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Introduction

The Gauss-Bonnet Theorem, which was generalized by Shiing-Shen Chern in 1944 [12] to all
closed oriented even-dimensional smooth manifolds, correlates the curvature of the Levi-Civita
connection of a Riemannian manifold with its Euler characteristic. This result provides a
strong restriction on the kind of geometry such a manifold can support. For instance, let us
consider Euclidean manifolds, i.e. manifolds which admit an atlas whose coordinate change
functions are isometries of Rn. Since the curvature of the Levi-Civita connection they inherit
from Rn vanishes, the Euler characteristic represents an obstruction to the existence of Euclidean
structures: indeed if χ(M) 6= 0 then M cannot support a flat metric.

On the other hand, let us consider affine manifolds, i.e. manifolds which admit an atlas
whose coordinate change functions are affine isomorphisms of Rn. These can be characterized
as those manifolds whose tangent bundle supports flat and symmetric connections. Although
they may seem to be a mild generalization of Euclidean manifolds, the attempt to generalize the
above result to affine manifolds resulted in the formulation of a long standing open conjecture:

Conjecture 1. The Euler characteristic of a closed oriented affine manifold vanishes.

The key point is that the Euler characteristic of a manifold cannot be computed from the
curvature of an arbitrary linear connection ∇, because it is essential for ∇ to be compatible
with a Riemannian metric. Now, although Conjecture 1 was shown to hold true for complete
affine manifolds by Bertram Kostant and Dennis Sullivan [22], the non-complete case is much
more difficult. There are known examples, due to John Smillie [28], of manifods with non-zero
Euler characteristic and flat tangent bundle in every even dimension greater than 2. However,
as William Goldman points out in [15], since the torsion of their connections seems hard to
control they do not disprove Conjecture 1. None of Smillie’s manifolds is aspherical, and indeed
another open conjecture is:

Conjecture 2. The Euler characteristic of a closed oriented aspherical manifold whose tangent
bundle is flat vanishes.

The first important breakthrough was made by John Milnor in 1958 [24], when he proved
both conjectures for closed oriented surfaces. He exploited the fact that the existence of a flat
connection on a rank-m vector bundle π : E →M is equivalent to the existence of a holonomy
representation ρ : π1(M,x0)→ GL+(m,R) which induces the bundle. The study of all possible
holonomy representations for closed oriented surfaces enabled him to establish a much more
detailed result, which is very interesting on its own: he managed to characterize all flat oriented
plane bundles over closed oriented surfaces by means of their Euler class, that is a cohomology
class in the cohomology ring of the base space which generalizes the Euler characteristic. What
happens is that the Euler class of flat bundles over a fixed surface Σ is bounded, that is, just a
finite number (up to isomorphism) of oriented plane bundles over Σ can support flat connections.
In particular, none of these is the tangent bundle if Σ is not the torus. This remarkable result
is now known as Milnor-Wood inequality (the name celebrates John Wood’s generalization to
S1-bundles [31]).

While it has been proven that the boundedness of the Euler class of flat bundles generalizes
to all dimensions, Conjectures 1 and 2 remain elusive. Indeed one needs explicit inequalities in
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Introduction iv

order to determine whether the tangent bundle can be ruled out from the flat ones or not. Many
attemps have been made to generalize Milnor-Wood inequality to other dimensions, but very
little progress has been made until very recently. In 2011 Michelle Bucher and Tsachik Gelander
proved that the Euler class of flat bundles over closed oriented manifolds whose universal cover
is isometric to (H2)n satisfies an inequality of Milnor-Wood type [8], thus confirming both
conjectures for all manifolds which are locally isometric to a product of surfaces of constant
curvature. Their work, which takes up the largest part of our exposition, uses the theory of
bounded cohomology developed by Mikhäıl Gromov in 1982 [17] and some deep results about
the super-rigidity of lattices in semisimple Lie groups due to Gregori Margulis [23].



Chapter 1

Affine manifolds, flat bundles and
the Euler class

This chapter is devoted to the presentation of the objects of our studies and their properties.
Throughout the exposition the term vector bundle will stand for real vector bundle except where
explicitly noted.

1.1 Affine manifolds

A Euclidean manifold is a smooth manifold which admits an atlas whose coordinate change
functions are isometries of Rn. Affine manifolds are a generalization obtained by allowing
coordinate change functions which are affine isomorphisms of Rn.

Geometric structures

A Hausdorff and paracompact spaceM is a (topological) n-manifold if it admits an open covering
formed by subsets of M which are homeomorphic to open subsets of Rn. An n-atlas for M is
a collection of n-charts {(Uα, ϕα)}α∈I where:

(i) {Uα}α∈I is an open covering of M ;

(ii) ϕα is an open map from Uα to Rn which is a homeomorphism onto its image.

If Uα ∩Uβ 6= ∅ then the restriction of ϕβ ◦ϕ−1
α to ϕα(Uα ∩Uβ) is a coordinate change function.

If all the coordinate change functions of an n-atlas are smooth functions between open subsets
of Rn then the n-atlas is smooth. Analogously, if they are analytic we get an analytic n-atlas.
Two smooth n-atlases for M are compatible if their union is a smooth n-atlas. A smooth n-atlas
is maximal if it contains all the smooth n-atlases compatible with it. A smooth structure on a
topological n-manifold M is a maximal smooth n-atlas. A topological manifold equipped with
a smooth structure is a smooth manifold. The analogous definition of compatibility for analytic
atlases yields analytic structures and analytic manifolds

A continuous map f : M →M ′ between smooth manifolds is smooth if for every x ∈M there
exist charts (Uα, ϕα) in the smooth structure of M and (U ′β, ϕ

′
β) in the smooth structure of M ′

such that x ∈ Uα, f(Uα) ⊂ U ′β and ϕ′β◦f◦ϕ−1
α is a smooth map. A smooth homeomorphism with

smooth inverse is a diffeomorphism, and we dentoe by Diff(M) the group of self-diffeomorphisms
of a smooth manifold M . Analogously we can define an analytic map between analytic manifolds
to be a map which is analytic in charts and an analytic diffeomorphism to be an analytic
homeomorphism with analytic inverse. The group of analytic self-diffeomorphisms of an analytic
manifold M will be denoted by Diffω(M).

1
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Remark 1.1.1. An analytic map f : M → M ′ is uniquely determined by its behaviour on any
open subset of M .

Let X be an n-manifold and let G < Homeo(X) be a group of self-homeomorphisms of X.
An (X,G)-atlas for M is a collection of (X,G)-charts {(Uα, ϕα)}α∈I where:

(i) {Uα}α∈I is an open covering of M ;

(ii) ϕα is an open map from Uα to X which is a homeomorphism onto its image;

(iii) if Uα∩Uβ 6= ∅ then the restriction of ϕβ◦ϕ−1
α to each connected component of ϕα(Uα∩Uβ)

is the restriction of an element of G.

Two (X,G)-atlases for M are compatible if their union is an (X,G)-atlas. An (X,G)-atlas
is maximal if it contains all the (X,G)-atlases compatible with it. An (X,G)-structure on a
topological n-manifold M is a maximal (X,G)-atlas. A topological manifold equipped with an
(X,G)-structure is an (X,G)-manifold.

A continuous map f : M → M ′ between (X,G)-manifolds is a local (X,G)-isomorphism if
it is a local homeomorphism and if for every x ∈ M there exist (X,G)-charts (Uα, ϕα) in the
(X,G)-structure of M and (U ′β, ϕ

′
β) in the (X,G)-structure of M ′ such that x ∈ Uα, f(Uα) ⊂ U ′β

and ϕ′β◦f◦ϕ−1
α is given, on each connected component of ϕα(Uα), by the restriction of an element

of G. An (X,G)-isomorphism is a local (X,G)-isomorphism which is a global homeomorphism.

Remark 1.1.2. If the manifold X is smooth and G < Diff(X) then an (X,G)-structure for M
automatically equips M with a smooth structure. In this case we will say that M admits a
smooth (X,G)-structure. Analogously, if X is analytic and G < Diffω(X) then every (X,G)-
structure for M yields an analytic structure, and we’ll speak of analytic (X,G)-structures. An
extremely important feature of the latter is that each coordinate change function ϕβ ◦ ϕ−1

α in
an analytic (X,G)-structure having a connected domain uniquely determines an element of G.

Example 1.1.3. A Euclidean structure on a topological n-manifold M is given by an analytic
(Rn, Isom(Rn))-structure. An affine structure is given by an analytic (Rn,Aff(n,R))-structure.
A (local) (Rn,Aff(n,R))-isomorphism will be called a (local) affine isomorphism.

Developing maps and holonomy representations

Let M be a connected n-manifold and let π : M̃ → M denote its universal cover. With
each analytic (X,G)-structure over M we can associate local diffeomorphisms D : M̃ → X
called developing maps. To construct a developing map let us fix a base point x0 ∈ M and let
x̃0 ∈ M̃ be a basepoint in the fiber of x0. Define D(x̃0) to be ϕα0(x0) for any (X,G)-chart
(Uα0 , ϕα0) which trivializes M̃ and contains x0. To extend D to any point ỹ in M̃ consider a
smoothly embedded curve γ : I → M̃ from x̃0 to ỹ such that, if Ũ0 denotes the unique lifting
of Uα0 containing x̃0, then γ−1(Ũ0) = I0 is an interval. Now we can find open subsets Ũi for
i = 0, . . . , k such that:

(i) π(Ũi) is the domain of an (X,G)-chart (Uαi , ϕαi) for all i = 0, . . . , k;

(ii) γ−1(Ũi) = Ii is an interval for all i = 0, . . . , k;

(iii) γ(I) ⊂
⋃k
i=0 Ũi;

(iv) Ii ∩ Ij = ∅ if |i− j| > 1;

(v) Ũi ∩ Ũi+1 is connected for all i = 0, . . . , k − 1;

Now if gi(γ) is the unique element of G extending ϕαi−1 ◦ ϕ−1
αi we can define

D(ỹ) = (g1(γ) ◦ . . . ◦ gk(γ))(ϕαk(π(ỹ)))



3 1.2. Flat bundles

Proposition 1.1.4. For every choice of base points x0 ∈M , x̃0 ∈ M̃ and of an initial (X,G)-
chart (Uα0 , ϕα0) the developing map D is well-defined. In particular its value in ỹ does not
depend on the choice of the curve γ joining x̃0 and ỹ.

In a neighborhood of ỹ the developing map D can be written as a composition of analytic
diffeomorphisms, and thus it is indeed a local diffeomorphism. If α is a loop in M based at x0

representing an element of π1(M,x0) let us consider its unique lifting α̃ starting from x̃0. Then,
since α̃ determines Ũ0, . . . , Ũh ⊂ M̃ and a well-defined element g1(α̃) ◦ . . . ◦ gh(α̃) ∈ G, we can
construct the holonomy representation

ρ : π1(M,x0) → G
[α] 7→ g1(α̃) ◦ . . . ◦ gh(α̃)

Now ρ makes D into a π1(M,x0)-equivariant map, i.e. we have D(ỹ ·α−1) = ρ(α)(D(ỹ)) for all
ỹ ∈ M̃ .

Proposition 1.1.5. If we choose another pair of base points x0 ∈ M , x̃0 ∈ M̃ and another
initial (X,G)-chart (Uα0 , ϕα0) the developing map changes by composition with an element of
G, while the holonomy representation changes by composition with the respective inner auto-
morphism of Diffω(X).

Completeness

A manifold M endowed with an analytic (X,G)-structure is complete if the developing maps are
covering maps. Since covering maps of simply connected smooth manifolds are diffeomorphisms,
affine structures are complete if and only if their developing maps are diffeomorphisms.

Remark 1.1.6. If an analytic (X,G)-structure over M is complete and X is simply connected,
the holonomy representation gives a free and properly discontinuous action of π1(M,x0) on the
left of X.

Proposition 1.1.7. If X is simply connected and M is endowed with a complete analytic
(X,G)-structure, then M ' π1(M,x0)\X.

Corollary 1.1.8. An affine n-manifold M is complete if and only if it is affinely isomorphic to
Γ\Rn for some discrete group Γ < Aff(n,R) acting freely and properly discontinuously on Rn.

1.2 Flat bundles

A vector bundle or a principal bundle is flat if it supports a flat connection. Affine manifolds
can be seen as special cases of flat bundles, as they can be characterized as those manifolds
whose tangent bundle supports flat and symmetric connections.

Flat connections

Let G be a Lie group and M be a smooth manifold. The projection onto the first factor
π1 : M × G → M defines a trivial principal G-bundle on M . The connection defined by
Γ0 : (x, a) 7→ T(x,a)(M × {a}) is called the standard flat connection on M ×G.

Remark 1.2.1. A connection on M×G is the standard flat connection if and only if it is reducible
to a connection on the sub-bundle M × {e}.
Remark 1.2.2. Let ϑ be the g-valued left-invariant 1-form on G determined by ϑe(A) = A for all
A ∈ g, which is called the Maurer-Cartan form on G. Then the connection form of Γ0 coincides
with ω := π∗2ϑ.
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Proposition 1.2.3 (Maurer-Cartan equation). Let G be a Lie group and let V be a finite-
dimensional real vector space. Let η be a V -valued left-invariant 1-form on G. Then:

dη = −[η, η]

Since the exterior derivative commutes with pull-backs, Proposition 1.2.3 implies:

dω = d(π∗2ϑ) = π∗2(dϑ) = −π∗2[ϑ, ϑ] = −[π∗2ϑ, π
∗
2ϑ] = −[ω, ω]

Therefore the curvature form of Γ0 vanishes (compare with the structure equation for the
curvature, Theorem 6.3.2).

A connection Γ on a principal G-bundle π : P → M is flat if for all u ∈ P there exists
a trivializing neighborhood U such that ι : P

∣∣
U
↪→ P induces the standard flat connection on

P
∣∣
U

, i.e. ι∗Γ = Γ0. If π : P →M supports a flat connection then it is a flat principal bundle.

Proposition 1.2.4. Let π : P → M be a principal G-bundle and let Γ be a connection on P
whose curvature form Ω vanishes. If M is connected and simply connected then π : P → M is
trivial and Γ is isomorphic to the standard flat connection.

Proof. Since M is simply connected then for all u ∈ P the holonomy group Φ(u) equals the
reduced holonomy group Φ0(u). Then, thanks to Theorem 6.3.9 and to the Holonomy Theorem
6.3.14, the holonomy group in u ∈ P is {e} for all u ∈ P . Thus Theorem 6.3.13 implies that
the total space P (u) of the holonomy bundle through u is isomorphic to M ×{e}, and therefore
there exists a global section σ : M → P given by x 7→ P (u)x. Then π : P → M is isomorphic
to the trivial bundle π1 : M ×G→M and Γ is isomorphic to the standard flat connection.

As a corollary we get the following:

Theorem 1.2.5. Let π : P →M be a principal G-bundle and let Γ be a connection on P . Then
Γ is flat if and only if its curvature form Ω vanishes.

Analogously, for a rank-m vector bundle π : E → M we say that a connection ∇ on E is
flat if its curvature tensor R vanishes. If π : E →M supports a flat connection then it is a flat
vector bundle.

Remark 1.2.6. Since direct sums and pull-backs of flat connections are flat, Whitney sums and
pull-backs of flat bundles are flat.

Characterization of affine manifolds

Let π : E →M be a rank-m vector bundle and let U be an open subset of M which trivializes
E. A parallel frame on U is a local frame V1, . . . , Vm defined on U such that all sections Vi
are parallel, i.e. the Christoffel symbols on U with respect to V1, . . . , Vm vanish. Then, as a
corollary to Proposition 1.2.4, we get:

Proposition 1.2.7. There exists a parallel frame on U ⊂M if and only if R
∣∣
U
≡ 0.

A linear connection ∇ on the tangent bundle π : TM → M is symmetric if its torsion
tensor T vanishes. If U is an open subset of M a local frame X1, . . . , Xn for TU is holonomic
if [Xi, Xj ] = 0, while it is a coordinate frame if for all x ∈ U there exists an open coordinate
neighborhood x ∈W ⊂ U with coordinates (x1, . . . , xn) such that Xi = ∂

∂xi
on W .

Proposition 1.2.8. A local frame X1, . . . , Xn is holonomic if and only if it is a coordinate
frame.
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Remark 1.2.9. If a linear connection ∇ on TM admits parallel frames on U then these are all
holonomic if T

∣∣
U
≡ 0, while they are all non-holonomic otherwise. Indeed let X1, . . . , Xn be a

parallel frame on U . Then Γkij

∣∣∣
U
≡ 0, and thus

T (Xi, Xj) = ΓkijXk − ΓkjiXk − [Xi, Xj ] = −[Xi, Xj ]

Let (U,ϕ) and (V, ψ) be charts on M inducing coordinates (x1, . . . , xn) and (y1, . . . , yn)
respectively. If

∂2yi
∂xj∂xk

≡ 0 (1.1)

then the Jacobian of the coordinate change function ψ ◦ ϕ−1 is locally constant. An atlas for
M whose coordinate change functions all satisfy condition 1.1 is called an almost-affine atlas.

Remark 1.2.10. If U ∩ V is connected, then a sufficient condition for the coordinate change
function ψ ◦ ϕ−1 to be the restriction of an affine isomorphism is condition 1.1.

Proposition 1.2.11. If M is a closed manifold then for all almost-affine atlas there exists a
countable refinement which determines an affine structure on M .

Thus we have that M admits an affine structure if and only if it admits an almost-affine
atlas.

Theorem 1.2.12. M admits an affine structure if and only if it admits a flat and symmetric
linear connection ∇.

Proof. Let’s consider an affine structure on M . On each affine chart (Uα, ϕα) inducing coordi-
nates (xα1 , . . . , x

α
n) we can define a flat and symmetric linear connection by setting ∇α∂αi ∂

α
j = 0,

where ∂αi := ∂
∂xαi

. Then these local connections induce a well-defined global connection ∇, since

on any overlapping of affine charts we have:

∇β∂αi ∂
α
j = ∂αi

(
∂xβk
∂xαj

)
∂βk +

∂xβk
∂xαj
∇β∂αi ∂

β
k =

∂2xβk
∂xαi ∂x

α
j

∂βk +
∂xβk
∂xαj

∂xβh
∂xαi
∇β
∂βh
∂βk = 0 = ∇α∂αi ∂

α
j

Conversely, let ∇ be a flat and symmetric linear connection on TM . Then each connected
and simply connected open subset of M admits parallel frames, and these are all holonomic.
Thus we get an almost-affine atlas for M : indeed if U and V are two such subsets inducing
coordinates (x1, . . . , xn) and (y1, . . . , yn) respectively, set Xi := ∂

∂xi
and Yi := ∂

∂yi
. Then we

have:

0 = ∇XiXj = Xi

(
∂yk
∂xj

)
Yk +

∂yk
∂xj
∇XiYk =

∂2yk
∂xi∂xj

Yk +
∂yk
∂xj

∂yh
∂xi
∇YhYk =

∂2yk
∂xi∂xj

Yk

Characterization of flat bundles

Lemma 1.2.13. A principal G-bundle πP : P → M is flat if and only if it is associated with
the universal cover πM̃ : M̃ →M via a homomorphism h : π1(M,x0)→ G.

Proof. Let Γ be a flat connection on P . Then for all curves γ : [0, 1]→M the parallel transport
τγ : Pγ(0) → Pγ(1) remains unchanged under homotopies fixing the endpoints of γ. Consider
any G-equivariant diffeomorphism g : G→ Px0 (i.e. g(ab) = g(a)b) and define the map:

h : π1(M,x0) → G
α 7→ g−1(τ−1

α (g(e)))
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Then, since g, g−1 and τα are all G-equivariant, we have g−1(τ−1
α (g(a))) = g−1(τ−1

α (g(e)))a.
Therefore:

h(αβ) = g−1(τ−1
αβ (g(e))) = g−1(τ−1

α (τ−1
β (g(e)))) = g−1(τ−1

α (g(h(β)))) = h(α)h(β)

Now fix a base point x̃0 for M̃ lifting x0. Consider, for all ỹ ∈ M̃ , a curve in M̃ from ỹ to x̃0

which projects onto a curve γỹ in M going from πM̃ (ỹ) to x0. Then the parallel transport τγỹ
depends only on ỹ, since every two choices for a curve going from ỹ to x̃0 project onto homotopic
curves. Therefore we can write τỹ for τγỹ . Moreover, since a curve from ỹ · α to x̃0 is given by
the lifting of γỹ ∗ α starting from ỹ · α, we have τỹ·α = τα ◦ τỹ. Thus we can define the map

η : M̃ ×G → P

(ỹ, a) 7→ τ−1
ỹ (g(a))

which satisfies η(ỹ · α, a) = τ−1
ỹ (τ−1

α (g(a))) = τ−1
ỹ (g(h(α)a)) = η(ỹ, h(α)a). Hence πP : P →M

is indeed the principal G-bundle associated with πM̃ : M̃ →M via h.

Conversely, given a homomorphism h : π1(M,x0) → G, let πP : P → M be the associated
principal G-bundle and let p : M̃ × G → P be the projection. The standard flat connection
Γ0 on M̃ × G → M̃ induces a connection on P as follows: the right action of π1(M,x0) onto
M̃ ×G preserves Γ0 so that we can define a horizontal distribution on P by setting Γ := dp◦Γ0.
Then, since p is G-equivariant (where G acts by right translation on itself and on the second
factor of M̃ × G) and since Γ0 is G-invariant, Γ is indeed G-invariant. Therefore we actually
defined a connection on P . To show the flatness of Γ it suffices to note that if U is connected
and trivializes M̃ via χM̃ : M̃

∣∣∣
U
→ U × π1(M,x0) then the second coordinate of χM̃ is locally

constant. Thus if χP : P
∣∣
U
→ U × G is the corresponding trivialization for P then every

horizontal curve γ for Γ whose image is contained in P
∣∣
U

satisfies χP (γ(t)) = (πP (γ(t)), a) for
some a ∈ G. Therefore Γ pulls back to the standard flat connection on each connected local
trivialization.

Lemma 1.2.14. Let ρ0, ρ1 : π1(M,x0) → G be two representations inducing flat G-bundles
πi : Pi →M for i = 0, 1. If ρ0 and ρ1 lie in the same path-connected component of the space of
representations Rep(π1(M,x0), G) then the induced bundles are isomorphic.

Proof. If we consider a path γ : R → Rep(π1(M,x0), G) with γ(0) = ρ0 and γ(1) = ρ1 we
can construct a rank-m vector bundle over M × R using the equivalence relation defined on
M̃ × R× Rm by (x̃, t, ξ) ∼ (x̃ · α, t, ρt(α) · ξ) for all α ∈ π1(M,x0). Then clearly the inclusions
ιi : M ↪→ M × {i} ⊂ M × R for i = 0, 1 are homotopic, and hence they induce isomorphic
pull-back bundles, which coincide with πi : Pi →M for i = 0, 1.

1.3 Euler class

The Euler class of an oriented rank-m vector bundle π : E → M is an element in the m-th
cohomology group ofM which generalizes the Euler characteristic. It measures the non-triviality
of the bundle and coincides with the obstruction to defining a nowhere-zero section on the m-th
skeleton of M .

Definition via Thom’s isomorphism

For each vector space W let W0 denote Wr{0}. Analogously for each vector bundle π : E →M
let E0 denote E r s0(M), where s0 is the zero section of π : E →M .
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Remark 1.3.1. For a real m-dimensional vector space W the exact sequence of the pair (W,W0)
gives an isomorphism Hm(W,W0;Z) ' Z. Then the choice of an orientation for W is equivalent
to the choice of a generator for Hm(W,W0;Z). Indeed, a linear embedding σ : 4m ↪→ W such
that the baricenter of 4m is mapped to 0 determines a generator α = [σ] for Hm(W,W0). But,
since Ext(Hm−1(W,W0),Z) = 0, we have Hm(W,W0;Z) ' Hom(Hm(W,W0),Z) and therefore
we can specify the unique generator a ∈ Hm(W,W0;Z) such that a(α) = 1. Thus we can
associate a with the orientation of W that makes σ into an orientation-preserving embedding
and −a with the other one.

Remark 1.3.2. For a disc neighborhood U of x ∈ M we have that, for all y ∈ U , the in-
clusions ιy : (Ey, (Ey)0) ↪→ (E

∣∣
U
, (E

∣∣
U

)0) yield homotopy equivalences. Then we have iso-

morphisms (ιy)∗ : Hm(Ey, (Ey)0) → Hm(E
∣∣
U
, (E

∣∣
U

)0) for all y ∈ U . Since, once again, we

have an isomorphism Hm(E
∣∣
U
, (E

∣∣
U

)0;Z) ' Hom(Hm(E
∣∣
U
, (E

∣∣
U

)0),Z), each cohomology class

a ∈ Hm(E
∣∣
U
, (E

∣∣
U

)0;Z) is uniquely determined by a((ιy)∗(αy)) = (ιy)
∗a(αy), where αy is a

generator for Hm(Ey, (Ey)0) and y is any point in U .

Therefore an orientation of a vector bundle can be realized as a choice of a generator
ax ∈ Hm(Ex, (Ex)0;Z) for all x ∈ M satisfying the following local compatibility condition:
for each x ∈M there exists an open neighborhood U and a generator aU ∈ Hm(E

∣∣
U
, (E

∣∣
U

)0;Z)
such that, for all y ∈ U , the cohomology class (ιy)

∗(aU ) equals the preferred generator ay for
Hm(Ey, (Ey)0;Z).

Theorem 1.3.3 (Thom’s isomorphism). For every oriented rank-m vector bundle π : E → M
there exists a unique orientation class uE ∈ Hm(E,E0;Z) whose restriction under the homo-
morphism (ιx)∗ : Hm(E,E0;Z)→ Hm(Ex, (Ex)0;Z) equals the preferred generator ax for every
x ∈M . Furthermore the map:

Hk(E;Z) → Hk+m(E,E0;Z)
a 7→ a ` uE

is an isomorphism.

Let π : E →M be an oriented rank-m vector bundle. The projection π induces an isomor-
phism π∗ : Hk(M ;Z) → Hk(E;Z) and the inclusion ι : (E,∅) → (E,E0) yields a restriction
homomorphism ι∗ : Hk(E,E0;Z)→ Hk(E;Z) for every k. Then the Euler class of π : E →M
is defined as the cohomology class e(E) ∈ Hm(M ;Z) given by (π∗)−1(ι∗(uE)).

Properties of the Euler class

Let C be a category of fiber bundles and define for each manifoldM the set bC(M) of isomorphism
classes of bundles in C with base M , which coincides with the set [M,X] of homotopy classes of
maps from M to some classifying space X. Then bC can be seen as a contravariant functor from
the category of smooth manifolds to the category of sets which associates with each smooth map
f : N →M the function f∗ : bC(M)→ bC(N) mapping each isomorphism class to its pull-back
by f . Note that for every coefficient group Λ the cohomology functor H∗( · ; Λ) which assigns to
each manifold M its cohomology ring

⊕
k>0H

k(M ; Λ) can be seen as a contravariant functor
from manifolds to sets (up to composing it with the forgetful functor from rings to sets). A
characteristic class is a natural tranformation between bC and H∗( · ; Λ), i.e. it associates each
fiber bundle π : E →M in C with a cohomology class c(E) ∈

⊕
k>0H(M ; Λ) which satisfies

c(f∗E) = f∗(c(E))

for all f : N →M .

Example 1.3.4. The Stiefel-Whitney classes are characteristic classes with Z2-coefficients de-
fined on the class of vector bundles. They can be characterized as the only characteristic classes
satisfying the following list of axioms: if π : E →M and π′ : E′ →M are vector bundles then
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(i) wk(E) is an element of Hk(M ;Z2) and w0(E) is the unit element of the cohomology ring⊕
k>0H

k(M ;Z2);

(ii) wk(E ⊕ E′) =
∑k

i=0wi(E) ` wk−i(E
′);

(iii) if πγ : γ1(R2)→ P1(R) is the tautological line bundle over P1(R) then w1(γ1(R2)) 6= 0.

The Euler class is a characteristic class with integer coefficients defined on the class of
oriented vector bundles. Indeed for every pull-back

f∗E E

N M

πf∗E

f̃

πE

f

an orientation on πE : E →M induces an orientation on πf∗E : f∗E → N obtained by specifying
for every y ∈ N the generator ay := f̃∗(af(y)) ∈ Hm((f∗E)y, ((f

∗E)y)0;Z). Then, since we have

f̃ ◦ ιf∗E = ιE ◦ f̃ and f ◦ πf∗E = πE ◦ f̃ , we get e(f∗E) = f∗(e(E)). In particular, since every
trivial bundle can be realized as the pull-back of a bundle over a point, the Euler class of trivial
bundles vanishes.

Remark 1.3.5. If π : Ē → M is π : E → M endowed with the opposite orientation, the
orientation class uĒ ∈ Hm(E,E0;Z) equals −uE , and therefore e(Ē) = −e(E).

Remark 1.3.6. If the rank m of π : E →M is odd the Euler class is a torsion element of order
two. Indeed in this case there exist orientation preserving isomorphisms between π : Ē → M
and π : E →M , and thus we have e(E) = −e(E).

Proposition 1.3.7. The Euler class satisfies:

(i) e(E ⊕ E′) = e(E) ` e(E′);

(ii) e(E × E′) = e(E)× e(E′);

(iii) if M is an oriented closed manifold then 〈e(TM), [M ]〉 = χ(M).

Remark 1.3.8. Every homomorphism ϕ : Λ → Λ′ of abelian groups yields a natural change-
of-coefficients homomorphism between cohomology groups. In other words, for every space X
and every k ∈ N we have a map ϕ∗ : Hk(X; Λ)→ Hk(X; Λ′) which sends the class represented
by the Λ-valued cocycle ψ to the class represented by the Λ′-valued cocycle ϕ ◦ ψ and which
satisfies

Hk(Y ; Λ) Hk(Y ; Λ′)

Hk(X; Λ) Hk(X; Λ′)

f∗

ϕ∗

f∗

ϕ∗

for every continuous map f : X → Y .

The real Euler class is the characteristic class with real coefficients obtained by assigning to
each oriented vector bundle π : E → M the image eR(E) of e(E) under the natural homomor-
phism ι∗ : Hk(X;Z) → Hk(X;R) induced by the inclusion of coefficients ι : Z ↪→ R. This real
version of the Euler class will prove to be useful when dealing with related objects which are
naturally defined with real coefficients.

Proposition 1.3.9. If p : Z→ Z2 denotes the projection homomorphism then for every oriented
rank-m vector bundle π : E →M we have p∗(e(E)) = wm(E) ∈ Hm(M ;Z2).



9 1.3. Euler class

The classification of oriented plane bundles

As we pointed out earlier the Euler class measures the non-triviality of an oriented real vector
bundle. In general it is not a very sensitive instrument, but for oriented plane bundles over
a fixed base it yields a complete classification. Indeed, oriented plane bundles over a fixed
manifold M are classified by homotopy classes of maps from M to some classifying space X.
Now, since oriented rank-2 real vector bundles are equivalent to rank-1 complex vector bundles,
a classifying space is given by P∞(C) with universal bundle given by the tautological bundle
πγ : γ1(C∞) → P∞(C). Incidentally P∞(C) is also a K(Z, 2)-space, and therefore homotopy
classes of maps from M to P∞(C) correspond also to cohomology classes in H2(M ;Z).

Theorem 1.3.10. Let f : M → P∞(C) be a map. The element in H2(M ;Z) determined by the
homotopy class of f is e(f∗γ1(C∞)). In particular two oriented rank-2 real vector bundles over
M are isomorphic if and only if their Euler classes coincide.

Remark 1.3.11. It is useful to remark that the Euler class is essentially the unique 2-dimensional
characteristic class with integer coefficients for oriented rank-2 real vector bundles. Indeed every
such characterstic class can be naturally identified with an element in H2(P∞(C);Z), which is
isomorphic to Z. It can be shown that the Euler class corresponds to one of the two generators
of H2(P∞(C);Z). Therefore every characteristic class which associates each oriented plane
bundle π : E → M with an element c(E) ∈ H2(M ;Z) must satisfy c(E) = k · e(E) for some
k ∈ Z. Analogously, since H2(P∞(C);R) ' R, every characteristic class with real coefficients
for oriented plane bundles must be a real multiple of the real Euler class eR.

The Euler class as a primary obstruction

Let W be an m-dimensional K-vector space. An r-frame on W is an ordered set of r linearly
independent vectors of W . The Stiefel manifold Vr(W ) is the set of all r-frames on W . It can
be made into a smooth manifold as follows: recall that there is a free and transitive right action
of GL(m,K) onto Vm(W ) given by

{v1, . . . , vm} · aij := {aj1vj , . . . , ajmvj}

The injective homomorphism

ι : GL(m− r,K) → GL(m,K)

a 7→
(
Ir 0
0 a

)
induces a free action of GL(m− r,K) onto Vm(W ), and therefore we can identify the quotient
Vm(W )/GL(m − r,K) with Vr(W ) via the bijection [{v1, . . . , vm}] 7→ {v1, . . . , vr}. Thus the
natural identification between Vm(W ) and GL(m,K) endows Vr(W ) with the smooth structure
of GL(m,K)/GL(m− r,K).

Let πE : E → M be a rank-m vector bundle. The associated Stiefel manifold bundle
πV : Vr(E)→M is the Vr(Rm)-bundle with total space Vr(E) :=

⊔
x∈M Vr(Ex) and projection

given by πV (Vr(Ex)) = x. Every local trivialization of E

χEα : π−1
E (Uα) → Uα × Rm
v 7→ (πE(v), ψEα (v))

induces a local trivializations of Vr(E)

χVα : π−1
V (Uα) → Uα × Vr(Rm)
u 7→ (πV (u), ψVα (u))

where ψVα maps u = {v1, . . . , vr} ∈ Vr(Ex) to {ψEα (v1), . . . , ψEα (vr)} ∈ Vr(Rm).
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Remark 1.3.12. A section of Vr(E) determines r linearly independent sections of E.

Now let us choose a base point x0 ∈ M . If m = 1 the orientation of πE : E → M gives a
nowhere zero section which yields E 'M ×R, and therefore both the Euler class e(E) and the
obstruction cocycle o(V1(E)) vanish. If m > 1 then the Stiefel manifold V1(Ex0) = (Ex0)0 is
(m− 1)-connected and m-simple. Thus we have an isomorphism ψ : πm−1(V1(Ex0))→ Z given
by the chain of isomophisms

πm−1(V1(Ex0)) Hm−1((Ex0)0) Hm(Ex0 , (Ex0)0) Z

(note that the orientation of E determines uniquely the rightmost one). Another consequence
of the existence of an orientation is that the twisting homomorphism

ρ : π1(M,x0)→ Aut(πm−1(V1(Ex0)))

is trivial, and the cohomology groups with twisted coefficients H∗(M ;πm−1(V1(Ex0))ρ) are ac-
tually standard cohomology groups. Therefore ψ induces an isomorphism between cohomology
groups ψ# : H∗(M ;πm−1(V1(Ex0)))→ Hm(M ;Z).

Theorem 1.3.13. The Euler class e(E) ∈ Hm(M ;Z) is the image under ψ# of the primary
obstruction o(V1(E)) ∈ Hm(M ;πm−1(V1(Ex0))).

Remark 1.3.14. For an oriented plane bundle πE : E → M the Euler class corresponds to
the primary obstruction of the associated principal GL+(2,R)-bundle πL : LGL+(2,R)(E)→M .
Indeed the choice of a Riemannian metric induces a complex structure on πE : E →M and we
can define bundle maps

LGL+(2,R)(E) V1(E)

M M

πL

ρ

πV

id

LGL+(2,R)(E) V1(E)

M M

πL πV

ι

id

where ρ maps each positive frame in LGL+(2,R)(E) to its first vector, and ι maps each non-zero
vector v ∈ V1(E) to the positive frame {v, i · v}. Then the twisting homomorphism

ρ : π1(M,x0)→ Aut(π1(LGL+(2,R)(E)x0))

is trivial too and any isomorphism ξ : π1(LGL+(2,R)(E)x0)→ Z induces an isomorphism between
cohomology groups which maps the primary obstruction of πL : LGL+(2,R)(E) → M to ±e(E)
(where the sign depends on wether ξ preserves the orientation or not).

Remark 1.3.15. An obstruction theoretic interpretation can be given of Stiefel-Whitney classes
too. Indeed the k-th Stiefel-Whitney class of a rank-m vector bundle π : E → M coincides
with the modulo 2 reduction of the obstruction to defining m − k + 1 linearly independent
sections of E over the k-th skeleton of M . More precisely, the primary obstruction for the
bundle πV : Vm−k+1(E) → M is an element of Hk(M ;πk−1(Vm−k+1(Ex0))ρ). Now we have
that πk−1(Vm−k+1(Rm)) ∈ {Z,Z2} for all 0 6 k 6 m ∈ N and we have a natural reduc-
tion homomorphism Hk(M ;πk−1(Vm−k+1(Ex0))ρ) → Hk(M ;Z2) which sends the primary ob-
struction to wk(E). Moreover if πk−1(Vm−k+1(Rm)) ' Z2 then the reduction homomorphism
is an isomorphism and wk(E) coincides with the primary obstruction. For example, since
π0(Vm(Rm)) ' π0(GL(m,R)) ' Z2, a rank-m vector bundle π : E → M admits m linearly
independent sections defined on the 1-skeleton of M if and only if w1(E) = 0. In particular,
every vector bundle is orientable if and only if its first Stiefel-Whitney class vanishes.



Chapter 2

Chern-Gauss-Bonnet Theorem and
complete affine manifolds

In 1944 Chern generalized the Gauss-Bonnet Theorem to all even dimensions. What he proved
is that we can realize the Euler class of an oriented vector bundle π : E →M as a homogeneous
polynomial in the curvature of an orthogonal connection on E. As we will later see, the condition
that the connection should be compatible with a metric tensor is necessary, as we can actually
construct flat connections on vector bundles whose Euler class is non-zero.

2.1 Pfaffian polynomial

Let X = {Xij}16i<j6k be a set of k(k−1)
2 indeterminates. Then any polynomial P ∈ R[X]

can be evaluated on all k × k skew-symmetric matrices A ∈ so(k) in the obvious way. Such a
polynomial P is SO(k)-invariant if it satisfies P (Adb(A)) = P (bAbt) = P (A) for all A ∈ so(k)
and b ∈ SO(k).

Lemma 2.1.1. For every k ∈ N there exists one and, up to sign, only one polynomial Pf ∈ Z[X]
such that Pf(A)2 = det(A) for all A ∈ so(k). It satisfies Pf(BABt) = Pf(A) det(B) for all
A ∈ so(k) and B ∈ gl(k,R).

Remark 2.1.2. Pf is SO(k)-invariant.

Proof. If we consider a symplectic basis for R2n with respect to the skew-symmetric bilinear
form represented by A, then the coordinates of its vectors with respect to the standard basis of
R2n fit into a matrix C(A) satisfying J = C(A)AC(A)t where

J =


0 1
−1 0

. . .

0 1
−1 0


The entries of the matrix C(A), which are obtained via a Gram-Schmidt-like process, are rational
functions of the entries of A. Let Λ be the ring of polynomials Z[X] and let Q(Λ) be its field of
fractions. Let D denote the polynomial in Λ such that D(A) = detA for all A ∈ so(k). Since
detA(detC(A))2 = 1 we have the equality D = (det ◦C)−2 between the polynomial D ∈ Λ
and the rational function (det ◦C)−2 ∈ Q(Λ). But Λ is a unique factorization domain, and
therefore D must be a square in Λ too. Therefore there exists a polynomial Pf ∈ Λ such that
Pf2 = D. Moreover, if Y = {Yij}16i,j6k is a set of k2 indeterminates and if P (X,Y ) ∈ Λ[Y ]

is the polynomial satisfying P (A,B) = Pf(BABt) for all A ∈ so(k) and B ∈ gl(k,R), we have

11



Chapter 2. Chern-Gauss-Bonnet Theorem 12

that det(BABt) = detA(detB)2 and thus P 2(X,Y ) = (Pf(X) det(Y ))2. Therefore, since Λ[Y ]
is a unique factorization domain, we must have P (X,Y ) = ±Pf(X) det(Y ). We actually have
P = Pf · det as can be seen by evaluating P (A, I).

Remark 2.1.3.

A1 ∈ so(2k1), A2 ∈ so(2k2), A =

(
A1 0
0 A2

)
⇒ Pf(A) = Pf(A1)Pf(A2)

Indeed det(A) = det(A1) det(A2) = (Pf(A1)Pf(A2))2 and we can invoke the uniqueness of Pf.
The sign can be determined by considering the case where A is the matrix J defined before.

2.2 Orthogonal connections

Let π : E →M be a vector bundle of rank m and let g be a metric tensor on E. A connection
∇ on E is compatible with g, or g-orthogonal, if

X(g(V,W )) = g(∇XV,W ) + g(V,∇XW )

for all V,W ∈ Γ(E) and X ∈ X(M).

Remark 2.2.1. A connection ∇ is g-orthogonal if and only if it is O(m)-compatible with respect
to the O(m)-structure induced by g.

If we have a map f : N →M every metric tensor g on E can be pulled back to f∗E: indeed,
since every vector in f∗Ey can be written as f∗V for V ∈ Ef(y), we can define

(f∗g)y(f
∗V, f∗W ) = gf(y)(V,W )

Lemma 2.2.2. If ∇ is g-orthogonal then f∗∇ is f∗g-orthogonal.

Proof. For all y ∈ N , Y ∈ TyN and V,W ∈ Γ(E) we have:

(f∗g)y((f
∗∇)Y (f∗V ), f∗W ) + (f∗g)y(f

∗V, (f∗∇)Y (f∗W )) = gf(y)(∇dyf(Y )V,W ) +

+ gf(y)(V,∇dyf(Y )W ) = dyf(Y )(g(V,W )) =

= Y (g(V,W ) ◦ f) = Y (f∗g(f∗V, f∗W ))

Lemma 2.2.3. If ∇0, ∇1 are g-orthogonal connections and h ∈ C∞R (M) then the connection
∇ = (1− h)∇0 + h∇1 is g-orthogonal.

Proof.

g(∇XV,W ) + g(V,∇XW ) = (1− h) (g((∇0)XV,W ) + g(V, (∇0)XW )) +

+ h (g((∇1)XV,W ) + g(V, (∇1)XW )) = (1− h+ h) (X(g(V,W )))

Lemma 2.2.4. ∇ is g-orthogonal if and only if it the matrix of local connection forms with
respect to any orthonormal local frame is skew-symmetric.

Proof. Let V1, . . . , Vm be a local orthonormal frame over U ⊂ M and let ω = (ωij) denote the
matrix of local connection forms with respect to V1, . . . , Vm. Then we have:

g(∇XVi, Vj) + g(Vi,∇XVj) = ωij(X) + ωji(X)

If ωji = −ωij for all i, j, then the right-hand side is zero for all X ∈ X(M), and therefore
the left-hand side is equal to 0 = X(δij) = X(g(Vi, Vj)). Conversely, if ∇ is g-orthogonal the
left-hand side is zero for all X ∈ X(M) and we conclude.
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2.3 The Pfaffian of the curvature

Let π : E →M be an oriented rank-2m vector bundle, let g be a metric tensor on E and let ∇
be a g-orthogonal connection.

Remark 2.3.1. For every commutative R-algebra A let soA(k) denote the k(k−1)
2 -dimensional

vector space of k × k skew-symmetric matrices with entries in A. Then every polynomial
P ∈ R[{Xij}16i<j6k] can be evaluated on all matrices in soA(k).

Remark 2.3.2. The R-algebra Ω2∗(U) of differential forms of even degree over an open subset
U ⊂M is commutative with respect to the wedge product.

Let ΩU = (ΩU
ij) be the matrix of curvature forms of ∇ with respect to a positive local

orthonormal frame V1, . . . , V2m over U . Then ΩU is skew-symmetric thanks to the structure
equation ΩU

ij = dωUij − ωUir ∧ ωUrj and every polynomial P ∈ R[{Xij}16i<j62m] can be evaluated

on ΩU . Moreover if P is SO(2m)-invariant then the differential form P (ΩU ) is independent
of the chosen positive local orthonormal frame. Indeed if Ṽi = ajiVj is another positive local
orthonormal frame with a : U → SO(2m) and X,Y ∈ X(M) we have

RX,Y Ṽi = RX,Y (akiVk) = akiΩ
U
kh(X,Y )Vh = akiΩ

U
kh(X,Y )ahj Ṽj

Therefore Ω̃U
ij = akiΩ

U
khahj , i.e. Ω̃U = atΩUa. Letting U vary inside an open cover of M all

these local differential forms piece together to yield a global differential form P (Ω) ∈ Ω2∗(M).

Lemma 2.3.3. If P is SO(2m)-invariant then the differential form P (Ω) is closed.

Proof. Let’s consider the 2m×2m skew-symmetric matrix D whose entries Dij are polynomials
in Z[X12, . . . , X2m−1 2m] given by formal partial derivatives of P in the following way:

Dij =


∂P
∂Xij

if i < j

− ∂P
∂Xji

if i > j

0 if i = j

Let dΩ denote the matrix (dΩij) of exterior derivatives of curvature forms. Then we have

dP (Ω) =
∑
i<j

∂P

∂Xij
(Ω) ∧ dΩij =

1

2

∑
i,j

Dij(Ω) ∧ dΩij =
1

2
tr
(
D(Ω)t ∧ dΩ

)
Applying the exterior derivative to the equality

Ω = dω − ω ∧ ω

we get
dΩ = ω ∧ Ω− Ω ∧ ω

Moreover, for every skew-symmetric matrix A we have AD(A)t = D(A)tA. Indeed if we differ-
entiate the equality P ((I + t(Eij −Eji))A(I + t(Eji−Eij))) = P (A)(1 + t2) and evaluate it for
t = 0 we get

∂P

∂Xik
(A)Ajk −

∂P

∂Xjk
(A)Aik +

∂P

∂Xhi
(A)Ahj −

∂P

∂Xhj
(A)Ahi = 0

and thus
2(Dhi(A)Ahj −AikDjk(A)) = 0

Therefore we get:

2dP (Ω) = tr
(
D(Ω)t ∧ dΩ

)
= tr

(
D(Ω)t ∧ ω ∧ Ω−D(Ω)t ∧ Ω ∧ ω

)
=

= tr
(
(D(Ω)t ∧ ω) ∧ Ω− Ω ∧ (D(Ω)t ∧ ω)

)
=

= (D(Ω)t ∧ ω)ij ∧ Ωji − Ωij ∧ (D(Ω)t ∧ ω)ji

and, since Ωji commutes with all differential forms, we conclude.
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Thus for any oriented rank-2m vector bundle πE : E → M the choice of a metric tensor g
and of a g-orthogonal connection determines a well-defined de Rham cohomology class given
by [Pf(Ω)] ∈ H2m

dR (M). Every map f : N → M induces an orientation and an f∗g-orthogonal
connection f∗∇ on πf∗E : f∗E → N . Every positive g-orthonormal local frame for E induces a
positive f∗g-orthonormal local frame for f∗E whose associated matrix of local curvature forms
is f∗Ω. Therefore we have the equality [Pf(f∗Ω)] = f∗[Pf(Ω)].

Proposition 2.3.4. The cohomology class [Pf(Ω)] is independent of the g-orthogonal connection
∇.

Proof. Let ∇0 and ∇1 be g-orthogonal connections over M and let us consider the product
M × R. Thanks to Lemma 2.2.2 the projection onto the first factor π1 : M × R → M induces
two π∗1g-orthogonal connections π∗1∇0 and π∗1∇1 over π∗1E. Thus we can define the connection
∇ = (1− π2) · (π∗1∇0) + π2 · (π∗1∇1), which is π∗1g-orthogonal thanks to Lemma 2.2.3. Then the
inclusions ιε : M ↪→ M × R given by x 7→ (x, ε) satisfy ι∗0∇ = ∇0 and ι∗1∇ = ∇1. Therefore
ι∗0[Pf(Ω∇)] = [Pf(Ω∇0)] and ι∗1[Pf(Ω∇)] = [Pf(Ω∇1)]. Hence, since maps ι0 and ι1 are homotopic,
we conclude.

Remark 2.3.5. The above discussion is a special case of a more general construction. Indeed it
can be shown that R[{Xij}16i<j6k] is isomorphic to the algebra S∗(so(k)∗) :=

⊕
h>0 S

h(so(k)∗)

where Sh(so(k)∗) is the vector space of h-linear symmetric functions from the h-fold product
so(k) × . . . × so(k) to R. The isomorphism associates every function f ∈ Sh(so(k)∗) with the
homogeneous polynomial P of degree h satisfying P (A) = f(A, . . . , A) for all A ∈ so(k). Under
this isomorphism the vector space of SO(k)-invariant polynomials corresponds to the subspace
I(SO(k)) =

⊕
h>0 I

h(SO(k)) where every Ih(SO(k)) ⊂ Sh(so(k)∗) is the subspace given by
those elements which satisfy f(Ada(A1), . . . ,Ada(Ah)) = f(A1, . . . , Ah) for all a ∈ SO(k) and
all A1, . . . , Ah ∈ so(k). Therefore we have that every f ∈ Ih(SO(k)) defines an element in
H2h

dR(M) given by [f(Ω, . . . ,Ω)]. More in general for any linear Lie group G < GL(m,R) with
Lie algebra g let Shg∗ denote the vector space of h-linear symmetric functions from the h-fold
product g× . . .×g to R and let Ih(G) ⊂ Shg∗ denote the subspace of Ad(G)-invariant forms, i.e.
the subspace whose elements satisfy f(Ada(A1), . . . ,Ada(Ah)) = f(A1, . . . , Ah) for all a ∈ G
and all A1, . . . , Ah ∈ g. Now if π : E →M is a rank-m vector bundle with structure group G let
∇ be a G-compatible connection. If ΩU is the matrix of local curvature forms with respect to a
local G-frame (that is a local frame defining a local section of the principal G-bundle associated
with π : E → M) then every element f ∈ Ih(G) gives well defined local differential forms
f(ΩU , . . . ,ΩU ). These local forms piece together to yield a global differential form f(Ω, . . . ,Ω)
which is closed. Therefore we can define the Chern-Weil homomorphism

wE : Ih(G) → H2h
dR(M)

f 7→ [f(Ω, . . . ,Ω)]

It can be shown that wE does not depend on the chosen G-compatible connection ∇ and that
for every map h : N →M we have the equality wh∗E = h∗ ◦ wE

Now, going back to the Pfaffian polynomial, we will show that [Pf(Ω)] does not depend on
the choice of the metric tensor g either, and therefore every SO(2m)-structure on π : E → M
induces the same class in H2m

dR (M).

Remark 2.3.6. If g0 and g1 are metric tensors over E and h ∈ C∞R (M) is [0, 1]-valued then
(1− h)g0 + hg1 is a metric tensor.

Proposition 2.3.7. The cohomology class [Pf(Ω)] is independent of the metric tensor g.

Proof. Let g0 and g1 be metric tensors over E and let us consider a function ϕ ∈ C∞R (R) such
that ϕ(t) = 0 for t 6 0 and ϕ(t) = 1 for t > 1. If we pull back g0 and g1 by π1 : M × R → M
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we can define the metric tensor g = (1 − (ϕ ◦ π2))g0 + (ϕ ◦ π2)g1 over π∗1E. If we choose a
g-orthogonal connection over π∗1E then ι∗0∇ will be g0-orthogonal and ι∗1∇ will be g1-orthogonal
on E. Therefore we can conclude as before.

Thus we actually defined a characteristic class with R coefficients for oriented vector bundles
of even rank. Of course its square, which is

[Pf(Ω)] ` [Pf(Ω)] = [Pf(Ω) ∧ Pf(Ω)] = [det(Ω)],

defines a characteristic class too.

Remark 2.3.8. It is easily verified that both these characteristic classes satisfy the Whitney sum
formula c(E ⊕ E′) = c(E) ` c(E′). Indeed this can be seen by choosing a Riemannian metric
and an orthogonal connection on both bundles separately and then considering the direct sum
of these objects.

2.4 Chern-Gauss-Bonnet Theorem

Since the Pfaffian of the curvature restricts to a characteristic class with real coefficients on the
category of oriented plane bundles over closed manifolds, Remark 1.3.11 implies that it must
be a real multiple of the real Euler class.

Theorem 2.4.1 (Gauss-Bonnet Theorem). Let π : E →M be an oriented rank-2 vector bundle
over a closed manifold endowed with a metric tensor g and a g-orthogonal connection ∇. Then
[Pf(Ω)] = −2πeR(E).

Proof. Since we must have [Pf(Ω)] = λ · eR(E), in order to evaluate λ it suffices to compute
〈[Pf(Ω)], [Σ]〉 and 〈e(E), [Σ]〉 for a particular oriented plane bundle π : E → Σ over a closed ori-
ented surface Σ. Let’s consider the tangent bundle π : TS2 → S2 endowed with the Riemannian
metric inherited from the standard embedding ι : S2 ↪→ R3 and with the associated Levi-Civita
connection ∇. Then Pf(Ω) = Ω12 = −Kνg where K is the Gaussian curvature function of S2

and νg is the oriented volume form. Therefore 〈[Pf(Ω)], [S2]〉 =
∫
S2 Pf(Ω) = −

∫
S2 Kνg = −4π,

while 〈e(TS2), [S2]〉 = χ(S2) = 2. Thus we established λ = −2π.

Theorem 2.4.2. Let π : E →M be an oriented rank-2m vector bundle. Then

[det(Ω)] = (2π)2m(eR(E) ` eR(E))

Proof. If m = 1 then the Gauss-Bonnet Theorem gives

(2π)2(eR(E) ` eR(E)) = [Pf(Ω)] ` [Pf(Ω)] = [det(Ω)]

Thus for a bundle of the form E1⊕ . . .⊕Em where Ej is an oriented rank-2 vector bundle we can
choose a metric tensor g of the form g1⊕ . . .⊕ gm and a g-orthogonal connection ∇ of the form
∇1 ⊕ . . .⊕∇m where each ∇j is gj-orthogonal. Therefore a local orthonormal frame obtained
as the ordered disjoint union of local orthonormal frames for the metric tensors gj gives

[det(Ω)] = [det(Ω1) ∧ . . . ∧ det(Ωm)] = (2π)2m
(
eR(E1)2 ` . . . ` eR(Em)2

)
= (2π)2meR(E)2

For a general oriented rank-2m vector bundle π : E → M with orthogonal connection ∇ we
use the fact that the complexification EC is isomorphic, as an oriented rank-4m real vector
bundle, to E ⊕ E, and therefore e(E)2 = e(EC). Thus for the splitting principle we have that,
if πF : F (EC) → M is the flag manifold bundle associated with EC, the pull-back bundle
π∗FEC → F (EC) splits as a Whitney sum of complex line bundles. Therefore, if ∇C = ∇ ⊕ ∇
is an orthogonal connection on EC, we have (2π)4meR(π∗FEC)2 = [det(π∗FΩC)] = π∗F ([det(ΩC)]).
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Hence the injectivity of π∗F : H(M ;R) → H(F (EC);R) gives (2π)4meR(EC)2 = [det(ΩC)], and
thus ±(2π)2meR(E)2 = [det(Ω)]. To determine the sign let us consider, alongside a completely
arbitrary oriented rank-2m vector bundle, a second oriented rank-2m vector bundle which splits
as an m-fold Whitney sum of complex line bundles and has non-trivial Euler class. Since there
exists a sufficiently large N such that both of them admit a characteristic map into G̃2m(RN ) the
sign must coincide. Therefore, since for split bundles it was proved to be +1, we conclude.

We can finally prove:

Theorem 2.4.3 (Chern-Gauss-Bonnet Theorem). Let π : E →M be an oriented rank-2m vec-
tor bundle over a closed manifold endowed with a metric tensor g and a g-orthogonal connection
∇. Then [Pf(Ω)] = (−2π)meR(E).

Proof. We are only left to check the sign, which can be done exactly as before. Indeed for
complex line bundles we have the standard Gauss-Bonnet Theorem, for rank-2m split bundles
the sign is (−1)m and for general rank-2m bundles the sign must be the same because we can
simultaneoulsy realize any of them and a split bundle with non trivial Euler class as pull-backs
of the same bundle.



Chapter 3

Milnor-Wood inequality for surfaces

We present now a complete solution, due to Milnor, to the problem of determining which
oriented rank-2 vector bundles over oriented closed surfaces support flat connections. As it
was already announced we will see that the Euler class of an oriented vector bundle cannot be
derived from arbitrary connections.

Remark 3.0.4. We shall suppose the genus g of the surface to be greater than zero. Indeed a
principal bundle on a sphere admits a flat connection if and only if it is trivial because S2 is
simply connected.

3.1 Primary obstructions of flat principal bundles

Let Σg be an oriented closed surface of genus g. Let’s consider a CW-complex structure for Σg

featuring:

(i) a unique 0-cell x0 which serves as a base point for π1(Σg, x0);

(ii) 2g 1-cells parametrized by curves αj : I → Σg which determine a set of generators for
π1(Σg, x0) whose only relation is given by the curve

α = α1 ∗ α2 ∗ α−1
1 ∗ α

−1
2 ∗ . . . ∗ α2g−1 ∗ α2g ∗ α−1

2g−1 ∗ α
−1
2g ;

(iii) a unique 2-cell ε whose attaching map is

ϕ : ∂D2 ⊂ C → Σg

cos(2πt) + i · sin(2πt) 7→ α(t)

The universal cover Σ̃g inherits from Σg a CW-complex structure and if we specify a base point
x̃0 ∈ Σ̃g in the fiber of x0 then we induce a free right action of π1(Σg, x0) onto Σ̃g which permutes
the cells of the same dimension. If we denote by α̃ the unique lifting of α starting from x̃0 and
if we denote by ε̃ the unique 2-cell of Σ̃g whose attaching map is given by

ϕ̃ : ∂D2 ⊂ C → Σ̃g

cos(2πt) + i · sin(2πt) 7→ α̃(t)

then all other 2-cells of Σ̃g have the form ε̃ · β for some β ∈ π1(Σg, x0).
Now with every principal G-bundle πP : P → Σg we can associate a twisting homomor-

phism ρ : π1(Σg, x0) → Aut(π1(Px0)) which induces cohomology groups with twisted coef-
ficients H∗(Σg;π1(Px0)ρ). The primary obstruction for πP : P → Σg is then an element
o(P ) ∈ H2(Σg;π1(Px0)ρ) represented by a cellular cocycle o(f) which maps the 2-cells of Σ̃g to
π1(Px0) and satisfies o(f)(ε̃ · β) = ρ(β−1)(o(f)(ε̃)) for all β ∈ π1(Σg, x0)

17
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If πP : P → Σg is flat then it is induced by a homomorphism h : π1(Σg, x0)→ G. For such
a homomorphism, set aj := h([αj ]) ∈ G. If we consider the short exact sequence of groups

{e} π1(G) G̃ G {e}ιG πG̃

we can choose elements Aj ∈ G̃ such that πG̃(Aj) = aj . Then, since

πG̃([A1, A2] · · · [A2g−1, A2g]) = e,

where [ · , · ] denotes the commutator, we get an element ι−1
G ([A1, A2] · · · [A2g−1, A2g]) ∈ π1(G).

This element is represented by the projection under πG̃ of any curve in G̃ starting from
[A1, A2] · · · [A2g−1, A2g] and ending in ẽ.

Denote by ϕx̃0 the diffeomorphism between G and Px0 given by

G Σ̃g ×G Pιx̃0

ϕx̃0

p

where ιx̃0(a) = (x̃0, a) for all a ∈ G and p : Σ̃g ×G→ P is the standard projection.

Lemma 3.1.1. The primary obstruction for the flat principal G-bundle πP : P → Σg is repre-
sented by the cocycle

o(f) : ε̃ 7→ (ϕx̃0)∗(−ι−1
G ([A1, A2] · · · [A2g−1, A2g])) ∈ π1(Px0)

Proof. Let α̃ : I → M̃ be the closed loop obtained by lifting the curve α starting from x̃0. Let ẽ
be the identity in G̃ and consider curves in G̃ from ẽ to Aj which project onto curves λj : I → G
from e to aj . If we denote by α̃j the unique lifting of αj starting from x̃0 we can define a section
f on the 1-skeleton of Σg given by:

f : αj(t) 7→ p(α̃j(t), λj(t)) ∈ P

Therefore, if we define the curve

λ := (λ1 ∗ (La1 ◦ λ2) ∗ (La1a2 ◦ λ−1
1 ) ∗ (La1a2a

−1
1
◦ λ−1

2 ) ∗ . . . ∗ (La1a2a
−1
1 a−1

2 ···a2g−1a2ga
−1
2g−1
◦ λ−1

2g ))

where La denotes the left translation by a ∈ G, the section f induces a map of the form:

f# : ∂D2 → P
cos(2πt) + i · sin(2πt) 7→ p(α̃(t), λ(t))

If Φ : D2 → Σg and Φ̃ : D2 → Σ̃g denote the characteristic maps of the 2-cells ε and ε̃
respectively then the pull-back bundle Φ∗P can be trivialized via the isomorphism

Ψ : Φ∗P ⊂ D2 × P → D2 × Px0

(y, p(Φ̃(y), a)) 7→ (y, ϕx̃0(a))

Therefore the primary obstruction cocycle o(f) assigns to the 2-cell ε̃ the homotopy class of the
map

fε̃ : ∂D2 → Px0

cos(2πt) + i · sin(2πt)) 7→ ϕx̃0(λ(t))

In other words o(f)(ε̃) is the image under (ϕx̃0)∗ : π1(G)→ π1(Px0) of [λ] ∈ π1(G). Now since

ιG([λ]−1) = [A1, A2] · · · [A2g−1, A2g]

we conclude.
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3.2 Real polar matrix decomposition

Every a ∈ GL(n,R) can be written uniquely in the form a = r(a)s(a) where r(a) ∈ O(n)
and s(a) is symmetric and positive definite. Indeed ata is symmetric and positive-definite, and
therefore the spectral theorem gives ata = bdbt where b ∈ O(n) and d is diagonal with strictly

positive eigenvalues. Thus if we define r(a) := ab
√
d
−1
bt and s(a) := b

√
dbt we have that clearly

s(a) is symmetric and positive definite and

r(a)r(a)t = ab
√
d
−1
btb
√
d
−1
btat = abd−1btat = a(ata)−1at = I.

The decomposition is unique since, if a = ρσ, then s(a)2 = ata = σtρtρσ = σ2 and since both
s(a) and σ are positive definite we have σ = s(a). The map r defines a retraction of GL+(n,R)

onto SO(n) which is covered by a retraction r̃ : G̃L
+

(n,R)→ S̃O(n) such that r̃(Ĩ) = Ĩ. These
maps fit into the commutative diagram

G̃L
+

(n,R) S̃O(n)

GL+(n,R) SO(n)

r̃

π
G̃L

+ πS̃O

r

Lemma 3.2.1. The retractions r and r̃ satisfy:

(i) r(a−1) = r(a)−1 for all a ∈ GL+(n,R);

(ii) a ∈ SO(n) ⇒ r(ab) = ar(b), r(ba) = r(b)a;

(iii) r̃(A−1) = r̃(A)−1 for all A ∈ G̃L
+

(n,R);

(iv) A ∈ S̃O(n) ⇒ r̃(AB) = Ar̃(B), r̃(BA) = r̃(B)A.

Proof. (i) a−1 = s(a)−1r(a)t = r(a)t(r(a)s(a)−1r(a)t) and r(a)s(a)−1r(a)t is clearly symmet-
ric and positive-definite.

(ii) The first case is obvious, while for the second case we have r(b)s(b)a = r(b)a(ats(b)a) and
again (ats(b)a) is symmetric and positive-definite.

(iii) Consider a curve γ̃ in G̃L
+

(n,R) from Ĩ to A which projects onto a curve γ in GL+(n,R).
Then r̃ ◦ γ̃−1 and (r̃ ◦ γ̃)−1 project onto the curves r ◦ γ−1 and (r ◦ γ)−1 in SO(n) (where
the inversion denotes the group operation). These curves coincide thanks to (i). But since
both r̃ ◦ γ̃−1 and (r̃ ◦ γ̃)−1 start from Ĩ they must be the same lifting.

(iv) Consider a curve γ̃ in G̃L
+

(n,R) from Ĩ to B which projects onto a curve γ in GL+(n,R).
If A ∈ S̃O(n) and a = πS̃O(A) then the curves r̃ ◦ LA ◦ γ̃ and LA ◦ r̃ ◦ γ̃ project onto the
curves r ◦La ◦ γ and La ◦ r ◦ γ (where the maps L∗ denote left translations). These curves
coincide thanks to (ii). But since both r̃ ◦ LA ◦ γ̃ and LA ◦ r̃ ◦ γ̃ start from A they must
be the same lifting. The second assertion is completely analogous.

Lemma 3.2.2. If n = 2 then:

(i) tr(a) > 0 ⇒ tr(r(a)) > 0 for all a ∈ GL+(2,R);

(ii) a, b symmetric and positive-definte ⇒ tr(r(ab)) > 0;

(iii) tr(r(ab)r(a)tr(b)t) > 0 for all a, b ∈ GL+(2,R).
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Proof. (i) By direct computation we have

r

(
a b
c d

)
=

1√
x2 + y2

(
x y
−y x

)
where x = a+ d and y = b− c.

(ii) For every orthogonal matrix c the diagonal entries of cbct are positive because they equal
eti(cbc

t)ei = (cei)
tb(cei) > 0. Therefore if c is chosen so that cact is a diagonal matrix then

tr(ab) = tr((cact)(cbct)) is a sum of positive terms. Now we can apply (i).

(iii) ab = (r(a)r(b))
(
r(b)ts(a)r(b)s(b)

)
. Since the first term is orthogonal, we have

r(ab) = (r(a)r(b)) r
(
r(b)ts(a)r(b)s(b)

)
But r(b)ts(a)r(b) and s(b) are both symmetric and positive-definite, and therefore (ii)
gives tr(r(b)tr(a)tr(ab)) > 0. Now the invariance of the trace under cyclic permutations
allows us to conclude.

The isomorphism

exp : S1 → SO(2)

α 7→
(

cosα − sinα
sinα cosα

)
is covered by an isomorphism ˜exp : R → S̃O(2). The map ϑ := ˜exp−1 ◦ r̃ : G̃L

+
(2,R) → R,

which is not a homomorphism, fits into the following commutative diagram:

G̃L
+

(2,R)

R S̃O(2)

S1 SO(2)

ϑ r̃

˜exp

πR πS̃O

exp

Lemma 3.2.3. |ϑ(AB)− ϑ(A)− ϑ(B)| < π
2 for all A,B ∈ G̃L

+
(2,R).

Proof. Given elements A,B ∈ G̃L
+

(2,R) we define

4(A,B) = ϑ(AB)− ϑ(A)− ϑ(B)

Then πS̃O( ˜exp(4(A,B))) = r(ab)r(a)−1r(b)−1 has positive trace thanks to (iii) in Lemma 3.2.2.
Since

πS̃O ◦ ˜exp ◦ 4 = exp ◦πR ◦ 4 =

(
cos ◦4 − sin ◦4
sin ◦4 cos ◦4

)
we must have cos ◦4 > 0. But since 4 is continuous and vanishes for A = Ĩ, we must have
−π

2 < 4 < π
2 .
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3.3 Milnor-Wood inequality

Let π : E → Σg be an oriented rank-2 vector bundle over an oriented closed surface of genus g.

Theorem 3.3.1. If |〈e(E), [Σg]〉| > g then E does not admit flat connections.

Proof. We have the following commutative diagram:

{e} π1(GL+(2,R)) G̃L
+

(2,R) GL+(2,R) {e}

{e} π1(SO(2)) S̃O(2) SO(2) {e}

0 Z R S1 0

r∗

ιGL+

r̃

π
G̃L

+

r

ιSO πS̃O

exp∗

ιS1

˜exp

πR

exp

Since πR ◦ ϑ ◦ ιGL+ = exp−1 ◦r ◦ π
G̃L

+ ◦ ιGL+ = 0 then im (ϑ ◦ ιGL+) ⊂ im ιS1 . Therefore

we can define ψ = ι−1
S1 ◦ ϑ ◦ ιGL+ : π1(GL+(2, R)) → Z, which is an isomorphism since it

equals (exp∗)
−1 ◦ r∗. Now suppose π : E → Σg admits a flat connection, let P = LGL+(2,R)(E)

be the total space of the associated oriented frame bundle and consider the diffeomorphism
ϕx̃0 : GL+(2,R)→ Px0 given by

GL+(2,R) Σ̃g ×GL+(2,R) Pιx̃0

ϕx̃0

p

as in the first section of this chapter. Remark 1.3.14 gives, for every isomorphism f : π1(Px0)→
Z, the equality

|〈e(E), [Σg]〉| = |f(〈o(P ), [Σg]〉)|

Hence, if we choose f = ψ ◦ (ϕx0)−1
∗ , we obtain

|〈e(E), [Σg]〉| =
∣∣ψ((ϕx0)−1

∗ (〈o(P ), [Σg]〉))
∣∣ =

∣∣∣ψ(ι−1
GL+([A1, A2] · · · [A2g−1, A2g]))

∣∣∣
Therefore, since ιS1 is the multiplication by 2π, we have:

|〈e(E), [Σg]〉| =
∣∣∣∣ 1

2π
ϑ([A1, A2] · · · [A2g−1, A2g])

∣∣∣∣
Now if we apply Lemma 3.2.3 4g − 1 times we get:∣∣ϑ(A1A2A

−1
1 A−1

2 · · · ) − ϑ(A1)− ϑ(A2)− ϑ(A−1
1 )− ϑ(A−1

2 )− . . .
∣∣ 6

6
∣∣ϑ(A1A2A

−1
1 A−1

2 · · · )− ϑ(A1)− ϑ(A2A
−1
1 A−1

2 · · · )
∣∣ +

+
∣∣ϑ(A2A

−1
1 A−1

2 · · · )− ϑ(A2)− ϑ(A−1
1 A−1

2 · · · )
∣∣+ . . .

. . .+
∣∣∣ϑ(A−1

2g−1A
−1
2g )− ϑ(A−1

2g−1)− ϑ(A−1
2g )
∣∣∣ < (4g − 1)

π

2

But ϑ(A−1
i ) = −ϑ(Ai) thanks to (iii) in Lemma 3.2.1, and thus we have:

|〈e(E), [Σg]〉| < g − 1

4
< g
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In dimension 2 the previous result admits a converse, i.e. if |〈e(E), [Σg]〉| < g then E admits
flat connections. In order to show that let us consider the matrix

a0 =

(
2 0
0 1

2

)
∈ GL+(2,R)

Since r(a0) = I we have πR(ϑ(A)) = exp−1(r(a0)) = 0 for each A ∈ π−1

G̃L
+(a0). Therefore we can

choose A0 ∈ π−1

G̃L
+(a0) such that ϑ(A0) = 0. Consider the element ˜exp(π) ∈ S̃O(2) ⊂ G̃L

+
(2,R).

Then ˜exp(π) ∈ Z(G̃L
+

(2,R)): indeed, for all A ∈ G̃L
+

(2,R) we can consider a curve γ̃ from Ĩ
to A, which projects onto a curve γ in GL+(2,R). Then the curve

σ : t 7→ ˜exp(π)γ̃(t) ˜exp(π)−1

projects onto γ, and therefore must coincide with the unique lifting of γ starting from σ̃(0) = Ĩ.

Now let us consider the conjugacy classes K and K̃ of a0 in GL+(2,R) and of A0 in G̃L
+

(2,R)
respectively.

Lemma 3.3.2. Every element in ˜exp(π)K̃ can be written as a product of two elements in K̃.

Proof. Let’s consider the equality(
2 0
0 1

2

)(
−5

2
9
2

−3 5

)
=

(
−5 9
−3

2
5
2

)
Let a1 and a2 denote the second and the third matrix respectively. Then, since det(a1) = 1
and tr(a1) = 5

2 , its eigenvalues are 2 and 1
2 , and therefore a1 ∈ K. Analogously a2 ∈ −IK.

Now, since the kernel of the projection π
G̃L

+ is central, there exists a unique element A1 ∈ K̃
corresponding to a1. Therefore, since π−1

G̃L
+(−I) = { ˜exp(nπ) | n odd }, we must have that

A0A1 ∈ ˜exp(nπ)K̃ for some n ∈ Z. Now, we have cosϑ(A) = 1
2tr(r(π

G̃L
+(A))) and thus, since

tr(a) = 5
2 for all a ∈ K, assertion (i) in Lemma 3.2.2 gives cosϑ(A) > 0 for all A ∈ K̃. Then,

since K̃ is connected, we have:

(i) ϑ(A0) = 0 ⇒ |ϑ(A)| < π
2 ∀ A ∈ K̃;

(ii) ϑ( ˜exp(nπ)A0) = ˜exp−1( ˜exp(nπ)+ r̃(A0)) = nπ ⇒ |ϑ(A)| > 5π
2 ∀ A ∈ ˜exp(nπ)K̃, n > 3.

But since |ϑ(A0A1)| < |ϑ(A0)| + |ϑ(A1)| + π
2 < 3π

2 we have A0A1 ∈ ˜exp(±π)K̃. Then, if

A0A1 ∈ ˜exp(π)K̃ we have

BA0A1B
−1 =

(
BA0B

−1
) (
BA1B

−1
)

while if A0A1 ∈ ˜exp(−π)K̃ we have

BA−1
1 A−1

0 B−1 =
(
BA−1

1 B−1
) (
BA−1

0 B−1
)

Lemma 3.3.3. A ∈ ˜exp(π)K̃ ⇒ A = [B1, B2] for some B1, B2 ∈ G̃L(2,R).

Proof. We can write A = B1B3 with B1, B3 ∈ K̃. But since B−1
1 ∈ K̃ there must exist some

B2 ∈ G̃L(2,R) such that B2B
−1
1 B−1

2 = B3.

We are now ready to prove the following:

Theorem 3.3.4. If |〈e(E), [Σg]〉| < g then E admits flat connections.
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Proof. Since oriented rank-2 vector bundles over a fixed manifold are classified by their Euler
class, then for an oriented closed surface Σg the equality 〈e(E), [Σg]〉 = 0 implies the triviality
of E, which in turn implies its flatness. In particular for g = 1 the Theorem is proved. Now
suppose g > 2 and consider 0 < k < g. Let’s consider k elements A1, . . . , Ak ∈ K̃ such that
˜exp((k − 1)π)A0 = A1 · · ·Ak. Then, setting Ak+1 := A−1

0 , we get ˜exp((k − 1)π) = A1 · · ·Ak+1.
Now let us consider B1, . . . , B2k+2 such that ˜exp(π)Ai = [B2i−1, B2i]. We have that

[B1, B2] · · · [B2k+1, B2k+2] = ˜exp(π)A1 · · · ˜exp(π)Ak+1 = ˜exp((k+1)π) ˜exp((k−1)π) = ˜exp(2kπ)

is an element of kerπ
G̃L

+ . Therefore we can define

h : π1(M,x0) → GL+(2,R)

αi 7→

{
π

G̃L
+(Bi) if i 6 2k + 2

I if i > 2k + 2

The associated vector bundle E satisfies

|〈e(E), [Σg]〉| =
1

2π
ϑ( ˜exp(2kπ)) = k

and the two possible orientations realize both k and −k.
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Chapter 4

Kostant-Sullivan Theorem and
Smillie’s counterexamples

We present now a result which confirms Conjecture 1 for closed complete affine manifolds. It is
interesting to remark that, although Kostant and Sullivan’s proof is very short and uses only the
Chern-Gauss-Bonnet Theorem, it was published in 1975, almost 30 years after Chern’s work and
almost 20 years after Milnor-Wood inequalities. We construct also Smillie’s counterexamples,
which were found the following year, and which show that Conjecture 2 cannot be extended to
non-aspherical manifolds.

4.1 Invariant metric tensors

Let V be a real m-dimensional vector space and let ρ : G → GL(V ) be a linear representation
for a Lie group G. We can make G act on the right of the space B(V ) of scalar products on V
(where by scalar product we mean a positive definite symmetric bilinear form) by defining for
each a ∈ G and each Φ ∈ B(V ) the scalar product

(Φ · a)(v, w) := Φ(ρ(a)(v), ρ(a)(w)) ∀ v, w ∈ V

We denote by BG(V ) the set of G-invariant scalar products, i.e. the set of scalar products
whose stabilizer is G.

Remark 4.1.1. Every compact Lie group G is oriented and admits a unique right-invariant
volume form ν which satisfies

∫
G ν = 1. Indeed any non-zero vector ωe ∈

∧n g∗ (where n is
the dimension of G) can be uniquely extended to a right-invariant nowhere-zero n-form ω by
defining

ωa(X1, . . . , Xn) = ωe(daRa−1X1, . . . , daRa−1Xn) ∀ X1, . . . , Xn ∈ TaG

Thus, since G is compact, the integral
∫
G ω is finite, and therefore we can define ν := ω/

∫
G ω.

Every other right-invariant volume form is a scalar multiple of ν because the space of right-
invariant n-forms on G is isomorphic to

∧n g∗, which is 1-dimensional. The right-invariance of
ν gives

∫
G(f ◦Ra)ν =

∫
G fν for all f ∈ C∞R (G) and all a ∈ G.

Proposition 4.1.2. Let V be a real m-dimensional vector space and let ρ : G → GL(V ) be a
linear representation for a compact Lie group G. Then BG(V ) 6= ∅.

Proof. If we consider the right-invariant volume form ν defined above and any scalar product
Φ on V we can define

ΦG(v, w) :=

∫
G

Φ(ρ(a)(v), ρ(a)(w))ν

25
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Then, since fv,w : a 7→ Φ(ρ(a)v, ρ(a)v) is a strictly positive function on G, ΦG is indeed positive
definite. Moreover the right invariance of ν gives

ΦG(ρ(b)(v), ρ(b)(w)) :=

∫
G

Φ(ρ(ab)(v), ρ(ab)(w))ν =

∫
G

(fv,w ◦Rb)ν =

∫
G
fv,wν = ΦG(v, w)

Now let πE : E →M be a rank-m vector bundle with structure group G and let πP : P →M
be the associated principal G-bundle. Then the choice of a metric tensor g on E is equivalent
to the choice of a G-equivariant map f : P → B(Rm). A metric tensor g on a rank-m vector
bundle π : E → M with structure group G is G-invariant if the associated G-equivariant map
f : P → B(Rm) factorizes as

P B(Rm)

M

πP

f

f̄

for some map f̄ .

Lemma 4.1.3. If a vector bundle π : E →M has compact structure group G then it admits a
G-invariant metric tensor g.

Proof. Since BG(Rm) 6= ∅ there exist maps from M to BG(Rm).

4.2 Kostant-Sullivan Theorem

Let L : Aff(n,R)→ GL(n,R) be the homomorphism which sends each affine isomorphism f of
Rn to its linear part f − f(0). Then the holonomy representation ρ : π1(M,x0) → Aff(n,R)
and the developing map D : M̃ → Rn associated with each affine structure over a manifold M
allow us to reduce the structure group of the tangent bundle πT : TM →M to L(ρ(π1(M,x0))).
Indeed consider an open covering {Ui}i∈I which trivializes the universal cover πM̃ : M̃ →M . If

si : Ui → M̃ is any section we can define the atlas {(Ui,α, ϕi,α)
∣∣ i ∈ I, α ∈ π1(M,x0)} by setting

Ui,α := Ui and ϕi,α := ρ(α) ◦D ◦ si. Then each Ui,α trivializes TM as

χTi,α : TUi,α → Ui,α × Rn
u 7→ (πT (u), dπT (u)ϕi,α(u))

and therefore the transition functions are

ϕT(i,α),(j,β) : Ui,α ∩ Uj,β → GL(n,R)

x 7→ dρ(βγα−1) = L(ρ(βγα−1))

where sj(x) = si(x) · γ−1 for all x ∈ Ui,α ∩ Uj,β.

Lemma 4.2.1. Let G be a subgroup of Aff(n,R) acting freely on Rn and let G be its Zariski
closure. Then for every f ∈ G the linear part L(f) has 1 as an eigenvalue.

Proof. If f(x) = L(f)(x) + ξ then equation f(x) = x has no solution if and only if −ξ is not in
the range of the linear map L(f) − I. Clearly if f ∈ G then ξ cannot be zero because G acts
freely, and therefore the condition is satisfied only if det(L(f) − I) = 0. The continuity of the
function f 7→ det(L(f)− I) with respect to the Zariski topology gives the result also for G.
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Lemma 4.2.2. Let G be a connected closed subgroup of GL(n,R) such that every matrix in G
has 1 as an eigenvalue. Then all matrices in g are singular.

Proof. Given any curve a : (−ε, ε) → G with a(0) = I we can find a curve x : (−ε, ε) → Sn−1

satisfying a(t)x(t) = x(t). Therefore we get a′(0)x(0) + x′(0) = x′(0).

Theorem 4.2.3. If Mn is a closed complete affine manifold then χ(M) = 0

Proof. For n odd there is nothing to prove. Therefore suppose n is even. Then M can be
realized as π1(M,x0)\Rn where π1(M,x0) acts on the left of Rn via the holonomy representation
ρ : π1(M,x0)→ Aff(n,R). Let G be the Zariski closure of ρ(π1(M,x0)), let G0 be the connected
component of G containing e and let H be the subgroup ρ(π1(M,x0)) ∩ G0. Then, since G is
a Zariski-closed set, it has finitely many connected components, and thus H is a subgroup of
finite index of ρ(π1(M,x0)). Therefore the complete affine manifold M ′ := H\Rn is a finite
covering of M , and in particular it is still closed. Let us enlarge the structure group of TM ′

from L(H) to L(G0), which is a connected group since it is the image of the connected group G0

under L. Therefore the Iwasawa decomposition of L(G0) yields a compact maximal subgroup
K onto which L(G0) deformation retracts. Therefore we can reduce the structure group of TM ′

from L(G0) to K. Now, since K < GL(n,R) is compact, there exists a K-invariant metric
tensor g over E. If we choose a g-orthogonal connection ∇ then its local curvature form matrix
with respect to a g-orthonormal local frame over U ⊂ M can be expressed as aΩa−1 for some
a : U → GL(n,R) (the inversion denotes the group operation in GL(n,R)) and some k-valued
2-form Ω over U (where k = Lie(K)). But since every matrix b ∈ K satisfies det(b − I) = 0,
every matrix B ∈ k must satisfy det(B) = 0, and therefore

eR(TM ′)2 = [det(aΩa−1)] = [det(Ω)] = 0

To conclude it suffices to use the fact that if M ′ is a k-sheeted covering of M then its Euler
characteristic χ(M ′) equals k · χ(M).

4.3 Smillie’s counterexamples

We will construct a 4-manifold N and a 6-manifold Q whose tangent bundles are flat, whose
Euler characteristics are non-zero and whose products produce analogs in every even dimension
greater than 2.

A rank-m vector bundle πE : E → M is almost trivial if the rank-(m + 1) vector bundle
πE ⊕ π1 : E ⊕ (M × R) → M is trivial. A manifold whose tangent bundle is almost trivial is
almost parallelizable.

Lemma 4.3.1. If πi : Ei →M is an almost trivial vector bundle for i = 1, 2 then the Whitney
sum π1 ⊕ π2 : E1 ⊕ E2 → M is almost trivial too. If πE : E → M is an almost trivial vector
bundle and f : N →M is a map then the pull-back πf∗E : f∗E → N is almost trivial too.

Proof. If mi denotes the rank of the vector bundle πi : Ei → M for i = 1, 2 then we have that
E1⊕E2⊕(M×R) ' E1⊕(M×Rm2+1) 'M×Rm1+m2+1 . The second assertion is obvious.

Remark 4.3.2. If πi : Ei → M is a vector bundle for i = 1, 2 and pi : M1 ×M2 → Mi denotes
the projection onto the i-th component then E1 × E2 ' p∗1E1 ⊕ p∗2E2. Therefore, if two vector
bundles are almost trivial, their direct product is almost trivial too.

Proposition 4.3.3. Let πE : E → Σg be an oriented rank-2 vector bundle. If 〈e(E), [Σg]〉 is
even then πE : E → Σg is almost trivial.
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Proof. Since π1(V2(R3)) ' π1(SO(3)) ' Z2, a rank-3 vector bundle admits 2 linearly indepen-
dent sections defined over the 2-skeleton of the base space if and only if its second Stiefel-Whitney
class vanishes. Therefore πE⊕π1 : E⊕ (Σg×R)→M admits 2 linearly independent global sec-
tions if and only if we have w2(E⊕ (Σg×R)) = 0 ∈ H2(Σg;Z2) ' Z2. But that’s precisely what
happens since w2(E ⊕ (Σg × R)) = w2(E) and 〈w2(E), [Σg]〉 ≡ 〈e(E), [Σg]〉 (mod 2). Therefore
we have that πE⊕π1 : E⊕(Σg×R)→M is isomorphic to πE′⊕π1 : E′⊕(Σg×R2)→M for some
line bundle πE′ : E′ →M . But w1(E′) = w1(E′⊕ (Σg ×R2)) = w1(E ⊕ (Σg ×R)) = w1(E) = 0
because E is oriented, and therefore πE′ : E′ →M must be trivial.

Remark 4.3.4. A closed and orientable n-manifold M is almost parallelizable if and only if it
admits an immersion f into Rn+1. Indeed if f : M → Rn+1 is an immersion then the pull-back
by f of the trivial bundle T (Rn+1) is a trivial rank-(n+ 1) bundle over M which is isomorphic
to TM ⊕NfM where NfM →M is the normal bundle of the immersion f . The latter is trivial
because M is orientable. Conversely suppose that M is almost parallelizable and consider and
immersion g : M → R2n−1, whose existence is implied by Whitney’s immersion Theorem. Then
the normal bundle NgM → M is trivial thanks to the almost triviality of TM . Therefore,
thanks to Theorem 6.5 in [19], we have that M admits an immersion into Rn+1.

Proposition 4.3.5. If Mn and Nn are almost parallelizable then M#N is almost parallelizable
too.

Proof. Immersions of M and N into Rn+1 induce an immersion of M#N .

Proposition 4.3.6. If πE : E → M is an almost trivial rank-m vector bundle then it is
isomorphic to πg∗TSm : g∗TSm →M for some map g : M → Sm.

Proof. There exists a bundle map

E ⊕ (M × R) Rm+1

M {∗}

f

If we consider a nowhere-vanishing section σ : M → (M × R) ↪→ E ⊕ (M × R) we get a map
f ◦ σ : M → Rm+1. Using a Gram-Schmidt procedure we may assume that f(σ(M)) ⊂ Sm

and that for all x ∈ M we have f(Ex) ⊥ f(σ(x)). Therefore πE : E → M is isomorphic to the
pull-back by f ◦ σ of the tangent bundle TSm.

Proposition 4.3.7. Two almost trivial oriented rank-2m vector bundles πi : Ei → M over an
oriented closed manifold M are isomorphic if and only if e(E1) = e(E2).

Proof. We use Hopf’s degree Theorem, which states that for an oriented closed n-manifold M
two maps f1, f2 : M → Sn are homotopic if and only if they have the same degree, i.e. if
and only if (f1)∗[M ] = (f2)∗[M ] in Hn(Sn,Z). This happens if and only if the induced maps
f∗i : Hn(Sn;Z)→ Hn(M ;Z) coincide, thanks to the Universal Coefficient Theorem.

Now if we consider 4-manifolds P := S1 × S3 and M := Σ3 × Σ3 we have that P is
parallelizable (because it is a product of parallelizable manifolds) and M is almost parallelizable
(because it is a product of almost parallelizable manifolds). Therefore, thanks to Proposition
4.3.5, the 4-manifold

N := M#(P# . . .#P︸ ︷︷ ︸
6 times

)

must be almost parallelizable too. Moreover, since every pair of n-manifolds M1,M2 satisfies

χ(M1#M2) = χ(M1) + χ(M2)− (1 + (−1)n),
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we have that χ(N) = 4. Now let πE : E → Σ3 denote the unique oriented rank-2 vector
bundle satisfying 〈e(E), [Σ3]〉 = 2, which is flat thanks to Milnor-Wood inequality 3.3.4, and
let f : N → M be a degree 1 map, i.e. a map satisfying f∗[N ] = [M ] (for example, we can
take the map collapsing the P summands to a point). Then the pull-back πE′ : E′ → N of
πE×πE : E×E →M by f is flat and, thanks to Lemma 4.3.1 and to Remark 4.3.2, it is almost
trivial too. Furthermore we have 〈e(E′), [N ]〉 = 〈e(E×E), [M ]〉 = 〈e(E), [Σ3]〉2 = 4. Therefore,
thanks to Proposition 4.3.7, πE′ : E′ → N is isomorphic to the tangent bundle πT : TN → N ,
which in particular must be flat.

Finally, if we consider the 6-manifold Q given by R × Σ3 where R := N#P#P#P , a
calculation gives χ(Q) = 8. Therefore, if h : R→M is a degree 1 map and πE′′ : E′′ → Q is the
direct product of the pull-back of πE × πE : E × E →M by h with πE : E → Σ3, then, since

〈e(E′′), [Q]〉 = 〈e(h∗(E × E)× E), [Q]〉 = 〈e((E × E)), [M ]〉 · 〈e(E), [Σ3]〉 = 8,

we have that πT : TN → N must be flat.

Remark 4.3.8. Since the connected sum of two closed manifolds of dimension n > 3 which are
not homotopy equivalent to Sn is never aspherical, we have that neither N and Q nor their
products are aspherical.
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Chapter 5

Milnor-Wood inequality for
(H2)n-manifolds

Milnor-Wood inequality has been recently generalized to all manifolds whose Riemannian uni-
versal cover is isometric to a product of hyperbolic planes H2. This result, which is the first
substantial extension of the analog inequality for closed oriented surfaces, confirms both Con-
jectures 1 and 2 for all manifolds which are locally isometric to products of surfaces of constant
curvature.

5.1 Bounded cohomology

The space of singular chains with real coefficients Ck(X;R) on a given topological space X can
be equipped with the `1-norm with respect to the standard basis of singuar simplices:∥∥∥∥∥

r∑
i=1

aiσi

∥∥∥∥∥ =
r∑
i=1

|ai|

This norm induces a seminorm on homology groups which assigns to each homology class the
infimum of the norms of its representatives:

‖α‖ = inf

{
r∑
i=1

|ai|

∣∣∣∣∣
[

r∑
i=1

aiσi

]
= α

}

The simplicial volume ‖M‖ of a closed oriented manifold M is the seminorm of its fundamental
class [M ].

The space of real valued cochains Ck(X;R) can be equipped with the operator norm

‖c‖ = sup
{
|c(α)|

∣∣∣ α ∈ Ck(X;R), ‖α‖ = 1
}

which takes the name of Gromov norm. The subspaces of bounded cochains C∗b (X) ⊂ C∗(X;R)
form a cochain complex because the boundary operator is bounded. The bounded cohomology
groups H∗b (X) of X are the cohomology groups associated with this cocomplex. Both standard
and bounded cohomology groups can be given seminorms analogous to the one defined previously
for homology groups, allowing infinite seminorms in the standard case.

Remark 5.1.1. Every continuous map f : X → Y induces homomorphisms f∗ : H∗(X)→ H∗(Y ),
f∗ : H∗(Y )→ H∗(X) and f∗ : H∗b (Y )→ H∗b (X) which satisfy ‖f∗(α)‖ 6 ‖α‖ for all α ∈ H∗(X)
and ‖f∗(a)‖ 6 ‖a‖ for all a ∈ H∗(Y ) and all a ∈ H∗b (Y ).
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The homomorphism c : H∗b (X) → H∗(X;R) induced by the inclusion of the cocomplexes
C∗b (X) ↪→ C∗(X;R), which is called the comparison map, is natural, i.e. for every continuous
map f : X → Y we have a commutative diagram

H∗(Y ) H∗(X)

H∗b (Y ) H∗b (X)

f∗

c

f∗

c

Remark 5.1.2. Bounded cohomology groups do not yield a proper cohomology theory, as the
Excision Axiom does not hold. Indeed explicit computations of such groups are usually very
hard to perform.

Lemma 5.1.3. For all cohomology classes a ∈ Hk(X;R) the seminorm satisfies the equality

‖a‖ = inf
{
‖ab‖

∣∣∣ ab ∈ Hk
b (X) : c(ab) = a

}
∪ {∞}

Proof. We obviously have ‖a‖ 6 ‖ab‖. If we take a representative ϕ for a satisfying ‖ϕ‖ 6
‖a‖ + ε, then ϕ determines a bounded cohomology class ab satisfying ‖ab‖ 6 ‖a‖ + ε and
c(ab) = a.

Lemma 5.1.4. Let M be an oriented closed manifold of dimension n. Then for all cohomology
classes a ∈ c(Hn

b (M)) we have
|〈a, [M ]〉| = ‖a‖ ‖M‖

Proof. For all cocycles ψ ∈ Cnb (M) representing a and all cycles z ∈ Cn(M ;R) representing [M ]
we have |〈a, [M ]〉| = |ψ(z)| 6 ‖ψ‖ ‖z‖. Therefore by taking the infimum on all representatives
we get the inequality |〈a, [M ]〉| 6 ‖a‖ ‖M‖. On the other hand we can fix a cycle z ∈ Cn(M ;R)
representing [M ] and then consider the linear functional ϕ defined on Span(z) ⊕ Bk(X;R) by
ϕ(z) = ‖a‖ ‖M‖ and by ϕ

∣∣
Bk(X;R)

≡ 0. Now by the Hanh-Banach Theorem there exists a

cochain ψ ∈ Ck(X;R) having norm ‖a‖ ‖M‖‖z‖ 6 ‖a‖ which extends ϕ (in particular it must be

a cocycle). This cocycle defines a cohomology class b ∈ c(Hn
b (M)) satisfying ‖b‖ 6 ‖a‖ and

〈b, [M ]〉 = ‖a‖ ‖M‖ > |〈a, [M ]〉|. But since Hn(M ;R) is one-dimensional b must equal λ · a for
some λ ∈ R, and thus we get |λ| 6 1 and |λ| > 1. This gives the other inequality.

5.2 Continuous group cohomology

If G is a topological group we can define for each k the space of continuous k-cochains

Ckc (G) =
{
f : Gk+1 → R

∣∣∣ f continuous
}
.

Since G acts on the left of these spaces by

g · f(g0, . . . , gk) = f(gg0, . . . , ggk)

we can consider the subspaces of G-invariant cochains C∗c (G)G. These form a cocomplex where
the coboundary operator is defined by

δf(g0, . . . , gk) =

k∑
i=0

(−1)if(g0, . . . , ĝi, . . . , gk).

This cocomplex yields continuous cohomology groups H∗c (G).
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Remark 5.2.1. For a discrete group Γ the continuity condition is empty, and thus continuous
cohomology groups are simply denoted by H∗(Γ). These groups naturally coincide with the
(simplicial) cohomology groups with real coefficients of the Eilenberg-MacLane space K(Γ, 1),
which is a classifying space for principal Γ-bundles. With each manifold M we can associate a
characteristic map f : M → K(π1(M,x0), 1) such that the universal cover π : M̃ → M is iso-
morphic to the pull-back by f of the universal principal π1(M,x0)-bundle over K(π1(M,x0), 1).
If M is aspherical then f∗ : H∗(π1(M,x0)) = H∗(K(π1(M,x0), 1);R) → H∗(M ;R) is an iso-
morphism.

Continuous cohomology of topological groups admits a bounded version too. Indeed we can
endow the spaces Ckc (G)G with the norm

‖f‖ = sup
{
|f(g0, . . . , gk)|

∣∣∣ (g0, . . . , gk) ∈ Gk+1
}

Consider the subspaces of bounded G-invariant cochains

Ckc,b(G)G =
{
f ∈ Ckc (G)G

∣∣∣ ‖f‖ < +∞
}
.

Then, since coboundary operators are bounded with respect to this norm, C∗c,b(G)G defines a
cocomplex which yields continuous bounded cohomology groups H∗c,b(G). Both continuous and
bounded continuous cohomology groups can be given the usual seminorms

‖a‖ = inf
{
‖f‖

∣∣∣ [f ] = a
}
,

allowing infinite values in the unbounded case.

Remark 5.2.2. For a discrete group Γ the seminorm defined for H∗(Γ) coincides with the semi-
norm induced by the Gromov norm on H∗(K(Γ, 1);R).

Remark 5.2.3. Every continuous homomorphism ϕ : G→ G′ between topological groups induces
homomorphisms ϕ∗ : H∗c (G′) → H∗c (G) and ϕ∗ : H∗c,b(G

′) → H∗c,b(G) satisfying ‖ϕ∗(a)‖ 6 ‖a‖
for all a ∈ H∗c (G′) and all a ∈ H∗c,b(G′).

The inclusion C∗c,b(G)G ↪→ C∗c (G)G induces a comparison map c : H∗c,b(G)→ H∗c (G) which is
natural, i.e. for every continuous homomorphism ϕ : G→ G′ we have a commutative diagram

H∗c (G′) H∗c (G)

H∗c,b(G
′) H∗c,b(G)

ϕ∗

c

ϕ∗

c

Remark 5.2.4. Lemma 5.1.3 immediately extends to continuous group cohomology.

Theorem 5.2.5 (Gromov). If f : M → K(π1(M,x0), 1) denotes the characteristic map of the
universal cover π : M̃ → M then f∗ : H∗b (K(π1(M,x0), 1);R) → H∗b (M ;R) is an isometric
isomorphism.

Corollary 5.2.6. If M is aspherical then f∗ : H∗(K(π1(M,x0), 1);R) → H∗(M ;R) is an
isomorphism which preserves seminorms.

If G is a Lie group its continuous cohomology can be computed in terms of its Lie algebra
g in the following way: let us consider the space of left invariant differential forms on G

Ω∗(G)G =
{
ω ∈ Ω∗(G)

∣∣∣ dL∗aω = ω ∀ a ∈ G
}
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with coboundary map given by the exterior derivative of differential forms. This cocomplex is
naturally equivalent to the cocomplex

∧∗ g∗ endowed with the Koszul differential

dω(X0, . . . , Xp) =
∑

06i<j6p

(−1)i+jω([Xi, Xj ], X0, . . . , X̂i, . . . , X̂j , . . . , Xp)

The cohomology groups H∗(g) of the Lie algebra g are the cohomology groups associated with
this cocomplex. Now let

iX : Ωp+1(G) → Ωp(G)
ω 7→ [(X1, . . . , Xp) 7→ ω(X,X1, . . . , Xp)]

be the interior product. If K is a closed subgroup of G, with Lie algebra k, let us consider the
cocomplex

Ω∗(G)GK =
{
ω ∈ Ω∗(G)G

∣∣∣ dR∗aω = ω ∀ a ∈ K, iX(ω) = 0 ∀ X ∈ k = Lie(K)
}

Remark 5.2.7. This is indeed a cocomplex since for all X ∈ k we have

iXdω(X1, . . . , Xp) = dω(X,X1, . . . , Xp) =

p∑
i=1

(−1)iω([X,Xi], X1, . . . , X̂i, . . . , Xp) =

=
d

dt
[ω(Adexp tXX1, . . . ,Adexp tXXp)]t=0 = 0

The relative cohomology groups H∗(g,K) of the Lie algebra g with respect to the subgroup
K are the cohomology groups associated with this cocomplex.

Remark 5.2.8. If π : G→ G/K denotes the standard projection, we have that π∗(Ω∗(G/K)G) =
Ω∗(G)GK ⊂ Ω∗(G)G. Thus every element in H∗(g,K) is represented by some G-invariant closed
differential form defined on G/K.

Theorem 5.2.9 (Van Est). Let G be a Lie group and let K be a maximal compact subgroup.
Then there exists a natural isomorphism Φ : H∗c (G)→ H∗(g,K) which is multiplicative, i.e. it
preserves the cup products.

One of the immediate advantages of the Van Est isomorphism is that continuous group
cohomology inherits from Lie algebra cohomology a Künneth formula: indeed if G1, G2 are
Lie groups and Ki < Gi are closed subgroups for i = 1, 2 then we have natural isomorphisms
Hp(g1 ⊕ g2,K1 ×K2) '

⊕p
i=0H

i(g1,K1)⊗Hp−i(g2,K2) for every p. Thus we get:

Corollary 5.2.10. If G1 and G2 are Lie groups then Hp
c (G1×G2) '

⊕p
i=0H

i
c(G1)⊗Hp−i

c (G2).

Another useful feature of continuous cohomology of Lie groups is its behaviour with respect
to cocompact subgroups:

Lemma 5.2.11. Let G be a unimodular Lie group, let H < G be a cocompact subgroup such
that the G-invariant measure induced on G/H is finite and let ι : H ↪→ G denote the inclusion
homomorphism. Then the induced map ι∗ : H∗c (G)→ H∗c (H) is isometrically injective.

Example 5.2.12. Consider a closed oriented surface Σg of genus g > 1. A hyperbolic struc-
ture on Σg induces a representation ρ : π1(Σg, x0) ↪→ Isom+(H2) ' PSL(2,R) which em-
beds π1(Σg, x0) as a cocompact lattice in PSL(2,R). This representation can always be lifted
in 2g ways to a representation ρ̃ : π1(Σg, x0) ↪→ SL(2,R) whose image is a cocompact lat-
tice in SL(2,R). Therefore both H∗c (PSL(2,R)) and H∗c (SL(2,R)) embed isometrically into
H∗(π1(Σg, x0)) ' H∗(Σg;R). In particular we get Hk

c (PSL(2,R)) = Hk
c (SL(2,R)) = 0 for

k > 2.



35 5.3. Continuous Euler class

For bounded cohomology groups we have even better properties:

Lemma 5.2.13. Let G be a unimodular Lie group, let H < G be a subgroup such that the
G-invariant measure induced on G/H is finite and let ι : H ↪→ G denote the inclusion homo-
morphism. Then the induced map ι∗ : H∗c,b(G)→ H∗c,b(H) is isometrically injective.

Finally, bounded continuous cohomology is blind to amenable normal subgroups:

Lemma 5.2.14. Let G be a Lie group and let N C G be a normal Lie subgroup. If N is amenable
then the projection π : G→ G/N induces an isometric isomorphism π∗ : H∗c,b(G/N)→ H∗c,b(G).

As a corollary in the unbounded case we get the following result:

Corollary 5.2.15. Let G be a Lie group and let N C G be a normal Lie subgroup. If N is
amenable then the projection π : G→ G/N induces a homomorphism π∗ : H∗c (G/N)→ H∗c (G)
which preserves the seminorms.

5.3 Continuous Euler class

Let G be a Lie group, let BG denote the classifying space for principal G-bundles and let
πPG : PG → BK denote the universal principal G-bundle. Then the real Euler class of
rank-2m vector bundles with structure group G can be realized as an element in H2m(BG;R):
indeed there exists a unique e2m(BG) ∈ H2m(BG;R) such that for every oriented vector bundle
πE : E → M with structure group G if the pull back of πPG : PG → BK under the map
f : M → BG is isomorphic to the principal G-bundle πP : P →M associated with πE : E →M ,
then we have eR(E) = f∗(e2m(BG)).

Remark 5.3.1. The vector bundle πE : E → M is flat if and only if its structure group can be
reduced to Gδ (that is G endowed with the discrete topology). This happens if and only if the
map f : M → BG factorizes through BGδ.

The following Theorem of Gromov puts the Euler class of flat bundles in the context of
bounded cohomology:

Theorem 5.3.2 (Gromov). Let G < GL(2m,C) be a linear algebraic R-group and let G(R)+

denote G ∩ GL+(2m,R). Then the real Euler class of flat oriented rank-2m vector bundles
with structure group G(R)+ is realized by a bounded cohomology class e2m(BG(R)δ+) inside
c(H2m

b (BG(R)δ+)) whose norm equals 2−2m.

IfG is a Lie group andK < G is a maximal compact subgroup then the inclusion ιK : K ↪→ G
is a homotopy equivalence, and thus induces a homotopy equivalence ιBK := (ιK)B∗ : BK → BG
between classifying spaces. The Chern-Weil homomorphism introduced for smooth manifolds
in Remark 2.3.5 can be defined also for classifying spaces of principal bundles (and more in
general for simplicial manifolds, compare with [14]), and we have the following result:

Theorem 5.3.3. Let K be a compact Lie group and let πPK : PK → BK be the universal
principal K-bundle. Then the Chern-Weil homomorphism wPK : Ih(K) → H2h(BK;R) is an
isomorphism.

The projection πG : G → G/K gives a principal K-bundle which can be endowed with the
standard connection Γ mapping each a ∈ G to the subspace deRa(k) where Ra denotes the right
translation on G and k denotes the Lie algebra of K. Then, since Γ is invariant with respect to
the right action of the whole G, the Chern-Weil homomorphism wG : Ih(K) → H2h

dR(G/K;R)
maps every Ad(K)-invariant form in Ih(K) to a closed differential form on G/K which is
actually G-invariant. Therefore the image of wG is actually contained in H2h(g,K), which is
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isomorphic to H2h
c (G). We have therefore a well-defined map ϕ : H2h(BG)→ H2h

c (G) given by
the composition

H2h(BG;R) H2h(BK;R) Ih(K) H2h(g,K) H2h
c (G)∼

ι∗BK

∼
w−1
PK

wG
∼
Φ

Proposition 5.3.4. For every Lie group G we have the following commutative diagram:

H∗(BG;R) H∗(BGδ;R)

H∗c (G) H∗(Gδ)

ι∗
BGδ

ϕ

ι∗
Gδ

Therefore we have a continuous Euler class ε2m(G) := ϕ(e(BG)) ∈ H2m
c (G) which generates

Euler classes of flat oriented rank-2m vector bundles with structure group G in the following
way: if the universal cover of a manifold M is the pull-back by f : M → Bπ1(M,x0) of the
universal principal π1(M,x0)-bundle over Bπ1(M,x0) then every flat oriented rank-2m vector
bundle π : E →M with structure group G determines a representation

π1(M,x0) Gδ G
ρδ

ρ

ι
Gδ

such that the associated principal G-bundle is obtained by pulling back the universal principal
G-bundle by the map

M Bπ1(M,x0) BGδ BG.
f ρδBπ1

ι
BGδ

Therefore we have the commutative diagram

H∗(BG;R) H∗(BGδ;R) H∗(Bπ1(M,x0);R) H∗(M ;R)

H∗c (G) H∗(Gδ) H∗(π1(M,x0))

ι∗
BGδ

ϕ

(ρδBπ1
)∗ f∗

ι∗
Gδ

(ρδ)∗

and the real Euler class eR(E) equals f∗(ρ∗(ε2m(G))).

Remark 5.3.5. Let G be a reductive algebraic R-group. Then there exists a cocompact lattice
ιΓ : Γ ↪→ G(R)+ and the induced homomorphism ι∗Γ : H∗c (G(R)+) ↪→ H∗c (Γ) is isometrically
injective thanks to Lemma 5.2.11. But since ιΓ factorizes like

Γ G(R)δ+ G(R)+

ι
G(R)δ+

we have that the homomorphism ι∗
G(R)δ+

: H∗c (G(R)+) ↪→ H∗(G(R)δ+) is isometrically injective

too. Therefore the continuous Euler class ε2m(G(R)+) is a bounded class of seminorm 2−2m.

Remark 5.3.6. From now on ε2m will denote ε2m(GL+(2m,R)) and thus for every closed
subgroup G < GL+(2m,R) if ιG : G ↪→ GL+(2m,R) denotes the inclusion we will have
ε2m(G) = ι∗G(ε2m).
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5.4 Properties of the continuous Euler class

The continuous Euler class allows us to study flat bundles directly using continuous group
cohomology and groups representations. We begin by recovering the standard properties of the
Euler class in this context. Let G1 and G2 be reductive algebraic R-groups, let Gi(R) denote
their group of R-rational points, consider representations ρi : Gi(R) → GL+(mi,R) and set
m = m1 +m2. Now consider the homomorphism

ρ4 : G1(R)×G2(R) → GL+(m,R)

(a1, a2) 7→
(
ρ1(a1) 0

0 ρ2(a2)

)
and denote with πi the i-th projection G1(R) × G2(R) → Gi(R). Then the continuous Euler
class satisfies the Whitney sum property:

Lemma 5.4.1. ρ∗4(εm) = π∗1(ρ∗1(εm1)) ` π∗2(ρ∗2(εm2))

Proof. Since the product G := G1×G2 is reductive too, G(R) admits cocompact lattices. Since
finite index subgroups of cocompact lattices are cocompact lattices, Selberg’s Lemma gives us
a torsion-free cocompact lattice Γ < G(R). Now if K < G(R) is a maximal compact subgroup
then the quotient G(R)/K is contractible, and since the right action of Γ onto G(R)/K is free
and properly discontinuous we get an aspherical manifold M = Γ\(G(R)/K) with fundamental
group Γ. In particular the characteristic map f : M → BΓ inducing the universal cover of M
gives isomorphisms f∗ : H∗(Γ) ↪→ H∗(M ;R) in every dimension. Now the representation

Γ G(R) GL+(m,R)
ιΓ ρ4

induces a flat oriented rank-m vector bundle π : E → M such that E ' E1 ⊕ E2 where Ei is
induced by the representation

Γ G(R) Gi(R) GL+(mi,R).
ιΓ πi ρi

Therefore we have

f∗(ι∗Γ(ρ∗4(ε2m))) = eR(E) = eR(E1) ` eR(E2) = f∗(ι∗Γ(π∗1(ρ∗1(εm1)))) ` f∗(ι∗Γ(π∗2(ρ∗2(εm2)))) =

=f∗(ι∗Γ(π∗1(ρ∗1(εm1)) ` π∗2(ρ∗2(εm2))))

and we conclude thanks to the injectivity of uniqueness of f∗ ◦ ι∗Γ.

Now let a be an element in GL(2m,R) and let ρa denote the conjugation

ρa : GL+(2m,R) → GL+(2m,R)
b 7→ aba−1

Then an inversion of the orientation switches the sign of the continuous Euler class:

Lemma 5.4.2. ρ∗a(ε2m) = (−1)det aε2m

Proof. If ρ : π1(M,x0)→ GL+(2m,R) is a representation inducing a flat oriented vector bundle
E, let ρ′ denote the composition ρa ◦ ρ and E′ be the induced flat oriented vector bundle.
An isomorphism between E and E′ is equivalent to a π1(M,x0)-equivariant automorphism of
M̃ ×R2m where the action of π1(M,x0) is induced by ρ on the domain and by ρ′ on the range.
Such a map is given by

ϕ : M̃ × R2m → M̃ × R2m

(x̃, ξ) 7→ (x̃, aξ)

Now obviously the orientation of the bundle is preserved or reversed depending on det a.
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Now let us move on to establishing some vanishing results for the continuous Euler class.
First of all let us consider the tensor representation (R4, ρ⊗) for SL(2,R) × SL(2,R), which is
obtained by identifying R2 ⊗R2 with R4 via the homomorphism which sends the ordered basis
{e1 ⊗ e1, e1 ⊗ e2, e2 ⊗ e1, e2 ⊗ e2} to the standard basis of R4. In other words, we have

ρ⊗ : SL(2,R)× SL(2,R) → GL+(4,R)

(a, b) 7→


a11b11 a11b12 a12b11 a12b12

a11b21 a11b22 a12b21 a12b22

a21b11 a21b12 a22b11 a22b12

a21b21 a21b22 a22b21 a22b22


Lemma 5.4.3. ρ∗⊗(ε4) = 0.

Proof. Let τ : SL(2,R) × SL(2,R) → SL(2,R) × SL(2,R) denote the homomorphism mapping
τ : (a, b) 7→ (b, a). Let e(23) denote the matrix

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


and let ρ(23) denote the conjugation a 7→ e(23) · a · e−1

(23). We have a commutative diagram

SL(2,R)× SL(2,R) SL(2,R)× SL(2,R)

GL+(4,R) GL+(4,R)

τ

ρ⊗ ρ⊗

ρ(23)

and therefore we get

τ∗(ρ∗⊗(ε4)) = ρ∗⊗(ρ∗(23)(ε4)) = −ρ∗⊗(ε4)

Now let e(13)(24) denote the matrix 
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0


and let ρ(13)(24) denote the conjugation a 7→ e(13)(24) · a · e−1

(13)(24). We have a commutative
diagram

SL(2,R)× SL(2,R) SL(2,R)× SL(2,R)

GL+(4,R) GL+(4,R)

τ

ρ4 ρ4

ρ(13)(24)

and therefore we get

τ∗(ρ∗4(ε4)) = ρ∗4(ρ∗(13)(24)(ε4)) = ρ∗4(ε4)

Now the group H4
c (SL(2,R) × SL(2,R)) is one dimensional, generated by the cup product

π∗1(ε2(SL(2,R))) ` π∗2(ε2(SL(2,R))). Indeed, thanks to Example 5.2.12, H2
c (SL(2,R)) embeds

into H2(Σg;R) ' R and ε2(SL(2,R)), which is non-zero, must generate. Thus the Künneth
formula gives H4

c (SL(2,R) × SL(2,R)) ' H2
c (SL(2,R) ⊗ H2

c (SL(2,R) ' R and the generator
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must be π∗1(ε2(SL(2,R))) ` π∗2(ε2(SL(2,R))). Therefore Lemma 5.4.1 gives ρ∗⊗(ε4) = λ · ρ∗4(ε4)
for some λ ∈ R. This yields

λ · ρ∗4(ε4) = λ · τ∗(ρ∗4(ε4)))) = τ∗(λ · ρ∗4(ε4)) = −λ · ρ∗4(ε4)

Notation: Whenever dealing with product groups G = G1 × . . .×Gn we will treat each
factor Gi as a subgroup of G via the identification with the image of the i-th inclusion
ιi : Gi ↪→ G. Analogously for almost direct products G = (G1 × . . .×Gn)/C with
C C G1 × . . .×Gn discrete and central we will consider each almost direct factor Gi as a
subgroup of G via the identification with the image of the composition

Gi G1 × . . .×Gn G
ιi π

Lemma 5.4.4. Let M1 and M2 be closed aspherical oriented manifolds of dimension m1,m2 > 1
respectively and set m = m1 + m2. Let ρ : π1(M1, x1) × π1(M2, x2) → GL+(m,R) be a repre-
sentation. If Γ1 = ρ(π1(M1, x1)) is amenable then ρ∗(εm) = 0 ∈ Hm(π1(M1, x1)× π1(M2, x2)).

Proof. By Tit’s alternative (Theorem 6.5.13) Γ1 must be virtually solvable, otherwise it would
contain a non-amenable subgroup. Therefore its Zariski closure G1 is virtually solvable, and
thus it is an extension of a solvable group (which is amenable) by a finite group (which is
amenable). Hence G1 must be amenable. Now Lemma 5.2.14 gives an isometric isomorphism
between H∗c,b(G1 ×G2) and H∗c,b(G2) which fits into the following commutative diagram:

H∗c (GL+(m,R)) H∗c (G1 ×G2) H∗(π1(M1, x1)× π1(M2, x2))

H∗c (G2) H∗(π1(M2, x2))

H∗c,b(GL+(m,R)) H∗c,b(G1 ×G2)

H∗c,b(G2)

ϕ∗

ρ∗

(ρ1,ρ2)∗

ρ∗2

ϕ∗

c c

c

Since εm lies in the image of c : H∗c,b(GL+(m,R)) → H∗c (GL+(m,R)) then ρ∗(εm) lies in
the image of the rightmost diagonal map H∗(π1(M2, x2))→ H∗(π1(M1, x1)× π1(M2, x2)). But
Hm(π1(M2, x2)) ' Hm(M2;R) = 0 because M2 is aspherical of dimension strictly less than
m.

Lemma 5.4.5. Let G be a Lie group and let ρ : G→ GL+(m,R) be a representation. Suppose
G decomposes as a semi-direct product S n A where A is a closed amenable normal subgroup.
If p : S n A → S denotes the projection and ιS : S ↪→ S n A denotes the inclusion then
ρ∗(εm) = p∗(ι∗S(ρ∗(εm))).

Proof. The equality p ◦ ιS = idS gives ι∗S ◦ p∗ = id on all cohomology groups. But it may very
well be that p∗ ◦ ι∗S 6= id on continuous cohomology groups. Nevertheless we have p∗ ◦ ι∗S = id
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for bounded continuous cohomology groups because, thanks to Lemma 5.2.14, in this case p∗ is
an isometric isomorphism. Therefore we have the following commutative diagram:

Hm
c (S)

Hm
c (GL+(m,R)) Hm

c (G) Hm
c (G)

Hm
c,b(S)

Hm
c,b(GL+(m,R)) Hm

c,b(G) Hm
c,b(G)

p∗

ρ∗

ι∗S

c

p∗

c

ρ∗ id

c

ι∗S

c

Remark 5.4.6. As a corollary we get that, since GL+(2,R) is isomorphic to SL(2,R) × R+, if
p : GL+(2,R)→ SL(2,R) denotes the associated projection then ε2 = p∗(ε2(SL(2,R))).

5.5 The simplicial volume of (H2)n-manifolds

Let M1, . . . ,Mn be Riemannian manifolds and let ∇i denote the Levi-Civita connection of Mi.
The Levi-Civita connection ∇ of the product M := M1× . . .×Mn is then uniquely determined
by the condition

∇X1+...+Xn(Y1 + . . .+ Yn) = ∇1
X1
Y1 + . . .+∇nXnYn

for all Xi, Yi ∈ X(Mi) for i = 1, . . . , n.

Proposition 5.5.1. Suppose the Riemannian manifolds M1, . . . ,Mn are oriented, endow the
product M with the induced orientation and let pi : M → Mi denote the i-th projection. Then
we have

[Pf(Ω)] = p∗1[Pf(Ω1)] ` . . . ` p∗n[Pf(Ω1)]

Proof. If we consider a local positive orthonormal frame for each TMi their ordered union is a
local positive orthonormal frame for TM . Then the local connection form matrix ω of ∇ with
respect to this local frame is given by p∗1ω

1

. . .

p∗nω
n


Therefore the structure equation Ω = dω−ω∧ω together with the fact that pull-backs commute
with exterior derivatives and wedge products gives p∗1Ω1

. . .

p∗nΩn


Now Remark 2.1.3 allows us to conclude.

If we consider the half-space model for H2 we can realize (H2)n as the set

(Π2)n :=
{

(x1, . . . , x2n) ∈ R2n
∣∣∣xi > 0 if i is even

}
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with Riemannian metric tensor given by

g :=
n∑
i=1

1

x2
2i

(dx2i−1 ⊗ dx2i−1 + dx2i ⊗ dx2i)

The Riemannian volume form ν(H2)n is then given by

ν(H2)n :=
1∏n

i=1 x
2
2i

dx1 ∧ . . . ∧ dx2n

If we consider the i-th projection

pi : (H2)n → H2

(x1, . . . , x2n) 7→ (x2i−1, x2i)

then we have ν(H2)n = p∗1νH2 ∧ . . . ∧ p∗1νH2 .

Theorem 5.5.2. Let M be a closed oriented 2n-dimensional Riemannian manifold whose uni-
versal cover is isometric to (H2)n. Then Vol(M) = (−2π)nχ(M).

Proof. In the half-space model for H2 a positive orthonormal frame is given by X1 := x2
∂
∂x1

and X2 := x2
∂
∂x2

. With respect to this frame the local curvature form matrix ΩH2 is given by

ΩH2 :=

(
0 νH2

−νH2 0

)
Therefore, thanks to Proposition 5.5.1 we can choose othonormal vector fields for (H2)n yielding
a local curvature form matrix Ω(H2)n of the form p∗1ΩH2

. . .

p∗nΩH2


Thus we have

Pf(Ω(H2)n) = Pf(p∗1ΩH2) ∧ . . . ∧ Pf(p∗nΩH2) = (p∗1νH2) ∧ . . . ∧ (p∗nνH2) = ν(H2)n

and the Chern-Gauss-Bonnet Theorem gives Vol(M) = (−2π)nχ(M).

Let P denote the group PSL(2,R), let S denote SL(2,R) and π : S → P denote the standard
projection. Consider the groups Pn =

∏n
i=1 P and Sn =

∏n
i=1 S with projection πn : Sn → Pn

and let πi : Pn → P denote the projection onto the i-th factor. The group of orientation-
preserving isometries of the hyperbolic plane Isom+(H2) is isomorphic to P and acts transitively
on H2. This gives P/Stab(x0) ' H2 for any point x0 ∈ H2. In the half-plane model the stabilizer
of the point e2 = (0, 1) corresponds to K = PSO(2), which is a maximal compact subgroup
of P , and therefore Theorem 5.2.9 gives an isomorphism ΦP : H2

c (P ) → H2(Lie(P ),K). Now
since the volume form νH2 is P -invariant it determines, thanks to Remark 5.2.8, a cohomology
class in H2(Lie(P ),K). We denote by ωP its image in H2

c (P ) under the isomorphism Φ−1
P .

Analogously the connected component of the identity in Isom+((H2)n) is isomorphic to Pn and
acts transitively on (H2)n. The stabilizer of the point

∑n
i=1 e2i corresponds to Kn :=

∏n
i=1K,

which is a maximal compact subgroup of Pn. Once again since the volume form ν(H2)n is Pn-
invariant it determines a cohomology class in H2n(Lie(Pn),Kn). We denote by ωPn its image
in H2n

c (Pn) under the Van Est isomorphism Φ−1
Pn : H2n(Lie(Pn),Kn) → H2n

c (Pn). Finally
we denote by ωS and ωSn respectively the images of ωP and ωPn under the homomorphisms
π∗ : H2

c (P )→ H2
c (S) and (πn)∗ : H2n

c (Pn)→ H2n
c (Sn) induced by projections.



Chapter 5. Milnor-Wood inequality for (H2)n-manifolds 42

Remark 5.5.3.

ωPn = Φ−1
Pn ([p∗1ωH2 ] ` . . . ` [p∗nωH2 ]) = Φ−1

Pn ([p∗1ωH2 ]) ` . . . ` Φ−1
Pn ([p∗nωH2 ]) =

= π∗1
(
Φ−1
P ([ωH2 ])

)
` . . . ` π∗n

(
Φ−1
P ([ωH2 ])

)
= π∗1(ωP ) ` . . . ` π∗n(ωP )

Lemma 5.5.4. ωSn = (−4π)n(π∗1(ε2(S)) ` . . . ` π∗n(ε2(S))) ∈ H2n
c (Sn)

Proof. We have

ωSn = (πn)∗(ωPn) = (πn)∗(π∗1(ωP ) ` . . . ` π∗n(ωP )) = π∗1(π∗(ωP )) ` . . . ` π∗n(π∗(ωP )) =

= π∗1(ωS) ` . . . ` π∗n(ωS)

Therefore it suffices to prove the equality ωS = −4πε2(S) ∈ H2
c (S). Now consider a compact

oriented surface Σg of genus g > 1 endowed with a complete hyperbolic structure which yields
an embedding ρ : π1(Σg, x0) ↪→ P . Recall that, since Σg is aspherical, the characteristic map
f : Σg → K(π1(Σg, x0), 1) induces an isometric isomorphism f∗ : H∗(π1(Σg, x0))→ H∗(Σg;R).
As is shown in [25] (pages 312-314) ρ lifts to a representation ρ̃ : π1(Σg, x0) ↪→ S which
determines an oriented plane bundle Eρ̃ → Σg satisfying

〈eR(Eρ̃), [Σg]〉 = 1− g =
χ(Σg)

2
.

Furthermore we have

〈f∗(ρ̃∗(ωS)), [Σg]〉 = 〈f∗(ρ∗(ωP )), [Σg]〉 = Vol(Σg) = −2πχ(Σg)

which, together with the fact that H2
c (S) is one-dimensional, yields the equality

ρ̃∗(ε2(S)) = −4πρ̃∗(ωS).

Now ρ̃(π1(Σg, x0)) is a cocompact lattice in S and therefore, thanks to Lemma 5.2.11, ρ̃∗ is
injective.

The following Theorem is a special case of Theorem 2 in [10].

Theorem 5.5.5. Let M be a closed oriented 2n-dimensional Riemannian manifold whose uni-
versal cover is isometric to (H2)n. Then

‖M‖ =
Vol(M)

‖ωPn‖
Lemma 5.5.6. Let M be a closed oriented 2m-dimensional Riemannian manifold whose uni-
versal cover is isometric to (H2)n. Then

‖M‖ =
χ(M)

(−2)n ‖π∗1(ε2) ` . . . ` π∗n(ε2)‖

Proof. Set G = GL+(2,R) and S = SL(2,R), let p : G → S be the projection associated with
the isomorphism GL+(2,R) ' SL(2,R)× R+ and pn : Gn → Sn be the projection of the n-fold
product. If ρ4 : Sn ↪→ GL+(2n,R) denotes the diagonal representation then Lemma 5.4.1 gives

ρ∗4(ε2n) = π∗1(ε2(S)) ` . . . ` π∗n(ε2(S))

Therefore we have

(pn)∗(ρ∗4(ε2n)) = π∗1(p∗(ε2(S))) ` . . . ` π∗n(p∗(ε2(S))) = π∗1(ε2) ` . . . ` π∗n(ε2)

where the last equality uses Remark 5.4.6. Now since ker(pn) is amenable Corollary 5.2.15 gives

‖π∗1(ε2) ` . . . ` π∗n(ε2)‖ = ‖π∗1(ε2(S)) ` . . . ` π∗n(ε2(S))‖ =
1

(4π)n
‖ωSn‖

Again Corollary 5.2.15 gives ‖ωSn‖ = ‖ωPn‖. Now Lemma 5.5.4, Theorem 5.5.2 and Theorem
5.5.5 allow us to conclude.
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5.6 Representations of direct products of groups

The present section is devoted to the study of representations of (almost) direct products of
groups. We begin with a straightforward consequence of Schur’s Lemma:

Lemma 5.6.1. Let V be a finite dimensional complex vector space, let G1, G2 be Lie groups and
let ρ : G1×G2 → GL(V ) be an irreducible representation. Then there exist two representations
ri : Gi → Wi for i = 1, 2 such that (V, ρ) ' (W1 ⊗ W2, r1 ⊗ r2). Moreover every linear
transformation of V commuting with ρ(G1) corresponds to a linear transformation of W1 ⊗W2

of the form idW1 ⊗B for some B ∈ End(W2)

Proof. Let ρi denote the restriction ρ
∣∣
Gi

: Gi → GL(V ) and observe that, since G1 and G2 are

commuting subgroups in G1 × G2, ρ2(b) is G1-equivariant for every b ∈ G2. Consider a non-
trivial irreducible subrepresentation U ⊂ V for (V, ρ1). If U = V then Schur’s Lemma implies
im ρ2 ⊂ C·idV , and we can choose W1 = V , r1 = ρ1, W2 = C and r2 such that ρ2(b) = r2(b)·idV
for all b ∈ G2. Therefore suppose U 6= V . Since V is irreducible U cannot be a subrepresentation
of (V, ρ2) too, and thus there must exist some element b1 ∈ G2 such that ρ2(b1)(U) 6⊂ U . If we
set U0 = U and U1 = ρ2(b1)(U0) then also U1 is a subrepresentation of (V, ρ1) and, since U0

is G1-irreducible, they must be disjoint. Now, since U1 is G1-irreducible too (being the image
of a G1-irreducible subspace with respect to an invertible equivariant endomorphism), we can
find b2 ∈ G2 such that ρ2(b2)(U0) is disjoint from both U0 and U1. Thus iterating we get a
finite set b1, . . . , bk−1 ∈ G2 such that Uj = ρ2(bj)(U0) and V =

⊕k−1
j=0 Uj . If we choose an

ordered basis B0 of U0 we can extend it to an ordered basis B of V by adding ρ2(bj)(B0) for
j = 1, . . . , k − 1 to it. With respect to the basis B the elements of im ρ1 are block diagonal
matrices with k identical blocks. In order to prove the Lemma we must show that if T is a G1-
equivariant linear transformation then each of the k2 square blocks of T determined by the basis
B = B0∪ . . .∪Bk−1 is a scalar matrix. In other words, denoting by πj : V → Uj the associated
projections (which are G1-equivariant because they are projections associated to the splitting
of a representation of G1), we have to show that ρ2(bj)

−1 ◦ πj ◦ T ◦ ρ2(bi) : U → U is a scalar
transformation bij(T ) · idU for every i, j = 0, . . . , k − 1. Since all four transformations involved
are G1-equivariant and since U is G1-irreducible, this is a consequence of Schur’s Lemma. Then
we can choose W1 = U0 and W2 = Ck with r2(b)ij = bij(ρ2(b)).

Lemma 5.6.2. Let S = S1 × . . . × Sn be a product of reductive algebraic groups, and let
ρ : S → GL(m,C) be a representation such that Hi = ρ(Si) < GL(m,C) is non-abelian for all
i = 1, . . . , n. Then m > 2n, and if m = 2n there exists a unique natural number 0 6 t(ρ) 6 n
and a unique splitting

C2n =

t(ρ)/2⊕
i=1

Vi ⊕
n⊕

i=t(ρ)+1

Vi

such that:

(i) dimVi = 4 for 1 6 i 6 t(ρ)/2 and dimVi = 2 for t(ρ) < i 6 n;

(ii) every representation ρi := ρ
∣∣
Si

: Si → GL(2n,C) with i > t(ρ) is irreducible when re-
stricted to Vi while it is scalar when restricted to Vj for j 6= i;

(iii) every representation ρ(2i−1,2i) := ρ
∣∣
S2i−1×S2i

: S2i−1 × S2i → GL(2n,C) with i 6 t(ρ)/2 is

isomorphic to the tensor product r2i−1 ⊗ r2i of two 2-dimensional irreducible representa-
tions r2i−1 : S2i−1 → GL(W2i−1) and r2i : S2i → GL(W2i) when restricted to Vi while it is
scalar when restricted to Vj for j 6= i.

Proof. We proceed by induction on n. When n = 1 then clearly GL(1,C) ' C∗ does not admit
non-abelian subgroups. Moreover if m = 2 then S1 must act irreducibly on C2 otherwise, being
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reductive, it would split C2 into two S1-invariant complex lines. But this is impossible because
H1 would be abelian.

Now suppose n > 1. Since S is reductive Cm splits uniquely as Cm =
⊕`

j=1 Uj where each
Uj is an irreducible subrepresentation for S. Now, since Hi is non-abelian, its restriction to one
of the subspaces Uj must be non-abelian. Therefore if we define Fj as the subset of {1, . . . , n}
consisting of those i for which Hi is non-abelian when restricted to Uj , we have two cases: if Fj
is strictly contained in {1, . . . , n} for all j then the inductive hypothesis yields

m =
∑̀
j=1

dimUj > 2
∑̀
j=1

|Fj | > 2n.

On the other hand, if Fj = {1, . . . , n} for some j we can write S = S′ × Sn where S′ =
S1× . . .×Sn−1 and, thanks to Lemma 5.6.1, (Uj , πUj ◦ρ) is isomorphic to a tensor representation
(W ′ ⊗ Wn, r

′ ⊗ rn). Now, since both πUj (ρ(S′)) and πUj (ρ(Sn)) are non abelian, r′(S′) and
rn(Sn) must be non-abelian too. Therefore the inductive hypothesis yields dimW ′ > 2(n − 1)
and dimWn > 2, which gives dimUj > 4(n−1). Since n > 1 in particular we have dimUj > 2n.

Let’s suppose now that m = 2n and let us distiguish between two cases: if ` > 1 then
dimUj < 2n for all j, and therefore Fj 6= {1, . . . , n} for all j. Therefore

∑`
j=1 |Fj | = n and

thus Fj ∩ Fh = ∅ for all j 6= h. Then dimUj = 2 |Fj | for all j and the inductive hypothesis
applies. Moreover, since every Hi restricts to a non-abelian group on Uj for exactly one j while
its restriction to Uh for h 6= j is abelian and commutes with all Hk for k 6= i, Schur’s Lemma
gives the desired result. Conversely, if ` = 1 then the system

m > 4n− 4

m = 2n

n > 1

gives n = 2 and m = 4. Therefore ρ : S1 × S2 → GL(4,C) must be isomorphic to the tensor
product of two irreducible 2-dimensional representations ri : Si → GL(2,C) for i = 1, 2.

Corollary 5.6.3. If S < GL(2n,C) is a semisimple algebraic group then it has no more than
n almost simple factors.

Proof. Let S1, . . . , Sk denote the almost simple factors of S. Then the natural representation
ϕ : S1 × . . . × Sk → GL(2n,C) induced by inclusions satisfies the hypotheses of Lemma 5.6.2,
which gives k 6 n.

Proposition 5.6.4. Let G = G1× . . .×Gn be a product Lie group, and let ρ : G→ GL+(m,R)
be a representation such that ρ(Gi) is non-amenable for all i = 1, . . . , n. Then m > 2n. If
m = 2n the identity component of the Zariski closure ρ(G) in GL(2n,C) is reductive. Moreover
in this case there exists a commutative diagram∏n

i=1Gi GL+(2n,R)

∏n
i=1 GL(2,R) GL(2n,R)

ρ

ϕ ι+

ψ

a unique natural number 0 6 t(ρ) 6 n and a unique splitting

R2n =

t(ρ)/2⊕
i=1

Xi ⊕
n⊕

i=t(ρ)+1

Xi

such that:



45 5.6. Representations of direct products of groups

(i) dimXi = 4 for 1 6 i 6 t(ρ)/2 and dimXi = 2 for t(ρ) < i 6 n;

(ii) every representation

ϕij : Gi
∏n
i=1 GL(2,R) GL(2,R)

ϕ
∣∣∣
Gi πj

is irreducible if j = i and is scalar if j 6= i;

(iii) every representation

ψi : GL(2,R)
∏n
i=1 GL(2,R) GL(2n,R)

ιi ψ

with i > t(ρ) is the standard representation when restricted to Xi while it is trivial when
restricted to Xj for j 6= i;

(iv) every representation

ψ(2i−1,2i) : GL(2,R)×GL(2,R)
∏n
i=1 GL(2,R) GL(2n,R)

(ι2i−1,ι2i) ψ

with i 6 t(ρ)/2 is isomorphic to the standard tensor representation when restricted to Xi

while it is scalar when restricted to Xj for j 6= i.

Finally, if t(ρ) = 0 then ρ(G) is conjugated in GL+(2n,R) to a subgroup of the diagonal subgroup
ρ4(

∏n
i=1 GL+(2,R)).

Proof. Consider GL(m,R) as a subgroup of GL(m,C) and let Hi denote the connected com-
ponent of the identity in the Zariski closure of ρ(Gi) in GL(m,C). Note that all these groups
commute because so do the groups ρ(Gi). Let Hi = Si n Ui be a Levi decomposition with
Si reductive and Ui the unipotent radical of Hi. Now Si is non-abelian because otherwise by
Tit’s alternative it would have a finite-index solvable subgroup, which would make it into an
amenable group. But then Hi would be amenable too because it is an extension of Ui (which is
solvable and hence amenable) by Si. Then ρ(Gi) could not be non-amenable, because it would
have ρ(Gi) ∩ Hi as a finite-index amenable subgroup. Therefore we can apply Lemma 5.6.2
to the obvious representation σ : S1 × . . . × Sn → GL(m,C) induced by inclusions and obtain
m > 2n.

Now suppose m = 2n and consider the decomposition

C2n =

t(σ)/2⊕
i=1

Vi ⊕
n⊕

i=t(σ)+1

Vi.

associated with σ. We rename the groups in the following way:

Fi =

{
H2i−1 ×H2i if i 6 t

2

Hi if i > t
Ri =

{
S2i−1 × S2i if i 6 t

2

Si if i > t
Ti =

{
U2i−1 × U2i if i 6 t

2

Ui if i > t

Any u ∈ Ti commutes with Rj for all j 6= i and thus by Schur’s Lemma it acts scalarly on Vj
(more precisely, being unipotent, it must act trivially on Vj). To show that Vi is u-invariant
suppose by contradiction that there exists some v ∈ Vi such that u(v) /∈ Vi and consider j 6= i
such that πj(v) 6= 0. Now choose s ∈ Rj such that s(u(v)) /∈ Span(u(v)), which exists since Rj
acts irreducibly on Vj . Now we have

2 = dim Span(s(u(v)), u(v)) = dim Span(u−1(s(u(v))), v) = dim Span(s(v), v) = 1
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because s and u commute and s acts scalarly on Span(v). Therefore the decomposition is
Hi-invariant for all i. Moreover if

Ki =

{
ρ(Γ2i−1)× ρ(Γ2i) if i 6 t

2

ρ(Γi) if i > t

then by repeating the reasoning with Ki in place of Ti we can prove that the decomposition is
actually Ki-invariant for all i.

Now let us prove that H1 · · ·Hn is reductive. Let’s begin by taking into account Ti for
i > t(σ), i.e. Ti = Ui. The space V Ui

i of Ui-invariant vectors in Vi is non-empty because Ui is

unipotent. But since Ui is normal in Hi then s−1us ∈ Ui for all s ∈ Si and u ∈ Ui. Therefore V Ui
i

must be also Si-invariant and hence it must coincide with the whole Vi, which is Si-irreducible.
Thus Ui acts trivially on C2n, which means Ui = {id}. Now let us consider Ti for i 6 t(σ)/2,
for which we have

Fi = H2i−1 ×H2i = (S2i−1 n U2i−1)× (S2i n U2i) ' (S2i−1 × S2i) n (U2i−1 × U2i) = Ri n Ti.

Every u ∈ U2i commutes with S2i−1 and thus by Lemma 5.6.1 it is of the form idW2i−1 ⊗B for
some B ∈ End(W2i). Therefore the space of U2i-invariant vectors in W2i is non-empty and, as
before, it must coincide with the whole W2i. This shows that U2i is trivial, and the same can
be done for U2i−1. Thus we have that H1 · · ·Hn = S1 · · ·Sn is reductive.

Finally, since Ki is closed under complex conjugation for every i and since the above de-
composition for C2n is unique, each Vj is of the form Xj ⊗ C for some Xj ∈ R2n. Moreover if
Ki acts irreducibly or scalarly on Vj then the same holds for Gi (or G2i−1×G2i) on Xi. Clearly
if t = 0 then every Gi must preserve the orientation on Xi, because it acts sclalarly on all Xj

with j 6= i and it globally preserves the orientation of R2n. This gives the last statement.

Remark 5.6.5. Suppose G is isomorphic to (G1× . . .×Gn)/C for some discrete central subgroup
C of G1 × . . . × Gn and ρ : G → GL+(m,R) is a representation such that the image ρ(Gi) is
non-amenable for every i. Then by precomposing ρ with the projection π : G1 × . . .×Gn → G
we get a representation ρ̃ : G1 × . . . × Gn → GL+(m,R) satisfying the hypotheses of Lemma
5.6.4. Therefore we have m > 2n and if m = 2n then ι ◦ ρ̃ = ψ̃ ◦ ϕ̃. Since C is central its image
under ϕ must act scalarly on any irreducible subrepresentation of the factors Gi, and thus ϕ̃(C)
is central too. Moreover, since it is also contained in ker ψ̃, we get the commutative diagram

G GL+(2n,R)

(
∏n
i=1 GL(2,R)) /ϕ̃(C) GL(2n,R)

ρ

ϕ ι+

ψ

If the restriction of ψ̃ to a factor (or a pair of factors) of
∏n
i=1 GL(2,R) is irreducible or

scalar (or a tensor product of irreducible representations) on some subspace of R2n then the
same holds for ψ restricted to the image of the corresponding factor (or pair of factors) in
(
∏n
i=1 GL(2,R)) /ϕ̃(C). We can then set t(ρ) = t(ρ̃) and if t(ρ) = 0 then ρ(G) is conjugated in

GL+(2n,R) to a subgroup of the diagonal subgroup ρ4(
∏n
i=1 GL+(2,R)).

Terminology: Whenever a Lie group G is isomorphic to (G1 × . . .×Gn)/C for some discrete
central subgroup C of G1 × . . .×Gn we say that G is an almost direct product of G1, . . . , Gn.
If G < GL+(m,R) is an almost direct product and all of its factors are non-amenable we write
t(G) to indicate t(ι) for the inclusion ι : G ↪→ GL+(m,R).
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Lemma 5.6.6. Let G1, . . . , Gn be Lie groups, let G be an almost direct product of G1, . . . , Gn
and let ρ : G→ GL+(2n,R) be a representation such that ρ(Gi) is non-amenable for every i. If
t(ρ) > 0 then

ρ∗(ε2n) = 0

Proof. Set GL+ :=
∏n
i=1 GL+(2,R) and GL :=

∏n
i=1 GL(2,R). Let us suppose at first that G is

a direct product and that the image of the homomorphism ϕ : G→ GL given by Lemma 5.6.4
is contained in GL+. Now it follows from the definition of ψ : GL→ GL(2n,R) that ψ(GL+) is
contained in GL+(2n,R) and therefore we have

G GL+ GL+(2n,R)

ρ

ϕ ψ′

where ψ′ := ψ
∣∣
GL+ . Set SL :=

∏n
i=1 SL(2,R) and consider the inclusion ιSL : SL ↪→ GL+ and

the projection πGL+ : GL+ → SL. Then, since t(ρ) > 0, we can suppose, up to conjugation by
an element in GL+(2n,R), that ψ′ ◦ ιSL has the form

ψ′ ◦ ιSL : SL(2,R)× SL(2,R)× S → GL+(2n,R)

(a, b, c) 7→
(
ρ⊗(a, b) 0

0 ψ′′(c)

)
where S =

∏n
i=3 SL(2,R) and where ψ′′ : S → GL+(2n−4,R) is a suitable representation. Now

ψ′ and ψ′ ◦ ιSL ◦πGL+ lie in the same path-connected component of the space of representations
Rep(GL+,GL+(2n,R)) because the curve σ : t 7→ σt defined by

σt : (a1, . . . , an) 7→ ψ′
(

(det a1)−t/2a1, . . . , (det an)−t/2an

)
satisfies σ0 = ψ′ and σ1 = ψ′ ◦ ιSL ◦ πGL+ . Therefore, thanks to Lemma 1.2.14, we have

(ψ′)∗(ε2n) = π∗
GL+((ψ′ ◦ ιS)∗(ε2n)) = π∗

GL+(π∗1(ρ∗⊗(ε4)) ` π∗2((ψ′′)∗(ε2n−2)))

Then, thanks to Lemma 5.4.1, we have ρ∗(ε2n) = 0.
Now if G is an almost direct product then, using the notation of Remark 5.6.5, we have

that ϕ̃(C) is central in GL, and therefore it must be contained in GL+. Therefore we have well
defined homomorphisms

Gi G1 × . . .×Gn G GL/ϕ̃(C) GL/GL+
ιi

ϕi

π ϕ

and Hi := kerϕi is a finite index subgroup of Gi. Thus H := H1 × . . . × Hn is a finite index
subgroup of G1× . . .×Gn which is mapped into GL+ by ϕ̃, and ρ(Hi) is a finite index subgroup
of ρ(Gi) (in particular it must be non-amenable). Thus the homomorphism

H1 × . . .×Hn G1 × . . .×Gn G GL+(2n,R)ι

ρ̃

π ρ

gives ρ̃∗(ε2m) = 0 thanks to the previous case. Now ρ̃∗(ε2m) = ι∗(π∗(ρ∗(ε2m))) and ι∗ ◦ π∗ is
injective thanks to Lemmas 5.2.11 and 5.2.14.
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5.7 Representations of lattices in Isom+((H2)n)

We focus now on the study of representations of lattices in Isom+((H2)n), and in particular those
contained in the connected component of the identity, which is isomorphic to

∏n
i=1 PSL(2,R).

The main ingredient of our discussion is Margulis’ super-rigidity Theorem, which can be found
in the Appendices (Theorem 6.5.23) or in Margulis’ book [23].

Lemma 5.7.1. Let Γ be an irreducible lattice in G :=
∏n
i=1 PSL(2,R) with n > 2 and let

ρ : Γ→ GL+(m,R) be a representation. If S denotes the connected component of the identity in
the Zariski closure of ρ(Γ) in GL(m,C) then S is semisimple. Moreover, if S has k non-compact
factors whose product is denoted by Snc, then k 6 n and Snc(R)0 covers

∏k
i=1 PSL(2,R).

Proof. The semisimplicity of S is an immediate consequence of Theorem 6.5.21. If Sc and Snc

denote the subgroups of compact and non-compact factors of S respectively then, since Sc∩Snc
is central in both subgroups, we have a well defined surjective homomorphism S/Sc → Ad(Snc).
If Γ′ denotes ρ−1(S) then Γ′ is irreducible in G and the homomorphism

Γ′ S S/Sc Ad(Snc)
ρ
∣∣∣
Γ′

σ

has dense image. Therefore, since Ad(Snc)(R)0 = Ad(Snc(R)0), Margulis’ super-rigidity Theo-
rem 6.5.23 gives a surjective homomorphism σ̃ : G→ Ad(Snc(R)0) which extends σ. Therefore
Ad(Snc(R)0) is a quotient of G and thus it must be of the form

∏k
i=1 PSL(2,R) for k 6 n. Then,

since every factor of Snc determines a different almost simple normal subgroup of Ad(Snc(R)0),
we conclude.

Now let us consider G =
∏n
i=1 PSL(2,R) and a general lattice Γ < G. Since PSL(2,R)

is simple Theorem 6.5.17 gives a realization G = G1 × . . . × Gm where Gi =
∏hi
j=1 PSL(2,R)

and Γi := Γ ∩ Gi is an irreducible lattice in Gi. Moreover, up to replacing Γ by a finite index
subgroup, we can suppose that Γ = Γ1 × . . . × Γm. We say a factor Γi of Γ is rigid if hi > 1.
Then Γ is rigid if all of its factors are rigid, while it is completely reducible if none of its factors
is rigid. We break up the study of a generic representation ρ : Γ→ GL+(2n,R) into three cases,
depending on the decomposition of Γ.

Case 1 - Γ is completely reducible: if m = n then each Gi equals PSL(2,R) and no
factor of Γ is rigid. Therefore Proposition 5.6.4 gives the following possibilities:

(i) ρ(Γi) is amenable for some i ∈ {1, . . . , n};

(ii) t(ρ) > 0;

(iii) ρ(Γ) conjugated in GL+(2n,R) to a subgroup of ρ4(
∏n
i=1 GL+(2,R)).

Case 2 - Γ is rigid: if hi > 1 for all i = 1, . . . ,m then all factors Gi of G have real rank
at least 2.

Proposition 5.7.2. Up to replacing Γ by a finite index subgroup ρ admits a factorization

Γ H GL+(2n,R)ϕ

ρ

ψ

such that one of the following conditions holds:
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(i) there exists an amenable normal subgroup N C H such that H/N covers
∏k
i=1 PSL(2,R)

with k < n;

(ii) H is an almost direct product of n Lie groups H1, . . . ,Hn such that ψ(Hi) is non-amenable
for every i = 1, . . . , n. In particular either t(ψ) > 0 or ψ(H) is conjugated to a subgroup
of the diagonal group ρ4(

∏n
i=1 GL+(2,R)).

Proof. The Zariski closure Sj of ρ(Γj) in GL(2n,C) has finitely many connected components.
Hence, up to replacing Γ by a finite index subgroup, we may assume that Sj is connected for

each j. We set S := ρ(Γ) = S1 · · ·Sm and H := S1(R)0 × . . . × Sm(R)0 so that, up to further
replacing Γ by a finite index subgroup if necessary, ρ factorizes as

Γ H GL+(2n,R)ϕ ψ

where ψ is induced by the inclusions of the factors. Now S is a semisimple subgroup of GL(2n,C)
and thus, thanks to Corollary 5.6.3, it has no more than n factors. Therefore we have two cases:
if for some j the number of non-compact factors of Sj is strictly less than hj then we can set
N := Sc1(R)0 × . . . × Scm(R)0, and we are in the first case. On the other hand if every Sj has
exactly hj non-compact factors, then Sj = Sncj for all j. Therefore Remark 5.6.5 applies to

ψ : H → GL+(2n,R) and, since the factors of H are exactly n, either t(ψ) > 0 or ψ(H) is
conjugated to ρ4(

∏n
i=1 GL+(2,R)).

Case 3 - The mixed case: some but not all of the factors Γi are rigid. Up to reordering
them we may write Γ = Γr×Γnr < Gr×Gnr = G where Γr < Gr is the rigid part and Γnr < Gnr

is the non-rigid part. Then Gr =
∏k
i=1 PSL(2,R) with k < n and Gnr =

∏n−k
i=1 PSL(2,R). The

rigid part decomposes like Γr1 × . . . × Γr` with ` < k while the non-rigid part decomposes like
Γnr1 × . . .× Γnrn−k.

Proposition 5.7.3. Up to replacing each rigid factor by a finite index subgroup (without chang-
ing the non-rigid factors) we have thet either ρ(Γnrj ) is amenable for some non-rigid factor or
ρ admits a factorization

Γr × Γnr H × Γrn GL+(2n,R)
ϕ×id

ρ

ψ

such that one of the following conditions holds:

(i) there exists an amenable normal subgroup N C H such that H/N covers
∏h
i=1 PSL(2,R)

with h < k;

(ii) H × Γrn is an almost direct product of n Lie groups H1, . . . ,Hk,Γ
nr
1 , . . . ,Γnrn−k such that

ψ(Hi) is non-amenable for every i = 1, . . . , n. In particular either t(ψ) > 0 or ψ(H×Γrn)
is conjugated to a subgroup of the diagonal group ρ4(

∏n
i=1 GL+(2,R)).

Proof. Once again, up to replacing Γrj by a finite index subgroup, we may assume that the
Zariski closure Srj of ρ(Γrj) in GL(2n,C) is connected for each rigid factor. Then we can set

H := Sr1(R)0 × . . . × Sr` (R)0 so that, up to further replacing Γ by a finite index subgroup if
necessary, ρ factorizes as

Γr × Γnr H × Γrn GL+(2n,R)
ϕ×id ψ

where ψ is induced by the inclusions on H and is given by the restriction of ρ on Γrn. Now
the identity component Snr of the Zariski closure of ρ(Γnr) in GL(2n,C) is reductive thanks
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to Proposition 5.6.4. Therefore, if we apply Lemma 5.6.2 to the representation induced by
the inclusions of all the almost simple factors of the group Sr × Snr we obtain that H cannot
have more than k factors. Therefore, repeating the argument of the previous Proposition, we
conclude.

5.8 Milnor-Wood inequality for (H2)n-manifolds

Theorem 5.8.1. Let Γ be a cocompact lattice in Isom+((H2)n) and ρ : Γ → GL+(2n,R) a
representation. Then

‖ρ∗(ε2n)‖ 6 ‖π∗1(ε2) ` . . . ` π∗n(ε2)‖

Proof. The inclusion of a finite index subgroup Γ′ ↪→ Γ induces isometric embeddings of both
continuous and bounded cohomology groups H∗(Γ) → H∗(Γ′) and H∗b (Γ) → H∗b (Γ′) thanks
to Lemmas 5.2.11 and 5.2.13. As a result, we can replace Γ by a finite index subgroup which
is contained in the identity connected component Isom+((H2)n)0 '

∏n
i=1 PSL(2,R) and which

decomposes as in the previous Section. We will argue case by case by showing that if ρ∗(ε2n) 6= 0
then, up to replacing once again Γ by a finite index subgroup, ρ(Γ) is conjugated to a subgroup
of the diagonal group ρ4(

∏n
i=1 GL+(2,R)). By Lemma 5.4.4 we have that if for some j the

image ρ(Γj) is amenable then, since Γj is the fundamental group of an aspherical closed oriented
manifold, ρ∗(ε2n) = 0. Therefore we shall assume below that this is not the case.

Case 1: Γ is completely reducible. Then, assuming ρ∗(ε2n) 6= 0, we have by Lemma 5.6.6
that t(ρ) = 0, and thus we deduce that ρ(Γ) is conjugated to a subgroup of ρ4(

∏n
i=1 GL+(2,R)),

as discussed in Case 1 of the previous Section.

Case 2: Γ is rigid. Then, up to replacing Γ by a further finite index subgroup if necessary,
we get from Proposition 5.7.2 that ρ∗ factors like

H2n
c (GL+(2n,R)) H2n

c (H) H2n(Γ)
ψ∗ ϕ∗

Now if k < n and we set P k :=
∏k
i=1 PSL(2,R) then H2n

c (P k) = 0 thanks to the Künneth
formula in Lemma 5.2.10 and to the Remark 5.2.12. Therefore in case (i) Lemma 5.2.14 gives
the following commutative diagram:

0 = H2n
c (P k) H2n

c (H/N) H2n
c (H)

H2n
c,b(P

k) H2n
c,b(H/N) H2n

c,b(H)

c c c

Hence there are no bounded elements in H2n
c (H), and thus ρ∗(ε2n) = 0. On the other hand, in

case (ii) either t(ψ) > 0, in which case ρ∗(ε2n) = 0 by Lemma 5.6.6, or ρ(Γ) is conjugated to a
subgroup of ρ4(

∏n
i=1 GL+(2,R)).

Case 3: The mixed case. Up to replacing Γ by a further finite index subgroup, if necessary,
we get from Proposition 5.7.3 that ρ∗ factors like

H2n
c (GL+(2n,R)) H2n

c (H × Γnr) H2n(Γ)
ψ∗ (ϕ×id)∗

Now since every non-rigid factor Γnrj is a cocompact lattice in PSL(2,R) Lemma 5.2.11 gives
H∗(Γnrj ) ' H∗c (PSL(2,R)). Therefore, just like before, we have that case (i) gives ρ∗(ε2n) = 0,
and the same holds for case (ii) with t(ψ) > 0.
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Thus we reduced orselves to the situation where, up to conjugating the image, ρ factors
through a map ρ0 into

∏n
i=1 GL+(2,R):

Γ
∏n
i=1 GL+(2,R) GL+(2n,R)ρ0

ρ

ρ4

Now Lemma 5.4.1 gives ρ∗4(ε2n) = π∗1(ε2) ` . . . ` π∗n(ε2) and therefore

‖ρ∗(ε2n)‖ = ‖ρ∗0(π∗1(ε2) ` . . . ` π∗n(ε2))‖ 6 ‖π∗1(ε2) ` . . . ` π∗n(ε2)‖

Theorem 5.8.2. Let M be an oriented closed manifold whose universal Riemannian cover is
(H2)n and let π : E →M be an oriented rank-2n flat vector bundle. Then

|〈eR(E), [M ]〉| 6 1

(−2)n
χ(M)

Proof. Let Γ be the fundamental group of M embedded as a cocompact lattice in Isom+((H2)n)
acting on (H2)n by deck transformations. Let ρ : Γ → GL+(2n,R) be the representation
inducing the flat bundle π : E →M . Then we have eR(E) = f∗(ρ∗(εm(G))) where f : M → BΓ
denotes the characteristic map for the universal cover p : M̃ → M . Since f∗ is an isometry,
Theorem 5.8.1 gives

‖eR(E)‖ = ‖ρ∗(ε2n)‖ 6 ‖π∗1(ε2) ` . . . ` π∗n(ε2)‖

Now, thanks to (ii) in Lemma 5.1.4 and to Lemma 5.5.6, we have

|〈eR(E), [M ]〉| = ‖eR(E)‖ · ‖M‖ =
‖eR(E)‖ · χ(M)

(−2)n · ‖π∗1(ε2) ` . . . ` π∗n(ε2)‖
6

1

(−2)n
χ(M)

5.9 Chern’s conjecture for manifolds locally isomorphic to a
product of surfaces of constant curvature

Thanks to Theorem 5.8.2 both Conjectures 1 and 2 can be confirmed for all closed oriented
manifolds which are locally isomorphic to a product of surfaces of constant curvature. Indeed
if M is such a manifold consider its Riemannian universal cover M̃ ' (R2)n1 × (S2)n2 × (H2)n3 .
Then, if n1 > 0, the equality

[Pf(ΩM )] = [Pf(ΩR2)]n1 ` [Pf(ΩS2)]n2 ` [Pf(ΩH2)]n3 ,

together with Theorem 2.4.3 gives χ(M) = 0. On the other hand, if n2 > 0, then, up to
replacing M by some finite cover, we may suppose that M is the total space of an (S2)n2-bundle
πM : M → N whereN is apsherical of dimension strictly less thanm = 2(n1+n2+n3). Therefore
the exact sequence of homotopy groups for a fibration gives π1(M,x0) ' π1(N, πM (x0)). Thus
Hm(π1(M,x0)) ' Hm(π1(N, πM (x0))) ' Hm(N ;R) = 0. Therefore we may suppose thet
n1 = n2 = 0 and apply Theorem 5.8.2 to get the desired result.
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Chapter 6

Appendices

This chapter is devoted to the presentation (without proofs) of the main properties of the
objects of our studies. Detailed expositions of the subjects can be found in [25] and [29] as well
as in [21] (for principal bundles and connections), in [13] (for obstruction theory) and in [5]
and [23] (for lattices and algebraic groups). We will deal mostly with real and complex vector
bundles, and we will denote with K the scalar field in arguments working for both R and C. All
topological spaces are to be considered second-countable, locally compact and Hausdorff and
all maps between them are to be considered continuous. Analogously, all maps between smooth
manifolds are to be considered C∞.

6.1 Fiber bundles

Let B and F be topological spaces. An F -bundle over B is a topological space E endowed
with a surjective map π : E → B, called the projection, such that there exists an open covering
{Uα}α∈J of B which yields homeomorphisms, called local trivializations, of the following form:

χα : π−1(Uα) → Uα × F
u 7→ (π(u), ψα(u))

E is called the total space, B is called the base, F is called the fiber and {(Uα, χα)}α∈J is called
the bundle atlas.

Whenever Uα ∩ Uβ = ∅ we get a homeomorphism

χβ ◦ χ−1
α : Uα ∩ Uβ × F → Uα ∩ Uβ × F

(x, ξ) 7→ (x, ϕαβ(x)(ξ))

where maps ϕαβ : Uα ∩ Uβ → Homeo(F ) are called transition functions.

Proposition 6.1.1. An open covering {Uα} of B and a set of maps ϕαβ : Uα∩Uβ → Homeo(F )
define an F -bundle over B if and only if the maps ϕαβ satisfy the cochain conditions:

(i) ϕαα ≡ idF

(ii) ϕαβϕβγϕγα ≡ idF

A bundle map between an F -bundle π : E → B and an F ′-bundle π′ : E′ → B′ is a pair of
maps fE : E → E′ and fB : B → B′ which makes the following into a commutative diagram:

E
fE //

π

��

E′

π′

��

B
fB
// B′

53
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Remark 6.1.2. Smooth bundles are obtained by requiring the spaces B,F and E to be smooth
manifolds and all homeomorphisms to be diffeomorphisms. Bundle maps between smooth bun-
dles are given by commutative diagrams of smooth maps.

Let π : E → B be an F -bundle and let f : B′ → B be a map. The pull-back by f of
π : E → B is the F -bundle over B′ of total space

f∗E := {(y, u) ∈ B′ × E | f(y) = π(u)}

and projection πf∗E := π1

∣∣
f∗E

. The bundle atlas is given by the open covering {Vα = f−1(Uα)}
with local trivializations:

f∗χα : (πf∗E)−1(Vα) → Vα × F
(y, u) 7→ (y, ψα(u))

The map
f̃ := π2

∣∣
f∗E

: f∗E → E

(y, u) 7→ u

together with f : B′ → B gives a bundle map.

Remark 6.1.3. Every section σ ∈ Γ(E) can be pulled back to a section f∗σ ∈ Γ(f∗E) simply by
defining

f∗σ(y) = (y, σ(f(y))) ∈ f∗Ey

Theorem 6.1.4. Let π : E → B be an F -bundle. If f0, f1 : B′ → B are homotopic maps then
the F -bundles πf∗0E : f∗0E → B′ and πf∗1E : f∗1E → B′ are isomorphic.

Corollary 6.1.5. If B is contractible, then all F -bundles over B are equivalent to the trivial
bundle π1 : B × F → B.

For an F -bundle π : E → B we have a long exact sequence of homotopy groups defined
as follows: let x0 ∈ B be a basepoint and u0 ∈ Ex0 be a basepoint in the fiber of x0. Every
map f : (Ik, ∂Ik) → (B, x0) can be lifted to a map f̃ : (Ik, ∂Ik, Jk−1) → (E,Ex0 , u0), where
Jk−1 denotes the closure of ∂Ik r (Ik−1 × {0}) in ∂Ik . This map in turn restricts to a map

f̃
∣∣∣
Ik−1×{0}

: (Ik−1, ∂Ik−1)→ (Ex0 , u0). Therefore we can define:

∂ : πk(B, x0) → πk−1(Ex0 , u0)

[f ] 7→
[
f̃
∣∣∣
Ik−1×{0}

]
Theorem 6.1.6. The sequence of homotopy groups

· · · // πk(Ex0 , u0)
ι∗ // πk(E, u0)

π∗ // πk(B, x0)
∂ // πk−1(Ex0 , u0) // · · ·

is exact.

G-structures

Let G be a topological group acting on the left of a F via a continuous homomorphism ϕ : G→
Homeo(F ). A G-atlas for an F -bundle π : E → B is a bundle atlas whose transition functions
factorize through ϕ, that is

ϕαβ : Uα ∩ Uβ
gαβ
// G

ϕ
// Homeo(F )

A G-structure for π : E → B is a maximal G-atlas. A G-structure makes an F -bundle into an
(F,G)-bundle, and G is called the structure group.
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Remark 6.1.7. If G is a Lie group a smooth G-structure on a smooth F -bundle is a maximal
smooth G-atlas with respect to a Lie group morphism ϕ : G→ Diff(F ).

Example 6.1.8. A rank-m K-vector bundle π : E → B with structure group G can be seen as a
(Km, G)-bundle where the left action of G onto Km is determined by a K-linear representation.
Indeed, since transition function are GL(m,K)-valued, each fiber Ex is automatically endowed
with a well-defined m-dimensional K-vector space structure.

Let h : G′ → G be a continuous homomorphism of topological groups. If we can find a
G-atlas whose transition functions have the form

ϕαβ : Uα ∩ Uβ
g′αβ
// G′

h // G
ϕ
// Homeo(F )

we can define a G′ structure on π : E → B, and we say the structure group can be reduced from
G to G′.

Example 6.1.9. If a real rank-m vector bundle is oriented the choice of an orientation yields the
reduction of the structure group from GL(m,R) to GL+(m,R). A GL+(m,R)-atlas is obtained
by composing the local trivializations in the GL(m,R)-structure which do not preserve the
orientations of fibers with a reflection on the Rm component. Analogously the choice of a
Riemannian (Hermitian) metric g for a smooth rank-m K-vector bundle yields the reduction of
the structure group from GL(m,K) to O(m) (U(m)) and an atlas is obtained by applying the
Gram-Schmidt process to all local frames inducing the trivializations.

A bundle map between (F,G)-bundles π : E → B and π′ : E′ → B′ is an (F,G)-bundle map
if, for all (Uα, χα) in the G-atlas of E and (U ′β, χ

′
β) in the G-atlas of E′ with fB(Uα)∩U ′β 6= ∅,

there exist maps fαβ : Uα ∩ f−1
B (U ′β)→ G such that:

χ′β ◦ fE ◦ χ−1
α : (x, ξ) 7→ (fB(x), ϕ(fαβ(x))(ξ))

For any map f : B′ → B and any (F,G)-bundle π : E → B the pull-back by f of π : E → B
is automatically an (F,G)-bundle over B′ and f̃ gives an (F,G)-bundle map. Moreover, if f0

and f1 are homotopic maps, then the pull-backs by f0 and f1 are isomorphic as (F,G)-bundles.

Principal bundles

A principal G-bundle P (B,G) is a (G,G)-bundle π : P → B with left action of G onto itself
given by the left translation

ϕ : G → Homeo(G)
a 7→ [La : b 7→ ab]

On every principal G-bundle there is a naturally defined right action of G. Indeed, for all
a ∈ G, we have local right translations given by:

Ra : π−1(Uα) → π−1(Uα)
u 7→ ua := χ−1

α (π(u), ψα(u)a)

These homeomorphisms globalize because transition functions appear as left translations, which
commute with right translations, and we immediatly have Rab = Rb ◦ Ra. The right action is
clearly free and the orbits coincide with the fibers of π.

Remark 6.1.10. A bundle map f between principal G-bundles is a (G,G)-bundle map if and
only if it is equivariant with respect to the right action of G, i.e. fP (ua) = fP (u)a. Such a map
will be called a principal G-bundle map.
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Proposition 6.1.11. Let π : P → M be a surjective submersion of smooth manifolds and let
G be a Lie group. If G acts freely on P on the right so that the orbits of the action coincide
with the fibers of π, then P (M,G) is a smooth principal bundle.

Remark 6.1.12. A principal G-bundle admits a global section if and only if it is isomorphic to
the trivial bundle. Indeed, if σ : B → P is a global section, then the map:

fB×G : B ×G → P
(x, a) 7→ σ(x)a

together fB = idB defines a principal bundle isomorphism.

Associated bundles

Let πE : E → B be an (F,G)-bundle. Since the transition functions of its G-atlas satisfy
the cochain conditions, we can use them to construct a principal G-bundle associated with
πE : E → B simply by letting G act on itself by left translation.

Conversely, let πP : P → B be a principal G-bundle and F be a space on which G acts on
the left via:

ϕ : G → Homeo(F )
a 7→ [ξ 7→ aξ := ϕ(a)(ξ)]

We can make G act on the right of P ×F by defining (u, ξ) ·a := (ua, a−1ξ) for all a ∈ G. Thus
we can construct an (F,G)-bundle πE : E → B associated with P (B,G) having total space
E := (P × F )/G =

{
uξ := [(u, ξ)]

∣∣u ∈ P, ξ ∈ F} and projection πE : uξ 7→ πP (u). To show the
local triviality we consider a local trivialization (Uα, χ

P
α ) in the G-structure of P . Then we have

π−1
E (Uα) = (π−1

P (Uα)× F )/G ' (Uα ×G× F )/G via the map uξ 7→ [(πP (u), ψα(u), ξ)] and we
get trivializations:

χEα : π−1
E (Uα) → Uα × F
uξ 7→ (πP (u), ψα(u)ξ)

Proposition 6.1.13. These associations are inverse with each other. Two (F,G)-bundles are
isomorphic if and only if their associated principal G-bundles are isomorphic.

Example 6.1.14. If h : G′ → G is a continuous homomorphism of topological groups then G′

acts on G by left translation via h. The above construction yields, for each principal bundle
P ′(B,G′), an associated principal bundle P (B,G) endowed with aG′-structure. In this situation
we say the structure group of P can be reduced from G to G′.

Let πP : P → B be a principal G-bundle and G′ be a closed subgroup of G. Then G′ acts
freely on the right of P and the quotient P/G′ gives a fiber bundle πP/G′ : P/G′ → B with
fiber G/G′ and structure group G which is associated with P (B,G) via the obvious action of G
on the left of G/G′. Moreover the projection p : P → P/G′ defines a principal G′-bundle over
P/G′.

Proposition 6.1.15. There is a one-to-one correspondence between sections σ : B → P/G′ and
principal G′-bundles over B obtained by reduction of the structure group. The correspondence
associates each σ with the principal G′-bundle obtained from p : P → P/G′ via pull-back by σ.

Proposition 6.1.16. Every reduction of the structure group for an (F,G)-bundle induces an
associated principal bundle obtained by reduction of the structure group.

The positive interplay between (F,G)-bundles and their associated principalG-bundles turns
out to be very useful when dealing with smooth vector bundles. In this case we have an
alternative description for the associated principal bundle: indeed, if the linear representation
of a Lie group G inducing a G-structure on πE : E → M is faithful, the associated principal
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G-bundle can be identified with a set of ordered bases of fibers, and is therefore called a G-frame
bundle. More precisely, every local trivialization (Uα, χα) in the G-structure of πE : E → M
defines a local G-frame Fα = {V α

1 , . . . , V
α
m} ⊂ Γ(E

∣∣
Uα

) obtained as the inverse image of the

standard basis of Km, i.e. given by V α
i (x) := χ−1

α (x, ei). Then for every x ∈ Uα we can define
the induced G-frame at x as the ordered basis of Ex given by Bα

x = {V α
1 (x), . . . , V α

m(x)}. The
total space of the G-frame bundle is the set LG(E) given by the disjoint union of these oredered
bases. The projection πL : LG(E) → M is given by πL : Bα

x 7→ x. Now, the group GL(m,K)
acts freely and transitively on the right of the set of ordered bases of any m-dimensional K-vector
space V in the following way:

B · a := {aj1vj , . . . , ajmvj} ∀ a = aij ∈ GL(m,K), B = {v1, . . . , vm}

The matrix of change of basis from B to B · a is then a−1. Therefore we can make G act
freely on the right of LG(E) by defining Bα

x · a := Bα
x · ϕ(a). Note that LG(E) is closed

under this action because, given any local trivialization (Uα, χα) and any a ∈ G, there exists

another local trivialization (Uβ, χβ) such that Bβ
x = Bα

x · a (for example we can take Uβ = Uα
and ψβ = ϕ(a)−1 ◦ ψα). Then πL coincides with the projection LG(E) → LG(E)/G. We can
endow LG(E) with a smooth structure by considering for each local trivialization (Uα, χα) in
the G-structure the following map:

π−1
L (Uα) → Uα ×G
Bβ
x 7→ (x, gαβ(x))

Note that, since ϕ(gαβ(x)) ∈ GL(m,K) is the matrix of change of basis from Bα
x to Bβ

x , we

have Bβ
x = Bα

x · gαβ(x). Then, since gγβ(x) = gγα(x)gαβ(x), changes of coordinates are smooth
and thus these local trivializations define a smooth structure such that both the projection πL
and the right action of G are smooth: indeed, in local trivializations, we have πL(x, b) = x and
Ra((x, b)) = (x, a−1b). Thanks to Proposition 6.1.11 LG(E)(M,G) is indeed a principal bundle.

Remark 6.1.17. The rank-m vector bundle with structure group G associated with LG(E)
is naturally isomorphic to E. Then LG(E) must be the principal G-bundle associated with
πE : E →M .

From now on the omission of the structure group from LG(E) will stand for G = GL(m,K).
The frame bundle associated with the tangent bundle TM will be called the linear frame bundle
and will be denoted with L(M) instead of L(TM).

Whitney sums and flag manifolds

Let π1 : E1 → B and π2 : E2 → B be two vector bundles and let 4 : B ↪→ B × B denote the
diagonal embedding of B. The Whitney sum of π1 : E1 → B and π2 : E2 → B is the vector
bundle denoted by π1⊕π2 : E1⊗E2 → B and defined as the pull-back of π1×π2 : E1×E2 → B×B
via 4.

Now let W be an m-dimensional K-vector space. A flag in W is a sequence of subspaces

A1 ⊂ A2 ⊂ . . . ⊂ Am

such that dimAj = j. Let F (W ) be the set of flags in W and consider the subgroup T of
GL(m,K) consisting of upper-triangular matrices. Since T acts freely on the right of Vm(W )
we can identify the quotient Vm(Km)/T with F (W ) by considering the bijection

[{v1, . . . , vm}] 7→ Span(v1) ⊂ Span(v1, v2) ⊂ . . . ⊂ Span(v1, . . . , vm)

This makes F (W ) into an m(m−1)
2 -dimensional manifold diffeomorphic to GL(m,K)/T and

called the flag manifold.
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Let πE : E → B be a rank-m K-vector bundle. We define the associated flag manifold
bundle πF : F (E)→ B as the (F (Km),GL(m,K))-bundle given by

F (E) :=
⊔
x∈B

F (Ex), πF (F (Ex)) = x

A bundle atlas {Uα, χEα } for E gives rise to local trivializations:

ξFα : π−1
F (Uα) → Uα × F (Km)
u 7→ (πV (u), ψα(u))

where, if u = {A1 ⊂ . . . ⊂ Am} ∈ F (Ex) then ψα(u) = {ψα(A1) ⊂ . . . ⊂ ψα(Am)} ∈ F (Km).

Proposition 6.1.18 (Splitting principle). Let π : E → B be a rank-m K-vector bundle and let
πF : F (E)→ B be its associated flag bundle.

(i) If K = R then the pull-back by πF : F (E) → B of the bundle π : E → B is isomorphic
to an m-fold Whitney sum of real rank-1 vector bundles, and the induced homomorphism
π∗F : Hk(B;Z2)→ Hk(F (E);Z2) is injective.

(ii) If K = C then the pull-back by πF : F (E)→ B of the bundle π : E → B is isomorphic to
an m-fold Whitney sum of complex rank-1 vector bundles, and the induced homomorphism
π∗F : Hk(B;Z)→ Hk(F (E);Z) is injective.

Universal vector bundles

Let Gr(Km) be the set of r-dimensional subspaces of Km. The injective homomorphism

ι : GL(r,K)×GL(m− r,K) → GL(m,K)

(a, b) 7→
(
a 0
0 b

)
induces a free right action of GL(r,K) × GL(m − r,K) onto Vm(Km). Therefore and we can
identify the quotient Vm(Km)/(GL(r,K) × GL(m − r,K)) with Gr(Km) by considering the
bijection [{v1, . . . , vm}] 7→ Span(v1, . . . , vr). This makes Gr(Km) into an r(m − r)-dimensional
manifold diffeomorphic to GL(m,K)/(GL(r,K) × GL(m − r,K)) and called the Grassmann
manifold.

There exists a tautological rank-r K-vector bundle πγ : γr(Km)→ Gr(Km) with total space

γr(Km) = {(X,x) ∈ Gr(Km)×Km | x ∈ X}

topologized as a subspace of Gr(Km) × Km and with projection πγ given by the restriction
π1

∣∣
γr(Km)

of the projection onto the first component. To see the local triviality let us consider

an arbitrary X ∈ Gr(Km) and the orthogonal projection pX : Km → X with respect to the
standard scalar (or Hermitian) product. Then we can consider the open neighborhood of X
defined by

UX =
{
Y ∈ Gr(Km) | ker(pX

∣∣
Y

) = 0
}

If ϕX : X → Kr is a fixed linear isomorphism, we can define local trivializations

χX : π−1
γ (UX) → UX ×Kr

(Y, y) 7→ (Y, ϕX(pX(y))

Proposition 6.1.19. If π : E → B is a rank-m K-vector bundle then there exists a sufficiently
large N and a characteristic map f : B → Gm(KN ) such that πf∗γ : f∗γm(KN ) → B is
isomorphic to π : E → B.
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Now let K∞ denote the infinite direct sum
⊕

n>1 K. Its realization as an infinite union⋃
n>1 Kn, where each Kn is contained in Kn+1 as the set {xn+1 = 0}, induces inclusions

. . . ⊂ Gk(Kn) ⊂ Gk(Kn+1) ⊂ . . .

We can define the infinite Grassmann manifold as Gk := Gk(R∞) =
⋃
n>kGk(Rn) and topolo-

gize it as the direct limit of Gk(Kn), i.e. declare a subset of Gk open if and only if it’s intersection
with each Gk(Kn) is open in Gk(Kn). As before we can define a tautological rank-r K-vector
bundle πγ : γr(K∞)→ Gr(K∞) with total space

γr(K∞) = {(X,x) ∈ Gr(K∞)×K∞ | x ∈ X}

and projection given by the restriction of the projection onto the first component.

Theorem 6.1.20. For every rank-m K-vector bundle π : E → B there exists a characteristic
map f : B → Gm(K∞) such that πf∗γ : f∗γm(K∞)→ B is isomorphic to π : E → B.

For this reason πγ : γm(K∞)→ Gm(K∞) is called the universal vector bundle of rank-m.
In the real oriented case we can define the real oriented Grassmann manifold G̃r(Rm) as the

set of oriented r-planes in Rm, that can be identified with GL(m,R)/(GL+(r,R)×GL(m−r,R)),
and we can define the real oriented tautological rank-r vector bundle πγ̃ : γ̃r(Rm)→ G̃r(Rm).

Proposition 6.1.21. If π : E → B is a real oriented rank-m vector bundle then there exists a
sufficiently large N and a map f : B → G̃m(RN ) such that πf∗γ̃ : f∗γ̃m(RN )→ B is isomorphic
to π : E → B. Moreover γ̃m(RN ) induces on f∗γ̃m(RN ) the orientation of E.

As before we can also define the infinite real oriented Grassmann manifold G̃r(R∞) with
universal real oriented vector bundle of rank-r πγ̃ : γ̃r(R∞)→ G̃r(R∞).

Theorem 6.1.22. For every real oriented rank-m vector bundle π : E → B there exists a
characteristic map f : B → G̃m(R∞) such that the isomorphism between πf∗γ̃ : f∗γ̃m(R∞)→ B
and π : E → B is orientation-preserving.

Universal principal bundles

Let G be a topological group, let I denote the interval [0, 1], consider the space(∏
i>0

G

)
×

(⊕
i>0

I

)

and let PG be the subspace of elements (x, t) = ((x0, x1, . . .), (t0, t1, . . .)) such that
∑

i>0 ti = 1.
Then we can define PG as the quotient of PG by the equivalence relation

(x, t) ∼ (y, t) if ti > 0⇒ xi = yi

Let fi : PG→ I be the function defined by fi(x, t) := ti and let gi : f−1
i ((0, 1])→ G the function

defined by gi(x, t) := xi. We can equip PG with the smallest topology making the functions
fi and gi into continuous functions (where the domains of the functions gi are topologized as
subspaces of PG). There is a well-defined continuous right action of G onto PG given by

Ra((x0, x1, . . .), (t0, t1, . . .)) := ((x0a, x1a, . . .), (t0, t1, . . .)) ∀ a ∈ G

and we can set BG := PG/G.

Proposition 6.1.23. The projection πPG : PG → BG defines a principal G-bundle. This
bundle is universal: if π : P → B is a principal G-bundle then there exists a characteristic map
f : B → BG such that the pull-back πf∗PG : f∗PG→ B is isomorphic to π : P → B.
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Remark 6.1.24. The above construction is functorial. Indeed each continuous homomorphism
ϕ : G→ G′ induces a bundle map

PG PG′

BG BG′

ϕP∗

πPG πPG′

ϕB∗

and we have (idG)P∗ = idPG, (idG)B∗ = idBG, (ψ ◦ ϕ)P∗ = ψP∗ ◦ ϕP∗ and (ψ ◦ ϕ)B∗ = ψB∗ ◦ ϕB∗

Proposition 6.1.25. If the continuous homomorphisms ϕ0, ϕ1 : G → G′ are homotopic then
also the induced maps (ϕ0)P∗ , (ϕ1)P∗ and (ϕ0)B∗ , (ϕ1)B∗ are homotopic.

6.2 Connections

Throughout this section all fiber bundles and all maps are to be considered smooth.

Covariant derivatives

A covariant derivative on a vector bundle π : E → M is a map ∇ : X(M) × Γ(E) → Γ(E)
satisfying:

(i) ∇fX+gY V = f∇XV + g∇Y V for all f, g ∈ C∞K (M);

(ii) ∇X(λV + µW ) = λ∇XV + µ∇XW for all λ, µ ∈ K;

(iii) ∇X(fV ) = Xf · V + f∇XV for all f ∈ C∞K (M).

Proposition 6.2.1. Every vector bundle π : E →M admits a covariant derivative.

Proposition 6.2.2. (i) If X1(x) = X2(x) then ∇X1V (x) = ∇X2V (x).

(ii) If γ : (−ε, ε) → M satisfies γ(0) = x and γ′(0) = X(x) and if V1 ◦ γ ≡ V2 ◦ γ then
∇XV1(x) = ∇XV2(x).

If U trivializes both TM and E via local vector fields X1, . . . , Xn and sections V1, . . . , Vm,
the Christoffel symbols of ∇ with respect to the local frames X1, . . . , Xn and V1, . . . , Vm are
functions Γkij ∈ C∞K (U) such that:

∇XiVj = ΓkijVk

Let γ : [a, b]→M be a smooth curve. A section over γ is a section of the pull-back bundle
γ∗E. There exists a unique operator Dγ : Γ(γ∗E) → Γ(γ∗E), called the covariant derivative
along γ, satisfying:

(i) Dγ(λV + µW ) = λDγV + µDγW for all λ, µ ∈ K;

(ii) Dγ(fV ) = f ′V + fDγV for all f ∈ C∞K ([a, b]);

(iii) DγV = ∇γ′ Ṽ for all Ṽ ∈ Γ(E) such that Ṽ ◦ γ = V .

A section V over γ is parallel along γ if DγV ≡ 0.

Proposition 6.2.3. For all u ∈ Eγ(t) there exists a unique section Vu parallel along γ such that
Vu(t) = u.
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The parallel transport along γ is the family of operators τ t,sγ : Eγ(t) → Eγ(s) mapping each
u ∈ Eγ(t) to Vu(s) where Vu is the unique parallel extension of u along γ. For every t, s ∈ [a, b]

the map τ t,sγ is a linear isomorphism.
If π : E → M has structure group G a covariant derivative ∇ is said to be G-compatible if

the parallel transports are (Km, G)-bundle maps, i.e. if for every pair of G-frames at γ(t) and
γ(s) the induced linear isomorphism of Km is an element of ϕ(G).

Remark 6.2.4. A covariant derivative is G-compatible if and only if the parallel extension of
any G-frame in LG(E) along a curve γ determines a curve entirely contained in LG(E).

Horizontal distributions

Let π : P →Mn be a principal G-bundle and let Gu := ker duπ ⊂ TuP be the vertical subspace
at u, i.e. the subspace of vectors tangent to the fiber Pπ(u). An invariant horizontal distribution
Γ on P (M,G) is a smooth distribution of n-planes u 7→ Qu ⊂ TuP such that:

(i) TuP = Gu ⊕Qu

(ii) Qua = duRa(Qu)

An invariant horizontal distribution yields operators v, h : X(P ) → X(P ) associated with the
direct sum TuP = Gu ⊕ Qu such that every X ∈ X(P ) decomposes as X = vX + hX with
vXu ∈ Gu and hXu ∈ Qu for all u ∈ P . An association u 7→ Qu ⊂ TuP satisfying (i) and (ii)
is a smooth distribution if and only if vX and hX are smooth vector fields for all X ∈ X(P ).

Proposition 6.2.5. Every principal bundle P (M,G) admits an invariant horizontal distribu-
tion.

An invariant horizontal distribution Γ on a principal G-bundle π : P → M gives rise to
isomorphisms duπ

∣∣
Qu

: Qu → Tπ(u)M for all u ∈ P . If U trivializes both P and TM then Γ

induces a trivialization T (P
∣∣
U

) ' (P
∣∣
U

) × Rn × g where Qu corresponds to {u} × Rn × {0}.
Therefore every vector field X ∈ X(M) admits a unique horizontal lift X̃ ∈ X(P ) defined
by X̃u := (duπ

∣∣
Qu

)−1(Xπ(u)) which is clearly smooth, as can be seen in local trivializations.
Moreover every horizontal lift of a vector field is right invariant under the action of G, thanks
to the invariance of Γ, and every right invariant horizontal vector field on P covers a vector
field on M .

Let γ : [a, b]→M be a smooth curve. A horizontal lift of γ is a smooth curve γ̃ : [a, b]→ P
such that π ◦ γ̃ = γ and γ̃′(t) ∈ Qγ(t).

Proposition 6.2.6. For all t ∈ [a, b] and u ∈ Pγ(t) there exists a unique horizontal lift γ̃u of γ
such that γ̃u(t) = u.

For a smooth curve γ : [a, b] → M the parallel transport along γ is the family of maps
τ t,sγ : Pγ(t) → Pγ(s) sending every u ∈ Pγ(t) to γ̃u(s) where γ̃u is the unique horizontal lift of γ
such that γ̃u(t) = u.

Proposition 6.2.7. For all t, s ∈ [a, b] the map τ t,sγ is a diffeomorphism between Pγ(t) and
Pγ(s).

Covariant derivatives induced by horizontal distributions

An invariant horizontal distribution Γ on P (M,G) allows us to construct a G-compatible parallel
transport on every (F,G)-bundle πE : E →M associated with P (M,G). Indeed we can induce
a horizontal distribution on E by considering the map ϕξ : P → E sending v 7→ vξ and by
defining Qw := duϕξ(Qu). The distribution is well-defined since, if w = vη with v = ua and
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η = a−1ξ, then ϕη = ϕξ ◦ Ra−1 and so dvϕη(Qv) = duϕξ(duaRa−1(duRa(Qu))) = duϕξ(Qu).
Moreover πE ◦ ϕξ = πP , and therefore TwE = Qw ⊕ ker dwπE . Just like we discussed before,
horizontal lifts of vector fields and curves exist and are unique, and allow us to define parallel
transport along curves. If γ : [a, b] → M is a curve, u is a point in Pγ(t) and γ̃u is the unique
horizontal lift of γ in P such that γ̃u(t) = t, we have:

τ t,sγ : Eγ(t) → Eγ(s)

uξ 7→ γ̃u(s)ξ

These are clearly (F,G)-bundle maps since they induce diffeomorphisms of F having the form
ξ 7→ ψ−1

α (u)ψβ(γ̃u(s))ξ.
Let P (M,G) be a principal bundle and πE : E →M be the associated rank-m vector bundle

with structure group G. Let Γ be an invariant horizontal distribution on P (M,G) which induces
a G-compatible parallel transport τ on E.

If γ : [a, b] → M is a smooth curve we can define the covariant derivative along γ as the
operator Dγ : Γ(γ∗E)→ Γ(γ∗E) given by:

V 7→
[
DγV : t 7→ d

dh

[
τ t+h,tγ (V (t+ h))

]
h=0

]
It is easily verified that Dγ is indeed K-linear and satisfies the Leibniz rule:

Dγ(fV ) = f ′V + fDγV

Lemma 6.2.8. If γ, µ : (−ε, ε) → M are smooth curves such that γ(0) = µ(0) = x and
γ′(0) = µ′(0) = X ∈ TxM , then Dγ(V ◦ γ)(0) = Dµ(V ◦ µ)(0) for all sections V ∈ Γ(E).

We can define the G-compatible covariant derivative ∇ : X(M)× Γ(E)→ Γ(E) given by:

(∇XV )x = DγV (0) for γ : (−ε, ε)→M such that γ(0) = x and γ′(0) = Xx

Thanks to Lemma 6.2.8 ∇ is well defined, and it satisfies:

(i) ∇fXV = f∇XV for all f ∈ C∞K (M);

(ii) ∇X(fV ) = X(f)V + f∇XV for all f ∈ C∞K (M).

Remark 6.2.9. Every curve σ in E is horizontal if and only if it is parallel with respect to ∇,
i.e. σ′(t) ∈ Qσ(t) ∀ t ⇔ D(πE◦σ)σ(t) ≡ 0.

Horizontal distributions induced by covariant derivatives

With each covariant derivative ∇ on a rank-m vector bundle π : E → M we can associate a
horizontal distribution on E as follows: for all u ∈ E there exists a natural linear isomorphism
iu : Eπ(u) → ker duπ ⊂ TuE. Indeed, if a local frame V1, . . . , Vr induces a local trivialization
π−1(U) ' U × Km with coordinates (x1, . . . , xn, ξ1, . . . , ξm), then these coordinates induce a
local frame for T (E

∣∣
U

) given by sections:

∂i =
∂

∂xi
, ∂̇j =

∂

∂ξj
for i = 1, . . . , n, j = 1, . . . ,m

Then iu is defined by Vj(π(u)) 7→ ∂̇j

∣∣∣
u
, which is independent of the choice of the local frame.

Lemma 6.2.10. Let V,W ∈ Γ(E) be sections of E such that V (x) = W (x) = u. Then for all
X ∈ TxM we have:

dxV (X)− iu(∇XV (x)) = dxW (X)− iu(∇XW (x))
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Therefore we can define, for all x ∈M and u ∈ Ex, the linear map:

Qu : TxM → TuE
X 7→ dxV (X)− iu(∇XV (x))

where V is any section of E satisfying V (x) = u. In local coordinates we have:

Qu(X) = Xi∂i
∣∣
u

+Xi
∂ξj
∂xi

(x)∂̇j

∣∣∣
u
−Xi

∂ξj
∂xi

(x)∂̇j

∣∣∣
u
−Xiξj(x)Γkij(x)∂̇k

∣∣∣
u

= Xi∂i
∣∣
u
−XiujΓ

k
ij(x)∂̇k

∣∣∣
u

Thus we have Qu(TxM)⊕ ker duπ = TuE and the map Q : u 7→ Qu(Tπ(u)M) is smooth.

Remark 6.2.11. Every curve σ in E is parallel if and only if it is horizontal with respect to Q,
i.e. D(π◦σ)σ(t) ≡ 0 ⇔ σ′(t) ∈ Qσ(t) ∀ t.

Now let us consider a vector bundle πE : E →M with structure group G and frame bundle
πL : LG(E) → M . Let ∇ be a G-compatible covariant derivative on E. The vector bundle
πm : Em = E ⊕ . . . ⊕ E → M can be endowed with a G-structure and with the G-compatible
covariant derivative ∇m = ∇⊕ . . .⊕∇ given by:

∇m(X1,...,Xm)(V1, . . . , Vm) = (∇X1V1, . . . ,∇XmVm)

We can clearly realize LG(E) as a sub-bundle of Em. Let Qm be the horizontal distribution on
Em associated with the covariant derivative ∇m. For all Bα

x ∈ LG(E) the horizontal subspace
at Bα

x is entirely contained in TBα
x

(LG(E)), and therefore we can define QBα
x

:= Qm(Bα
x ). The

invariance under the right action of G is easy to prove.

Equivalence

We showed that with each G-compatible covariant derivative on a vector bundle with structure
group G we can associate a G-invariant horizontal distribution on the associated principal G-
bundle and vice versa.

Theorem 6.2.12. These associations are inverse with each other.

Therefore from now on we will use the term connection to refer to both these concepts
and we will use interchageably both characterizations according to the features we will need to
highlight. We will call linear connection every connection defined on the tangent bundle to a
manifold or on the linear frame bundle.

6.3 Curvature

The concept of curvature of a connection arises naturally as a tensor field for covariant deriva-
tives and as a differential form for invariant horizontal distributions. These different character-
izations are equivalent, and we will present both of them as we will need all of their features.

Curvature tensor of a covariant derivative

Let π : E →M be a rank-m vector bundle, let ∇ be a connection on E. The curvature tensor
of ∇ is the map

R∇ : X(M)× X(M)× Γ(E) → Γ(E)
(X,Y, V ) 7→ ∇X∇Y V −∇Y∇XV −∇[X,Y ]V

Remark 6.3.1. It can be easily verified that R∇ is C∞K (M)-linear in all variables. Therefore it
is a tensor field, i.e. a section of the vector bundle T 0

2 (M)⊗Hom(E,K)⊗ E.

If U trivializes both TM and E via local vector fields X1, . . . , Xn and sections V1, . . . , Vm the
curvature symbols of ∇ with respect to X1, . . . , Xn and V1, . . . Vm are functions (R∇)hijk ∈ C∞K (U)
such that:

(R∇)Xi,XjVk = (R∇)hijkVh
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Curvature form of an invariant horizontal distribution

Let P (M,G) be a principal bundle. Using the right action of G on P we can realize g = Lie(G)
as a subalgebra of vertical vector fields in X(P ). Indeed we can define, for all A ∈ g, the vector
field A∗ ∈ X(P ) given by:

A∗u :=
d

dt
[u exp(tA)]t=0

The map
σ : g → X(P )

A 7→ A∗

is an injective Lie algebra homomorphism which sends every non-zero vector to a nowhere-
vanishing vector field. Therefore we get, for all u ∈ P , an isomorphism:

Ψu : g → Gu
A 7→ A∗u

Thus given a principal connection Γ we can define its connection form ωΓ as the g-valued 1-form
given by (ωΓ)u(Xu) := Ψ−1

u (vXu).
The curvature form of Γ is the g-valued 2-form ΩΓ defined by:

ΩΓ(X,Y ) := (dωΓ)(hX, hY )

Theorem 6.3.2 (Structure equation for curvature).

dωΓ(X,Y ) = −[ωΓ(X), ωΓ(Y )] + ΩΓ(X,Y )

Curvature form of a covariant derivative

Let π : E → M be a rank-m vector bundle, let ∇ be a connection on E. Let’s fix a local
frame V1, . . . , Vm for E and a local coordinate system x1, . . . , xn for U ⊂M yielding Christoffel
symbols Γkij . The local connection forms with respect to V1, . . . , Vm are the 1-forms (ω∇)ij
defined on U by:

(ω∇)ij := Γjkidxk

Remark 6.3.3. ∇XVi = (ω∇)ij(X)Vj

Remark 6.3.4. The definition is independent of the choice of the local coordinate system
x1, . . . , xn.

We can arrange these local forms into a matrix ω∇ = ((ω∇)ij) with entries in Ω1(U), called
the matrix of local connection forms.

If π : E → M has structure group G, ∇ is G-compatible and V1, . . . , Vm is a local G-frame
then for all X ∈ X(M) the matrix ω∇(X) is dϕ(g)-valued, where dϕ : g → gl(m,K) is the
representation of the Lie algebra of G associated with ϕ : G → GL(m,K). Indeed the parallel
transport along any curve γ : [a, b]→M can be written in the following form:

τ t,sγ : Eγ(t) → Eγ(s)

Vi(t) 7→ ϕ(f(s))jiVj(s)

where f : [a, b]→ G satisfies f(t) = e. Therefore we can use:

∇γ′(t)Vi =
d

dh

[
τ t+h,tγ (Vi(t+ h))

]
h=0

Proposition 6.3.5. A connection ∇ on a vector bundle of structure group G is G-compatible if
and only if its matrices of local connection forms with respect to local G-frames are dϕ(g)-valued
local 1-forms.
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Now we can define a dϕ(g)-valued 1-form ω̃∇ on LG(E) in the following way: for each vector
field X ∈ X(LG(E)) we consider the integral curve σ of X starting from Bα

x ∈ LG(E). Then
any local G-frame V1, . . . , Vm for E extending σ on a neighborhood U yields local connection
forms (ω∇)ij . Thus if X̄ = dπL(X) ∈ X(M) we can define the 1-forms

((ω̃∇)ij)Bα
x

(XBα
x

) := ((ω∇)ij)x(X̄x) ∀ X ∈ X(LG(E))

which determine a dϕ(g)-valued 1-form. This definition does not depend on the chosen G-frame
V1, . . . , Vm extending σ.

The local curvature forms with respect to V1, . . . , Vm are the 1-forms (Ω∇)ij defined on U
by:

(Ω∇)ij := d(ω∇)ij − (ω∇)ir ∧ (ω∇)rj =

(
∂Γjki
∂xh

− ΓrhiΓ
j
kr

)
dxh ∧ dxk =

∑
h<k

(R∇)jhkidxh ∧ dxk

Remark 6.3.6. (R∇)X,Y Vi = (Ω∇)ij(X,Y )Vj

We can arrange these forms into a matrix Ω∇ = ((Ω∇)ij) with entries in Ω2(U), called the
matrix of local curvature forms. If ∇ is G-compatible and V1, . . . , Vm is a local G-frame then
again for all X ∈ X(M) the matrix Ω∇(X) is dϕ(g)-valued.

Now we can define a dϕ(g)-valued 2-form Ω̃∇ on LG(E) whose entries are the standard
2-forms

(Ω̃∇)ij := d(ω̃∇)ij − (ω̃∇)ir ∧ (ω̃∇)rj

Curvature tensor of an invariant horizontal distribution

Let P (M,G) be a principal bundle, let Γ be a connection on P and let πE : E → M be an
associated rank-m vector bundle with structure group G. For all vector fields X,Y ∈ X(M)
and all sections Z ∈ Γ(E) we can define the section:

x 7→ ((RΓ)X,Y (Z))x := ϕu((ΩΓ)u(X̃u, Ỹu)(ϕ−1
u (Z))) ∈ Ex

where u is any point in Px, ϕu : Km → EπP (u) maps ξ 7→ uξ and X̃, Ỹ are any lifts of X and Y ,

i.e. vector fields in X(P ) such that dπP (X̃) = X and dπP (Ỹ ) = Y . It is well-defined because
two different lifts differ only for the vertical component, on which ΩΓ vanishes, and because the
curvature form satisfies:

R∗aΩΓ = Ada−1 ◦ ΩΓ ∀ a ∈ G

The map RΓ : X(M) × X(M) × Γ(E)) → Γ(E) is C∞K (M)-multilinear, and therefore it defines
a tensor field.

Equivalence

The concepts of curvature defined for covariant derivatives and for horizontal distributions
coincide:

Theorem 6.3.7. (i) ω̃∇ = dϕ ◦ ωΓ

(ii) Ω̃∇ = dϕ ◦ ΩΓ

(iii) RΓ = R∇

Therefore from now on we will drop all subscripts and simply write ω, Ω and R for connection
and curvature forms and tensors.
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Holonomy groups

Let’s consider a vector bundle πE : E → M with structure group G and a principal G-bundle
πP : P → M associated with each other. Let ∇ and Γ be associated connections on E and
P respectively. The parallel transport induced by these connections is independent on the
parametrization of the curves along which we transport the fibers. Hence we can always suppose
curves to be parametrized on I = [0, 1] and we will write τγ , τ−1

γ for τ0,1
γ , τ1,0

γ respectively.

Remark 6.3.8. (i) If γ−1(t) := γ(1− t) then τγ−1 = τ−1
γ ;

(ii) If γ(1) = µ(0) then τγ∗µ = τµ ◦ τγ .

For all x ∈M let us consider the set:

C(x) = {γ : I →M piecewise smooth such that γ(0) = γ(1) = x}

Then Φ∇(x) := {τγ ∈ GL(Ex) | γ ∈ C(x)} is a group of linear isomorphisms, called holonomy
group of ∇ in x. If we fix a G-frame at x we can identify Φ∇(x) with a subgroup Φα

∇(x) of G,
and changing the G-frame yields conjugated subgroups. Analogously for Γ the holonomy group
of Γ in x can be defined by ΦΓ(x) := {τγ ∈ Diff(Px) | γ ∈ C(x)}, and for each choice of a point
u ∈ Px we can identify ΦΓ(x) with a subgroup ΦΓ(u) of G via the homomorphism

ΦΓ(x) → G
τγ 7→ a such that τγ(u) = ua

Again, changing the point u in the fiber of P yields conjugated subgroups. The groups Φα
∇(x)

and ΦΓ(u) are in the same conjugacy class in G, which we will denote simply with Φ(x).
If we apply the same construction to the set

C0(x) = {γ ∈ C(x) null-homotopic }

we obtain the reduced holonomy groups Φ0
∇(x) and Φ0

Γ(x) and the conjugacy class Φ0(x) in G.

Theorem 6.3.9. For every x ∈M we have:

(i) Φ0(x) is a connected closed subgroup of G;

(ii) Φ0(x) is a normal subgroup of Φ(x) and Φ(x)/Φ0(x) is countable.

Remark 6.3.10. Φ(x) is a Lie group and Φ0(x) is the component of e in Φ(x).

Pull-back of connections

Connections can be pulled back to pull-back bundles preserving all their features.

Proposition 6.3.11. Let π : E → M be a vector bundle with structure group G and let
f : N →M be a smooth map. Let ∇ be a G-compatible connection on E. Then:

(i) there exists a unique G-compatible connection f∗∇ on f∗E such that ((f∗∇)X(f∗V ))y =
f∗((∇dyf(Xy)V )f(y));

(ii) its curvature tensor satisfy ((f∗R)X,Y (f∗V ))y = f∗((Rdyf(Xy),dyf(Yy)V )f(y));

(iii) Φf∗∇(y) = Φ∇(f(y)) and Φ0
f∗∇(y) = Φ0

∇(f(y)).

Proposition 6.3.12. Let P (M,G) be a principal bundle and let f : N →M be a smooth map.
Let Γ be a principal connection on P . Then:

(i) there exists a unique f∗Γ on f∗P such that df̃ ◦ f∗Γ = Γ ◦ f̃ ;

(ii) its connection and curvature forms are f̃∗ω and f̃∗Ω;

(iii) Φf∗Γ(y) = ΦΓ(f(y)) and Φ0
f∗Γ(y) = Φ0

Γ(f(y)).
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Reduction Theorem and Holonomy Theorem

Theorem 6.3.13 (Reduction Theorem). Let P (M,G) be a principal bundle with connected base
M and let Γ be a connection on P . Define

P (u) = {v ∈ P | there exists a horizontal curve joining u and v }

Then:

(i) P (u) is a ΦΓ(u)-principal bundle obtained from P (M,G) by reduction of the structure
group;

(ii) Γ reduces to a connection on P (u).

P (u) is the holonomy bundle in u.

Theorem 6.3.14 (Holonomy Theorem). Let P (M,G) be a principal bundle with connected base
M and let Γ be a connection on P . Then

Lie(ΦΓ(u)) = Span{Ωv(X,Y ) ∈ g | v ∈ P (u), X, Y ∈ Qv}

6.4 Obstructions

Since manifolds have the homotopy type of CW-complexes the construction of a map between
two of them can be carried out by progressive extensions of maps defined on skeletons. The
obstruction one faces in doing this is encoded by a cohomology class defined in a suitable
cohomology theory with twisted coefficients. We present the special case of the construction of
a section in a fiber bundle.

k-Connectedness and k-simplicity

Let M be a smooth manifold. Every curve γ : I → M induces isomorphisms on homotopy
groups γ# : πh(M,γ(0))→ πh(M,γ(1)) for all h, where we define π0(M,x0) = H̃0(M ;Z) for all
x0 ∈M .

M is k-simple if π0(M,x0) = 0 and if for every pair of points x1, x2 ∈ M and every pair of
curves γ1, γ2 from x1 to x2 the induced isomorphisms

(γ1)# : πk(M,x1)→ πk(M,x2)

(γ2)# : πk(M,x1)→ πk(M,x2)

coincide.
M is k-connected if πh(M,x0) = 0 for all h = 0, . . . , k.

Remark 6.4.1. (i) M is 1-simple if and only if it is connected and π1(M,x0) is abelian;

(ii) If M is 1-connected then it is k-simple for every k.

Remark 6.4.2. For a k-simple manifold M every map from an oriented sphere Sk to M de-
termines uniquely an element of πk(M,x0). Therefore the group πk(M,x0) coincides with the
group [Sk,M ] of homotopy classes of maps from Sk to M , with the usual operation obtained
collapsing an equator of Sk and redifining each function on one of the spheres in the bouquet.
Thus there is no need to specify a base point.

Proposition 6.4.3. Every connected Lie group is k-simple for every k.

Proof. Let γ be a curve from a1 to a2 in G. Then γ# = (La2a
−1
1

)∗. Indeed, define curves

γs : I → G mapping t 7→ γ(1−s+ ts) for all s ∈ I. Then γ0 is the constant curve a2 and γ1 = γ.
Then a homotopy between La2a

−1
1
◦f and γ#(f) is given by h(s, x) = (γs)#(Lγ(1−s)a−1◦f)(x).
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Homology and cohomology with twisted coefficients

Let M be a smooth manifold and x0 be a base point. Let Z[π1(M,x0)] be the free Z-module
generated by π(M,x0):

Z[π1(M,x0)] =

{
k∑
i=1

miαi

∣∣∣∣∣mi ∈ Z, αi ∈ π1(M,x0)

}

Z[π1(M,x0)] can be made into a (possibly non-commutative) ring by defining the product:(
k∑
i=1

miαi

) h∑
j=1

njβj

 =
∑
i,j

(minj)(αiβj)

Let Λ be a Z-module. Any homomorphism ρ : π1(M,x0) → Aut(Λ) makes Λ into a left
Z[π1(M,x0)]-module via the scalar multiplication:(

k∑
i=1

miαi

)
λ :=

k∑
i=1

miρ(αi)(λ)

Now consider the singular k-chain module Ck(M̃). There is a natural structure of right
Z[π1(M,x0)]-module over Ck(M̃) induced by the monodromy action of π1(M,x0) on M̃ : indeed,
if σ : 4k → M̃ is a singular k-simplex in M̃ , we can define

σ · α : 4k σ // M̃
α // M̃

for all α ∈ π1(M,x0) and then extend by linearity. Thus we can define the module of k-chains
with Λ coefficients twisted by ρ:

Ck(M ; Λρ) := Ck(M̃)⊗Z[π1(M,x0)] Λ

These give a complex of Z-modules with boundary operator

∂ : σ ⊗ λ 7→ (∂σ)⊗ λ

and we can define homology groups with twisted coefficients Hk(M ; Λρ).
If we define a left Z[π1(M,x0)]-module structure over Ck(M̃) given by α · σ := σ · α−1 we

can consider the Z-modules of k-cochains with twisted coefficients:

Ck(M ; Λρ) := HomZ[π1(M,x0)](Ck(M̃),Λ)

The coboundary operator
δ = ∂∗ : ϕ 7→ [σ 7→ ϕ(∂σ)]

gives cohomology groups with twisted coefficients Hk(M ; Λρ).
If we have homomorphisms ρ : π1(M,x0) → Aut(Λ) and ρ′ : π1(M,x0) → Aut(Λ′) which

make the Z-modules Λ and Λ′ into left Z[π1(M,x0)]-modules, then each Z[π1(M,x0)]-equivariant
homomorphism f : Λ → Λ′ induces natural homomorphisms f# : H∗(M ; Λρ) → H∗(M ; Λ′ρ′)

which map each class [ C∗(M̃)
ϕ
// Λ ] to [ C∗(M̃)

ϕ
// Λ

f
// Λ′ ]. Clearly if f is an isomor-

phism then f# is an isomorphism too.

Remark 6.4.4. If the twisting homomorphism ρ : π1(M,x0) → Aut(Λ) is trivial we recover
the standard homology and cohomology groups. Indeed Ck(M̃)⊗Z[π1(M,x0)] Λ can be naturally

identified with Ck(M ; Λ) and HomZ[π1(M,x0)](Ck(M̃),Λ) with HomZ(Ck(M),Λ).
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Cellular homology and cohomology with twisted coefficients

A CW-complex structure on M induces a CW-complex structure on M̃ since all characteristic
maps of cells lift to M̃ . If a cell ẽ of M̃ projects onto a cell e of M , then any other cell of M̃
projects onto e if and only if it is obtained from ẽ by the action of π1(M,x0). Then the cellular
chain modules CCW

k (M̃) are Z[π1(M,x0)]-modules and we can define

CCW
k (M ; Λρ) := CCW

k (M̃)⊗Z[π1(M,x0)] Λ

CkCW(M ; Λρ) := HomZ[π1(M,x0)](C
CW
k (M̃),Λ)

with boundary and coboundary operators obtained by cellular ones just like before. Therefore
we obtain callular homology and cohomology groups with twisted coefficents HCW

k (M ; Λρ) and
Hk

CW(M ; Λρ).

Proposition 6.4.5. For each CW-complex structure on M there exist natural isomorphisms
HCW
k (M ; Λρ) ' Hk(M ; Λρ) and Hk

CW(M ; Λρ) ' Hk(M ; Λρ). In particular cellular (co)homology
groups are independent of the CW-complex structure chosen for M .

Remark 6.4.6. If we specify a lifting for each k-cell in M we get a basis for CCW
k (M̃). Therefore

a k-cochain with twisted coefficients on M is obtained by assigning to each k-cell in the basis
of CCW

k (M̃) an element of Λ and then extending by Z[π1(M,x0)]-linearity.

Twisted coefficients associated with a bundle of simple fiber

Let F be a k-simple manifold and π : E →M be an F -bundle. We can define a homomorphism
ρ : π1(M,x0) → Aut(πk(Ex0)) as follows: let γ : I → M be a curve in M . Then γ is
homotopic, without fixing endpoints, to the constant map γ(0). Thus Theorem 6.1.4 gives
a bundle isomorphism

I × Eγ(0)
Ψ //

��

γ∗E

��

I
id

// I

of the form

Ψ : I × Eγ(0) → γ∗E

(t, u) 7→ (t, ψt(u))

where ψt is a diffeomorphism between Eγ(0) and Eγ(t) for all t ∈ I. Therefore we get a diffeo-

morphism hγ : Eγ(0) → Eγ(1) defined as ψ1 ◦ ψ−1
0

Proposition 6.4.7. The homotopy class of hγ depends only on the homotopy class with end-
points fixed of γ, and not on the chosen bundle isomorphism Ψ.

Therefore if α is a loop in x0 representing an element in π1(M,x0) we get a well-defined
homomorphism:

ρ : π1(M,x0) → Aut(πk(Ex0))
α 7→ [[f ] 7→ [h−1

α ◦ f ]]

Thus we can define homology and cohomology groups for M with twisted coefficients
Hh(M ;πk(Ex0)ρ) and Hh(M ;πk(Ex0)ρ).
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Primary obstructions

Let M be a smooth manifold and let πM̃ : M̃ →M denote its universal cover. Any CW-complex

structure for M induces a CW-complex structure for M̃ and the choice of base points x0 ∈ M
and x̃0 ∈ π−1

M̃
(x0) ⊂ M̃ yields a free right action of π1(M,x0) onto M̃ which permutes the cells

of the same dimensions. Let F be a k-simple manifold, let πE : E → M be an F -bundle and
let f be a section defined on the (k − 1)-skeleton Mk−1 of M . Suppose f admits an extension
g defined on Mk and consider the characteristic map Φ̃ : Dk+1 → M̃ of the (k + 1)-cell ẽ. The
composite Φ := πM̃ ◦ Φ̃ : Dk+1 →M is then the characterstic map of the (k+1)-cell e = πM̃ (ẽ).
The composition of the attaching map ϕ = Φ

∣∣
∂Dk+1 with the section g induces a map

g# : ∂Dk+1 → Φ∗E
y 7→ (y, g(ϕ(y)))

If we fix y0 ∈ Dk+1 we get a bundle isomorphism

Dk+1 × EΦ(y0)
Ψ //

��

Φ∗E

��

Dk+1
id

// Dk+1

of the form
Ψ : Dk+1 × EΦ(y0) → Φ∗E

(y, u) 7→ (y, ψy(u))

where ψy is a diffeomorphism between EΦ(y0) and EΦ(y) for all y ∈ Dk+1. We can then define
the map

Ψy0 : Φ∗E → EΦ(y0)

(y, u) 7→ ψy0(ψ−1
y (u))

Now consider any curve γ̃ from Φ̃(y0) to x̃0 in M̃ , which projects onto a curve γ = πM̃ ◦ γ̃ from
Φ(y0) to x0, and set

gẽ : ∂Dk+1 g#
// Φ∗E

Ψy0 // EΦ(y0)

hγ
// Ex0

Therefore we can define a k-cochain with twisted coefficients o(g) ∈ Ck+1(M ;πk(Ex0)ρ) which
associates each (k + 1)-cell ẽ in M̃ with the homotopy class [gẽ] ∈ [∂Dk+1, Ex0 ] = πk(Ex0)
constructed above.

Proposition 6.4.8. The k-cochain o(g) is well-defined, i.e. it depends neither on the choice
of y0 ∈ Dk+1 nor on the choice of the bundle isomorphism Ψ : Dk+1 × EΦ(y0) → Φ∗E, and it
satisfies o(g)(ẽ · α) = ρ(α−1)(o(g)(ẽ)).

Proposition 6.4.9. The (k + 1)-cochain o(g) is a cocycle.

Proposition 6.4.10. If g and g′ are two different extensions of f on Mk then the cocycle
o(g)− o(g′) is a coboundary.

Therefore we have a well-defined cohomology class o(f) ∈ Hk+1(M ;πk(Ex0)ρ) given by [o(g)]
for any extension g of f to Mk.

Theorem 6.4.11. The section f can be extended to Mk+1 if and only if o(f) = 0.

Now suppose the fiber F is k-simple and (k − 1)-connected but not k-connected. Then we
can always define sections on the k-skeleton of M without facing obstructions.
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Proposition 6.4.12. Let f, f ′ be sections defined on the k-skeleton of M . Then o(f) − o(f ′)
is a coboundary.

Therefore we have a well-defined homology class o(E) ∈ Hk+1(M ;πk(Ex0)ρ) called the
primary obstruction of the bundle π : E →M which is given by o(f) for any section f defined
on the k-skeleton of M .

Example 6.4.13. Let P (M,G) be a principal bundle and let G′ be a closed subgroup of G.
Suppose G′ is homotopy equivalent to G. Then Theorem 6.1.6 applied to p : G → G/G′ gives
πk(G/G

′) = 0 for all k. Therefore there is no obstruction to defining a section for the bundle
πP/G′ : P/G′ →M , and thus it is always possible to reduce the structure group of P (M,G) to
G′.

Suppose we have homotopy equivalent manifolds F and F ′ both k-simple and (k − 1)-
connected but not k-connected. Let π : E → M be an F -bundle and π′ : E′ → M be an
F ′-bundle, and suppose we have bundle maps

E
fE //

π

��

E′

π′

��

M
id
//M

E

π

��

E′
gE′oo

π′

��

M M
id
oo

such that fE and gE′ restrict to homotopy equivalences on every fiber. Let fx0 and gx0 denote
the restrictions fE

∣∣
Ex0

and gE′
∣∣
E′x0

respectively. These maps induce isomorphisms between

homotopy groups (fx0)∗ : πk(Ex0)→ πk(E
′
x0

) and (gx0)∗ : πk(E
′
x0

)→ πk(Ex0).

Proposition 6.4.14. The isomorphisms (fx0)∗ and (gx0)∗ are Z[π1(M,x0)]-equivariant.

Thus (fx0)∗ and (gx0)∗ induce isomorphisms between cohomology groups with twisted co-
efficients H∗(M ;πk(Ex0)ρ) and H∗(M ;πk(E

′
x0

)ρ′) which will be denoted by (fx0)# and (gx0)#

respectively.

Proposition 6.4.15. The primary obstructions of π : E →M and π′ : E′ →M are equivalent,
i.e. we have equalities (fx0)#(o(E)) = o(E′) and (gx0)#(o(E′)) = o(E).

6.5 Lattices

This section collects properties and results about Lie groups and algebraic groups. In particular
we focus on amenability and on the existence and rigidity of lattices.

Semisimple Lie groups and reductive algebraic groups

The derived series of a Lie algebra g is the descending sequence of ideals

D0g ⊃ D1g ⊃ D2g ⊃ . . .

defined recursively by D0g := g and Di+1g := [Dig, Dig]. Each quotient Dig/Di+1g is abelian.
A Lie algebra g is solvable if Dng = 0 for some sufficiently large n. A Lie algebra g is semisimple
if it contains no non-zero solvable ideals, while it is simple if it is not abelian and if it contains
no non-trivial ideals.

A connected Lie group G is semisimple if its Lie algebra is semisimple, while it is simple if
its Lie algebra is simple.

Theorem 6.5.1. Every semisimple Lie algebra g can be written uniquely as a direct sum of its
simple ideals.
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A semisimple Lie algebra g is compact if its Killing form is negative definite. If none of the
simple ideals of a semisimple Lie algebra g is compact then g is without compact factors. A
semisimple Lie group whose Lie algebra is without compact factors is without compact factors.

The derived series of a group G is the descending sequence of groups

G(0) BG(1) BG(2) B . . .

defined recursively by G(0) := G and G(i+1) := [G(i), G(i)]. Each quotient G(i)/G(i+1) is abelian.
A group G is solvable if G(n) = 0 for some sufficiently large n. A group G is virtually solvable
if it admits a finite-index subgroup which is solvable.

Lemma 6.5.2. (i) Every subgroup of a solvable group is solvable;

(ii) Every quotient group of a solvable group is solvable;

(iii) Every extension of a solvable group by a solvable group is solvable;

(iv) If G < GL(n,C) is solvable then the Zariski closure G is solvable.

Corollary 6.5.3. If G < GL(n,C) is virtually solvable then the Zariski closure G is virtually
solvable.

Proof. Every finite-index subgroup H < G admits a finite-index subgroup H ′ < H which is
normal in G. Indeed it suffices to consider the kernel of the homomorphism from G to the
group of permutations of left cosets of H wich maps each a ∈ G to the left translation by a.
Therefore we can always choose a finite-index normal solvable subgroup H C G. The Zariski
closure H is normal in G and the projection π : G→ G/H defines a homomorphism of algebraic
groups. Now since the image π(G) must be finite (and in particular closed) then π(G), which
equals π(G) = π(G), must be finite too. Therefore H is a finite-index solvable subgroup of
G.

A linear group G < GL(n,C) is algebraic if it is closed with respect to the Zariski topology.
It is an algebraic R-group if the ideal of polynomials vanishing on G is generated by polynomials
with real coefficients. The group of R-rational points of G is G(R) := G ∩GL(n,R).

Lemma 6.5.4. In every algebraic group G there exists a unique maximal normal connected
solvable subgroup R(G), and this subgroup is algebraic.

The subgroup R(G) is called the radical of G, and the group G is semisimple if its radical is
trivial. If a linear algebraic group G < GL(n,C) is semisimple then its group of R-rational points
G(R) is a semisimple Lie group. A connected algebraic group G is simple if it is non-abelian
and has no proper normal algebraic subgroups apart from the trivial one. It is almost simple if
it is non-abelian and has no proper normal algebraic subgroups except for finite subgroups.

Theorem 6.5.5. Every connected semisimple algebraic group G can be written uniquely as an
almost direct product of its minimal connected non-trivial normal algebraic subgroups, i.e. of
its almost simple normal subgroups G1, . . . , Gn. In particular, there are only finitely many such
subgroups. Every connected normal algebraic subgroup of G is a product of those Gi it contains,
and commutes with the other ones.

If none of the minimal connected non-trivial normal algebraic subgroups of a semisimple
algebraic group G is compact then G is without compact factors.

An element a in a linear algebraic group G < GL(n,C) is unipotent if a − I is a nilpotent
endomorphism of Cn. Since sums and products of nilpotent elements of a ring are nilpotent,
products of unipotent elements are unipotent. The group G is unipotent if all its elements are
unipotent. The unipotent radical Ru(G) of G is the maximal unipotent subgroup of R(G), and
G is reductive if its unipotent radical is trivial.
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Theorem 6.5.6. Every finite dimensional rational representation of a reductive algebraic group
is completely reducible.

Theorem 6.5.7 (Levi’s decomposition). Let G < GL(n,C) be a connected linear algebraic
group. Then there exists a reductive subgroup H < G such that G ' H nRu(G).

Proposition 6.5.8. Let G be a reductive group. Then the commutator subgroup [G,G] is
semisimple and every semisimple subgroup of G is contained in [G,G].

Amenable groups

Definition 6.5.9. Let G be a Lie group and let µ be a left Haar measure for G. Let L∞(G,µ) be
the Banach space of (classes of) real-valued measurable functions on G with finite L∞-norm and
let L∞(G,µ)∗ be its continuous dual space endowed with the dual norm. A continuous linear
functional Λ ∈ L∞(G,µ)∗ is a mean if ‖Λ‖ = 1 and if it is positive, i.e. if f > 0⇒ Λ(f) > 0. The
left translation of G onto itself defines a left action of G onto L∞(G,µ) given by a ·f(b) := f(ab)
for all a, b ∈ G. A mean Λ is left-invariant if Λ(a · f) = Λ(f) for all a ∈ G and f ∈ L∞(G,µ).
The Lie group G is amenable if it admits a left-invariant mean.

Lemma 6.5.10. (i) Every closed subgroup of an amenable group is amenable;

(ii) Every quotient group of an amenable group is amenable;

(iii) Every extension of an amenable group by an amenable group is amenable;

(iv) Every direct limit of amenable groups is amenable;

(v) Every abelian group is amenable;

(vi) Every compact group is amenable.

Corollary 6.5.11. All solvable and virtually solvable groups are amenable.

Proof. It is a direct consequence of (v), (iii) and (vi) of the previous Lemma.

Example 6.5.12. A non-commutative free group is not amenable. The groups SL(n,K) (and
thus GL(n,K) and PSL(n,K) too) are non-amenable for n > 2.

Theorem 6.5.13 (Tit’s alternative). Let G be a subgroup of GL(n,R). Then G containes
either a solvable subgroup of finite index or a non-abelian free subgroup.

Lattices

A Lie group G is unimodular if its Haar measure is both left and right-invariant.

Example 6.5.14. Abelian groups, compact groups, semisimple Lie groups, reductive algebraic
groups and the their groups of R-rational points are all unimodular.

Lemma 6.5.15. Let G be a unimodular Lie group and let H < G be a subgroup. Then the
quotient space G/H admits a unique G-invariant measure induced by the Haar measure of G.

A discrete subgroup Γ of a unimodular Lie group G is a lattice if the G-invariant measure
on G/Γ is finite. A subgroup H < G is cocompact (or uniform) if the quotient space G/H is
compact.

Theorem 6.5.16 (Borel). Semisimple Lie groups, reductive algebraic R-groups and their groups
of R-rational points admit cocompact lattices.
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A lattice Γ in a connected semisimple Lie group G without compact factors is reducible if
there exist two non-trivial connected closed normal subgroups H1, H2 C G such that:

(i) H1 ·H2 = H;

(ii) H1 ∩H2 is discrete;

(iii) (Γ ∩H1) · (Γ ∩H2) is a subgroup of finite index in Γ.

The lattice Γ is irreducible if it is not reducible.

Theorem 6.5.17. Let G be a connected semisimple Lie group without compact factors and
let Γ < G be a lattice. Then there exists a finite family of connected normal closed subgroups
H1, . . . ,Hm such that:

(i) if Ĥi :=
∏
j 6=iHj then Hi ∩ Ĥi is discrete;

(ii) G is isomorphic to
∏m
i=1Hi;

(iii) Γi := Γ ∩Hi is an irreducible lattice in Hi;

(iv) Γ1 × . . .× Γm is a normal subgroup of finite index of Γ.

Let G be a connected semisimple Lie group. A connected commutative subgroup T < G is
an R-split torus if all the elements of Ad(T ) are diagonalizable in Aut(g).

Proposition 6.5.18. All maximal R-split tori inside a connected semisimple Lie group have
the same dimension.

The real rank rankRG of a connected semisimple Lie group G is the dimension of a maximal
R-split torus in G.

Remark 6.5.19. If G1 and G2 are connected semisimple Lie groups then rankR(G1×G2) equals
rankRG1 + rankRG2.

Example 6.5.20. The groups SL(2,R) and PSL(2,R) have real rank 1.

Theorem 6.5.21. Let G be a connected semisimple Lie group of real rank at least 2 without
compact factors and with finite center. Let Γ < G be an irreducible lattice. Then for each
algebraic linear R-group H and every homomorphism ρ : Γ→ H(R) the Zariski closure im ρ is
semisimple.

A group is adjoint if its center is trivial.

Lemma 6.5.22. If G is a connected semisimple algebraic linear group then Ad(G) < Aut(g)
is an adjoint group.

Theorem 6.5.23 (Margulis’ super-rigidity). Let G be a connected semisimple Lie group of
real rank at least 2 without compact factors. Let Γ < G be an irreducible lattice, let H be a
connected adjoint semisimple algebraic R-group without compact factors and let ρ : Γ → H(R)
be homomorphism whose image is dense in H with respect to the Zariski topology. Then ρ
extends uniquely to a surjective homomorphism ρ̃ : G→ H(R)0.
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