jk�b��g� where j � k � n�
b��� is inserted at the beginning of some previous schedule in state �k�b� j�� � � � � jr� j�� � � � � jr��
where the corresponding deferred batches B�� � � � �Br satisfy the relationship B� � � � �� Br �
fJj � � � � � Jk��g�

Using the above observations� we can use the state variables to compute j��� � � � � j
�r and n��

where n� is the number of jobs in �� We assume that such computations are performed for every
state that we consider�

Let Fj�j�� � � � � jr�� and Fj�	�� be the minimum total completion time among all schedules that
achieve state �j� j�� � � � � jr� for r �� �� and �j� 	�� respectively� From our previous observations� we
can use the state variables to compute j��� � � � � j

�r� the �nal job indices of deferred batches� and n��
where n� is the number of scheduled jobs� We assume that such computations are performed for
every state that we consider� In our dynamic programming algorithm� the initialization is

Fn���	� � ��

For j � n� n� �� � � � � �� we have recursion equations

Fj�	� � min

���
��

min
j���k�j�b

fFk�	� � n�pk��g�

min
j���k�n�b����j������jr��Hk

fFk�b�j�� � � � � jr� � n�pk�b��g�

�




Also� for j � n� �� n� � � � � �� r � �� � � � � b�� b� �� and j�� � � � � jr such that j� � � � � � jr � j � b and
�jl�� � jl� mod b �� � for l � �� � � � � r� where jr�� � j� the recursion equations are

Fj�j�� � � � � jr� � min

����
���
Fj�j�� � � � � jr� � n�pj�

�
�

Fj�b�j�� � � � � jr� � n�pj�b���
min

j���k�n�b����j������jr��Hk

fFk�b�j�� � � � � jr� j�� � � � � jr� � n�pk�b��g�

where Hk is the set of vectors �j�� � � � � jr� that contain the indices of the initial jobs of deferred
batches B�� � � � � Br� where � � r � b� � b� �� r� such that B� � � � �� Br � fJj � � � � � Jk��g� Note
that j� � j� The optimal solution value is equal to F��	�� and the corresponding optimal schedule
is found by backtracking�

We now discuss the time and space complexity of our dynamic programming algorithm� There
are O�nr��� state variables �j� j�� � � � � jr�� and consequently O�nb�b���� state variables overall� The
two terms in the recursion equation for Fj�	� are computed in in O�b� time and O�nb

��b��� time�
respectively� The �rst two terms in the equation for Fj�j�� � � � � jr� are computed in constant time�

while the third term is computed in O�nb
��b���r� time� Thus� the algorithm requires O�nb�b����

time and O�nb�b���� space�
We have established that the bounded problem of minimizing the total completion time is

polynomially solvable for �xed b� However� when b is arbitrary� the complexity remains unresolved�

	���� The case of m di�erent processing times

In this subsection� we present an O�b�m�
m� time dynamic programming algorithm for minimizing
total completion time for the case of m di�erent job processing times� Before proceeding� we
introduce some notation that is speci�cally needed for the development of this algorithm� Let the
distinct processing times be �p� � � � � � �pm� and let Sj be the set of all jobs with processing time
equal to �pj � for j � �� � � � � m� Moreover� let bj � bjSjj�bc� for j � �� � � � � m� so that bj represents the
maximum number of full batches containing jobs in Sj only� We call a job a j�job if its processing
time is �pj � and we call a batch a j�batch if its longest job is a j�job� We call a j�batch pure if the
batch is full and contains j�jobs only� otherwise� it is non�pure�

In accordance with Lemmas � and �� we restrict our search to schedules in which batches are
sequenced in order of non�decreasing ratios p�Bl��jBlj� and no batch is deferred with respect to a
non�full batch� Instead of using Lemma 
� however� we characterize a set of optimal solutions by
properties stipulated in the following lemma�

Lemma 
 There exists an optimal schedule with the following properties�

�i� �Chandru� Lee and Uzsoy� ����b� there are bj pure j�batches� for j � �� � � � � m�

�ii� there is at most one non�pure j�batch� for j � �� � � � � m�

Proof� To prove property �ii�� consider any optimal schedule with more than one non�pure j�batch�
for some j� and bj pure j�batches in accordance with property �i�� Let B denote one of the non�pure
j batches� By interchanging each j�job in a non�pure j�batch other than B with a non�j�job in
batch B� we obtain an alternative optimal schedule with one non�pure j�batch�

Property �i� states that there are bj pure j�batches� for j � �� � � � � m� which from Lemma �
must be sequenced in order of non�decreasing �pj � For the remaining jobs� we enumerate all possible
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con�gurations of full non�pure batches� Since property �ii� shows that we may restrict our attention
to schedules which have either zero or one full non�pure j�batch for each j �j � �� � � � � m�� we need
to consider 
m possible combinations� We represent a given con�guration of full non�pure batches
by the set of indices X 
 f�� � � � � mg� where j � X if and only if there is a full non�pure j�batch�
We introduce indicator variables aj�X � where

aj�X �

�
� if j � X �
� otherwise�

Given a set X � we propose a batch �lling procedure which �nds all other jobs in the corresponding
full non�pure batches� Consider any index j� where j � X � Since a j�batch is required to have �pj
as its processing time� it must contain a j�job and be �lled with jobs with processing times at most
�pj � Apart from this upper bound on the processing time� we are free to assign any other b� � jobs�
although it is best to �ll the batch with jobs having processing times as large as possible� This
observation leads to the batch �lling procedure described below�

Batch Filling Procedure

Input� Any set X of batch indices�

Step 	� Initially� set nj�X � jSj j � bjb if j �� X � and nj�X � jSj j � bjb� � if j � X � for j � �� � � � � m�
Note that nj�X represents the number of j�jobs that remain to be assigned to the non�pure j�batches�
Set h � ��

Step 
� Determine the smallest index j such that j � X and j � h� If no such index exists� then
terminate the procedure with an optimal set of full non�pure batches�

Step �� If
Pj

i�� ni�X � b � �� then terminate the procedure� it is not possible to �ll all non�pure
batches speci�ed by X �

Let i be the largest index i � j for which

ni�X � ni���X � � � �� nj���X � nj�X � b� �� ����

Fill the non�pure j�batch with all unassigned jobs from the set Si��� � � � �Sj and with b � � �Pj
k�i�� nk�X unassigned i�jobs� Accordingly� we update ni�X � ni�X � b � � �

Pj
k�i�� nk�X and

nk�X � � for k � i� �� � � � � j�

Step �� Set h � j� and go to Step ��

This procedure can be implemented to run in O�m� time for any given set X �
The remaining issue is how to form non�full batches with the remaining jobs� which have not

been assigned by the batch �lling procedure� and how to interleave these non�full batches with the
full batches to minimize total !ow time� For ease of exposition� assume that the remaining jobs are
J�� � � � � Jn� � where these jobs have been indexed according to the SPT rule� Let pj be the processing
time of Jj � for each j � �� � � � � n�� Note that n� � m�b� ��� The following result establishes that
there exists an optimal schedule in which� after removal of all full batches� jobs J�� � � � � Jn� form an
SPT�batch schedule�

Lemma � There exists an optimal schedule in which the sequence of batches formed by jobs
J�� � � � � Jn� is �B�� � � � �Br�� where under the SPT indexing Bl � fJjl � Jjl��� � � � � Jjl����g and jl�� �
jl � b� for j � �� � � � � r� and � � j� � j� � � � � � jr � jr�� � n� � ��
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Proof� The argument used in the proof of Lemma 
 shows that there exists an optimal schedule in
which the non�full batches contain jobs with consecutive indices� Lemma � establishes that these
batches are sequenced in order of increasing processing times�

We can restrict our search for an optimal schedule to one which has the following properties�

�a� the full batches appear in order of non�decreasing processing times� which follows from
Lemma ��

�b� the remaining jobs form non�full batches� where each such batch contains jobs with consecutive
indices� and the batches are sequenced in SPT order� which follows from Lemma ��

�c� a complete schedule is found be interleaving the full and non�full batches�

If the non�full batches are known� the interleaving can be performed using Lemma �� However� we
propose a dynamic programming algorithm that forms the non�full batches and interleaves the full
and non�full batches�

For any given X � we apply a backward dynamic programming algorithm in which complete
batches� either full or non�full� are added to the beginning of some previous schedule� This algorithm
implicitly enumerates all schedules that have properties �a� and �b�� Since we are minimizing total
completion time� it will automatically give an optimal schedule that possesses property �c� as well�

Let � be a schedule that satis�es properties �a� and �b�� that contains all of the full k�batches�
for k � i� � � � � m� and the jobs Jj � � � � � Jn� in non�full batches� Processing of the �rst batch starts
at time zero� We de�ne such a schedule to be in state �i� j�� Let Fi�j� be the minimum total
completion time for schedules in state �i� j�� A schedule in state �i� j� is created by taking one of
the following decisions in a previous state�

� add all full i�batches� The number of full i�batches is equal to bi � ai�X �which may be zero��
Inserting these batches at the beginning of some previous schedule in state �i� �� j� delays
the jobs that are already scheduled by �bi � ai�X ��pi units� and therefore increases the total
completion time by �bi�ai�X ��bi�ai�X���b�pi�
��n��j���b

Pm
k�i���bk�ak�X ���bi�ai�X ��pi�

� add a batch containing Jj � A non�full batch fJj � � � � � Jk��g� where j � k � minfn���� j�b��g�
is inserted at the beginning of some previous schedule in state �i� k�� Since this batch has
processing time pk��� the previously scheduled jobs are completed pk�� units later when this
batch is added� and total completion time increases by �n� � j � � � b

Pm
k�i�bk � ak�X ��pk���

We are now ready to give the dynamic programming algorithm for computing an optimal
schedule for any given X � The initialization is

Fm���n
� � �� � ��

and the recursion for i � m � �� m� � � �� � and j � n� � �� n�� � � � � � �where either i � m � � or
j � n� � �� is

Fi�j� � min

������
�����

Fi���j� � �bi � ai�X ��bi � ai�X � ��b�pi�


��n� � j � �� b
mP

k�i��
�bk � ak�X ���bi � ai�X ��pi

min
j�k�minfn����j�b��g

fFi�k� � �n� � j � � � b
mP
k�i

�bk � ak�X ��pk��g�
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The optimal solution value for a given set X is F���� and the corresponding optimal schedule is
found by backtracking�

To implement the algorithm e�ciently� the partial sums
Pm

k�i�bk � ak�X � are evaluated and
stored for i � �� � � � � m in a preprocessing step in O�m� time� Then� each value Fi�j� is determined
in O�b� time� Since n� � �m���b� the recursion requires O�b�m�� time and O�bm�� space altogether
for a given X � To solve the problem� we need to run the recursion for all feasible sets X � of which
there are at most 
m� Hence� the overall time requirement for the algorithm is O�b�m�
m�� and
the space requirement is O�bm���

��� Scheduling with due dates is NP	hard

In this section� we prove that bounded problems with due dates or deadlines are NP�hard in the
strong sense� even if b � 
�

Theorem 	 Finding a feasible solution to a bounded problem with deadlines is unary NP�complete�
even if b � 
�

Proof� The proof is based upon a reduction from the unary NP�complete problem ��Partition�

��Partition

Given a set fa�� � � � � a�mg of �m positive integers with
P�m

j�� aj � mA and A�� � aj � A�
 for
j � �� � � � � �m� is it possible to partition the index set f�� � � � � �mg into m mutually disjoint subsets
X�� � � � �Xm such that

P
i�Xj

ai � A for j � �� � � � � m�

Given an instance of ��Partition� we construct the following instance of our bounded deadlines
problem with 	m� jobs and b � 
� For i � �� � � � � �m and j � �� � � � � m� there is a job Ji�j with
processing time pi�j and deadline �dj for j �� � and deadline �dm for j � �� where

pi�j � iW � �m� j�ai�

�dj �
jX

h��


 �mX
i��

iW � �m� h�mA� hA
�
�

and W � m�A� Also� for i � �� � � � � �m and j � 
� � � � � m� there is a job J�m�i�j with processing
time p�m�i�j � pi�j and deadline �dj � Any job Ji�j for j � �� � � � � m� and J�m�i�j for j � 
� � � � � m is
of type i� Further� the jobs Ji�j � and the jobs J�m�i�j �for j �� �� ��� for i � �� � � � � �m� form group j�
Note that groups � and � each contain �m jobs� while all other groups contain 	m jobs�

We prove that ��Partition has a solution if and only if there is a feasible solution to this
scheduling instance with deadlines�

First� suppose that X�� � � � �Xm de�nes a solution to ��Partition� Consider a schedule which
comprises m blocks of batches� where each block contains �m batches� In block j� for j � �� � � � � m�
there are three batches fJi�j � Ji�	g for i � Xj and �m � � batches fJi�j � J�m�i�jg �for j �� �� or
fJi�j � J�m�i�j��g� depending on whether job J�m�i�j �for j �� �� is scheduled in a previous block�
for i �� Xj � Note that all jobs in group � are scheduled in block �� and all jobs in group j� for
j � 
� � � � � m� are scheduled either in block j � � or block j� The completion of processing of block
j occurs at time

jX
h��


�mX
i��

iW �
X
i�Xh

mai �
X
i��Xh

�m� h�ai
�
�

��



which can be expressed as

jX
h��


�mX
i��

iW � �m� h�mA� hA
�
� �dj �

Therefore� each job is completed by its deadline� and the schedule is feasible�
Conversely� suppose that there exists a feasible schedule� We show �rst that each batch contains

exactly two jobs which are of the same type� If this is not the case� then the completion time T of
the last batch in the schedule satis�es

T �
mX
h��

�mX
i��

iW �W�

Using the inequality �m� h�mA� hA � m�A in the expression for �dm yields

�dm �
mX
h��

�mX
i��

iW �m�A�

which shows that T � �dm� and the schedule is not feasible�
Jobs Ji��� for i � �� � � � � �m� are each contained in di�erent batches which are completed by

time �d�� Since
P�m

i�� pi�� �
P�m

i�� iW � �d� � �m� ��mA� A � d� �W � these �m batches must be
sequenced in the �rst �m positions of the schedule� It is not possible for both Ji�� and J�m�i�� to
be scheduled in the �rst block of �m batches� Since Ji�� and J�m�i�� are identical� we may assume
that jobs J��i� for i � �� � � � � �m� are each contained in di�erent batches which are not sequenced
in the �rst �m positions� To achieve the deadline �d�� these batches must form a second block
which are sequenced in positions �m � �� � � � � 	m� Repetition of this argument shows that there
is a block of �m batches which contain jobs Ji�j for i � �� � � � � �m that are sequenced in positions
��j� ��m� �� � � � � �jm� respectively� for j � �� � � � � m� Moreover� the batch containing job Ji�j also
contains either Ji�	� J�m�i�j or J�m�i�j�� �for j �� m��

The batch containing job Ji�j has processing time pi�j unless it contains job Ji�	 in which case it
has processing time pi�	� We identify the batches to which jobs J��	� � � � � J�m�	 are assigned in order
to de�ne a partition X�� � � � �Xm of the index set f�� � � � � �mg� Speci�cally� i � Xj if fJi�j � Ji�	g is a
batch� Since all batches containing jobs Ji�j for i � �� � � � � �m must be completed by time �dj � we
obtain

jX
h��


X
i��Xh

pi�h �
X
i�Xh

pi�	
�
� �dj � j � �� � � � � m�

which can be expressed as

jX
h��

h


A�

X
i�Xh

ai
�
� �� j � �� � � � � m� ����

Suppose that at least one of the inequalities in ���� is strict� Then by forming a linear combination
of the m inequalities with positive coe�cients ��j � ���j � �� for j � �� � � � � m� �� and ��m for
j � m� we obtain a strictly positive value� This relationship is expressed as

m��X
j��


�
j
�

�

j � �

� jX
h��

h


A�

X
i�Xh

ai
�
�

�

m

mX
h��

h


A�

X
i�Xh

ai
�
� ��


�



which can be rewritten as

mX
h��

h


A�

X
i�Xh

ai
�
m��X

j�h


�
j
�

�

j � �

�
�

�

m

�
� mA�

mX
h��

X
i�Xh

ai � ��

However� this inequality contradicts
P�m

i�� ai � mA� which is obtained from the de�nition of ��
Partition� Therefore� the left�hand side of each inequality in ���� is equal to zero� This implies
that

P
i�Xj

ai � A for j � �� � � � � m� which shows that X�� � � � �Xm de�ne a solution to ��Partition

Corollary � The bounded problems of minimizing the maximum lateness Lmax� the number of
tardy jobs

Pn
j�� Uj � and the total tardiness

Pn
j�� Tj are unary NP�hard� even if b � 
�

��� Restricted number of batches

In this section� we consider the bounded problem of minimizing any regular objective function when
the schedule is constrained to contain at most r batches� We show that this problem can be solved
in �nr��� time� which is polynomial when r is �xed�

Note that� if the longest job of each batch is speci�ed along with the order in which the r
batches are sequenced� then it is straightforward to compute the processing times p�B��� � � � � p�Br�
and completion times C�B��� � � � � C�Br� of the batches� The problem then reduces to one of assigning
each of the remaining jobs to the r batches so that no batch contains more than b jobs and no job
is assigned to a batch whose designated longest job would be smaller� If job Jj has a deadline �dj �
then we must also ensure that Cj � �dj �

"From the above observations� the cost cij of assigning any of the n � r remaining jobs Jj
�j � �� � � � � n� to batch Bi �i � �� � � � � r� is

cij �

�
�� if p�Bi� � pj or C�Bi� � �dj �
fj�C�Bi��� otherwise�

Thus� the problem of minimizing a minsum cost function for given batch processing times and a
given processing order of the r batches reduces to a bipartite weighted matching problem� which
can be solved in O�n�� time �Lawler� ���	��

To select the designated longest jobs� each of the
�n
r



possible choices must be considered� For

each selection� there are r# batch sequences� For �xed r� there are O�nr� selections of longest jobs
and batch processing orders� each of which requires a a bipartite weighted matching problem to be
solved� Thus� the problem is solvable in O�nr��� time� which is polynomial�

To minimize a regular minmax objective function� we adopt a similar approach� except that it is
necessary to solve a minmax bipartite weighted matching problem� Since this matching problem is
solvable in O�n�� time �Lawler� ���	�� the overall time requirement for a minmax objective function
is also O�nr����

� Concluding remarks

This paper is a �rst step towards providing a complexity mapping of single�machine batching
problems� in which the processing time of a batch is dictated by its longest job� We refer to Table �


�



in the introduction for a summary of our results� The mapping is not complete� since the following
complexity issues remain open� binary NP�hardness for the unbounded problem of minimizing the
total tardiness

Pn
j�� Tj �which is pseudopolynomially solvable�� and binary and unary NP�hardness

for the bounded problems of minimizing the total completion time
Pn

j�� Cj for arbitrary b and of
minimizing the total weighted completion time

Pn
j�� wjCj for �xed and arbitrary b�

Our analysis does not consider problems with unequal job release dates� For the unbounded
model� a di�erent approach to that in Section 
 is required� since we may no longer restrict our
search to SPT�batch schedules� These problems are therefore likely to be much more di�cult
than their counterparts with equal job release dates� There is one exception� since the problem of
minimizing the makespan subject to unequal job release dates is the mirror image of minimizing
the maximum lateness with equal release dates� we can solve the makespan problem in O�n�� time
using the algorithm for minimizing the maximum lateness that is presented in Section 
�
�

For the bounded model with unequal release dates� all criteria that we consider give rise to
unary NP�hard problems� Table � shows that most such problems are already unary NP�hard with
equal release dates �cf� Table ��� while minimizing the total completion time subject to release
dates is unary NP�hard even if b � � �Lenstra et al�� ������ Minimizing the makespan subject
to release dates is unary NP�hard as well� since we have shown in Section ��
 that the equivalent
mirror image problem of minimizing the maximum lateness is unary NP�hard for b � 
 �

Another extension to the model involves scheduling jobs with equal release dates on m identical
parallel machines� For the unbounded model� it is not di�cult to prove that there exists an
optimal solution which is an SPT�batch schedule for an arbitrary regular objective function� We
claim therefore that any such parallel�machine batching problems for which the SPT�batch property
still holds can be solved by dynamic programming in pseudopolynomial time for a 
xed number of
machines�
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