
UNIVERSITÀ DI PISA
Facoltà di Ingegneria

Corso di Laurea Magistrale in Ingegneria Informatica

Estimating the Capacity of the
Links along an Internet Path
via an Android Smartphone

Relatori:
Prof. Luciano Lenzini
Ing. Alessio Vecchio
Prof. Enrico Gregori

Candidato:
Angelo Favale

Anno accademico 2013-2014

2

3

“While knowledge can create problems,

it is not through ignorance that we can solve them.”

Isaac Asimov

4

Abstract

A lot of capacity estimation tools have been designed and developed during the
last years. This measurement is important in many Internet applications and pro-
tocols. In particular, it is an appealing information for end system multicast and
overlay network configuration protocols ([12, 13, 14]), content location and de-
livery in peer-to-peer (P2P) networks ([15, 16]), network aware cache and replica
placement policies ([17, 18]). Eventually, the estimation of this parameter can
also be useful for network operators. There are a lot of tools that estimate the
capacity of the bottleneck, but there are few tools that estimate the capacity of
each link along a path. Furthermore, most of them are designed to work in a
wired network. In this thesis we focus on the development of a tool able to dis-
cover the capacity of each link in an Internet path via an Android smartphone. In
particular, we use an approach similar to that described in [1], indeed we use an
active technique based on an end-to-end measurement. The difference is that our
tool is an application context-aware, because it takes into account the connection
to Internet of the smartphone. The Android smartphone can connect to the In-
ternet through different network technologies (i.e. Wifi, GSM, UMTS, LTE, ...).
This network technologies affect the parameters of estimation of our tool. The
use of smartphones to take measurement of the network is an approach also used
by PORTOLAN. The PORTOLAN PROJECT ([10, 11]) is an Internet measure-
ment system that aims at both discovering the Internet graph, using traceroute,
and building maps of signal coverage through smartphone-based crowdsourcing.
Portolan is developed by the department of Computer Engineering of the Univer-
sity of Pisa and the Institute of Information of Technology of the Italian National
Research Council (IIT/CNR).

5

6

Contents

Contents 7

List of Figures 11

1 Introduction 15
1.1 A brief history of Internet . 15
1.2 The current Internet . 17
1.3 Portolan Internet Topology Measurement System 18
1.4 Objective of this thesis . 19
1.5 State of the art . 20

1.5.1 Nettimer . 21
1.5.2 Pathchar . 21

2 Algorithm 23
2.1 Basic Definitions . 23
2.2 Assumptions . 25
2.3 Lemmas and Corollaries . 25
2.4 Prefix Path Estimation VS Target Subpath Estimation 30
2.5 Choice of train size . 37
2.6 Improved algorithm . 39

3 Implementation 41
3.1 System components overview 42
3.2 Server side . 45

3.2.1 CapacityServer . 45

7

8 CONTENTS

3.2.2 ServerTask . 45
3.2.3 Scheduler . 47

3.3 Client side . 49
3.3.1 MainActivity . 49
3.3.2 MyCoordinator . 51
3.3.3 PathEstimator . 51
3.3.4 CapacityEstimation . 51

3.4 Common components . 52
3.4.1 CapacityReceiver . 53
3.4.2 CapacitySender . 54
3.4.3 TrainBuilder . 54

3.5 Examples of execution . 55

4 Simulator NS-3 69
4.1 Simulation models . 70
4.2 Key technologies . 70
4.3 High level design . 71
4.4 NS-3’s interaction with the real world 73

4.4.1 Real nodes and real networks 73
4.4.2 Simulated nodes and simulated networks 74
4.4.3 Simulated nodes and real networks 74
4.4.4 Real nodes and simulated networks 74

4.4.4.1 Full virtualization 75
4.4.4.2 Paravirtualization 75
4.4.4.3 NS-3 TapBridge 76

4.5 Using real applications in NS-3 76

5 Experiments 81
5.1 Limits NS-3 . 81
5.2 NS-3 on Linux host . 86

5.2.1 Increasing values . 86
5.2.2 Decreasing values . 87
5.2.3 ’V’ configuration . 88

CONTENTS 9

5.2.4 Reversed ’V’ configuration 90
5.2.5 Train size test . 91

5.3 Internet measurement experiments 92
5.4 Conclusions . 95
5.5 Future researches . 95

Bibliography 101

10 CONTENTS

List of Figures

1.1 4-node ARPANET diagram 16
1.2 The current Internet core structure 17
1.3 Pathchar example . 22

2.1 Bottleneck . 30
2.2 Simple probe for b1,3 estimation 31
2.3 Interrupt Coalescence . 32
2.4 Complex probe for b1,3 estimation 32
2.5 Behaviour of the target subpath Probe 34
2.6 Cross traffic . 35
2.7 (a) Expansion of the interval time between the probing packets

(b) Compression of the interval time between the probing packets 35
2.8 Minimum Sum Delay and ∆ j 36

3.1 System’s architecture . 44
3.2 Server’s architecture . 45
3.3 (a) Scheduler’s queue empty (b) Add request to the Scheduler’s

queue (c) remove request from the Scheduler’s queue (d) Sched-
uler’s queue full therefore the request is rejected 48

3.4 Client’s architecture . 49
3.5 MainActivity . 50
3.6 Starts of a campaign of estimations 65
3.7 Estimation in download of b1 66
3.8 Estimation in upload of b1 . 67

4.1 NS-3’s architecture . 71

11

12 LIST OF FIGURES

4.2 Container’s connection with the Host OS 78
4.3 System’s configuration . 80

5.1 Network scenario with virtual machine 82
5.2 Network scenario with a computer running Linux 82
5.3 Estimations performed using a virtual machine. a) download b)

upload . 83
5.4 Estimations performed without using a virtual machine. a) down-

load b) upload . 85
5.5 a) estimation in download b) estimation in upload 87
5.6 a) estimations in download b) estimations in upload 88
5.7 a) estimations in download b) estimations in upload 89
5.8 a) estimations in download b) estimations in upload 90
5.9 a) estimations with r = 1 b) estimations with r = 2 91
5.10 The Internet path used in these experiments 92
5.11 Estimations in download of the Internet path 93
5.12 Estimations in upload of the Internet path 94
5.13 Estimations in upload zoomed 94

LIST OF FIGURES 13

14 LIST OF FIGURES

Chapter 1

Introduction

In this introduction chapter we give a description of the objective of this thesis
showing the environment where it works and the state of the art.
The chapter is structured in three parts. Firstly, we present a brief description
of Internet, its history and topology. Secondly, we describe the objective of this
thesis. Finally, we show the state of the art of the capacity estimation tools.

1.1 A brief history of Internet

The nowadays Internet took a lot of time to born. It all started with some re-
searches of the 1960s at DARPA (Defense Advanced Research Projects Agency),
firstly known simply as ARPA [8]. The U.S. government in collaboration with
private commercial interests commissioned these researches in order to build ro-
bust, fault-tolerant and distributed networks between computers.
In 1965 the TX-2 computer in Massachusetts was connected to the Q32 in Cali-
fornia with a low speed dial-up telephone line creating the first (however small)
wide-area computer network ever build. This experiment showed the feasibility
of the time-shared computers to work together, and that was necessary a packet
switched network rather than the circuit switched telephone system.
The first packet switched network was developed in 1969, it was called ARPANET
(Advanced Research Projects Agency NETwork). This network connected four
major computers at UCLA (University of California, Los Angeles), Standford
Research Institute, UCSB (University of California, Santa Barbara) and the Uni-
versity of Utah. Figure 1.1 shows a 4-node ARPANET diagram.

15

16 CHAPTER 1. INTRODUCTION

Figure 1.1: 4-node ARPANET diagram

ARPANET was funded by the U.S. Department of Defense and universities. It
was designed to provide a communications network that would work even if some
of the major sites were down. If the most direct route was not available, routers
would direct traffic around the network via alternate routes.
The early Internet was used by computer experts, engineers, scientists, and librar-
ians. There was nothing friendly about it. There were no home or office personal
computers in those days, and anyone who used it, whether a computer profes-
sional or an engineer or scientist or librarian, had to learn to use a very complex
system.
The funding of a new U.S. backbone by the National Science Foundation in the
1980s, as well as private funding for other commercial backbones, led to world-
wide participation in the development of new networking technologies, and the
merger of many networks. Commercial Internet Service Providers (ISPs) began
to emerge in the late 1980s and early 1990s, and in 1995 the removing of the last
restrictions to carry commercial traffic led to the Internet commercialization.
The availability of pervasive networking (i.e., the Internet) along with powerful
affordable computing and communications in portable form (i.e., laptop comput-
ers, PDAs, cellular phones), is the cause of the impressive exponential growth of
both the links added everyday and the number of users in the world.

1.2. THE CURRENT INTERNET 17

1.2 The current Internet

The current Internet is a network of networks that consists of millions of private,
public, academic, business, and government networks, of local to global scope,
that are linked by a broad array of electronic, wireless and optical networking
technologies.
In particular it is a global system of interconnected computer networks based
on the TCP/IP (Transport Control Protocol/Internet Protocol) standard Internet
protocol suite. It serves several billion users worldwide. More than 100 countries
are linked into exchanges of data, news and opinions. According to Internet
World Stats, as of June 30, 2012 there was an estimated 2,405,518,376 Internet
users worldwide. This represents 34.3% of the world’s population.
A this moment we know that the core of Internet is structured in a multi-tier
hierarchy of IP [9] transit providers that are connected because of commercial
and business agreements. Figure 1.2 shows the actual Internet structure.

Figure 1.2: The current Internet core structure

The previous figure only shows the structure of the core of the network, but the
entire Internet graph remain undiscovered.
Knowing the entire Internet graph would be very important in many fields like:

18 CHAPTER 1. INTRODUCTION

• development and improvement of the network protocols

• business relationship between ISPs

• financial investments

• containment strategy for virus

• distribution of the digital content service provider

• analysis of the Internet fault-tolerance

• socio-economic studies on the development and coverage of the Internet

The problem is that discovering the entire Internet topology is a very difficult task
due to several key features of network development. these characteristics are:

• size and growth of Internet

• heterogeneity of how to administer the networks within the Internet

• evolutionary principles dictated by the tradeoff between cooperation and
competition among ASs (Autonomous System)

Many measurement systems use a top-down approach to discover the Internet
topology, that is, from the Internet core to its edges.
The PORTOLAN INTERNET TOPOLOGY MEASUREMENT SYSTEM instead uses
an orthogonal approach. It is based on a bottom-up and bottom-to-bottom ap-
proach, that is, from the edge to the Internet core and from edge to edge (between
end users) respectively.

1.3 Portolan Internet Topology Measurement Sys-
tem

The Portolan system is a Internet measurement system designed to discover the
Internet topology at the autonomous system level and to build the map of the sig-
nal coverage. Its most important characteristic is that it is based on a smartphone-
based crowdsourcing.
Indeed, in this system we have a client side, an Android application installed on
several smartphones, and a server side. When these smartphones are connected

1.4. OBJECTIVE OF THIS THESIS 19

to the Internet via any access network (i.e. Wi-fi, GSM, UMTS, LTE, ...) the tool
can perform its measurements. It is important to highlight the fact that the data
collected come from the smartphone’s volunteers. If there are many volunteers
running this application this tool can collect a lot of useful data.

This kind of approach allows Portolan to be focused on the analysis of the Internet
edge. At this moment the existing measurement tools are not focused on this
portion of the Internet. This make the Portolan system an appealing measurement
system to discover new features of the current Internet, as described in [10, 11].

The Portolan system is developed by the University of Pisa and IIT/CNR.

1.4 Objective of this thesis

In this thesis we are not focused in discovering the Internet topology but we
are interested in analyzing the feasibility to measure the capacity of the links in
Internet.

In particular we develop a tool for estimating the capacity of the links along an
Internet path via an Android smartphone.

To retrieve these informations, we use a very similar approach to that adopted in
the Portolan system. Indeed, the estimation is performed using, on client side, an
Android smartphone.

This measurement is important in many Internet applications and protocols.

End system multicast and overlay network configuration protocols ([12, 13, 14])
knowing the capacity of the links can use a capacity-aware path to deliver the
packets.

Content location and delivery in peer-to-peer (P2P) networks ([15, 16]) strongly
depends on the characteristics of this scenario. An important parameter that can
be useful for these protocols is the capacity of the links in this network.

Another related application that can take advantage on the knowledge of this
parameter is the network aware cache and replica placement policies ([17, 18]).

Eventually, an accurate measurement of the capacities within a network can be
exploited by network operators concerned with problems such as capacity provi-
sioning and traffic engineering.

20 CHAPTER 1. INTRODUCTION

1.5 State of the art

In these years have been developed a lot of capacity estimation tool. These tools
can be classified in different ways depending on the property that you want to
highlight.
The main differences between these tools are:

• active VS passive technique

Most of the tools use an active technique. These tools send the probe pack-
ets for the sole purpose of making an estimation. Instead, the tools that
use a passive technique take advantage of the packets sent by other appli-
cations to perform their estimation. In this way it is less intrusive rather
than the tools that use active techniques. The disadvantage of the passive
techniques is that in this case the tool depends on another application that
must exchange packets.

• End-to-end VS hop-by-hop measurements

End-to-end techniques based their estimation only on the reply of the end-
host. Generally, these technique are only able to estimate the bottleneck
of a path. Instead, hop-by-hop techniques take advantage of the ICMP
(Internet Control Message Protocol) protocol. ICMP is one of the core
protocols of the Internet Protocol Suite. It is used by the routers in the
network to send error messages indicating, for example, that a service is
not available or that a host or a router is unreachable. Hence, these tools
use these messages to perform the estimations on every link in a path

These two classifications are orthogonal to each other, as one does not preclude
the other. Indeed, for example, there are tools that are both active and end-to-end,
and others tools that are both active and hop-by-hop.
It is important to highlight the fact that most of these tools are designed to work
in wired networks.
When in the network there are wireless links, the estimation is more complicated.
In this case wireless capacity estimation depends also on the topology, path lay-
out, interference between nodes along the path and several other environmental
parameters.
Among the most well-known tool for the capacity estimation we can remember
Nettimer and Pathchar.

1.5. STATE OF THE ART 21

1.5.1 Nettimer

Nettimer is a tool to infer the capacity of the bottleneck in a path, as described in
[6]. This tool can use both passive and active techniques, but its estimations are
always performed in an end-to-end fashion.

It can simulate or passively collect network traffic, and can also actively probe
the network using a packet-pair ’tailgating’ technique. There is no requirement
for any special information from the network and no limitation to a particular
transport protocol.

1.5.2 Pathchar

Pathchar is a tool that infers the characteristics of links along an Internet path, as
described in [19, 20]. In particular it is able to estimate the latency, bandwidth,
loss rate and queue delays experienced at each link.

This tool uses an active technique with hop-by-hop measurement. Indeed, this
tool uses a similar approach to that used by traceroute ([21]).

Pathchar works by sending out a series of probes with increasing values of TTL
and varying packet sizes. For each probe it measures the time until the error
packet ICMP is received. By performing statistical analysis of these measure-
ments, pathchar infers the latency and bandwidth of each link in the path, the
distribution of queue times, and the probability that a packet is dropped.

Figure 1.3 shows the operation performed by pathchar when it uses a fixed packet
size.

22 CHAPTER 1. INTRODUCTION

Figure 1.3: Pathchar example

Chapter 2

Algorithm

In this chapter we analyze how we can estimate the throughput of each link in a
certain path.
The chapter is structured into three parts. Firstly, we describe the basic definitions
and the assumptions used. Secondly, we explain the differences between the
estimation of the first link in a path and the other links. Finally, we show the
algorithm used, highlighting strengths and weaknesses.

2.1 Basic Definitions

In this section we describe basic constructs of our probing sequences and the
corresponding terminology.
With the term probe we mean a sequence of one or more packets sent from a
common origin.
The sequence of links crossed by the probes form a path and a subset of links like
L1, · · · ,L j with j < n is called prefix path.
When a contiguous sequence of packets are transmitted in the same probe without
time separation between each packet than we say that the probe is transmitted
back-to-back.
In particular when the probe is formed by two packets sent back-to-back we call
it a packet-pair probe, instead when the probe is constituted by three or more
packets sent back-to-back then we call it a packet-train probe.
A uniform probe is one in which every packet has the same size; likewise, a
non-uniform probe is made of packets with different sizes.

23

24 CHAPTER 2. ALGORITHM

A packet is hop limited if its Time To Live (TTL) is set to a value such that this
packet do not reach the destination.
The packets inside a probe are parametrized by:

s(p) its size in bits

D(p) its final destination

h(p) its maximum hop count

Every probing technique exploits these parameters to build different packets in a
probe.
These probes are then used to infer some information about the path.
To denote a probe, we refer to each probe packet with a different lowercase letter,
and represent the sequential order in which they are transmitted from the probing
host by writing them from left to right.
We denote interpacket spacing with square brackets, while a sequence of identical
probe packets sent back-to-back is represented by curly brackets with the number
of packets as superscript. As an example, [pm] [pm] [{q}r] denotes transmission
of identical two-packet probes followed by a sequence of r packets ’q’ sent back-
to-back.
The throughput of the bottleneck’s path segment between the links i and j is
denoted by bi, j , while bi stands for the throughput of the i-th link. In particular
bi, j = min

i≤k≤ j
bk.

We use the term interarrival time of packets p and m at link i to indicate the time
elapsed between the arrival of the last byte of p and the last byte of m at the link
i-th. This is represented with ∆i.
Similarly, we use the term interdeparture time of packets p and m at link i to
denote the time elapsed between the transmission of the last byte of p and the
transmission of the last byte of m at link i-th.
By these definitions we can say that the interarrival time of packets p and m at
link i is equal to the interdeparture time of packets p and m at link i-1.
In a path L, composed by links L1,L2, · · · ,Ln, where the bottleneck is located at
link i, the bottleneck’s capacity is denoted by the following notation

bi = min
1≤k≤n

bk

When we say that an estimation is reliable we mean that this estimation repro-
duces accurately the real value of the parameter we want to estimate.

2.2. ASSUMPTIONS 25

2.2 Assumptions

Initially these assumptions are used in order to simplify the analysis of the envi-
ronment where we work but in the end we remove them and check the results we
obtain.
These assumptions are common to many probing studies (e.g., [3, 4, 5, 6]) and
are enumerated below:

1. Routers are store-and-forward and use FIFO queueing.

2. Analytic derivations assume an environment free from cross-traffic.

The first assumption is needed to ensure that the probe packet orderings are pre-
served. Most of the routers in Internet can be represented by making this assump-
tion.
The second assumption is used to make a simple analysis of the algorithm. In
Internet this assumption is absolutely incorrect.

2.3 Lemmas and Corollaries

The techniques that we build up study the characteristics of a path with the use
of packet-pair and packet-train probes.
These techniques are based on properties enounced in the followings Lemmas
and related Corollaries. These are also exposed in [1].
Remember that most of the followings properties are valid as long as the assump-
tions stated in Section 2.2 are respected.

Lemma 1

Packet-Pair Property. In a path L composed by n physical links L1,L2, · · · ,Ln
with capacity bandwidths b1,b2, · · · ,bn respectively. If we inject a probe like [pp]
at L1, with D(p) = Ln then the interarrival time of these two packets at Ln is

∆n =
s(p)

min
1≤k≤n

bk
(2.1)

26 CHAPTER 2. ALGORITHM

Corollary 1.1 Let L be a path composed by n physical links L1,L2, · · · ,Ln with
capacity bandwidths b1,b2, · · · ,bn respectively. The bottleneck’s capacity can be
estimated through measurement of packet interarrival times and knowledge of
packet size. In particular if the bottleneck is at link Li, this can be calculated with
the following formula:

bi = min
1≤k≤n

bk =
s(p)
∆n

(2.2)

This property is used by almost every technique that estimates the bottleneck’s
capacity.

Lemma 2

Tailgating Property. Consider a path L of n physical links L1,L2, · · · ,Ln with
capacity bandwidths b1,b2, · · · ,bn respectively. If we inject a probe such as [pq]
at L1, with D(p) = D(q) = Ln, and if

{
∀k : 1≤ k ≤ n, s(p)

s(q) ≥
bk+1
bk

}
, then the

probe [pq] will remain back-to-back over all links Lk.{
∀k : 1≤ k ≤ n, s(p)

s(q) ≥
bk+1
bk

}
is equivalent to

{
∀k : 1≤ k ≤ n, s(p)

bk+1
≥ s(q)

bk

}
, there-

fore this means that, before the transmission of packet p at link k+1 is finished,
the packet q is completely received at link k, for all the links in L.
This proves that the probe [pq] will remain back-to-back along the path.

Lemma 3

Preservation of Spacing. Let L be a path of n physical links L1,L2, · · · ,Ln with
capacity bandwidths b1,b2, · · · ,bn respectively. If a probe of the form [p] [p] is
injected at link L1 with D(p) = Ln and an interarrival time at link 1 of ∆∗, then
∆∗ will be preserved along L if and only if s(p)

∆∗ ≤ min
1≤k≤n

bk.

Proof: The transmission time of each probe packet, [p], over the bottleneck link
is s(p)

min
1≤k≤n

bk
. Hence, if s(p)

min
1≤k≤n

bk
> ∆∗ then the interarrival time between the two pack-

ets at each link before the bottleneck link will remain ∆∗ and from the following
links this interval will be expanded to s(p)

min
1≤k≤n

bk
till the destination Ln.

2.3. LEMMAS AND COROLLARIES 27

Lemma 3 shows that in order to preserve an interarrival time (∆i) through a sub-
path Li+1, · · · ,Ln, the condition s(p)

∆i
≤ min

(i+1)≤k≤n
bk must hold.

Lemma 4 In a path L of n physical links L1,L2, · · · ,Ln with capacity band-
widths b1,b2, · · · ,bn respectively. If we inject a probe of the form

[
p jm

{
p jq j

}r−1 p jm
]

at link L1 with s
(

p j
)
≥ s(m) = s

(
q j
)
, D
(

p j
)
= D

(
q j
)
= L j and D(m) = Ln, let

∆ j be the interarrival time between the m packets at the link L j then

∆ j =
r
(
s
(

p j
)
+ s(m)

)
b1, j

(2.3)

We refer to the m packet with the title of marker packet and to the p j packet with
the title of magnifier packet. The parameter r is called Train Size.

Corollary 4.1 Consider a path L of n physical links L1,L2, · · · ,Ln with capacity
bandwidths b1,b2, · · · ,bn respectively. If we inject a probe like

[
p jm

{
p jq j

}r−1 p jm
]

at link L1 with s
(

p j
)
≥ s(m) = s

(
q j
)
, D
(

p j
)
= D

(
q j
)
= L j and D(m) = Ln, let

∆ j be the interarrival time between marker packets at the link L j, then this ∆ j will
be preserved over L j+1, · · · ,Ln if and only if

b1, j

b j+1,n
≤

r
(
s
(

p j
)
+ s(m)

)
s(m)

(2.4)

Corollary 4.1 can be obtained using Lemma 3 and Lemma 4, and shows the con-
dition to be met to preserve the marker interarrival times from link L j to link
Ln.

Knowing ∆ j and the size of the marker and magnifier packets, if the Corollary
4.1 condition is valid, we can obtain b1, j.

Observation 4.1.1: The value of r cannot be known without the knowledge of
the link’s properties in L. A solution to this problem can be found in Section 2.5.

28 CHAPTER 2. ALGORITHM

Lemma 5 Let L be a sequence of n physical links L1, · · · ,Li, · · · ,L j, · · · ,Ln with
capacity bandwidths b1, · · · ,bi, · · · ,b j, · · · ,bn respectively. If we inject a probe of

the form
[

pi−1m
{
{pθ qθ}r−1 pθ m : i≤ θ ≤ j

}]
with s(pθ) ≥ s(m) = s(qθ),

D(pθ) = D(qθ) = Lθ , D(pi−1) = Li−1, D(m) = Ln, if b1,i−1 < bi, j and

if s(pω)
s(m) < bk

bk−1

then

∆k =
r (s(pω)+ s(m))

b1,i−1
(2.5)

otherwise

∆k =
r (s(pω)+ s(m))

b1,i−1
+

s(pω)

bk
− s(m)

bk−1
(2.6)

where i−1≤ ω ≤ j and i≤ k ≤ j.

We refer to Li with the title of initial egress link and to L j with the title final egress
link.

Corollary 5.1 In a path L of n physical links L1, · · · ,Li, · · · ,L j, · · · ,Ln with
capacity bandwidths b1, · · · ,bi, · · · ,b j, · · · ,bn respectively. If we inject a probe of

the form
[

pi−1m
{
{pθ qθ}r−1 pθ m : i≤ θ ≤ j

}]
with s(pθ) ≥ s(m) = s(qθ),

D(pθ) = D(qθ) = Lθ , D(pi−1) = Li−1, D(m) = Ln, if ∃Lx ∈
[
Li,Li+1, · · · ,L j

]
:

the Tailgating Property is satisfied then

∆k∗ , max
i≤k≤ j

∆k

bi, j =
s(p)

∆k∗− r(s(p)+s(m))
b1,i−1

+ s(m)
bk∗−1

(2.7)

so Lk∗ is the bottleneck.

Proof: If the Tailgating Property is satisfied, s(p)
s(m) ≥

bk
bk−1

then

∆k =
r (s(p)+ s(m))

b1,i−1
+

s(p)
bk
− s(m)

bk−1

2.3. LEMMAS AND COROLLARIES 29

∆k∗ , max
i≤k≤ j

∆k =
r (s(p)+ s(m))

b1,i−1
+

s(p)
bk∗
− s(m)

bk∗−1

Hence, Lk∗ is the bottleneck in
[
Li, · · · ,L j

]
, so the last thing to do is to get bk∗

from Equation (2.6) and then we obtain Equation (2.7).

Observation 5.1.1: ∆k is the interarrival time of the (θ − i+1)-th marker packet
and the (θ − i+2)-th marker packet at link Lk with i≤ θ ≤ j.
Therefore, ∆k is the interarrival time to use to compute bk.

Observation 5.1.2: ∆k∗ is formed by three components:

1. r(s(p)+s(m))
b1,i−1

, that is ∆i−1 (the dispersion time between each marker packet
and its following at link Li−1), plus

2. s(p)
bk∗

, that is the interval time spent between the receiving of the first and the
last byte of the magnifier packet, at the end of link Lk∗ , and less

3. s(m)
bk∗−1

, that is the interval time spent between the receiving of the first and
the last byte of the marker packet, at the end of link Lk∗−1.

Hence, ∆k∗ is due to the dispersion time between a marker packet and its follow-
ing at link Li−1 plus a certain interval.

Observation 5.1.3: If s(pω)
s(m) < bk

bk−1
then the estimation of bi, j could not be ac-

complished.

Corollary 5.2 In a path L of n physical links L1, · · · ,Li, · · · ,L j, · · · ,Ln with
capacity bandwidths b1, · · · ,bi, · · · ,b j, · · · ,bn respectively. If we inject a probe of

the form
[

pi−1m
{
{pθ qθ}r−1 pθ m : i≤ θ ≤ j

}]
with s(pθ) ≥ s(m) = s(qθ),

D(pθ) = D(qθ) = Lθ , D(pi−1) = Li−1, D(m) = Ln, we can estimate bi, j if and
only if the tailgating property is met and the following condition is valid

b1,i−1

b j+1,n
≤ r (s(p)+ s(m))

s(m)
(2.8)

30 CHAPTER 2. ALGORITHM

2.4 Prefix Path Estimation VS Target Subpath Es-
timation

We used packet dispersion techniques to infer information about the capacity of
a segment in a path.

Generally these techniques are able to estimate the bottleneck’s capacity in a
given moment but they are not able to estimate the capacity of any other link in
this path.

This is due to the fact that packet dispersion time in a given prefix path could not
be preserved along the path.

This happens when the capacity of the following links is less than the capacity of
the links we want to examine.

Figure 2.1: Bottleneck

In Figure 2.1 the packet dispersion time at the end of the path is bound only to
the throughput’s bottleneck.

A way to overcome this problem is to increase the time interval between the two
marker.

This can be done sending other packets between the two marker, in this way the
bottleneck link does not change the interarrival time of these packets.

Hence to estimate the throughput of the first segment in a path we should use a
probe of this type [p jm{p jq j}r−1 p jm]. E.g. if we estimate b1,3, with r = 2, then
we will send the probe [p3,m, p3,q3, p3,m], as shown in Figure 2.2.

2.4. PREFIX PATH ESTIMATION VS TARGET SUBPATH ESTIMATION 31

Figure 2.2: Simple probe for b1,3 estimation

This packet-train probe is built in such a way that the condition enunciated in
Lemma 3 is respected. In particular the choice of the train size (r) is fundamental.

In Section 2.5 will be presented a way to make a correct choice of this parameter.

The receiver, using Lemma 4 and knowing that the condition in Corollary 4.1
holds, can retrieve any throughput b1, j.

It is interesting to note that this technique allow us to infer specifically b1.

The technique presented till now is a packet dispersion technique and in this type
of technique it is very important to know the instant when a packet arrives to the
receiver. A mechanism that can invalidate this type of estimation is the Interrupt
Coalescence.

To avoid flooding a host system with too many interrupts, packets are collected
and one single interrupt is generated for multiple packets.

This mechanism is called Interrupt Coalescence (IC) and may affect the estima-
tion of a packet dispersion technique because it can change the interarrival time
between each packet. This is due to the fact that the application that performs the
estimation is at the application layer, so do not take the time when the packets are
really received but when the application is woke up by an interrupt.

The Figure 2.3 shows the behaviour of the system when receives several inter-
rupts.

32 CHAPTER 2. ALGORITHM

Figure 2.3: Interrupt Coalescence

In that probe the problem is that at the end point of the path arrived only two
interrupts for the twelve marker packets received.

The solution is to transmit enough marker packets in order to trigger an interrupt.
A solution based on the same considerations is also exposed in [7].

Hence, the probe used is of the form
[{

p jm
{

p jq j
}r−1

}T L−1
p jm

]
, so the re-

cipient receive Train Length (T L) marker packets.

E.g. if we want to estimate b1,3, with r = 2 and T L = 3, we will send the probe
[p3,m, p3,q3, p3,m, p3,q3, p3,m] like shown in Figure 2.4.

Figure 2.4: Complex probe for b1,3 estimation

2.4. PREFIX PATH ESTIMATION VS TARGET SUBPATH ESTIMATION 33

To estimate the prefix path bottleneck the formula becomes

b1, j =
r (s(p)+ s(m))(T L−1)

∆ j
(2.9)

where ∆ j is the interarrival time between the last and the first marker packet in
the probe.

Our other goal is to estimate bi with 2 ≤ i ≤ n, but before that we have to see in
general how it is possible to estimate bi, j with 2≤ i < j ≤ n.

We can observe that using the packet-train probe seen previously we can estimate
b1,i−1 and b1, j in a path L of n physical links L1, · · · ,Li, · · · ,L j, · · · ,Ln with capac-
ity bandwidths b1, · · · ,bi, · · · ,b j, · · · ,bn respectively. If b1,i−1 > b1, j then bi, j =
b1, j, because this means that the bottleneck in the segment

[
L1, · · · ,Li, · · · ,L j

]
is

placed between
[
Li, · · · ,L j

]
.

Otherwise, we have to use Corollary 5.1 in order to estimate bi, j.

The estimation made using the probe
[

pi−1m
{
{pθ qθ}r−1 pθ m : i≤ θ ≤ j

}]
is affected by IC but, unlike the probe used in the estimation of b1, j, we cannot
send more than two marker packets to estimate a single link in the subpath.

The explanation of this statement lies in the different way we calculate b1, j and
bi, j and, more importantly, the different properties exploited by these estimations.

In the prefix path estimation we can estimate b1, j simply using Lemma 4, to cal-
culate the throughput, and Corollary 4.1, in order to guarantee that the dispersion
time will be preserved.

In this case ∆k∗ depends on the packet dispersion time between a marker packet
and its following at link Li and the size of the packets in the probe.

The estimation of bi, j depends on the same elements of the prefix path estimation
but, above all, depends on the transmission time of the magnifier packet at link
Lk∗ and the transmission time of the marker packet at link Lk∗−1. In fact ∆i−1 is
expanded by this other components.

Therefore if we transmit a probe of this form
[

pi−1m
{
{pθ qθ}r−1 pθ m : i≤ θ ≤ j

}T L−1
]

then the estimation of bθ depends only on the first and second marker for every
subtrain of length T L−1.

In the following Figure is shown an example of the behaviour of this probe when
i = j, r = 1 and T L = 2.

34 CHAPTER 2. ALGORITHM

Figure 2.5: Behaviour of the target subpath Probe

In Figure 2.5 we can see that ∆i can be obtained only between the first pair of
marker packets.

The only thing to do is to perform many estimations of this parameter and to find
the best among them.

At this point we can perform successfully an estimation of the prefix path and the
target subpath under the assumptions made in Section 2.2.

The strongest assumption made is to consider a network free from cross traffic.

The cross traffic is the traffic composed by the packets that does not belong to our
probing application and that pass through some of the links in our path.

The Figure 2.6 shows this scenario.

2.4. PREFIX PATH ESTIMATION VS TARGET SUBPATH ESTIMATION 35

Figure 2.6: Cross traffic

The effect of the cross traffic on the probing traffic is either to compress or to
expand the interval time between the packets.
This effect is due to the queue delays introduced on a router by the cross traffic.
The expansion of the interval time can happen when a router decide to send an-
other packet between two packets belonging to the same probe.
Instead the compression of the interval time can occur when a router receives
a probe packet but do not retransmit it immediately altering its interarrival time
with the successive marker packet.
The Figure 2.7 shows an example of these effects produced by the cross traffic.

Figure 2.7: (a) Expansion of the interval time between the probing packets (b)
Compression of the interval time between the probing packets

The assumption to consider the network free from cross traffic is not valid in
the current Internet environment. Hence we have to make more accurate the
estimation.

36 CHAPTER 2. ALGORITHM

Obviously a method is to perform many estimations of the same parameter and
get the most reliable among them.

The problem is how to understand if an estimation is reliable. This is a common
problem for many estimation techniques.

We have decide to use a parameter called Minimum Sum Delay, introduced in [2].

The Minimum Sum Delay is computed as the sum of the smallest delay experi-
enced by the first marker packet in a probe (t f) and the smallest delay experienced
by the last marker packet in a probe (tl).

Once computed this parameter we will consider ∆ j as the difference between tl
and t f .

This parameter has the quality to select the interval time that comes closet to what
the marker packets would experience in a network free from cross traffic.

The Figure 2.8 shows an example of the computation of the Minimum Sum Delay
and of the ∆ j.

Figure 2.8: Minimum Sum Delay and ∆ j

2.5. CHOICE OF TRAIN SIZE 37

2.5 Choice of train size

The target of this thesis is to be able, with a smartphone, to estimate the through-
put of each link in the path that there is between this device and a server.
The estimation of the throughput of a specific link is the particular case of the
estimation of a target subpath, where the parameter to be studied is bi and bi,i = bi,
with 1≤ i≤ n.
The algorithm to use in order to estimate bi is the following:

Algorithm 2.1 Estimation of the capacity of each link in a path
Start the estimations using r = 1

1. Send n prefix probe to the client to estimate b1

2. Client calculates b1

3. for every other link Li in the path

(a) Send n prefix probe to the client to estimate b1,i−1

(b) Client calculates b1,i−1

(c) Send n prefix probe to the client to estimate b1,i

(d) Client calculates b1,i

(e) if b1,i−1 > b1,i

(f) then

i. bi = b1,i

(g) otherwise

i. Send n target probe to the client to estimate bi

ii. Client calculate bi

(h) end if

4. end for

This algorithm is effective as far as the choice of the value of r respects the
constraints enounced in Corollary 2.3.

38 CHAPTER 2. ALGORITHM

The problem is that the estimations are made without knowing the characteristics
of the links in the path. This means that before the beginning of the estimations
we cannot know the right value of the train size.
After several experiments we found that the estimations, made using r = 1 of
prefix path and target subpath, have some typical behaviour. In particular the
estimations of prefix path are underestimated and consequently the estimations
of the target subpath are overestimated.
The train size is used to preserve the interarrival time between the marker packets
at a certain link, in fact when we want to estimate b1, j if we do not use a proper
train size then ∆ j will not be preserved and in particular it will be expanded
due to the bottleneck link capacity, bk. This explains why, in these cases, the
estimations of the prefix path are underestimated. In particular we have that ∆n =

∆k =
s(m)(T L−1)

bk
.

An important thing to highlight is the fact that only the links before the bottle-
neck link will be affected by the wrong choice of the train size, because ∆ j is
the interarrival time of the marker packets at the bottleneck link in the subpath[
L1, · · · ,L j

]
and if Lk, the bottleneck link of the entire path, is in

[
L1, · · · ,L j

]
then

∆k = ∆ j and so this time cannot be expanded in the following links.
The underestimation of the prefix path b1,i−1 also affects the estimation of the
target subpath bi, j because this estimation make use of b1,i−1.
Recalling the Formula 2.7 we can see that the estimation of bi, j is based on some
fixed elements, such as the packets size and the train size, on some previous
estimations, b1,i−1 and bk∗−1(and on the parameter calculated in this step, ∆k∗ .

bi, j =
s(p)

∆k∗−
r(s(p)+s(m))

b1,i−1
+

s(m)
bk∗−1

(2.7)

If the train size is not of the right value then b1,i−1 is been underestimated and
bk∗−1 is been overestimated. These parameters contribute to overestimate bi, j.
After seeing the consequences of an incorrect choice of the train size we have to
find a way to realizing this. A solution is to perform a first estimation of all the
links in the path and at a later stage to analyze the estimations of the links before
the bottleneck link.
On the basis of where is placed the bottleneck link we have to keep different
behaviour. In particular there are three different cases:

1. the bottleneck link is the first link then we can be confident that the interar-
rival time between the marker packets will be preserved along the path for
every link, so is not needed any other estimation

2.6. IMPROVED ALGORITHM 39

2. in case the bottleneck is placed at link L2 then we cannot know if the esti-
mation is been underestimated, so we have to perform another estimation
using a large value for the train size in order to avoid any estimation errors

3. in the last case, where the bottleneck link is in [L3, · · · ,Ln], we have to
check if the estimation can be considerate valid. If there is a bi much larger
than bk, we can assume that there could be an estimation error, so we should
perform another estimation with a bigger value for the train size. If the
estimation was correct then it should not change too much.

From these considerations we have improved the algorithm in order to perform
a correct estimation even in those cases. The result is shown in the following
section.

It is important to remark the fact that the estimation of a target subpath can be
done only if the condition expressed in Observation 5.1.3 is respected.

2.6 Improved algorithm

Taking into account all the considerations made until now, we can build an algo-
rithm able to estimate the throughput of each link in the path that there is between
this device and a server.

We have used a parameter called MAX_R to represent an upperbound for the train
size. Is been set an upperbound to the train size because otherwise it could be no
end to the estimations.

The value of MAX_R is set to the initial value of the train size plus 4 because in
a typical real environment the bottleneck is placed in the first links and, in these
links, they do not have capacities much different among them.

The point 5 of the algorithm is the improvement described in Section 2.5.

40 CHAPTER 2. ALGORITHM

Algorithm 2.2 Estimation of the capacity of each link in a path (improved)
Start the estimations using r = 1

1. Send n prefix probe to the client to estimate b1

2. Receiver calculates b1

3. for every other link Li in the path

(a) Send n prefix probe to the client to estimate b1,i−1

(b) Receiver calculates b1,i−1

(c) Send n prefix probe to the client to estimate b1,i

(d) Receiver calculates b1,i

(e) if b1,i−1 > b1,i

(f) then

i. bi = b1,i

(g) otherwise

i. Send n target probe to the client to estimate bi

ii. Receiver calculates bi

(h) end if

4. end for

5. Considering Lk as the bottleneck link in the path

(a) if k = 2

(b) then

i. Repeat the estimations of b1 using r = MAX_R
ii. break

(c) otherwise

i. for all link Li in [L1, · · · ,Lk−1] while r ≤MAX_R

A. if 30 ·bk ≤ bi

B. then
C. Repeat the estimations of [b1, · · · ,bk−1] using r = r+1
D. break
E. end if

ii. end for

(d) end if

Chapter 3

Implementation

In the previous chapters we discuss the algorithm used in this project but in this
chapter we provide a fully detailed description of the components of the sys-
tem, both client and server components, and the communication protocol used
between client and server.

This implementation has been project to be able to perform an estimation of both
download and upload.

The components on the client side are conceived to be performed on a smart-
phone android, instead the server’s components are developed for a classic host
machine.

The server side of the system has been designed to be a service that a client can
require to estimate the capacity of a single parameter bi, j with 1≤ i≤ j≤ n. This
choice gives the greatest flexibility to the server to handle the connections of the
clients and they can build autonomously their own estimations.

In the first part of this chapter we describe the single components and their func-
tionalities, while in the second part we illustrate in detail how these components
interact each other.

41

42 CHAPTER 3. IMPLEMENTATION

3.1 System components overview

The server side of the system is formed by the following components:

1. CapacityServer

2. ServerTask

3. Scheduler

CapacityServer is a simple component that is designated to receive the request
that the clients submits to the server.
ServerTask is a module that handles the communication with a single client. This
module must negotiate the parameters of the estimation and has to receive/send
the probing traffic.
Eventually the Scheduler is the component that rules the scheduling of the re-
quests. A ServerTask must receive the permission from the Scheduler in order to
start the estimation with the client.
Instead the main components on the client side of the system are:

1. MainActivity

2. MyCoordinator

3. PathEstimator

4. CapacityEstimation

MainActivity provide a simple interface for the user to interact with the applica-
tion.
The MyCoordinator component is an Android Service that runs in background
and periodically starts the estimation of each link’s capacity in the path that there
is between the smartphone and the server machine.
The PathEstimator component repeatedly calls the CapacityEstimation in order
to estimate the capacity of all the link in the path. According to the algorithm, it
performs other estimations of some links even if it is not clear that the valuation
for these links are reliable. Moreover it saves the results obtained in a log file to
allow their consultation to the client.

3.1. SYSTEM COMPONENTS OVERVIEW 43

CapacityEstimation is the module designated to perform an estimation of the
capacity of a single link. To perform this estimation it could be necessary to
estimate a few parameters for this link like explained in the Chapter 2.

In substance PathEstimator handle the operations to perform the estimations and
CapacityEstimation actually estimates the capacity of a certain link.

There are also some components that are common to both the sides. These com-
ponents are the following:

1. CapacityReceiver

2. CapacitySender

3. TrainBuilder

CapacityReceiver is called by CapacityEstimation and ServerTask when is nec-
essary to receive the probing traffic.

The CapacitySender is called by the same components but it is used to send the
probing traffic. In reality this component uses TrainBuilder to send the packets
and it coordinates the sending of the packets.

TrainBuilder is the module that sends the probes described in Chapter 2.

In the Section 3.2 we will provide a fully description of the modules used on the
server side, instead in Section 3.3 we will describe the components of the client
side.

Eventually in Section 3.4 is provided a comprehensive description of the modules
common to both the sides.

In Figure 3.1 is shown the system’s architecture.

44 CHAPTER 3. IMPLEMENTATION

Figure 3.1: System’s architecture

3.2. SERVER SIDE 45

3.2 Server side

In this section the components used only by the server will be illustrated. In
particular are reported only the components only used by the server side.
The other components that used both server and client side are presented in Sec-
tion 3.4.
In Figure 3.2 is shown the architecture of the server side.

Figure 3.2: Server’s architecture

3.2.1 CapacityServer

The CapacityServer is a Java thread appointed to wait for some TCP requests by
the clients and assigns to everyone a specific ServerTask to handle the estimation.
This choice allows the server to remain in a listening mode also during the esti-
mation phase, it will be the ServerTask component that will check the correctness
of the request and, if so, it will execute the estimation.
Remember that the estimation performed by the server consist of only the evalu-
ation of bi, j where 1≤ i≤ j ≤ n.

3.2.2 ServerTask

ServerTask is a Java thread that handle the communication with the client, in
particular its execution can be divided in two phases:

46 CHAPTER 3. IMPLEMENTATION

1. setup phase

2. estimation phase

In the setup phase this module receives the parameters of the estimation requested
by the client, registers this request on the Scheduler and gives a response to the
client.
The request must contain the following elements:

• s(m): the size of the marker packet

• s(p): the size of the magnifier packet

• r: the train size

• Li: the initial egress link

• L j: the final egress link

• T L: the train length

• b1,i−1: if the estimation is of a specific link Li, where i 6= 1, then this is the
capacity of the prefix path [L1, · · · ,Li−1], otherwise this parameter must be
set to -1 because it is not significant

• mode: the modality of the estimation, either download or upload

• bi−1: if the estimation is of a specific link Li, where i 6= 1, then this is the
capacity of the previous link Li−1, otherwise this parameter must be set to
-1 because it is not significant

• phoneID: the identificator of the smartphone

• clientVersion: the version of client’s software

Hence, ServerTask checks the correctness of the request and tries to register it on
the Scheduler.
If the Scheduler notices that there is a long queue of requests that are hanging on
then notifies to the ServerTask that this request cannot be served at this moment.
The response can be either a LONG_QUEUE message if there are too many
pending requests or an ACK message otherwise. In the first case execution is
terminated otherwise we proceed to the estimation phase.

3.2. SERVER SIDE 47

The estimation phase is where the estimation is really performed. The client can
request an estimation in either download or upload.
When the client requests an estimation in download the ServerTask calls the Ca-
pacitySender component to send the probing traffic, instead when the estimation
is in upload then it calls the CapacityReceiver component to receive the probing
traffic.
When this component has finished its execution, ServerTask points the fulfillment
of the request to the Scheduler and write in a log file the results of the estimation,
so these estimations can be checked in the future.
In case there are some network problems and ServerTask cannot complete the
estimation before it ends its execution it must remove its request from the sched-
uler’s queue to allow the execution of the other pending requests.

3.2.3 Scheduler

The Scheduler is a Java object that schedules the requests that must be served.
In particular it implements a FIFO (First In First Out) list of requests (queue of
requests), where the length of the list cannot exceed a certain threshold.
When the queue is full it does not accept any other request.
The request that is in top of the list is the request to be served by the instance of
ServerTask assigned to it.
Scheduler provides the following methods:

• addRequest

• removeRequest

• getTurn

The method addRequest checks if the queue of the requests is not full and, if so,
it adds in tail the request. When the queue is full it notifies to ServerTask that the
request cannot be accomplished and do not add it to the queue.
RemoveRequest is invoked when ServerTask wants to delete a request that is been
served. Hence this method delete the first element of the queue.
When ServerTask has successfully added its request, it means that this request is
in the queue of the Scheduler but we do not know in what position is placed. This
request will be served but not necessary as first.

48 CHAPTER 3. IMPLEMENTATION

The method getTurn returns only when the request that can be served is the re-
quest assigned to this instance of ServerTask. In other words this method returns
only when this request has become the first request in the queue.

Hence, the method getTurn must be invoked only after calling the method ad-
dRequest and it must gave a positive result.

In Figure 3.3 is shown the outline of the scheduler described here.

Figure 3.3: (a) Scheduler’s queue empty (b) Add request to the Scheduler’s queue
(c) remove request from the Scheduler’s queue (d) Scheduler’s queue full there-
fore the request is rejected

An important thing to highlight is the fact that all these operations must be exe-
cuted in mutual exclusion.

On the server there is a single instance of the Scheduler that is passed to every
instance of ServerTask therefore Scheduler is a shared resource.

To ensure that the scheduler’s queue remains in a consistent state it is important
that these operations are executed in mutual exclusion.

3.3. CLIENT SIDE 49

3.3 Client side

In this section will be described the components that are client-specific without
those modules that are common to both the sides.
In Figure 3.4 is shown the architecture of the client application.

Figure 3.4: Client’s architecture

3.3.1 MainActivity

MainActivity is the front-end of this Android application. In particular this is an
Android Activity.
An Android Activity is an application component that provides an interface to-
wards the user.
The user can use this component to perform the following functionalities:

1. starts the process of estimation

2. stop the process of estimation

3. shows the results obtained until that moment

50 CHAPTER 3. IMPLEMENTATION

4. deletes the results saved

The first functionality refers to the possibility to start MyCoordinator to begin a
campaign of estimations of the link’s capacity, instead the second functionality
stops this campaign of estimations.
If the user stops the campaign during an estimation in that case the system finishes
to estimate the capacities of the remaining links in the path both download and
upload and only when it completes this set of estimations it stops the campaign.
The other two functionalities allow the user to see the estimations made until that
moment and allow him to delete it in the case these are no more interesting.
The following figure shows the interface provided to the user.

Figure 3.5: MainActivity

3.3. CLIENT SIDE 51

3.3.2 MyCoordinator

MyCoordinator is an extension to an Android Service. An Android Service is
an application component that can perform long-running operations in the back-
ground of the main application that has called it.
In particular MyCoordinator must periodically call PathEstimator to estimate the
link’s capacities along the path both download and upload. This set of estimation
is called campaign.
We used a Service because this component must run without affect the perfor-
mance of MainActivity, in fact it is in PathEstimator that the estimation is really
performed. In this way the interaction of MainActvity with the user remains fluid.

3.3.3 PathEstimator

PathEstimtor is a Java thread that follows the Algorithm 2.2 to estimate the link’s
capacity in both download and upload. It follows the steps of the algorithm call-
ing CapacityEstimation to estimate a single capacity.
When it finishes to estimate the capacities of all the links in the path it checks
if the estimations are made with a correct value of train size. Whenever it real-
izes that the value of train size was not correct it restarts the estimations for the
interested links.
Before the end of the execution this module saves the results into a log file in
order to allow the user to read these estimations.

3.3.4 CapacityEstimation

The estimation of the capacity of a certain link is accomplished by the module
CapacityEstimation.
This module is a Java thread able to estimate the capacity of a link in both down-
load and upload.
According to the algorithm, to estimate the capacity of a link in the path either
download or upload it performs some estimations of either prefix path or target
subpath.
When it performs a prefix path estimation it sets the value of the train length
depending on the type of network to which the smartphone is connected.
The value of the train length is chosen accordingly to what explained in [2].

52 CHAPTER 3. IMPLEMENTATION

The next step is to send the request of the desired parameter to the server and wait
for the response.
It can receive either a LONG_QUEUE or an ACK message. When it receives a
LONG_QUEUE message it stops the estimation instead when it receives an ACK
message it continues to the real estimation phase.
The estimation in download is performed in two steps:

1. receive the probing traffic

2. analyze the results

To receive the probing traffic CapacityEstimation calls a specific component re-
sponsible for carry out this task. The component called is CapacityReceiver.
When CapacityReceiver ends, CapacityEstimation collects the results retrieved
by it and calculates both the Minimum Sum Delay and the throughput of the
parameter estimated.
CapacityEstimation repeats these operations to estimate the parameters needed to
esteem the capacity of the link desired.
Before the end of the execution this module saves the results into a log file in order
to allow the user to read these estimations and sends the results to the server.
The estimation in upload is performed in other two steps:

1. send the probing traffic

2. receive the results

To send the probing traffic CapacityEstimation uses another component called
CapacitySender. When CapacitySender ends its execution it waits for the server
to analyze the probing traffic and then receives the results.
Eventually it saves the results in a log file to allow the user to read them.

3.4 Common components

In this section we describe the components that receive or send the probing traffic.
For this reason these components are used by both the sides.
In the next subsections we described their functionalities.

3.4. COMMON COMPONENTS 53

3.4.1 CapacityReceiver

CapacityReceiver is a Java thread used to receive the probing traffic. At the begin-
ning if it is used by the server it receives an UDP message called openPathMes-
sage.
When a host is connected to a private network it cannot communicate with an-
other host in a public network and vice versa.
To allow this host to communicate even in this case there is usually a border
router in this network that is connected to a public network and it performs NAT
(Network Address Translation).
The operation of NAT consists of the translation of the source address into another
address of the router. This operation is usually performed when the source IP
is a private address because otherwise it cannot communicate with other public
networks.
In particular there are two types of NAT:

1. one-to-one NAT

2. PAT

In the first type there is a one-to-one mapping between the IP address of the
source and an IP address of the router. The IP address of the router is a public
address.
In PAT (Port Address Translation) it is changed both the source IP address and
the source port. In this way many private address can be mapped in one public
address.
The problem is that in upload the server cannot send the start packet (an UDP
packet) to the client because it is behind NAT. In fact the client until that moment
sent only TCP packets so the NAT made the mapping only for the TCP port.
The message called openPathMessage is used to create a mapping on the router
with the UDP port on the router.
In this way when the server receives this UDP packet it will know what is the
combination <IP, port> where the client can be reached.
When the estimation is performed in download this mechanism is inherently trig-
gered by the start packet.
The next step is to start the real protocol to exchange the probing traffic. Capac-
ityReceiver send an UDP message where it says to the server the number of the

54 CHAPTER 3. IMPLEMENTATION

experiment to which has arrived and the value of train length to use. This UDP
packet is called start packet.
At a later stage it receives the packet-train probe and check if the packets are
correctly received. In case there is at least three experiments incorrect then it
reduces the value of train length and restarts the estimation from the beginning.
In this way the value of the train length is obtained in an adaptive manner.
When the packets are received CapacityReceiver saves the timestamps of each
packet of every experiment. these information are given back to CapacityEstima-
tion when it wants the results of the estimation.

3.4.2 CapacitySender

CapacitySender is a Java thread used to handle the sending of the probing traffic.
This object in particular know only the protocol to use in order to communicate
with the client side but do not deal with the construction of the packet-train probe.
When CapacitySender must communicate to the client with some UDP packets it
takes advantage of the component TrainBuilder.
In case it is used on the client side it also calls TrainBuilder to send an UDP
message called openPathMessage if so, the estimation is performed in upload.
As stated in the previous subsection this message is used to overcome the prob-
lems due to the mechanism of NAT and has no other purpose.
After this step, Similarly to what we see in CapacityReceiver, it calls TrainBuilder
to receive an UDP packet to trigger the sending of the packet-train probe.
In the start packet is contained the value of train length to use and the experiment
that the client waits for.

3.4.3 TrainBuilder

TrainBuilder is a Java object able to receive UDP packets and able to send UDP
packets with a certain TTL. This object provides some useful methods to Capac-
itySender to communicate with the client application.
In particular it provides the following methods:

• createSocket

• receivePacket

3.5. EXAMPLES OF EXECUTION 55

• sendPacketWithMyTTL

• closeSocket

• sendOpenPath

• sendTrain

The methods createSocket, receivePacket, sendPacketWithMyTTL and closeSocket
are been implemented using a native-code language such as C.
This is because the TTL parameter cannot be set in a Java environment, so we
have to use a different language.
In Android there is a toolset called NDK that allows this operation. NDK is very
similar to the framework JNI used in Java to recall the native code.
In this way we can use sendPacketWithMyTTL to send an UDP packet with a
certain TTL, but consequently even the other methods mentioned before, that use
the sockets, must be developed in native code.
In particular createSocket obtains a socket from the operating system and saves
its identifier in an attribute of the TrainBuilder object. ReceivePacket receives an
UDP packet from this socket and returns the payload of this packet. In the end
closeSocket using the identifier of the socket closes the file descriptor associated,
so that it can no longer refers to any file and may be reused.
The remaining methods make use of these functions to accomplish their own task.
The method sendOpenPath sends on the socket previously opened the open-
PathMessage to the client application. SendTrain builds a proper packet-train
probe to estimate the parameter selected and sends these packets to CapacityRe-
ceiver.

3.5 Examples of execution

In this section is shown the interaction between entities involved in the system.
Firstly, we describe how can be triggered the estimations of the capacities in
the path both download and upload. Secondly, we provide a description of the
execution flows interactions when a single estimation is performed in download.
Thirdly, we show how the interactions change when the estimation is in upload.
Figure 3.6 shows how can be triggered a set of estimations and Listing 3.1 shows
the pseudocode for this operation.

56 CHAPTER 3. IMPLEMENTATION

1 . . .
2 p u b l i c c l a s s M a i n A c t i v i t y : A c t i v i t y {
3 p u b l i c MyCoord ina tor c o o r d i n a t o r ;
4 . . .
5 p u b l i c vo id o n P u s h S t a r t B u t t o n () {
6 c o o r d i n a t o r . s t a r t S e r v i c e () ;
7 }
8 . . .
9 }

10
11 p u b l i c c l a s s MyCoord ina tor : S e r v i c e {
12 p u b l i c s t a t i c f i n a l i n t TIMEOUT = 36000; / / i n

s e c
13 . . .
14 p u b l i c vo id s t a r t S e r v i c e () {
15 w h i l e (t r u e) {
16 P a t h E s t i m a t o r pe = new P a t h E s t i m a t o r () ;
17 pe . s t a r t E s t i m a t i o n s () ;
18 i n t t S t a r t = g e t t i m e o f d a y () ;
19 i n t t R e s t a r t = t S t a r t + TIMEOUT;
20 w a i t (t R e s t a r t) ; / / s e t t i m e o u t
21 }
22 }
23 }

Listing 3.1: Start set of estimations

These estimations can be triggered in two ways:

1. the human user pushing the start button of MainActivity starts MyCoordi-
nator to perform a campaign of estimations [lines 5-7]

2. the timeout expires and MyCoordinator starts a new set of estimations of
the capacities in the path [line 20]

When MyCoordinator calls PathEstimator it restart the timeout and wait for the
time when this expires. [lines 16-20]
In Figure 3.7 is shown an example of estimation in download. In Listing 3.2 is
shown the pseudocode relative to this example on client wheras in Listing 3.3 is
shown on server side.

3.5. EXAMPLES OF EXECUTION 57

1 . . .
2 p u b l i c c l a s s P a t h E s t i m a t o r {
3 . . .
4 p u b l i c vo id s t a r t E s t i m a t i o n s () {
5 . . .
6 C a p a c i t y E s t i m a t i o n ce = new

C a p a c i t y E s t i m a t i o n () ;
7 do ub l e b1 = ce . c a l c u l a t e C a p a c i t y (1 , "

download ") ;
8 . . .
9 }

10 . . .
11 }
12
13 p u b l i c c l a s s C a p a c i t y E s t i m a t i o n {
14 . . .
15 p u b l i c do ub l e c a l c u l a t e C a p a c i t y (i n t l i n k , c h a r

mode []) {
16 . . .
17 s e n d R e q u e s t () ;
18 i f (r e c e i v e R e s p o n s e () != ACK)
19 r e t u r n SERVER_BUSY ;
20 C a p a c i t y R e c e i v e r c r = new C a p a c i t y R e c e i v e r () ;
21 c r . s t a r t () ;
22 R e s u l t r e s = c r . g e t R e s u l t s () ;
23 do ub l e c a p a c i t y = r e s . g e t C a p a c i t y () ;
24 s e n d R e s u l t s (r e s) ;
25 s a v e R e s u l t s (r e s) ;
26 r e t u r n c a p a c i t y ;
27 }
28 . . .
29 }
30
31 p u b l i c c l a s s C a p a c i t y R e c e i v e r {
32 p r i v a t e R e s u l t r ;
33 . . .
34 p u b l i c vo id s t a r t () {

58 CHAPTER 3. IMPLEMENTATION

35 . . .
36 s e n d S t a r t () ;
37 r e c e i v e P r o b i n g T r a f f i c (r) ;
38 }
39
40 p u b l i c R e s u l t g e t R e s u l t s () {
41 r e t u r n r ;
42 }
43 . . .
44 }
45 . . .

Listing 3.2: Estimation in download of b1 on client side

3.5. EXAMPLES OF EXECUTION 59

1 . . .
2 p u b l i c c l a s s C a p a c i t y S e r v e r {
3 . . .
4 p u b l i c vo id s t a r t () {
5 S c h e d u l e r s = new S c h e d u l e r () ;
6 . . .
7 w h i l e (1) {
8 Reques t r e q = r e c e i v e R e q u e s t () ;
9 S e r v e r T a s k s t = new S e r v e r T a s k (r e q) ;

10 s t . s t a r t (s) ;
11 }
12 }
13 . . .
14 }
15
16 p u b l i c c l a s s S c h e d u l e r {
17 . . .
18 p u b l i c b o o l e a n addReques t (Reques t r e q) {
19 . . . / / add t h e r e q u e s t t o t h e queue
20 }
21
22 p u b l i c vo id g e t T u r n (r e q) {
23 . . . / / w a i t f o r t h e t u r n o f t h e
24 / / r e q u e s t req
25 }
26
27 p u b l i c vo id removeReques t () {
28 . . . / / remove t h e r e q u e s t on t h e t o p
29 / / o f t h e queue
30 }
31 . . .
32 }
33
34 p u b l i c c l a s s S e r v e r T a s k {
35 . . .
36 p u b l i c vo id s t a r t (S c h e d u l e r s) {
37 . . .

60 CHAPTER 3. IMPLEMENTATION

38 i f (! s . addReques t (r e q)) {
39 sendResponse (LONG_QUEUE)
40 }
41 s . g e t T u r n (r e q) ;
42 sendResponse (ACK) ;
43 C a p a c i t y S e n d e r c s = new C a p a c i t y S e n d e r () ;
44 cs . s t a r t () ;
45 R e s u l t r e s = r e c e i v e R e s u l t s () ;
46 s a v e R e s u l t s (r e s) ;
47 s . removeReques t () ;
48 }
49 . . .
50 }
51
52 p u b l i c c l a s s C a p a c i t y S e n d e r {
53 . . .
54 p u b l i c vo id s t a r t () {
55 T r a i n B u i l d e r t b = new T r a i n B u i l d e r () ;
56 . . .
57 i f (i s C l i e n t)
58 sendOpenPath () ;
59 r e c e i v e S t a r t () ;
60 t b . s e n d T r a i n () ;
61 . . .
62 }
63 . . .
64 }
65 . . .

Listing 3.3: Estimation in download of b1 on server side

At the lines 6-7 on the client side PathEstimator calls CapacityEstimation to es-
teem b1 in download. CapacityEstimation starts the estimation sending a request
to CapacityServer [line 17 on client side] that, receiving this message, creates a
new instance of ServerTask [lines 8-10 on server side].
At this point ServerTask must register its request to the Scheduler therefore it
calls the method addRequest of the Scheduler [line 38 on server side]. In this
case the Scheduler’s queue is not full so ServerTask can wait for its turn with the
method getTurn of Scheduler [line 41 on server side].

3.5. EXAMPLES OF EXECUTION 61

When this method will return, ServerTask sends an ACK message in the response
TCP sent to the client and starts CapacitySender and waits for its completion
[lines 42-44 on server side].

On the client side when CapacityEstimation receives the ACK message it starts
CapacityReceiver to receive the probing traffic [lines 18-21 on client side].

CapacityReceiver sends a start message to CapacitySender to trigger the sending
of the probing traffic [lines 36-37 on client side]. When CapacitySender finishes
the sending of the probing traffic it ends its execution.

ServerTask resumes its execution and waits for the response from the client where
is reported the capacity b1 [line 45 on server side].

At lines 22-23 on client side CapacityReceiver ends its execution and Capaci-
tyEstimation retrieves the results obtained during the estimation and calculates
the capacity b1.

When CapacityEstimation finishes the calculation of b1 it sends this parameter
to ServerTask and after saving the result ends its execution [lines 24-26 on client
side].

Eventually ServerTask receives and saves the result and removes its request from
the Scheduler’s queue with the method removeRequest [lines 45-47on server
side].

In this way PathEstimator estimates b1 in download.

In Figure 3.8 is shown an example of the estimation in upload. In Listing 3.4 and
in Listing 3.5 is shown the pseudocode on client and server side respectively.

1 . . .
2 p u b l i c c l a s s P a t h E s t i m a t o r {
3 . . .
4 p u b l i c vo id s t a r t E s t i m a t i o n s () {
5 . . .
6 C a p a c i t y E s t i m a t i o n ce = new

C a p a c i t y E s t i m a t i o n () ;
7 do ub l e b1 = ce . c a l c u l a t e C a p a c i t y (1 , " up lo ad "

) ;
8 . . .
9 }

10 . . .
11 }
12

62 CHAPTER 3. IMPLEMENTATION

13 p u b l i c c l a s s C a p a c i t y E s t i m a t i o n {
14 . . .
15 p u b l i c do ub l e c a l c u l a t e C a p a c i t y (i n t l i n k , c h a r

mode []) {
16 . . .
17 s e n d R e q u e s t () ;
18 i f (r e c e i v e R e s p o n s e () != ACK)
19 r e t u r n SERVER_BUSY ;
20 C a p a c i t y S e n d e r c s = new C a p a c i t y S e n d e r () ;
21 cs . s t a r t () ;
22 R e s u l t r e s = r e c e i v e R e s u l t s () ;
23 s a v e R e s u l t s (r e s) ;
24 r e t u r n r e s . g e t C a p a c i t y () ;
25 }
26 . . .
27 }
28
29 p u b l i c c l a s s C a p a c i t y S e n d e r {
30 . . .
31 p u b l i c vo id s t a r t () {
32 T r a i n B u i l d e r t b = new T r a i n B u i l d e r () ;
33 . . .
34 i f (i s C l i e n t)
35 sendOpenPath () ;
36 r e c e i v e S t a r t () ;
37 t b . s e n d T r a i n () ;
38 . . .
39 }
40 . . .
41 }
42 . . .

Listing 3.4: Estimation in upload of b1 on client side

3.5. EXAMPLES OF EXECUTION 63

1 . . .
2 p u b l i c c l a s s C a p a c i t y S e r v e r {
3 . . .
4 p u b l i c vo id s t a r t () {
5 S c h e d u l e r s = new S c h e d u l e r () ;
6 . . .
7 w h i l e (1) {
8 Reques t r e q = r e c e i v e R e q u e s t () ;
9 S e r v e r T a s k s t = new S e r v e r T a s k (r e q) ;

10 s t . s t a r t (s) ;
11 }
12 }
13 . . .
14 }
15
16 p u b l i c c l a s s S c h e d u l e r {
17 . . .
18 p u b l i c b o o l e a n addReques t (Reques t r e q) {
19 . . . / / add t h e r e q u e s t t o t h e queue
20 }
21
22 p u b l i c vo id g e t T u r n (r e q) {
23 . . . / / w a i t f o r t h e t u r n o f t h e
24 / / r e q u e s t req
25 }
26
27 p u b l i c vo id removeReques t () {
28 . . . / / remove t h e r e q u e s t on t h e t o p
29 / / o f t h e queue
30 }
31 . . .
32 }
33
34
35 p u b l i c c l a s s S e r v e r T a s k {
36 . . .
37 p u b l i c vo id s t a r t (S c h e d u l e r s) {

64 CHAPTER 3. IMPLEMENTATION

38 . . .
39 i f (! s . addReques t (r e q)) {
40 sendResponse (LONG_QUEUE)
41 }
42 s . g e t T u r n (r e q) ;
43 sendResponse (ACK) ;
44 C a p a c i t y R e c e i v e r c r = new C a p a c i t y R e c e i v e r () ;
45 c r . s t a r t () ;
46 R e s u l t r e s = c r . g e t R e s u l t s () ;
47 do ub l e c a p a c i t y = r e s . g e t C a p a c i t y () ;
48 s e n d R e s u l t s (r e s) ;
49 s a v e R e s u l t s (r e s) ;
50 s . removeReques t () ;
51 }
52 . . .
53 }
54
55 p u b l i c c l a s s C a p a c i t y R e c e i v e r {
56 p r i v a t e R e s u l t r ;
57 . . .
58 p u b l i c vo id s t a r t () {
59 . . .
60 i f (i s S e r v e r)
61 r e c e i v e O p e n P a t h () ;
62 s e n d S t a r t () ;
63 r e c e i v e P r o b i n g T r a f f i c (r) ;
64 }
65
66 p u b l i c R e s u l t g e t R e s u l t s () {
67 r e t u r n r ;
68 }
69 . . .
70 }
71 . . .

Listing 3.5: Estimation in upload of b1 on server side

The execution of this estimation is similar to the execution of the estimation in
download.

3.5. EXAMPLES OF EXECUTION 65

In this case the differences are that when is the turn of ServerTask, it starts Ca-
pacity Receiver and not CapacitySender [lines 44-45 on server side], and Capac-
ityEstimation starts CapacitySender and not CapacityReceiver [lines 20-21 on
client side].
The estimation in upload also involves the sending of the openPathMessage by
CapacitySender [lines 34-35 on client side] and consequently the receiving of this
packet by CapacityReceiver [lines 60-61 on server side].
Finally the last difference is that when CapacitySender and CapacityReceiver end
their task, ServerTask get the results from CapacityReceiver and calculates b1
[lines 46-47 on server side]. When it ends this estimation it sends this parameter
to CapacityEstimation and removes the request from the Scheduler’s queue [lines
48-50 on server side].

Figure 3.6: Starts of a campaign of estimations

66 CHAPTER 3. IMPLEMENTATION

Figure 3.7: Estimation in download of b1

3.5. EXAMPLES OF EXECUTION 67

Figure 3.8: Estimation in upload of b1

68 CHAPTER 3. IMPLEMENTATION

Chapter 4

Simulator NS-3

NS-3 (Network Simulator 3) is a free network simulator for Internet systems,
released under the GNU GPLv2 license, that is public available for research,
development and use.

The project NS-3 aims to develop an open simulation environment able to re-
spond to the need to manage the entire simulation workflow, from simulation
configuration to trace collection and analysis.

Furthermore it encourages the community contribution, peer review and valida-
tion of the software. The users can develop simulation models which are suffi-
ciently realistic to allow NS-3 to:

• be used as a realtime network emulator

• interconnect with the real world

• reuse many existing real-world protocol implementations

69

70 CHAPTER 4. SIMULATOR NS-3

4.1 Simulation models

The NS-3 core supports research for both IP and non-IP based networks. On the
other hand the users typically prefer to study either wireless IP simulations, which
involve models for Wi-Fi, WiMax (Worldwide Interoperability for Microwave
Access) and LTE (Long Term Evolution), or a variety of static/dynamic routing
protocols, such as OLSR (Optimized Link State Routing Protocol) and AODV
(Ad-hoc On Demand Distance Vector) for IP-based applications.

Another facility offered by the NS-3 is a real-time scheduler that facilitates a
number of “simulation-in-the-loop” use cases for interacting with real systems.

In particular the user can send or receive NS-3-generated packets on real network
devices, and NS-3 can serve as an interconnection framework between virtual
machines emulating the behaviour of the links in this virtual network.

This simulator can also serve to reuse real application and kernel code.

Frameworks for this purpose are developed, tested and evaluated for a Linux
environment.

4.2 Key technologies

NS-3 is a C++ library which provides a set of network simulation models imple-
mented as C++ objects and wrapped through python.

The users using this library must write a C++ or a python application to instantiate
the set of simulation models. These objects are needed to:

• set up the network simulation scenario of interest

• enter the simulation mainloop

• exit when the simulation is completed

In Figure 4.1 is shown a scheme of the NS-3’s architecture.

4.3. HIGH LEVEL DESIGN 71

Figure 4.1: NS-3’s architecture

4.3 High level design

NS-3 differs from other discrete-event network simulator for the following high
level design goals:

• C++ and Python emphasis

The simulators often use a domain-specific modeling language to describe
models and program flow whereas NS-3 uses C++ or Python granting to
the user the full support for each language.

• Callback-driven events and connections

Instead of using specialized “handler” functions that centralize the pro-
cessing of events in each simulation object, NS-3 associates to an event
a callback function. These functions are scheduled to be executed at pre-
scribed simulation times. The use of these callback functions reduces the
compile-time dependencies among simulation objects.

• Flexible core with helper layer

NS-3 provides a powerful low-level API that allows to the users the ability
to tune a proper configuration. On top of this layer there is a set of “helper”
layer APIs that offers easier-to-use functions with default behaviour. The

72 CHAPTER 4. SIMULATOR NS-3

users can mix both low-level API and “helper” API to develop its own
network.

• Emphasis on emulation

The simulation design is oriented towards use cases that allow the simu-
lator to interact with the real world. ns-3 packet objects are stored inter-
nally as packet byte buffers (similar to packets in real operating systems)
ready to be serialized and sent on a real network interface. Several dif-
ferent simulation-in-the-loop and virtual machine integration frameworks
have been developed, and ns-3 experiments have been carried out on wire-
less testbeds.

• Emphasis on software reuse

In NS-3 is possible to create a network to test real application without re-
quiring changes on the application code. This can be done with the use of
Linux containers.

• Alignment with real-world interfaces

The NS-3 nodes are patterned to reflect as much as possible the Linux net-
working architecture. This better facilitates code reuse and improves real-
ism of the models, and makes the simulator control flow easier to compare
with real systems.

• Configuration management

The NS-3 simulator features an integrated attribute-based system to man-
age default and per-instance values for simulation parameters. All of the
configurable default values for parameters are managed by this system, in-
tegrated with command-line argument processing, Doxygen documenta-
tion, and an XML-based and optional GTK-based configuration subsystem.

• Lack of an IDE

The project does not maintain an IDE (Integrated Development Environ-
ment) to configure, debug, execute, and visualize simulations in a sin-
gle application window, such as found in other simulators such as GNS
3 (Graphic Network Simulator 3). Instead, the typical workflow is to work
at the command line and integrate configuration and visualization tools as
needed.

4.4. NS-3’S INTERACTION WITH THE REAL WORLD 73

4.4 NS-3’s interaction with the real world

In this section it is explained the way in which NS-3 can interact with the real
world.

NS-3 is a simulator that allows the users to simulate the behaviour of a network
composed by simulated nodes. These nodes are provided by NS-3 of the follow-
ing features:

• applications to generate traffic

• net devices and channels to move the traffic

In this way all the components of the system, both computing nodes and network,
are simulated but the users can make interact these components even with real
entities.

It is important to highlight the fact that these computing nodes are very simple,
and in particular are simpler than virtual nodes created with some virtual ma-
chine.

In Table 4.1 is represented all the possible configurations available to the user.

Nodes\Networks Real Simulated
Real your computer and network NS-3 TAP

Simulated NS-3 EMU NS-3 native simulation

Table 4.1: NS-3 configurations

With the term real node we indicate a node not emulated by the NS-3 simulator.

In the following subsections let’s look at the different configurations shown in the
previous table.

4.4.1 Real nodes and real networks

When both the network and the nodes are real, NS-3 has no use, so this case is
not relevant for the analysis of NS-3.

Instead in the other three configurations NS-3 plays an important role.

74 CHAPTER 4. SIMULATOR NS-3

4.4.2 Simulated nodes and simulated networks

It is the classic configuration of NS-3. In this case the behaviour of both the nodes
and the network are simulated by NS-3.

4.4.3 Simulated nodes and real networks

This configuration requires the use of nodes simulated by NS-3 and the use of a
real network.
This type of configuration is not very common but still remain useful when used
in particular situations.
NS-3 is used with this configuration for the following purposes:

1. to validate a network model

2. to test a simulated application

When we build a network model that tries to predict the behaviour of a real net-
work we must have some reasons to believe that the results thus obtained are
correct.
In this case we can compare the results obtained using the network model and the
results obtained using a real network.
This process is called model validation and can be accomplished with this con-
figuration.
Another way in which it may be useful to use this configuration is when we want
to test a simulated application.
If the simulated applications can correctly run over a real network means that
these applications are correct.
In either situations, the use cases are addressed by the NS-3 EMU net device.
EMU is from network EMUlation.
Network emulation is a term that refers to the ability to allow the simulator to
inject traffic into a real network and vice versa.

4.4.4 Real nodes and simulated networks

The configuration with real nodes and a simulated network can be very useful to
test real applications without requiring the deployment of a real network that can
be complicated and expensive.

4.4. NS-3’S INTERACTION WITH THE REAL WORLD 75

In this type of configuration we want to run real applications on virtual computers
that talking over a simulated network.
The grade of virtualization of these computers can be very different. Technically,
what we are talking about is platform virtualization.
The platform virtualization can be subdivided in full virtualization and paravirtu-
alization.

4.4.4.1 Full virtualization

In full virtualization a virtual machine environment is designed to completely
simulate some underlying hardware and OS (Operating System) environment.
In this case it is possible to create many virtual machines on the same real ma-
chine. In particular these virtual machines may have different OS than the real
machine OS that hosts them.
For example on a Mac OS system we can create a virtual machine with either
Linux or Windows or Mac OS.
This type of virtualization is a heavyweight system because in this case is sim-
ulated every aspect of the target machine, maintaining the virtual machines so
created isolated from each other.
Hence, the full virtualization has a very high computational cost.
The full virtualization systems available to the user are for instance VMWare and
VirtualBox.

4.4.4.2 Paravirtualization

In paravirtualization is created a virtual machine environment without completely
simulate the underlying system.
This type of virtualization is more lightweight than the full virtualization and it
can be accomplished in two ways:

1. the OS simulated is ported to a virtualization environment

2. the underlying host OS can be used to create the illusion of virtualization
of some parts of the underlying host hardware

The second form of paravirtualization is most lightweight than the first so it is the
most commonly used.

76 CHAPTER 4. SIMULATOR NS-3

The fact that it is lightweight allows to run many instance of virtual (simulated)
nodes in NS-3.
However if we want high performance from the NS-3 network we must combine
raw power with lightweight virtualization. In particular we must use a server-
grade multiple core system running Linux directly and over it to use paravirtual-
ization.
Paravirtualization systems of this kind are for example Linux Containers and
OpenVZ.
This type of solution allows only to create a virtual Linux guest systems on a
Linux host system. This is because these paravirtualization systems exploit some
Linux’s characteristics.

4.4.4.3 NS-3 TapBridge

Full virtualization and paravirtualization schemes may be combined to suit indi-
vidual needs. Since ns-3 is a Linux-based system, it is used a Linux mechanism
to implement the required functionality.
In particular the mechanism used is the NS-3 TAP mechanism. This uses an
ad-hoc net device called TapBridge:
Tap coming from the tun/tap device which is the Linux device driver used to make
the connection from ns-3 to the Linux guest operating system, and Bridge since
it conceptually extends a Linux (brctl) bridge into ns-3.

4.5 Using real applications in NS-3

As we saw in the Subsection 4.4.4 there are two ways to run a real application in
real nodes connected by NS-3 network, full virtualization and paravirtualization.
The choice of which virtualization to use depends on the type of application we
want to run and the computational power at our disposal.
Therefore these factors influence the performance required from the simulated
network.
In this thesis we are testing an application to discover all the capacities of the
links in a path via an Android smartphone and, from the Chapter 2, come to light
that it is important not the value of the capacity of the links but the ratio between
them.

4.5. USING REAL APPLICATIONS IN NS-3 77

Furthermore the machine we want to use to run NS-3 do not have much compu-
tational power.

From these considerations we choose to use a paravirtualization for the NS-3
network. In particular we use Linux Containers to create the virtual machine
environment.

Linux Containers does not create a virtual machine, but rather it provides a virtual
environment (container) that has its own process and network space.

The properties of the container are specified in its “*.conf” file.

These properties consist of:

lxc.utsname the username in the container

lxc.network.type the network virtualization used in the container

lxc.network.flags an action to do for the network. This usually is set to “up”

lxc.network.link the interface used for the real network traffic

lxc.network.name the name of the interface seen in the container

lxc.network.hwaddr the interface MAC address

lxc.network.ipv4 the interface IPv4 address

lxc.network.ipv6 the interface IPv6 address

In this case we want that this container is capable of interacting with the NS-3
network, so we must use for the lxc.network.type a network type called veth, and
for the lxc.network.link an ethernet bridge previously created.

When the network type used is veth, it is created a new network stack where a
peer network device is instantiated and attached, on one side, to the container
and, on the other side, to the ethernet bridge specified in lxc.network.link.

In Figure 4.2 is shown a representation of the container and its connection with
the host OS.

78 CHAPTER 4. SIMULATOR NS-3

Figure 4.2: Container’s connection with the Host OS

In this way we set the container of our application, so now we must create the
NS-3 network and make the application communicate with the real world via the
simulated network.
In particular we want to run in the container the server application because in
this thesis the client lies in an Android smartphone. This means that the NS-3
network must position itself between the container and the real network where is

4.5. USING REAL APPLICATIONS IN NS-3 79

the Android smartphone.

Hence, in the host OS we must create a tap device that NS-3 will use to get
packets from the bridge into its process and we must add this tap device to the
bridge.

Finally we must create and run a properly configured NS-3 network scenario.

In the NS-3 network, the configuration of both the node logically attached to
the container and the node connected with the real network are very interesting.
These two nodes have two NetDevice.

In the node attached to the container the first NetDevice is the TapBridge NetDe-
vice, that is a bridge used to make it appear that a real host process is connected
to a NS-3 net device.

The second NetDevice for this node depends on the type of network we want to
emulate. In our experiments we used only Ethernet networks so the NetDevice
used in this case is the CSMA NetDevice.

In the node connected with the real network we must use a NetDevice for the
communication toward the NS-3 network and an EmuNetDevice to connect this
node, and then the entire NS-3 network, to the outside networks.

The EmuNetDevice is able to send and receive packets over a real network be-
cause it make use of an interface configured in promiscuous mode. In particular
EmuNetDevice opens a raw socket and binds to that interface.

It is performed MAC spoofing to separate simulation network traffic from other
network traffic that may be flowing to and from the host.

In Figure 4.3 is shown a full example of the configuration of the system.

80 CHAPTER 4. SIMULATOR NS-3

Figure 4.3: System’s configuration

Chapter 5

Experiments

In this chapter, we analyze the outcomes of the experiments to evaluate the quality
of the results obtained with this algorithm’s implementation.

The chapter is structured into three parts. Firstly, we analyze the performance of
the simulator NS-3 in different configurations. Secondly, we test our tool using
the configuration of NS-3 chosen. Finally, we show the results obtained in a real
environment.

5.1 Limits NS-3

In this section we will analyze the performance that can be achieved by the sim-
ulator NS-3.

In all our experiments we use on client side a Sony Xperia U running Android
4.0.4 and on server side a generic computer.

We will use NS-3 to simulate a network, so that we can configure the capacity of
each link, and a Linux Container to allow the server side application to interact
with this network.

As we described in Chapter 4, Linux Containers and NS-3 can work together only
in a Linux environment.

This means that if we want to use a computer with a different OS, we must use a
virtual machine running Linux.

In Figure 5.1 is shown the scenario used when we use a virtual machine running
Linux. Figure 5.2 shows the scenario when we use a computer running Linux.

81

82 CHAPTER 5. EXPERIMENTS

Figure 5.1: Network scenario with virtual machine

Figure 5.2: Network scenario with a computer running Linux

The performance of the simulator in these two cases is different. When we use
a computer running Linux we obtain a better performance than when we use a a
virtual machine running Linux.

The interesting thing is that the performance will degrade in both cases even when
the capacity to emulate are relatively low.

In Figure 5.3 we show the results obtained in the first configuration, both down-
load and upload, when the capacity of each link in the NS-3 network is set to
8 Mbps, r = 1 and T S = 45.

It is important to highlight that these experiments are not affected by cross traffic.

5.1. LIMITS NS-3 83

a)

b)

Figure 5.3: Estimations performed using a virtual machine. a) download b) up-
load

In this case the estimations in both download and upload are not reliable. Indeed,
the capacities estimated are barely close to the expected values.

The estimation for the first link is accomplished with the prefix path estimation

84 CHAPTER 5. EXPERIMENTS

technique. The estimations for the other links are made with the target subpath
estimation technique.

Only the first link is correctly estimated. This happens because the prefix path
estimation technique is more robust than the target subpath estimation technique.

The explanation is that the prefix path estimation technique depends on a time
interval bigger than the target subpath estimation technique.

The interarrival time seen at the receiver with the prefix path estimation can be
expressed in the following formula

∆1 =
r (s(p)+ s(m))(T L−1)

b1

Instead the interarrival time seen at the receiver with the target subpath estimation
is the following

∆i =
r (s(p)+ s(m))

b1,i−1
+

s(p)
bi
− s(m)

bi−1

with 2≤ i≤ 5, if T L > 2 then ∆1 > ∆i

Hence, for the simulator NS-3 is easier to emulate the interarrival time ∆1 rather
than ∆i

This explains why the capacity of the first link is correctly estimated.

In Figure 5.4 we show the results obtained in the other configuration, both down-
load and upload, when the capacity of each link in the NS-3 network is set to
8 Mbps, r = 1 and T S = 45.

We can note that despite the network has the same configuration, the results are
different.

In this case we can see that, in both the estimations, we have a first part where
the capacity is correctly estimated and another part where there is a strong over-
estimation.

This means that even in a configuration without using a virtual machine the sim-
ulator NS-3 affects the result of the estimations.

In the following scenarios we use smaller capacity values to be sure that the
simulator does not affect the estimations.

5.1. LIMITS NS-3 85

a)

b)

Figure 5.4: Estimations performed without using a virtual machine. a) download
b) upload

86 CHAPTER 5. EXPERIMENTS

5.2 NS-3 on Linux host

In this section we describe how our tool is exploited, on server side, by a PC and,
on client side, by a Sony Xperia U running Android 4.0.4.
The configuration used in these experiments is that described in Figure 5.2.
We used a configuration without cross traffic to evaluate the results of the algo-
rithm in the ideal case.
More realistic experiments are made in Section 5.3.
It is important to note that in this configuration we can only set the capacity values
of the links in the NS-3 network and not the links L6 and L7.
For these links we can assume that b6 = 100 Mbps and b7 = 25 Mbps because
they are a Ethernet connection and a wireless 802.11g connection respectively.
As a result we will not consider these links because we cannot set their capacity
values.
In the following subsections we test our tool in various scenarios setting r = 1
and T S = 45 if not specified.
The value of the train size can change accordingly to the capacity used in the
network.
The value of the train length is chosen on the basis of the results obtained in [2]
when the smartphone is connected to a 802.11g link.
These scenarios differ for the values assigned to each link in the NS-3 network.

5.2.1 Increasing values

In this scenario with set the capacity of the links to an increasing values.
In particular we set b1 = 0,3Mbps, b2 = 0,5Mbps, b3 = 0,8Mbps, b4 = 1Mbps
and b5 = 2 Mbps.
Figure 5.5 shows the results obtained in this scenario.
As we can see from this figure the estimations in both download and upload can
be considered reliable.
This demonstrates that the tool is able to effectively estimate the capacity of all
the links in a path.
At this point it is clear as in the previous case the results were affected by the
simulator.

5.2. NS-3 ON LINUX HOST 87

a)

b)

Figure 5.5: a) estimation in download b) estimation in upload

5.2.2 Decreasing values

Conversely to what we saw in the previous subsection we set the capacity of the
links to a decreasing values.

We set b1 = 2 Mbps, b2 = 1 Mbps, b3 = 0,8 Mbps, b4 = 0,5 Mbps and b5 =
0,3 Mbps.

Figure 5.6 shows the results of the estimations performed.

The results are the same obtained in the previous subsection.

88 CHAPTER 5. EXPERIMENTS

a)

b)

Figure 5.6: a) estimations in download b) estimations in upload

5.2.3 ’V’ configuration

In this case we set the capacity of the links in the first part to decreasing values
and in the last part to increasing values.

The capacity values are: b1 = 1 Mbps, b2 = 0,75 Mbps, b3 = 0,5 Mbps, b4 =
0,75 Mbps and b5 = 1 Mbps.

This brings together the characteristics of the scenarios presented in Subsection
5.2.2 and Subsection 5.2.1.

In this way the bottleneck will be in the middle of the NS-3 network.

5.2. NS-3 ON LINUX HOST 89

This network configuration will be called for its form ’V’ configuration.

Our tool will use the prefix path estimation technique for the first part of the
path, and the target subpath estimation technique for the last part to estimate the
capacity in this scenario.

Hence, this scenario allows us to test both the techniques used in this algorithm.

In Figure 5.7 are shown the results of our estimations.

These experiments show that even when the probing traffic must pass through the
bottleneck, we can correctly estimate the capacity of the links before this point.

a)

b)

Figure 5.7: a) estimations in download b) estimations in upload

90 CHAPTER 5. EXPERIMENTS

5.2.4 Reversed ’V’ configuration

In this scenario the capacity of the first part of the links is set to increasing values
and the last part to decreasing values.

We set b1 = 0,5 Mbps, b2 = 0,75 Mbps, b3 = 1 Mbps, b4 = 0,75 Mbps and b5 =
0,5 Mbps.

The results are shown in Figure 5.8.

It is clear that both in download and upload the estimations can be considered
reliable.

a)

b)

Figure 5.8: a) estimations in download b) estimations in upload

5.2. NS-3 ON LINUX HOST 91

5.2.5 Train size test

The scenario used in this case was configured with b1 = 8 Mbps, b2 = 6 Mbps,
b3 = 6 Mbps and b4 = 0,2 Mbps.
This scenario is designed to force the use of a train size value greater than 1.
Indeed, in this case the condition of the Corollary 2.3 is respected only with
r ≥ 2.
In Figure 5.9 are shown the results obtained using r = 1 and r = 2.

a)

b)

Figure 5.9: a) estimations with r = 1 b) estimations with r = 2

It is clear that the estimations performed with r = 2 are more reliable than the
estimations performed with r = 1.

92 CHAPTER 5. EXPERIMENTS

This demonstrate the effectiveness of the condition expressed in Corollary 2.3.
It is important to highlight the fact that our tool will independently choose the
right value of train size.

5.3 Internet measurement experiments

Finally, we test our tool in a real Internet path. We installed the server application
on a server of the National Research Council (CNR) and the client on a Sony
Xperia U running Adroid 4.0.4 connected to the wi-fi network of the university
of Pisa.
The CNR is a public organization; its goal is to carry out, promote, spread, trans-
fer and improve research activities in the main sectors of knowledge growth and
of its applications for the scientific, technological, economic and social develop-
ment of the country.
Figure 5.10 shows the path used for these experiments and Table 5.1 shows the a
priori-known capacity values of the links in this Internet path.

Figure 5.10: The Internet path used in these experiments

b1 1 Gbps
b2 1 Gbps
b3 100 Mbps
b4 100 Mbps
b5 25 Mbps

Table 5.1: Capacity values of each link in the Internet path

It is important to highlight the fact that this is an Internet path so it is traversed
by the cross traffic. This means that the cross traffic can affect the estimations.

5.3. INTERNET MEASUREMENT EXPERIMENTS 93

Analyzing the capacity of the links in the Internet path we can see that, in down-
load, to respect the conditions of the algorithm we must use r ≥ 30.
For this reason we start the estimations in download using r = 30.
In Figure 5.11 is shown the results obtained in the estimations in download.

Figure 5.11: Estimations in download of the Internet path

As we can see from the previous figure we do not correctly estimate the first two
links. In particular the capacity estimated in these links is about 500 Mbps.
By further analysis we found that the maximum value of the sending rate of
the sender application is about 500 Mbps. This is the reason why we do not
correctly estimate these links. Furthermore this overestimates the estimations of
the following links when it is used the target subpath estimation.
Instead the other links are correctly estimated the most of the time. Analyzing the
cases where the estimations are not correct we found another interesting feauture.
The incorrect estimations are perfomed using the target subpath estimation, in-
stead the correct estimations are performed using the prefix path estimation.
In this cases we underestimate the capacity so the effect of the incorrect estima-
tion of b1 and b2 is opposed by the cross traffic.
This demonstrates that the target subpath estimation is not robust in the presence
of cross traffic.
Figure 5.12 shows the results obtained in the upload estimations and Figure 5.13
shows the same results but in a zoomed graphic.

94 CHAPTER 5. EXPERIMENTS

Figure 5.12: Estimations in upload of the Internet path

Figure 5.13: Estimations in upload zoomed

The results are very far from the expected values. In many cases the capacity
estimated have negative values.
In this kind of configuration the estimations of b2, b3, b4 and b5 are performed
using the target subpath estimation.
We saw in the download estimations that this type of estimation is strongly af-
fected by the cross traffic.

5.4. CONCLUSIONS 95

In this case we estimate negative values for the capacity, as we can see in Figure
5.13.

5.4 Conclusions

The experiments showed that this tool in an environment free of cross traffic is
able to correctly estimate the capacity of each link in a path.
The estimations are valid as long as the Tailgating Property and the condition in
Corollary Corollary 5.2 are satisfied.
In a real environment, however, there is also the cross traffic. It is unthinkable to
find a path without it.
In these cases we saw that only the prefix path estimation leads up to a correct
estimation. The target subpath estimation is unreliable.
This means that only the estimation in download can be correct because in this
case it is very likely that the bottleneck is at the end of the path.
Hence, in this kind of path it will be used the prefix path estimation.
On the other hand in the estimations in upload the bottleneck is placed at the
beginning of the path.
Hence, the tool will use the target subpath estimation. This will not correctly
esteem the capacity of the links.
Furthermore, the prefix path estimation is affected by the low sending rate of the
server application (about 500 Mbps).
This means that only the links with a capacity lesser than 500 Mbps can be esti-
mated.

5.5 Future researches

Future improvements for this tool mainly involved the target subpath estimation
and the server application.
We must make the target subpath estimation less sensitive to the cross traffic.
Furthermore, the server application must be improved. In particular we must
assure that in download the sending rate is at least 1 Gbps. In this way we can be
reasonably sure that the prefix path estimation will be correct.

96 CHAPTER 5. EXPERIMENTS

In download we saw that in most cases to estimate the capacity of a link is used
the prefix path estimation. In upload it is the exact opposite.
In this case it is used the target subpath estimation. This means that unless we
improve this kind of estimation, the estimation in upload cannot be reliable.

5.5. FUTURE RESEARCHES 97

98 CHAPTER 5. EXPERIMENTS

Acknowledgments

First and foremost, I would like to make a special thanks to my supervisor Prof.
Luciano Lenzini for having proposed to work on the development of a tool on a
smartphone Android.
Deepest gratitude is also due to my other two supervisors, Ing. Alessio Vecchio
and Ing. Enrico Gregori, whose guidance and assistance was very important in
this thesis.
Special thanks also to Alessandro Improta and Nilo Redini for giving me access
to the server at CNR, and Carlo Vallati for helping me with the simulator NS-3.
Certainly, I also want to thank all of my colleagues of the “Red Lab” that have
come and gone in recent months: Giovanni, Enrico, Alessandro, Gloria, Gordon,
Dario and Nino.
Last but not least I want to thank all my friends at Livorno and my family for
supporting me in this years.
Thank you.

99

100 CHAPTER 5. EXPERIMENTS

Bibliography

[1] K. Harfoush, A. Bestavros, J. Byers, “Measuring Capacity Bandwidth
of Targeted Path Segments”, in IEEE/ACM Transactions on Networking
(TON), vol 7, pp. 80-92, Feb. 2009.

[2] F. Disperati, D. Grassini, E. Gregori, A. Improta, L. Lenzini, D. Pellegrino,
N. Redini, “Smartprobe: a Bottleneck Capacity Estimation Tool for Smart-
phones”.

[3] J. C. Bolot, “End-to-end packet delay and loss behavior in the Internet”, in
Proc. ACM SIGMCOMM’93, Sep. 1993, pp. 289-298.

[4] R. L. Carter and M. E. Crovella, “Measuring bottleneck link speed in packet
switched networks”, Performance Evaluation, vol. 27&28, pp. 297-318,
1996.

[5] K. Lai and M. Baker, “Measuring link bandwidths using a deterministic
model of packet delay”, in ACM SIGCOMM’00, Stockholm, Aug. 2000.

[6] K. Lai and M. Baker, “Nettimer: A tool for measuring bottleneck link band-
width”, in Proc. USITS’01, Mar. 2001.

[7] R. Prasad, M. Jain, C. Dovrolis, “Effects of Interrupt Coalescence on Net-
work Measurements”, in Passive and Active Network Measurement (PAM),
vol 3015 of Lecture Notes in Computer Science, pp. 247-256, 2004.

[8] B. M. Leiner, V. G. Cerf, D. D. Clark, R. E. Kahn, L. Kleinrock, D. C.
Lynch, J. Postel, L. G. Roberts, and S. Wolff, “A brief history of the inter-
net”, SIGCOMM Comput. Commun. Rev., vol. 39, pp 22-31, Oct. 2009.

[9] J. Postel, “Internet Protocol”, RFC 791 (Standard), Sept. 1981. Updated by
RFCs 1349,2474.

101

102 BIBLIOGRAPHY

[10] A. Faggiani, E. Gregori, L. Lenzini, S. Mainardi and A. Vecchio, “On the
feasibility of measuring the Internet through smartphone-based crowdsourc-
ing”, in WiOpt, pp 318-323, IEEE, 2012.

[11] E. Gregori, L. Lenzini, V. Luconi and A. Vecchio, “Sensing the Inter-
net through crowdsourcing”, in Proceedings of the Second IEEE PerCom
Workshop on the Impact of Human Mobility in Pervasive Systems and Ap-
plications (PerMoby), May 2013, pp. 248-254.

[12] Y.-H. Chu, S. Rao, H. Zhang, “A case for end-system multicast”, in ACM
SIGMETRICS’00, Santa Clara, CA, Jun. 2000.

[13] J. Jannotti, D. Gifford, K. Johnson, M. F. Kaashoek, J. O’Toole, Jr., “Over-
cast: Reliable multicasting with an overlay network”, in Proc. OSDI 2000,
San Diego, CA, Oct. 2000.

[14] D. Andersen, H. Balakrishnan, M. F. Kaashoek, R. Morris, “Resilient over-
lay networks”, in SOSP 2001, Banff, Canada, Oct. 2001.

[15] J. Stoica, R. Morris, D. Karger, M. F. Kaashoek, H. Balakrishnan, “Chord:
A scalable peer-to-peer lookup service for internet applications”, in ACM
SIGCOMM’01, San Diego, CA, Aug. 2001.

[16] J. Byers, J. Considine, M. Mitzenmacher, S. Rost, “Informed content deliv-
ery across adaptive overlay networks”, in ACM SIGCOMM’02, Pittsburgh,
PA, Aug. 2002.

[17] J. Kangasharju, J. Roberts, K. W. Ross, “Object replication strategies in con-
tent distribution networks”, in Proc. WCW’01: Web Caching and Content
Distribution Workshop, Boston, MA, Jun. 2001.

[18] P. Radoslav, R. Govindan, D. Estrin, “Topology-informed internet replica
placement”, in WCW’01: Web Caching and Content Distribution Work-
shop, Boston, MA, Jun. 2001.

[19] V. Jacobson, “Pathchar: A tool to infer characteristics of Internet paths”.
[Online]. Available: ftp://ftp.ee.lbl.gov/pathchar.

[20] A. Downey, “Using pathchar to estimate Internet link characteristics”, in
ACM SIGCOMM’99, Boston, MA, Aug. 1999.

[21] V. Jacobson, Traceroute. 1989 [Online]. Available: ftp://ftp.ee.
lbl.gov/traceroute.tar.Z.

ftp://ftp.ee.lbl.gov/pathchar
ftp://ftp.ee.lbl.gov/traceroute.tar.Z
ftp://ftp.ee.lbl.gov/traceroute.tar.Z

	Contents
	List of Figures
	Introduction
	A brief history of Internet
	The current Internet
	Portolan Internet Topology Measurement System
	Objective of this thesis
	State of the art
	Nettimer
	Pathchar

	Algorithm
	Basic Definitions
	Assumptions
	Lemmas and Corollaries
	Prefix Path Estimation VS Target Subpath Estimation
	Choice of train size
	Improved algorithm

	Implementation
	System components overview
	Server side
	CapacityServer
	ServerTask
	Scheduler

	Client side
	MainActivity
	MyCoordinator
	PathEstimator
	CapacityEstimation

	Common components
	CapacityReceiver
	CapacitySender
	TrainBuilder

	Examples of execution

	Simulator NS-3
	Simulation models
	Key technologies
	High level design
	NS-3's interaction with the real world
	Real nodes and real networks
	Simulated nodes and simulated networks
	Simulated nodes and real networks
	Real nodes and simulated networks
	Full virtualization
	Paravirtualization
	NS-3 TapBridge

	Using real applications in NS-3

	Experiments
	Limits NS-3
	NS-3 on Linux host
	Increasing values
	Decreasing values
	'V' configuration
	Reversed 'V' configuration
	Train size test

	Internet measurement experiments
	Conclusions
	Future researches

	Bibliography

