
1 
 

 

Università di Pisa 

Facoltà di Ingegneria 

Corso di Laurea Magistrale in Ingegneria Elettronica 

Final work 

 

Design and FPGA implementation  

of a fast clustering algorithm for  

satellite lightning imaging applications 

 
 
 
 

 
 

Session 2012/2013 

  

Nominee: Andrea Lampredi Supervisors: Prof. Ing. Luca Fanucci 

 ……………………………………  …………………………………… 

   Ing. Daniele Davalle 

   ……………………………………… 



2 
 

Summary 
 

Chapter 1 Meteorological satellites ........................................................................................................................................ 7 

1.1 Satellite orbit.......................................................................................................................................................................... 7 

1.1.1 GEO ................................................................................................................................................................................... 8 

1.1.2 LEO .................................................................................................................................................................................... 9 

1.1.3 Polar orbit .................................................................................................................................................................. 10 

1.1.4 MEO ............................................................................................................................................................................... 11 

1.1.5 HEO ................................................................................................................................................................................ 11 

1.2 History of meteorological satellites ........................................................................................................................ 12 

1.3 EUMETSAT ........................................................................................................................................................................... 13 

1.4 Meteosat First Generation (MFG) ............................................................................................................................ 15 

1.4.1 MFG characteristics ............................................................................................................................................... 16 

1.4.2 MVIRI ............................................................................................................................................................................ 17 

1.5 Meteosat Second Generation (MSG) ....................................................................................................................... 19 

1.5.1 Radiometer SEVIRI ................................................................................................................................................ 21 

1.5.2 Radiometer GERB ................................................................................................................................................... 27 

1.6 Meteosat Third Generation (MTG) .......................................................................................................................... 29 

1.6.1 MTG-S ........................................................................................................................................................................... 31 

1.6.2 MTG-I ............................................................................................................................................................................ 34 

Chapter 2 Lightning Imager .................................................................................................................................................... 37 

2.1 Image capture ..................................................................................................................................................................... 41 

2.2 Noise rejection ................................................................................................................................................................... 44 

2.3 Background removal and adaptive threshold ................................................................................................... 46 

2.4 Events detection and on-board processing for FEs ........................................................................................ 49 

2.5 Information addition ...................................................................................................................................................... 52 

2.6 Conversion DT – data ..................................................................................................................................................... 52 

Chapter 3 Clustering algorithm ............................................................................................................................................. 54 

3.1 Hardware and timing requirements ....................................................................................................................... 54 



3 
 

3.2 Definitions ............................................................................................................................................................................ 61 

3.3 Functional requirements .............................................................................................................................................. 63 

3.3.1 Cluster Window ....................................................................................................................................................... 63 

3.3.2 Window number minimization ....................................................................................................................... 64 

3.3.3 Window overlap ...................................................................................................................................................... 65 

3.3.4 Algorithm throughput .......................................................................................................................................... 66 

3.3.5 Output data format ................................................................................................................................................ 66 

3.4 Algorithm implementation .......................................................................................................................................... 66 

3.5 Algorithm optimization ................................................................................................................................................. 70 

3.6 MATlab High level model ............................................................................................................................................. 75 

3.6.1 Expansion strategies ............................................................................................................................................. 75 

3.6.2 Test-vector generation ........................................................................................................................................ 77 

3.6.3 High-level model ..................................................................................................................................................... 80 

3.7 Bit-true MATlab model .................................................................................................................................................. 87 

3.7.1 Adjacency Check ..................................................................................................................................................... 89 

3.7.2 P_Window Check .................................................................................................................................................... 91 

3.7.3 Candidate Window Selection ........................................................................................................................... 92 

3.7.4 Expandability Check ............................................................................................................................................. 93 

3.7.5 Priority Selection ................................................................................................................................................. 102 

3.7.6 Window update .................................................................................................................................................... 102 

3.7.7 Add neighbors ....................................................................................................................................................... 103 

3.7.8 MATlab main code .............................................................................................................................................. 104 

3.7.9 Results ....................................................................................................................................................................... 105 

3.8 From MATlab bit-true to VHDL model ............................................................................................................... 110 

3.8.1 Adjacency Check .................................................................................................................................................. 115 

3.8.2 P_Window Check ................................................................................................................................................. 117 

3.8.3 Candidate Window Selection ........................................................................................................................ 118 

3.8.4 P_Window Selection ........................................................................................................................................... 120 

3.8.5 Expandability Check .......................................................................................................................................... 121 



4 
 

3.8.6 Priority Selection ................................................................................................................................................. 121 

3.8.7 Window update .................................................................................................................................................... 122 

3.8.8 Add Neighbors ...................................................................................................................................................... 122 

3.8.9 RAM memory ......................................................................................................................................................... 123 

3.8.10 Window Load ........................................................................................................................................................ 124 

3.8.11 Global State Machine ......................................................................................................................................... 126 

3.9 Algorithm optimization .............................................................................................................................................. 127 

3.9.1 Window Load and RAM block ....................................................................................................................... 128 

3.9.2 AC_CWS branch .................................................................................................................................................... 129 

3.9.3 PWC_PWS branch ................................................................................................................................................ 132 

3.9.4 Expandability Check optimization.............................................................................................................. 134 

3.9.5 PS and WU ............................................................................................................................................................... 136 

3.9.6 Add Neighbors ...................................................................................................................................................... 136 

3.9.7 Global State Machine ......................................................................................................................................... 137 

3.9.8 Global top level ..................................................................................................................................................... 141 

3.9.9 Timing analysis ..................................................................................................................................................... 143 

Chapter 4 Conclusion ............................................................................................................................................................... 147 

Chapter 5 References ............................................................................................................................................................... 148 

 

  



5 
 

Thanks 

 
Desidero dal profondo del cuore ringraziare tutte le persone che mi 

hanno aiutato ad arrivare a questo momento così fortemente voluto 

da sempre ma che all’inizio sembrava solamente una chimera. 

Primi tra tutti i miei genitori e mio fratello, che mi hanno sempre 

sostenuto e sopportato nei momenti difficili e mi hanno donato la 

forza per non arrendermi mai. Hanno ascoltato le mie sfuriate, hanno 

passato anni a consolarmi e hanno riso e pianto con me, sempre. 

Tutta la mia famiglia che mi ha visto tante volte uscire vittorioso ma 

a volte anche sconfitto.  

La mia splendida fidanzata che ha reso facili e piacevoli tutti i 

momenti più difficili, che mi ha fatto tornare il sorriso anche dopo 

tuffi profondi  e ha permesso che questa tesi arrivasse alla fine con la 

sua grandissima intelligenza e disponibilità. 

I miei compagni di università che hanno fatto in modo di trasformare 

questi anni di università in una bellissima esperienza da vivere a pieni 

polmoni. 

I miei compagni di squadra che, forse, hanno notato solo la parte più 

distruttiva del mio lavoro vedendo spesso, sulla mia faccia, la 

stanchezza di giornate passate sui libri ma che, nonostante tutto, mi 

hanno sempre permesso di ricaricare le pile. 

I miei amici che mi ha sempre incoraggiato in tutto quello che facevo. 

I professori che mi hanno seguito e mi hanno permesso di diventare 

quello che sono adesso. 

Grazie. 

  



6 
 

Introduction 

 

This thesis deals with the implementation of a new kind of clustering algorithm that will be used by a 

Lightning Imager (LI) mounted on ESA meteorological satellites of third generation (MTG). The 

development of this algorithm is commissioned to the Department of Information Engineering by 

Selex ES in cooperation with ESA (European Space Agency). At first, the algorithm is designed to meet 

the stringent timing requirements. Then, the new clustering algorithm is implemented on MATlab and 

VHDL languages.  

The thesis is organized as follows: 

 Chapter 1, Meteorological satellites, introduces the principal orbits used by every kind of 

satellite, the data provided by meteorological missions and the history - past, present and 

future - of meteorology. A particular section is reserved to EUMETSAT and its missions with a 

large presentation of EUMETSAT three generations of satellites:. 

o Meteosat First Generation series. A short resume of history, position, lifetime and 

technical data with a particular section dedicated to the principal instrument on board, 

the MVIRI; 

o Meteosat Second Generation, the active series in orbit around the Earth. It gives details 

about satellite principal instruments, SEVIRI and GERB, and their characteristics; 

o Meteosat Third Generation. A presentation  about the new MTG series that will be soon 

in orbit. It explains which instrument will be on board and which characteristics they 

will have. Also, the difference between MTG-I and MTG-s will shown; 

 Chapter 2, Lightning Imager, exposes what is an imager and the requirements necessary to 

implement this device. Then, it presents the problems during the capturing and which methods 

are used to increase the quality of events detection; 

 Chapter 3 is focused on the LI technology and his most important parts: requirements will be 

analyzed and their feasibility will be evaluated. The next step is the design of the clustering 

algorithm and the work will be concluded with three output codes: a MATlab High-Level 

(MHL) model, a MATlab Bit-True (MBT) model and a prototype of VHDL model for hardware 

implementation. 
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Chapter 1  

Meteorological satellites  
 

In the modern meteorology, the satellites have several and fundamental functions: thanks to their 

continuous presence in orbit around the Earth, the weather is always monitored to find new 

meteorological phenomena. Furthermore, these satellites can pick up a lot of data about temperature, 

wind, NOx gas, pollution, both on land and sea. Then, this great quantity of data is sent to the ground 

stations: they provide weather previsions (with model of meteorological forecast), update conditions 

about Ozone hole, Earth’s pollution and many other applications.. 

 

1.1 Satellite orbit 
Satellites can work on several orbits and the orbit depends on the kind of mission.  

 

Figure 1.1: Kinds of orbit for meteorological satellites. 
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The orbits for satellites of commercial telecommunication's missions are usually GEO (Geostationary 

Earth Orbit) but, recently, there are some new satellites on LEO (Low Earth Orbits) and inclined orbit. 

On the other hand, meteorological satellites use geostationary and polar orbits. There are also many 

different possible orbits like MEO (Medium Earth Orbits) or HEO (Highly Elliptical Orbits). 

In the following, a classification and a description of the different meteorological satellite orbits are 

presented. 

 

1.1.1  GEO  
The Geostationary Earth Orbit (GEO) was introduced in 1945: Arthur C. Clarke, a lieutenant of Royal 

Air Force (RAF), published a work (“Extraterrestrial Relays”)  on the English magazine “Wireless 

World” in which he talked about artificial satellites in orbit around the Earth [1]. He proposed only 3 

satellites, synchronous with Earth rotation (geostationary), which can be used like “radio gate” in the 

space and have warranted communication for the whole planet. 

Today, Geostationary satellites orbit on 35800 km around the Earth: this height is called 

“Geostationary orbit” because the time of revolution around the Earth is identical to the time of Earth's 

rotation (23 hours, 56 minutes and 4 seconds); so they are stationary relative to the surface (satellites 

rotate in the same direction of Earth’s rotation). This type of satellites is also called geosynchronous. 

This is why this kind of satellites is usually used for meteorological forecasts: at 35800 km, a single 

satellite can scan about a third of all surface and it can continuously follow atmospheric phenomena 

like cyclones and hurricanes. Furthermore, geostationary satellites are usually used for device which 

have point-to-point or broadcasting communication because antennas of these devices are simple and 

fixed to the same direction: they don’t need a continuous calibration towards the satellite. 

 

 

Figure 1.2: Revolution period around the Earth of geostationary satellite. 

 

5 satellites are needed in order to cover all the Earth’s surface. At the moment, there are lots of  

geostationary satellites [2]: 
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 METEOSAT for Europe; 

 GOES for USA; 

 MTSAT  for Japan; 

 Fengyun-2 for China; 

 GOMS for Russia; 

 KALPANA for India. 

A geostationary orbit must stay on the same plane of the Equator; so satellites have a decreasing view 

towards poles. Polar and sub-polar area are difficultly covered by this kind of satellites because 

antennas could be pointed under the horizon line. 

Typical parameters of GEO: 

 Height above equator: 35,786 km; 

 Orbit radius: 42,155 km (Orbit circumference: 264,869 km); 

 Orbital velocity: 11,066 km/h = 3.07 km/s; 

 Latitude coverage: between 75° North to 75° South. 

As already mentioned, GEO satellites have significant advantages: just 5 GEO satellites are sufficient to 

cover all the communication on the planet.  In addition, GEO satellites have a fixed position relatively 

to the Earth surface, which eases the satellite pointing for ground devices. 

This orbit has also some cons. First of all, satellites on this orbit need expensive missions for their 

launch, because of the high distance from the surface.  They usually use multistage launcher (often 

Ariane vehicles were used in the past for these missions, [21] ) . Moreover, the propagation of radio 

waves has high delay, 0.12 seconds, still due to the high satellite distance. This delay is satisfactory for 

broadcast communication but hardly sufficient in telephone communication.  

 

1.1.2  LEO  
When a satellite orbit around the Earth at an altitude up to 2000 km, the orbit is called “Low Earth 

Orbit” (LEO). Typically, LEO’s satellites work between 300 and 800 km. Under 300 Km, because of high 

density of gasses in atmosphere, the high friction against them decelerate the satellite resulting in a 

fast orbital decay. Too much energy (high velocity) is necessary to maintain the satellite in orbit. 

Above 2000 Km, there is the “Van Allen belt” (an area full of free charges held together by the Earth’s 

magnetic field) which can provoke malfunction in the electronic circuits on board due to the high 

exposition to radiations [1]. 
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As defined by Keplero’s laws, LEO’s satellites orbit near the planet with very high velocity, about 

30000 Km/h, and make a full revolution around Earth in 90 minutes. Almost all of space voyagers had 

place in low orbit and the spatial station stay, even today, in this orbit too (Saljut, MIR and 

International Space Station, [20]). 

Compared to GEO satellites, LEO’s satellites orbit near the surface: it allows communication with low 

delay (20–25 ms, like some terrestrial communication) so they are used for remote sensing and 

military missions. Furthermore, the cost of LEO’s launch is cheaper than GEO’s launch. LEO’s satellites 

are also suitable for the communication with the surface: low distance allows low power and simple 

antenna for communication. 

On the other hand, low orbit has many cons. First of all, LEO’s satellite are visible by the ground station 

only for few minutes over the horizon and, during this time, it’s very fast. The rest of time, the satellite 

is useless for that station. Obviously, because of his velocity, the ground station antenna must be 

oriented every time towards satellite in order to maintain the communication. Moreover, the 

communication is affected by an high Doppler effect: this effect must be compensated automatically by 

electronic circuits on board but they increase the complexity of the satellite’s system.  

In the past, LEO satellites were almost unused because of their short view time, but recently they are 

largely used thanks to the high number of in-orbit satellites on several orbital planes: today, with 

about 100 satellites the planet is fully covered and communication is continuously allowed. 

LEO satellites are used mainly for mobile telephone with full planet’s coverage like Globalstar or 

Iridium. 

If the orbit of these systems is very inclined, it becomes polar orbit. 

 

1.1.3  Polar orbit 
Polar satellites orbit around Earth at an altitude of 800 km. A single satellite stays on the same area of 

surface for only twice a day: more than one satellite and a system of coordination between them are 

needed for meteorological observation. At the moment, meteorological satellites on polar orbit are [2] 

: 

 METOP by EUMETSAT for Europe; 

 NOAA and QuikSCAT for USA; 

 Meteor for Russia; 

 Fengyun-1 for China. 
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Polar satellites guarantee a better vision of planet than GEO’s satellites: polar satellites can observe 

even polar areas and that’s why they are used for missions of remote sensing and surveillance.  

Polar satellites have orbits inclined of about 90 degrees with respect to the Equator plane and, usually, 

they are sun-synchronous, i.e., (the same area is scanned by the same satellite at the same moment of 

the day, during every season). Therefore, while the satellite scans from North to South on his orbit, the 

planet makes his rotation orbit and the result is that satellite scans all the surface, step by step. 

Because of these characteristics, polar satellites are perfect to scan the evolution of meteorological 

phenomena in the same condition and compare these for long time periods.   

 

 

Figure 1.3: Full disc scan by polar orbit. 

 

1.1.4  MEO  
The “Medium Earth Orbit” (MEO) is a circular orbit at an altitude of about 10000 Km. Their orbital 

period is about 6 hours and the maximum period of over-horizon time is about some hours; with 10-

12 satellites (on 2-3 orbit planes) the planet is fully covered. The most famous system based on MEO is 

the Global Positioning System (GPS), a system for accurate positioning on the planet surface. 

 

1.1.5  HEO  
The “Highly Elliptical Orbit” (HEO) was used for the first time by Russia to create communication with 

sub-polar zones which are isolated for GEO’s satellites. HEO have three geometrical characteristics: 

 Perigee, the lowest altitude point in the orbit, at about 500 km; 

 Apogee, the highest altitude point in the orbit, at about 50000 km; 

 Elliptic orbit at 63.4 degrees with respect to Equator. 
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In HEO, Earth stays in one of the two foci of the elliptical path. For this reason, the satellite stays for 

two third of its period near the Apogee: so, with a right positioning of the Apogee point, the area of 

interest can be  rightly covered. Obviously, when the satellite is on the Perigee, the coverage of the 

affected zone is not guaranteed: so, more satellites are needed for a sufficient coverage, all together on 

the same orbit and with an accurate time distance.  An example of this orbit is the system Molniya, 

used to cover Siberia. HEO has the same cons of GEO and  LEO: for high distance (Apogee), 

communication have high delay and need high power (like GEO) and, for the high velocity, there is an 

high Doppler effect (like LEO). 

 

1.2  History of meteorological satellites  
The first satellites in the world, Sputnik, was sent by Russia in 1959 but it didn’t have meteorological 

instrument on board. The first satellite with meteorological instruments on board was Vanguard-2, in 

1959. This satellite, by NASA, was destroyed during the first part of mission, so its data was not 

available. First images of the Earth were transmitted in 1960 by TIROS-1 (Television and Infra Red 

Observation Satellite), again by NASA: this satellite had two cameras and was used for only 78 days. 

These kinds of satellites have become important since 1961, when images of the hurricane “Carla” 

helped to save a lot of people in Gulf of Mexico. 

In 1964 the first satellite of Nimbus series, Nimbus-1, introduced some news about technology: it was 

the first satellite stable on all the 3 axes, so it could point always towards the same direction, and it 

was the first polar sun-synchronous satellite. 

In 1969, Russia started its meteorological satellites program and, in the same year, Nimbus-9 was sent 

in orbit: this satellite had on board measure’s instruments to pick up data about temperature, 

pressure, wetness.. 

In 1974 USA sent its first  GEO’s satellite, SMS-1 (Synchronous Meteorological Satellite), and, in 1977-

1978, also Europe and Japan sent their first GEO’s satellite (Meteosat for Europe and GMS, 

Geostationary Satellite Meteorological, for Japan). With Meteosat-1, some wavelengths, typical of 

water vapor (6.7 mm), were analyzed for the first time. In the 80’s, also India sent its first GEO’s 

satellite: with this one, the planet was fully covered and meteorological data were available 24/24 

hours. 

Now, the research will be focused about forecasting over European continent and about European 

missions in the past, in present day and in the future. First of all, it is necessary to know which 

organization is responsible of European meteorological missions.  
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1.3 EUMETSAT  
EUMETSAT [3] (European Organization for the Exploitation of Meteorological Satellites) is an 

international organization created in 1986 to handle European meteorological satellites. The 

organization manages launch and control of satellites and their data transmission for meteorological 

and climate conditions. EUMETSAT is composed by 27 European states: Austria, Belgium, Croatia, 

Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Leetonia, 

Luxemburg, Norway, Netherland, Poland, Portugal, UK, Romania, Slovakia, Slovenia, Spain, Sweden, 

Switzerland, Turkey. Also EUMETSAT has cooperation accord with Bulgaria, Iceland, Lithuania and 

Serbia.  

 

Figure 1.4: EUMETSAT members and country cooperating. 

█  █  Member states. 

█  █  Cooperation accord states. 

 

As already said in the Sections 1.1.1 and 1.1.3, EUMETSAT’s meteorological satellites are of two kinds: 

geostationary  (Meteosat) and polar (Metop). Other similar satellites are handled by NOAA, the USA 

agency; EUMETSAT works together with other international agencies, (included NOAA), to distribute 

meteorological information and exchange on board instrument’s technologies.   

In the past, geostationary satellites of EUMETSAT were of two kinds and a third will be able soon: 

 MFG (Meteosat First Generation); 

 MSG (Meteosat Second Generation); 
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 MTG (Meteosat Third Generation). 

In order to understand when every satellite must be launched, it is necessary to know that every 

satellite has a programmed lifetime: for old satellites, lifetime is about 5 years, instead for new 

satellites it can also be 7-10 years. So, change of satellite’s generation overlaps with the end of old 

satellites’ nominal lifetime.  

 

 

Figure 1.5: Lifetime of EUMETSAT's satellites. 

 

In the image it is possible to see that there are at least two active satellites in orbit: one on position 

0°N-0°E and one on position 0°N-9.5°E with backup functions. There were only a data gap of 20 

months between the failure of Meteosat-1 and the launch of Meteosat-2. 
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1.4 Meteosat First Generation (MFG) 
In 1968, the nations of ESRO (European Space Research 

Organization), now  called ESA (European Space Agency), started 

studies of satellites’ application, including weather satellites. 

Meteosat introduced a global system of geostationary platforms 

capable to observe in near real-time  atmospheric condition and 

weather around the equator. In September 1972 ESRO officially 

adopted the Meteosat program and launched the first prototype of 

MFG, Meteosat-1, in November 1977, followed, in August 1981, by 

Meteosat-2, [17],[22] .  

Meteosat-1 was the first European satellite to send images of the Earth surface from a geostationary 

orbit: obviously, they were in black and white but the definition was good. In Figure 1.7, the first image 

of Meteosat-1, clouds and continent edges are perfectly defined and it is quite easy to distinguish 

desert, ocean, rainforest and polar territory. 

 

Figure 1.7: First image from an EUMETSAT's satellite (Meteosat-1, 9 December 1977). 

 

The imager of Meteosat-1 failed prematurely in November 1979. Meteosat-3 was an old engineering 

prototype, similar to Meteosat-2, which was launched in 1988 after refurbishment to successfully fill 

the gap between Meteosat-2 and Meteosat-4. Between 1991 e 1995, Meteosat-3 was repositioned over 

Figure 1.6: MFG satellite. 



16 
 

West Atlantic to replace temporarily GOES services[22]. Meteosat-4, Meteosat -5 and Meteosat-6 were 

launched between 1989 and 1993. These three satellites were part of MOP (Meteosat Operation 

Program) missions: Meteosat-4 was MOP-1, Meteosat-5 was MOP-2 and Meteosat-6 was MOP-3. 

Meteosat-5’s primary mission was a routine service IODC (Indian Ocean Data Coverage) to provide 

data over Indian Ocean. Meteosat-6 had the RSS (Rapid Scanning Service) function: it allowed a rapid 

scan of the full disc of the Earth. [22] 

In May 1991, EUMETSAT decided to establish an independent ground segment, to replace the system 

created by ESA in 1977. This was the start of the Meteosat Transition Program (MTP), which covered 

the phasing out of the MOP to the begin of the Meteosat Second Generation program. On 15 November 

1995, the control of Meteosat satellites in orbit passed to EUMETSAT. Meteosat-7, the last satellite of 

series, was launched in orbit on 2 September 1997and it is still operative over the Indian Ocean. [5] 

LIFETIME OF MFG SATELLITES 
Satellite Prime date Retirement date 

Meteosat-1 09/12/1977 25/11/1979 
Meteosat-2 16/08/1981 11/08/1988 
Meteosat-3 11/08/1988 31/05/1995 
Meteosat-4 19/06/1989 04/02/1994 
Meteosat-5 02/05/1991 16/04/2007 
Meteosat-6 21/10/1996 15/04/2011 
Meteosat-7 02/09/1997 2016 (still operating) 

Table 1.1: Lifetime of MFG series. 

 

1.4.1  MFG characteristics 
MFG satellites were 2.1 meters in diameter and 3.195 meters long; their original mass in orbit were 

282 Kg but the propellant (hydrazine) used for orbit-keeping added 40 Kg at the beginning of mission. 

In orbit, the satellite was spin-stabilized; it spun at 100 rpm around its principal axis, which was 

almost aligned to the Earth's rotational axis. [4] 

Meteosat MFG was composed by a main cylindrical body, with a drum-shaped section (diameter 1.3 

m) on the top. Others two cylinders were stacked concentrically. The main body contained most of the 

satellite systems like the radiometer. Its external surface was covered with 6 solar cells (more than 

8000 cells) used to produce electrical supply for a total power of 200 W (average). These panels had 

also sensors, thrusters and external connectors. The cylindrical surface of the smaller drum-shaped 

section contained an array of radiating dipole antenna elements; its function was to ensure that 

transmissions (in S-band) would always directed towards the Earth. The two cylinders on top of the 

satellite were toroidal pattern antennas for S-band and low UHF respectively. 
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During the launch, an apogee boost motor with solid propellant was mounted on the bottom of the 

satellite. This was used to move the satellite from the position post-launch, highly elliptical orbit, into 

geostationary orbit. When the motor was used, it was jittered to leave a gap and have a better cooling 

of the radiometer infrared detectors. [22] 

 

Figure 1.8: Structure of a MFG satellite. 

 

MFG’s primary mission was to capture high resolution images of Indian ocean. The main instrument of 

MFG was the MVIRI (Meteosat Visible and Infra-Red Imager), a high resolution radiometer with three 

specific bands. MVIRI had a weight of 63 Kg and a height of 1.35 m; it provided the principal data of 

Meteosat system, in form of radiances from visible and infrared parts of electromagnetic spectrum. 

These radiations were gathered by a reflecting telescope, with a primary mirror diameter of 400 mm 

and a secondary mirror diameter of 140 mm. 

MVIRI’s procedure of data capture was easy: it acquired images and data from full Earth disc during a 

period of 25-minutes with a max resolution at Nadir of 5 Km in IR and 2.5 Km on Visible; this period 

was followed by others 5 minutes necessary to reposition the satellite. So, a complete set of full Earth 

disc images was available every 30 minutes. A great pros of this kind of satellite was that instruments 

on board allowed continuous imaging of the Earth. Furthermore, MVIRI provided data for many 

researches and meteorological applications, as a detailed control of atmosphere’s state; these data, 

with the past ones of the atmosphere, can be used to make a prediction of future conditions. 

 

1.4.2  MVIRI 
Radiometer MVIRI operated in three spectral bands, important for images distribution [6] : 
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 Visible band (VIS). It was positioned between 0.45 and 1.0 µm and it 

was used for imaging during daylight. This band corresponded to 

peak of solar irradiance. This channel had a spatial resolution of 

2.5 x 2.5 km2 ; 

 

 

 

 Water Vapor absorption band (WV). It was positioned between 5.7 

and 7.1 µm and it was used to measure quantity of water vapor 

(wetness) in the upper troposphere. It was easy to measure it 

because atmosphere is very opaque if water vapor is present but it 

is transparent if air is very dry. This channel had a spatial 

resolution of 5 x 5 km2 ; 

 

 Thermal Infrared band (IR). It was positioned between 10.5 and 

12.5 µm and it was used for imaging by day and night to 

determinate temperature of cloud tops and ocean’s surface. In fact 

re-emission of atmosphere and surface‘s radiation peak is 

proportional to their temperature. This channel had a spatial 

resolution of 5 x 5 km2.  

 

 

Every channel had a FOV of 18°.  

Figure 1.9: MVIRI visible 
band. 

Figure 1.10: MVIRI water 
vapor absorption band. 

Figure 1.11: MVIRI infra-red 
band. 
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1.5 Meteosat Second Generation (MSG) 
In 2002, the first MSG satellite was launched. Today, there are 4 active satellites in orbit: Meteosat-8 

and Meteosat-9 over Europe, Meteosat-7 over Indian ocean. Meteosat-10, launched in 2012, is the 

prime operational geostationary satellite (0°N, 0°E). Meteosat-7, launched in 1997, is the last of MFG 

satellites; it operates on Indian ocean and it is used to fill the data gap over this area. The last MSG 

satellite, MSG-4 (will became Meteosat-11), is in design phase and it will be launched in 2014. 

Meteosat-8, launched in 2002, is a backup-data satellite; furthermore, Meteosat-8 has function of 

Rapid Scan: it sends an image of Europe and North Africa (between 15° lat. and 70°lat. North) every 15 

minutes. These images are useful to follow high-impact meteorological phenomena. Meteosat-9, 

launched in 2005, provides a Rapid Scanning Service, a fast sequence of images, every 5 minutes, of 

Europe, Africa and adjacent zones [4] . 

MSG satellites send an images of 

Earth in 12 different spectral 

channels every 15 minutes. These 

data are used to monitor high 

impact phenomena to save lives or 

properties; an early detection of 

these phenomena has just saved 

thousands of lives and a lot of 

damages were just avoided to 

industries, transports, agriculture 

and energy. 

This kind of satellite has a main 

cylindrical body, 3.2 meters of 

diameter and 2.4 meters of height, it 

has a total weight of 2040 kg and it 

is spin-stabilized with a rotation 

speed of 100 rpm. Its energy 

consumption is 600 w. It is 

composed by three principal parts: measuring central system, communication system and support-

movement platform.  

Figure 1.12: parts of MSG satellite. 
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Figure 1.13: Comparison between MFG and MSG. 

 

Each MSG satellite has an active lifetime in orbit of about 7 years. The current policy is to keep in orbit 

two operable satellites and launch a new satellite when the fuel in the eldest one is almost over. 

 

Lifetime of MSG satellites 
Satellite Nominal fuel lifetime Position 

Meteosat-8 28/08/2002 – until 2019 3.5° E/36 000 km 
Meteosat-9 21/12/2005 – until 2021 9.5° E/36 000 km 

Meteosat-10 05/07/2012 – until 2022 0° E/36 000 km 
Meteosat-11 2015 – until 2023 -/36 000 km 

Table 1.2: Nominal fuel lifetime and position of MSG series. 

 

Since first satellite, instruments on board have become more particular and specific. Today, every 

meteorological program has its complex instruments, which try to provide more specific data of 

atmosphere and surface. 

Main functions of Meteosat satellites are detecting and predicting high impact meteorological 

phenomena up to 6 hours. These satellites pick up atmospheric and surface information with an 
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instrument called radiometer. MSG satellites in orbit have two radiometer on board: SEVIRI (Spinning 

Enhanced Visible and Infra-Red Imager) and GERB (Geostationary Earth Radiation Budget).   

 

1.5.1  Radiometer SEVIRI 
The principal radiometer on MSG series is called SEVIRI (Spinning Enhanced Visible and Infra-Red 

Imager). It is a new generation of 

geostationary orbit instrument for imaging 

and sounding. SEVIRI measures a physical 

variable called Radiance: it is a flux density of 

electromagnetic radiation for solid angle (it is 

just an intensity of electromagnetic radiation 

measured in a specific frequency band); these 

radiations are kept up by the telescope, 

channels are separated by mirrors on the 

telescope’s focal plane and then they are 

focalized on detectors. SEVIRI uses a bi-

dimensional scansion that combines satellite 

and on-board-mirrors rotation: with this 

movement, it scans Earth’s surface every 15 

minutes on 12 different spectral channels to 

provide data about atmosphere, temperature, 

clouds and surface. At each satellite 

revolution, three images lines are acquired: it 

has a scan capability of 22° N-S and 18° E-W 

[23]. A full Earth’s disc image is created in about 12 minutes; others 3 minutes are used to position the 

mirror on its initial position and to recalibrate it with a black-body on its optical path [16]. In 

particular, SEVIRI has an HRV channel (High Resolution on Visible) with max resolution of 1 Km, 

which is used to predict high-impact meteorological phenomena in local and extended area. 

 

SEVIRI’s primal functions are [18] : 

 

 Monitor convective storms, like thunderstorms; they are usually accompanied by strong winds and 

heavy rainfalls (or hail) and they can create problems to people and properties on Europe and 

Figure 1.14: Radiometer SEVIRI on MSG satellite. 
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Africa. SEVIRI allows to monitor this kind of weather phenomena from the beginning and to follow 

it with a continue scan of surface: it is fundamental to issue timely warnings. In the image, 

convective storms are shown like red areas. 

 

 

Figure 1.15: satellite’s image of convective storm over Italy and France. 

 

 Monitor volcanic ash clouds. This capacity is extremely important to manage air traffics 

because this kind of clouds are very dangerous for airplane’s engines: when a plane fly thought 

volcanic ash clouds, ash can enter in airplane’s engines and can stop them. Data about volcanic 

ash are sent to London and Toulouse VAAC (Volcanic Ash Advisory Centers) which are 

responsible to warnings advisor for air traffic. New SEVIRI’s algorithms will soon allow to 

evaluate height, effective radius and others parameter of volcanic ash clouds. 

 

 

 Monitor fog. With the combination of several techniques, Meteosat allows a continuous 

monitoring of fog’s distribution. This information is still fundamental for air traffic, but for 

principal road networks and shipping routes too. In the image, the black indicates thick fog; 

lighter gradients indicate lower intensity of fog. Grey areas are no-fog zones. 
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Figure 1.16: Image of fog over Italy. 

 

As stated previously, SEVIRI scans 12 spectral channels on 3 bands [2] [16] : 

CHANNEL NAME 
SPECTRAL BAND CHARACTERISTICS (µM) 

ΛMIN ΛCEN ΛMAX 

1 VIS0.6 0.56 0.635 0.71 

2 VIS0.8 0.74 0.81 0.88 

3 NIR1.6 1.50 1.64 1.78 

4 IR3.9 3.48 3.90 4.36 

5 WV6.2 5.35 6.25 7.15 

6 WV7.3 6.85 7.35 7.85 

7 IR8.7 8.30 8.70 9.1 

8 IR9.7 9.38 9.66 9.94 

9 IR10.8 9.80 10.80 11.80 

10 IR12.0 11.00 12.00 13.00 

11 IR13.4 12.40 13.40 14.40 

12 HRV Wide band (between 0.4 and 1.1 µm) 
Table 1.3: 12 SEVIRI's channels with name and wavelengths. 
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Every channel is accuracy positioned to a specific belt of frequencies; this is because every belt allows 

to provide information about specific phenomena. Let’s analyze every function’s band. 

Wavelengths of Visible channels are 4, one in high resolution (HRV); they provide information about 

the quantity of sunlight reflected by Earth and atmosphere. Channels are used to detect clouds, 

identify their composition and conditions of the surface (snow, water, mountain, flora,….): all this data 

was used to create images of the planet. These kinds of images are easy to read because human eyes 

are sensible to the same kind of light (just visible). However, these channels are able to provide data 

only during the daylight; indeed, during night, these channels are useless. In the images, four visible 

channels, in order from left to right (channels 1,2,3 and 12); the last image is of the Wide Visible Band: 

 

 

Figure 1.17: Images of the 4 visible channels of SEVIRI. 

 

Infra-Red channel provide information about radiations issued by Earth; data are available 24/24 

hours. With these channels, satellites detect temperature of surface and clouds to estimate, for 

example, the altitude. Some of these IR bands have the same wavelengths of some important gasses in 

atmosphere, like ozone and carbon dioxide; so, they are used to pick up information about gasses 

concentration and clouds’ composition. All the six channels on IR Band is shown, in order from top left 

to bottom right (channels 4,7,8,9,10 and 11), in images: 
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Figure 1.18: Images of the 6 infra-red channels of SEVIRI. 

 

 Water vapor channels are positioned in water vapor’s principal absorption bands. In this band, SEVIRI 

gives few information about surface but a lot about distribution of water in atmosphere, so, it can 

determinate the presence of clouds, the index of wetness and the intensity of winds. In images, two WV 

channels (channels 5 and 6): 

 

 

Figure 1.19: Images of the 2 water vapor channels of SEVIRI. 

 

With these data, SEVIRI allows to create Earth images from the space with a great resolution. 

In the Visible band, objects in these images have a color proportional to their reflection capacity: light 

colors for high reflection capacity, dark color for low reflection capacity; so it is easy to indentify 

clouds (and storms) and characteristics of surface like desert, mountain, ocean,.. 
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Figure 1.20: Clear satellite image of visible band over Europe. 

 

The images in Infra-Red channels instead give information about temperature: dark colors mean cold 

objects and light colors mean hot objects. So, clouds should be black and the surface should be white; 

but often, to have a better reading and a better comparing with visible images, IR images are displayed 

in inverted colors. 

 

 

Figure 1.21: Clear satellite image of infra-red band over Europe. 
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Sometimes, to mix information from several channels, it is possible to create composed images: Red, 

Green and Blue (RGB) colors are associated to intensity of three different channels. RGB are usually 

used to underline particular phenomena. In the image, white are used for clouds (cyan’s gradients for 

high ice-clouds and red’s gradients for rain-clouds). Surface with flora is green because of high 

reflection capacity, deserts are ocher and seas are dark because of very low reflection capacity in all 

channels. 

 

 

Figure 1.22: RGB image of Europe 

 

1.5.2  Radiometer GERB 
GERB [7] (Geostationary Earth Radiation Budget) is a radiometer used to study climate and its 

evolution; it provides information about radiations on the top of atmosphere within a large IR-band. In 

this band, the information provided are about clouds and water vapor, forecasting and climate 

changes. GERB is the first radiometer that gives this kinds of information in a geostationary orbit 

because previous radiometer was used in LEO. On GEO, it is useful to analyze climatic evolution 

through clouds and water vapors. Radiometer provides information of full disc Earth every 15 minutes 

with a spatial sampling of 45x40 km2 at nadir. It has an height of 25 kg and power consumption of 

35 W. Radiations provided by GERB is much variable in function of solar heating. Earth’s radiation is 
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detected by a thermo-elastic detector array (Bolometer) of 1x256 pixels, designed to scan full Earth’s 

disc (18° FOV) in North-South direction: 

 

Figure 1.23: Single strip 1x256 pixels detected by GERB. 

 

Every N_S scan is limited to a strip of 40 ms during MSG rotation so, a full coverage of the disc is 

provided by a continuously FOV from West to East and back again. The full Earth coverage is complete 

every 15 minutes. 

GERB is composed by two meaning parts: the IOU (Instrument Optical Unit) and the IEU (Instrument 

Electronic Unit). 

IOU is very compact 56x35x33 cm3 and is composed mainly by: 

 The telescope: a typical astigmatic system with three mirrors; 

 A de-scanning mirror: it is used to hold the image on the target during the rotation of satellites 

around its axis. It has a continuously rotation of 50 rpm (rotation per minute), in the opposite 

direction of satellite, during the scan period of 40 ms; 

 A wideband detector array. It is a linear thermo-electric array, 1x256 pixels, with its amplifier 

and processing circuitry, including ASIC and DSP; 

 A quartz-filter used for change the wavebands (total and short wave) to provide different kind 

of data; 

 Calibration block, like SEVIRI. It is composed by a black body on optical path, a solar diffuser to 

monitor the reflectance of the mirrors, a quartz-filter transmittance and a detector adsorption; 
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 A solid-optical-bench structure. 

These principal parts of IOU is shown in the image: 

 

Figure 1.24: Main part of IOU in the radiometer GERB. 

 

Instead, the IEU is a small unit, 22x27x25 cm3, used to receive detected data and pass them, in a 

specific format, to the spacecraft’s data handling system. Furthermore, IEU gives power to all the 

instrument’s component.  

 

1.6 Meteosat Third Generation (MTG)  
MTG  (Meteosat Third Generation) is a new series of satellites that will take 

place MSG series in a few years. MTG satellites are of 3-tonne class. 

 

 

Figure 1.25: timeline of operating satellites and MTG series. 
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MTG series is composed by 6 satellites with a lifetime of 8.5 years, first one ready for the launch in 

2018; this series guarantee information about meteorological phenomena up to 2030. MTG systems 

start with cooperation between EUMETSAT and ESA; this one has already contributed to the initial 

research about technologies of these satellites.  

In orbit, the six satellites will be divided in parallel positioned couples: all will be stabilized on 3 axis 

and their instrument will always point towards Earth; first two satellites will be positioned in 

geostationary orbit, between 10°E and 10°W above the Equator. The scan of full disc will be available 

every 10 minutes on 16 several channels, 8 in band of solar spectrum with max resolution of 1 Km and 

8 in band of IR spectrum with max resolution of 2 Km. Rapid Scan function will analyze Europe every 

2.5 minutes with an additional 0.5 Km max resolution channel in visible band. In details, main 

instruments on MTG satellites are [9] [10] [19] Errore. L'origine riferimento non è stata trovata.: 

 Full Disk High Spectral resolution Imagery (FDHSI):   Full Disk High Spectral resolution Imagery (FDHSI):  

o global scales (Full Disk) over a repeat cycle of 10 minutes; 

o 16 channels at spatial resolution of 1 km (8 solar channels, Visible band) and 2 km (8 

thermal channels, IR band);  

 

 High spatial Resolution Fast Imagery (HRFI):  

o local scales (25% of Full Disk, Europe area) over a repeat cycle of 2.5 minutes;  

o 4 channels at high spatial resolution: 0.5 km for 2 solar channels (Visible band), 1.0 km 

for 2 thermal channels (IR band); 

 Infra-Red Sounding (IRS): 

o global scales (Full Disk) over a repeat cycle of 60 minutes; 

o spatial resolution of 4 km, providing hyper-spectral soundings at 0.625 cm-1 sampling 

in two bands: 

  Long-Wave-IR (LWIR: 700 – 1210 cm-1 with about 820 spectral samples) 

  Mid-Wave-IR (MWIR: 1600 – 2175 cm-1 with about 920 spectral samples)  

 Lightning Imagery (LI): 

o global scales (80% of Full Disk) detecting and mapping continuously the optical 

emission of cloud-to-cloud and cloud-ground discharges;  

o Detection Efficiency (DE) between 90% (night) and 40% (overhead sun); 

 UVN Sounding, implemented as GMES Sentinel-4. 

This generation of satellites will be divided in 2 principal missions: MTG-I (Imager) and MTG-S 

(Sounder). Here a timeline of the missions in MTG series: 
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Figure 1.26: Missions of MTG series. 

 

Both of them communicate to the surface with KU-band antenna; KU-band is a belt of microwave 

frequencies, from 12 to 18 GHz, used in space communications (it is an international standard). 

 

1.6.1  MTG-S 
MTG-S (Meteosat Third Generation – Sounder) mission is 

composed by 2 geostationary satellites of MTG series with a 

sounder on board; they are powered by two deployable solar 

arrays which store energy in some batteries. The sounder is the 

main innovation of this new program: for the first time, Meteosat 

satellites will analyze the atmosphere layer-by-layer, just not with 

only image weather systems, to provide details about chemical 

composition.  

Sounder instrument preliminary parameters are: dimension 

1.44x1.30x1.25 km3, mass of about 438 kg and power consumption 

of 858 W. 

It is composed by more components, most important are shown in the image [16] : 

Figure 1.27: MTG-S satellite. 
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Figure 1.28: Principal parts of the sounder on MTG-S. 

 

Solar baffle deflects the sunlight, the interferometer is on the back side of the sounder to keep images. 

As SEVIRI, black body and M3 Re-focalization Mechanism are used to take the sounder in initial 

position. Optical bench is used to adjust lights in optical path; the cryostat is fundamental to hold cold 

the instrument.  

As stated previously, MTG-S will be on board two kinds of interferometers [19] : 

 The UVN or UVS (Ultraviolet, Visible and Near-infrared Spectrometer); it is a GMES (Global 

Monitoring for Environment and Security) Sentinel-4, instrument designed for geostationary 

chemistry applications. It will take measurements in the ultraviolet band (UV: 305 – 400 nm), 

the visible band (VIS: 400 – 500 nm) and the near infrared band (NIR: 755 – 775 nm) with a 

spatial resolution of better than 10 km (~8 km). Its observations are restricted to Earth area 

coverage, from 30° to 65°N in latitude and from 30°W to 45°E in longitude. The observation 

repeat cycle period will be shorter than or equal to one hour; 

 

 The IRS (Infra-Red Sounder) with hyper spectral resolution in thermal spectral domain. For 

the first time, an instrument will be able to provide information on horizontally, vertically and 

temporally (4-dimensional) structures of the atmosphere. To provide information about 

structures of humidity (about 2 km resolution with 10% accuracy) and temperature (about 

1 km with 0.5° - 1.5° accuracy), it is required to measure water vapor and carbon monoxide 
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absorption bands with extremely high spectral resolution and accuracy. This is the reason why 

interferometer is based on an imaging Fourier-interferometer with a hyper-spectral resolution 

of 0.625 cm-1 wave-number, taking measurements in two bands, the LWIR band (Long-Wave 

Infra-Red) and the MWIR band (Mid-Wave Infra-Red) at spatial resolution of 4 Km; the 

instrument has a global scales over a repeat cycle of 60 minutes.  

IRS samples in two bands to provide data about different layer of atmosphere [9]: 

 

 

Figure 1.29: Spectrum of the wavelengths detected by IRS. 

 

In the image the two bands are shown. In LWIR band (Long-Wave-IR: 700-1210 cm-1), IRS provides 

data about ozone (O3) gas, in MWIR band (Mid-Wave-IR: 1600-2175 cm-1), IRS provides data about 

water vapor (H2O) and carbon monoxide (CO) gasses.  
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1.6.2  MTG-I 
MTG-I (Meteosat Third Generation – Imager) mission is composed by 

the other 4 geostationary satellites of MTG program. These kinds of 

satellites will be similar to MTG-S satellites but they will have on 

board an imager instead of a sounder. MTG-I mission is planned to add 

lightning imagers to geostationary satellites to a specifically measure 

IC (intra-cloud, cloud to cloud) lightning for better locating areas of 

intensive convection within extended storm systems. In view of a 

more unified operational GEO observing system, the MTG LI is 

intended to provide a real time total lightning detection capability of 

IC and CG (cloud-to-ground) flashes, with no direct discrimination 

between the two types. Furthermore, MTG-I satellites provide 

information for GEOSAR (GEO Search and Rescue) missions and for the DCS (Data Collection System) 

database [8]. 

Two principal instruments on board on MTG-I satellites are: 

 FCI [16] [19] (Flexible Combined Imager), an instrument that will provide information about 

high-impact weather such as thunderstorms or fog; it will be the follow-on instrument of 

SEVIRI. Furthermore, will allow to make an important contribution to air-quality monitoring 

and, with its high-resolution capability in the thermal-infrared, will provide data for fire 

detection and climate monitoring.  This instrument’s mission is divided into another two 

“easier” missions: 

 

o the FDHSI (Full Disk High-Spectral-resolution Imagery) mission; this instrument uses 

16 channels, with a spatial sampling of 1-2 Km on different band, to scan a full disc 

over a repeat cycle of 10 minutes; 

 

o the HRFI (High spatial Resolution Fast-refresh Imagery) mission; it uses instead 4 

channels, with a spatial sampling of  0.5-1.0 km on different band, to scan local area 

over a repeat cycle of 2.5-5 minutes; 

 

Figure 1.30: MTG-I satellite. 
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Figure 1.31: views of FCI. 

 

Channels of FCI are [15] : 

CHANNEL 
CENTRE WAVELENGTH 

Λ0 (µM) 

SPECTRAL WIDTH 

ΔΛ0 (µM) 

SPATIAL SAMPLING 

DISTANCE (DSS) 
VIS 0.4 0.444 0.060 1.0 km 

VIS 0.5 0.510 0.040 1.0 km 

VIS 0.6 0.640 0.050 1.0 km; 0.5 km* 

VIS 0.8 0.865 0.040 1.0 km 

NIR 0.9 0.914 0.020 1.0 km 

NIR 1.3 1.380 0.030 1.0 km 

NIR 1.6 1.610 0.050 1.0 km 

NIR 2.2 2.250 0.050 1.0 km; 0.5 km* 

IR 3.8 (TIR) 3.800 0.400 2.0 km; 1.0 km* 

WV 6.3 6.300 1.000 2.0 km 

WV 7.3 7.350 0.500 2.0 km 

IR 8.7 (TIR) 8.700 0.400 2.0 km 

IR 9.7 (O3) 9.660 0.300 2.0 km 

IR 10.5 (TIR) 10.500 0.700 2.0 km; 1.0 km* 

IR 12.3 (TIR) 12.300 0.500 2.0 km 

IR 13.3 (CO2) 13.300 0.600 2.0 km 

Table 1.4: 16 channels of FCI. The red channels are used by FDHSI and HRFI. The second value in DSS column (*) is 
the value of HRFI instruments. TIR as Thermal Infra Red. 
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Figure 1.32: Earth image of every FCI channel. 

 

 LI (Lightning Imager), an imaging detection instrument with high resolution. Its most 

important objective is to add complimentary information to the existing ground lightning 

detection systems, with the benefit to provide a wider coverage, including poorly populated 

areas, and a reference to correlate different ground systems and networks. Furthermore, it 

allows to provide data about atmospheric chemistry and climate monitoring. 
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Chapter 2  

Lightning Imager 
LI [10] [12] (Lightning Imager) for Meteosat Third Generation is an 

on board instrument used to provide information to the location 

and detection of cloud-to-ground and cloud-to-cloud lightning over 

the full Earth disk from geostationary orbit in day and night 

conditions. LI’s data from geostationary orbit are regarded as a 

complementary source of lightning data provided by the ground-

based Lightning Location Systems (LLSs); Global LLS networks 

limit their detection capability mainly on CG flashes. But local LLS 

networks are limited on industrialized countries; so lightning data over oceans or Africa are provided 

with less quality than industrialized countries and data are no homogeneous over all the territory 

because of network geometry and territorial difference. Instead, LI will provide data over the 

hemisphere with the same quality: this will be a great vantage because data about climate changes, 

lightning activities and NOX gas (important for ozone hole and acid rain) will be provided 

homogeneously. With this new instrument, in cooperation with the two NOAA GLMs (Geostationary 

Lightning Mappers on board of GOES-R satellites), the planet will be fully covered [13] . 

Primary objectives of LI [24]: 

 Provide the ability to detect the very first cloud flashes, thus giving valuable additional lead-

time for precise warnings of lightning strikes; 

 Provide lightning data continuously for any location in the FOV (field of view), apply the 

algorithm and send important information about dangerous storm for the air traffic and people 

security; 

 Provide data about convection storms for nowcasting and forecasting; 

 Improve rainfall measurements when combined with other satellite measurement; 

 Measure NOX and other gasses to monitor atmospheric chemistry conformation and their effect 

on global and local climate changes (effects of these gasses are a matter of great uncertainty at 

this time, and long-term observations of their sources will prove valuable as the subject 

develops); 

 Create a database of lightning events for weather services and security operations  

 Can be used for validating NWP models (Numerical Weather Prediction is a model used to 

short-medium weather forecasting; with a lot of weather’s data, powerful computers elaborate 

nowcasting to make prevision of future possible events); 

Figure 2.1: Lightning Imager design. 
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As stated previously, LI must have strict requirements to observe continuously and simultaneously the 

full visible disk with high temporal resolution.  

Requirements necessary to a precision detect IC and CG lightning are provided by ESA; they are 

[10][11][19]: 

PARAMETER REQUIREMENT 

FOV 
84% of visible Earth disk (including all Eumetsat member 

states, instantaneous view) or 16° shifted northward 

Spatial sampling < 10 Km at 45° Latitude 

Data rate < 30 Mbps 

Dynamic range of Earth background (Lbkg) 0 ÷ 296.5 W/(m2 * μm * sr) (night) 

Optical pulse dynamic range (LLp) 6.7 ÷ 670 mW/(m² * sr) 

Sensitivity pulses 4 μJ/(m2 * sr) for 100 km2 

Detection Efficiency (DE) 

 70% as average over the FOV 

 90% for latitude 45 deg 

 > 40% over EUMETSAT member states 

False Alarm Rate 2.5 (false) flashes every second 

LI Optical Head Envelope 718 x 1200 x 1456 mm3 

Optical pulse spectral range 777.4 ± 0.17 nm with 1.0-1.5 nm spectral pass-band filter 

Minimum optical pulse duration 0.6 ms 

Maximum number of optical pulses (in FOV) 
 25 in 1 ms 

 800 in 1 s 

Background image’s cycle 60 seconds 

LI OH overall dimension 715 x 1100 x 1200 mm 

LI Main Electronics overall dimension 300 x 240 x 160 mm 

Table 2.1: Requirements of LI. 

 

LI is composed by one Optical Head (LI OH) and one Electronic  

control unit (LI Main Electronics); Mass of OH must not exceed 

70 kg, 93 kg for OH and Electronic unit, and LI’s max-power 

consumption is 320 W. OH consists in 4 identical Optical 

Channel (OC); 4 because all the OH must satisfy technique 

requirements and every Channel scans a specific cardinal zone. 

Furthermore, to distinguish true lightning from false one 

(generated by random noise, sun glints or micro-vibrations), 

every channel uses a multi-dimensional filter: this filter works, Figure 2.2: 4-channels Earth subdivision. 
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at the same time, on spectral, spatial and temporal domains. 

Spectral filtering uses a very narrowband filter centered on the bright lightning O2 triple line 

(777.4 nm ± 0.17 nm). 

Spatial filtering is achieved with the valuation of lightning’s size: if it is smaller than a typical lightning 

pulse, it is discarded. 

Temporal filtering takes advantage of continues sampling of Earth disk every 1 ms. 

A multi-Optical Channel architecture is useful to optimize spectral filtering (narrow band filtering): 

with a single optical channel, the quantity and the quality of provided data are not sufficient (telescope 

cannot provide information as required) and the difficulty of on board architecture are considered 

unacceptable for power consumption, number of operations and elaboration time. 

Single optical channel means a very large detector array, about 5 Megapixel, and an high-efficiency 

electronic system which could have to elaborate about 5 Gigapixel per second in near real time. 

Furthermore, with a single optical channel, the detector is reduced into a Galileian telescope. In 

Galileian telescope, an high angle of incidence of blue spectral is not sustained by spectral filter: it will 

not be uniform. 

 

 

Figure 2.3: Blue angle of incidence in optical path on Galileian telescope. 

 

In a multi-channel LI, Galileian telescope is no more required. Furthermore, more Optical Channels 

improves (narrowband) filtering performances.  
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For these reasons, LI has four Optical Channels. 

LI has to make more operations to detect flashes; they are divided in 3 principal kinds of processes 

[10] : 

1. In-orbit data acquisition; 

2. Level-1 processing; 

3. Level-2 processing. 

These LI processes are detailed in the following functions, step by step: 

 In- orbit acquisition: 

o Earth image acquisition for continuous monitoring of the lightning’s presence in the 

FOV; 

o Calculation of pixel-by-pixel adaptive background to cope with non-uniformities and 

low terms variations of the image and to reject at the same time noise effects and 

spurious events; 

o Removal of background level from the overall pixel signal to obtain the illumination‘s 

level of every pixel;  

o Use of adaptive thresholds: lower thresholds in low noise dark areas, higher 

thresholds only for highly illuminated areas;  

 

 Level-1 processing: 

o Pixels for which the difference between the pixel value and the estimated background 

signal exceeds the threshold are kept as Detected Transients (DT);  

o On-board DTs filtering to reduce number of noise and False Transients (FT)  

 

 Level-2 processing  

o On-board add information for the ground processing with a dedicated processing 

electronics (Geolocation, time tagging and radiance-energy association);  

o Conversion of the DT video data into digital information (row and column over a 

digital grid) and conversation in a level compatible with the platform downlink data 

rate constraints (<30 Mbps).  

Main output data of this algorithm are groups of/single lightning events with their location, time and 

radiance. 
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Figure 2.4: Flux of on-board operation for events detection and data tramission. 

 

2.1  Image capture 
As stated previously, Lightning Imager [10] is a single telescope with 4 different channels; they have a 

focal length of around 600 mm and a pupil size of 110 mm. They use an APS (Active Pixel Sensor) in C-

MOS technology with a resolution of 1000x1170 pixels and a time refresh of 1 ms. FOV of this 

instrument must allow to provide lightning information mainly on Africa (a contribute for global 

lightning) and on Europe and South-America with lower frequency (ocean too); it is because lightning 

events are more frequent in the tropical areas like Africa and South-America: 
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Figure 2.5: Annual flash density in MTG FOV. 

 

LI’s FOV is shown in the image: 

 

Figure 2.6: FOV of Lightning Imager. 

 

With a single FOV, LI covers all the zones; but more satellites are necessary to cover a greater part of 

surface. With the collaboration of USA, more than half of the Earth is covered with high overlap 

between MTG and GOES-R (East and West GOES-R) FOVs: 
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Figure 2.7: Earth coverage by MTG and GOES-R FOVs. 

 

This kind of FOV has a high distortion: on zenith, the view is perfect (over Equator) but, towards 

Earth’s edges, the view is highly distorted and, on large nadir angles, pixels are quiet indistinguishable: 

this is a big problem because pixels indistinguishable means indistinguishable events [10] : 

 

 

Figure 2.8: Deformations of detected images. 

Because of this problem, LI must have some specific algorithms and instruments to correct this 

problem. 
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2.2  Noise rejection 
Principal problems of image capture is the noise: an high level of noise make unreadable the image 

provided by the telescope. In the following image, different FER (False Event Rate) are shown for the 

same scanned zone: in a time of 500 ms, a FER of 40000 (so 20000 false events in 500 ms) does not 

allow to provide accuracy data and some filter are necessary to detect true events. With a FER of 

400000 the image is completely unreadable [11] . 

 

Figure 2.9: Examples of False Error Rate over Europe. 

 

There are two kinds of noise: internal noise and external noise. Internal noise is generated by the 

component in the satellite’s instruments like telescope and electronic components. On the other hand, 

external noise is due to external conditions of atmosphere and light. 

Main causes of internal noise are [15] : 

 Electronic noise: this is a noise typical of electronic components on board, specially from 

power source and amplifier stages. 

 Thermo-mechanical noise: this noise comes from movement and rotation of mechanical mobile 

part and from thermal source in telescope.  
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 Stray light noise: this noise is made by lights which do not follow the correct path and, for this 

reason, creates interference with useless light. 

 

On the other hand, the main causes of external noise are: 

 Cloud radiation: a part of solar radiation is reflected by clouds. In images, this radiation is 

interpreted as light and it can be added to the Detected Events (DE). 

 Sun glint and solar eclipse: sun glint is an optical phenomenon where the sun light is reflected 

by oceans with the same angle of satellite’s view. Sun glint and solar eclipse are considered 

noise because both of them change the radiance level of an area: high level of radiance can be 

exchanged to lightning events. 

 

Figure 2.10: Examples of sun glint and solar eclipse detected by satellite. 

 

 Particles flux: especially in Van Allen belt, it can modify the IFOV with the reflection of sunlight 

in several bands or with a magnetic contribute which deflect light. 

 Jitter: it is a typical video phenomenal which occurs when the horizontal lines of two 

consecutive frames are not synchronized because of movement or micro-vibrations. This noise 

is particularly problematic in time subtracting of two frame to identify a lightning events: a 

jitter can create a False Detect [11] . 
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Figure 2.11: Jitter example by frame subtraction. 

 

2.3  Background removal and adaptive threshold  
Background is defined as all image’s object considered static in a short time frame. The contrast 

between background and lightning radiance determinate the capability of detect event: this contrast 

set SNR (Signal to Noise Ratio) level to detect lightning events. When SNR is high, for example during 

the night, dark background allows to detect lightning events and clouds. 

 

Figure 2.12: Example of FOV with good SNR. 
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But, for a better readability, background removal is not sufficient. SNR value is also imposed by light 

condition like day and night or solar eclipse. It is clear in the image: every two hours, the in-orbit view 

changes and it is not easy to provide any data or image. 

 

 

Figure 2.13: Surface bright condition every 2 hours. 

 

During the night, low level of light cannot allow to distinguish anything on the ground. In these critical 

cases is necessary an adaptive threshold to detect lightning events and provide every kind of 

information [14] . 

 

Figure 2.14: Background trend in a day. Red spikes are lightning events. 

 

An adaptive threshold is the best solution of background in-homogeneity. In fact, with just a single low 

threshold level, there could be a large numbers of lightning and false events and, with a single high 

threshold level, there could be a few lightning events and some others, with low radiance level, could 
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be discarded. Threshold must not be too high because a lot of lightning events could not be detected 

[9]. In Figure 2.15, it is possible to see what happen with high threshold: some events is not detected 

because their radiance level is lower than threshold level. 

 

Figure 2.15: Distributions of background and Background + signal in SNR scale. Also threshold used to optimize SNR 
value. 

 

For this reason, a trade-off between detection sensitivity and false event rates are necessary.  

All problems are summarized in the Figure 2.16. In the daylight, a high level of background radiance 

fixes a high value of threshold to detect lightning events. But only a single level of threshold is not 

sufficient because of the light during the day is not homogeneous. So, in the daylight, there are more 

than one threshold (Threshold 1 and Threshold 2); in some cases, lightning on top of bright 

background is not recognized by its bright radiance but by its transient short pulse character: in these 

cases a temporal filtering is used. A critical time is on sunset because radiance level of background 

decrees rapidly and events are hardly detectable: during sunset, threshold must change quickly. 

During the night instead, just one threshold is necessary to detect lightning events. [14] 
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Figure 2.16 : adaptive thresholds. 

 

This specific criteria is not easy to apply because background removal and adaptive threshold are 

different for every pixels or zones in the images. As shown in previously images, on sunset, a part of 

surface is in daylight but a part is dark because of night and the LI must differentiate the two zones to 

subtract different background and apply a different level of threshold.    

All these operations allow to detect “easily” an event. 

 

2.4  Events detection and on-board processing for FEs 
Without the previous operations, the events detection is quite impossible. This image shows a single 

lightning event detected over Ethiopia: without a deep zoom is impossible to distinguish the event 

[10]. 

 

 

Figure 2.17: Event detected over Ethiopia. 
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For this reason, every LI’s image goes through the algorithm of detection for background removal and 

adaptive threshold. In this phase, filtering is carried out. There are 3 kinds of filter:  

 Spatial filter: compare the radiation of detected event in IFOV (Instant FOV) with the typical 

lightning event radiation’s view; 

 

 Spectral filter: a special narrow band filter centered on a wavelength of 777,4 nm make a 

frequency filtering. 777,4 nm is the wavelength of the first ionized energy of Oxygen: 

 

 

Figure 2.18: Wavelength of first ionized energy of Oxygen 

 

 Temporal filter: temporal filtering is simply a time compare between pulse and background 

which is considered constant in the time scale of seconds. 

If these 3 filtering are not sufficient, a frame-to-frame background subtracting is used. This is a 

technique used when the radiance ratio between lightning and background is still under the threshold. 

With these 3 levels of filtering, almost all the false events are eliminated. False events are not related 

to a real lightning but are due to noise or distortions or artificial light on the surface: they must be 

eliminated for a correct now/forecasting and data providing. Figure 2.19 shows the difference 

between filtered and not-filtered scans [15] : 
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Figure 2.19: Difference between no-filtered and filtered scans. 

 

Obviously, this optimal condition of lightning detection is possible only if all the previous technique 

were used. Images after background removal, adaptive threshold, filtering and event detection is 

similar to this one: 

 

 

Figure 2.20: Events detected after background remove, adaptive threshold and filtering. 

 

Now, events are more definite and, with a grid in background, it is possible to detect the location and 

the size of lightning.  
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2.5  Information addition 
In this phase, data provided by LI is associated to every event. This a quite simple step. Main 

information is radiance, time and geolocation but also information about size and altitude are 

associated to give as many data as possible. Geolocation is realized by overlapping between IFOV and 

geographic map of FOV. Radiance is simply the radiation’s value provided by LI and associated by an 

event. Time notice is given in UTC (Universal Time Coordinates measured by Greenwich’s meridian). 

Instead, size and length are measured with grid specific. 

 

2.6  Conversion DT – data 
When an event is detected, an application of a grid on background allows to location the event. Grid is 

big as FOV and every pixel has a dimension of 10x10 km2: so, all the events in FOV are detected and 

location in their grid-position [14]: 

 

 

Figure 2.21: Abstraction of detected events. 

 

The result of the localization is a grid with events. Now every kind of operation with the event is 

possible. First of all, positioning in row-column coordinates is used to allow the transmission to 

ground stations. 

But to allow a better transmission and a few flow of data, LI has to make some operation over the 

detected events: the most important operation is the grouping of correlated events. This operation is 

the goal of this thesis and it is obtained by means of a new clustering algorithm. The result of 

algorithm is shown in Figure 2.22: 
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Figure 2.22: Clustering algorithm goals. 
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Chapter 3  

Clustering algorithm 
 

The clustering algorithm is a geometrical algorithm used to regroup some points under the same 

cluster. In LI, the algorithm is used to regroup every single lightning detected event in a window, storm 

in this case. To regroup every event, they have to observe some geometrical rules. 

However, first of all, it is necessary to describe how event’s information arrives to the algorithm and 

which components are necessary to satisfy timing and functional requirements.  

 

3.1  Hardware and timing requirements 
Dedicated hardware is composed by 3 principal parts: 

 Detector: acquires events detected from the telescope; 

 ASIC: identifies and makes operations over images. Then, it transforms all the events detected 

to give them a raster order;  

 FPGA: contains the clustering algorithm and applies it to all the events. 

Connection between all these components is shown in the image: 

 

Figure 3.1: hardware in Lightning Imager for detected events. 
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The detector has a size of 1000x1170 pixel and it is divided in 4 identical 500x585 pixel quadrant. The 

order of coordinates for every quadrant is shown in the following picture: 

 

 

Figure 3.2: quadrant division of detector with local and detector coordinates. 

 

In quadrants #1 and #2 (top-left and top-right), events are sorted by row in ascending order. Events 

with the same row index are sorted by column, in ascending order. In quadrants #3 and #4 (bottom-

left and bottom-right), the events are sorted by row in descending order. Events with the same row 

index are sorted by column, in ascending order. Events are positioned under one of these quadrants 

depends to their detector coordinates (y, x) and a flag of neighbors can change the clustering. 

Every quadrant of the detector has a dedicated ASIC which convert detected events in raster order to 

allow the algorithm to start the clustering. The 4 ASICs provide points to FPGA: FPGA contains 4 

identical clustering algorithm, one for every quadrant, which work in parallel. 

All the events detected by detector and ordering by ASIC are saved in a register FIFO to allow FPGA to 

provides them, one by one. A requirement specify that ASIC readout is delayed by one frame time, 

necessary to store all detected events: 
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Figure 3.3: timing for every row in detector and FEE_ASIC. 

 

At the end of all detected events in the frame, it is closed and a new frame is elaborated. In FIFO, events 

of new frame overwrite events of the “old” frame.  

The clustering algorithm must be able to elaborate 1000 frames every second, a single frame every 

1 ms, and the events coming from row K must be processed within 0.5 ms + K*2 us from the end of the 

exposure of the first row. The 0.5 ms are the tolerable latency of the algorithm and 2 us is the time of 

elaboration of every single row: 
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Figure 3.4: timing of all rows in a frame for several frames. 

  

From the formula, the processing for each row must be completed within 0.5 ms since the row is 

available. But this requirement is difficultly respected when too many events are detected in a single 

row. This requirement of frame-timing could be violated when there are two consecutive rows, N and 

N+1, and the first one is full of events so that the clustering time for row N is fully occupied. Let 푇  be 

the event processing time. This situation happens when row N has 0.5 ms/푇  events. In this case, if 

row N+1 has more than 2 us/푇  events, the present requirement is not satisfied. This situation is 

depicted in figure: 
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Figure 3.5: critical timing for consecutive rows. 

 

Note that row-timing-requirement could be violated also when a row has more than 0.5 ms/푇  events. 

Therefore, even though the global throughput is satisfied, the row specific processing deadline as well 

as the maximum latency may be violated, depending on the event distribution. 

After a break about the principal hardware interface issues, other information about the hardware is 

exposed. First of all, the FPGA used is an RTAX4000S by ACTEL.  

[25] This FPGA contains 4KK equivalent gates, 120 RAM blocks of 540 Kbits everyone, 40320 

combinatorial modules (C-cells), 20160 register modules (R-cells) and with a clock frequency of over 

350 MHz. Other information will be explained in the VHD code implementation because will be 

necessary for main choices. 

Last part of hardware explain is the interface between ASIC and FPGA. In Figure 3.6, the architecture of 

the ASIC-FPGA interface: 
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Figure 3.6: signal interface between the four ASIC and FPGA. 

 

In Figure 3.6 there are three kind of interface between ASICs and FPGA: 

 Command Interface (PP_CMD): it is used to handle the communication. Signals are: 

o PP_CMD_EN : enable; 
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o PP_CMD_WR : strobe: 
o PP_CMD[15:0] : parallel bus 16-bit wide. 

 
 Data Interface (PP_DATA) to data communication. Signals are: 

o PP_DAT_EN : enable; 
o PP_DAT_WR : strobe; 
o PP_DAT[15:0] : parallel bus 16-bit wide. 

 

 DT Interface (PP_DT) to handle the detected events. Signals are: 

o PP_DT_RD: read request; 

o PP_DT_EMPTY: empty flag (active low); 

o PP_DT_STROBE: strobe; 

o PP_DT[4:0]: data bus 5-bit wide. 

 

DT transmission is quite simple. When requested by FPGA through a PP_DT_RD strobe, the ASIC has to 

fetch the next Detected Transient from the internal DT buffer and transmit it using 4 consecutive 

transactions on PP_DT bus (called a DT packet). A DT is uniquely identified by 19-bit containing the 

row and column coordinates concatenated (9-bit for rows 0 - 499, 10-bit for columns 0 - 584): 

 

# PACKET PP_DT[4:0] DESCRIPTION 

1 xxxxx COL[4:0] – DT column coordinate LSB 

2 xxxxx COL[9:5] – DT column coordinate MSB 

3 yyyyy ROW[4:0] – DT row coordinate LSB 

4 0yyyy ROW[8:5] – DT row coordinate MSB 

Table 3.1: description of a single packet for DT communication. 

  

An example of timing waveform about a DT packet: 
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Figure 3.7: example of correct waveform for a DT packet. 

 

After timing and hardware specification, it is necessary to give details about how the algorithm has to 

work. So, definitions and functional requirements are explained. 

 

3.2  Definitions 
First of all, a list of definitions is essential for a better comprehension of functional requirements. 

Detector is divided in 4 quadrants, each one with its coordinates: 

 

Figure 3.8: view of full detector with clustering algorithm essential elements. 
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Coordinates of every DT are of two kinds: 

 Detector coordinates. They identify a pixel in the whole detector area, with row address (y) 

ranging from 0 to 999 and column address (x) ranging from 0 to 1169. 

 Local coordinates. They identify a pixel in the local quadrant area, with row address (y) 

ranging from 0 to 499 and column address (x) ranging from 0 to 584. 

A pixel is considered border if its x coordinate is 0 or 584 or 585 or 1169 and its y coordinate is 0 or 

499 or 500 or 999. 

Event or Event Detected or Detected Transient (DT) is a pixel whose radiance value is over the ASIC 

threshold: this pixel passes to the clustering algorithm. An event adjacent to a border is called Border 

Event. 

One or more Detected Events can be enclosed in a rectangle: this is defined Window. 

Windows are of two types: 

 Single Event. An event is considered single if there are no other events or windows in the 3x3 

area centered in the event. 

 

Figure 3.9: example of single event. 

 

 Cluster. Cluster is a group of events. 

 

Figure 3.10: example of cluster. 

 

A Neighbor is one of the 8 pixels surrounding an event. 
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3.3 Functional requirements 
After these definitions, functional requirements are necessary to specify how the clustering algorithm 

has to work. Functional requirements are fundamental to implement geometrical functions and open 

correct windows. 

 

3.3.1  Cluster Window 
Cluster window requirement imposes that the algorithm defines just rectangular windows with 

variable dimensions, from 1x1 to 8x8 pixels, that include: 

 all the pixels with an event; 

 the 8 neighbors pixels to each event, if the neighbors inclusion is enabled. If the event is a 

border event, no neighbor pixels exceeding the border are expected to be included in the 

window. 

 

Figure 3.11: difference between border neighbors and 8 neighbors pixel. 

 

But neighbor pixels are limited: in fact geometrical rules impose that all rows and columns of each 

window contain at least an event pixel or a neighbor pixel (neighbor inclusion is enabled): 

 

Figure 3.12: requirement for neighbor pixels. 

Full row without any
event or neighbors!

Full columns without any event or neighbors!
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Figure 3.13.: example of allow/not allow neighbors conditions 

 

Furthermore, a Single Event has to be included in a 3x3 window, if neighbor inclusion is enabled and it 

is not a border event, or in a 1x1 window, if neighbor inclusion is disabled. Windows can overlap only 

if the neighbor inclusion is enabled. 

 

Figure 3.14: overlap of two windows with neighbor enabled. 

 

3.3.2  Window number minimization 
This requirement will be considered in analysis of the expansion strategy in paragraph 3.6.3.5 because 

a possible cause of cluster number could be the direction priority of expansion of a new DT when more 

window can include it.  

First of all, if a Single Event has been included in a window of a near cluster, because of the particular 

cluster shape, it is not expected to be included also in a dedicated 3x3 (or 1x1) window containing the 

Single Event only. 

win 1 win 2

Overlap



65 
 

 

Figure 3.15: single events in a cluster. It's not included in a dedicated 3x3 window. 

 

Single Events should be included in a 3x3 window because the noise filter, described in paragraph 2.2, 

makes a selection over windows with an area of 3x3 to reject the noise but if Single Events are 

included in another window, it cannot be considered single and it must not be deleted from the filter. 

3.3.3  Window overlap 
If the extension of a cluster is bigger than the maximum dimension of a window, the additional 

window,  necessary to include all the outside events of the cluster, can overlap (if the neighbors 

inclusion is enabled). 

 

Figure 3.16: new window opening in overlap condition with a non-expandable window. 
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3.3.4  Algorithm throughput 
Computational requirement imposes that the algorithm has to be able to process up to 1000 events 

every millisecond: 

 the expected number of single events is 250 every millisecond; 

 the expected number of events in clusters is 750 every millisecond. 

Furthermore, the number of windows expected to be defined every millisecond is up to 300. 

Because of quadrant division, the events distribution is homogeneous and each quadrant has to be 

able to process up to 250 events and it is expected 75 windows, for every quadrant every millisecond.  

 

3.3.5  Output data format 
The unique output requirement is how data information has to exit from clustering algorithm. It has to 

provide coordinates and size of every window(x, y, Dx, Dy). Coordinates are referred to the Left-Up 

corner of every window, Dx is the dimension on X axis, Dy on Y axis. 

 

3.4  Algorithm implementation 
In order to implement the correct algorithm, it is necessary to explain the difference between three 

modes of neighbor including.  

Input neighbors value can be: 

 0,in Disable mode; 

 1, in Enable mode; 

 2, in Selective Enable mode. This mode adds neighbors only to single events and doesn’t add 

neighbors to clusters. 
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Figure 3.17: difference between three types of neighbors mode. 

 

Geometrical rules used to implement the algorithm are the same for all three modes. Also with 

overlap, it allows neighbor mode to operate over events even after all DT’s elaboration because up to 2 

rows or columns can be overlapped between two windows: 

 

Figure 3.18: example of overlap of two windows. On the left, the windows before neighbors add and in center 
after the neighbor add (neighbors value is 1). On the right the overlap area: it is up to 2 rows or 2 columns. It 

is impossible to see a 3x3 or upper area of overlap 

 

So, neighbors can be added after the execution of the algorithm in disable neighbors mode. There is 

just a single difference in geometrical rules between neighbor modes: when neighbors are enabled, the 

maximum height and width of a window can be up to 6 pixels instead of 8 because 2 neighbor-pixels 

must be added later. Therefore, neighbor mode imposes only a check over max size in the process 

before the add-neighbors post-process. 
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Neighbor attachment while clustering of events was also considered (dynamic neighbor attachment). 

Solutions including dynamic neighbor attachment were discarded because they caused problems with 

total window overlap, Single Event windowing and were also more computationally intensive. 

Now the “real” algorithm must be implemented.  

Algorithm inputs are just the DT coordinates, X’s and Y’s. The algorithm must expand existing window 

or open new ones to enclose every DT. 

But, how can the algorithm decide if an existing window could include the new DT? And if there are 

more than one candidate to expansion, how can it choose which cluster is the correct candidate to add 

the new DT? 

To include the new DT in a cluster, it is necessary that at least one of the 8 pixels around the new DT is 

occupied by a window. 

 

 

Figure 3.19: new DT (blue) and 8 pixels around it. If at least one window 
sits in at least one of these 8 pixels, the new DT can be added to a window. 

 

When a new DT is in input at the algorithm, its coordinates is compared with the coordinates of all the 

already existing windows. The existing windows are stored in a memory; so, all the memory will have 

to be scanned to find an adjacent window.  

A window can be expanded only in an adjacent row or column or both of them. So, there are 8 possible 

positions of an new DT relative to a window, one for every possible direction of expandability. A 

special case is when, for a particular configuration of window, a new DT is already enclosed in a 

window: in this case, the window that include the event has the highest priority over possible adjacent 

windows and no changes must be applied to the coordinates and size of the selected window: 
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Figure 3.20: 8 possible direction and internal position for new DT relative to a window. 

 

A window adjacent to a new DT is defined Candidate.  

Therefore, in the worst case, 8 Candidates must be checked for the expansion. In fact, it is necessary 

that a window could change its coordinates and dimensions to include the new DT. It is not possible if 

the candidate is adjacent to another window in the same direction of the new DT. If no candidate can 

be expanded, a new window is opened. 

So, every Candidate must be compared with all the other windows to check the expandability. 

Expandability is different for every direction of the new DT. Because of the position, not all windows 

must be checked: far windows are not important. This factor will be very important to minimize the 

time of elaboration for every window. 

In the worst case, all 8 Candidates can be expandable. So, it is necessary to choose which one is the 

most important. For this reason, the second step of the implementation will be the choice of a strategy 

that will minimize the window number as required. The strategy will select which Candidate must will 

be expanded. 

The last step of new DT elaboration is the update of window parameters. Every new DT either changes 

the coordinates and size of a window or add a new window.  

When all the events in a frame are analyzed, neighbors are added. If neighbors value is 0, no neighbors 

are added and windows are ready for transmission without changes. If neighbors value is enable 

neighbors are added to every windows with a “+1” in Dx and Dy value and a “-1” in X and Y value. In 

Selective Enable, neighbors are added just to Single Events and windows larger than 1x1 are not 

modified. 

Figure 3.21 represents the flow-chart of the clustering algorithm. 
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Figure 3.21: global algorithm for every frame. 

 

 

3.5 Algorithm optimization 
The algorithm described in the previous section is the first approach to satisfy all the requirements. In 

fact, the high number of DTs with the limited HW resources, implies that the algorithm will have to be 

very fast and efficient. The system cannot wait for the whole image to begin with the clustering. The 

algorithm has to define windows while the DTs are coming from the detector, in order to maintain the 

required throughput. So, for the HW implementation of the MATlab code, it is necessary to make some 

choices for an optimization. 

First of all, the positions of a new DT, relative to a window, can be only 4. 8 positions are 

overestimated because of the raster scan. It allows just new DT over the last existing window/event. 
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Figure 3.22: example of raster scan order. New DT can have adjacent window or event only in Left, Left-Up, Up and 
Right-Up directions. Other directions cannot be already occupied because events in this area are not analyzed yet. 

 

 

There are 8 possible relative positions of new DT to window but, because of the raster scan, only 4 

positions are really possible: 

 

 

Figure 3.23: 8 and 4 positions of new DT relative to a window. 

 

In fact, no events can be positioned in direction 5, 6, 7 and 8 because all the DT in these positions are 

already be analyzed. 

Because of geometrical law, the expandability check is easier than previously. 

First of all, possible direction of expansion are 4 instead of 8. In raster scan, events in Left, Left-Up, Up 

and Right-Up are already be analyzed and expansions in these directions are already made. 
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Figure 3.24: real possible expansion directions. 

 

Still because of raster scan, up to 4 windows can be candidates. In fact only 4 of the 8 pixels around a 

new DT can be already really occupied by a window. Others 4 positions can’t be occupied because 

events or windows in these position are not analyzed: 

 

 

Figure 3.25: image shows which neighbor pixels (green) are valid for the 4 possible candidates (grey). Red zone is 
the area not scanned yet. 

 

The most important optimization in the expandability check is optimization of the number of 

comparing between windows. In fact, when a candidate makes expandability check and tries to 

expand, it must be compared with all the other windows. If an adjacent window exists in the selected 

direction, the expansion check fails and the candidate is not chosen. This expandability check can be 

limited to a few number of windows instead of all. These windows are called the P_windows, i.e. 

Proximate windows. To understand how many windows must be checked for expandability, it is 
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necessary to analyze the worst case and deduce geometrical rules. The worst cases are two, one for 

height and one for width. 

The worst case for height is the following: 

 

 

Figure 3.26: height worst case for expandability check. 

 

When the new DT is adjacent on the right side of window 2, expandability check must look for other 

windows adjacent to this one. If a window exists in the height worst case position, window 2 cannot be 

expanded in the Right direction. Obviously, the max height is in case of max window height for both of 

them. So, in Y direction it is necessary to check windows from YDT-14 to YDT when X value is XDT where 

XDT and YDT are the DT coordinates. 

Instead, the worst case for width is: 
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Figure 3.27: width worst case for expandability check. 

 

This is the dual case: when the new DT is adjacent on the right-down side of window 2, expandability 

check must search other windows adjacent to this one. If a window exists in the width worst case 

position, window 2 cannot be expanded on Right-Down direction. Once again, the max width is in case 

of max window width for both of them. So, in X direction it is necessary to check windows from XDT-14 

to XDT when Y value is YDT. 

Total area of worst cases are: 

 

 

Figure 3.28: two worst cases in the same grid and total area. 
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The total P_window area is the sum of two areas (and conditions). A window is considered P_window 

when: 

푌 	 = 	 푌

		푋 − 	14	 ≤ 	 푋 	≤ 	푋
	       or       

		푌 − 	14	 ≤ 	푌 	≤ 	푌

푋 	 = 	 푋
 

 

When a window existing in this total area, it is saved in a dedicate register, the P_window_register. At 

the end the window scan, P_windows founded are used for the expandability check. In the worst case 

there are 14 windows in this global area, one every two pixels. 

Expandability depends also on the window size. So, test over the dimension of every windows is 

sufficient to stop the expandability. In fact, if a window has the max size towards the new DT direction, 

it is not expandable and cannot be considered a candidate yet. Also a test over quadrant border is 

made for expandability because no neighbor pixels are allowed over border. 

3.6  MATlab High level model 
Before the MATlab model description, it is necessary to explain strategies to resolve conflict situations. 

 

3.6.1  Expansion strategies 
A classic example of conflict situation is the one depicted in Figure 3.29: 

 

 

Figure 3.29: window expansion conflict. 

 

The strategy determines which direction is preferred for the expansion of windows. The strategy also 

impacts on the total number of windows defined. Therefore, the selection of the strategy is important 

for the minimization of the total window number. As before, since the DT ordering is the usual raster 
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scan over the quadrant, it is not possible that a new DT is on the top edge of a window, i.e. windows 

cannot be expanded in the Left, Left-Up, Up and Right-Up directions: 

 

 

Figure 3.30: allowed directions of expansion. 

 

R, RD, D and LD are the possible expansions for windows. A priority has to be defined between these 

directions. Referring to Figure 3.29, if an R-before-L strategy was selected window 1 would have been 

expanded. On the other hand, with an L-before-R strategy, window 2 would have been expanded. 

Figure 3.31 shows the strategy tree. The possible strategies are given a short name to be recalled in 

the following: RDL, DLR, DRL, RDLR, DRLR, according to their direction priority. 

 

 

Figure 3.31: possible clustering strategies. 
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Figure 3.32 shows the order of expansion as a function of the position of the new DT with respect to 

the window for the different strategies: 

 

 
Figure 3.32: priorities directions of expansion. 

  

  

 

Strategies are equivalent from the point of view of HW complexity. The best strategy will be evaluated 

by means of computer simulation over a significant set of test-vectors. 

 

3.6.2  Test-vector generation 
The random test-vectors used for the clustering algorithm design and verification were generated with 

a MATlab simulator. 

In order to simulate the randomness of a lightning flash seen from above the clouds, the MATlab model 

generates random points representing the flash according to a bi-dimensional Gaussian distribution. 

First of all, the X and Y coordinates of the points are generated by means of two independent Gaussian 

distributions. The mean value along X and Y represents the flash centroid, uniformly distributed in the 

lightning concentration area (max 190x190 pixel). The standard deviation is correlated with the radius 

of the flash. In a Gaussian distribution, more than 99.7% cases fall in the interval [-3σ, 3σ] Therefore, 

3σ can be considered as the radius of the distribution and we can obtain the standard deviation for the 

generation of flashes as: 휎 = 푅
3. 
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Then, the Y coordinates of the points are shrunk by the factor (1–e), where e represents the 

distribution eccentricity. The eccentricity is modeled as a Gaussian random variable with selectable 

mean and variance. 

Finally, the flashes are rotated by an angle ϑ. ϑ is modeled as a uniformly distributed random variable 

in the interval [0,2π). 

The resulting distribution skeleton is depicted in Figure 3.33. 

 

Figure 3.33: distribution skeleton. 

 

Figure 3.34 shows some generated lightning flashes. 

 

Figure 3.34: generated flashes. 
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The generated coordinates of points of the flashes are then quantized to integer numbers representing 

the pixel coordinates, considering that each pixel is about a 10x10 Km2 square. 

An example of resulting test-vector generated with this algorithm is represented in Figure 3.35: 

 

 

Figure 3.35: example of test-vector. 

 

Test-vector generator parameters are shown in Table 3.2: 
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PARAMETER NAME DESCRIPTION 

FRAME_WIDTH Width of the frame 

FRAME_HEIGHT Height of the frame 

L_AREA_WIDTH Width of the area which lightning are 

concentrated into 

L_AREA_HEIGHT Height of the area which lightning are 

concentrated into 

NUMBER_OF_FLASHES_MEAN Mean number of flashes in a frame 

NUMBER_OF_FLASHES_STDDEV Standard deviation of the number of flashes in a 

frame 

FLASH_ECCENTRICITY_MEAN Mean eccentricity of flashes 

FLASH_ECCENTRICITY_STDDEV Standard deviation of the eccentricity of flashes 

FLASH_RADIUS_MEAN Mean radius of flashes 

FLASH_RADIUS_STDDEV Standard deviation of the radius of flashes 

FLASH_NUMBER_OF_POINTS_MEAN Mean number of points generated per flash 

FLASH_NUMBER_OF_POINTS_STDDEV Standard deviation of the number of points 

generated per flash 

NOISE_DT_prob Quantity of noise 
Table 3.2: parameters in test-vector generator code. 

 

NOISE_DT_prob is the actual density of events due to noise. For example, it is possible to set 

NOISE_DT_prob = 푁
(1170 × 1000) to obtain exactly N random noise DTs over the area of 1170x1000. 

 

3.6.3  High-level model 
A high-level MATlab model of the clustering algorithm was developed in order to test the algorithm 

functionality and fine-tune the clustering strategy. The high-level model also functions as a reference 

for the successive steps of implementation. 

 

3.6.3.1  Data structure 
The window structure contains all the data concerning the windows. The fields of the window 

structure are: 
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window.matrix: is the model representation of the clustered quadrant. Basically it is an two-

dimensional integer array of height+2 rows and width+2 columns. The extra columns and rows are 

used to store -1 value used to borders of the image. The matrix contains the information about the 

position and the ID of all the windows. Every position in the matrix represents the status of the pixel in 

the original image. A 0 value pixel means that there is no window there, a value N > 0 means that there 

is a window of ID N. A visual representation of the matrix variable is depicted in Figure 3.36: 

 

Figure 3.36: visual representation of window.matrix. 

 

window.number: represents the number of opened windows. 

window.x: column coordinate of the left edge of the window. 

window.y: row coordinate of the high edge of the window. 

window.dx: width of the window. 

window.dy: height of the window. 

window.max_w: maximum width allowed for a window. 

window.max_h: maximum height allowed for a window. 

event_clustered: vector containing the ID of the window which every DT is clustered into. 

 

3.6.3.2  Model configuration  
Table 3.3 shows the configuration parameters for the algorithm: 

 

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
-1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1
-1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 -1 1
-1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 -1
-1 0 1 1 1 0 0 0 2 2 2 2 2 0 0 0 -1 2
-1 0 0 0 0 0 0 0 2 2 2 2 2 0 0 0 -1
-1 0 0 0 0 0 0 0 2 2 2 2 2 0 0 0 -1
-1 0 0 0 0 0 0 0 2 2 2 2 2 0 0 0 -1
-1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1
-1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
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NAME DESCRIPTION 

MAX_WINDOWS Maximum number of windows that the model can use for clustering. 

MAX_EVENTS Maximum number of event treated by the clustering algorithm 

MAX_WIN_WIDTH Maximum width of windows 

MAX_WIN_HEIGHT Maximum height of windows 

strategy.dat File that contains window expansion rules 

strategy_masks.dat File that contains window expansion check masks 

new_win_masks.dat File that contains new window opening strategy 

STRATEGY_VECTOR List of strategies for batch processing 

NEIGHBORS 

Neighbor inclusion flag. 

 0 : no neighbors 

 1 : all neighbors 

 2 : neighbors on single events only 
Table 3.3: algorithm configuration parameters. 

 

Table 3.4 shows the model configuration parameters. 

NAME DESCRIPTION 

TEST_VECTOR_PATH Path to test-vectors 

SELEX_TEST_VECTORS Enables the processing of SES test-vectors 

SELEX_TEST_VECTOR_PATH Path to SES test-vectors 

IMG_TEST_VECTOR Enables the processing of a bitmap image 

TEST_VECTOR_FILE_LIST List of test-vector files for batch processing 

height Height of the area to be processed (quadrant) 

width Width of the area to be processed (quadrant) 

STRATEGY_PATH Path to strategy files 

IMAGE_SHOW Shows the output of the clustering 

CLUSTER_STATS Enables cluster stats evaluation 

AREA_HISTOGRAM Enables the histogram showing the area of windows. 

NUMBER_OF_EVENTS_HISTOGRAM 
Enables the histogram showing the number of DTs per 

window. 

PRINT_RESULTS Prints result information on the MATlab console 

ERROR_ANALYSIS_PLOTS 

When SES test-vector analysis is enabled, this flag enables the 

visual analysis of the differences between the expected output 

and the output of the clustering algorithm model. 
Table 3.4: model configuration parameters. 
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3.6.3.3  Strategy Selection 
The strategy is selected in the model by means of three configuration files: strategy.dat, 

strategy_masks.dat, new_win_masks.dat. 

The chosen approach in the high-level model allows more complicated solutions with respect to the 

final ones. Dynamic neighbor addition is possible, while in the final solutions the processing is the 

same for all the neighbor configurations in the DT acquisition phase. The clustering is always carried 

out without neighbors and they are added at the end of the processing, according to the neighbor 

inclusion flag. 

 

3.6.3.3.1 Strategy_masks.dat 
The file strategy_masks.dat contains the masks used to explore the neighborhood of the event. When a 

new event is analyzed, the model explores the 5x5 area around it in order to find candidate windows 

for clustering. The masks contain the pixels that the model has to check on the window.matrix. If all 

the pixels indicated by the mask are under the same window an expansion can be attempted. 

Figure 3.37 shows the strategy masks for the RDL strategy. 

 

 

Figure 3.37: strategy masks for RDL strategy. 

 

The new event is always considered to be in the center of the 5x5 matrix. 

To make an example, the program starts from the mask number 1. If all the pixels indicated by ‘1’ in 

the mask have the same ID in the window matrix, then they are under the same window. In this case, 

the event will be contained in a window. If the neighborhood condition number 1 fails, then the model 

tries with the next one. With the mask number 2 we check if the event is on the right border of a 

window. If the neighborhood condition number 2 fails the model will proceed with the third mask and 

so on. If all the neighborhood conditions fail, a new window is opened. 

1 2 3 4 5
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0
0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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3.6.3.3.2 strategy.dat 
The file strategy.dat is composed by two columns indicating the mandatory and optional expansion 

directions. 

The first column indicates the mandatory expansion directions, i.e., used to include the event under 

the cluster. The second column indicates the optional expansion directions, i.e., used to include the 

event neighbors under the cluster. With the final approach, in which neighbors are added at the end of 

the program, the second column is always set to no-expansion. 

Each row in this file corresponds to a strategy rule. There is one rule for each of the neighbor checking 

masks. If the i-th neighbor check succeeds, then the i-th strategy rule is applied. First, the mandatory 

expansions are attempted. The optional expansions are carried out if the event is included in the 

window. 

The following is an example of the strategy.dat file, for the strategy RDL: 

N N 
R N 
D N 
RD N 
LD N 
 
N stands for no expansion. 

For example, if the second neighbor checking is satisfied, it means that the event is on the right border 

of the cluster as depicted in Figure 3.38. The algorithm will then expand the window by 1 pixel on the 

right. 

 

 

Figure 3.38: algorithm model example. 

 

1 2

Neighbor check nr 2
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3.6.3.3.3 New_win_masks.dat 
When a new window has to be opened, the 3x3 neighborhood is explored to check the admissible size 

of the new window, in order to avoid borders and overlap. Since the adopted solution for clustering 

works without dynamic neighbor inclusion, there is no need to explore the neighborhood and this 

check is bypassed. 

 

3.6.3.4  Window statistic 
The window statistics are calculated on the algorithm output, in order to evaluate the differences 

among the different clustering strategies. The main window statistics are: 

 The total number of windows 

 Mean area of windows 

 Histogram of the area of windows 

 Histogram of the number of DTs per window (Figure 3.39) 

 

Figure 3.39: histogram of the number of DTs per window. 

 

3.6.3.5  Simulation results 
The high-level MATlab model was used to determine the best strategy among DLR, DRLR, DRL, RLDR, 

RDL. The results are shown in Figure 3.40. 
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Figure 3.40: Number of windows w.r.t. strategy. 

 

Each result was obtained on 1000 frames without noise. The noise DTs are not necessary for this 

purpose, since the effects of the different strategies are appreciable only on cluster of events. Different 

lightning concentration areas were considered: 190x190, 100x100, 50x50. Greater differences are 

expected on the smaller concentration areas, where the probability of conflicting windows is higher. 

RDL is the best strategy in terms of total number of windows. The saving on all the 1000 frames is: 

 243 windows on 190x190 concentration 

 730 windows on 100x100 concentration 

 4420 windows on 50x50 concentration 

 

3.6.3.6  MATlab files 
Table 3.5 shows the main files composing the MATlab high-level model. 

NAME PATH TYPE DESCRIPTION 
LI_clustering.m high-level script Main simulation script 

DT_extract_selex_tv.m common function Extract DTs from SES test-vector structure 

DT_extract.m common function Extract DTs from image file 

expand_window.m high-level function Window expansion 

new_window.m high-level function Creates a new window 

include_neighbors.m high-level function Includes neighbors into selected windows 

image_show.m common function 
Shows the output of the clustering in a MATlab 

plot 

cluster_stats.m common script 
Calculates cluster window statistics for 

clustering strategy analysis 
Table 3.5: MATlab model file structure. 
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3.7  Bit-true MATlab model 
After implementation and optimization and the High level MATlab model, the algorithm is divided into 

blocks for the Bit-true MATlab model. Every block has a particular function in the processing flow of 

the new DT. Requirements in bit-true MATlab models are the same described in paragraph 3.3. 

In MATlab code, every block is implemented like function. Function’s syntax in MATlab is: 

[list of function’s output, local name] = function-name [list of function’s output, local name]   

Into the function, the functionality of the block is described. Then, in main code, the function is called 

with syntax:  

[list of function’s output, global name] = function-name [list of function’s output, global name]   

Principal blocks implemented in MATlab code are: 

 Adjacency Check, AC; 

 P_Window Check, PWC; 

 Candidate Window Selection, CWS: 

o Candidate Window Selection 1, CWS_1; 

o Candidate Window Selection 2, CWS_2; 

 Expandability Check, EC; 

 Priority Selection, PS; 

 Window Update, WU; 

 Add Neighbors, AN. 

Algorithm described in Figure 3.21 is implemented with principal blocks in Figure 3.41 
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Figure 3.41: algorithm implemented with principal blocks. 
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In the following, a description of every block and its MATlab bit-true code. 

 

3.7.1  Adjacency Check 
Adjacency Check, AC, must check if a new DT has one or more adjacent windows and which windows 

they are. To check a window, this block must compare new DT’s coordinates with all window’s 

coordinates and dimensions. The events can be in 4 area, like description in paragraph 3.5: 

 

 

Figure 3.42: allowed new DT position relative to a window. 

 

When a new DT is enclosed in an already existing window, an internal flag in is set and dir value, in 

this case dir = 5, is only for information. Because of dir position, only one of the directions is possible: 

dirs are mutually exclusive. 

Value of coordinates of DT and window in memory are coordinates of high-left corner. So, to check the 

adjacency, new DT coordinates must be compared with the high-left coordinates of these areas:  

 

 

Figure 3.43: coordinates of every adjacent and internal zone. 
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List of conditions for every direction: 

DIRECTION INTERNAL FLAG X CONDITION Y CONDITION 

1 0 XDT = Xwindow + Dxwindow Ywindow ≤  YDT <  Ywindow + Dywindow 

2 0 XDT = Xwindow + Dxwindow YDT = Ywindow + Dywindow 

3 0 Xwindow ≤ XDT < Xwindow + Dxwindow YDT = Ywindow + Dywindow 

4 0 XDT = Xwindow - 1 YDT = Ywindow + Dywindow 

5 1 Xwindow ≤ XDT < Xwindow + Dxwindow Ywindow ≤ YDT < Ywindow + Dywindow 

Table 3.6: conditions for every direction on X and Y axes and internal flag value. 

 

Conditions for every direction must be verified both in X and Y coordinates. If only one of them is not 

verified for a direction, new DT is not considered in this direction. When no direction is valid, the new 

DT is not considered adjacent to the window: dir and in is imposed to 0. 

To maintain the information about the candidate window, candidate ID value is assigned to the 

following registers, called AC_register.  

In Bit-true MATlab, flags are created to make faster comparison operations between window and new 

DT coordinates. Every flag is set by 1 if condition is true, to 0 if condition is false.  

Flags are resumed in sequent table: 

 

FLAG  COORDINATES CONDITIONS  

AX 1 If XDT = Xwindow - 1 Else 0 

BX 1 If XDT = Xwindow + Dxwindow Else 0 

CX 1 If Xwindow ≤ XDT < Xwindow + Dxwindow Else 0 

DX 1 If XDT < Xwindow – 1  or  XDT  >Xwindow + Dxwindow  Else 0 

AY 1 If YDT = Ywindow + Dywindow Else 0 

BY 1 If Ywindow ≤ YDT < Ywindow + Dywindow Else 0 

DY 1 If YDT < Ywindow – 1  or  YDT  > Ywindow + Dywindow Else 0 
Table 3.7: flag's conditions. 

 

Then a series of IF structure selects values of dir, in and ID variables. Algorithm for AC block is in 

Figure 3.44: 
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Figure 3.44: AC algorithm. 

 

As already explained in this paragraph, flag conditions are mutually exclusive and just one dir value is 

assigned. So, only one branch has valid conditions. 

Local variable X_n_e and Y_n_e are the new DT coordinates, winID, window_x, window_y, window_dx and 

window_dy are the checked window parameter. 

 

3.7.2  P_Window Check 
In the same time of AC block, P_Window Check, PWC, must check if a window’s coordinates is in 

P_window total area. Inputs are the same of AC block, coordinates of new DT and coordinates and size 

of every window, but a counter is necessary to handle the checked P_windows in the MATlab dynamic 

memory. First of all, it is necessary to test if the input window is valid: so, a test on Dx and Dy value is 

made. A window is valid if both of them are greater than 0. When a window pass the check, it is stored 

in a new register called P_window_register. Operations in PWC block is the same comparison defined in 

section 3.5:  
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푌 	 = 	 푌

		푋 − 	14	 ≤ 	 푋 	≤ 	푋
	       or       

		푌 − 	14	 ≤ 	푌 	≤ 	푌

푋 	 = 	 푋
 

 

If a window passes the check, it is saved in P_window_register with a flag of enable (win_en) and the 

counter is increased to allow a right safe of new founded P_window. The final step is the ID window 

save in P_window_register, together with window coordinates. It will be necessary during the 

expandability check. 

Local variable A tests if the window is valid and no empty. Counter and ID variables must have 

different name in input and output because in the block they change their values. 

As shown in Figure 3.41, AC and PWC blocks must work over all the existing window. For this reason, 

these two blocks, during the call, must be run in a FOR loop from 1 to MAX_WINDOWS number. After 

this loop, AC_register and P_window_register contain all the information about Candidate and P_window 

with ID, coordinates, dimensions and relative position between new DT and window. 

 

3.7.3  Candidate Window Selection 
When AC_register is ready and all the windows are checked, it is necessary to regroup all the selected 

windows in a register to make easier the expandability check over Candidate: Candidate Window 

Selection, CWS, handle these information. This macro-block is divided in 2 parts: CWS_1 and CWS_2 

 

3.7.3.1  CWS_1 
Candidate Window Selection 1, CWS_1, takes just valid windows in AC_register and save them in a 

register called Pos: every window is positioned in its dir position. For example, if a window has dir = 2, 

it is positioned under position 2 in Pos register. Because of mutual exclusion between possible 

direction, only 5 position are available in Pos register, one for every direction (from 1 to 5). Direction 0 

is not necessary. In main, this block must be run MAX_WINDOW times too, one for every AC_register 

window.  

In the code, AC_register(i,6) is the dir value: if it is greater than 0, window is copied in Pos register and 

an enable flag is set (Pos (*,1)). 
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3.7.3.2  CWS_2 
When Pos registers are ready, block Candidate Window Selection 2 (CWS_2) takes the windows 

selected by CWS_1 and saves them in the Candidate register. In main, a FOR statement over all the 

directions, 5, allows to scan all the possible Pos window and save them in Candidate register. As 

explained in paragraph 3.5, candidates are only 4. 

When a valid window is found, it is copied in one of the four slot of Candidate register and Pos position 

is deleted. A counter handles the right position of every transfer. 

 

3.7.4  Expandability Check 
Now, 4 or less Candidates are found. For every one of them, it is necessary to check the expandability 

over all the P_windows found: if  at least one P_window does not allow the expandability of a Candidate, 

the expandability test fails. A Candidate cannot be expandable if max dimensions are reached too. 

As explained in Figure 3.41, outputs of this block are a flag result of expandability test over a 

Candidate, called found, and the variation on the coordinates dependent of positions of new DT and 

other P_windows. These variations are called delta_x, delta_y, delta_Dx, delta_Dy. If a Candidate is 

expandable, at least one of delta values are different from 0, either all delta are 0.  

MATlab block is implemented for a single Candidate and then it is repeated for all the 4 candidates. 

First operation of the block, neighbors flag is tested because it can change window max dimensions, i.e. 

MAX_WIN_HEIGHT and MAX_WIN_WIDTH: in fact, if neighbors flag is 1, max dimension is 6 instead of 8 

because of the final neighbors inclusion. 

Then, if the direction of Candidate is greater than 0, i.e. Candidate exists, edge values are calculated as 

shown in Figure 3.45: 

 C_window_x_L: it is just the value of the right edge of the candidate window because window_x 

is the value of left edge; 

 C_window_y_L: dually of C_window_x_L, it is the value of down edge of the candidate window 

because window_y is the value of high edge; 

Edges are necessary to test no-expandability over quadrant borders.  

Edges values are used to create some flags: they are assigned with “1” when constrain are 

violated. Flags of dimension and coordinates constrains are:  

 W_DY_MAX : test Y max dimension. If Dy is greater than MAX_WIN_HEIGHT, it is set; 
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 W_DX_MAX : test X max dimension. If Dx is greater than MAX_WIN_WIDTH, it is set; 

 W_X_0 : flag is set if left window edge is already on quadrant border; 

 W_Y_MAX : flag is set if down window edge is already on quadrant border; 

 W_X_MAX : flag is set if right window edge is already on quadrant border. 

When all flags are assigned, direction boundary flags R_bound, RD_bound, D_bound and LD_bound are 

initialized with logic operation over constrain flags. Boundary flags are set to 1 only if all the 

conditions over respective edge are 0; if at least one of condition is 1, respective boundary flag value is 

set up to 0. For example, if Dy is equal to MAX_WIN_HEIGHT, i.e. W_DY_MAX = 1, D_bound is set up to 0 

independently of others flag. It means that boundary flags are just a NOR logic operation over 

respective conditions: 

 

These flags are used to initialize the global expandability flags, because, before the comparison of 

candidate with all the P_windows, it is necessary that conditions over edges of a candidate are verified. 

Global expandability flags are 4, R_g, RD_g, D_g and LD_g, one for every possible direction of expansion. 

Initialization of Global expandability flags is made with the operations: 

 

 

Then, for every P_window, the expandability flags are updated. So, a loop of P_windows number 

iteration starts.  

A few operations are carried out over a generic P_windowi to evaluate Candidate expandability. 

Principal value of a Candidate are: 
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Figure 3.45: edges value of candidate window. 

 

Comparisons between Candidate and a single P_windowi are made over all directions with 4 

operations: 

 A value is necessary to check on the left side of Candidate. The operation is: 

퐴 = 	 푃푥 + 	푃푑푥 − 	푊푖푛푑표푤_푥 

 

Figure 3.46: schematic of A operation. 

 

 B is used to check on the right side of Candidate: 

퐵 = 	 푃푥 − 	퐶_푤푖푛푑표푤_푥_퐿 
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Figure 3.47: schematic of B operation. 

 

 C to check on up side of Candidate. Dual of A operation: 

퐶 = 	 푃푦 + 	푃푑푦 − 	푊푖푛푑표푤_푦 

 

Figure 3.48: schematic of operation C. 

 

 D for down side of Candidate. 

퐷 = 	 푃푦 − 	퐶_푤푖푛푑표푤_푦_퐿 
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Figure 3.49: schematic of operation D. 

  

From the results of these 4 operations, 7 flags are implemented. They are just to simplify the following 

operations: 

 

C1 doesn’t exist because possible directions are not symmetric around the Candidate and C1 is not 

required. 

Thanks to these 7 flags, single P_window expandability check R_win, RD_win, D_win and LD_win can be 

calculated. To understand conditions of every flag, it is necessary to subdivide the zone that will allow 

to pass the expandability check for the current P_windowi. These zone are highlighted in green in 

Figure 3.50, Figure 3.51, Figure 3.52 and Figure 3.53: 

 R_win. To be expandable in Right direction, P_windowi must be in at least one of the following 

positions with respect to Candidate:  
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Figure 3.50: allowed P_window position for Right expansion and relative conditions. 

  

 RD_win. To be expandable in Right-Down direction, P_windowi must be in at least one of the 

following positions with respect to Candidate: 

 

Figure 3.51: allowed P_window position for Right-Down expansion and relative conditions. 

 

 D_win. To be expandable in Down direction, P_windowi must be in at least one of the following 

positions with respect to Candidate: 
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Figure 3.52: allowed P_window position for Down expansion and relative conditions. 

 

 LD_win. To be expandable in Left-Down direction, P_windowi must be in at least one of the 

following positions with respect to Candidate: 

 

Figure 3.53: allowed P_window position for Left-Down expansion and relative conditions. 

 

So, it is easy to understand that an OR logic between these conditions is sufficient to produce the right 

value of single P_window flags: 
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When the single flags are calculated, relative global expandability flags are updated with these values. 

If at least one of the single flags is set to 0, i.e. just a P_window cannot allow expansion to one direction, 

then the global flag is set to 0 to this direction because, independently on the flag result of all the 

others P_window, this direction is occupied.  

For this reason, the last operation of the loop is the update of the global flag with these 4 operations: 

 

The loop is repeated for all the P_windows. A P_window is considered not valid to update the global flag 

if is empty , i.e. win_en = 0, or if the ID value is the same of the Candidate ID because the Candidate and 

the P_window are the same window. 

When all P_windows are checked, the block is ready to set up the output values. Global flags founded 

are just the results of comparison between all the P_windows and Candidate window but now it is 

necessary to include the condition over the new DT. This information is resumed in in and dir values. 

Obviously, if new DT is internal to the Candidate, i.e. in = 1, the expansion check is automatically 

passed, found flag is set to 1 and delta values are zero because the DT is already included in the 

Candidate window. Otherwise every dir value has a mandatory direction of expansion: if this 

mandatory direction is not allowed, i.e. relative global flag is 0, Candidate window is not expandable 

over this direction, found flag is set up to 0 and the algorithm check other candidates to look for an 

expandable window. 

A summary of dir/mandatory direction is in the table: 
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dir VALUE MANDATORY DIRECTION 

1 R_g = 1 

2 RD_g = 1 

3 D_g = 1 

4 LD_g = 1 
Table 3.8: dir value and relative mandatory direction in expandability check. 

 

The outputs are calculated with a CASE over dir variable. Obviously, if no Candidate is expandable and 

all found flags are 0, a new window is open with the new DT. 

For every possible direction of expansion, coordinates and size of the Candidate can change: 

EXPANSION DIRECTION COORDINATE AND SIZE CHANGES DELTA VALUES 

R 

Xwindow   Xwindow Delta_x = 0 

Ywindow   Ywindow Delta_y = 0 

Dxwindow   Dxwindow + 1 Delta_Dx = +1 

Dywindow   Dywindow Delta_Dy = 0 

RD 

Xwindow   Xwindow Delta_x = 0 

Ywindow   Ywindow Delta_y = 0 

Dxwindow   Dxwindow + 1 Delta_Dx = +1 

Dywindow   Dywindow + 1 Delta_Dy = +1 

D 

Xwindow   Xwindow Delta_x = 0 

Ywindow   Ywindow Delta_y = 0 

Dxwindow   Dxwindow Delta_Dx = 0  

Dywindow   Dywindow + 1 Delta_Dy = +1 

LD 

Xwindow   Xwindow - 1 Delta_x = -1 

Ywindow   Ywindow Delta_y = 0 

Dxwindow   Dxwindow + 1 Delta_Dx = +1 

Dywindow   Dywindow + 1 Delta_Dy = +1 
Table 3.9: resume of coordinates and size change of candidate window and delta output values. 

 

In the code, C_window_x, C_window_y, C_window_dx and C_window_dy  are coordinates and size of 

Candidate, j is the Candidate ID, dir and in are position and internal flag of the new DT. P_window 

parameter are: 
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 P_window_register(*,1) is X value; 

 P_window_register(*,2) is Y value; 

 P_window_register(*,3) is Dx value; 

 P_window_register(*,4) is Dy value; 

 P_window_register(*,5) is ID value; 

 P_window_register(*,6) is enable flag. 

Output are found flag, delta values and E_register, a copy of the candidate window.  

Found and all delta values are saved in found_vector and delta_*_vector respectively, to use a loop in PS 

block. 

 

3.7.5  Priority Selection 
At the end of all the EC, one for every Candidate, expandable windows are found and relative values of 

delta too. Now it is necessary to decide which direction is the most interesting to expand the window 

to. 

Like explained in section 3.6, direction priority is R -> RD -> D -> L. So, dir priority is 1 -> 2 -> 3 -> 4. To 

check the lowest dir, a for loop over all the Candidates is made. The dir value and Candidate 

parameters are saved at each iteration if dir is lower than the saved one. At the end of the loop only the 

highest priority dir, i.e. the highest priority Candidate, can pass to the successive block. 

An exception is in case of already internal new DT: if one of the Candidates already contains the new 

DT, it is the selected candidate and no changes will occur over its coordinates and size. 

If no Candidate is expandable, a new window is necessary and an unused ID is assigned. 

When the expandable window with higher priority is selected, its delta values are chosen to modify 

the current coordinates and size and they are saved in var variables.  

For future VHDL implementation, a signal of wr_enable is added. It is useful because if number of 

window is MAX_WINDOW, no other window must be added in memory. 

In the code, Var_x, var_y, var_Dx and var_Dy are the final values of the selected delta.  

 

3.7.6  Window update 
In Window Update block WU, window parameter is updated.  
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If all the found flags are 0, it means that no Candidate is expandable and a new window is opened with 

standard parameter: X = X_n_e, Y = Y_n_e and Dx = Dy = 1. 

Otherwise, Candidate parameters are updated with var values. 

Just a little transformation is necessary: ID must be increased by one because ID starts from 0 instead 

memory matrix starts to index 1. 

In WU MATlab code, Window_number is a support variable used to save the global number of windows. 

When window values are updated, all the delta and var variables are reset and ID value is decreased by 

one to return to the initial value. 

 

3.7.7  Add neighbors 
At the end of the frame, neighbors must be added. Neighbors modes are already described in section 

3.4. In the MATlab code, neighbors mode change parameters of every existing window. A resume is 

shown in Table 3.10: 

 

MODE DESCRIPTION 
OPERATIONS 

OVER CLUSTER 

OPERATIONS OVER 

SINGLE EVENTS 

Disable windows don’t change 

their parameter and they 

are transmitted 

- - 

Enable all the windows increase 

their size by 2 over the 

two axes (without 

border overlap) and left-

up corner is translated 

by one up and left pixel 

Xwindow   Xwindow – 1 

Ywindow   Ywindow – 1 

Dxwindow   Dxwindow + 2 

Dywindow   Dywindow + 2 

Xwindow   Xwindow – 1 

Ywindow   Ywindow – 1 

Dxwindow   Dxwindow + 2 

Dywindow   Dywindow + 2 

Selective 

Enable 

neighbors are added only 

at single event window 

(a test over window size 

is necessary) 

- 

Xwindow   Xwindow – 1 

Ywindow   Ywindow – 1 

Dxwindow   Dxwindow + 2 

Dywindow   Dywindow + 2 
Table 3.10: operations over windows for different neighbors modes. 
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3.7.8  MATlab main code 
The model main calls the functions of the blocks, feeds input DT, handles block loops, stores the output 

of blocks and gives the results of clustering algorithm. 

The main is divided in implementation of algorithm parameter, definition of variables, loading of input 

test-vector and neighbors mode, algorithm execution and analysis of results. 

Internal variables are: 

VARIABLE NAME DEFAULT  BRIEF DESCRIPTION 
DTnumber 0 Total number of new DT in the frame 

window_number 0 Update total number of window  at every iteration 

num 1 Counter for CWS_2 block 

count 1 Counter for PWC block 

index 0 New DT counter 

var_x 0 Allow to change X memory value 

var_y 0 Allow to change Y memory value 

var_dx 0 Allow to change Dx memory value 

var_dy 0 Allow to change Dy memory value 

ID_val 1 Contain the ID of the high priority expandable window 

wr_enable 0 Write memory enable 
Table 3.11: variables in main code. 

 

Instead, vector/register used in the code to store information about windows are: 

NAME  1 2 3 4 5 6 7 
memory X Y Dx Dy - - - 

AC_register X Y Dx Dy ID dir in 

pos en in ID X Y Dx Dy 

candidate X Y Dx Dy ID dir in 

E_register X Y Dx Dy ID dir in 

P_window_register X Y Dx Dy ID en - 

update_register X Y Dx Dy - - - 

transmitted_register X Y Dx Dy - - - 

delta_x 
delta_x 

candidate 1 

delta_x 

candidate 2 

delta_x 

candidate 3 

delta_x 

candidate 4 
- - - 
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delta_y 
delta_y 

candidate 1 

delta_y 

candidate 2 

delta_y 

candidate 3 

delta_y 

candidate 4 
- - - 

delta_dx 
delta_dx 

candidate 1 

delta_dx 

candidate 2 

delta_dx 

candidate 3 

delta_dx 

candidate 4 
- - - 

delta_dy 
delta_dy 

candidate 1 

delta_dy 

candidate 2 

delta_dy 

candidate 3 

delta_dy 

candidate 4 
- - - 

found 
found 

candidate 1 

found 

candidate 2 

found 

candidate 3 

found 

candidate 4 
- - - 

Table 3.12: content description of all vectors/registers in the code. 

After every DT iteration of the algorithm, registers and vectors are reset to prevent errors in new DT.  

Like high-level model, the function image_show is used to view clustering results on a grid.  

 

3.7.9  Results  
To test the implemented MATlab code, random test-vectors are given in input to the algorithm, An 

example of DT distribution in the quadrant is shown in the image. 
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Figure 3.54: DT distribution in a restricted quadrant area. DT’s positions in the quadrant are completely random. 

 

The outputs corresponding to this test-vector are 3, one for every neighbors mode. 

In neighbors disable mode, added neighbors are not expected: 
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Figure 3.55: algorithm results in neighbors disable mode. 

 

The algorithm meets all the functional requirements. No window exceeds max dimensions, adjacency 

and geometrical rules are respected and overlap in this mode avoided. The neighbor pixels in Figure 

3.55 are only used to maintain rectangular all the windows. ID number start from 0 and increases for 

every window. 

With the same test-vector in input, algorithm gives the output shown in Figure 3.56 when neighbors 

are enabled: 
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Figure 3.56: algorithm results in neighbors enable mode. 

 

It is possible to see that every window has all the neighbor pixels. In zone of high DT density, windows 

overlap and overlap dimension is smaller than a 2xN or Nx2with N > 2. So, in neighbor enable mode 

requirements are respected too. 

Window number difference between enable and disable mode depends from the max allowed size of a 

single window: in enable mode max size is 6x6, in disable mode it is 8x8. So, when a window with size 

6 can be expanded, if neighbors are disabled, it is expanded but, if neighbors are enabled, a new 

window is opened. For this reason in disable mode windows are 63 and in enable mode they are 64. In 

fact, window 43, in disable mode, has a size of 8x7, but this size is impossible in enable mode before 

neighbors adding: so, a new window is opened. 

The third output is the Selective Enable mode, always over the same test-vector: 
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Figure 3.57: algorithm results in Selective Enable mode. 

 

Figure 3.57 shows an output almost equal to Figure 3.55: exceptions are just for Single Events. In 

disable mode, single events have no neighbors, i.e. hold 1x1 size, in Selective Enable instead they have 

all the 8 pixels of neighbor, i.e. became 3x3 size.  

Now one case is analyzed to prove the fairness of the algorithm.  

New DT is in raster order. So, in a particular case, DTs are separated in two windows instead of one. 

Evolution of data providing is described in Figure 3.58: 

 

Figure 3.58: evolution of DTs in raster scan and their clustering. 
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In starting conditions, two windows are present: window 50 and window 52. When a new DT arrives, 

AC found adjacency condition and EC allows to window 52 to expand. Same thing for the second new 

DT. When third event is elaborated, i.e. the yellow pixel, two windows are adjacent to it. Window 50 is 

adjacent to the new DT in dir = 3 and window 52 is adjacent to the new DT in dir = 1. For EC block, both 

of them are expandable. In this case, PS makes a choice over higher priority direction: direction 1 has 

more higher priority than direction 3. So, new DT is enclosed in window 52. 

 

3.8 From MATlab bit-true to VHDL model 
The VHDL model is a direct consequence of the MATlab bit true model because this MATlab model in 

low level is implemented to realize the system on FPGA technology. Every block, described in MATlab 

language in paragraph 3.7, is “translated” in VHDL language because block implementation and rules  

are the same for both languages but now, all blocks have to be implemented for HW realization. 

First of all, window’s parameters have to be saved in few memories. So every parameter needed a 

standard number of bits. Main parameter for the system are the following, with their range, their 

equivalent length in bit and length constant name: 

PARAMETER NAME RANGE BIT LENGTH LENGTH NAME 

X 0 – 584 10 x_bit 

Y 0 – 499 9 y_bit 

Dx 0 – 8 4 d_bit 

Dy 0 – 8 4 d_bit 

ID 0 – 75 7 ID_bit 

dir 0 – 5 3 DIR_bit 

delta -1 – +2 3 delta_bit 

in 0 – 1 1 - 

neighbors 0 – 2 2 NEIGHBORS_bit 

en 0 – 1 1 - 
Table 3.13: principal parameter in VHDL model. 

 

When all main parameter’s length are defined, it is necessary to make an initial HW description to 

understand which the main problems and constrains in RTAX4000S architecture are. 

The main memory is the memory where all new windows or modified windows are saved. For each 

window, X, Y, Dx and Dy must be stored. The total number of windows is 75, called N_win_MAX, in 

every quadrant. Constant bit’s length of every window, i.e. x_bit + y_bit + 2*d_bit, is called 



111 
 

window_reg_width and its value is 27. So, the total number of bits necessary in main memory are 

N_win_MAX * window_reg_width, i.e. 2025 bits. This is a not a big quantity of information but they must 

be accessed rapidly: the main memory is contained in memory RAM blocks. RAM in RTAX4000S can be 

accessed with a clock up to 500 MHz. [25] Because of the algorithm high area occupancy in the FPGA 

architecture, this frequency value is not expected but a 250-200 MHz RAM frequency clock can be 

reached. All others blocks in the algorithm can be set on a different value of frequency, about 40-

50 MHz: a higher value of frequency is not expected. With a clock of 50 MHz, i.e. a clock period of 20 ns, 

in 1 ms 50000 edges clock are used. These 50000 must be sufficient to elaborate all the 250 new DT in 

a frame per quadrant but they are not homogenously divided in all the 250 new DT because, for the 

first DT in a frame, no windows have to be loaded in the algorithm to make comparison and, instead, 

the last DT imposes that all windows must be loaded in the algorithm. Furthermore, it is impossible to 

load all N_win_MAX  windows for every DT in 50000 clock’s events: a parallelization is necessary to 

reduce elaboration time of every DT and optimize the algorithm. 

The first idea is to reserve a single clock’s event for every step of the algorithm, window load excluded, 

and then make an optimization to reduce global clock numbers to follow requirements. 

A frequency of 200 MHz is imposed for RAM clock and 50 MHz is imposed for all others blocks.  So, 4 

windows can be loaded in parallel for AC and PWC comparison as shows in Figure 3.61. Number 4, i.e. 

200/50, is defined as AC_MAX in VDHL parameter. But this strategy is difficultly achievable because a 

too high frequency is required for RAM block. An alternative solution is a new RAM implementation. 

Instead of a single RAM block with N_win_MAX windows with frequency of 200 MHz, 4 block RAM with 

N_win_MAX/4 windows, rounded up, can be instantiated and frequency RAM can be decreased to 

50 MHz. This strategy is possible because RAM block occupation is very small compared with 

RTAX4000S resources (120 blocks).  

With this strategy, every RAM block can load a different window for every block AC/PWC: 
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RAM 
block 0

RAM 
block 1

RAM 
block 2

RAM 
block 3

WINDOW LOAD

AC(0)/PWC(0) AC(1)/PWC(1) AC(2)/PWC(2) AC(3)/PWC(3)

clk

clk

clk clk clk clk

 

Figure 3.59: solution for WL and RAM implementation with frequency of 50 MHz. 

 

Furthermore, with this strategy WL block is easier to implement because only one loading-state is 

necessary. Just the input/output registers are more than before: first of all, in WL arrives in the same 

time 4 windows instead of 1. Moreover, pointers are necessary to loading and updating windows : in 

fact, RAM division needs a pointer to identify which RAM block contains the window and an offset in 

the selected RAM block.  

 

Figure 3.60: localization of a window to load or update. 
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As shown in Figure 3.60, a RAM block N contains the window to load/update in location number 5. So, 

two variable, RAM_block_number and offset, are necessary to identify this window. In this case, 

RAM_block_number = N and offset = 5. 

In each algorithm, AC_MAX blocks of AC and PWC can be instanced to work in parallel and compare  

AC_MAX window in parallel for every new DT.  

When the output of AC and PWC blocks is ready , it is saved in registers. Output of AC block, called 

AC_register as MATlab model, must contain parameter X, Y, Dx, Dy, ID, dir and in: total length of 

AC_register, called AC_reg_width, is 38 bits. Same condition in PWC output register, called P_reg_width: 

it must contain en, X, Y, Dx, Dy and ID for a P_reg_width length of 35 bits.  

The output of all the AC_MAX blocks in parallel, i.e. AC and PWC outputs, must be handled to be saved 

in an ordered and limited register to reduce the elaboration time of successive blocks: this is the 

function of CWS and PWS block. In VHDL model, CWS_1 and CWS_2 are synthesized in a single CWS 

network to reduce the area and the clock cycles necessary for the processing of every new DT: in fact, 

CWS can make the same function of both CWS_1 and CWS_2 in a single clock event instead of two. 

Furthermore, with CWS and PWS blocks, external position counters are no more necessary. But CWS 

and PWS blocks are high complexity blocks for the redistribution of data: they must be optimized as 

possible because, with EC block, they could reduce the clock frequency and could occupy too much 

area into the device. 

When all the windows are analyzed by AC-CWS and PWC-PWS branches, EC can check the 

expandability of all the candidates. In output of every branch there is a matrix with the result of the all 

checks. 

Output of the AC-CWS branch is an array of candidate_reg_width*EC_MAX bits, where EC_MAX is the 

maximum number of possible Candidate, i.e. EC_MAX = 4, and candidate_reg_width is the bit’s length of 

the register, i.e. 38 bits. 

Instead, output of PWC-PWS branch is an array of P_reg_width*N_P bits, where N_P is the maximum 

number of possible P_windows, i.e. N_P = 14, and P_reg_width is the bit’s length of the register, i.e. 35 

bits. 

Both arrays are used as input in the EC block. To have a fast algorithm, the EC block can be 

parallelized: in fact, in the worst case, there are only EC_MAX candidates. So, EC_MAX block of EC are 

instantiated and they work in parallel over the found candidate. 

EC is the block with more logic-arithmetic operations and input’s data and this block is instantiated  

EC_MAX times: so, it is the block which must be optimized for area and timing implementation.  
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In output of every EC block there is an array of E_reg_width bits, called E_register,  composed by X, Y, 

Dx, Dy, ID, dir and in, i.e. 38 bits, the found flag and delta values for coordinates and size changes, 

delta_bits for each one. E_register, delta values and found outputs of every block are concatenated in a 

single array: so, for example, global E_register is composed by E_reg_width* EC_MAX bits.  

All the outputs of EC_MAX blocks EC are taken in input on the PS block. This one is quite simple but a 

combinatory network is necessary to find the higher priority Candidate in only a single clock event. In 

output of PS block there are update_register of window_reg_width bits, selected delta values and found 

vector. 

The PS outputs are passed to WU block that give ID and data to RAM memory to change window value 

or add a new window. 

At the end of the frame, the AN block change values of window’s parameter because of neighbor mode 

and send results out of the algorithm.  

Obviously, all blocks and timing are controlled by a state machine called Global State Machine, i.e. GSM. 

This machine handles enable and ready signals of every block in the algorithm: these two signals will 

be used to give a correct clock, a “start” and receive an “end” from every block. The machine must 

work in parallel with the others blocks because all signals must be supervised by GSM. 

A concept implementation of the algorithm is shown in Figure 3.61: 
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Figure 3.61 : concept of the clustering algorithm implementation. A parallelization is necessary in memory, AC, PWC 
and EC blocks. Number 4 of parallel AC and PWC blocks is defined AC_MAX instead number 4 of parallel EC block is 
defined EC_MAX. 

 

The code is not fully implemented in VHDL model because it is just a prototype of a possible VHDL 

code of clustering algorithm and the principal function is to evaluate the feasibility of the algorithm in 

hardware FPGA resources. 

Now every block is analyzed to determinate control signal, interface with others blocks and make an 

area/timing synthesis. 

 

3.8.1 Adjacency Check 
The function of AC block is the same of MATlab model: search in neighbors pixels to found an adjacent 

window. Also inputs and outputs are the same, but a control interface is necessary to give a right 

timing to the block. Inputs control are clk, reset_n and en, output control is just a ready signal, 

ready_AC. 
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This block must be executed in a single clock cycle: so, internal operations and comparisons must be in 

combinatorial logic. Registers are used only for inputs and outputs. 

 

Figure 3.62: black box of AC block with its interfaces. 

 

en_AC is a “start” signal given by GSM and ready_AC is a “ready” signal for GSM. Clk is the timing signal 

and reset_n is necessary to restart the block when the frame is finished Others inputs and outputs are 

the same of MATlab model. AC_MAX blocks are instantiated in the algorithm, each one with their 

enable and ready signals: enables are the same for all blocks but ready signal is different for every 

block. Just when all the AC_MAX blocks are ready, the AC step can be considered finished. So, an AND 

logic operation between the AC_MAX ready is necessary to give the ready_AC_tot: 

 

 

Figure 3.63: logic AND operation for ready_AC_tot. 

 

Instead, clk signal is the same for every AC block because they must work in parallel and their 

temporization must be the same. 
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Operations in the block are almost the same of MATlab model with the difference that operations are 

executed in processes, flags, i.e. the same of MATlab bit-true model, are concatenated in an array and a 

case is made over it instead of an IF chain.  

A special attention should be given to arithmetic operations: in fact, the correct number of bits must be 

used for operators and results. 

  

3.8.2  P_Window Check 
As AC block, also PWC block is the same of MATlab model. Interfaces with GSM machine and timing 

requirements are the same of AC; obviously, operations and outputs are different but the structure of 

the block is equivalent. 

 

Figure 3.64: black box of PWC block with its interfaces. 

 

How Figure 3.64 shows, “start” and “ready” signals, i.e. en_PWC and ready_PWC, clk and reset_n are 

equivalent to AC block.  

Also in this block, “start” are the same for all the AC_MAX blocks instantiated and PWC step is 

considered “ready” when all blocks are “ready”. In Figure 3.65 is possible to see that operation: 
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Figure 3.65: logic AND operation for ready_PWC_tot. 

 

3.8.3  Candidate Window Selection 
As explained in introduction of Paragraph 3.8, CWS becomes a single block to improve the 

optimization of the algorithm. This block must order results of the AC_MAX parallel AC blocks in 

continuous registers to give correct results to EC blocks. Operation is explained with an example. 

Consider the initial condition in Figure 3.66: 

 

Figure 3.66: initial condition before CWS run. 

 

If AC blocks found two possible Candidate, they must be inserted in successive register’s locations 

after EC(0): 
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Figure 3.67: correct position of founded Candidates in candidate register. 

 

So, the correct situation after CWS run is shown in Figure 3.68: 

 

Figure 3.68:final situation of founded Candidate after CWS run. 

 

CWS is composed by two part: a network to choose the right AC position and a network to write output 

registers. 

To have a correct AC position, two arrays are necessary: 

 num: it is used as counter to memorize total founded Candidates. This value is token in output 

and then re-put in input for the successive iteration of AC_MAX windows; 

 en_vector: this array is necessary to save which AC block is valid, i.e. a window is found; 

 address_vector: it is used to memorize the address of empty location to memorize found 

Candidates. 
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If an AC block finds a Candidate, for example AC(2), num is increased by one, en_vector(2) is set to 1 

and address_vector is increased by one. When AC valid windows are identified, a logic network re-

address the AC_registers in the candidate registers.  

CWS block has the same interface of others blocks: 

 

 

Figure 3.69: CWS block with interface. 

 

A successive optimization must be made to meet the requirements of area and timing. 

 

3.8.4  P_Window Selection 
PWS is the dual block of CWS for P_windows. For this reason, PWS and CWS are implemented with 

same network. Differences are outputs: PWS has N_P registers of P_reg_width bits instead of EC_MAX 

registers of candidate_reg_width bits. 

 

 

Figure 3.70: PWS block with interface. 
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3.8.5  Expandability Check 
EC is the most difficult block for computational logic. It has the highest number of inputs and a lots of 

operations are carried out by this block.  

Operations are almost the same of MATlab model but they must be made in only one clock cycle. For 

this reason, arithmetic operations are broken in easier operation and their results is used in an array. 

A better understanding of EC is postponed in the optimization paragraph.  

Control interface is the same for every block: 

 

 

Figure 3.71: EC interfaces. 

 

 

3.8.6  Priority Selection 
PS block is a selection network: with some criteria, it chooses one of the Candidate or open a new 

window. So, the network is just a “big mux” with multiple inputs and outputs. Control interface is 

shown in Figure 3.72: 
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Figure 3.72: PS block. 

 

3.8.7  Window update 
WU is a block of window loading in principal memory. It has control interface and address signal in 

addition to inputs and outputs in MATlab model. Address is necessary to save the window in the 

correct position. 

 

Figure 3.73: black box of WU block. 

 

3.8.8  Add Neighbors 
AN function is to add neighbors at the end of the frame. A number of clock’s event equal to N_win_MAX 

is necessary to update neighbors to all windows. Address and read enable re interfaces are necessary 

to provide windows from RAM memory. Address is controlled into the block: address is increased at 
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every clock’s event to load in AN all windows of RAM memory. This address signal is provided in 

output to control RAM address but it is re-inserted in input to AN block for the successive increasing. 

All others control signals are used as other blocks. 

 

Figure 3.74: AN block with its interfaces. 

 

 

3.8.9  RAM memory 
All windows are saved in principal memory, in RAM blocks. RAM blocks need address, read enable and 

write enable to be controlled and a data ports in and out to pass information. RTAX4000S has dual port 

RAM blocks and, for a better optimization, both ports are used. 

 

 

Figure 3.75 : Dual port RAM interfaces. 
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But RAMs in RTAX4000S are not “true” dual port: they can be used as dual port if a port is used only in 

write mode and the other only in read mode: 

 

 

Figure 3.76: interfaces connection for dual port RAM. Interface called q_B is not connected. 

 

For this reason, one port is reserved to loading window in AC-PWC and in AN, i.e. read only, the other 

port is reserved in write mode only for WU. Problem of data sharing between blocks is not present 

because at least one block accesses to RAM information in the same time. There is only a sharing 

problem for address in first port: this is passed with a GSM test over ready signals of AN block: in fact 

GSM machine handles blocks to run blocks one at a time. To control RAM signals, a control network is 

used. It handles write and read enable, address and data ports for every port. 

Clock for this block is 50 MHz as explained in introduction of paragraph 3.8. Reset_n is not necessary 

too. 

 

3.8.10 Window Load 
WL is a new block used to handles RAM loading in AC and PWC blocks. In MATlab mode, this function 

is made by a simple FOR cycles. As explained in the introduction of paragraph 3.8, to parallelize as 

possible the algorithm, AC_MAX blocks work in parallel with frequency clock of 50 MHz. WL loads data 

in input of all AC_MAX blocks: for this reason, WL must load AC_MAX windows in parallel. WL uses only 

the read port of RAM memory and it must be switched with AN to allow dual port mode. 
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WL is a state machine that handle writing data from RAM to AC-PWC blocks. An internal register is 

necessary to hold the value of the last window valid in RAM: for this reason, GSM provides to WL block 

values of current ID with two signals: 

 AC_WIN;  

 BLOCK_MAX. 

These values are found with the equation: 

퐶푢푟푟푒푛푡_퐼퐷 = 	퐴퐶_푊퐼푁 + 퐵퐿푂퐶퐾_푀퐴푋 ∗ 퐴퐶_푀퐴푋 

State machine WL must load blocks of AC_MAX windows, change block when AC_MAX windows are 

loaded and stop last valid window is loaded. Then, for every new DT, all valid windows in RAM must 

be loaded. WL is in stand-by mode only when EC, PS, WL and AN is working. This period is very short 

in comparison to the full period of elaboration of every single new DT: for this reason, WL must be 

optimized in area and timing constrains. 

A state diagram of WL blocks is in Figure 3.77: 

 

Figure 3.77: WL state diagram. 
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The starting state of  WL is S_IDLE: when en_WL = 1, machine starts to load window in AC and CWS. 

Every L_n state loads a window in memory_temp output. When all memory is loaded, WL stand in 

stand-by mode, waiting for the “ready” signals of AC_CWS and PWC_PWS branches. Two counters, 

count_block and count_AC, are used to update the ID of the loading window: if the ID is equal to 

current_ID (count_block = BLOCK_MAX and count_AC = AC_WIN), WL must stop itself because all valid 

windows are loaded and successive state will be S_END. Else, i.e. count_block = BLOCK_MAX and 

count_AC < AC_WIN or count_block < BLOCK_MAX and count_AC < (AC_MAX – 1), loading continued with 

the successive window. During all states L_n, counter count_AC is increased to update the ID of the 

loaded window. In L_3, count_AC is set to 0 and count_block is increased by 1. When all the AC_MAX (4) 

windows are loaded, WL next state will be S_END if the frame is not ended, i.e. ready_CWS = 1 and 

ready_PWS = 1 and count_block < (BLOCK_MAX + 1), and S_IDLE if the frame is ended, i.e. 

ready_CWS = 1 and. ready_PWS = 1 and count_block < (BLOCK_MAX + 1). 

WL uses only clk, reset_n, enable and ready signals, aside from AC_WIN and BLOCK_MAX. 

 

 

Figure 3.78: WL interfaces. 

 

3.8.11 Global State Machine 
GSM is the state machine that handle “start” and “stop” signals of every block. The state diagram of 

GSM will be shown in optimization paragraph because every change in the other blocks will change the 

state diagram. 

Inputs of GSM are the input of the algorithm and ready signals of every block; outputs instead are 

control signals for every block, enable included. 
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Figure 3.79: GSM block with inputs and outputs. 

 

3.9 Algorithm optimization 
After a first review of every block, they are inserted on a tool called Precision to have an idea of area 

occupation and max frequency, before of each block and then of the whole algorithm. Obviously every 

block is just a prototype but they can be as real as possible. If a block is too big for FPGA capacity or if 

frequency is lower than 50 MHz, it is optimized to meet the constrains: for timing requirements, 

critical paths are analyzed to break it and increase block working frequency, for area requirements, 

processes in the block are reordered to have easier operations. In state machines, internal variables 

and states are optimized to improve the efficiency and reduce dead times. Every block is given an area 

occupation and a max work frequency before and after the optimization. 

The purpose of the optimization is to have the least clock cycles to elaborate a new DT in order to 

process as many DTs as possible and allow FPGA RTAX4000S to contain 4 clustering algorithm 

instances. 

Timing analysis in description of paragraph 3.8 force all blocks to work on frequency of 50 MHz. 

Instead, area constrain for every algorithm is to occupy up to 25% of the whole area because 4 

instances of the algorithm, one for quadrant, must be implemented in the FPGA RTAX4000S. 
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3.9.1 Window Load and RAM block 
As explained in paragraph 3.8.9, RAM memory is not a true dual port. Controller of RAM memory must 

handle signals to allow a dual port configuration and allow a work frequency of 50 MHZ. Port A is 

switched between AN and WL blocks, only read mode, while port B, only write mode, is reserved for 

WU, i.e. PS_WU block. 

For an easier implementation of RAM, RAM controller and WL are enclosed in a top level called 

WL_RAM. It allows a better handling of the Port A controller because read enable and address must be 

switched from the output signals of WL and AN. 

For a correct timing, WL provide the enable signal to AC_CWS and PWC_PWS branches and wait for 

their ready signals to load others AC_MAX windows. So, GSM must implement only start signal for WL 

and must wait for ready signals from WL, AC_CWS and PWC_PWS. 

WL_RAM top level is already optimized because WL and RAM blocks are implemented from the 

beginning with fast and easy operation and a simple state diagram, already shown in Figure 3.77. The 

only optimization is the implementation of flags to check the conditions to change state in diagram: 

 

Before the implementation of these flag report is in Table 3.14: 

% Global 

area 

% Register 

area 

% Combinatory 

area 

Max work 

frequency (MHz) 

% RAM 

block 

0,62 0,61 0,62 118,680 0,83 
Table 3.14: WL_RAM before flag optimization. 

 

Just a single RAM block of 120 is used to store all windows.  

Report of optimized code is in Table 3.15: 

% Global 

area 

% Register 

area 

% Combinatory 

area 

Max work 

frequency (MHz) 

% RAM 

block 

0,4 0,76 0,22 120,106 0,83 
Table 3.15: report for top level WL_RAM. 
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All area goals are met and timing goal too. In fact, a work frequency of 50 MHz is largely met to allow 

the parallelization shown in Figure 3.38.  

 

3.9.2  AC_CWS branch 
AC_CWS branch, as PWC_PWS branch, is the most important step to be optimized. In fact these 2 blocks 

are repeated for every window loading until the last valid window in memory. The purpose is to run 

this branch in only 2 clock cycles with a limited area utilization. A single top level from CWS and 

AC_MAX AC blocks is implemented.  

AC block is quite simple: it is simply “translated” from MATlab without changes. Its synthesis results 

are reported in  

% Global area % Register area % Combinatorial area Max work frequency (MHz) 

0,67 0,49 0,76 73,959 

Table 3.16: 

% Global area % Register area % Combinatorial area Max work frequency (MHz) 

0,67 0,49 0,76 73,959 
Table 3.16: results of first synthesis for AC block. 

 

Frequency work is not optimal and occupancy can be reduced, mainly because there are AC_MAX 

blocks of AC in a single algorithm, AC_MAX*4 in the whole FPGA. 

For this reason, critical path is optimized. First of all, dedicated arithmetic operations are 

implemented: 

 

 

 

Then, four new processes are implemented, two just used to found adjacency flags and the others two 

for ID_n_e and ready variables: 
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Furthermore, with this strategy, two compare elementary blocks are no longer needed and area 

utilization is reduced too.  

Then, all flags are concatenated in a vector: 

 

and a case over it allow to find dir and in values used, as MATlab code, to indentify the position of a DT. 

With these changes, the AC block is simpler and synthesis results are better (Table 3.17): 

% Global area % Register area % Combinatorial area Max work frequency (MHz) 

0,54 0,48 0,58 88,020 
Table 3.17: report data after AC optimization. 
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AC block is simpler and synthesis results are better than before. 

Now, CWS blocks is optimized. This block must be optimized as well as possible because it is critical 

for speed and area. Before the optimization, it is composed by two parts and then they are assembled 

in a top level. With this procedure, CWS block is bigger and it is necessary two clock’s events for a 

single run. Synthesis report is in the  

% Global area % Register area % Combinatorial area Max work frequency (MHz) 

2,81 3,45 2,68 80,205 

Table 3.18: 

 

% Global area % Register area % Combinatorial area Max work frequency (MHz) 

2,81 3,45 2,68 80,205 
Table 3.18: CWS report before optimization. Max frequency is with a run of two clock’s events.  

 

So, an optimization is made to reduce the area utilization and allow the execution in a single clock 

cycle of 50 MHz.  

First of all, two blocks are united in a single block to reduce register and allow to run it in a single clock 

cycle. After that, address_vector is deleted because it is equal to num-1 array. Integer variables is 

limited in their respective range and others changes are made in the algorithm to reduce the 

complexity of operations. The results of optimization is resumed in the table: 

 

% Global area % Register area % Combinatorial area Max work frequency (MHz) 

1,83 1,65 1,91 85,616 
Table 3.19: CWS report after optimization. 

 

When the two blocks are optimized, a top level AC_CWS with AC_MAX blocks of AC and a CWS is 

instantiated. It is necessary to reduce the complexity of global top level for a single algorithm and to 

verify that Precision tool can compress area and evidence critical path to optimize the FPGA 

utilization. 

If the tool is not able to reduce the area utilization, the total area occupation of the top level AC_CWS 

should be the sum of every single block and the work frequency should be the lower between the max 

work frequency of all blocks: 
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Name % Global area % Register area % Combinatorial area Max frequency (MHz) 

AC 0,54 0,48 0,58 88,020 

CWS 1,83 1,65 1,91 85,616 

Expected 

AC_CWS 
3,99 3,57 4,23 85,616 

Real 

AC_CWS 
3,22 2,32 3,66 66,636 

Difference 0,77 1,25 0,57 - 
Table 3.20: report expected and real report for AC_CWS branch. 

 

How shows in Table 3.20, the area occupation is reduced with a single top level AC_CWS. It is a great 

vantage for the project because also an optimization of every block cannot guarantee the capacity of 

the algorithm to be contained in the FPGA. 

These parameters meet the constraint of timing, i.e. 66,636 MHz is greater than 50 MHz, and the 

covered area is small. 

 

3.9.3  PWC_PWS branch 
Even PWC_PWS branch is critical as AC_CWS but the number of windows in outputs of PWS are more 

than windows in CWS outputs, i.e. N_P  is greater than EC_MAX. For this reason, it is expected that 

PWC_PWS branch is more complex than AC_CWS with a greater utilization of area and a lower value of 

working frequency. 

First of all, optimizations of every block are discussed. 

PWC is not much optimized because this block is very simple. Report of synthesis is in Table 3.21: 

% Global area % Register area % Combinatorial area Max work frequency (MHz) 

0,48 0,44 0,50 87,009 
Table 3.21: PWC before optimization. 

 

Only the implementation of combinatory variable for arithmetic operations can reduce the area: 
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With this strategy, parameter of PWC changed in: 

% Global area % Register area % Combinatorial area Max work frequency (MHz) 

0,47 0,44 0,49 92,285 
Table 3.22: PWC after optimization. 

 

Synthesis results are almost the same but an increment of the work frequency is a good news for the 

successive implementation of PWC_PWS branch. 

PWS block has the same architecture of CWS. Before the optimization, the report is: 

% Global area % Register area % Combinatorial area Max work frequency (MHz) 

5,68 4,79 6,21 66,273 
Table 3.23: PWS before optimization. 

 

So, the same optimization is implemented for this block: PWS is reduced in one block instead of two to 

allow the run in just one clock cycle ,address_vector internal variable is deleted and some operations 

are simplified. The result is in Table 3.24: 

% Global area % Register area % Combinatorial area Max work frequency (MHz) 

4,54 3,17 5,23 57,894 
Table 3.24: PWS optimized. 

 

After the optimization, PWS area occupation is greatly reduced but the work frequency is reduced too. 

For this reason , it is important to implement a top level PWC_PWS to have an reliable report of the 

branch. In fact, in AC_CWS branch, the tool has reduced the occupation and optimized critical path. 

AC_MAX blocks of PWC and a PWS are instantiated in the PWC_PWS top level. The expected results is 

the arithmetic sum of the area and a work frequency equal to the lowest work frequency of the two 

different blocks: 
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Name % Global area % Register area % Combinatorial area Max frequency (MHz) 

PWC 0,47 0,44 0,49 92,285 

PWS 4,54 3,17 5,23 57,894 

Expected 

PWC_PWS 
6,42 4,93 7,19 57,894 

Real 

PWC_PWS 
5,78 4,02 6,66 58,241 

Difference 0,64 0,91 0,53 - 
Table 3.25: report data for PWC_PWS branch. 

 

The tool reduces the area occupation of the branch and increase the max work frequency: this is the 

perfect condition of optimization. Frequency is higher than before because the tool has optimized the 

path of information and the assignment of registers in PWS block. Now, the branch is optimized with a 

lower area occupation and a working frequency higher than 50 MHz. The execution of the branch is 

completed in two clock cycles. 

 

3.9.4  Expandability Check optimization 
EC block is the most important and complex block in the algorithm. For this reason, this block is 

implemented, from the beginning, with a high optimization.  

The optimization is explained with the VHDL code. 

First of all, two variables, right and down borders, are calculated. Extend function is used to equalize 

the number of bits. 

 

Then, boundary checks are made to compare the window size with the edges of the quadrant: 

 

Boundary flags are initialized with results of these checks: 
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When boundary flags are initialized, the comparisons between Candidate window and all P_windows 

are made. First, operations A, B ,C and D are made and the results are compared with standard values 

as explained in paragraph 3.7.4. Then window flags are updated. These operations are repeated for 

every P_window. Every window saves the results of every operation in an array, i.e. A, B, C, D, A0, A1, B0, 

B1, C0,, D0, D1, D_win, R_win, RD_win and LD_win are arrays: 

 

Window flags are array for a faster comparison: in fact, t is sufficient made an AND-tree to have the 

result of the expandability: 

 

General flags D_g, R_g, RD_g and LD_g are the final flags used to found the right window.  

As final operation, the same comparisons of the bit-true model are made. 

The optimization allows to EC to meet the constraints: in fact results of the report are in Table 3.26 

% Global area % Register area % Combinatorial area Max work frequency (MHz) 

4,53 2,88 5,35 64,263 
Table 3.26: EC report. 

 

A better optimization of the EC block is very difficult for the algorithm. Results respect the timing goals 

and area are quite limited for the complexity of the block. 
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3.9.5  PS and WU  
Function of WU is just to load in the RAM the found window with higher priority and PS has to find this 

window. To optimize the algorithm, PS and WU are implemented in the same block. In fact PS can 

directly load the result of the priority selection in the RAM. With this strategy, a clock event is saved 

and WU area too. Before the enclosing in the same block, report for PS and WU are: 

Name % Global area % Register area % Combinatorial area Max frequency (MHz) 

PS 1,35 1,30 1,38 67,516 

WU 0,47 0,52 0,45 103,466 
Table 3.27: PS and WU report before optimization. 

 

When two blocks are merged, report is: 

Name % Global area % Register area % Combinatorial area Max frequency (MHz) 

Expected 

PS_WU 
1,82 1,80 1,83 67,516 

Real 

PS_WU  
1,35 1,30 1,38 67,516 

Table 3.28: Expected and real report of PS_WU block. 

 

In area occupation, the saving is limited but the block is run in a single clock cycle instead of two. So, 

goals are largely achieved. 

 

3.9.6  Add Neighbors 
AN block is executed at the end of the frame. It must add neighbors to all windows saved in RAM 

memory. Controller for RAM memory switches only-read port A between two inputs, as explained in 

paragraph 3.8.9. AN is one of these inputs. So, the block has to provide address and read enable to read 

windows in RAM and made arithmetic/logic operation over them. 

Before the optimization, AN made lots of operations in a single process and result of report is in Table 

3.29 : 

% Global area % Register area % Combinatorial area Max work frequency (MHz) 
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0,78 0,71 0,79 67,833 
Table 3.29: report of AN before optimization. 

Then, AN critical path is broken with the creation of dedicated operations. With this strategy, the AN 

block becomes: 

% Global area % Register area % Combinatorial area Max work frequency (MHz) 

0,41 0,36 0,43 71,083 
Table 3.30: report of AN after optimization. 

 

When the critical path is optimized, work frequency is increased and area occupation is reduced of 

about 50%. Area occupation is reduced with the division conditions in easier operations: 

 

 

This block is run when a frame is completed: so, it is run N_win_MAX times at the end of the frame, one 

for every window that must be provided in output. When address_in_reg, the output register of 

address_in, is over N_win_MAX, valid windows are finished and no more neighbors must be added.  

Timing goal is achieved and the block is ready for top level implementation. 

 

3.9.7  Global State Machine 
As block description of paragraph 3.8.11, the Global State Machine (GSM) handles all blocks with start 

and stop signals and provides them signals from the algorithm inputs. When the optimization of all 

blocks is complete, the GSM state diagram can be implemented. 

Output start signals are: 

 en_WL: start for WL machine. Starts for AC, CWS, PWC and PWS are not necessary because will 

be WL that will give them; 

 en_EC: enable for EC. This signal are the same for all parallel EC blocks; 
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 en_PS_WU: enable for the optimized block PS_WU; 

 en_AN: enable for AN. 

Instead, ready signals in input are more than start signals: 

 ready_WL: ready of machine WL; 

 ready_AC_CWS: ready of AC_CWS branch; 

 ready_PWC_PWS: ready of PWC_PWS branch; 

 ready_EC_tot: ready for EC block; 

 ready_PS_WU: ready for PS_WU; 

 ready_AN: ready of AN block. 

GSM must wait also ready signals for AC_CWS and PWC_PWS branches. When WL has loaded the last 

block of AC_MAX windows, i.e. its ready signal becomes “1”, also ready signals of AC_CWS and 

PWC_PWS blocks must be waited to be certain of the correct elaboration of all AC_MAX windows: in 

fact if a Candidate is in the last block of loaded AC_MAX windows and ready signals for AC_CWS and 

PWC_PWS are not waited, ECs elaborate incorrect information because one Candidate is not yet ready 

for the expandability check. 

State diagram of GSM is shown in Figure 3.80: 

 

Figure 3.80: state diagram of GSM. 
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Arrows that enter in the same exiting block is for no change of state because conditions for change 

state are not verified. IDLE is the initial state for every new frame, in S_READY the algorithm is ready to 

run and others states ST1, ST2, ST3 and ST4 are for the different steps of the algorithm. 

When GSM is in IDLE, just valid data can start the algorithm, i.e. the system is enabled and input 

coordinates are ready. Then, for every step, ready signals from others blocks are checked and, if 

conditions are verified, the state changes. When the algorithm is in ST2, if PS_WU is ready, i.e. 

ready_PS_WU = 1, end_frame signal is checked: if end_frame = 1, AN is enabled and the neighbors 

adding is started. Else, if end_frame = 0, algorithm restarts for a new DT. 

In the diagram, no arrow for global_reset_n signal is present but, when global_reset_n = 0, next machine 

state will be IDLE. 

In GSM block is inserted also the clock enable generator for all clk_en of blocks with frequency of 

50 MHz and two register counters used to save last valid window's ID, AC_WIN and BLOCK_MAX. All 

these values are saved in dedicated registers and they change with the clock. So, for example, counter 

resister for clock enable generator is increased every clock’s event and if its value is equal to AC_MAX-

1, clk_en is set to 1. In the successive clock’s event, clk_en returns to 0. 

 

 

 

Registers for the last valid window ID are updated after a test over the found vector in output of 

PS_WU: if found_vector is equal to 0, the update is made with a “+1” over old valid window’s ID. As 

explained in paragraph 3.8.10, this ID is found with an operation over two signals, AC_WIN and 

BLOCK_MAX, stored in AC_WIN_reg and BLOCK_MAX_reg. But AC_WIN value is between 0 and AC_MAX-

1: if AC_WIN = AC_MAX – 1 and its value must be increased, AC_WIN is set to 0 and BLOCK_MAX is 

increased by 1. 
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GSM outputs are the ready signals already described, new_ID for PS_WU block, AC_WIN and 

BLOCK_MAX for WL and all signals form algorithm inputs as X, Y and neighbors. Reset signal reset_n is 

enabled in IDLE state and it is necessary to reset all blocks at the end of the frame, i.e. reset_n is then 

sent to all others blocks. 

The synthesis report is resumed in Table 3.31: 

% Global area % Register area % Combinatorial area Max work frequency (MHz) 

0,08 0,07 0,09 201,086 
Table 3.31: GSM report. 
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Area occupation is very small and clock frequency is much more greater than the goal of 50 MHz. So, 

GSM block largely meets the constrains. 

 

3.9.8  Global top level 
When all blocks are optimized in occupation and timing, a Global_top_level is implemented. Blocks are 

connected with internal signals and inputs and outputs of the algorithm are inserted in the port map. 

To estimate the gain of area occupation and clock frequency, a comparison between optimization and 

no-optimization code in Global_top_level is made. After, a “real” Global_top_level is implemented to 

have a report and valuate the goals of timing and area. 

In case of no-optimization, total occupation of area is estimated in the sum of area occupation of every 

single no-optimized block: 

Name 
% Global 

area 

% Register 

area 

% Combinatorial 

area 

Max frequency 

(MHz) 

WL-RAM 0,62 0,61 0,62 118,680 

AC 0,67 0,49 0,76 73,959 

CWS 2,81 3,45 2,68 80,205 

PWC 0,48 0,44 0,50 87,009 

PWS 5,68 4,79 6,21 66,273 

EC 4,64 2,88 5,47 62,089 

PS 1,35 1,28 1,38 96,516 

WU 0,47 0,52 0,45 103,466 

AN 0,78 0,71 0,79 67,833 

GSM 0,11 0,12 0,12 203,088 

Expected 

Global_top_level 
34,98 26,72 39,17 62,089 

Table 3.32: estimate of area occupation as sum of no-optimized blocks and frequency estimate. 

 

Obviously, without optimization, values of area occupation don’t cover constrains because all values 

must be at least lower than 25% to allow to 4 clustering algorithm to be contained in the FPGA. 

Instead, frequency value respects the initial goal. 

In case of optimization, it is expected a lower area occupation for Global_top_level: 
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Name 
% Global 

area 

% Register 

area 

% Combinatorial 

area 

Max frequency 

(MHz) 

WL-RAM 0,40 0,76 0,22 120,106 

AC_CWS 3,22 2,32 3,66 66,636 

PWC_PWS 5,78 4,02 6,66 58,916 

EC 4,53 2,88 5,35 64,263 

PS_WU 1,35 1,28 1,38 67,540 

AN 0,41 0,36 0,43 71,083 

GSM 0,08 0,07 0,09 201,086 

Expected 

Global_top_level 
29,36 20,33 33,84 58,916 

Difference 5,62 6,39 5,33 - 
Table 3.33: report of Global_top_level with optimized blocks. 

 

In Table 3.33 it is possible to see that area occupation is reduced of about 15%-20% but it is not 

sufficient yet because occupation is over 25% for combinatorial and global area.  

In AC_CWS, PWC_PWS and PS_WU cases, Precision has reduced the area occupation with an internal 

optimization of FPGA space. For this reason, it is expected that this kind of optimization could be made 

also for Global_top_level. So, VHDL code for Global_top_level is implemented and a synthesis is made. 

Report for Global_top_level is in Table 3.34: 

 

Name 
% Global 

area 

% Register 

area 

% Combinatorial 

area 

Max work 

frequency (MHz) 

Real 

Global_top_level 
17,18 5,74 22,90 58,548 

Difference 12,18 14,59 10,94 - 
Table 3.34: report for VHDL Global_top_level code. 

 

Area occupation is reduced of about 40% respect to the “external” optimization. It is easily explained 

with the structure of the FPGA RTAX4000S. In fact, FPGA is composed by elementary cells connected 

to each other to create a block: these cells are indivisible and when one block of the algorithm occupies 

a part of this cell, the remaining unoccupied part is no longer available. Instead, when more than a 
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block is insert in the VHDL code and all necessary resources are estimated, the tool optimizes the 

occupation of these cells and reduces to minimum the waste of cells. For example, AC_CWS occupy the 

30% of the elementary cell and PWC_PWS the 40%: if they are separated in two different VHDL code, 

they occupy a total of two whole cells with an high wasted area but, by the internal optimization, they 

can occupy just the 70% of a single cell with a gain of a whole cell. So, it is simple to understand the 

great gain of Global_top_level respect to single blocks implementation. Obviously this strategy is 

different for R-cells and C-cells but the idea is the same for the whole FPGA. 

When a single algorithm is implemented and optimized, a top level with the 4 instances of the 

clustering algorithm is synthesized. The expected occupation is about the area occupation of 4 

algorithms. 

The synthesis  report is in  Table 3.35: 

% Global area % Register area % Combinatorial area Max work frequency (MHz) 

68,72 22,96 91,60 58,548 
Table 3.35: area occupation  and frequency value for the whole FPGA. 

 

The strategy is optimal also for the timing goal because the maximum clock frequency stays over the 

goal of 50 MHz and area occupation is quite under the 100%. 

 

3.9.9  Timing analysis 
The final step of the analysis is the estimate of computational power of the algorithm. In fact it is 

important to check if all the 250 new DTs can be elaborated in the time requirement of paragraphs 3.1 

and 3.3.4. 

An estimate of clock cycles is made for a single frame composed by indeterminate N_DT_MAX new DTs; 

then, the result is multiplied by the clock period: the result must be lower than 1 ms. With this 

strategy, the maximum number of DTs elaborate in 1 ms can be evaluated. 

The estimate is made for the worst case, i.e. with maximum window loading because this requires the 

maximum number of clock cycles for the elaboration. Total new DTs are N_DT_MAX, total windows are 

75, i.e. N_win_MAX. So, the worst case is considered when the memory is filled faster, or rather,  when 

the first 75 windows are Single Events and fill all memory and the other  (N_DT_MAX - 75) imposes to 

load from the memory all the 75 windows. In theory, this is the worst case but it is a hardly possible 

case because, for the raster scan and the position, the last (N_DT_MAX -75) new DTs should be 

enclosed in the windows present in the last elaborated row as shown in Figure 3.81. 
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Figure 3.81: all red DTs are Single Events present on the last row of the analyzed area. Remaining N__DT_MAX-75 
events, in blue,  should be on the successive row to create the worst case just described.  

 

First of all, an estimate of clock cycles for WL is necessary. WL loads AC_MAX windows in the same 

time. So, from 1 to 4 windows in memory, a single loading is sufficient, from 5 to 8 windows, two 

loading and so on. In mathematical terms, number of windows loading is equal to rounded up of the 

last valid ID divided by AC_MAX (4). Until to the maximum capacity of the window memory, 

N_win_MAX, window loading is increasing as precedent rule. Between N_win_MAX+1 and N_DT_MAX, 

windows loading are always the rounded up of N_win_MAX /4 i.e. 19.  

Total of window loading are equal to the clock cycles because a single loading of AC_MAX is made in a 

single clock cycle.  

So, for the whole frame (all the N_DT_MAX new DTs),total number of clock cycles are found with the 

formula: 

푊퐿 	 	 = 	 ⌈푖/퐴퐶_푀퐴푋⌉ + 	 ⌈75/퐴퐶_푀퐴푋⌉ ∗ (푁_퐷푇_푀퐴푋	 − 76) 

푊퐿 	 	 = 	741 + 19 ∗ (푁_퐷푇_푀퐴푋	 − 76) 

푊퐿 	 	 = 	741 + 19 ∗ 	푁_퐷푇_푀퐴푋	 − 1444 

푊퐿 	 	 = 19 ∗ 	푁_퐷푇_푀퐴푋	 − 703 

For AC_CWS and PWC_PWS branches are necessary twice WLframe clock cycles clock cycles because every 

branch uses two clock cycles for every memory loading. So, 

AC_CWSframe clock cycles = PWC_PWSframe clock cycles = 2* WLframe clock cycles for the whole frame.  

EC block is executed in a single clock cycles and PS_WU in a single cycle too. So, for the whole frame, it 

is necessary: 

퐸퐶 	 	 = 	푁_퐷푇_푀퐴푋 
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푃푆_푊푈 	 	 = 푁_퐷푇_푀퐴푋 

Last block AN uses one clock cycle for a single window to update. It is necessary N_win_MAX clock 

cycles for the updating of the windows in the whole frame. 

퐴푁 	 	 = 푁_푤푖푛_푀퐴푋	 = 75 

GSM uses just one clock cycles for every state for each DT: 

퐺푆푀 	 	 = 6 ∗ 	푁_퐷푇_푀퐴푋	 

Clock cycles in a frame for every block are resumed in Table 3.36: 

BLOCK CLOCK CYCLES PER FRAME 

WLframe clock cycles 19 * N_DT_MAX - 703 

AC_CWSframe clock cycles = PWC_PWSframe clock cycles 2 * (19 * N_DT_MAX – 703) 

ECframe clock cycles N_DT_MAX 

PS_WUframe clock cycles N_DT_MAX 

ANframe clock cycles 75 

GSMframe clock cycles 6 * 푁_퐷푇_푀퐴푋 
Table 3.36: resume of clock cycles necessary to every block for the whole frame. 

 

With a simple sum it is possible to find the total number of clock cycles for a whole frame. The result 

will be function of the parameter N_DT_MAX. 

퐺퐿푂퐵퐴퐿 	 	 = 3 ∗ (19 ∗ 	푁_퐷푇_푀퐴푋 − 703) + 2 ∗ 푁_퐷푇_푀퐴푋 + 75 + 6 ∗ 	푁_퐷푇_푀퐴푋 

퐺퐿푂퐵퐴퐿 	 	 = 3 ∗ 19 ∗ 	푁_퐷푇_푀퐴푋	 − 2109 + 2 ∗ 푁_퐷푇_푀퐴푋	 + 75 + 6 ∗ 	푁_퐷푇_푀퐴푋 

퐺퐿푂퐵퐴퐿 	 	 = 57 ∗ 	푁_퐷푇_푀퐴푋	 − 2034 + 8 ∗ 푁_퐷푇_푀퐴푋 

퐺퐿푂퐵퐴퐿 	 	 = 65 ∗ 	푁_퐷푇_푀퐴푋	 − 2034 

 

This is the total of clock cycles necessary for the elaboration of a whole frame. The result must be 

multiplied for the clock period of 20 ns: the condition imposes that the full period must be lower than 

1 ms. 

1	푚푠 > 65 ∗	푁 − 2034 ∗ 	20	푛푠 
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The inequality is verified when: 

푁_퐷푇_푀퐴푋 ≤ 800 

The algorithm guarantees the perfect functionality in timing requirements for a number of DTs equal 

to 800. It is a number higher than the required 250 new DTs for frame. 
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Chapter 4  

Conclusion 
 

The purpose of this thesis is the implementation of a new kind of clustering algorithm for a satellite 

lightning imager that operates in real time with stringent  requirements over specific resources. 

An introduction with an overview of orbits, agencies, satellites and missions are made to describe the 

history of meteorological space missions.  

An overview of the MTG series and its main instrument, the Lightning Imager, is presented to explain 

the function of clustering algorithm. 

At first, a High Level MATlab model is implemented for the design of the algorithm. This model was 

used to verify that all functional and output requirements are met, to find the best strategy of 

clustering and have a first running prototype. Furthermore, this model produces statistic, e.g. the 

number of windows over a number of test-cases.. 

Then, the hardware architecture is designed and a Bit-true MATlab model is implemented. The Bit-

True model is tested and the results are analyzed to confirm the compliance with the requirements. 

The Bit-true model also serves for test-vector generation, to use for VHDL model verification. 

In the next step, a VHDL prototype is created on the basis of the Bit-True MATlab model. Every block is 

“translated” in VHDL and the whole algorithm is controlled by a state machine with signals added for 

HW implementation. 

The hardware is optimized with the parallelization strategy to improve the throughput keeping in 

mind the hardware resources utilization. Four instances of the clustering algorithm must fit in the 

RTAX4000S. 

The final step is the prototype optimization of all blocks to respect all constrains and an analysis of 

timing and area for the top level block. 
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