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We investigated the possible interplay between insulin
and glucose signaling pathways in rat pancreatic β-cell
with a special focus on the role of glucose in IRS signal-
ing in vivo. Three groups of rats were constituted by com-
bining simultaneous infusion during 48 h either of glucose
and/or insulin, or glucose+diazoxide: Hyperglycemic-
Hyperinsulinemic (HGHI), euglycemic-Hyperinsulinemic
(eGHI), Hyperglycemic-euinsulinemic (HGeI). Control rats
were infused with 0,9% NaCl. In HGHI and HGeI rats
plasma glucose levels were maintained at 20-22 mmol/l. In
eGHI rats, plasma glucose was not different from that of
controls, whereas plasma insulin was much higher than
in controls. In HGHI rats, IRS-2 mRNA expression, to-
tal protein and phosphorylated protein amounts were in-
creased compared to controls. In HGeI rats, only IRS-2
mRNA expression was increased. No change was observed
in eGHI rats whatever the parameter considered. In all
groups, mRNA concentration of IRS-1 was similar to that
of controls. The quantity of total and phosphorylated IRS-
1 protein was dramatically increased in HGHI rats and
to a lesser extent in eGHI rats. Neither mRNA nor IRS-1
protein expression were modified in HGeI rats. The data
suggest that glucose and insulin play at once a specific
and a complementary role in islet IRSs signaling. Espe-
cially, glucose stimulates IRS-2 mRNA expression what-
ever the insulin status and independently of the secre-
tory process. The differential regulation of IRS-1 and
IRS-2 expressions is in agreement with their supposed
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different involvement in the control of β-cell growth and
function.
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INTRODUCTION
According to our current knowledge, signals generated by

glucose metabolism within pancreatic β-cells are crucial not
only for insulin synthesis, storage and release [1], but also for
the control of β-cell growth and β-cell development [2, 3].
More recently, this concept has been enriched by the discovery
of new pathways involved in the maintenance of a functional
β-cell mass. Indeed, the importance of the insulin/insulin-like
growth factor (IGF) signaling system for endocrine pancreas
function and β-cell mass homeostasis emerged from several
studies using either transgenic mice [4] or β-cell lines [5].

A possible cross talk between both signaling systems is sug-
gested by recent data showing that metabolic and ionic events,
especially calcium-regulated events, currently associated with
glucose-induced insulin secretion could also be due to activation
of the insulin/IGF signaling system. For example, over expres-
sion of the insulin receptor or the insulin-receptor substrate-1
(IRS-1) in β-cells leads to a high increase in basal cytosolic
Ca 2+levels resulting from inhibition of Ca 2+uptake by en-
doplasmic reticulum [6]. Moreover, the elevation of cytoso-
lic Ca 2+concentration linked to insulin stimulatory process
is blunted in β-cell lines derived from IRS-1−/−mice [7]. Al-
though some studies suggest that glucose may stimulate IRS
protein phosphorylation in vitro [8, 9], the ability of glucose
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per se to interfere with insulin/IGF signaling system within
pancreatic islets is less well documented and remains to be
clarified.

In our study we attempted to evaluate the specific effect of
glucose and the combined effects of glucose and insulin on in-
sulin/IGF signaling system in rat β-cells. We concentrated on
IRS-1 and IRS-2 molecules because they are key mediators in
insulin and IGF-1 signaling and their importance in β-cell phys-
iology is evidenced by several recent data [10–12]. Finally, to
assess physiological relevance of the data we aimed at perform-
ing the experiments in vivo. In this way we designed an experi-
mental model in rats consisting in the infusion during 48 h of ei-
ther glucose to induce hyperglycemia and hyperinsulinemia, or
glucose+insulin to provoke hyperinsulinemia associated with
euglycemia, or glucose+diazoxide (a potent inhibitor of in-
sulin secretion) to establish hyperglycemia with euinsulinemia.
Islet IRS-1 and IRS-2 mRNA, protein expression and phospho-
rylation were further evaluated by semi-quantitative RT-PCR,
western blotting and immunoprecipitation, respectively.

RESEARCH DESIGN AND METHODS

Animals
Three-month-old male Wistar rats weighing 280-300g, were

used. They had free access to water and standard laboratory diet
pellet (No.113, UAR, Villemoisson-sur-Orge, France).

Infusions
Rats were randomly divided into five groups as follows:

1. 0.9% NaCl infused rats (controls; NaCl rats), 2. Glucose-
infused rats (hyperglycemic-hyperinsulinemic; HGHI rats), 3.
Glucose+insulin-infused rats (euglycemic-hyperinsulinemic;
eGHI rats), 4. diazoxide-infused rats (control diazoxide;
DZ rats), 5. glucose+diazoxide-infused rats (hyperglycemic-
euinsulinemic; HGeI rats). The long-term infusion technique
in unrestrained rats was used, as previously described [13, 14].
Briefly, 2 days before infusion rats were fitted with an in-
dwelling jugular vein catheter, and during the infusion period,
rats were permanently connected to a pump via a device fitted
with a water-tight swivel. All infusions lasted 48 h.

In HGHI rats, hypertonic (30% wt/vol) glucose (Chaix & Du
Marais, Paris, France) was infused at an initial rate of 50 µl/min
to produce hyperglycemia around 20 mM throughout the infu-
sion period. In eGHI group, euglycemia and hyperinsulinemia
were induced using insulin infusion during 48 h at a rate of
30 µU/min (Novo/Nordisk, Bagsvaerd, Denmark), to produce
a hyperinsulinemia ∼15 fold higher than that of HGHI rats. Si-
multaneous glucose infusion allowed to maintain euglycemia
(∼5 mM). In HGeI rats, hyperglycemia and euinsulinemia
were induced by a simultaneous infusion of diazoxide (Sigma,

St Louis, USA) and hypertonic (30% wt/vol) glucose, which
was infused at the same flow rate as in HGHI rats. Diazox-
ide solution (added to a bicarbonate-phosphate buffer pH 9.5)
was infused in HGeI and the DZ groups at a flow rate of
5 mg·kg−1·h−1.

During infusion periods, plasma glucose and insulin con-
centrations were measured on arterio- venous blood collected
from tail vessels by tail snipping, five times daily in HGHI,
HGeI, and eGHI rats. This daily control allowed glycemia and
insulinemia to be maintained in the required ranges by adjust-
ing the infusion flow rate. Glycemia and insulinemia remained
stable in NaCl and DZ groups, so blood was collected only
twice daily. Rats in which glycemia and insulinemia did not
stay within wished ranges were discarded.

Islet Isolation
Rats were anesthetized with pentobarbital (4 mg/100g body

wt i.p.). Islets of Langerhans were isolated after collagenase
digestion of the pancreas according to the method of Pralong
et al [15].

REVERSE TRANSCRIPTION-POLYMERASE
CHAIN REACTION (RT-PCR) ASSAY

Total cellular RNA from frozen islets were extracted using
Chomczynski’s method [16]. 1200 islets were homogenised in
trizol reagent (Gibco BRL, Life Technologies Inc., Gaithers-
burg, USA) with a syringe (700 islets/ml) according to the
manufacturer’s protocol. RNA were resuspended in distilled
water and stored at −80◦C until used.

For the semi-quantitative analysis for mRNA encoding
IRS-1, IRS-2 and α-tubulin (co-amplified to normalize),
1 µg of total RNA was reversed transcribed and ampli-
fied according to the protocol of One Step PCR (Qiagen,
Courtaboeuf, France). The primers used for IRS-2 were: for-
ward 5′ GTC-GTT-GTC-TCC-ACC-ACC-3′ and reverse 5′-
GTT-CCT-CAG-CCT-TCC-TCT-3′ and provided amplification
of a 696pb fragment. The primers used for IRS-1 were:
forward 5′-ACC-ATG-GGG-ACA-AGC-CCG-GCC-3′ and re-
verse 5′-GGG-GCT-GCT-GGT-GTT-GGA-ATC-3′ and pro-
vided amplification of a 744 pb fragment. The primers used for
the α-tubulin were: forward 5′-ATG-CCC-TCA-CCC-ACG-
TAC-3′ and reverse 5′-CTC-GCA-TCC-ACT-TCC-CTC-3′ and
provide amplification of a 451 pb fragment. cDNA were ana-
lyzed after 32 cycles of PCR, allowing an amplification of prod-
ucts within the linear range of the PCR. Each amplification cy-
cle consisted of 1 min denaturation at 94◦C, 1 min annealing at
55◦C and 1 min extension at 72◦C. PCR products were submit-
ted to electrophoresis on a 2% agarose gel and bands were visu-
alized by ethidium bromide staining. Polaroid 665 photographs
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of the gel were scanned and band intensities were quantitated
by densitometry using NIH1.62 Image software (version 1.62;
National Institutes of Health, Bethesda, Maryland, USA). Re-
sults were expressed as the ratio of IRS-2 or IRS-1 value against
β-tubulin value.

Immunoprecipitation
Frozen islets were lysed for 5 min at 4◦C, in 500µl lysis

buffer (50mM Tris-HCl pH 7.4; 100mM NaCl; 1% nonidet
P-40; 5 mM EDTA; 50 mM NaF; 1mM sodium orthovana-
date), in the presence of a protease inhibitor cocktail (Roche-
diagnostic, Mannheim, Germany). Insoluble material was re-
moved by centrifugation at 12.000 g at 4◦C for 5 min. Protein
concentration in the supernatant was determined by Lowry’s
method using commercial kit (Interchim, Montluçon, France).
Islet protein (250 µg) was incubated overnight at 4◦C with 2 µg
of anti-IRS-2 antibody (Upstate Biotechnology, Mundolsheim,
Germany). Immune complexes were captured by adding pro-
tein A-Agarose beads (Upstate Biotechnology, Mundolsheim,
Germany) and incubating for 2 h at 4◦C. After 1 min centrifu-
gation at 12.000 g at 4◦C, the supernatant was removed and
stored at −80◦C or immediatly immunoprecipitated with 2 µg
IRS-1 antibody (Upstate Biotechnology, Mundolsheim, Ger-
many). Immune complexes in the pellet were briefly washed
six times at 12.000g at 4◦C with lysis buffer. The pellet was fi-
nally suspended in 30 µl of Laemmeli sample buffer X4 (62 mM
Tris-HCl pH6.8, 10% glycerol, 2% SDS, 0.25% bromophenol
blue and 1% β-mercaptoethanol), and boiled for 5 min.

For Western blot analysis, proteins were run on a 10%
SDS-Page gel and they were then transferred to nitrocellu-
lose membranes (Amersham, Les Ulis, France). IRS-1 and
IRS-2 phosphorylation was analyzed by subsequent preincu-
bation for 30 min in blocking solution (0.2% Tween-20 in
PBS) and incubated with 2 µg of anti-phosphotyrosine antibody
(Upstate Biotechnology, Mundolsheim, Germany). The mem-
branes were then washed in PBS containing 0.05% Tween-20
and reincubated with a 5 µg of horseradish peroxidase-coupled
rabbit anti-mouse immunoglobulin G (Upstate Biotechnol-
ogy, Mundolsheim, Germany). Immunoreactivities were re-
vealed using the ECL chemi-luminescence reaction (Amer-
sham Parmacia Biotech, France). The membranes were then
stripped 30 min at 65◦C in stripping buffer (Urea 10mM,
Sodium phosphate 0.05 M pH6.5, β-mercaptoethanol 0.1 M).
After several washes the membrane were blocked 30 min
in PBS with 3% non-fat milk and immunoblotted with 2
µg anti-IRS-2 antibody or 2 µg anti-IRS1 antibody (Upstate
Biotechnology). Bound antibodies were detected with 5 µg
horseradishh peroxidase-coupled goat anti-rabbit immunoglob-
ulin G (Chemicon International, USA), using the ECL detection
system.

The absence of IRS-1 band on membranes obtained after
IRS-2 immunoprecipitation and the absence of IRS-2 band on
membrane obtained after IRS-1 immunoprecipitation were used
as controls for immunoprecipitation, respectively. Band inten-
sities were quantified with NIH1.6 Image.

Analytical Methods
Plasma glucose was determined by a Glucose Analyzer (Glu-

cotrend, Boehinger Manheim, Germany). Insulin was measured
by a radioimmunoassay kit (Sorin, Italy). The lower limit of the
assay was 0.07 nmol/l, with a coefficient of variation within and
between assay of 6%.

Data Presentation and Statistical Methods
Data are presented as means ±SE. Statistical significance

was determined with the analysis of variance test (ANOVA
test). P < 0.05 was considered significant.

RESULTS

Plasma Glucose and Insulin Concentrations
During Infusion

In the NaCl group, plasma glucose and plasma insulin re-
mained stable during the 48 h infusion period (Figure 1). In
HGHI rats, glucose infusion led to a rapid increase in glycemia,
which was maximal at 6 h and stabilized at 20-22 mmol/l until
the end of infusion. As a result, insulinemia increased rapidly
reaching a mean value around 1 nmol/l (Figure 1). In the eGHI
group, plasma insulin level was 15 times higher than in HGHI
rats, whereas plasma glucose was similar to that of NaCl rats
(Figure 1). In HGeI rats, insulinemia was maintained close to
basal values throughout glucose infusion. The plasma glucose
level was as expected to be very similar to that of HGHI group.

Diazoxide infusion did not influence plasma parameters
since no differences in both glycemia or insulinemia were ob-
served in the diazoxide group as compared with NaCl rats
(Figure 1).

Pancreatic Islet IRS-2 and IRS-1 mRNA Levels
In HGHI and HGeI groups an increase in the mRNA IRS-2

level was observed (+44% and +63%, respectively) as com-
pared with NaCl group. No modification was observed in eGHI
and DZ groups (Figure 2A).

There was no significant modification of the mRNA IRS-1
level in any groups as compared with NaCl rats (Figure 2B).

IRS-2 and IRS-1 Protein and Phosphorylated
Protein Expressions

A 3-fold increase of IRS-2 protein expression was observed
in the HGHI group as compared with NaCl group, whereas in the
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FIGURE 1
Time course of plasma glucose and insulin concentrations

during a 48 h infusion either saline (NaCl), or glucose (HGHI),
or glucose+Insuline (eGHI) or glucose +diazoxide (HGeI).

Data are means ± SE. n = 8 in each group. ∗p < 0.01%
compared with saline control.

other groups IRS-2 protein expression level remained similar
to that of controls (Figure 3A). The phosphorylated IRS-2 level
was 1.5-fold higher in HGHI than in NaCl rats. No variation in
this parameter was observed in the other groups compared to
control NaCl rats (Figure 4A).

As compared with NaCl rats, a 2.5 and 1.5-fold increase in
IRS-1 protein expression was noticed in the HGHI and eGHI
group respectively. No modification was observed in HGeI
group (Figure 3B). Compared with NaCl rats, the IRS-1 acti-
vation profile was fitted to the one of IRS-1 protein expression
i.e., 2- and 1.5-fold increase in the HGHI and eGHI groups,
respectively (Figure 4B). Note that for all parameters of IRS
mRNA and protein expression no difference could be detected
between DZ and NaCl control rats.

FIGURE 2
Expression of IRS-2 (2A) and IRS-1 (2B) mRNA in pancreatic
islets after a 48 h infusion either of saline (NaCl), or glucose
(HGHI), or glucose + insulin (eGHI), or diazoxide (DZ), and
glucose + diazoxide (HGeI). (2A) n = 4 for NaCl , DZ and

HGeI, n = 6 for HGHI, n = 4 for eGHI. Data are means ± SE.
∗P < 0,05; (2B) n = 7 for NaCl, n = 4 for HGHI,eGHI and

HGeI; n = 5 for DZ.Data are means ± SE. ∗P < 0,05

DISCUSSION
Our data clearly show that islet mRNA and protein IRS ex-

pression are influenced by changes in plasma glucose and in-
sulin concentrations in vivo. However, both molecules played
either specific or synergistic roles according to the IRS isoform
considered and the level of control of its expression.

In our opinion, the most striking finding emerging from our
study is the demonstration of a specific effect of glucose on
islet IRS-2 mRNA expression. At first, islet IRS-2 mRNA con-
centration was significantly increased in both hyperglycemic-
hyperinsulinemic and hyperglycemic-euinsulinemic rats, thus
stressing that the stimulating effect of glucose could be exerted
independently of the insulin status. Some previous studies dealt
with the ability of glucose to interfere with islet insulin/IGF
signaling system. Velloso et al. [9] showed that glucose could
promote phosphorylation of the insulin receptor and IRS-1 and
IRS-2 in a dose-dependent manner in cultured rat pancreatic
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FIGURE 3
Protein expression of IRS-2 (3A) and IRS-1 (3B) in pancreatic

islets after 48 h infusion of saline (NaCl), glucose (HGHI),
glucose+insulin (eGHI), diazoxide (DZ) or glucose

+diazoxide (HGeI). (3A) n = 4 for NaCl,HGHI and eGHI; n
= 6 DZ; n = 5 for HGeI. Data are means ± SE. ∗P < 0,05;

(3B) n = 7 for NaCl, n = 4 for HGHI, eGHI and HGeI; n = 5
for DZ. Data are means ± SE. ∗P < 0,05

islets. Rothenberg et al. [8] using the βTC3 insulin secreting
β-cell line demonstrated that glucose-induced insulin secretion
promoted phosphorylation of the insulin receptor and its intra-
cellular signal transduction pathway including IRSs molecules.
However, in both experiments because high glucose concentra-
tion activated the insulin secretory process, glucose-induced
insulin secretion rather than glucose itself could be responsible
for the activation of the receptor tyrosine kinase signaling by an
autocrine mechanism. It is noteworthy that in the Rothenberg
et al. [8] study, receptor phosphorylation was prevented by
blocking the insulin secretory process but was stimulated by
adding insulin to the incubation medium. In our study, the fact
that the effect of glucose persisted when insulin secretion was
blocked by diazoxide strongly suggests - for the first time to our
knowledge - that the increase in islet IRS-2 mRNA expression

FIGURE 4
Expression of tyrosine phosphorylated IRS-2 (4A) and IRS-1

(4B) in pancreatic islets after 48 h infusion of either saline
(NaCl), or glucose (HGHI), or glucose+insulin (eGHI), or

diazoxide (DZ) or glucose + diazoxide (HGeI). (4A) n = 4 for
NaCl, HGHI and eGHI; n = 6 for DZ; n = 5 for HGeI. Data
are means ± SE. ∗P < 0,05; (4B) n = 7 for NaCl, n = 4 for
HGHI,eGHI and HGeI; n = 5 for DZ. Data are means ± SE.

∗P < 0,05

was not related to the glucose-induced stimulation of insulin
secretion but to the stimulating effect of glucose (or glucose
metabolism products) itself. Although this provide evidence
that glucose and/or glucose metabolism products are involved in
the control of the steady-state islet IRS-2 mRNA levels, further
investigations are required to determine whether this control is
exerted at the level of gene transcription and/or by stabilizing
mRNA [17]. Moreover, an indirect effect through the activation
of transcription factors by glucose responses cannot be excluded
[17].

The association of hyperinsulinemia and hyperglycemia was
required for the increase in IRS-2 protein and its phosphory-
lation. These data are in favor of additional effect of glucose
and insulin on IRS-2 protein expression and tyrosine phospho-
rylation and suggests that insulin in the presence of high glu-
cose could stimulate pancreatic islet IRS-2 gene translation.
Whereas the regulation of IRSs proteins activation by phos-
phorylation is abundantly documented (review in 18), little is
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known about the control of IRSs proteins expression at least in
pancreatic islets. Although direct evidence of the role of insulin
did not emerge from these studies, several recent data showed
that IRS-2 over expression and/or tyrosine phosphorylation in
the pancreas correlates with intense β-cell growth as well in
regenerating pancreas of partially pancreatectomized rats [19]
as in pancreatic β-cell lines [20, 21]. The role of IGF-1 has
been explored because of the very likely interface between the
insulin and IGF islet signaling pathway (22 and review in 12).
In Lingohr et al. study, the increase in IRS-2 expression was
specifically related to IGF-1-stimulated β-cell proliferation.

Moreover the stimulating effect of IGF-1 was glucose-
dependent [21]. Withers et al. [22] proposed that IRS-2 was
the main mediator of IGF-1 in promoting β-cell growth dur-
ing embryogenesis and post-natal development. In our study,
we cannot rule out the possibility that insulin effects shown
in HGHI and eGHI rats could be ascribed, at least in part, to
binding of the hormone to IGF-I binding sites present on pan-
creatic β-cells due to the high levels of insulin in euglycemic-
hyperinsulinemic rats. We infused insulin at a high flow rate in
this group because exogenous infusion of insulin cannot mimic
exactly the effect of endogeneous hyperinsulinemia on the β-
cell. Especially the increase in intraislet insulin concentration in
response to glucose stimulation with possible autocrine and/or
paracrine effects are missed. Previous studies showed that the
dramatic increase in intra-islet insulin induced by high glucose
was crucial for autocrine and paracrine interactions [23, 24].
Therefore the high flow rate of insulin infusion meets an at-
tempt to increase insulin concentration enough to come near the
autocrine/paracrine and endocrine situation induced by glucose
infusion in HGHI rats.

The regulation of islet IRS-1 expression by glucose and in-
sulin was quite different from that of IRS-2. Firstly, neither
insulin nor glucose influenced islet IRS-1 mRNA levels. Sec-
ondly, IRS-1 protein expression and tyrosine phosphorylation
were increased by hyperinsulinemia associated or not with hy-
perglycemia, whereas in hyperglycemic-euinsulinemic rats no
change in these parameters was observed. This indicates that in
pancreatic islets, IRS-1 protein expression and tyrosine phos-
phorylation are dependent on insulin levels and not on glucose
concentration. In keeping with these data Rothenberg et al. [8]
showed that glucose itself was not required for the increase
in IRS-1 tyrosine phosphorylation whereas insulin secretion
(likely via a paracrine regulation) and/or exogenous insulin
were crucial for this increase. To know whether the stimulating
effect on IRS-1 expression that we observed strictly reflects in-
sulin action through the binding on its own receptor or is partly
due to insulin binding on IGF-1 receptor remains questionable
for the same reasons as discussed above for the regulation of
IRS-2 expression.

The differential regulation of islet IRS-1 and IRS-2 expres-
sion that we observed fits to our current knowledge and hypoth-
esis on the respective biological effects of IRS-1 and IRS-2.
There is now a large amount of evidence indicating that IRS-1
and IRS-2 have distinct roles in the maintenance of a functional
β-cell mass, IRS-2 being involved in β-cell growth and survival
[11, 25, 26] whereas IRS-1 signaling is important for the insulin
secretory pathway [25, 27, 28].

In conclusion, the data suggest that glucose and insulin play
both a specific and a complementary role in islet IRS signalling
in vivo. Especially, glucose stimulates IRS-2 mRNA expression,
whatever the insulin status and independently of the secretory
process. The differential regulation of IRS-1 and IRS-2 expres-
sions is in agreement with their supposed different involvement
in the control of β-cell growth and function. Exploring the in-
terplay between glucose and the insulin/IGF signaling system
in the β-cell will help us to better understand the deterioration
of β-cell function and growth in type 2 diabetes. Our model
appears as particularly suitable to such studies in vivo.
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