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Abstract
The objective of this work is to implement algorithms for object detection and
range estimation that can be applied to unmanned aircraft vehicles.
To tackle this problem, stereo vision theory and well-known object detection
algorithms are investigated and compared.
Object detection algorithms are then combined with the stereo vision system
to obtain two new algorithms that improve the performance of the simple
vision system.
These two algorithms are finally tested and compared in real and simulated
scenarios.

Sommario
Lo scopo di questo lavoro è stato quello di implementre algoritmi per la
rilevazione di ostacoli e la stima della distanza da quest ultimi, da poter
applicare a velivoli autonomi senza pilota.
A tal fine sono state studiate, confrontate ed esaminate le più importanti
tecniche di object detection e di visione stereo.
Sono quindi stati implementati due nuovi algoritmi che combinano le tecniche
studiate al fine di ottenere un sistema di rilevazione/stima accurato e preciso
Tali algoritmi sono poi stati testati e confrontati sia in un ambiente virtuale
che in uno scenario reale.
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CHAPTER 1

Introduction

In the last years, researches on unmanned air vehicles (UAV) have signifi-
cantly increased, due to the variety of applications where UAVs can be used
with different tasks. Small UAVs are primarily used for low altitude surveil-
lance tasks, such as forest fire tracking, civilian search and rescues, military
reconnaissances, convoy support and other military operations in urban ter-
rain. Paths for small UAVs are planned by human operators or by automated
path planners. Thanks to UAVs it is possible to complete tasks in very dif-
ficult environments without any risk for the people that control the UAVs.
Unfortunately, there are lots of aspects and problems that need to be studied
in order to have safe autonomous vehicles.

One of the most important problems about UAVs is how they can be
integrated into a non-segregated airspace in a multi-aircraft and manned
flight environment, e.g. an airport, without impacting airport safety and
efficiency.
The system must necessarily satisfy:

• Safety

– Ensure safe task execution using a Detect & Avoid (D&A) system
compatible with existing safety nets and operating procedures,
including air traffic management.
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– Airspace management procedures, including air traffic manage-
ment strategies

• Capacity and efficiency

– Exchange trajectory data and other information with Air Traf-
fic Controller (ATC), takes into consideration the latencies and
uncertainty of trajectories

– Address alternative specific but interoperable surveillances, com-
munications and navigation issues

• Airport Integration and Airspace efficient throughput

– Demonstrate airport surface operations capabilities, including in-
teractions with other aircraft on the surface as well as with ground
vehicles and obstacles

– Demonstrate take-off and landing capabilities without impacting
airport throughput

– Demonstrate D&A for ground operations, taking into considera-
tion wind turbulence and weather conditions

– Quantify minimum performance requirements for integration like
speed, climb/descent and turn performance, requirements accord-
ing to different airport complexity types.

• Security

– Identify security threats to UAVs integration in non-segregated
airspace, that can lead to hazards in terms of loss of control, com-
munication, navigation or surveillance capabilities.

For all the previous reasons, research is very active, in order to find control
algorithms and sensors that can satisfy the previous constraints.

A variety of sensors could potentially be used to navigate around un-
known obstacles and non-structured environments. RADAR is one of the
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most used sensors [1], that can be used in all weather operations with high
resolution, but it is mainly used only for detecting obstacles within a close
range due to its sparse measurements and its low scan rate. Furthermore, it is
sometimes necessary to work with small UAVs (because it is often necessary
to work in narrow environments), and light-weight and mechanically simple
solutions are required. Additionally, passive sensors are preferable in mili-
tary operations because active sensors signals can be detected and jammed
or may interfere with nearby vehicles or similar sensor signals.

To reduce the possibility of mid-air collisions the Federal Aviation Ad-
ministration has developed the Traffic Alert and Collision Avoidance System
or TCAS [2]. This airborne system senses the presence of nearby aircraft
by queering the transponders carried by these aircraft. This system only
prevents aircraft collisions with other aircraft, but not with any other kinds
of obstacles. Furthermore, TCAS system does not satisfy light-weight con-
straints.

An alternative solution is to use video cameras. Video cameras provide
lightweight, simple, passive and inexpensive solutions, and are therefore an
attractive sensor for small UAVs. However, significant computer video pro-
cessing it is required, in order to obtain useful information. With video cam-
era and image processing is possible to detect all kind of objects, calculate
distance from obstacles and satisfy previous constraints. On the other hand
this kind of implementation cannot be used in all weather conditions, but
it is possible to improve its performance using image processing techniques
(e.g. using infra-red cameras, video fusion and so on).

The main contribution of this work is to improve the classical techniques
of object detection, applied in the UAVs case. This new approach combined
together stereo vision methods and some image processing techniques. In
this way it is possible to detect obstacles, from simulated or real scenarios,
and to calculate the distance between UAVs and founded objects.

Chapter 2 presents the basic theory of stereo vision, and how it can
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be used for range estimation. Chapter 3 describes some techniques that
can be used in order to improve stereo vision basic systems, in order to
extract obstacles from the acquired images and resolve some problems that
may occur. The image processing techniques, previously illustrated, will
be implemented in two new algorithms (called Ste.Vi.E and Ste.Vi.S) and
compared in Chapter 5. Finally in Chapter 6 the obtained results will be
discussed and possible future developments are outlined.



CHAPTER 2

Stereo Vision

2.1 Introduction
This chapter presents the fundamental of stereo vision and describes the most
important concepts and techniques used to build a stereo vision system.

Researchers in computer vision have been developing mathematical tech-
niques for recovering the three-dimensional shape and appearance of objects
in imagery. We now have reliable techniques for accurately computing a
partial 3D model of an environment from thousands of partially overlapping
photographs Fig. 2.1(b). Given a large set of views of a particular object,
we can create accurate dense 3D surface models using stereo matching Fig.
2.1(a). It is also possible tracking something in the scene and so on. Com-
puter vision tries to describe the world captured, in one, or more, images
and to reconstruct its properties, such as shape, illumination, and color dis-
tributions. Computer Vision is now used in a wide variety of real-world
applications, for example:

• Optical character recognition: reading handwritten codes on let-
ters and codes in commercial products

• Machine inspection: rapid parts inspection in industrial and auto-
motive product lines

8
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(a) (b)

(c)

Figure 2.1: Example of 3D resortuction, overlapping of more pictures and stereo
matching

• 3D model building: automated construction of a 3D model of an
object

• Medical imaging: that can help in medical operations

• Automotive safety: detecting unexpected obstacles such as pedestri-
ans on the street, under conditions where active vision techniques such
as radar not work well

• Surveillance: monitoring for intruders, analyzing highway traffic and
monitoring pools for drowning victims.

Stereo vision is an important part of computer vision, that aims to capture
information from a pair of images that can not be deduced with a single
image. With a single camera, (configuration in figure 2.2), we have only an
optical center, so two aligned points are projected in a same image point.
If we are able to find corresponding (homologous) points in two, or more,
images, is possible to infer depth by means of triangulation . One of the most
important problems in stereo vision is the stereo correspondence. Sometimes
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Figure 2.2: Two aligned points real (P,Q) projected in the same image point,
where ”O” represent optical center and ”π” is the image plane
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Figure 2.3: Stereo vision with two cameras, and projection of two real point in
different image plane
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can be difficult, or impossible, to find the projection of one real point in
different image planes.

2.2 Epipolar Constraints
This problem can be resolved introducing Epipolar constraints. If we consider
two points P and Q, in the same line of sight (on the same reference image),
the epipolar constraints state that the points in a line of view of the first
camera, lies in a particular line in the image plane of the second camera.
Taking images at different time it is possible to use epipolar constraints
with a single camera too. This information reduces the number of potential
correspondences. Figures 2.4(a) shows how a real point (for example P ),

(a) (b)

Figure 2.4: Epipolar constraint (a) and epipolar plane (b)

in a line of view from c0 to p∞, is projected in a particular line (epipolar
segment) in the second image plane. The segment is bounded at one end by
the projection of the original viewing ray at infinity p∞ and at the other end
by the projection of the original camera center c0 into the second camera,
which is known as the epipole e1. This is valid for the first image plane
obtaining epipole e0. Extending both line segments to infinity, we get a pair
of corresponding epipolar lines (Fig.2.4(b)), which are the intersection of the
two image planes with the epipolar plane that passes through both camera
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centers c0 and c1, as well as the point of interest P . In Fig. 2.41 the two
image planes are referred at the same camera but after a roto-translation
(R, T ) ∈ SE(3). The general formulation of them is the following:

yit
T
Tcτ ct ∧ (Rcτ cty

i
τ ) = 0 (2.1)

where yit is the vector containing the normalized coordinates of ith feature of
the image taken at time t, yiτ is the correspondent point in image taken at
time τ (with τ < t) and (Rctcτ , Tctcτ ) represents the roto-translation matrix
between camera position at time t w.r.t. its position at time τ .

2.3 Camera Model and Projective Geometry
One of the most important problems is to find the relationship between a
point Qi in the physical world, with coordinates (Xi, Yi, Zi), to the point qi

on the projection screen with coordinates (xi, yi). The relation that maps
points Qi with points qi is called Projective Transformation. In this case,
the image plane is the projective space and has two dimensions, so it is
possible to represent points on that plane as three-dimensional vectors q =

[q1, q2, q3] (because it is convenient to use homogeneous coordinates). All
points having proportional values in the projective space are equivalents (due
to homogeneous coordinates), so we can recover the actual pixel coordinates
dividing through by q3. This allows to arrange the parameters that define our
camera into a single 3-by-3 matrix that will be call Intrinsic camera matrix.

So the projection of the points in the physical world into the camera can
be now summarized by the following relation:

p = MP, where p =


x

y

w

 , M =


fx 0 cx

0 fy cy

0 0 1

 , P =


X

Y

Z

 (2.2)

As we can see Camera Matrix M contains some important parameters
that characterize the camera. There are two different focal lengths, fx and

1Fig.Ref [3]
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Figure 2.5: Effect of radial distortion

fy, because the individual pixels, in a typical low cost camera, are rectangular
rather than square. Each individual focal length is obtained by the product
of the physical focal length F with the size sx or sy of the individual imager
element (e.g. fx = F · sx).

Sensor chip is usually not on the optical axis, due to unavoidable con-
struction errors, so it is necessary to introduce two new parameters cx and
cy that help to model a possible displacement (away from the optical axis) of
the center of coordinates on the projection screen. The relationship between
3D point Qi = [Xi, Yi, Zi] and the projection on the screen (xi, yi) is given
by:

x = fx

(
X

Z

)
+ cx, y = fy

(
Y

Z

)
+ cy (2.3)

Another important aspect to consider, is the distortion introduced by
camera lens, because no lens is perfect. It is possible to introduce two kinds of
distortions: Radial Distortion, as a result of the shape of lens and Tangential
Distortion arise from the assembly process of the camera.

The effect of radial distortion changes the pixels position near the edges
of the image. This bulging phenomenon is the source of the ”barrel” or ”fish
eye” effect. This effect is clearly shown in Fig 2.52. The introduced distortion

2Fig.Ref [4]
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is zero at the (optical) center of the image and increases moving toward
the periphery. It’s possible to characterized this effect by the first terms of
Taylor’s series expansion around optical center (r = 0). The corrected image
coordinates will be:

xcorrected = x(1 + k1r
2 + k2r

4 + k3r
6...) (2.4)

ycorrected = y(1 + k1r
2 + k2r

4 + k3r
6...) (2.5)

where (xcorrected, ycorrected) are the new pixel coordinates, r is the distance
from the center and (k1, k2, ..., kn) the terms introduced by Taylor expansion
(usually arrested at 3th term).

The Tangential distortion derives from manufacturing defects, resulting
from the lens not being exactly parallel respect the image plane. This effect
is characterized by two additional parameters, p1 and p2, such that:

xcorrected = x+ [2p1y + p2(r
2 + 2x2)] (2.6)

ycorrected = y + [p1(r
2 + 2y2) + 2p2x] (2.7)

All the effects introduced by distortions are described by these five coef-
ficients [k1k2, k3, p1, p2], that will be estimated by the calibration process as
explained in section 2.4.

The 2D points determined in the previous steps can be also re-projected
into three dimensions given their screen coordinates and the camera intrinsics
matrix. The re-projection matrix is:

P =


1 0 0 −cx

0 1 0 −cy

0 0 0 f

0 0 − 1
Tx

(cxl−cxr )

Tx


All the parameters contained in P are from the left image except for cxr ,
which is he principal point x coordinate in the right camera. Given the 2D
homogeneous point and its associated disparity d, we can project the point
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in the three camera dimension space as:
X

Y

Z

W

 =


1 0 0 −cx

0 1 0 −cy

0 0 0 f

0 0 − 1
Tx

(cxl−cxr )

Tx



x

y

d

1


If the pose of the stereo rig, respect the real world coordinate system,

is known is possible to georeference all the points in the world coordinate
system.

Z

X

Y

z

y
x

Oworld

Ocamera

[R|T]

Figure 2.6: Pose of camera coordinates system in the world coordinate system

From IMU and GPS information is possible to calculate the transforma-
tion from world coordinates to camera coordinates:

Xw

Yw

Zw

1

 = [R|T ]


X

Y

Z

1

 (2.8)

2.4 Calibration
Before starting acquisition is necessary to find some important parameters
that characterize the stereo pair cameras. Calibration is an off-line technique
that aims to find two kinds of parameters:
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Figure 2.7: Stereo calibration with Matlab Toolbox

• Intrinsic Parameters: these parameters allow to find the transfor-
mation from a point in a 3D space in the image plane coordinates. For
example focal length, image center, distortion and so on.

• Extrinsic Parameters: that represent the position of each camera
respect a known reference system.

When intrinsic and extrinsic parameters are known is possible to find the
3D coordinates of a point P knowing the 2D projection coordinates of p in
the two image planes. Literature presents lots of methods to calibrate the
stereo rig and some algorithms are already implemented in dedicate tool-
boxes and libraries. Matlab [5] calibration toolbox, based on [6], achieves
good results but required manually points detection on the images used for
calibration process, so it is preferable to implement calibration process in C++
with OpenCV library [4] as described in Chapter 5. The process of calibra-
tion consists to target the camera on known structure (a chessboard pattern)
that has many individual and identifiable points. By viewing this pattern
from a variety of angles is possible to estimate the (relative) location and
orientation of the camera and the intrinsic parameters.
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With calibration process it is also possible to obtain the Essential Matrix
E and Fundamental Matrix F . The Essential matrix E contains information
about translation and rotation from the two cameras in the 3D space, and
Fundamental matrix F contains the same information of E with the intrinsic
parameters of each camera. Matrix F and E can help to derive the relation
that connect the observed point P with the two points pl and pr in the two
images. Essential matrix can be written as:

E = R · S (2.9)

where:

S =


0 −Tz Ty

Tz 0 −Tx

−Ty Tx 0

 (2.10)

and R is a rotational matrix.
The relation between points in left and right image must satisfy the following
relation:

p⊤r Epl = 0 (2.11)

Fundamental matrix can be build from camera matrix M as:

F = (Mr)
−1E(Ml)

−1 (2.12)

2.5 Rectification
Since the search space for corresponding points can be narrowed from 2D to
1D (due to epipolar constraints), the images can be put (virtually) in a more
convenient configuration, standard form, to have both images in the same
plane. As described in [7], image rectification can be view as the process
of transforming the epipolar geometry, of a pair of images, into a canonical
form. As presented in [8] a simple way to rectify the two images is to first
rotate both cameras so that they are looking perpendicular to the line joining
the camera centers, c0 and c1. Next, to determine the desired twist around
the optical axes, make the the y axis camera perpendicular to the camera
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center line. This ensures that corresponding epipolar lines are horizontal
and that the disparity for points at infinity is 0. Finally, re-scale the images,
if necessary, to account for different focal lengths, magnifying the smaller
image to avoid aliasing. One of the most importants and used rectification

(a) (b)

Figure 2.8: Example of rectification process

algorithm is Bouguet’s Algorithm [5], that given the rotation matrix and
translation vector (R, T ) between stereo images, tries to minimize the amount
of change reprojection produced for each image while maximizing common
view area. The rotation matrix R, that rotate the right camera to overlap
with the left image plane, is split in half between the two cameras, given
two matrix rl and rr. Each camera rotates half rotation to have co planar
alignment but not into row alignment. Starting with the direction of the
epipole e1 is possible to create the rectification matrix Rrect that will take
the left camera’s epipole to infinity and align the epipolar lines horizontally.
Taking the principal point (cx, cy) as the left image’s origin, the direction of
the epipole is directly along the translation vector between the two camera
center of projection.

e1 =
T

||T ||
(2.13)
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The second vector e2 must be orthogonal to e1 and it is possible to choose a
direction orthogonal to the principal ray:

e2 =
[−Ty Tx 0]T√

T 2
x + T 2

y

(2.14)

Finally the third vector must be orthogonal to e1 and e2:

e3 = e1 × e2 (2.15)

So Rrect can be construct in this way:

Rrect =


eT1

eT2

eT3

 (2.16)

The raw alignment of the two cameras is then achieved by setting:

Rl = Rrectrl (2.17)

Rr = Rrectrr (2.18)

In this way the two images lie in the same plane. All steps are resumed in
Fig. 2.93.

The resulting standard rectified geometry is employed in a lot of stereo
cameras setups and stereo algorithms and leads to a very simple inverse
relationship between 3D depths Z and disparities d,

B

Z
=

(B + xT )− xR

Z − f
=⇒ Z =

B · f
xR − xT

=
B · f
d

(2.19)

where d = xR − xT is the Disparity that grows when the point P is closer to
the cameras.

Since the camera is modelled as a pinhole camera, it is possible to calcu-
late the aperture angles with the following equations:

FOVx = 2 · arctan w

2 · f
(2.20)

FOVy = 2 · arctan h

2 · f
(2.21)

3Fig.Ref. [4]
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Figure 2.9: Step doing in the rectification process

Figure 2.10: Stero cameras after rectification process, B identifies the distance
between the two optical center OR and OT , f is the focal length, Z is the depth
and xR and xT are the x-coordinate projection of point p in the two image planes
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F

w

h

F

f FOV/2

Figure 2.11: Geometric representation of the aperture angle. Left diagram shows
the spatial placement of image sensor, focal point F and horizontal aperture angle
FOV . Right diagram shows the relation between image sensor width, focus length,
and horizontal aperture angle

where w and h represent the image sensor width and height respectively and
f represent the camera focal length. Also it is possible to find the height H

and width W of an object in the image as:

W =
w · Z
f

(2.22)

H =
h · Z
f

(2.23)

Given the smallest allowed disparity increment ∆d, we can find smallest
achievable depth range resolution ∆Z as:

∆Z =
Z2

fB
∆d (2.24)

and the smallest distance that can be recognized will be:

Zmin = tan
(
90◦ − FOV

2

)
B

2
(2.25)

where FOV is the Field of View of the cameras.

2.6 Stereo matching
The images captured from the two cameras are a set of points (pixels) and
in order to find the distance from a point Q, in a 3D space and the re-
projection points in the two image planes (ql,qr), is necessary to calculate
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the disparity from the same points. For this reason, in stereo vision, is
fundamental to recognize the same parts/points of the same scene from two
different pictures. This is the problem of stereo matching. In literature there
are lots of techniques of stereo matching, and it’s possible to divide the stereo
matching algorithms in two types:

• Features based

• Dense

The first kinds of algorithms allow to obtain disparity information for a finite
number of Features (that are interest sets of points). This algorithms are so
fast, because the number of features is smaller compared with the pixels in
the image. Image features can be extracted in different ways, in [9] Lowe
presents Scale Invariant Features (SIFT), that is an algorithm that detects
and describes local features in images. This method is based on a particular
class of features that are scale, rotational and illumination invariant. These
features are easily to find with a filter that identified stables points. These
algorithms have good results but are so slow. SURF (Speeded-up Robust Fea-
tures algorithm) [10] tries to resolve the SIFT speed and robustness problem.
This method uses an approximation to the determinant of Hessian matrix
that is approximate from integral image that is an intermediate representa-
tion of an image.
Unfortunately these algorithms are little used due to the poor disparity gen-
erated, that is limited only at the points that have distinctive features.

Dense algorithms try to generate disparity map for all the image points
in agreement to a particular taxonomy [11]. It’s possible to divide these al-
gorithms in two different categories: local and global. The local algorithms
seek similar points independently of one another, in a neighbourhood, of
each examined point. Differently the global dense algorithms take assump-
tion about same characteristics of the nature of the objects, for example
smoothness, and seek a disparity map that minimize a global cost function.
So the difference from these algorithms is the method used to minimize this
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Left Image Right Image

scan line

(u,v) (u+d,v)(u,v)

Figure 2.12: Stereo correspondence starts by assigning points matches between
corresponding rows in the left and right image. SAD windows moving along scan
line. Match search starts at minimum disparity point and move to the left for the
set number of disparity.

function (e.g simulated annealing, probabilistic diffusion, graph-cut and so
on). Algorithms based on graph-cut allow to obtain good results but with
an high computational cost.

In this application a fast (real time) stereo matching is required, and for
this reason is convenient to use the Sum of absolutely differences (SAD) cost
aggregation.
SAD works by taking the absolute difference between each pixel in the orig-
inal block and the corresponding pixel in the target block being used for
comparison. These differences are summed to create a simple metric block
similarity. The most similar block is lighter than the others blocks.∑

(i,j)∈W

|I1(i, j)− I2(x+ i, y + j)| (2.26)

The difference is calculated for all points (i, j) in a set W . The size of W
can be changed arbitrary to have more precision and reduce the search area.
There are also some variants of this algorithm that change how to weight the
difference of the pixels (e.g. Sum of Square Difference (SSD), Zero-mean Sum
of Absolute Differences (ZSAD), Sum of Hamming Distances (SHD), and so
on). There are three steps in the block matching technique that OpenCV
uses: pre-filtering, correspondence search, and post-filtering. In the first
stage, left and right images are normalized to have the same lighting levels.
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A window of variable size is placed over each pixel and the central pixel is
replaced as:

min[max(Ic − I,−Î), Î] (2.27)

where I is the average intensity value in the window, Î is an upper limit
(pre-set) and Ic is the intensity of the pixel in the center of the window, that
will be changed.
After rectification, each row is an epipolar line, so the matching location
in the right image must be along the same row (same x-coordinate) as in
the left image (Fig.2.12); this matching location can be found if the feature
has enough textures to be detectable and if it is not occluded in the right
camera view. Post filtering removes false matches correspondences. Once the
correspondences, for all common points, are known it is possible to calculate
the disparity value for all pairs of pixels and to build a disparity map (usually
encoded with grey scale image) that represents the disparity of all image and
that is proportional of the 3D depth (Fig.(2.13)). Brighter intensity values

Figure 2.13: Example of disparity map

represents objects that are closer to the camera while darker objects are
those farther away from the camera. Black pixels are those points where no
correspondence was found between the images.

As described in [12] there is an alternative implementation of block match-
ing that performs an optimization across the entire image, and not only a
locally finite neighborhood. For this reason this technique is called Semi-
Global Matching.

Semi-Global Matching performs a better result respect simple Block Match-
ing but present an high computationally cost and in order to have good
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Figure 2.14: Possible path orientation for 8 (a) or 4 (b) directions

performances in real time system, dedicated hardware implementations is
required. This algorithm aims to minimize the following global energy func-
tion, E, for disparity image, D:

E(D) =
∑
p

C(p,Dp) +
∑
q∈Np

P1 · I [|Dp −Dq| = 1]+

+
∑
q∈Np

P2 · I [|Dp −Dq| > 1]

 (2.28)

where E(D) is the energy for disparity image, p, q represent indices for pixels
in the image, Np is the neighborhood of the pixels p, C(p.Dp) is the cost of
pixels matching with disparity in Dp, P1 is the penalty passed by the user
for a change in disparity values of 1 between neighboring pixels, P2 is the
penalty passed by the user for a change in disparity values greater than 1
between neighboring pixels and I[·] is the function which returns 1 if the
argument is true and 0 otherwise. P1 and P2 governed the smoothness of
disparity map (with P2 ≥ P1). The semi-global matching function approxi-
mates the 2-D minimization by performing multiple 1-D minimization. The
matching function aggregates costs on multiple paths which converge on the
pixel under examination. Cost is computed for the disparity range specified
by the minimum disparity and number of disparities. We can calculate costs
in four or eight directions (Fig.2.14).
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Semi-Global Block Matching introduces global consistency constraints
by aggregating matching costs along several independents, one dimensional
paths, across the image. As describe in [13] the minimization of (2.28) can
be done by moving along one dimensional path L in r directions. The cost
along a path is done by recursively computing:

Lr(P, d) =C(p, d) + min[Lr(p− r, d),

Lr(p− r, d− 1) + P1,

Lr(p− r, d+ 1) + P1,

min
i

Lr(p− r, i) + P2]−

min
i

Lr(p− r, l)

(2.29)

where the first term describe the primary match cost (simple block matching).
The second term adds the minimal path costs of the previous pixel p − r

with a penalty P1 for disparity changes (|∆d| = 1) and P2 for disparity
discontinuities (|∆d > 1|) respectively. Quasi global optimization across the
entire image is achieved by calculating path cost in all considered direction:

S(p, d) =
∑
r

Lr(p, d) (2.30)

Finally the disparity map is calculated by selecting the disparity with the
minimal aggregation cost mind S(p, d) for each pixel.

Figure 2.154 shows the differences between the algorithms presented. Fig-
ure 2.15(b) shows the application of simple Block-Matching algorithm with
SAD windows size of 21 pixels, number of disparity of 64 pixels, texture
threshold of 0 and a pre-filter size of 5 pixels. Figure 2.15(c) shows disparity
map calculated with SGBM algorithm. Disparity map is denser respect BM
but can be difficult to extract single objects from the map. In this case SAD
windows size is 21 pixels, 4 paths direction and with the penalty weights:
P1 = 1000 and P2 = 2400. The execution time for BM is ≃ 100ms and for

4Dataset from http://cvlab-home.blogspot.it/2012/05/
h2fecha-2581457116665894170-displaynone.html

http://cvlab-home.blogspot.it/2012/05/h2fecha-2581457116665894170-displaynone.html
http://cvlab-home.blogspot.it/2012/05/h2fecha-2581457116665894170-displaynone.html
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SGBM is ≃ 600ms. For this reason in real time application is preferable to
use simple Block Matching.

(a)

(b) (c)

Figure 2.15: Application of Block Matching and Semi-Block Matching at the
same simulated scenario. (a) is the original image, (b) is BM algorithm and (c)
is SGBM algorithm



CHAPTER 3

Techniques for objects extraction

This chapter presents some techniques that try to extract image information
in order to find obstacles in the scene. Image object detection is a very
important and difficult process. Literature presents a lot of methods, but
that works only in particulars situations, or if some information about the
obstacles are known (such as color, position, dimension, shape and so on).
In our scenario obstacles can be various, with different colors, shapes, and
dimensions and we don’t have any information about it. For this reason three
techniques, Segmentation, Edge extraction and Saliency,have been studied
and implemented, because they work in many conditions and can be used to
improve the simple stereo vision.

3.1 Segmentation
As presented in [14] segmentation can be defined as a ”technique of labelling
features”. For each feature is possible to associate a label that contain some
informations, and it is possible to assume that two features is similar if they
have the same label. Segmentation could be very important in image pro-
cessing because can help to reject stereo correspondence errors. This can be
possible because in segmentation technique ”similar is defined as smoothly”.
A group of features of the same object (or obstacle) are smoothly varying,
but from two different objects the variation can be very high. Segmentation

28
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divides the image in k-regions such that within group features are smoothly
varying and between different group features are discontinuous. Smoothly
varying features will generate poor stereo correspondence due to low contrast,
so segmentation ignore disparity interior to the region. The problem of seg-
mentation and grouping remain a great challenge due to the difficult task to
merge high computational costs and fast performances. For our purpose the
segmentation method must have the following proprieties:

• Capturing perceptually important groupings or regions, which often re-
flect global aspects of the image. It’s important that the regions that we
define with segmentation reflects the original information of the image.
Segmentation should simplify the image without loss of information.

• Be highly efficient, running in time nearly linear in the number of
image pixels. In our application we have a stream video, composed
by sequentially frames, so the computational time must be smaller as
possible (linear with the dimension of the images).

3.1.1 Intensity Segmentation
One of the simplest and fastest segmentation algorithm that can be used in
our application is segmentation by intensity.

Segmentation by intensity aims to separate the background from the ob-
jects, that can be found within the image using the assumption that back-
ground is brighter than the objects. This segmentation can be used when we
are at high quote and we have homogeneous and brighter background (only
sky) and a darker objects (for example another aircraft or drone) that we
want to detect. For this task, threshold is an appealing method because it is
computationally inexpensive and fast. The success of background subtrac-
tion by thresholding is however solely depending on our knowledge of the
background intensity properties. We can simply choose a global threshold
and if the input pixel intensity is above the chosen threshold level, the corre-
sponding output pixel is set to one and if the intensity is below the threshold
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Figure 3.1: Intensity segmentation by threshold

level is set to zero. The threshold used to select the interest level of darker
can be found with the histogram of the image as we can see in figure 3.2.
Histogram is a graphical representation of the distribution of data. It plots
the number of pixels for each tonal value and help to judge the entire tonal
distribution at a glance.

As figure 3.2 shows, histogram has 3 peaks; the highest describe the sky
and brighter color, with high color level (250-255), the second peak describe
the drone and the little third peak is the helicopter in the background. With
this method is possible to extract objects from background but only if the
scene is poor of particulars and there is a lot of differences from the objects
and the background. An example of object extraction with this technique is
described in Fig.3.3.

If we have a complexity scene the histogram will not have isolated peaks,
and will be so hard extract the objects information. Sometimes adaptive
threshold can be used to have better result, but it’s necessary to find a
better algorithm that works in all conditions of image complexity.
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Figure 3.2: Simulated scenario with grey-level histogram. We can see that we
have a peak in correspondence of drone and the helicopter

Figure 3.3: Extraction of helicopter from background by intensity segmentation
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3.1.2 Colour Segmentation
Colour Segmentation is the simplest and the most utilized technique used to
extract objects from an image.
If the obstacle colour is known can be very simple to remove the other colours
and isolate the object. This technique doesn’t work if the goal is to find all
kinds of objects/obstacles in the scene, but if we want to extract a particular
object, such as aircraft, roof, wall and so on, can be used because its charac-
teristics are known.
The captured image is filtered with a Gaussian filter in order to remove the
noise and converted in HSV image. Hue-Saturation-Value is the most com-
mon cylindrical coordinate representations of points, in an RGB color model.
The purpose of this model is to aid selection, comparison, and modification
of colours by organizing them into a cylindrical geometry which roughly cor-
responds to human perception. When this range is note a mask is applied at
the image to remove all the other colours and it is all converted in a binary
image. After that morphological filters (see section [3.3]) are applied to fill
some empty regions coming from some colour intensity variations.
Due to its simplicity and robustness is also possible applied a Kalman filter
to track the objects found, in case of occlusions or temporary loss of image
informations.
An example of this technique is shown in Fig. 3.4.

In literature can be found a lot of segmentation algorithms, for example
Watershed algorithm [15] where a grey-level image may be seen as a topo-
graphic relief, where the grey level of a pixel is interpreted as its altitude
in the relief, or eigenvector based methods [16] and so on, that achieved ex-
cellent results but with high computational cost that doesn’t makes them
practical for many applications.
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(a) (b)

Figure 3.4: Example of colour segmentation. Figure (b) shows the binary image
obtained by colour extraction and opening operator. Figure (a) shows the result on
original image with a green rectangle on the object found.

3.1.3 Graph-based Image Segmentation
In graph based image segmentation methods, the image is modelled as a
weighted undirected graph G = (V,E), where each node in V is associated
with a pixel, or a group of pixels of the image, and edges in E connect
certain pairs of neighbouring pixels. The weight w(u, v) associated with the
edge (u, v) ∈ E describes the affinity (or the dissimilarity) between the two
vertices u and v. The segmentation problem is then solved by partitioning
the corresponding graph G, using efficient tools from graph theory, such that
each partition is considered as an object segment in the image. Among graph
based algorithms, Efficient-Based Image Segmentation by Felzenswalb and
Huttenlocher [17] is worth to be mentioned due to its effectiveness and low
computational complexity.

The Efficient Graph-Based algorithm is based on minimum spanning tree
(MST ) and it can preserve detail in low-variability image regions, while
ignoring detail in high-variability regions adjusting the segmentation criteria.
Starting considering each pixel as a component, it merges similar components
using a predicate, which is based on measuring the dissimilarity between
elements along the boundary of the two components. For this purpose some
parameters are defined.
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The Internal difference of a component C ⊆ V is defined as the largest weight
in the minimum spanning tree of the component, MST (C,E). That is:

Int(C) = max
e∈MST (C,E)

w(e) (3.1)

The difference between two components C1, C2 ⊆ V is defined as the mini-
mum weight edge connecting the two components. That is,

Dif(C1, C2) = min
vi∈C1,vj∈C2,(vi,vj)∈E

w((vi, vj)) (3.2)

The region comparison predicate evaluates if there is evidence for a bound-
ary between a pair of components by checking if the difference between the
components, Dif(C1;C2), is large relative to the internal difference within at
least one of the components, Int(C1) and Int(C2). The pairwise comparison
predicate is then defined as:

D(C1, C2) =

{
true if Dif(C1, C2) > MInt(C1, C2)

false otherwise
(3.3)

where MInt(C1, C2) is the Minimal Internal Difference defined as:

MInt(C1, C2) = min(Int(C1) + τ(C1), Int(C2) + τ(C2)) (3.4)

We can modify MInt(C1, C2) with τ that represents a threshold function
based on the size of the component:

τ(C) =
k

|C|
(3.5)

where |C| denotes the size of component C and k is a tuning parameter. Using
this threshold function makes harder to create small components because for
small components a stronger evidence for a boundary is required.

Colour images are split as three separate monochrome images (R,G,B
planes). Each pixel corresponds to a node vi ∈ V and the edge set E is con-
structed by connecting pairs of pixels that are neighbours in an 8-connected
senses (any other local neighbourhood could be used) as described in figure
3.5.
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Figure 3.5: Connection of each pixel with his neighborhood

This yields a graph with m = O(n) number of edges, and the running
time of the segmentation algorithm is O(n logn) for n image pixels. We use
an edge weight function based on the absolute intensity difference between
the pixels connected by an edge:

w((vi, vj)) = |I(pi)− I(pj)| (3.6)

where I(pi) is the intensity of pixel pi. In general is used a Gaussian filter
to smooth the image slightly before computing the edge weights, in order to
compensate for digitization artefacts, with σ = 0.8, which does not produce
any visible changes to the image but helps remove artefacts. For colour im-
ages algorithm run three times, once for each of the red, green and blue colour
planes, and then intersects these three sets of components. The algorithm
for image segmentation is resumed in table 1.

The algorithm sorts the edges set in non decreasing edge weight order
and then starts with the real segmentation process.
Let vi, vj the vertices connected by q-th edge in the ordering, i.e., oq = (vi, vj)

and living in disjoint components of Sq−1, if w(oq) is smaller than the internal
difference of both those components, it merges the two components otherwise
do nothing. This comparison is repeated for all pair of connected vertices in
disjoint components. The result of this segmentation algorithm is described
in Fig. 3.6
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Sort E into π = [o1, ..., om], by non decreasing edge weight
Start with segmentation S0, where each vertex vi is in its own
component.
for (q=1 to m) do

Let Cq−1
i be the component of Sq−1 containing vi and Cq−1

j the
component containing vj

if Cq−1
i ̸= Cq−1

j and w(oq) ≤ MInt(Cq−1
i , Cq−1

j ) then
Sq is obtained from Sq−1 by merging Cq−1

i and Cq−1
j

else
Sq = Sq−1

end
end

Algorithm 1: Segmentation Algorithm

(a) (b) (c) (d)

Figure 3.6: Example of image segmentation with k = 100 [b], k = 300 [c] and
k = 700 [d]

As show in Fig. 3.6 increasing the tuning parameters k is possible to
change and increase the area of each component, because small components
are less considered, and more image informations are discarded.

3.2 Canny Edge Detector
The purpose of edge detection, in general, is to significantly reduce the
amount of data in an image, while preserving the structural properties to
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be used for further image processing. The aim of algorithm proposed by
John F. Canny [18] is to find the optimal edges of image, where ”optimal”
means satisfied the following criteria:

• Detection: the probability of detecting real edge points should be
maximized while the probability of falsely detection non-edge points
should be minimized. This correspond to maximizing the signal to
noise ratio.

• Localization: the detected edges must be close as possible to the real
edges.

• Minimal Response: one real edge should not result in more than one
detected edge.

The algorithm is composed by 4 steps:

• Smoothing

• Finding Gradients

• Non-Maximum Suppression

• Double Thresholding

• Edge Tracking

The first step is called Image Smoothing where a Gaussian filter is applied
on the image to reject the inevitable noise that the image present. The
filter choosing is very important, because it has a strong influence on the
final result. A filter with small dimension produces less blur and allows to
recognize small details, whereas bigger filter produces high blur and allows
to detect larger area. As we can see in Fig. 3.7 a 3 × 3 the Gaussian filter
applied at the image doesn’t produces any visible changes.

In the second step algorithm calculates the Intensity Gradient G(x, y),
and angle α(x, y) of the gradient vector. Intensity gradient is calculated
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(a) (b)

Figure 3.7: Example of Gaussian smoothing filter. Original image on the Left
and smoothed image on the right

applying Sobel-Operator and gradient magnitudes (also known as the edge
strengths) can be determined as an Euclidean distance by applying the law
of Pythagoras as shown in equation 3.7

|G| =
√
G2

x +G2
y (3.7)

where Gx and Gy are the gradients in x and y respectively.

The angle direction of the edge is determinate as:

α(x, y) = arctan
(
Gy

Gx

)
(3.8)

obviously angle must be approximate at the possible pixel location (45o,90o...).
The third step consists in the Non-maximum Suppression. For an edge pixel,
the gradient value is bigger than the gradient values of its neighbours in the
same direction. So for each points is necessary to detect the direction of
the gradient and compare his module with the module of its neighbours. If
at least one of the two pixels in the neighbour has bigger module respect
the interest pixel, this pixel is rejected imposing his module to zero. In a
3-by-3 pixels region it is possible to define four directions for an edge pass-
ing troughs the central pixel (the horizontal,vertical and diagonal direction).
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So the direction of edge is obtained by the direction of the gradient vector,
which in turn, is obtained by angular value α(x, y).
In the fourth step, edge thresholding, the algorithm applies two thresholds

Figure 3.8: Illustration of non-maximum suppression. The edges strengths (mod-
ule) are indicated both as colours and numbers, while the gradient directions are
shown as arrows. The resulting edge pixels are marked with white borders.

(high TH and low TL) at the precedent image. Each pixel intensity gradient
is compared with TH and TL and if G(x, y) is:

• Less than TL the pixel is discard

• Greater than TH the pixel is part of edge

• Between TL and TH the pixel is accepted as part of edge only if it is
contiguous of another edge point.

The result of Canny edge detector is show in Fig. 3.9.
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Figure 3.9: Canny edge detector applying on 3D simulated environment

3.3 Morphological Operations
Morphological Operations are a set of mathematical operations in image pro-
cessing, that can help to extract or modify some components in the image.
There are two fundamentals morphological operations: Erosion and Dilata-
tion. The first can be used to remove or thin the objects on scenario, and
the second to increase or fill the objects. A binary image is considered as a
subset A of integer numbers. In this way objects into image are described by
pixels with value 1 and the background is characterized with pixels set to 0.
Objects are manipulated by a little set B called Structural element (SE)
with a point that characterized its origin. Usually SE is symmetrical with
the origin in the center. For not binary image, such as gray scale images, a
function f(x, y) as image and b(s, t) as SE are used. Either function given
an intensity value at every pair of internal coordinate (x,y). An example of
structural element is display in Fig. 3.10.
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Figure 3.10: Different type of Structural Elements

Figure 3.11: Example of Erosion operation with a 3× 3 symmetrical Structural
Element

3.3.1 Erosion
The Erosion operation of binary image A is defined by a translation of struc-
tural element B:

A⊖B = {z|(Bz) ⊆ A} (3.9)

in other words, A⊖B is the set of points z of image A such that B translated
in z is completely contained in A. With this operation we can reduce the
elements in the image. In this case Erosion operation is used on disparity map
to separate objects that can be wrongly attached due to a big SAD windows
size used. It is also possible to find contours with erosion operation, applying
this operation at the image and later subtracting the original image with the
image found. Naturally it is important to find an opportune SE. Generally
a 3 × 3 symmetric SE is used. For a grey-scale image the erosion operation
on f(x, y) is applied in all points (x, y), in order to find the minimum value
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Figure 3.12: Dilatation Operation

in the region coinciding with b(s, t) when the origin is set in (x, y).

[f ⊖ b](x, y) = min{f(x+ s, y + t)} with (s, t) ∈ b (3.10)

3.3.2 Dilatation
Dilatation of a binary image A with a structural element B is defined as:

A⊕B = {z|(B′)z ∩ A ̸= ∅} (3.11)

The structural element it’s reflected respect his origin and moved of z position
by a translation. Figure 3.12 shows an example of dilatation of set A with
a symmetrical SE (B′ = B). The result is the set of all points such that
B′ and A overlap in at least one point. In this case dilatation is used to
try to close boundaries in Canny edges detection and to remove holes in the
disparity map that represents noise resulting from equal textures. In all cases
a 3 symmetrical SE is used in order to expand the contours of object of one
pixel in all directions.
For a gray-scale image the Dilatation operation with a reflected SE respect
his origin (−s,−t) is given by:

[f ⊕ b](x, y) = max f(x− s, y − t) with (s, t) ∈ b (3.12)

so dilatation finds the maximum value of image in the region coinciding with
b(s, t) when the origin is set in (x, y).
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3.3.3 Complex Morphological Operation
The operation of dilatation and erosion for a same structural element allows
to define a complex operator. If dilatation operation follows an eroding op-
eration, with the same SE on the image A, the result operation is called
Opening.
With opening operator it is possible to preserve regions with a similar shape
of SE, makes more homogeneous objects contours and remove little interrup-
tions.

A ◦B = (A⊖B)⊕B (3.13)

On the other hand if erosion operator follows dilatation operator, with the
same SE on the same figure A, the Closing operator is obtained.

A •B = (A⊕B)⊖B (3.14)

This kind of operation makes section of contour more homogeneous filling
the empty areas. The Opening and Closing operator can be used as filters
to remove noise as shown in Fig 3.13.

Figure 3.13: Example of Opening operator as noise filter

3.4 Saliency Map
Saliency Map contain information about where the interesting information
can be found. These areas corresponds to features considered as rare or
informative, depending on the definition of salience used. As analyzed in [19]
there are many definitions of saliency that can be used, based on:
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• Key-points criteria

• Absolute value of the local wavelet decomposition of the image

• Salient features having a low probability of being mis-classified with
other features

• Select image fragments which maximize the natural information be-
tween the fragment and the object class.

High saliency regions correspond to objects or places that are most likely
to be found, while lower saliency is associated to the background. In this
way saliency can help to better define contours of objects to extract with
segmentation process as described in section 3.1.
In [20] Frintrop introduce the Visual Object detection with a CompUtational
attention System (VOCUS) that is a new fast methodology to find saliency
map.
VOCUS takes the original colour image and converts it in gray-scale image.
Then, a Gaussian image pyramid is created, applying a 3× 3 Gaussian Fil-
ter to the gray-scale image and scaling it down by a factor of two on each
axis. The filtering and scaling are repeated four times, yielding five images
i0, i1, i2, i3, and i4. Algorithm works now with only the information present
in the smallest scales images (i2, i3, i4). The system calculates now the ”on-
center” and ”off-center” differences in the three images. Center-surround
differences are used in order to calculate every features map. A pixel is can-
didate as center and two surround values, σ, are used. Therefore is obtained
12 intensity sub maps. The intensity value of center and surround is obtained
as:

center(x, y, s) = is(x, y) (3.15)

surround(x, y, s, σ) =

x′=σ∑
x′=−σ

y′=σ∑
y′=−σ

is(x+ x′, y + y′)− is(x, y)

(2σ + 1)2 − 1
(3.16)
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So every pixel of each intensity sub map is obtained as:

IntOns,σ(x, y) = max(center(x, y, s)− surround(x, y, s, σ), 0) (3.17)

IntOffs,σ(x, y) = max(surround(x, y, s, σ)− center(x, y, s, ), 0) (3.18)

where s ∈ {2, 3, 4} is the scale image considered and σ ∈ {3, 7}. After that,
on-center intensity map is calculated. This is possible scaling the six center
intensity sub maps into largest scale i2 and than summing pixel by pixel.
The same process is applied for off-center intensity map.
It is possible to modify the previous algorithm introducing the concept of
”Integral of image”, that is an algorithm for quickly and efficiently generating
the sum of values in a rectangular subset. So it is possible to replace equation
(3.16) with integral. At the end the two intensity maps are mixed to obtain
saliency map.

(a) (b)

Figure 3.14: Example of VOCUS algorithm applied on simulated scenario. (a)
original image, (b) saliency map



CHAPTER 4

SteViE and SteViS Algorithms

This chapter presents the new improved stereo vision systems, implemented
for object detection. After a brief description of a canonical stereo vision
system, will be presented the two new algorithms implemented:

• Ste.Vi.E (STEreo VIsion Edges) where stereo vision is merged with
edges extraction

• Ste.Vi.S (STEreo VIsion Saliency) where stereo vision is merged with
saliency map and blobs tracking.

4.1 Canonical Stereo Vision system
Canonical stereo vision system is based on the theory described in Chapter
2. The first step is calibration process, that can be made with Matlab or
C++ OpenCV library. In this work, calibration process is made with OpenCv
library that performs faster and better results. When stereo parameters (such
as intrinsic and extrinsic parameters) are known, the rectification process
forces the two images to stay on the same plane. After that, there is the stereo
matching step, with Block Matching technique and SAD cost aggregation, to
obtain a fast process. Setting a threshold on disparity map pixel intensity,
is possible to detect objects closer to the correspondent depth value. So

46
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Figure 4.1: Stereo Vision Algorithm

there isn’t a real objects detector. All the stereo vision process steps are
summarized in Fig. 4.1.

4.2 SteViE Algorithm
Stereo Vision Edges is an improvement of the simple stereo vision system.
This algorithm merges together stereo vision with edges extraction. The
edges extraction process is obtained applying Canny edges detector (ex-
plained in Sec. 3.2) at the left image. As shown in Fig. 4.2, a pair of
images are filtered with a Gaussian filter and the Canny edges extractor is
applied at left image. When the contours of the objects in the image are
defined, they will be filled and modified with morphological operators to
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separate each pixels blob. All pixels blobs1 correspond to an object that is
highlighted by a red square and associated with depth value estimated by
the disparity map.

4.3 SteViS Algorithm
Stereo Vision Saliency is an improvement of stereo vision system. This algo-
rithm merges the SteVIE algorithm with Saliency map described in section
3.4. Saliency map extracts the most informative features and build a gray-
scale image where the most informative features are brighter respect the
other. So saliency map is an high contrast map and it is simpler for segmen-
tation process to extract the different region. With saliency map is possible
to extract the most important feature that with high probability are the ob-
jects features. The following steps are the same of SteVIE algorithm. At the
end there is a the tracking blobs step, in which, each blob is tracked with a
Kalman filter to remove occlusion problems.
All the SteVIS steps are show in Fig. 4.3.

1For Blobs extraction was used CvBlobLibs library. For more information visit http:
//opencv.willowgarage.com/wiki/cvBlobsLib

http://opencv.willowgarage.com/wiki/cvBlobsLib
http://opencv.willowgarage.com/wiki/cvBlobsLib
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Figure 4.2: Stereo Vision Algorithm with edges extraction (STEVIE)
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Figure 4.3: Stereo Vision Algorithm with saliency map STEVIS
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4.4 Objects Tracking
Sometimes it is possible to lose the information about the objects found with
the objects detection algorithms described previously. In this case can be
useful to track or estimate the motion of the obstacles in case of partial or
total occlusion.
For this reason has been developed a Kalman filter, that can be helpful in this
case, with the Hungarian Algorithm that can be useful to recognize multiple
objects in the scene.

4.4.1 Kalman filter with occlusion
Kalman filter can be used to cope with problems of estimating the state in
linear and gaussian conditions.
Our process can be described with the following equations:{

sk = Ask−1 + wk−1

zk = Hsk + vk
(4.1)

where sk and zk represent the state and the measurements at time k, A is
the system evolution matrix and H is the measurements matrix.
The random variables wk and vk represent the process and measurements
noise that can be assumed with normal distributions:

E[w] ∼ N (0, Q) (4.2)

E[v] ∼ N (0, R) (4.3)

and independents:
E[wiv

⊤
k ] = 0 ∀k, i (4.4)

where Q is the process noise covariance matrix and R is the measurements
noise covariance matrix.

Kalman filter allows a posteriori states estimation with the information
about the state at previous step and the measures at actual step. The state
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update is given by:
ŝk = ŝ−k +Kk(zk −Hŝ−k ) (4.5)

where Kk is the kalman filter gain:

Kk = P−
k H⊤(HP−

k H⊤ +R)−1 (4.6)

P−
k = APk−1A

⊤ +Q (4.7)

Pk = P−
k −KkHP−

k (4.8)

The equations of Kalman filter fall into two groups: time update equations
and measurements update equations. The time update equations are respon-
sible for projecting forward the current state and the measurements update
equations are responsible for the feedback step. The time update equation
can also be thought as predictor equations, while the measurements update
equations can be thought as corrector equations.
For simplicity we assumed that the objects found have linear trajectory and
constant velocity, so the vector state will be:

sk = [xk, yk, Vxk
, Vyk ] (4.9)

where (xk, yk) is the object pixel blob coordinates, in the image plane and
(Vxk

, Vyk) represent the x and y blob velocity.
The evolution and measurements matrix will be:

A =


1 0 ∆T 0

0 1 0 ∆T

0 0 1 0

0 0 0 1

 (4.10)

H =

[
1 0 0 0

0 1 0 0

]
(4.11)

If we have a low noise system can be easy to estimate the objects position.
Given covariance matrix of process and measurements Kalman filter, can
normally tracks the objects. This can not be true in case of high noise
system and can be possible to consider an occlusion as an high noise in the
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measurements.
If an object is occluded, the result of detection will be disabled and the object
cannot be indicated in the correct way. By increasing the measurements
noise covariance matrix to infinite, diminishing the process noise covariance
matrix to zero, we can prevent the system from using wrong measurements
to update.

Q =

{
diag[10−2, 10−2, 10−2, 10−2] No Occlusion
diag[10−5, 10−5, 10−5, 10−5] Occlusion

(4.12)

R =



[
10−1 0

0 10−1

]
No Occlusion[

107 0

0 107

]
Occlusion

(4.13)

In occlusion case the system will be set in free prediction.

4.4.2 The Hungarian Algorithm for the assignment prob-
lem

In our scenario it is possible to find more than one objects or obstacles. For
this reason multiple objects tracking and multiple Kalman filter should be
implemented.
For each detected object in the image it is necessary to create a single Kalman
filter, so it is very important to recognize the same objects (blob of pixels)
in different frames.
Literature presents some algorithms that help to resolve this problem, for
example:

• Sift/Surf that seek for some informative and equal points (key-points)
in the two different images.

• Template Matching that tries to find a part of image in a bigger
image.
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• Cam-shift that creates a confidence map in the new image based on
the color histogram of the object in the previous image, and use mean
shift to find the peak of a confidence map near the object’s old position.

All this techniques can’t be applied in our case because the image returned
by the objects extraction process is a binary image (composed by blobs pix-
els) and is impossible find informative and different points (there are only
pixel with value 1 or 0).

In order to resolve this problem a dataset has been created; containing
some important informations about each blob, such as: center coordinates,
blob area, blob perimeter, blob first and second moment and so on. This
information will be used to applied some controls between blobs pixels in
different frames and to build a particular weight cost used in the Hungarian
algorithm process.

The Hungarian algorithm [21], is a combinatorial optimization algorithm
that solves the assignment problem in a polynomial time O(n3).
The assignment problem can be easily formulated in this way: ”if we have
n workers for n jobs and the cost wij to assign the ith worker at the jth

job, what is the best assignment that minimize the global cost?”. So given a
set of workers S, a set of jobs T and a cost function J : [S ∪ T ] → ℜ the
minimization problem can be formulate as:

minimize
xij

J =

Nwork∑
i=0

Njob∑
j=0

cijxij

subject to
Nwork∑
i=0

Njob∑
j=0

xij = min(Njob, Nwork)

Nwork∑
i=0

xij ≤ 1 ∀j

Njob∑
j=0

xij ≤ 1 ∀i

(4.14)



Objects Tracking 55

where cij is the cost aggregation of worker i at job j.

Equations 4.14 can be resolved a standard linear binary programming,
however, the Hungarian algorithm provides a simpler way to solve this opti-
mization problem.
This problem can be transformed in a matrix form, building a Qualification
matrix. Qualification matrix is composed by 0 and 1, in which horizontal
rows stand for workers and vertical columns for jobs; a qualified worker is
marked by a 1 and unqualified worker is marked with 0. The qualification
matrix indicates the optimal assignment and can be obtained as:

1. Find the cost weight for each job-worker assignment.

2. Put the cost obtained at the previous step in a matrix with the same
form of qualification matrix

3. Subtract the smallest entry in each row

4. Subtract the smallest entry in each column

5. Find the minimum number of rows and columns so that all the zero
entries of the cost matrix are covered

6. Test for Optimality: (i) If the minimum number of covering lines is n,
an optimal assignment of zeros is possible. (ii) If the minimum number
of covering lines is less than n, an optimal assignment of zeros is not
yet possible. In that case, proceed to Step 5.

7. Determine the smallest entry not covered by any line. Subtract this
entry from each uncovered row, and then add it to each covered column.
Return to Step 3.

In our case the workers will be the pixels blobs at previous frame and the
jobs will be the pixels blobs at actual frame. The cost function will be:

C(i, j) =
√
x2 + y2 (4.15)
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with

x(k) = xmeas(k)− xpred(k − 1)

y(k) = ymeas(k)− ypred(k − 1)

where xmeas and ymeas are the blob center coordinates measured and xpred

and ypred are the blob center coordinates predicted by Kalman filter.
Hungarian algorithm can confuse near objects in the image plane. For

this reason can be helpful to use the depth information that stereo vision
provides. Using the depth information the update step will be done only
if the depth value, from previous and actual frame, is included between a
setting threshold. For a robust matching, area and perimeter are compared
too. After the matching the new parameters founded are stored in the blobs
database, which also contain the Kalman filter information.



CHAPTER 5

Validation and Results

5.1 Simulated Environment
In order to test the algorithms described in Chapter 4, a virtual scenario
has been created. The environment describes a typical military airport, with
some obstacles that are represented by control tower, hangars and other air-
craft. With Presagis Vega Prime1 3D environments simulator it is possible
to create a stereo vision system. This simulator allows to control some stereo
vision parameters such as the baseline from the two cameras, field of view,
and relative handling between the two image planes. An example of the 3D
environment obtained with Presagis Vega Prime is shown in figure 5.1.
The simulator creates a video for each camera. In this case the calibration

process is not required, because some camera parameters are already known
and there isn’t any distortion effect introduced by camera lens; analyzed in
Sec. 2.3.
The simulator doesn’t allow to set or calculate the focal length of each cam-
era, which is a fundamental parameter to obtain the depth in the scene. An
empirical value of focal length has been calculated knowing the distance of
an element in the picture (control tower) from observation point. For this

1For other informations visit http://www.presagis.com/products_services/
products/modeling-simulation/visualization/vega_prime/
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http://www.presagis.com/products_services/products/modeling-simulation/visualization/vega_prime/
http://www.presagis.com/products_services/products/modeling-simulation/visualization/vega_prime/
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Figure 5.1: 3D virtual environment created with Presagis Vega Prime Simulator

reason the aim of these simulations will not be testing the stereo system, but
testing the objects extraction algorithms described in Chapter 4.
One of negatives aspects of this simulator is the impossibility to record a raw
video. This simulator allows to record only videos with MPEG compression
format. With this compression format, the video stream is sampled and re-
duced into segments that will be analysed to extract changing information
from two consecutive frames. For this reason the two cameras will be not
perfectly synchronized and this error produces a noisy disparity map.
In order to validate the algorithm that creates the disparity map, described
in Chapter 2, has been used an appropriate dataset2.
Figure 5.2 shows a comparison between the disparity map obtained in dataset
article [22] and the disparity map obtained in this work. The implemented
algorithm obtains a better result respect the disparity map obtained by the
author of dataset. The disparity map is created with the same parameters
used in the article (16 number of disparity).

2Tsukuba dataset http://cvlab-home.blogspot.it/2012/05/
h2fecha-2581457116665894170-displaynone.html

http://cvlab-home.blogspot.it/2012/05/h2fecha-2581457116665894170-displaynone.html
http://cvlab-home.blogspot.it/2012/05/h2fecha-2581457116665894170-displaynone.html
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(a) (b)

Figure 5.2: Comparison between disparity map obtained in [22] and the disparity
map obtained in this work 5.2(b)

5.2 SteViE algorithms on simulated environ-
ment

As described in section 4.2, this algorithm merges stereo vision with objects
extraction thanks to Canny edges detector (Sec.3.2). The two videos created
with Presagis Vega Prime simulator are decomposed in a set of frames. This
is possible because the recording frame rate is known.
The acquired images are converted in gray scale and filtered with Gaussian
filter 3 × 3. After that block matching algorithm creates the disparity map
and Canny edges extractor finds the edges of the image. This edges are filled
and modified with morphological filter as shown by figure 5.3.

The information from Canny step and disparity map are merged to create
the final image, where the objects are highlighted with a red rectangle and
distance value.
Figure 5.8 shows a frames sequence extracted from the final result. As we can
see from the frames sequence, the algorithm finds an high number of obstacles
into the scene. The best results are obtained when the objects presents high
contrasts. Unfortunately when the objects are so closer between them, or
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(a) (b)

Figure 5.3: Canny edges detection applied at simulated environment without
morphological operations (a) and with morphological operations (b)

(a) Frame 0 (b) Frame 50 (c) Frame 100 (d) Frame 150

(e) Frame 200 (f) Frame 250 (g) Frame 300 (h) Frame 350

(i) Frame 400 (j) Frame 450 (k) Frame 500 (l) Frame 550

Figure 5.4: Frames sequence of SteViE algorithm applied on simulated scenario
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closer to the observer, the performance of this algorithm get worse. As we
can see in the frame 5.4(k) and in the frame 5.4(l) there are some false
objects detected. This false detections are due to the hills color variation on
the background.
Sometimes different edges are recognized as only single edge and for this
reason two different obstacles are merged into a single bigger obstacle as
figures 5.4(e), 5.4(f) and 5.4(g) show. In order to remove this effect is possible
to use morphological operator (sec. 3.3), but this operator can compromise
the correct detection of little obstacles far from the observer.
This algorithm presents low computational time, more or less 200ms of which
100 used for block matching step. For this reason SteViE algorithm can be
used when fast processing time is the main constraint. Analysing each frame,
we can see that in mean 60% of obstacles are correctly recognized.
In figure 5.5 are shows some disparity map frames of simulated scenario. As

(a) Frame 180 (b) Frame 320 (c) Frame 360 (d) Frame 560

Figure 5.5: Disparity map frames of simulated scenario

previously described, disparity map, is not correctly generated due to the
compression format that the simulator uses. Despite this fact, we can see
that the control tower and the other aircraft in the scene are clearly detect.
The error that stereo system presents in the depth estimation is so high due
to the noising disparity map generated.
At the first frame the error in the depth estimation from observer and control
tower is about 50 meters. Table 5.1 shows the performance parameters of
this algorithm:
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SetViE Algorithm Parameters
Computational time 200 ms

Correct obstacles recognised 60% [20%-100%]
Depth error about 50 m (with high variation)

Table 5.1: Performance parameters SteVieE algorithm

5.2.1 SteViS algorithm on simulated environment
SteViS algorithm is applied at the same scenario in order to find the differ-
ences from the two algorithms.
SteViS adds saliency map at the previous algorithm. The simulated images
are converted in gray-scale and used to create the disparity map. The same
images are used to create the saliency map where the most important fea-
tures are brighter respect the others. In this way it is possible to segment
the saliency map and extract the most saliency parts of an image, that with
high probability will be the obstacles in the scene.
An example of disparity map is shown by figure 5.6.
As we can see the saliency map highlights the most important parts of the

Figure 5.6: Saliency Map of simulated environment
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image, making darker the uninformative pixels and brighter the other pixels.
So it is possible to apply a segmentation process to extract the only white
pixels as shown in figure 5.7. Figure 5.8 shows a set of frames extract from

Figure 5.7: Color segmentation applied at saliency map

the final result. As we can see from simulation frames this algorithm presents
a better result respect SteViE algorithm, finding more objects.
With the segmentation of saliency map the fusion objects problem, that the
previous algorithm shows, is now removed and clear results are obtained.
The objects are recognized and tracked in all frames as we can see in frames
5.8(e), 5.8(f) and 5.8(g), where the control tower and the other buildings
are clearly detect. The other aircraft are recognized too, both in complex
background (Fig. 5.8(j)) and in monochromatic background (on the sky Fig.
5.8(k) and 5.8(l)).
With SteViS is possible to obtain a better result respect SteViE algorithm
(see Fig. 5.4(k) and 5.4(l)).
The performance parameters are resumed in table 5.2

One of the most negative aspects of this algorithm is the possible false
objects detection. This problem occurs when there are high intensity color
variations, as we can see in Fig. 5.8(c) where the white stripes on the runway
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(a) Frame 0 (b) Frame 50 (c) Frame 100 (d) Frame 150

(e) Frame 200 (f) Frame 250 (g) Frame 300 (h) Frame 350

(i) Frame 400 (j) Frame 450 (k) Frame 500 (l) Frame 550

Figure 5.8: Frame from SteViE algorithm applied on simulated scenario
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SetViS Algorithm Parameters
Computational time 600 ms

Correct obstacles recognised 80% [50%-100%]
Depth error about 50 m (with high variation)

Table 5.2: Performance parameters SteVieS algorithm

(a) SteViE Fr.0 (b) SteViE Fr.100 (c) SteViE Fr.200 (d) SteViE Fr.500

(e) SteViS Fr.0 (f) SteViS Fr.100 (g) SteVis Fr.200 (h) SteViS Fr.500

Figure 5.9: Helicopter tracking

are confused with possible objects. This effect is not presented in SteViE al-
gorithm due to the Gaussian filter utilized.
Another important negative aspect is the high computational time that Ste-
ViS required. For each frame this algorithm requires 600ms that is no good
results for real time constraint because there are loss of informations. When,
for example, we have fast moving scenario, the salient features are not clear
and some of this features are merged. To analyse this effect an helicopter
tracking has been simulated. As shown in figure 5.9 SteViS algorithm finds
the helicopter when it is so small to see at a glance (Fig. 5.9(e) and 5.9(h))
but it finds some false objects too, as we can see in 5.9(f).
SteViE algorithm doesn’t have this problem but it doesn’t find the helicopter
when it is so small (5.9(a) and 5.9(d)).
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(a) frame 100 (b) Frame 150 (c) Frame 200 (d) Frame 250

Figure 5.10: Tracking with Kalman filter

To remove the problem of occlusion or temporary loss of detected objects,
a Kalman filter has been implemented as described in section 4.4.1.
Figures 5.10 show the differences between the tracking with Kalman filter
and without Kalman filter.

5.2.2 Comparison from SteViE and SteViS on simu-
lated scenario

As described in the previous sections the two algorithms present good results,
but to maximize each performance can be useful to know some information
about the environment where we want to work.
In this way the control parameters of these algorithms can be tuning in the
correct way. For a static scene, high attitude surveillance or high attitude
aircraft detection, SteViS obtains better result, but SteViE can be useful in
take-off or landing operations when fast environment information must be
extract.

5.3 Real Scenario
In order to test SteViE and SteViS algorithms a real stereo system has been
created.
The system is composed by two cameras mounted on a sliding bar. In this
way it can be possible to change the baseline from 50 mm to 700 mm and
consequently the maximum depth achievable.
In our test two different IDS cameras have been used, with different charac-
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teristics as indicated in Appendix A.
In order to obtain the best results, in a stereo vision system the two cameras
should be as similar as possible. For this reason it has been necessary to
build a dedicated C++ code that manages the two cameras and that forced
the captured areas and the frame rate to be the same as possible. The frame
rates are set at 15 fps but the algorithm acquires the images at each iteration
and this time changes with the utilized algorithm.

The color camera has a resolution of 3840 × 2748 pixels and the gray
camera of 1280 × 1024 pixels. To obtain the same acquired image has been
selected a specific region of interest (ROI) centred in the same point with the
same resolution of the gray image. After that, another ROI of 640×480 pixel
has been selected to have smaller image that help to reduce computational
time and lens distortions.
As described in Chapter 2.4 before starting acquisition it is necessary to cal-
ibrate the stereo system. This step has been implemented taking 20 pairs of
specific pattern in different positions and orientations. The pattern is com-
posed by a rectangular chessboard (in order to determinate the orientation)
with 7× 9 squares of 28 mm. For a good calibration the chessboard should
cover over the 40% of the entire image.
The algorithm (implemented in C++ with the OpenCv library [4]) starts
searching the corner points in a known chessboard using a sub-pixel cor-
ners detection. After that, the calibration parameters and the informative
matrix have been found and the image points are remapping to obtain the
two new rectified images.

The matching process has been realized with Block Matching technique
with sum of absolute differences cost aggregation that respects the real-time
constraints.
The software created allows to tune all the block matching parameters to
achievable the best results in all conditions. The tuning parameters are:

• SAD windows size: that controls the size of the windows using for
block matching step.
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• Texture threshold: that helps to remove similar and poor parts of
image in order to calculate the disparity only of most variant image
parts.

• Uniqueness ratio: that is the switch to enable the uniqueness check

• Pre-filter Size: that is the size of the filter applied before block match-
ing

• Number of disparity: the disparity search range. For each pixel al-
gorithm will find the best disparity from 0 (default minimum disparity)
to ndisparities. The search range can then be shifted by changing
the minimum disparity.

• Spackle range: that defines the disparity difference that is considered
as speckle

The script implemented allows to tune the Canny and segmentation param-
eters too.

The obtained disparity values are normalized from 0 to 255 to realize
a gray-scale image where the pixel intensity is directly proportional at the
disparity value.

The first stereo system implemented has a baseline of 250 mm in order
to capture near objects and to obtain a dense disparity map.
The calibration process return the following results:

M1 =


3182, 15 0 309, 13

0 3182, 15 228, 83

0 0 1

 M2 =


3182, 15 0 311, 36

0 3182, 15 223, 08

0 0 1



D1 =
[
−3, 79 139, 44 −0, 018 0, 081 1792, 81

]
D2 =

[
−3, 23 239, 01 −0, 026 −0, 066 −1092, 49

]
T =

[
−24, 77 −21, 49 7, 20

]
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F =


−9, 23 · 10−8 −1, 80 · 10−5 −2, 49 · 10−3

1, 83 · 10−5 −6, 51 · 10−8 9, 59 · 10−2

−2, 83 · 10−3 −9, 64 · 10−2 −9, 99 · 10−1



E =


−0, 036 −7, 201 −0, 209

7, 29 −0, 025 12, 732

0, 152 −12, 779 0, 008

 R =


0, 99 0, 004 −0, 007

0, 005 0, 99 −0, 006

0, 007 0, 007 0, 99


With Matlab calibration toolbox is possible to see the distortion effects
introduced by the camera lens:

Figure 5.11: Radial distortion of the left camera

The implemented algorithms for real scenario are the same of simulated
scenario as described in the previous paragraph. As figures 5.15 shows, the
calibration and rectification processes have been made properly because we
obtained a dense disparity map.

The two benches are at 14 and 20 meters respectively and the depth esti-
mated by the implemented algorithm is about 13.8 meters for the first bench
and 19.4 for the second. The uncertainty introduced by pixel quantization is
about 2 cm in the first case and 6 cm in the second case. So for closer objects
quantization error can be neglected. In this case the error is introduced by
the rectification process.
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Figure 5.12: Tangential distortion of the left camera

Figure 5.13: Radial distortion of the right camera
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Figure 5.14: Tangential distortion of right camera

(a) (b)

Figure 5.15: Rectified left image and corresponding disparity map
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Figure 5.16: Depth estimation trend with a baseline of 250 mm

With this configuration the maximum depth achievable is about 1490
meters, but this required only one pixel disparity. The noise in the image
and the quantization error introduce high uncertainty as described in figures
5.16 and 5.17. For this reason low disparity values are not considered and
disparity values under 5 pixels are neglected.
As we can see from figure 5.17 the uncertainty trend is not linear and became

very high at maximum depth achievable. For example at the maximum depth
uncertainty is about 290 meters. For this reason disparity values under 5
pixels are neglected.

Figures 5.19 and 5.20 show the system applied on a static scene that
describes a little harbour with some ships.
As figure 5.18 shows, the disparity has a dense distribution but presents
some variations due to the movement of the sea that disturbs the matching
process. Furthermore the disparity map presents a black hole formed by
the dark pixels of one ships. The intensity of these pixels doesn’t have an
high variation and the block match can not matching it properly. This effect
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Figure 5.17: Trend of depth estimation uncertainty with a baseline of 250 mm

causes a non defined disparity values that is also presented in the sea at
far distance. Setting a low SAD size of 15 pixels and using 32 numbers of
disparity it is also possible to find the little windsurf in the background. As
we can see from disparity map it is so difficult to discriminate the ships from
the sea due to the resolution of the system that is lower respect the distance
between ships and sea.

Comparing the frames obtained from SteViE and SteViS algorithms, we
can see that SteViS algorithm has a better definition respect SteViE that
sometimes recognized only some parts of the ships and presents very high
variation due to the movement of the sea. SteViS reduces these bad effects
because the core of this algorithm is the intensity of the entire objects and
not only of the edges as shows by Fig. 5.21.
As we can see from frame 5.20(h) SteViS algorithm recognizes a little wind-
surf in the background that SteViE algorithm doesn’t recognise. The other
windsurfs are not recognized because they are closer to the skyline and con-
fused with it.
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Figure 5.18: Disparity of harbour with some ships

The SteViS algorithm presents better results that allow to recognize more
ships and have a better stability in the image.

The same system is applied at a different scenario that contains moving
objects (aircraft) and low complexity background. In this case the goal of
the system is to recognize only the landing aircraft.

Figures 5.22 and 5.23 show the aircraft recognition. As we can see SteViE
5.22 presents more false recognition respect SteViS, but both algorithms rec-
ognized the landing aircraft. In fact either the two algorithms find the aircraft
when it is impossible to see at glance.

Since our goal is to find the aircraft in the scene, the objects with a length
over the 80% of image size are neglected. As we can see from figures 5.22 and
5.23 the skyline, with the house and trees, is not recognized as an object. In
pictures 5.22(c) and 5.23(c) the two algorithms detect a flock of birds.

In this case the obtained disparity map doesn’t allow to estimate the
distance from the aircraft because the baseline is too short. For this reason
the baseline has been increased at 700 mm (the maximum length achievable
by this system). Obviously a new calibration has required. From the new
calibration process the following results are obtained:
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(a) Frame 0 (b) Frame 50 (c) Frame 100 (d) Frame 150

(e) Frame 200 (f) Frame 250 (g) Frame 300 (h) Frame 350

Figure 5.19: SteViE algorithm applied in real scenario

(a) Frame 0 (b) Frame 50 (c) Frame 100 (d) Frame 150

(e) Frame 200 (f) Frame 250 (g) Frame 300 (h) Frame 350

Figure 5.20: SteViS algorithm applied in real scenario
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Figure 5.21: Saliency of harbour scenario

(a) Frame 0 (b) Frame 50 (c) Frame 100 (d) Frame 150

(e) Frame 200 (f) Frame 250 (g) Frame 300 (h) Frame 350

(i) Frame 400 (j) Frame 450 (k) Frame 500 (l) Frame 550

Figure 5.22: Frames sequence of SteViE algorithm applied on aircraft landing
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(a) Frame 0 (b) Frame 50 (c) Frame 100 (d) Frame 150

(e) Frame 200 (f) Frame 250 (g) Frame 300 (h) Frame 350

(i) Frame 400 (j) Frame 450 (k) Frame 500 (l) Frame 550

Figure 5.23: Frames sequence of SteViS algorithm applied on aircraft landing
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M1 =


6, 02 · 103 0 2, 07 · 102

0 6, 02 · 103 1, 41 · 102

0 0 1



M2 =


6, 07 · 103 0 1, 17 · 102

0 6, 07 · 103 3, 44 · 102

0 0 1



D1 =
[
7, 42 −2, 56 · 102 0 0 3, 55 · 103

]
D2 =

[
0, 39 5, 61 · 10−1 0 0 −1, 22 · 103

]
T =

[
−6, 95 · 101 3, 63 −3, 83 · 101

]

F =


1, 97 · 10−7 −6, 22 · 10−6 −1, 48 · 10−3

3, 21 · 10−6 −1, 35 · 10−7 −7, 16 · 10−2

−1, 60 · 10−3 7, 38 · 10−2 −9, 99 · 10−1



E =


−1, 22 3, 84 · 101 2, 52

−1, 98 · 101 8, 33 · 10−1 7, 50 · 101

2, 69 · 10−1 6, 75 · 101 2, 68



R =


9, 65 · 103 4, 75 · 10−2 −2, 56 · 10−1

−5, 60 · 10−2 9, 98 · 10−1 −2, 58 · 10−2

2, 54 · 10−1 3, 93 · 10−2 9, 66 · 10−1


In this configuration the maximum depth achievable is about 4173 meters,
but we consider disparity over 3 pixels and under 1000 meters.

Figures 5.27 shows a landing aircraft at Pisa airport. As we can see in
the first frame the system fails in the depth estimation because the aircraft
is farther respect the maximum depth achievable. The system starts to esti-
mate the aircraft depth from about 800 m.
Testing the system we obtain an error over 20 meters on an estimate distance
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Figure 5.24: Depth estimation trend with a baseline of 700 mm

Figure 5.25: Depth uncertainty estimation trend with a baseline of 700 mm
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Figure 5.26: Pair of rectified images

of 300 meters.
In order to remove outliers and have a smoothing depth variation has been
introduced a first order fading filter. The filter estimate is a linear combina-
tion of the old estimate and a gain that multiplies the residual. Difference
among filter is the order of the dynamics that generates the new estimate
assuming a polynomial model of the process.{

x̂n = x̂n−1 + α[x̃n − x̂n−1]

α = 1− β
(5.1)

where x̂n is the estimated depth value at step n, x̂n−1 is the depth estimation
value at previous step and x̃n is the measured depth value at actual step.
Changing β ∈ [0, 1] is possible to change the memory of the filter.

Due to the low complexity of the scene there aren’t any differences form
the two algorithms. The different between SteViE and SteViS is only the
computational time that is about 100 ms for SteViE and 600 ms for SteViS.
So in this case is preferable to use SteViE algorithm.

After that, the image coordinates of the landing aircraft are re-projected
from 2D image plane to 3D camera space using the relation described in Sec.
2.3. From the knowledge of the pose of the the stereo rig, from consecutive
frames respect the real world coordinates system, it is possible to georefer-
ence the aircraft in the world.
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(a) Frame 0 (b) Frame 50 (c) Frame 100 (d) Frame 150

(e) Frame 200 (f) Frame 250 (g) Frame 300 (h) Frame 350

(i) Frame 400 (j) Frame 450 (k) Frame 500 (l) Frame 550

Figure 5.27: Frames sequence of SteViS algorithm applied on aircraft landing
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Figure 5.28: Trajectory of landing aircraft on Google Earth

The aircraft coordinates are transformed into latitude, longitude and altitude
values in order to track the trajectory in the real world as figure 5.28 shows.

All the tests described, both in simulated and real environment, are ex-
ecuted on 64-bit Intel Core Duo CPU T6570 at 2.10 GHz with 4 Gb RAM
system.



CHAPTER 6

Conclusions and future works

This work described two different algorithms for obstacle detection and range
estimation that can be applied for unmanned aircraft vehicles. To tackle this,
stereo vision and image processing theories have been studied. These two
different concepts have combined to realize two algorithms, called SteViE
(STEreo VIsion Edges) and SteViS (STEreo VIsion Saliency) respectively,
that try to recognize objects in the environment and to estimate the distance
between the observer and the obstacles.

At the beginning, stereo vision theory was presented to describe the fun-
damental steps that help to modify the images acquired and extrapolate the
required information. In order to respect the real time constraint, the cal-
ibration process and both the two algorithms are implemented in C++ code
with some dedicated libraries.

The two algorithms were applied in simulated and real scenarios. As
explained in Chapter 5 both the two algorithms presented good results. If
we have some information about the environment where we are working, is
possible to choose which algorithm is better to use in order to obtain the
best results.

The core of the first algorithm is the Canny edges detector, used to find
the edges of the obstacles in the scene.
As explained, SteViE algorithm is faster with respect to SteViS and should
be used when we have a fast-varying scenario in order to capture as much
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information as possible. The weakness of the system is the error objects
recognition in case of low-intensity variation or in presence of objects close
to each other that are recognized as a single bigger object.

SteViS algorithm circumvents all the problems of SteViE algorithm but
its computational time is bigger with respect to the other algorithm.
The core of SteViS algorithm is the computation of the saliency map, that
highlights the most important parts of the image, in agreement with a par-
ticular definition of saliency. This process presents a high computational
burden, but provides better results. In fact, with a segmentation of saliency
map we can isolate the most salient parts of the image, that with high proba-
bility correspond to the objects we want to detect in the captured figure. The
SteViS algorithm is a clear improvement of other existed algorithms because
it does not use color segmentation on the raw captured image and thus can
be applied to detect a number of different objects whose color is not known
a priori. For this reason it can be applied in a real scenario.

Canny edges detector finds the intensity variation only of the obstacle’s
corner pixels whereas saliency studies the intensity of all detected obstacles
pixels.

In order to have the fastest possible system, the graph based image seg-
mentation was utilized on saliency map. Segmentation can be applied at this
stage because the saliency map produces a gray-level image where darker pix-
els correspond to uninformative elements and brighter pixels correspond to
saliency elements.

For this reason SteViS algorithm should be used in more complex scenar-
ios where only slow variations occur, in order to lose as less information as
possible.

The range estimation step is the same for both the two algorithms. The
obtained results are so sensitive to the calibration and rectification processes,
that is important to make them in a careful way to obtain accurate range
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estimates. As previous mentioned, the error in the range estimation can be
quite high because there are uncertainties introduced by pixels quantization,
matching and rectification processes. In our case, more error is also given by
the differences of the utilized cameras. In fact the two cameras should be as
similar as possible to have the best results. For all the previous reasons the
range estimate error became very high in the case of far objects.

During this work we have identified some critical elements in the range
estimation problem, that are list below:

• Camera Problems: In this work two different cameras have been
used and dedicated manage software was used to obtain two identical
pictures. This was done using the cameras own drivers.

• Loss of detected objects: To remove the possibility of losing the
detected objects in the picture, when an occlusion occurs, a Kalman
filter has been implemented to estimate the position of the objects in
image coordinates.

• Improve calibration results: In order to obtain a better calibration
result, in the edges extraction process from chessboard pattern, a sub-
pixel edges extraction has been done. In this way the positions of the
squares corners were captured in a much more accurate way.

• Noise in binary image: To remove the noise in the disparity map
and in the binary images, obtained by canny detection and saliency
map, complex morphological operators were implemented.

• Error matching in Hungarian algorithm: If two objects are close
to each other, their cost function can be similar and it is possible that
the algorithm does not match the objects in the correct way. To help the
algorithm to remove this problem, the range value was introduced and
a matching was done only if its range variation, between consecutive
frames, was below a given threshold.
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In order to remove the weak points of the implemented system, we have
identified some future works of interest. One future step is to use two identi-
cal cameras. In this way, a better and more accurate result will be obtained,
with less distortions in the rectified images.
In order to have a faster system, it can be useful to use a dedicated hardware
architecture, that can help to remove loss of information. In this way Semi
Global Block matching and graph based image segmentation can be used
respecting real time constraint, obtaining a better result in the same time of
the system implemented here.
To mitigate the error in range estimation it can be possible to implement a
varying baseline system using, for example, more than two cameras. In this
way we can use the farthest cameras to estimate the range of far objects and
the closest cameras to estimate the position of near objects. In this way we
can select the appropriate cameras according to the task that UAVs should
perform.
Another important future work will be to combined the stereo vision informa-
tion with the IMU (Inertial Measurements Unit) and GPS (Global position
System) information, installed in the UAV. In this way it is possible to know
the position and the attitude of the UAV with high precision and detect the
obstacles in a real geographic system coordinates. In this way it is also pos-
sible to support the GPS signal, with the information produced by the stereo
vision system, thus mitigating problems arising from losing GPS signal. This
navigation technique is also known as Visual Odometry, i.e. the process of
determining the position and attitude of an unmanned system by analysing
the corresponding camera images. Such a merging problem between IMU
and visual information, has already been preliminary studied in [23].



APPENDIX A

Camera Datasheet

Parameters IDS UI-1490SE-C-HQ EO-1312M
Sensor Technology CMOS CMOS

Manufacture Aptina Aptina
Resolution (h× v) 3840× 2748 1280× 1024

Color Depth (sensor) 12 bit (color) 8 bit (monochrome)
Pixel Class 10MP 1.3MP

Shutter Rolling Shutter Rolling Shutter
fps in FreeRun Mode 3.2 25

Binning Modes Color Monochrome
Subsampling Modes Color Monochrome

Sensor Model MT9J003STC MT9M001
Pixel Size 1.67 ηm 5.2 ηm

Optical Size 4.589 mm × 6.413 mm 6.6 mm × 5.3 mm
Focal Length 8 mm 25 mm

Table A.1: Principal parameters of camera used. For more information http:
//en.ids-imaging.com
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(a) (b)

(c) (d)

(e) (f)

Figure A.1: Mechanical specifications of used cameras. [a-b] 3D view, [c] rear
view, [d] top view, [e] bottom view
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