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Abstract

Nowadays Electric Vehicles are getting more and more important to address

modern issues like pollution, economical transportation needs and more effi-

cient and flexible ways of moving. In this thesis we focus on the assessment of

an electrification rate of the major urban areas of Tuscany, by simulating the

consumption of a real EV on millions of real users trajectories. We propose

different usage scenarios, all regarding a different level of sophistication, this

to make more reliable evaluations in different environmental conditions, and

we study the first, and most important couple of them. Then, we generate

the algorithms used for the simulations, and address the challenges met on

the path, such as GPS data sampling and elevation extraction issues.
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Riassunto

Gli odierni veicoli elettrici stanno assumendo sempre piú importanza come

risposta a problemi quali l’inquinamento dell’aria, il bisogno di un mezzo di

trasporto piú economico e modalità di spostamento piú efficienti e flessibili.

In questa tesi focalizziamo l’attenzione all’individuazione di un tasso di elet-

trificabilità delle maggiori aree cittadine della Toscana, attraverso una sim-

ulazione del consumo di un reale veicolo elettrico su milioni di traiettorie di

utenti reali. Proponiamo quindi differenti scenari di uso, tutti riguardanti

differenti livelli di sofisticazione, in modo da generare valutazioni piú precise

al variare di specifiche condizioni. Studiamo quindi i primi due, e piú impor-

tanti scenari. In seguito generiamo gli algoritmi utilizzati per la simulazione,

risolvendo tutte le sfide incontrate sul cammino, come il sampling dei dati

GPS e i problemi relativi all’estrazione dell’elevazione.
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Introduction

The last few decades have been characterized by a growing interest in renew-

able energy and the search for more efficient and economical ways of moving,

and at the same time, by the availability of a large and ever-growing quantity

of data. Those big data are complex and unstructured, and are characterized

by a high level of detail and their intrinsic difficulty in analyzing them.

The availability of GPS-enabled devices, and the ever-growing presence

of GPS devices on board of the vehicles, for insurance purposes for example,

makes the location based big data an opportunity to study human mobility

behavior and to understand it, in order to find useful information such as the

use of city space or the individuation of traffic jams in order to reduce them.

Until now, the oil economy and the inadequate battery performances of

the first electric cars have always been a brake for researches on electric

vehicles and alternative vehicles technologies, leading the motor companies

to invest only on the improvement of internal combustion engines.

However, the panorama is changing fast, and the Electric Vehicles (EVs)

technologies are getting more and more important to address modern issues

like pollution, economical transportation needs and more efficient and flexible

ways of moving.

The first electric cars created were unable to face these goals, but today,

with the progress made on battery efficiency, engines efficiency and great op-
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Introduction

timization, are we able to utilize electric cars for everyday use? Are we able

to substitute an internal combustion engine based vehicle with an electric

one? This work is intended to shed some light on these questions, by investi-

gating them with the help of location based big data, and by simulating the

every day usage of an EV in real life movements.

Contribution and Organization of the Thesis

This work aims at investigating the possibility of using EVs every day. Many

works in literature already study this topic, but, differently from this one,

they do not use real life trajectories, and do not address all the related issues

that may arise. The purpose of this thesis is to study the electrification rate

of Tuscany and its major urban areas, running a simulation of the consump-

tion of an EV on millions of real vehicles’ trajectories. For this reason, the

indicator used here to evaluate the electrification rate is the ability of the

EV to reach the end of the day with the battery level ≥ 0%: to derive this

indicator, we run a simulated discharge and recharge process on the battery,

based on the trajectories of users of all types and in real conditions, passing

from real roads and being affected by real traffic. In addition, this simulation

addresses issues like slope angles and elevation extraction. For this purpose,

various usage scenarios are proposed and analyzed, differing from each other

in some constraints applied to model different real life conditions.

Here are then summarized the main contributions:

• Creation of a model that simulates the discharging and recharging pro-

cess of an EV, and application of this model on Tuscany’s real users

trajectories

• Individuation of the main EVs usage scenarios
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Introduction

• Individuation of an index of electrifiability that shows if the simulation

on trajectories fails or not

• Implementation of the simulation using Java programming language

The remainder of the thesis is organized as follows.

In Chapter 1 some of the greatest contributions on EV studies are pre-

sented, ranging from Feasibility and Benefit Analysis, passing by Smart Grids

and Vehicle2Grid, and up to Connected Vehicles.

Then, in Chapter ??, the main project’s scenarios are explained, scenarios

of usage of EV in different conditions and with different constraints applied.

In Chapter 2 the charging and discharging model is presented.

Then, in Chapter 3 the experiments and their results are presented, fol-

lowed by the conclusions in Chapter 4.
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Chapter 1

Literature and Studies on

Electric Vehicles

In the last few years, Electric Vehicles have being more and more subject of

studies and researches, involving motor companies’ research labs and making

the governments have a growing interest in this alternative transportation

method.

In this chapter we provide an overview of all the studies about Elec-

tric Vehicles made until now. In Section 1.1 some related work about the

benefits analysis and feasibility studies on EVs are presented, while in Sec-

tion 1.2 studies on batteries and their State of Charge are analyzed. Then,

in Section 1.3 the major studies on power grid management in EVs future

scenarios are presented, involving the topics of Vehicle2Grid technologies

and Smart Grids, which are the leading arguments of debates regarding the

future electric network management in view of the massive introduction of

EVs. Following, in Section 1.4 the main contributions on Battery Energy

Management and Recharge Modalities are presented, along with some works

on future benefits of internet connected vehicles in Section 1.5. Finally, in
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1.1 Feasibility and Benefits Analysis

Section 1.6 the main work on the topic of human mobility mining is pre-

sented, along with the potential of the implemented software described in

it.

1.1 Feasibility and Benefits Analysis

Some previous works and researches on Electric Vehicles (EVs) are related

to various analysis on the benefits of using EVs and the eventual usage rate

of EVs. Here are presented some of these works.

In [1], Yiming Pan et al. want to make an analysis about the widespread

use of EVs in the U.S, China, Sweden, and France, countries that are selected

as representative, based on power generation, location, economic strength,

cultural background and social status. In order to do that, they devise the

AGT evaluation method that puts the Analytic Hierarchy Process (AHP)

Gray Relation Grade Analysis and TOPSIS together, and finalize compre-

hensive evaluation values of promoting electric vehicles in each country. First

of all the authors use the AHP Gray Relation Grade Analysis to execute a

hierarchical analysis of Widespread Use, and then they make a comprehen-

sive evaluation value using a ranking method called TOPSIS. This method

calculates the distance between the ideal solution and each evaluated ob-

ject. They conclude that thermal-based countries should promote EVs in

advance by issuing subsidies to open the market, and they also suggest that

Ethanol-Fuel vehicles are a more practicable response to energy crisis.

In Wenbin Luo et al. [2], the authors use AHP in order to develop a

model for assessing the environmental, social, economic and health impacts of

widely using of EVs. They develop a model in which all the US conventional

vehicles are replaced by EVs to assess how much money the country could
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1.2 Battery Simulation and State Of Charge Evaluation

save by widely using EVs. Then, this model is expanded to estimate how

much money the world would save by widely using EVs. The authors finally

evaluate the key factors that the governments and vehicle manufacturers may

need to consider when determining if and how to support the development

and use of the EVs. They show that when considering environmental and

healthy impacts, an EV is more environmental-friendly and healthy-friendly

than conventional vehicle. However, when it comes to the economic impacts,

conventional vehicle is more acceptable compared to EVs.

1.2 Battery Simulation and State Of Charge

Evaluation

The battery pack is the main energy source for an EV, therefore the esti-

mation of its state of charge is of critical importance. In this section some

works related to battery cycle simulation and state of charge estimation are

presented.

In [3] the State of Charge (SoC) estimation methodology is studied. The

authors begin analyzing various proposed methods of battery SoC estimation,

starting from the non-model-based on Coulomb counting method (simple,

online but highly sensitive to the current sensor precision) up to Black-box

battery models, such as artificial neural networks based models, fuzzy logic

models and support vector regression (SVR) based models. These models of-

ten provide good results, but they are very computationally heavy and at risk

of overfitting. They analyze then a methodology based on extended Kalman

filtering (EKF), that has the advantages of being closed-loop (self-corrected),

online, and the availability of dynamic SoC estimation error bound. For this

reasons the EKF-based model has an increasing popularity, but it has a lim-
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1.2 Battery Simulation and State Of Charge Evaluation

ited capability of providing robustness against the modeling uncertainty. The

authors propose a comparison between a novel robust extended Kalman fil-

ter (REKF) and a standard EKF for Li-ion battery SoC estimation using an

experimental dataset. They then conclude demonstrating that the REKF-

based SoC estimation method has a smaller error bound, and it has stronger

robustness against the noise statistics to some extent, better tolerating the

inappropriate tuning of the process and measurement noise covariances in

the battery system.

Another contribution on Battery Simulation has been made by Feng Ju

et al. [4]. The authors’ aim is to understand in depth the dynamic behavior

of batteries and its relationship with manufacturing process. To achieve this

goal, a battery simulation model is needed. Such a model should provide capa-

bilities for performance evaluation and failure prediction, through simulation

of cell performance under different conditions. In such a way, the authors

are also enabled in investigating the impacts of changes in working status,

temperature, and driving profiles. They also keep into consideration the fact

that in a battery all components are correlated with each other, and that

the manufacturing cycle is important in determining how the battery will

perform. They develop then a simulation framework called virtual battery,

capable of keeping in consideration internal and external parameters, as well

as the manufacturing quality on welding joints (as an additional element).

In the category of Battery Simulation and SoC Evaluation the work by

Volker Schwarzer and Reza Ghorbani about Drive Cycle Generation for De-

sign Optimization of Electric Vehicles gives a valuable contribution [5]. The

authors propose a Driving Cycle (DCs) Generation Tool that doesn’t use a

database of recorded data, but creates DCs in a modular fashion by assigning

probabilistic values to each key parameter. The modules are then assembled
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1.2 Battery Simulation and State Of Charge Evaluation

to form a DC according to predetermined rules. Firstly, they obtain proba-

bility functions for each parameter of a recorded set of DC data, and then

they implement them into a DC generation software tool that produces an

unlimited amount of DCs based on the characteristics of the original data

set. The generated DCs are a very precise representation of the original DC

data in terms of frequency spectra, speed distribution, acceleration distribu-

tion, load characteristics, and occurrence probabilities. Thus the proposed

DC generation methodology is an efficient and highly adjustable tool.

As Sangyoung Park et al. state in [25], the EVs’ energy efficiency can

be improved in many ways. One of the most important processes that can

enhance energy efficiency of EVs is the regenerative braking, that is direct

power conversion from the wheel to battery. They also state that the power

loss during regenerative braking can be reduced by hybrid energy storage sys-

tem that use supercapacitors, that can accept high power unlike batteries,

which have small rate capability. Their contribution is to introduce system-

atic enhancement of regenerative braking efficiency for hybrid energy storage

systems in EVs, obtaining 19.4% energy efficiency improvement.

As stated in [26], in order to simulate the behavior of an EV in real-life

weather and temperature conditions and its quick charging process, Attila

Gollei et al. propose a temperature-dependent model for a simulation of

use of a family of batteries used in EVs. The authors in fact want to find a

relationship between the actual magnitude at any instant of the exact charging

state and the connection point voltage values as influenced by the deviation

of the environmental temperature from the surface temperature of the cell.

They also simulate a quick charge (about 20 min) process for extending the

lifetime of these expensive battery packs, obtaining a more precise remaining

charge estimation for displaying the remaining distance.
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1.3 Impact on Power Grid and Vehicle to Grid Technologies

1.3 Impact on Power Grid and Vehicle to Grid

Technologies

In a very near future, where electric cars are being more and more widely

adopted, electric power grids are supposed to sustain an increasing demand

of energy. For this reason, power grids may face issues related to an overload

scenario, where all EVs of a country are being plugged in for recharge. In

this section some of the major contributions on this topic are presented.

In [6] Matteo Vasirani and Sascha Ossowski face the problem of the im-

pact on power grid of simultaneous charging of many Plug-in Electric Vehicles

(PEVs). In fact, this case can cause power quality degradation, energy losses

and overloads of the distribution substation, leading to overheating and ul-

timately equipment damage. The authors define their proposed allocation

policy, and analyze it from a gametheoretical point of view. The main idea

is that the policy is inspired by lottery scheduling: the resource rights are

represented by lottery tickets of equal unitary value, and the process with

the winning ticket is granted the resource. Then, the amount of lottery

tickets held by a process determines the probability of winning the lottery

and therefore being granted the resource. This policy has been proven to

be probabilistically fair in the long run. They finally demonstrate that this

allocation policy is capable of balancing allocative efficiency and fairness if

PEVs coordinate to play the best equilibrium strategy.

Shigaku Iwabuchi et al. in [7] face the same problem presented in [6],

but in a different point of view. In their scenario, shopping centers are

equipped with recharging stations for EVs, powered by fuel cells and so-

lar power. They propose a Behavior Induction based Energy Management

System (BIEM) in order to induce changes in the timing with which users

14



1.3 Impact on Power Grid and Vehicle to Grid Technologies

charge their EVs. BIEM affects the timing of the charging by recommending

times for EV charging to the user. The times recommended to the user are

selected for efficient use of power according to the circumstances of the en-

ergy facilities. If the user accepts the recommended charging time, there will

be fewer occurrences of insufficient power and convenience will be improved.

They finally propose an algorithm for recharge timing recommendation to

the user.

Shiyao Chen et al., in [8] face the issues of charging hundreds of EVs

simultaneously. In fact, charging facilities require properly designed pricing

and scheduling that take into account the intermittency of renewable energy,

the grid electricity cost, the arrival-departure characteristics, and customer

price sensitivity. They conduct simulation studies for the impact of the

operations in two scenarios: monopoly and Bertrand duopoly competition.

The result is that the operator can improve profitability if customers are

flexible in time, and the operating cost of charging facility has to be closely

monitored and balanced with the pricing.

In [11], A. Sheikhi et al. study a new Plug-in Hybrid Electric Vehicles

(PHEVs) charging scheduling program that aims at optimizing customers

charging cost. They consider the generation capacity limitations of a power

grid and the dynamics of prices in the different time slots of a day. They

propose an algorithm that calculates the near optimum charging schedule for

all vehicle owners. The authors also show how the algorithm works in some

simulations, and they state that, using this algorithm in a simulation where

70% of homes are equipped with PHEVs, not only the PHEVs charging are

shifted to the off-peak times, but also the load profile becomes considerably

smooth.

In [13], Calnan et al. focus on the impact of EVs on electricity genera-
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1.3 Impact on Power Grid and Vehicle to Grid Technologies

tion in Ireland in 2025. Using a software package by Energy Exemplar named

PLEXOS, they proceed with modeling the Irish electricity market. The au-

thors, along with the information on the composition of the five generation

portfolios received from the Irish system operator Eirgrid, undertake detailed

market simulations in order to assess the impact of government targets for

EVs on the generation costs, emissions, generation stack and the cost to load

of this additional demand. The results show that gas will be the dominant

source of electricity generation to load EVs and that wind as an electricity

source will experience a minor reduction in curtailment, with the least cost

charging profile showing a more pronounced reduction.

As the authors in [13], Borba et al. [14] also study different energy sources.

The authors study the electric power system of Brazils Northeast region.

With the installation of both wind power plants for 4.0 GW by 2013, and the

construction of nuclear and run-of-the-river hydro-electric power plants, they

are designing an appropriate modeling of the power system. This system has

to take into account the integration of variable and unpredictable generation

sources. They consider, in this case, electricity storage technologies, including

the promotion of EVs and PHEVs. In this case, the authors study the

possibility of using a governmental PHEV fleet as a way to increase the

flexibility of the power system. As a result, they estimated that a fleet of

500 thousand PHEVs in the Northeast region in 2015, and a further 1.5

million in 2030, could be recharged overnight for half the year to use the

electricity surpluses of the wind farms planned for the region, thus avoiding

the costs of modifying the electricity system.

In [18], Abouzar Ghavami et al. study the impact of a large number of

EVs charging simultaneously on the limited power capacity of the distribu-

tion feeders. The authors propose two algorithms to be implemented in a
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1.3 Impact on Power Grid and Vehicle to Grid Technologies

decentralized manner, in order to control the amount of power through each

specific distribution feeder to avoid system overloads that may lead to break-

downs. They show that both approaches converge to attain near-optimal load

variance while ensuring that the feeders are not overloaded.

Fjo De Riddera et al. [19] also study the potential of EVs in the Smart

Grid. They propose a centralized charging schedule for EVs, that takes into

account local and temporal flexibility and consumers’ preferences. The algo-

rithm operates locally on the vehicle, and uses information such as trajectory

planning, parking duration and charging controllers to operate. In this man-

ner, the consumers privacy is always insured, and the power constraints of

car park are always met. While on board processors have to deal with the co-

ordination algorithms, the parking managers need only to be concerned with

the network congestion issues. In case the power constraints at the charg-

ing location are violated, vehicle owners are given an incentive to charge at

other locations. The authors also propose a first application that focuses on

controlling the power flows at the parking locations and on rescheduling the

recharge of EVs, and a second one that takes also into account the imbalance

costs. The trajectories are computed using an activity based model called

FEATHERS. The authors finally simulate the usage of the algorithm, con-

structing charging schedules on a fleet of 200 EVs. The charging schedules

are constructed day-ahead, given a (time-varying) electricity price, and given

a known trip schedule for the following day.

In [20], Joosung Kang et al. study a concept of real-time scheduling,

starting from a centralized approach, for charging EVs, in order to reduce

the impacts on the power grids. The authors make some simulations of this

concept, showing some advantages in comparison with existing valley-filling

techniques, taking also into account timing constraints of EV owners. The
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proposed method also sets electricity price basing on preferences of EV own-

ers, in order to encourage EVs to follow the schedules. The authors also state

that, in a near future, it could be possible to extend the current centralized

scheme into a decentralized one, in order to make charging schedules inter-

actions with other system components such as home energy management

systems.

As Joosung Kang et al. do in [20], in [21] the authors face the elec-

tric grid capacity issues in a near future, where EVs could represent a big

problem when connected to the grid. They address the problem by consid-

ering a mathematical function that minimizes the system power losses, eg. a

nonlinear optimization model.

From a different point of view it’s interesting to describe the problem

faced by Xiaomin Xi et al. in [22], i.e. the location of EV chargers in

order to maximize their use by private EV owners. In the first phase, the

authors determine where EV owners live, then they use linear programming

to discover the optimal location and size of charging stations. The model has

been applied to the central-Ohio region demonstrating that a combination

of level-one and level-two chargers maximize the charging energy available,

where level-one chargers are 110V and level-two are 220V.

The impact of EVs seen as power loss on the power grid is not the only

type of impact that EVs could have. In fact, in [24] Jeffrey S. Marshall

et al. study the problem related to the heat transfer around underground

cables, like thermal degradation. The authors stated that, with just a 30%

of EVs penetration, vehicle charging is found to rise the peak temperature

of the cables’ surfaces, increase the daily variance in cable temperatures, and

significantly decrease the estimated time to failure for cables with thermally

sensitive insulation.
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As we can observe reading all the related researches, the electric grid is

going to be a more and more crucial infrastructure for future energy man-

agement. It’s supposed to react at changes, making use for example of cloud

computing, and optimizing energy supply in all of the possible scenarios.

One of these scenarios, widely discussed in literature, is the possibility of

using power stored in EV’s batteries to address Smart Grids’ peak loads by

injecting power into the grid: this is the so called Vehicle to Grid (V2G)

scenario.

Willett Kempton and Jasna Tomic [16] face the V2G opportunities by

discussing what type of vehicles are the most suitable for the V2G, and to

what markets they can sell energy, focusing on capacity, cost and revenue of

electricity coming from Electric-Driving Vehicles (EDVs). They move from

the consideration that the electric grid does not have backup batteries, while

EVs instead are potential backup batteries for the electric grid because they

are used for an average of 4% of the vehicle’s lifetime. There are 3 types of

EDVs able to produce V2G, that are Battery Electric Vehicles (EVs), Plug-in

hybrid EVs (PHEVs) and Fuel Cell Vehicles, and four types of power mar-

kets, distinguished by different control regimes. Then an analysis on eventual

power capacity of V2G is conducted, based on 3 factors: the current-carrying

capacity of the wires and other circuitry connecting the vehicle through the

building to the grid, (2) the energy stored in the vehicle divided by the time,

and (3) the rated maximum power of the vehicles power electronics. By es-

timating revenues and costs of V2G, the authors conclude that V2G would

improve the reliability and reduce the costs of the electric system.

Lassila et al. [17], face the same topic taking into consideration the point

of view of an electricity distribution company, and assessing the economic

impact of V2G. They focus on the vehicle’s discharging perspective, aim-
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1.3 Impact on Power Grid and Vehicle to Grid Technologies

ing at presenting a methodological framework that could help distribution

system planners to estimate the preliminary feasibility of energy storages. Al-

though the model consists of calculations and parameters that involve many

assumptions and uncertainty, the study shows the importance of understand-

ing the correlation between the distribution network value, network capacity,

and energy storage systems. In this context it could be possible to cut the

distribution fees charged to end-users with the large-scale adoption of EVs

if the issue can be taken into account during the system planning. Finally,

the authors state that the shape of the base load curve and the peak operating

time affects strongly to the feasibility of energy storages.

Gallardo-Lozano et al. [15], discuss on EV’s on-board battery charg-

ers compatible with smart grids. Nowadays, currently used EV’s battery

chargers are high power and non linear devices, and they generate significant

amount of current harmonics. In the future of smart grids, EVs are going to

be always connected components, therefore their power quality impact has

to be analyzed and optimized. The authors present, in this paper, a three

phase on-board battery charger compatible with Smart Grids, and enabled

to V2G operations. This battery charger is characterized by the ability of

recharging the batteries during peak-off times, and delivering the energy back

during peak times of electrical consume. The focus of the work is on the con-

trol strategy that enables the bi-directional operations. This control strategy

tries to fulfill the recent IEEE Standard 1459-2010, with the objective of max-

imizing the use/injection of Alternating Current (AC) power from/into the

grid, and reducing the load harmonic factor and load unbalanced factor.

In [23], M.A. Lopez et al. study the congestion management in a mi-

crogrid with high penetration of EVs. The authors formulate a model that

takes into account both the technical and economic aspects of the integration
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1.4 Battery Energy Management and Recharge Modalities

of EVs in a power grid. Then, they use V2G to address congestion issues,

and they propose an algorithm based on power distribution factors (DFs).

DFs are used to determine the amount of energy that a specific EV should

contribute to alleviate the congestion in a line. The algorithm has proved to

be effective if the congestion level is not very high.

1.4 Battery Energy Management and Recharge

Modalities

In Plug-in Electric Vehicles (PEVs) the battery pack is a critical energy

source, and it currently represents the performance bottleneck. In fact, daily

driving involves complex vehicle operations, and for this reason a Battery

Management System (BMS) is required. The BMS’ aims at ensuring safe

and reliable operations on batteries, and it provides precise information about

the battery, such as battery’s SoC. In this section will be analyzed all contri-

butions regarding Battery Energy Management and the Recharging modes

available or still in development.

In Hamid Khayyam et al. paper [10], like in [8] and [11], the authors face

the problem of charging hundreds of EVs simultaneously, but from a differ-

ent point of view. They propose a new intelligent battery energy management

and control scheduling service charging that uses Cloud computing networks.

The authors make some experimental analysis of the proposed scheduling

service and compare them to a traditional scheduling service, through sim-

ulations. They derive that the Cloud computing intelligent vehicle-to-grid

(V2G) scheduling service offers the computational scalability required to make

the decisions necessary to manage V2G systems as the number of PEVs and

intelligent charging devices increases. They show that, with the proposed
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1.5 Connected Vehicles

methods, the interactions between PEVs and parking lots and grid are re-

duced, and the load demand can be predicted.

As previously mentioned, battery packs are the core energy source for an

EV. For this reason, the main issue related to energy supply is when and

where to recharge vehicles’ batteries. In [12], Shin et al. present the design

and implementation of a wireless power transfer system for moving EVs. The

authors are convinced about the possibility of supplying energy to a moving

EV in wireless mode. They design and test their idea using a wireless power

system that uses an inductive coupling. As a result, the system provides

100-kW power with over 80% power transfer efficiency at 26-cm air gap, and

shows that wireless power transfer systems are a feasible way of recharge

vehicles’ batteries.

1.5 Connected Vehicles

EVs are being more and more connected to the net, in order to transmit var-

ious information such as system failures, location information, energy man-

agement, charging station location and vehicle performance.

A contribution on this topic is made by Ovidiu Vermesan et al. [9]. The

authors discuss about the trend and opportunities deriving from the intro-

duction of connected EVs, and future Energy Management solutions. For the

authors, some of the possible uses of the Internet of Energy are power distri-

bution, energy storage, grid monitoring and communication. There are also

4 different generation of EVs, distinguished by performance and complexity.

They define The Internet of Energy concept as a dynamic network infras-

tructure based on standard and interoperable communication protocols that

interconnect the energy network with the Internet allowing units of energy
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(locally generated, stored, and forwarded) to be dispatched when and where it

is needed.

1.6 M-Atlas: Mining Human Mobility

M-Atlas is a querying and mining language and system centered on the con-

cept of trajectory. It is an important tile of this entire work, because it

enables the trajectory processing inside the simulation, and it is an excellent

instrument to understand trajectories’ and users’ behavior. As described

in [27], the mobility knowledge discovery process can be specified by M-Atlas

queries that realize data transformations, data-driven estimation of the pa-

rameters of the mining methods, the quality assessment of the obtained re-

sults, the quantitative and visual exploration of the discovered behavioral pat-

terns and models, the composition of mined patterns, models and data with

further analyses and mining, and the incremental mining strategies to address

scalability.

M-Atlas has mechanisms for mining trajectory patterns and models that,

in turn, can be stored and queried, and supports various functionalities such

as:

• trajectory data creation, storage and query through spatio temporal

primitives;

• trajectory models and patterns representing collective behavior extrac-

tion using trajectory mining algorithms;

• representation and storage of such patterns and models in order to be

re-used or combined.
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All these functions are combined through an innovative Data Mining

Query Language (DMQL). This language can be used to express the whole

knowledge discovery process as a sequence of queries to be submitted to the

system. M-Atlas supports three types of data: purely spatial data, purely

temporal data, and moving points or trajectories. Plus, the M-Atlas system

integrates a set of analytical and data mining tools such as the construction of

Origins-Destinations Matrix, the construction of georeferenced density maps

according to different measures, extracting of T-Patterns, T-Clustering, T-

Flocks and T-Flows.

The O/D Matrix can be used to discover the common exits of a city,

and then to extract the set of trajectories which is part of a selected flow.

T-Clustering can be used to group together similar trajectories in order to

discover common behaviors using different methods such as Route Similarity.

A T-Pattern is a concise description of frequent behaviors, in terms of both

space and time, while T-Flocks represent a spatio-temporal coincidence of

a group of moving points. This spatio-temporal coincidence defines a com-

mon behavior of the people which move together for a certain time interval.

Finally, a T-Flow represents a flow of trajectories moving from a region to

another one.

In order to start using M-Atlas, a starting dataset of raw GPS data must

be available. Then, a trajectory construction function has to be used, in or-

der to pass from raw GPS data to trajectory data. Many parameters can be

supplied to the trajectory reconstruction function, and some are essential for

the success of the task. They are the minimum time between two consequent

trajectories (MAX TIME GAP), and the minimum space between two conse-

quent trajectories (MIN SPACE GAP). The trajectory construction function

takes as input a dataset containing the following fields:
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• id of the user;

• lat value of the current point;

• lon value of the current point;

• timestamp value of the current point.

and finally gives in output a dataset containing the main following fields:

• uid, the user id referring to the id value in GPS raw;

• tid, the trajectory identifier, enumerated from the first of the user to

the last, in order of time;

• the traj, the geometry object that contains the information related to

every point, made of x,y and z coordinates, which refer to latitude,

longitude and timestamp;

• time start, the timestamp of the first point of the trajectory;

• id, the identifier of the row in the entire table.

A trajectory, reconstructed by a mining process, is useful for understand-

ing personal mobility and for having a first look on a map of how it behaves.

In Figure 1.1 is shown an example for a single user’s trajectories.

The authors then conduct an analysis on two massive real life GPS data

sets, one containing ≈ 17000 vehicles tracked in Milan in one week (April 1st

through April 7, 2007) and consisting of a total of ≈ 2 Million observations,

and another one containing ≈ 40000 vehicles tracked in Pisa in 5 weeks

(from June 14th through July 18, 2011) and consisting of a total of ≈ 20

Million observations. Each dataset is in raw GPS format, thus being in the

format of a quadruple with values of id, lat, lon and timestamp. They use
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Figure 1.1: User trajectories view on the map

the trajectory reconstruction function to chain together all the observations

of the same car id over the entire observation period in increasing temporal

order into a global trajectory of car id., and then split the global trajectory

into several sub-trajectories, corresponding to trips or travels, by using a

cut-off threshold of 30 min. The result is ≈ 200000 travels for Milan and

≈ 1500000 travels for Pisa.

Their analysis comprehend the movement distribution in the city, which

is an analysis on the number of moving vehicles at different hours of the day.

Figure 1.2 shows this analysis, and it is important to notice that, in work-

ing days, people tend to move together in some precise hours, probably the

ones in which commuters move for going to work. The authors also compare

this plot with the one obtained from a survey by the Milano municipality
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on a period of five years, showing not only that the results are coherent, but

also that the survey distribution is known to underestimate the movements

where the mismatch occurs, this because GPS data also capture nonsystem-

atic movements, while survey data do not, as interviewed people tend not

to report their occasional mobility, such as going to the dentist or visiting a

friend.

Figure 1.2: Movement distribution of the entire week in Milan - Figure by

[27]

They show then a presence distribution, i.e. the number of people station-

ary in the same places in every hour of the day. Comparing this distribution

to the one of the survey, they demonstrate that the two distributions match

in most locations.

The dataset object of their studies is also used for basic statistic studies,

such as lengths of trips, duration of trips, correlation of length and speed

of trips, the radius of gyration (the average distance of a vehicle from its

most likely location) and the density of vehicles in space and time. By

analyzing trip length and duration they realize that mobility is a complex

phenomenon that cannot be characterized by any simple notion of average

behavior. The analysis on the radius of gyration shows how vehicle insist on

their preferred locations. By computing the radius of gyration, it is possible
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to compute, for every vehicle, its most likely locations and the general law

of the power of its attraction. After all analysis, they conclude that there

is a huge complexity represented in the data, a wide variability of individual

mobility behaviors that cannot be fully understood in its diversity by looking

only at macroscopic, global measures and laws. Their goal is then to try

to discover different subgroups of vehicles and travels characterized by some

common movement behavior.

So, they start using M-Atlas in order to master the complexity of the

knowledge discovery process in its more critical issues, such as the definition

of complex interactive and iterative analysis, the estimation of algorithm

parameters, and the validation of the models. They begin by characteriz-

ing the main flows from the city center toward the suburbs. They use the

administrative borders of Milan as input for the T-O/D Matrix model con-

structor, obtaining a high-level description of the flows between each pair of

regions. With the help of a visual interface, the analyst can interact with the

model. They firstly focus on the T-Flows leaving the city of Milan toward the

north-east suburbs, obtaining the visualization in Figure 1.3 (left). Then, a

clustering algorithm is applied, in order to find similar routes, and the result

is visible in Figure 1.3 (right), where different colors define each cluster. The

function used here to cluster the trajectories is the route similarity distance

function.

Other analysis are then conducted by the authors. One example is the

accessibility to key mobility attractors, like the top accessed parking lots

(where Linate airport parking is the top accessed one of the city). Another

example is the identification of extraordinary events that could have large

impacts on mobility, such as concerts and sport competitions: here, the event

location is the destination of many individual trips and it is a small area.
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Figure 1.3: T-Flows in Milan - Figure by [27]

Then, after the event, that location turns into the starting point for many

return trips. Even if not known a priori, big events can be easily detected

by localizing exceptionally high concentrations of presence in specific areas at

specific time intervals. Other analysis comprehend mobility predictions, that

are very useful to predict traffic congestions, and traffic jams detection.
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Chapter 2

Discharging/charging model

and Scenarios

This thesis aims at the individuation of a key parameter that could lead us to

understand when, and under which conditions, it is possible to change from

a gasoline powered vehicle to an electric one. This key parameter has been

devised in the so called electrifiability rate: it represents the percentage of a

single users’ journeys that is possible to cover with an EV. This is achieved

by simulating the consumption of an EV on real every-day users’ trajectories.

The starting dataset will be introduced in Section 3.1.

As it is possible to imagine, every vehicle has to deal with more or less

complicated physical forces during every day usage. In order to simulate a

generic vehicle’s consumption, these forces are to be considered and mod-

eled. Moreover, as we are going to study the consumption of an EV, other

additional parameters are to be kept into consideration also. All these forces

and parameters are going to represent the core model of the simulation, and

will be presented further on.

In modeling this simulated reality, also some usage scenarios will be de-
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vised and analyzed. These scenario represent a simplification of the reality,

useful for better setting the simulation in its parameters, and are a good

starting point to evaluate the basic discharging and charging model made in

this work. They will also be presented in this Chapter.

2.1 EV discharging/charging model

In this Section the discharge method and the Electric Vehicle Specs used for

the simulation will be introduced. Both model and parameters presented

here have been discussed in a report by Jesùs Fraile-Ardanuy et al. [28].

The first scenario is the basic one, and all the simulation consider it as the

basis to start from: it includes the basic algorithm developed for calculating

the consumption, and also if we consider other scenarios, the core of this

algorithm, albeit modified, stands still under the hood. The second scenario

is also of primary importance, because the algorithm developed for its cal-

culations is also fundamental for all the others, since they all consider the

recharging phase in them. Therefore, the algorithms used for the simulations

are then presented.

2.1.1 Discharge Model and Nissan Leaf Parameters

An EV is a complicated dynamic system, composed of many subsystems

that work all together, like electric motor, battery and so on. This specifi-

cations and the formulas will be used for simulating the vehicles behaving

on millions of trajectories, thereby they were simplified as much as possible,

keeping though a high correlation with the real vehicle specs supplied by the

manufacturer of the vehicle used for the simulation.

As we can imagine, during the real driving the vehicle has to deal with
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forces like gravity and friction forces like wind, tires rolling resistance and

internal moving parts. Plus, in an EV we have to keep into consideration

all the components consumptions and efficiencies. All these forces and com-

ponents’ consumptions have to be considered in calculating the EVs overall

consumption. The model presented here is to be considered valid for ev-

ery type of vehicle considered. In this way every vehicle can be used for

consumption calculation simply changing the vehicle’s parameters, that we

present here after the general forces explanation.

Here is presented the Vehicle model.

The forces that a general vehicle has to deal with are the following:

• Rolling resistance:

Frr = R(Mcar +Md)g cosα (2.1)

• Aerodynamic Drag:

Fa =
1

2
ACdρv

2 (2.2)

• Gravity (vehicle’s weight component):

Fhc = (Mcar +Md)g sinα (2.3)

• Inertial force:

Fla = 1.05(Mcar +Md)a (2.4)

where:

R[−] is the tire rolling resistance coefficient;

Mcar[kg] is the mass of the vehicle;

Md[kg] is the mass of the driver;

g = 9.81[m/s2] is the gravity acceleration;
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α[rad] is the angle of the driving surface;

A[m2] is the front area of the vehicle;

Cd[−] is the aerodynamic drag coefficient;

ρ = 1.2041[kg/m3] is the air density of dry air at 20◦C;

v[m/s] is the speed of the vehicle;

a[m/s2] is the acceleration of the vehicle;

The inertial force has two components: the force required to give linear

acceleration and the one required to give rotational acceleration to the trac-

tion motor. Since the motor’s moment of inertia is difficult to know, it is

reasonable to increase the vehicle’s mass by 5% in 2.4.

The total Traction Force can be expressed as:

Fte = Frr + Fa + Fhc + Fla (2.5)

A graphic representation can be seen in Figure 2.11.

Then, the mechanical tractive power is the product of tractive force and

the average speed of the vehicle. It depends on the power of the engine and

the efficiency of the transmission, and it is:

Pte = Ftev (2.6)

This power is then transferred to the wheel, and assuming a constant gear

efficiency ηgear , the power that enters in the gear system block is:

Pmot out =
Pte

ηgear
(2.7)

Is then considered the electric machine efficiency, ηmot , and the power

that enters in the electric machine block is:

1Image from [28]
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Figure 2.1: Nissan Leaf Traction Forces, Technical Report DATASIM

Pmot in =
Pmot out

ηmot

(2.8)

Then, the auxiliary power Paux , that represents electric loads such as

lights, wipers, horn, indicators, radio, air conditioning or heating, etc. is

considered, and the total power required from the battery is:

Pbat = Pmot in + Paux (2.9)

During breaking, EVs convert a fraction of kinetic energy that flows from

the wheels to the motor, and then to the battery pack in form of electric

energy. The fraction is represented here as regeneration factor Rgen ratio .

Here the mechanical power Pte is negative, and the power regenerated is:
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Pte reg = Rgen ratioPte (2.10)

This power flows back through the transmission:

Pmot out = ηgearPte reg (2.11)

and, again, through the electric machine:

Pmot in = ηmotPmot out (2.12)

Finally, the auxiliary power is added to the motor power to give the total

power required from the battery. Note that here Pmot in < 0 .

Pbat = Pmot in + Paux (2.13)

The EV used for this simulation is the 2012 Nissan Leaf version (Fig-

ure 2.2). The vehicle parameters of the Nissan Leaf are then presented in

Table 2.1, along with the car’s efficiencies in Table 2.2 and are useful to fully

simulate this vehicle’s behavior on the trajectories.

Cross sectional area 2.27m2

Curb weight 1521 kg

Driver weight 90 kg

Cd (drag coefficient) 0.29

µ (coefficient of rolling resistance) 0.012

Regeneration ratio 0.25 normal mode/0.35 ECO mode

Battery storage capacity 24kW

Low Battery Limit 8-10%

Table 2.1: Electric vehicle parameters
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Figure 2.2: 2012 Nissan Leaf

Gear efficiency 0.95

Electric Machine &

Power Elect. Efficiency

0.98

Charging battery efficiency 0.95

Discharging battery efficiency 0.98

Self-discharging ratio
3% monthly

(0 in the simulations)

Table 2.2: Electric vehicle efficiencies

Although the low battery limit is indicated in 8-10%, all the simulations

presented in this work are set to completely use the battery charge, so the

vehicle stops when reaches 0% battery SoC, instead of 8-10% battery SoC.

This to evaluate the total battery capacity of an EV, useful for understanding

its full range. Moreover, is to be considered that in real life, an EV has a
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little power loss also when stopped, this because of always plugged battery.

This situation has not been modeled here, and it has been considered a power

loss of 0 in the simulation. What said for the self discharging ratio is also

valid for Paux: in fact, the auxiliary power required to use lights, horns,

electric glasses, air conditioning/heating and radio are assumed to be 0 in

this simulations, for simplification purposes.

2.2 EV Usage Scenarios

The entire project consists of various usage scenarios: they are meant to

represent various levels of constraints applied to the model. These constraints

stand for the possible limitations due to state’s funds, infrastructures and

users’ behavior: for example, such limitations may be the lack of public

charging stations, the impossibility of recharge the vehicle due to the lack of

presence of a minimum stopping time by the user, or the low voltage recharge

of the vehicle. All these conditions have been analyzed and classified into

those usage scenarios, covering then all the possibilities that could be met in

real life. In this section will be presented the different scenarios that involve

the usage of EVs.

This scenarios are to be considered a simplification of the reality, in which

the main idea is to check if it is possible to change users’ vehicles today

without making the user change his behaviors. These scenarios are then a

good starting point to evaluate the basic discharging and charging model

made in this work.
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2.2.1 Scenario 1: charging at home

This is the first and very basic scenario. Here, EVs can only charge at home

with low voltage chargers, since there are no other charging stations available

for the user. This can represent the common users’ behavior: in fact, users

start their vehicles at home, and, after their whole day, return home. The

simulation applied here aims at identify if the vehicle is able to return back

home with some charge available or not, without having to recharge batteries

in the middle of the day. An EV’s battery pack, at the time of writing, takes

a long time to recharge, and needs specific predefined recharge spots. This

leads to the formulation of two constraints: the location of the charging spots

(in this case they are the users’ houses) and the hours at which every EV

can recharge. A third constraint of the current scenario can derive from the

first one: because of the lack of infrastructures, EVs home chargers can only

charge at the speed of 3 kW/h. This scenario comes in play in situations

where there are no investments on the power grid, and where there is no

possibility to recharge the vehicles in places other than home, i.e. public

charging stations.

Figure 2.3 shows a graph that explains the possible simulation. In the

first path, the vehicle moves at a certain speed, and the battery charge level

decreases accordingly. After a stop, during which the battery charge does

not decrease, the vehicle restarts. During Path 2 the vehicle increases its

speed many times causing a more rapid decrease of the battery charge than

the previous path.

This model applies basically to all scenarios, because the main calcula-

tions on consumption are made here. So, the next scenarios will be designed

starting from this one and enriching it with the specific constraints required.
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Figure 2.3: Scenario 1

2.2.2 Scenario 2: charging everywhere

To derive the second scenario, the first one is enriched with some new con-

straints. In fact, here vehicles not only charge batteries at home during the

night, but can also do it during the day everywhere. Moreover, a stopping

time constraint is introduced here, and in our experiments, it is used a 2

hours minimum stop constraint that, if true, makes the vehicle recharge the
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2.2.2 Scenario 2: charging everywhere

batteries. In this scenario, the availability of funds for the construction of

infrastructures like public charging spots is considered. In fact, it is consid-

ered feasible the eventual recharge of a vehicle wherever it stops, meaning

that charging spots are available everywhere.
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Figure 2.4: Scenario 2

Figure 2.4 shows how the simulation could work. In addition to the first

scenario, it is possible to recharge batteries if the stopping time is at least

greater than a certain threshold. The threshold used in this scenario, coming
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from our experiments, is 2 hours. It means that there is the possibility to

increase the vehicle’s autonomy in presence of long stops. An example of this

type may be when people stop the vehicle during work time, that is a long

stop period in which EVs can recharge.

2.2.3 Other possible scenarios

The first two scenarios can represent a good starting point for more complex

analysis. In fact, by adding constraints to the studied models, it is possible to

derive some other scenarios that may better represent real life conditions, like

the lack of ever-present infrastructures, fast charging possibilities or Vehicle

to Grid EV’s usage hypothesis. All these future works are presented in

Chapter 4.

2.3 Data Sampling and Interpolation

Along with the main model creation and the main scenarios representation,

also an important consideration on the available data is mandatory.

In real life, the consumption of a vehicle is strictly connected to various

factors such as slopes, speed, accelerations etc. In few words, they all can be

reduced to two main factors: the driving style of the user, and the morphology

of the streets the users travels on. Those two elements have to be deeply

analyzed, because it is important to check if they can be easily represented

by actual data or not.

Let’s start analyzing the morphology of the street. In this case, the main

factor to consider is the elevation: in order to be realistic, a consumption

simulation should take into account the variations of elevations for every

street, and for every second. So, the GPS data we start from have to be
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sampled in the shortest time possible. In fact, if the data sampling is low,

some fluctuations in elevations could not be considered, thus changing the

final consumption result.

Regarding the driving style of the user, we should consider that some

harder accelerations may have a greater impact on final consumption. Again,

this can be well represented in the data if the sampling is high enough.

It is important, then, to have an high sampled data to start from. If this

condition is not met, it may be a solution to interpolate the data available in

order to obtain the required information, for example by having a 1 second

interpolation if the original data has more than one minute time lags between

two consecutive points.

In this work, because of low sampled data, firstly a simulation on original

data has been conducted, and then an interpolation of the data has been

taken into account for a second running of the simulation, in order to take

into account elevation changes between distant points. It is to be considered

though that constant acceleration has been used for this interpolation, thus

not considering the driving style factor.

2.4 Scenarios 1 and 2 Algorithms

In this section the main algorithms used for calculating the consumption are

presented.

In the first Scenario, as previously mentioned, the discharge process of

the vehicle is simulated. EVs start with full battery charge with the first

trajectory of the day. Here, all the users journeys are used as basis to run

the simulation: the goal is to find and indicator that tells us that an EV can

be used by the user instead of a gasoline powered engine. The indicator used
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is then found to be the total consumption of the vehicle at the end of the

day: if the vehicle’s total consumption is lower than 100% of battery charge,

that user’s daily journeys pass the simulation; if, on the contrary, the total

consumption of the vehicle at the end of the day is greater than 100%, that

user’s daily journeys fail the simulation.

An observation is to be made: the actual sampling of the GPS data is

not as high as we could expect. For this reason, we initially run a simulation

on the actual sampled GPS data, in order to simulating the consumption on

just the available data. The consumption is calculated using the formulas

provided above in Section 2.1.1.

Here is presented the algorithm in pseudo-code, in order to facilitate the

comprehension.

Algorithm 1: First consumption algorithm, no interpolation

for every user, every day do

for every trajectory do
Get the trajectory and extract its points;

for every point of the trajectory do
Get the elevation, angle of road for incremental elevation,

speed, acceleration and distance from previous point;

Calculate consumption;

Write consumption for the trajectory on DB;

After the first run, because of the data sampling, a consideration has been

made: between every point, the actual changes in elevation could have been

not considered, thus changing the final results. For this reason, the algorithm

is modified to apply 1 second interpolation on GPS data, in order to consider

the elevation fluctuations between two points of the trajectory (deeply ana-
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lyzed in Section 3.3). An observation is mandatory: the interpolation made

here uses constant accelerations, this for consider only the elevation change.

In fact, in real world, when we drive a car, we firstly have a big acceleration,

and then we maintain a more or less constant speed until we brake. This

type of precision is not achieved yet in these simulations, leaving then this

implementation for future works.

The algorithm is shown in Algorithm 2.

In Algorithm 3 the recharge algorithm is presented, which is the one at

the basis of the computation.

Algorithm 2: Second consumption algorithm, with interpolation

for every user, every day do

for every trajectory do

Get the trajectory and scan it;

for every point of the trajectory do

Get the time between current point and the next one;

Get 1 second points;

for every point in the interval do

Get the elevation, angle of road for incremental

elevation, speed, acceleration and distance from

previous point;

Calculate consumption;

Write consumption for the trajectory on DB;
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Algorithm 3: Recharge algorithm

for every user, every day do

for every trajectory do

Get the trajectory time start and time end;

Calculate recharge if stop time > 2 hours

Write eventual recharge and battery SoC at the end of the

trajectory on DB;
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Chapter 3

Experiments and

Implementation

In this chapter will be presented the core work of this thesis, which is the

experimental one and implementation of the simulation. But before start-

ing with the explanation of the algorithms and solutions used here, a first

presentation of the starting dataset used along with some previous data un-

derstanding and analysis is to be done.

3.1 Understanding GPS Mobility Data

Thanks to the collaboration with Octo Telematics Italia S.r.l., CNR, the

Italian National Research Institute, obtained a database containing the GPS

data of ≈ 160.000 vehicles that stayed, or at least passed by Tuscany in the

month of June 2011. The owners of these cars are subscribers of a pay-as-

you-drive car insurance contract, under which the tracked trajectories of each

vehicle are periodically sent (through the GSM network) to a central server

for anti-fraud and anti-theft purposes.
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Figure 3.1: GPS raw table sample

The GPS data sampling is between one and three minutes on average.

It means that every point is recorded in such temporal window, and then it

can be very close to the previous one, or even very distant, depending on the

speed of the vehicle. The overall work has been made using PostgreSQL as

Database Software, with the PostGIS Extension, which provides spatial ob-

jects for the PostgreSQL database. The starting table contains all basic GPS

information. Every row contains the latitude and longitude, the timestamp

of sampling, and the id of the vehicle. A little sample of the raw GPS data

table is shown in Figure 3.1.

In this representation there is not a sort of division, or a grouping of

points, that indicates the single trajectory. This information has to be dis-

covered, and it is done, in this case, by using M-Atlas software to reconstruct

the users’ trajectories (as seen in Section 1.6). In this case, the trajectory

reconstruction function was previously used to derive the trajectories table,

that is the starting dataset of this work. The parameters used here are 20

minutes for the MAX TIME GAP and 50 meters for the MIN SPACE GAP

(for the explanation of these parameters, see Section 1.6).

The resulting table has 7 millions rows, and consists of these, important,
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columns:

• uid, the user id referring to the id value in GPS raw;

• tid, the trajectory identifier, enumerated from the first of the user to

the last, in order of time;

• the traj, the geometry object that contains the information related to

every point, made of x,y and z coordinates, which refer to latitude,

longitude and timestamp;

• n points, the number of points of the trajectory;

• length of the trajectory, in meters;

• duration of the trajectory, in seconds;

• time start, the timestamp of the first point of the trajectory;

• id, the identifier of the row in the entire table.

Figure 3.2 shows a sample of the table. This table is the starting point of

every consumption calculation program, as it contains all the basic informa-

tions of every journey needed: the position of the points, the time between

them and the timestamps of the first and the last point.

3.1.1 Preliminary Explorations

For this work, trajectories will be used to simulate, on each trip of the user,

the battery consumption based on many factors, such as vehicle mass, speed,

acceleration and elevation. Before the real consumption simulation, some

previous analysis are presented, in order to better understand the population

of the dataset.
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Figure 3.2: Resulting table sample

The following analysis are a ”picture” of the dataset that makes easy

understanding, for example, the distribution of the users between the various

cities, the kilometers driven for each city or the difference between weekends

and working days in driven kilometers. These analysis are then a starting

point for measuring some previous statistical data, that in most cases is being

the only analysis conducted. Figure 3.3 shows the cumulative distribution of

driven kms for various cities of Tuscany. As it is possible to see in the picture,

the cities with more users in absolute that have short trips are Florence and

Prato, both with a big gap between them and the others. Then, in the

right side of the plot is possible to see that the difference between the cities

decreases. At first sight we can observe that these two cities, unlike the

others, have a greater number of vehicles in comparison to the smaller cities.

Another interesting analysis is about Working Days w.r.t. Weekends

average daily trips. In fact, one could expect that in weekends people go

somewhere else than in the city, or at least drive more than in working days.

This is not the case, because in this sample, people, in weekends, at least

drive as long as in working days. The result of the analysis can be seen in

Figure 3.4.

This result may lead us to think that people drive less in the weekends,
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Figure 3.3: Cumulative distribution of driven kilometers of Tuscany’s cities

but we should not generalize. Actually, it only means that in the month of

June 2011 people drove less in weekends than in week days (that means we

should have more data to generalize).

Having the target of the comprehension of the rate of electrifiability of

urban mobility, another analysis is conducted on the possible rate of electri-

fiability that this work is going to assess. Even if it is a very initial analysis,

made without taking into consideration the multitude of parameters that

affect the EVs consumption, this analysis can explain what we are going to

see further on. It is based on the length of the trips, and in the specific, only

trips under the 100 km threshold were kept into consideration, thus making

this one a very simplistic analysis. The plot is shown in Figure 3.5.

In the picture, on the X axis is shown the percentage of the trips under

100 km, where 100 indicates all the trips (always under 100 km); on the left

Y axis is shown the number of users, and on the right Y axis is shown the
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Figure 3.5: Potentially Electrifiable trips

number of trips. For example, the 100% of the trips under 100 km (X axis)

is a total of ≈ 0.9 Millions trajectories (right Y axis) and is being performed
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by more than 50.000 people (left Y axis).

This last analysis relies on the hypothesis that, on average, an EV runs

for 100 km before the battery is completely discharged. So, if the hypothesis

is correct, ≈50.000 of users could benefit of an EV as their only vehicle.

This value represents about the 31% of the population. Further on, with the

simulation of an EV consumption on all these trajectories, this result will be

validated.

All these analysis are only a first sight on the problem, and can not tell us

relevant informations on possible electrifiability rates, as they not consider

may factors, such as, for example, the terrain effects on consumption, but

can, at least, improve our comprehension of the next part of experiments.

3.2 Java Implementation

The programming language used to create and run the simulation is Java 7,

with the libraries needed for querying the PostgreSQL database where the

actual starting table resides.

The program consists of more classes. The main class can be represented

by the algorithms described in Section 2.4. An example of the algorithm is

shown.
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Algorithm 4: First consumption algorithm, no interpolation

for every user, every day do

for every trajectory do
Get the trajectory and extract its points;

for every point of the trajectory do
Get the elevation, angle of road for incremental elevation,

speed, acceleration and distance from previous point;

Calculate consumption;

Write consumption for the trajectory on DB;

It connects to the DB and performs all the operations described in the

algorithm, except for two of them: the elevation extraction and the consump-

tion calculations, both operations made in other 2 classes. These classes are

the elevation class and the consumption class, that contains all the formulas

and vehicle’s specs described in Chapter 2 and calculates the consumption

referred to the parameters provided to it (that are distance from previous

point, time between current and previous point, speed, acceleration and an-

gle of the road, as seen in algorithms described in Section 2.4).

When a trajectory gets analyzed by the simulator, its single points are

extracted in their temporal order. In this way, every latitude and longitude

informations are used to query the elevation value from the elevation extrac-

tion class, that provides the altitude for that point. Then, for every couple of

consecutive points are calculated some values like the time difference between

them, the distance between them and the slope angle. In this way, it is pos-

sible to derive speed and accelerations, and all these information are passed

to the consumption calculation class that calculates the final value for that

segment. Every consumption value for the segments is then summarized, in
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order to obtain the final consumption value for the trajectory.

For a better comprehension, Figure 3.6 shows a simple diagram of the

classes used for the simulation.

Main Class
● Connect to DB
● Get users' daily trajectories
● Extract points from trajectory
● Extract elevation values for every point
● Calculate the consumption between points
● Write the consumption for the trajectory on DB

M-Atlas

Elevation Extraction
Class

Consumption Calculation
Class

Containing vehicle's formulas 
and parameters

Figure 3.6: Diagram of the classes used in the simulation

As mentioned in Section 2.1.1, an EV, as every other vehicle, has to deal

with some forces during every day usage: physical forces like wind, gravity

and traction forces are fundamental in calculating the overall consumption.

In fact, as every vehicle, an EV has to deal with the rolling resistance force of

the tires, the aerodynamic drag due to the front surface area of the vehicle,

gravity and inertial force. But an EV’s consumption is subject also to some

other variables like the efficiency of the transmission, the efficiency of the

electric machine and the gear efficiency. Then, as previously mentioned, other

variables should be considered in the overall consumption, such as the self

discharge rate and the auxiliary power used for electric and electronic extra

equipment (radio, wipers, air conditioning etc.). These two last parameters

were not considered here, and were set to 0. Then, in case of braking, the
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vehicle is also capable of regenerative braking, thus regenerating a little part

of the energy that recharges the battery. In this simulation the regenerative

breaking was set to standard mode, which is a value of 0.2 (i.e. the 20% of

the energy flows back to the battery).

Then, the elevation class is described. The elevation data is gathered from

the CGIAR Consortium for Spatial Information (CGIAR-CSI) web site. On

their website it is possible to choose the elevation data type by resolution.

The data type chosen is the Shuttle Radar Topography Mission (SRTM)

90m Digital Elevation Data, the more precise data source available. The

format of the data is GeoTIFF, a multi-layer Tiff image that retains altitude

information for every pixel. The GeoTIFF is in the format of 6001*6001

pixels, every one having a 90m × 90m side, and covers a little square part

of the globe. This ”squares” are not big enough to cover the whole Italian

country inside one single file; for this reason, the elevation class has to choose

which of the 7 GeoTIFF that contains the Italian country is good to make the

altitude request. Then, after the choice, an external bash code is executed

in order to extract the final value. The program used in bash is called GDal,

and its called routine is gdallocationinfo, with some extra parameters used

to ask only the value of altitude.

Some important observations have to be made. The elevation values

extracted refer to the terrain, and the elevation between two adjacent spots

can differ of at least 1 meter. This leads to two considerations: the first one

is that there is no direct reference to the road elevation in the GeoTIFF. It

means that bridges and tunnels are not considered in it, but the elevation

considered refers to real terrain elevation. Although this is considered an

issue that could make this elevation sources unreliable, no better solutions

for the road elevation extraction were available at the time of writing. The
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second consideration is that in real driving, the road level does not vary in

1 meter steps, but varies gradually. For this reason, in order to simulate a

real slope angle, a moving average of the 10 passed elevations is applied over

each point, so to smooth the elevation curve and make it more realistic.

3.3 Scenario 1 Experiments

In this section the experiments on Scenario 1 are presented. The first java

simulation, based on Algorithm 1 is implemented in such a way that, for every

point, the elevation extraction subroutine (bash command gdallocationinfo)

has to be called. That elevation extraction subroutine is soon proved to be

too slow, as it would have taken ≈ 58 days to complete the consumption

calculations on the starting table, that, as previously mentioned, consisted

of≈ 7 millions trajectories. Then, we managed to keep the result of each

queried pixel elevation in memory, in order to ask only once the elevation for

every pixel, only if needed. In such a way, the computation initially is slow,

but after some extractions begins to speed up, and finally takes just 4 days

to finish. In this first run we do not consider any interpolation, therefore we

use the actual points recorded from the GPS device for the calculation, with

their resolution between ≈ 1 and ≈ 3 minutes.

The results obtained are then queried and interpreted. As it is possible

to see in Figure 3.7, the X axis represents the percentage of days (where

100% relates to all 31 days covered for June 2011), and the Y axis represents

the percentage of users. With this graphic representation we can see how

the percentage of users varies on the change of the percentage of daily trips.

This is the plot that summarizes the key index used for the evaluation of the

results.
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Figure 3.7: Electrification Rate

The results are that a 83% of users are fully covered in their daily trips

by an EV.

From this analysis, there are some considerations. The time between ev-

ery recorded point is very long, considering the fact that this data were not

supposed to be used for a simulation, but just to insurance purposes. This

may be a problem, because between one point and the next one could exist

some big and unseen variations in elevation, thus modifying consequently

slope degrees and the final consumption. For this reason, the same calcu-

lations are made, but this time including also an interpolation process that

brings data in 1 second resolution. As can be seen in Algorithm 2, the algo-

rithm is changed to consider interpolation.

The consumption, as stated above, can differ very much from the previ-

ously calculated one, due to the higher elevation relevance. In fact, Figure 3.8

shows that the elevation between two distant points can fluctuate very much,
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thus changing the estimated consumption.
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Figure 3.8: The elevation fluctuation put to light by interpolation

In Figure 3.8 is possible to see, in X axis, the meters, and in Y axis the

altitude of that point. In the specific, on X axis every rectangle represents a

km, for a total of 47 km trip.

In order to see to what extent the consumption changes, Figure 3.9 shows

a scattered plot for a sample of 10.000 users of the database. X axis rep-

resents consumption before interpolating, and Y axis consumption after the

interpolation. Here, every dot represents a single user, and its position de-

termines if the consumption has increased or not. As it is possible to see,

the overall consumption tends to move up in a significant way.

Then, as described in Section 3.2, the elevation curve is smoothed, this to

make the slope angle variations more realistic. In fact, as described in Sec-

tion 3.2, the elevation extraction can only give values in a 1 meter resolution,

thus simulating an EV that changes the elevation of 1 meter in one second
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Figure 3.9: A scattered plot for consumption change

(that is pretty unrealistic). For this reason, a moving average of 10 previous

elevations is applied to every point, and the result is shown in Figure 3.10.

As final result, this time a 30% of users are fully covered in their daily

trips by an EV (Figure 3.11). This is a really important result, and several

conclusions can be done. First of all, with this plot we can see how the

percentage of users covered grows with the reduction of the index of electrifi-

ability: if we want to reach an index of 100% electrifiable journeys, we reach

just the 30% of the entire population. But if we can decrease the index, let’s
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Figure 3.10: The smoothed elevation curve

say, at 80%, the users covered grow up to ≈ 55%. Another point we can

state is that with this result we cannot ever reach the 80% of the population,

because the curve has a too plain shape.

At this point, the question is: is this the final result we really searched for?

Is this 30% of totally electrifiable users the real value of electrification rate

of Tuscany we wanted to find? To answer these questions, another analysis

is conducted upon obtained data, as represented in Figure 3.12.

It is a density plot where we can see, in X axis, the total days that a user

was seen in the database (i.e. he/she took the car), while on the Y axis the

number of days covered by the EV for that user. On the diagonal there are

all the users for which there is a 100% coverage, and every color represents

the number of users in that point of the plot.

It’s interesting to note that, in the lower-left side, there is a high number

of users that appear for just 3 days (or less) and are not completely covered.
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Figure 3.11: Electrification Rate - After Interpolation

This could mean that these users were only passing by Tuscany in the month

of June 2011, thus implying that those users are not really Tuscany people.

In order to investigate these hypothesis, these users were separated from

the others, and a distribution of lengths of the two resulting groups were

made. As it’s possible to see in Figure 3.13, this 3 days’ people group is

very different from the other one, because of the big difference of traveled

kilometers. In fact, there is a great number of users (approximately one third

of the population) that covers a lot more kilometers than the other group.

We could imagine that those people, having so much more driven kilometers

in just a few days (not more than 3), is people passing by Tuscany, that leads,

in this case, a misrepresentation of the Tuscany people: in other words, they

should not be included in the electrifiability analysis.

For this reason, another plot has been calculated, considering, this time,

only Tuscany’s people. The result is shown in Figure 3.14, where the 100%
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Figure 3.12: Density plot scenario 1

of users consists of 36435 users this time. As it is possible to see, the final

percentage for 100% covered trips is the same (29%) but the rest of the

curve reaches more quickly high percentage of users reducing the index of

electrifiability. This is a far better result than the one shown in Figure 3.11:

the total number of users covered is far higher than the previous one: it is

reasonable to think that not all the users will be covered, and so, if we would

like to choose a target level of electrifiability to be reached, it maybe would

be the 80%, because, at this level we would be able to reach more than 70%
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Figure 3.13: Difference between the two identified groups in traveled kms

of Tuscany people. To better show this fact, in Figure 3.15 is presented the

comparison between the two results. The figure shows, in fact, that a bigger

area is covered by the new Tuscany index plot.

It is then interesting to assess the electrification rate of the main Tuscany’s

cities for this scenario. Figure 3.16 shows this analysis for the main cities.

The cities took into exam are Pisa, Florence, Livorno, Prato, Arezzo, Lucca

and Siena. In the picture it is possible to see that Arezzo reaches the biggest

covered users’ percentage, upon and index of electrifiability of 100%, followed

by Lucca and Pisa. An interesting behavior is shown in Livorno, that is for

the most part slightly separated from the other cities behaviors (in a negative

sense), while, coming up to higher index values, it intersects with Florence

and Siena and reaches higher values of those 2 cities with high levels of the

index.

To better analyze the most crowded cities, Figure 3.17 focuses the atten-
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Figure 3.14: Tuscany’s users’ rate of electrifiability
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Figure 3.15: Tuscany’s users VS all users’ rate of electrifiability

tion on the 4 biggest cities, which are Pisa, Florence, Livorno and Prato. also

here it is possible to notice the different behavior of Livorno, stating that for
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this city, the users tend to move outside it to a greater extent in comparison

with other places. Here is then possible to notice that, in this plot, Pisa has

the highest level of total electrifiability, while Florence is the last city.
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Figure 3.16: Electrification rate of the main cities of Tuscany, scenario 1

Some preliminary observations can be done: considering Tuscany, and

then the single cities, it is already possible, for this scenario, to find a good

index of electrifiability, meaning that, if we want to cover the 80% of total

journeys, we could reach the 70% of people just today.

3.4 Scenario 2 Experiments

In this section the experiments on Scenario 2 are presented, in which the

user can recharge the EV’s battery everywhere if it stops for at least 2 hours.

The java simulation is based on Algorithm 3, and takes 3 days to complete.

This time, no elevation extraction functions are called, because the starting

dataset is the table created within Scenario 1, where the consumption values
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Figure 3.17: Electrification rate of the main cities of Tuscany, scenario 1

for each trajectory are already present. The algorithm, shown in Section 2.4,

states if the vehicle stopped for the minimal required time to recharge bat-

teries, and if that condition is true, it recharges the battery at the rate of 3

kW/h. It stops if 100% SoC is reached or, if the time before complete charge

is higher than the time of stop, it stops charging before the total recharge is

completed.

After the recharge program run, the starting table was enriched with

some new calculated columns needed for keeping the information of residual

battery SoC at the end of every trajectory.

It is possible to see the results of this simulation for the entire dataset in

Figure 3.18, and the comparison between this result and the previous one in

Figure 3.19. As it is possible to notice, the results are very similar, in curve’s

shape, as the one obtained with the entire dataset in scenario 1 (visible in

Figure 3.11). In fact, also here it is not possible to reach the 80% of users’
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coverage,along with the substantially plain curve, that does not allow to gain

a big number of users by reducing the index of electrifiability.
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Figure 3.18: Electrification rate after recharge
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Figure 3.19: Comparison between the 2 scenarios for all dataset users
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The result is an increment up to the 37% of users, for the entire dataset,

that have their total daily trips covered. As for Scenario 1, also here the

same considerations are valid: with the density plot, it is visible the same

group of the so called 3 days’ people, but before investigating the analysis on

just Tuscany users, an observation must be made. As it is possible to see in

Figure 3.20, people, after recharge, tend to move in direction of the diagonal,

meaning that more people are being covered by an EV than before.
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Figure 3.20: Comparison between densities without recharge (left) and with

recharge (right)

Going on with the analysis, it is possible to check the electrification rate

for Tuscany’s users in Figure 3.21, while it is compared to the electrification

rate for all users in Figure 3.22. In Tuscany, with the recharge, the increment

respect all users simulation is greater, reaching 40% of users that have their

total daily trips covered. But a more important result is worth mentioning:

the curve of electrifiability grows more rapidly reducing the electrifiability

index. This means that, compared with scenario 1, with a choice of the 80%

of covered users we can reach more than the 80% of people covered by an
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EV: this is an increment of more than the 10%. In addition, as it is possible

to notice in Figure 3.22, the curve covers a greater area of the plot, thus

covering a greater amount of users in percentage.
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Figure 3.21: Electrification rate after recharge for Tuscany’s users

Last but not least, an analysis over the main cities of Tuscany is con-

ducted: as it’s possible to see in Figures 3.23 and 3.24, the electrification

rates of Pisa and Arezzo are the highest in Tuscany, and considering only

Figure 3.24, where just the main 4 cities are considered (the biggest ones),

Pisa has the highest level of electrification available, with 43%. Also here it

is noticeable the behavior of the Livorno’s electrification rate: it is initially

slightly separated from the others for a long interval (in a negative way), then

it finishes on top of Florence, meaning that, for 100% electrifiability index,

covered users are a higher percentage than Florence, but when it comes to

consider lower levels of electrifiability, Florence has an higher percentage of

covered users. it is possible to meet this behavior also in Section 3.3.
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Figure 3.22: Electrification rate after recharge for Tuscany’s users VS all

users
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Figure 3.23: Electrification rate of the main cities of Tuscany, scenario 2
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Figure 3.24: Electrification rate of the 4 main cities of Tuscany, scenario 2

Also here some preliminary considerations can be done: the main cities

level of electrifiability is high enough to find a threshold that let’s us to reach

a great part of population. In fact, if we assume as good an electrifiability

index of 80%, we could reach almost in any city the 80% of users.
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Chapter 4

Conclusions

The future mobility, as everybody begin to imagine today, is going to be

electric. This is because problems like air pollution, gasoline price and envi-

ronmental impact are topics getting more and more visibility at everyone’s

eyes. But also if the need for green and sustainable mobility is getting higher,

some relevant problems are still far from being resolved, such as the limited

EVs kms range and the long times required for battery charging.

These problems are still not addressed by today’s EV’s technologies: al-

though studies and researches are being conducted on batteries enhancement,

there are still big progresses to be made, in order to guarantee on EVs the

same advantages had today in gasoline powered vehicles. For this reason, the

scientific community is very interested on how to address these issues with

today’s technologies, and make the actual generation of EVs an affordable

and desirable alternative to gasoline powered vehicles for the most of users.

After having discussed some important and recent contributions in the

literature, we introduced M-Atlas, the Mobility data mining platform we

used for the data analysis. Then we presented the core work of this the-

sis: the simulation of consumption of an EV on real users trajectories, in
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order to find the electrification rates for specifical areas. The main scenarios

were described, starting from the first and easiest, charging at home (where

no charging locations other than home are available), and the second one,

charging everywhere (where charging locations are available everywhere, and

the EVs can charge if stopped for at least 2 hours).

The theoretical scenarios devised and formalized have been an impor-

tant step in view of their implementation: in fact, we firstly set up the

charge/discharge model of an EV’s battery, and then we applied it on the

real journeys of thousands of users of Tuscany by utilizing a real vehicle’s

specs in the model.

Some simplifications have been taken into consideration before proceeding

with the simulations, and regard different topics. First of all, the model’s

simplifications are summarized: the EV simulated had no self discharge rate,

and no auxiliary power modeled (i.e. these parameters were set to 0). Then,

the interpolation took into account the elevation fluctuations, but did not

consider any interpolation of accelerations, as it was set to be constant. Last,

but not least, the scenarios were intended to be a simplification of the reality,

thus enabling us to model it.

In scenario 1 we firstly analyzed the consumption for the actual data

sampling of the dataset: this in order to analyze the electrificability rate on

just the available data. As a result, we achieved an 83% of total electrificable

trips, but this result, because of the low sampling of the data, did not take

into consideration the variation of elevation between every distant point.

For this reason we interpolated the original data in order to gain 1 second

data sampling, in order to consider the fluctuations of elevations previously

ignored. We found that the entire dataset has a total electrification rate

of 30%, and it is never able to reach 80% even with low electrificability rate
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levels, such as 10% for example: by stopping to an electrificability rate of 80%

for example, we can reach only the 55% of users covered. Then we stated that,

taking only people coming from Tuscany into exam, the total electrifiability

rate was still the 30%, but the curve was characterized by a more inclined

behavior: by stopping to an electrifiability rate of 80% for example, we are

able to reach more than the 70% of covered users. Similar considerations

can be done for the main cities of Tuscany, analyzed in Section 3.3, where

all scenario 1 analysis are conducted.

In scenario 2 there is the possibility of recharging the EV’s batteries wher-

ever the user stops, if the stopping time is greater than 2 hours. The simu-

lation run over the entire dataset gave, as a result, an increment in reached

users up to the 37% for totally covered trips. The same considerations made

in scenario 1 are valid here: the electrification rate is never able to reach

80% in any level. Taking only Tuscany’s people into exam, the simulation

showed a similar behavior as in scenario 1: the total electrifiability rate is

39%, but with a more inclined curve here too. In fact, by reducing the target

of electrifiability rate, there is the possibility to reach more rapidly a growing

number of users. Just for example, by stopping to an electrifiability rate of

80%, we can reach up to the 80% of users.

Some considerations have to be kept in mind evaluating the final re-

sults: the elevation extraction has to be implemented considering tunnels

and bridges, in order to make vehicles’ consumption be more realistic, but

this is an upper bound error, so at least vehicles’ consumption is overesti-

mated. Moreover, interpolation of data has to be implemented also on real

accelerations, instead of using constant acceleration like did here (for the

reasons explained in Section 2.4), but with 1 second sampled GPS data this

problem could be addressed. Keeping in mind these considerations, the re-
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4.1 Future works and scenarios

sults can be considered a good starting point in order to understand the level

of possible electrifiability of the main cities: for some of the cities took into

exam, it’s already possible to convert a pretty big percentage of vehicles into

EVs, without making users change their habits.

This thesis presents 4 main contributions: (a) the creation of a model that

simulates the discharging and recharging process of an EV, and application

of this model on Tuscany’s real users trajectories; (b) the identification of

the main EVs usage scenarios, applying a simplification of the reality; (c)

the identification of an index of electrifiability that shows if the simulation

on trajectories fails or not; (d) the implementation of the simulation.

Additionally, future analysis are to be conducted on the remaining sce-

narios. Those scenarios are fundamental to assess the electrification rates

of a city or a region in a more detailed way, as changes between different

environments, such as infrastructures differences for example, can occur. All

the possible future scenarios to be considered are presented in Section 4.1.

4.1 Future works and scenarios

In this section are presented some of the scenarios that could be analyzed in

future works. They represent the addition of more complex constraints, in

order to model, in a more precise way, the different conditions that can be

met in real life. They are:

• scenario 3: charging spots, where a constraint on charging locations is

inserted;

• scenario 4: fast charging, where the possibility of fast charging the EV

is added;
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4.1.1 Scenario 3: charging spots

• scenario 5: Vehicle2Grid, where the possibility of using EVs as batteries

for injecting back energy to the grid is added.

4.1.1 Scenario 3: charging spots

In Scenario 3 a new constraint is introduced: EVs can recharge their batteries

only at the charging spots and if they stop for at least 2 hours. This is a

more realistic example of usage of EVs, and its result of electrifiability rate

is meant to be situated between the scenarios 1 and 2.

In a real upcoming future, the most real situation sees the presence of

multiple charging stations, situated in the main parkings. The location of

the charging spots can also be derived and calculated with an optimization

algorithm (not yet discussed here) that finds the most frequented locations

where users stop their vehicles. This is an interesting scenario, because the

charging stations are not available everywhere: in fact, economic, structural

or territorial reasons are a limit for the widespread diffusion of charging

stations. Figure 4.1 shows a map of the locations of currently installed public

charging stations in Pisa. As it is possible to see in the figure, charging

stations are not present in every street, and this is caused by the above

mentioned limitations.

4.1.2 Scenario 4: fast charging

This scenario adds the possibility of fast charge, but only near specific charg-

ing stations, because of the technically advanced equipment that can be found

only in them. This mode, called Level 3 charging, allows to recharge an EV

at a rate of 50 kW/h in Direct Current. This situation is of great interest

of study, because it could bring the EVs time of re-usability very close to

that one of gasoline powered vehicles. In fact, one of the reasons that EVs
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4.1.3 Scenario 5: Vehicle2Grid

Figure 4.1: Map of some charging spots in Pisa

are still not mature enough today to take the place of gasoline vehicles is the

difficulty to recharge batteries in a short time, making the EV available to

start again after some hours. The future wide-spreading of EVs passes also

(and in great part) from this point: the speed of the recharge process. If this

issue still remains misaddressed, EVs will never be an attractive choice for

customers. For this reasons, future works will take in high consideration this

scenario.

4.1.3 Scenario 5: Vehicle2Grid

The fifth and last scenario is of great importance. The future of the electric

grid is of great interest of study. When the time of simultaneous charging of

hundreds, or thousands, of EVs will come, the grid will have to face issues like

overloads of cables and power transmitters, that could lead to infrastructure

damages and, in the worst case, to an energetic crisis. For this reason, many

studies on the electric grid’s ability to adjust itself, and to make EVs start

charging in specific time intervals are conducted. This is the main reason
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why it will be called Smart Grid.

The possibility of having, in EVs, hundreds of batteries connected for

long periods of time to the grid could be an answer to all these problems: in

fact, by using EVs stocked energy it could be possible to reduce peak loads,

and to fill valleys of unused energy to recharge those batteries. Figure 4.2

shows a possible simulation: in red, it is added, to the basic consumption

simulation based on the trajectory, the possibility of giving some energy back

to the grid, but still preserving the minimum amount of energy useful to get

back to home.

This is the final experiment that future works will conduct, having, in this

way, simulated all possibilities of using an EV in the near future. At the end

of this project, it will be possible to apply the simulations to every type of

city, and/or in every possible country, meeting all the requirements in terms

of constraints that every zone could face, keeping though the possibility of

adding some new unpredictable constraints to the model.
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