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Abstract

Product Lines or Families represent a new paradigm widely used to describe com-
pany products with similar functionality and requirements in order to improve effi-
ciency and productivity of a company. In this context many studies are focused on
the research of the best behavioural model useful to describe a product family and
to reason about properties of the family itself. In addition the model must allow to
describe in a simple way different types of variability, needed to characterize several
products of the family.

One of the most important of these models is the Modal Transition System
(MTS), an extension of a Labelled Transition System (LTS), which introduces two
types of transitions useful to describe the necessary and allowed requirements. These
models have been broadly studied and several its extensions have been described.
These extensions follow different approaches which entail the introduction of more
and more complex and expressive requirements. Furthermore MTS and its exten-
sions define a concept of refinement which represents a step of design process, namely
a step where some allowed requirements are discarded and other ones become nec-
essary.

In this thesis we introduce a new model, the Constrained Modal Transition Sys-
tem (CMTS ), which is a particular and more expressive extension of MTS. Moreover
we study different and useful properties correlated to the CMTS. Also, we use CMTS
as an useful tool to determine and to define a a hierarchy of expressivity of the known
extensions with variability of LTSs and MTSs. In order to check different properties
of a product family, we introduce a new deontic-temporal logic based on CTL* in-
terpreted over CMTSs able to express classical safety and liveness properties as well
as concepts like obligatory, permission and prohibition. Finally some useful opti-
mizations are introduced to guarantee a less expensive verification from complexity
point of view.
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Chapter 1

Introduction

Today for many large and medium size companies the market is become very com-
petitive because of the globalization, the quick development of technologies which
requires updates over and over again and the customers who want new reliable prod-
ucts developed in short time. For companies, every aspect of technical production
must be improved in order to reach low costs and high productivity and so high
profits. Nevertheless in the present day the improvement of the company techni-
cal production is not enough to survive in the market, it becomes fundamental the
management aspects of the company too. Indeed, now companies must be ready to
follow the market and its changes, to change the initial target and to be more flex-
ible than the past. For these reasons good management choices allow the product
victory or defeat in the market and so the company victory or defeat.

In this context the Software Engineering helps us to study the problem and to
find the best suitable solution to improve efficiency and productivity and, in effect,
many studies of Software Engineering focus on the development and the studying
of efficient decision-support softwares, specification languages (visual or not) useful
to allow the communication and the idea exchange among several company stake-
holders, approaches, strategies and architectures needed to maximize the profit and
so on.

One of these approaches exploits a typical computer science technique: the reuse.
In Computer Science the idea is to exploit the code, the interface or the program
structure developed, checked and verified for other projects in order to produce new
code for the new project with less possible effort. This technique has been applied
in a systematic way in the software production until now but recently it is applied
in a more general way, not only in the technical production but in the development
of business strategy and in the decision phase of manager too. Instead of designing,
realizing the necessary and possible requirements, coding and verifying a single
product, we can generalize the entire production line to the family of products
where every product has some common features of the family and own different
features.
In this case we use the term Software Product Line [19] [31] to indicate a set of
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software-intensive systems sharing a common, managed set of features that satisfy
the specific needs of a particular market segment or mission, and that are developed
from a common set of core assets in a prescribed way. This approach allows us to
exploit the benefits of the reuse in every phase of our production line and these
benefits are converted in profit for companies. Of course this technique is easily
extendible to other production fields and it is called Product Line where this
term means a family of a generic kind of products with some common features that
satisfies the specific needs of a particular market segment and that is developed
exploiting the reuse technique.

An example of model to define features and their usage constraints in product-
lines is a Feature Model [7]: the features are organized into a tree, called a feature
diagram, which is used to declaratively specify product line members. Every node
of this tree represents a feature, which can be primitive (leaves) or compound (inner
node) and the arrows define the relationship between children features and the parent
node.
These relationships can be:

• and : all children must be selected

• alternative: only one child can be selected

• or : one or more can be selected

• mandatory : features that required

• optional : features that are optional

These models are visual and the Figure 1.1(a) describes the several types of rela-
tionship, whereas the Figure 1.1(b) shows us an example of this model.

(a) Relationship Types

(b) Feature Diagram example

Figure 1.1: Feature models

In addition to a specification language, we would like to have a technique or a
methodology to check if our specification is correct with respect to our requirements
and this problem is a typical one of verification and validation. The research in the
area of verification has given rise to several different methods: more “classic” ones
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are usually based on some testing activities, for example we may test our system
with different inputs and then evaluating outputs but this approach is much expen-
sive from point of view of the computational cost and the execution time, moreover
the increase of complexity of systems introduces unpredictable errors which are com-
plicated to find.

For these reasons but not only the techniques based on formal methods are
preferred. The idea of formal methods is simple: on the one hand we have a formal
description of our system and on the other hand we have a formal description of
properties that the system must satisfy and, exploiting some types of algorithms,
this method can check if the properties are satisfied by our system. In literature
these methods can be roughly divided into two types: the behavioural one, in which
a property is described by a set of “right” behaviours of our system and the logical
one, in which a property is described by a logic. The latter approach is typical in
model checking techniques, whereas the former is based on the checking equivalence
(or some kind of similarity) between behaviours of our model and our property.
Typically these techniques are applied to a model which describes a single computer
system, namely a single product with a well-defined behaviour. We want to highlight
that this behaviour may also be very complex and/or have non-deterministic choices,
but anyway it is always and only related to a single product.

So for our needs we would like to have a formalism useful to describe a product
family (a set of possible products with possibly different behaviours) and in literature
it is possible to find some useful formalisms. For our purpose we take into account
the modal transition system (MTS), introduced by Larsen and Thomsen in [36].
The MTS is a particular extension of a labelled transition system (LTS), which is a
standard formalism to describe processes and it can be seen as a graph with nodes
as states and arrows as labelled transitions. On the contrary of LTSs, MTSs have
two kinds of transitions: must transitions representing required behaviours in all
products and may transitions representing allowed behaviours, which can exist or
not in every correct product.

For example in the Figure 1.2 we can see a MTS which represents a specification
of a simple component that, received a request, in some way it provides response.
The handling of the request is underspecified: the component may make a query A
or a query B. If it makes a query A then it may make a query B or it may send the
answer directly, whereas if it makes a query B then it must answer. In the figure we
can also see a possible implementation described by a LTS.

Whereas LTSs have a some kind of behavioural equivalence called bisimilarity,
MTSs have a generalization of the bisimilarity which allows us to understand if a
MTS is a refinement of an other one, that is if the set of implementations derived
by a MTS is a subset of the set of implementations derived by the other one. In this
way when we say “MTS N is a refinement of a MTS M ”, we mean that N is a MTS
derived by M removing some allowed features and changing some allowed features
into required ones.

Of course this formalism has been studied broadly and several extensions were
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Figure 1.2: An example of a MTS and an its implementation

defined such as disjunctive modal transition system (DMTS) in [37] which trans-
forms the must transition in a must hypertransition, that is a set of transitions
and its semantics requires that at least one of these transitions has to be present
in the final product. Another extension is 1-selecting modal transition system de-
fined in [27] which modifies the semantics of must hypertransition transforming the
disjunctive choice in an exclusive choice, now for every set of transitions related
to a hypertransition one and only one transition has to be present in the product.
In [26] a generalization of DMTS and 1MTS was defined and it called Generalized
Extension Modal Transition System GEMTS, which introduces two new types of
hypertransitions, described by means of ♦ and �, where their meaning is “at most
k of n”, for ♦ and “at least k of n”, for �.

Finally in [12] MTSs were extended exploiting a new approach, the may and must
transitions are unified in a single type of transition like in LTS and an obligation
formula, which represents required features, is connected to the states. This model is
called Obligation Transition System (OTS), moreover OTSs were further extended in
[13], obtaining Parametric Modal Transition System (PMTS) which adds conditional
choices and persistence to the expressivity of model.

1.1 Contribution of the Thesis

In this thesis we introduce a new type of formalism in order to model specifications
and it is called Constrained Modal Transition System (CTMS). In practice a CMTS
has a typical transition system structure but the word “Modal” is introduced for
several reasons:

1. to differentiate this formalism with Constrained Transition System which is
another type of transition system where every transition can have a set of
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constraints

2. to relate this formalism to the other ones derived by MTSs

3. to understand which kinds of constraints we can express on transitions. In
effect these constraints describe us if a transition may or must exist in every
good product or how many transitions (minimum and maximum) of a specific
set may exist, so these constraints describe “modal” situations.

Then we study some problems related to CMTSs as the existence of a minimal
number of constraints to describe a CMTS, the consistency problem and if it is
possible to resolve it easily, the compositionality between two CMTSs, the refinement
relation of CMTSs. Unfortunately some problems are still open, for example the
complexity class of the refinement, the relation between the minimal number of
constraints and CMTSs.

The second step is the usage of CMTSs to find a expressivity hierarchy of all
models known until now, introducing some extensions of CMTSs, in particular in-
troducing some kinds of guards both for transitions and for constraints. Finally
we study if it is possible to find a “good” and interesting logic to use the model
checking technique over CMTSs, obtaining a new type of deontic-temporal logic de-
veloped by means of a new different approach which, to the best of our knowledge,
has never been used. Moreover we identify some useful kind of CMTSs, derivable
from a generic CMTSs easily, which can give semantics to logic formulae in a simple
way.

1.2 Outline of the Thesis

The thesis is organized as follows:

• Chapter 2 describes the background of this thesis, in particular we describe
several extensions of MTS in a more detailed way and some logics used as
starting point to develop our logic. Moreover we introduce some concepts and
definitions used in following chapters.

• Chapter 3 introduces the new formalism, describing some its features. In
particular we study the refinement relation, a possible way to compose different
CMTSs and if it is possible to resolve the minimalization problem, that is if we
have a CMTS M then we can determine a CMTS N , semantically equivalent
to M , with a minimal number of constraints.

• Chapter 4 extends the CMTS formalism further, introducing some kind of
guard in both transitions and constraint definitions. So these extensions are
studied in a deeply way and some problems, caused from how these extensions
are described, is presented and analysed.
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• Chapter 5 exploits CMTS and its extensions defined in Chapter 3 and Chap-
ter 4 to present an expressivity hierarchy of all models described in Chapter 2.
We show some theorems and some examples to describe the structure of the
hierarchy, to understand the expressivity of each model and the relationship
between them.

• Chapter 6 presents some logics to describe properties over CMTS and its
extensions in order to use the several kinds of CMTS and these logics in a
model checking technique. Moreover we describe a particular restriction of
CMTS suitable to reason about the logic in a simple way, where “simple” is
meant from pointview of computational costs, explaining both algorithmically
and conceptually how we can transform a generic CMTS in a CMTS with a
more useful structure.

• Chapter 7 concludes the thesis and discusses about future and ongoing work
for this formalism.



Chapter 2

Background and Preliminaries

In this chapter we describe the MTS model and its extensions in a deeper way, in
particular, for every model, we present its formal definition and the one of refine-
ment related to the model itself. All these models have been studied extensively,
considering different points of view and characteristics, in effect in literature it is
possible to find many works related to them. In this section, of course, we only
describe the useful characteristics for our purposes, ignoring everything else.

Moreover we would like to use the formal methods with the logical approach, so
our specifications should be described by a particular logic. For this reason we also
present some different logics, which are typical in the model checking context and,
as we will see in the Chapter 6, they are our starting point to develop the new
logic too.

However, first of all, we introduce an example of a possible “concrete” specifi-
cation which might be encountered in our everyday life. In following sections and
chapters we exploit this example continuously to show the characteristics of each
model and the expressivity differences among them.

2.1 Example

Suppose we have to describe a family of vending machines which are very simplified
machines and related to a particular type of vending market segment: the drinking
one. In this case we might have several requirements for our machines, in particular:

1. A vending machine is activated by a coin. The only accepted coins are the
one euro coin for European products and the one dollar coin for US products.
Only one kind of coins is accepted.

2. After inserting a coin, the user has to choose whether he wants sugar or not,
by pressing one of two buttons. Then, the user may select the drink.

3. The choice of drinks (coffee, tea, cappuccino) varies between products. How-
ever, every product of the family delivers coffee, and every product of the
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family delivers at least two different drinks.

4. After delivering the drink, a done message is displayed, and, optionally, an
alert tone is rung.

5. The machine goes back in the idle state when the cup is taken by the user.

As we can see, these requirements describe a set of possible, partially different
products and we can divide them in two large categories: US products and European
products. Moreover each category has several possible products.

For a better understanding of product-lines concept, we suppose to link every
possible choice of any feature, previously described in the example, to a label in the
following way:

• feature coins type: US coin for US coins and EU coin for European coins.

• feature sugar choice: Sugar to describe the feature which allows to choose
a beverage with or without sugar.

• feature drink type: Coffee, Tea, Cappuccino for the type of chosen drink.

• feature message type: Answer to describe that our product shows a message
after the delivering of chosen drink.

• feature ring type: Ring if our product has alert tone feature, otherwise
NoRing.

Exploiting these labels we can describe all products derivable from our specification:

• the US category has:

1. US coin, Sugar, Coffee, Tea, Answer, NoRing

2. US coin, Sugar, Coffee, Tea, Answer, Ring

3. US coin, Sugar, Coffee, Cappuccino, Answer, NoRing

4. US coin, Sugar, Coffee, Cappuccino, Answer, Ring

5. US coin, Sugar, Coffee, Tea, Cappuccino, Answer, NoRing

6. US coin, Sugar, Coffee, Tea, Cappuccino, Answer, Ring

• the European category has:

1. EU coin, Sugar, Coffee, Tea, Answer, NoRing

2. EU coin, Sugar, Coffee, Tea, Answer, Ring

3. EU coin, Sugar, Coffee, Cappuccino, Answer, NoRing

4. EU coin, Sugar, Coffee, Cappuccino, Answer, Ring
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5. EU coin, Sugar, Coffee, Tea, Cappuccino, Answer, NoRing

6. EU coin, Sugar, Coffee, Tea, Cappuccino, Answer, Ring

We highlight as a single, simple specification, such as one described in the example,
allow us to describe a large number of different products which have similar features
at the same time.

2.2 Models

In this section we introduce several models developed to describe a specification,
every one has some advantages and some disadvantages for example the more ex-
pressive model is, the higher computational cost is. Even though a categorization
of these models has never been made, we can see easily some common characteristic
in their definition:

1. every model is a particular type or an extension of transition systems

2. some models introduce the modal operators � and ♦ in their definition and
we could call the set of these models like Modal Family.

3. other models introduce the obligation concept, using logic formulae related to
states. Every formula represents features requested and we could call these
models like Obligation Family

4. some models in the Modal Family introduce the hypertransition concept, that
is a transition described by a pair (s, T ) where s is a source state and T is
a set of pairs (l, s′) where l is a label and s′ is a possible target state. We
could call these models Modal HyperTransition Family. In addition the
set of models which use only the transition concept could be called Modal
Transition Family.

5. some models in the Modal HyperTransition Family introduce the modal op-
erators with them classical meaning, � “necessity” and ♦ “possibility”. We
could call the set of these models Alethic Modal Family. On the other
hand some models use the modal operators but their meaning is modified. We
could call these models Extended Modal Family.

The Figure 2.1 summarizes these families, describing the history of all these mod-
els and the different families just presented. Moreover, as we can see, the set of
these models is very heterogeneous because of different approaches used in their
development.
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Figure 2.1: The history of models

2.2.1 LTS

In [32], for the first time, Keller introduced one of most common, used formalism: the
Labelled Transition System which is an extension of the Transition System.

Definition 2.1 (Transition System (TS)):
A Transition System (TS) is a tuple T = (S,−→,S0) where:

• S is a set of states

• −→⊆ S × S is a transition relation

• S0 is a set of initial states

Sometimes, when the information of initial states is irrelevant, S0 is not presented.
�

Definition 2.2 (Labelled Transition System (LTS)):
A Labelled Transition System (LTS) over a set of actions Σ is a tuple L = (S,Σ,−→
,S0) where:

• S is a set of states

• Σ is a set of possible actions
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• −→⊆ S × Σ× S is a transition relation

• S0 is a set of initial states

We denote the set of all possible LTSs by LTS.
�

Let (s, α, s′) ∈−→ for some s, s′ ∈ S and α ∈ Σ then we call source state
the state s, target state the state s′ and label the action α. Moreover a state
without outgoing transitions is called terminal state. For convenience s

α−→ s′ and
(s, α, s′) ∈−→ describe the same thing.

LTS has been introduced to describe parallel and concurrent programs and com-
municating systems, that is systems where their behaviour is defined by executions
of actions. In some context, TSs is called unlabelled TSs to highlight the difference
with LTSs.

The intuitive behaviour of a LTS can be described as follows. The LTS starts in
some initial state s0 ∈ S0, chosen in a non deterministic way, and evolves using the
transition relation. Each step in the LTS follows this rule: if s is the current state,
then a transition s

α−→ s′, originating from s, is selected non-deterministically and
the action α is performed and the LTS evolves from the state s to the state s′.

From this point of view it is possible define a subset of LTSs, which only describes
deterministic systems.

Definition 2.3 (Action-Deterministic LTS):
A Labelled Transition System (LTS) L = (S,Σ,→,S0) is action-deterministic if and
only if:

1. ∀s ∈ S, α ∈ Σ. (s, α, s′) ∈−→ ∧ (s, α, s′′) ∈−→⇒ s′ = s′′

2. |S0| = 1

�

The condition 1) requests a restriction of the relation transition: the target state
of any transition is univocally determined by its source state and its label. The
condition 2) requests a LTS which has got one and only one initial state, removing
the non-deterministic choice in initial states.

Moreover we add some useful definitions to handle the LTS behaviour, presented
like in [6].

Definition 2.4:
Let L = (S,Σ,−→,S0) be a LTS. For s ∈ S and α ∈ Σ, the set of direct α-successors
of s is defined as:

Post(s, α) = {s′ ∈ S. | s α−→ s′}, Post(s) =
⋃
α∈Σ

Post(s, α)
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The set of direct α-predecessors of s is defined as:

Pre(s, α) = {s′ ∈ S. | s′ α−→ s}, P re(s) =
⋃
α∈Σ

Pre(s, α)

�

Definition 2.5 (Path Fragment):
Let L = (S,Σ,−→,S0) be a LTS. A finite path π is a state sequence s0, s1, . . . , sn
such that si ∈ Post(si−1) for all 0 < i ≤ n, where n ≥ 0. An infinite path π is a
state sequence s0, s1, . . . such that si ∈ Post(si−1) for all i > 0

�

Definition 2.6 (Maximal and Initial Path):
A maximal path fragment is either a finite path fragment that ends in a terminal
state, or an infinite path fragment. An initial path fragment is a path which starts
in an initial state, that is s0 ∈ S0

�

Definition 2.7 (Path):
A path of a LTS is an initial, maximal path fragment.

�

Definition 2.8 (Run Fragment):
Let L = (S,Σ,−→,S0) be a LTS. A finite run ρ is a sequence s0α1s1α2 . . . αnsn such

that si
αi+1−−→ si+1 for all 0 < i ≤ n, where n ≥ 0. An infinite run ρ is a sequence

s0α1s1α2 . . . such that si
αi+1−−→ si+1 for all i > 0.

�

The definitions of maximal and initial run is the same of maximal and initial
path, but in this case we consider a run fragment and not a path fragment.

Definition 2.9 (Run):
A run of a LTS is an initial, maximal run fragment.

�

Another problem studied in the LTS world is the following: “taken two different
LTSs L and L1, is it possible to know if L and L1 are behaviourally equivalent?”,
that is “is it possible to say that L and L1 have the same behaviour?”. The relation
which resolves this problem is the bisimulation. It was introduced by Park in [41]
and in literature it is possible to find several kinds of bisimulations like weak [39],
dynamic [16] and so on.

Now we see the definition of bisimulation:

Definition 2.10 (Bisimulation):
Let L = (S,Σ,−→,S0) be a LTS and R ⊆ S ×S be a binary relation over S. Then
R is called bisimulation over L if, whenever sRt:
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• if s
α−→ s′ then ∃t′ ∈ S such that t

α−→ t′ and s′Rt′

• if t
α−→ t′ then ∃s′ ∈ S such that s

α−→ s′ and s′Rt′

�

In some context this bisimulation is also called strong bisimulation.

Definition 2.11 (Bisimilarity):
Let L = (S,Σ,−→,S0) be a LTS and s, t ∈ S be two states. Then we say that s
and t are bisimilar, written s ∼ t, if it exists a bisimulation R such that (s, t) ∈ R.
The relation ∼=

⋃
R is a bisimulation

R is called bisimilarity.

�

Figure 2.2: Examples of LTSs

In Figure 2.2 we can see some different LTSs. Using the bisimulation concept, it
is possible to find out that LTS L and LTS M are bisimilar, whereas LTS N has a
different behaviour compared with the other LTSs. For example this simple action
sequence: {a, b} is possible in L, M, but not in N.

2.2.2 MTS

In [36] Larsen and Thomsen introduced a new formalism: the modal transition
system. They noted that the LTS formalism is expressively too poor in order to
provide a convenient specification. In effect any specification defined through a LTS
will limit the possible implementations to a single (behavioural) equivalence class
and the reason is simple: taken a LTS and using the bisimulation we will be able to
derive other semantically equivalent LTSs, so every specification (LTS) will describe
all and only different products but with the same behaviour.

On the other hand we would like to describe by a specification a wide collec-
tion of (possibly inequivalent) implementations and, exploiting some technique, this
collection should be constantly reduced during the design process in order to deter-
mine a single implementation eventually. It becomes clear that LTSs are not enough
expressive for this task.
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The basic initial idea is simple: a specification makes requirements to implemen-
tations through their operational behaviour and there are two types of requirements:
the necessary one (must) and the possibility one (may). In order to achieve more
expressive specifications Larsen and Thomson add modalities to the transitions of a
specification:

• necessary transition, written s
α−→� s′, which means that in every right

implementation the ability of performing α-action must exist.

• admissible transition, written s
α−→♦ s′, which means that in every right

implementation the ability of performing α-action may exist, that is this ability
is allowed but not required.

Definition 2.12 (Modal Transition System (MTS)):
A Modal Transition System (MTS) is a tuple M = (S,Σ,−→�,−→♦) where:

• S is a set of states

• Σ is a set of actions

• −→�⊆ S×Σ×S is a transition relation which describes necessary requirements
of process behaviours (must transitions)

• −→♦⊆ S × Σ × S is a transition relation which describes admissible require-
ments of process behaviours (may transitions)

Moreover −→�⊆−→♦ and this property is called consistency requirement.
We denote the set of all possible MTSs by MTS.

�

In other context the MTS without the last property, that is −→�⊆−→♦, is called
Mixed Transition System [20].

In Figure 1.2 we can see a typical MTS, where we draw the must transitions as
solid arrows and the may transitions as dashed arrows.

Now in the MTS world a specification is modelled by a MTS, whereas every prod-
uct or implementation is represented by a LTS as we can see in Figure 1.2. Moreover,
in this way, every specification can represent a set of possible LTSs with different
behaviours. We may view implementations as specifications where all requirements
are necessary ones.

Definition 2.13:
A LTS L = (S,Σ,−→) is a MTS where −→�=−→♦=−→.

�

For example in Figure 2.3 we can see an implementation derived by the MTS in
Figure 1.2, but it has a different behaviour compared with the implementation in
Figure 1.2.
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Figure 2.3: An implementation of the MTS in Figure 1.2

The next step is to understand when an implementation is “good”, taken a
specification, or when a particular specification is derived by another one, that is a
relation which describes us the design process. Intuitively, let s, t be two specifica-
tions then we can say that s is derived by t if any behavioural aspect allowed by s
is also allowed by t and, dually, any behavioural aspect requested by t must be also
requested by s. These concepts are formalized by the notion of refinement:

Definition 2.14 (Refinement):
Let M = (S,Σ,−→�,−→♦) be a MTS. A binary relation R ⊆ S × S is called
refinement if and only if (s, t) ∈ R implies:

1. s
α−→♦ s′ ⇒ t

α−→♦ t′ ∧ (s′, t′) ∈ R

2. t
α−→� t′ ⇒ s

α−→� s′ ∧ (s′, t′) ∈ R

s is said to be a refinement of t (s E t) if some refinement relation R exists and
(s, t) ∈ R.

�

Of course a straightforward generalization allows us to compare states from dif-
ferent MTSs. Moreover if s0 E t0, where s0 and t0 are the initial states of L and
M , respectively and L is a LTS and M is a MTS then we will say that L is an
implementation of M .

In addition the refinement relation enjoys many pleasant properties:

1. E is itself a refinement, in particular the maximal one

2. E is a preorder, that is it enjoys the reflexive and transitive property

3. the refinement is a generalization of the bisimulation, in effect if −→♦=−→�
the notions of refinement and bisimulation coincide, and E becomes the bisim-
ilarity ∼.
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2.2.3 DMTS

Sometimes in the modelling of a product-line we would like to say “taken a set of
possible features, at least one of them must be present in our products”. Un-
fortunately, we cannot handle this situation using MTSs but the DMTS formalism
resolves this problem.

The DMTS, introduced in [37] [9], extends the MTS formalism: the type of
must transition is modified from transition to hypertransition, whereas the may
transitions are unchanged.

Definition 2.15 (Hypertransition):
Let S be a set of states, Σ be a set of actions and s ∈ S be a state. Then a
hypertransition is a tuple (s, T ), where T ⊆ Σ× S.
A transition (s, α, s′) is a particular hypertransition (s, T ) where:

1. |T | = 1, that is T is a singleton

2. T = {(α, s′)}

�

Now it is possible to define a DMTS:

Definition 2.16 (Disjunctive Modal Transition System (DMTS)):
A Disjunctive Modal Transition System (DMTS) is a tuple M = (S,Σ,−→�, −→♦)
where:

• S is a set of states

• Σ is a set of actions

• −→�⊆ S × P(Σ× S) is the must transition relation

• −→♦⊆ S × Σ× S is the may transition relation

We denote the set of all possible DMTSs by DMTS.
�

Intuitively s −→� T may be understood as
∨

(α,s′)∈T s −→� {(α, s′)}. On the
contrary to MTS, DMTS allows us to define an inconsistent specification by the
expression s −→� ∅. Another difference is that in the DMTS definition no-one
consistency requirement exists.

Definition 2.17 (Syntactic consistency):
A DMTS is called syntactically consistent if s −→� T implies:

1. T 6= ∅

2. ∀(α, s′) ∈ T. (s, α, s′) ∈−→♦
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�

The syntactic consistency requires that every hypertransition (s, T ) has the set
T 6= ∅ and every transition, required through some hypertransition, must be also
allowed, conceptually this consistency looks like the MTS one.

Definition 2.18:
A MTS is a particular DMTS M = (S,Σ,−→�,−→♦) where:

1. M is syntactically consistent

2. ∀s ∈ S. (s, T ) ∈−→�⇒ |T | = 1, that is T is singleton

�

The next step is to introduce the refinement relation for DMTS:

Definition 2.19 (Refinement):
Let M = (S,Σ,−→�,−→♦) be a DMTS. A binary relation R ⊆ S × S is called
refinement if and only if (s, t) ∈ R implies:

1. s
α−→♦ s′ ⇒ t

α−→♦ t′ ∧ (s′, t′) ∈ R

2. t→� V ⇒ s→� U such that ∀(α, s′) ∈ U. ∃(α, t′) ∈ V ∧ (s′, t′) ∈ R

s is said to be a refinement of t (s E t) if some refinement relation R exists and
(s, t) ∈ R.

�

As in the MTS case, a straightforward generalization allows us to compare states
from different DMTSs, moreover if s0 E t0, where s0 is the initial state of a LTS L and
t0 is the initial state of a DMTS M , then we may say that L is an implementation of
M . In addition this refinement relation has the same properties of the MTS relation.
Note that the refinement of a DMTS coincides with the refinement as defined on
MTS and bisimulation as defined on LTS.

Example 2.1. Suppose that our vending machine has this requirement: “The choice
of drinks (coffee, tea, cappuccino) varies between the products. However, every prod-
uct of the family delivers at least one different drink”. Then we can model it using
the DMTS as described in the Figure 2.4. Note that, for convenience, may transi-
tions are not described. This is not an error since must hypertransitions guarantee us
the presence of may transitions implicitly, if and only if the DMTS is a syntactically
consistent.

Moreover, as we can see, the LTSs L, M and N are some of the possible imple-
mentations of our DMTS.
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Figure 2.4: An example of DMTS and its implementations

2.2.4 1MTS

As we said in the DMTS section, taken a set of possible features, the DMTS allows
us to choose among these features in a disjunctive way, that is for every set we can
make a disjunctive choice. A simple extension may be the change of the choice type.
Using 1MTS, introduced in [27], we can choose in an exclusive way and, from the
modelling pointview, the exclusive choice is equivalent to say “taken a set of possible
features, one and only one of them must be present in our products”.

The 1MTS takes advantage of the hypertransition concept and in addition it
introduces a new concept: the choice function.

Definition 2.20 (Choice function):
Let A be a set, PA ⊆ P(A) and γ : PA −→ A. Then γ is a choice function if
∀B ∈ PA. γ(B) ∈ B. We denote the set of all choice functions on PA by choice(PA).

�

In our context A will be the set of all possible transitions of the entire specifica-
tion, P(A) will be the set of all possible hypertransitions, PA will be the set of all
possible hypertransitions of our specification, B will be a particular hypertransition
and a function γ, taken a hypertransition B, will return one and only one element
of B, that is a transition.

Moreover we introduce a new definition in order to handle the hypertransition
in a more simple way.

Definition 2.21:
Let −→⊆ S × Σ × S be a generic relation and s ∈ S be a state. Then we define
(s

α−→) = {t ∈ S | (s, α, t) ∈−→} and (s −→) = {(α, t) ∈ Σ× S | (s, α, t) ∈−→}
�
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Definition 2.22 (1-selecting Modal Transition System (1MTS)):
A 1-selecting Modal Transition System (1MTS) is a tuple M = (S,Σ,−→�, −→♦)
where:

• S is a set of states

• Σ is a set of actions

• −→�⊆ S × (P(Σ× S) \ ∅) is the must transition relation

• −→♦⊆ S × (P(Σ× S) \ ∅) is the may transition relation

Moreover −→�⊆−→♦ (consistency requirement).
We denote the set of all possible 1MTSs by 1MTS.

�

Note the two little changes: first of all, the may transition relation also uses
the hypertransition and both may relation and must relation cannot consider the
“inconsistent” hypertransition, that is the hypertransition (s, T ) where T = ∅.

The reason of the introduction of may hypertransition is simple. Consider the
system in Figure 2.5 (a). It may be either interpreted as DMTS (Figure 2.5 (b)) or
as 1MTS(Figure 2.5 (c)) and for a better understanding we draw the must hyper-
transition and the may transitions explicitly. Now we take the DMTS and try to
reason about its implementations.

As we can see in the Figure 2.6 LTSs L and I are two possible implementations of
M, furthermore the DMTS N is a refinement of M too. If we consider the system (b)
in Figure 2.5 with the exclusive interpretation of must hypertransitions, we can easily
note that this system fails, in effect the LTS I in Figure 2.6 is an implementation of
this system but it is not satisfied the exclusive interpretation. The 1MTS described
in Figure 2.5 (c) solves this problem.

Definition 2.23:
A MTS is a particular 1MTS M = (S,Σ,−→�,−→♦) where:

1. ∀s ∈ S. (s, T ) ∈−→♦⇒ |T | = 1, that is T is singleton

2. ∀s ∈ S. (s, T ) ∈−→�⇒ |T | = 1, that is T is singleton

�

Note that the set (s −→♦) (or equivalently (s −→�) ) in a 1MTS has elements
like Θ = (T ), where T ⊆ Σ×S, that is its elements are hypertransitions. Moreover
the refinement definition needs a new concept:

Definition 2.24:
Let R ⊆ S × S be a generic relation between states. Then the extension of R to
(Σ× S)× (Σ× S) is: for ϑ = (α, s′) ∈ Σ× S and ϑ1 = (α1, s

′
1) ∈ Σ× S, we define

(ϑ, ϑ1) ∈ R ⇔ α = α1 ∧ (s′, s′1) ∈ R.
�
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Figure 2.5: An example of DMTS and 1MTS

Now we can describe the refinement relation for 1MTS:

Definition 2.25 (Refinement):
Let M = (S,Σ,−→�,−→♦) be a 1MTS. A binary relation R ⊆ S × S is called
refinement if and only if ∀(s, t) ∈ R and ∀γ ∈ choice(s −→♦). ∃γ̂ ∈ choice(t −→♦)
such that the following holds:

1. ∀Θs ∈ (s −→♦). ∃Θt ∈ (t −→♦). (γ(Θs), γ̂(Θt)) ∈ R

2. ∀Θt ∈ (t −→�). ∃Θs ∈ (s −→�). (γ(Θs), γ̂(Θt)) ∈ R

s is said to be a refinement of t (s E t) if some refinement relation R exists and
(s, t) ∈ R.

�

As in other cases, a straightforward generalization allows us to compare states
from different 1MTSs and, of course, this refinement relation has the same properties
of the MTS and DMTS refinement relation. Note that the refinement of a 1MTS
coincides with the refinement as defined on MTS and bisimulation as defined on
LTS.

Example 2.2. Suppose that our vending machine has this requirement: “The choice
of drinks (coffee, tea, cappuccino) varies between the products. However, every prod-
uct of the family delivers one and only one different drink”. Then we can model this
request using the 1MTS as described in the Figure 2.7.
As we can see the LTSs L, M and N are all possible implementations of our 1MTS.
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Figure 2.6: An example of DMTS and its problem with exclusive choices

Figure 2.7: An example of 1MTS and its implementations

2.2.5 GEMTS

A generalization of DMTS and 1MTS was introduced in [26]: we can only handle
requirements as “at least one feature of a some set is required”, using DMTS, and
“exactly one feature of a some set is required”, using 1MTS, so Fantechi and Gnesi
in [26] added the possibility to model the requirement “at most one feature of a
some set is required”, allowing to describe a bigger number of specifications than
DMTS or 1MTS models.
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This extension is clearly conceptual and, as we will see, hypertransition concept
is still used.

Definition 2.26 (Generalized Extended Modal Transition System (GEMTS)):
A Generalized Extended Modal Transition System (GEMTS) is a tuple (S,Σ,�,
♦, s0) where:

• S is a set of states

• Σ is a set of actions

• � ⊆ S × (P(Σ× S)×N ) is the “at least k of n” transition relation

• ♦ ⊆ S × (P(Σ× S)×N ) is the “at most k of n” transition relation

• s0 ∈ S is the initial state

We denote the set of all possible GEMTSs by GEMTS.
�

The transition relations � and ♦ describe two types of hypertransitions but if
in DMTS and 1MTS � means “necessary” and ♦ “possible”, now their meaning
changes.

We write respectively:

• s α1,α2,...,αn−−−−−−→�k
s1, s2 . . . sn to denote elements of the relation � and its meaning

is any product of the family should have at least k of n transitions s
αi−→ si

• s α1,α2,...,αn−−−−−−→♦k s1, s2 . . . sn to denote elements of the relation ♦ and its meaning

is any product of the family should have at most k of the n transitions s
αi−→ si

In addition it is implicitly assumed that the number of actions on arrows must
coincide with that of target states and the order is important, finally the property
0 < k ≤ n should always hold. Moreover these relations have some other properties:

1. s
α1,α2,...,αn−−−−−−→�k

s1, s2 . . . sn ⇒ s
α2,...,αn−−−−→�k−1

s2 . . . sn, that is if at least k tran-
sitions must be taken from a set S, then we can deduce that at least k -1
transitions must be taken from a set S \ t, where t is a some simple transition.

2. s
α1,α2,...,αn−−−−−−→�k

s1, s2 . . . sn ∧ s
α2,...,αn−−−−→♦k s2 . . . sn means any product of the

family should have exactly k of the n transitions s
αi−→ si, this defines the

relation � ∩ ♦ as the relation exactly k of n.

3. if k = n then s
α1,α2,...,αn−−−−−−→�n s1, s2 . . . sn ⇒ s

α1,α2,...,αn−−−−−−→♦n s1, s2 . . . sn. In effect
products which satisfy the property “at least n of n” for some set of transitions
are products which have got exactly n transitions, whereas products which
satisfy the property “at most n of n” for some set of transitions are all possible
products.
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Finally, note that every GEMTS has one single initial state. In the definition of
MTS or DMTS or 1MTS initial states are not present because we implicitly assume
them. In the GEMTS case, on the contrary, we require a restriction on initial states:
we may not have a generic set of initial states, we must have a single initial state.

Definition 2.27:
A MTS is a particular GEMTS M = (S,Σ,�,♦, s0) where:

1. ∀s ∈ S. (s, T, k) ∈ ♦⇒ |T | = 1 ∧ k = 1, note that T is singleton

2. ∀s ∈ S. (s, T, k) ∈ �⇒ |T | = 1 ∧ k = 1, note that T is singleton

�

Note that the property (3), which we have just described for a GEMTS, in a
MTS is equivalent to the consistency requirement.
In the Figure 2.8 we can see the relation between GEMTS and one of the other
models.

Figure 2.8: Expressivity relationship between GEMTS and other models

In [25] Fantechi and Gnesi defined another model, the Extended Modal Transi-
tion System (EMTS) which is a special case of GEMTS:

Definition 2.28 (Extended Modal Transition System (EMTS)):
A Extended Modal Transition System (EMTS) is a particular GEMTSM = (S,Σ,�,
♦, s0) where:

1. ∀s ∈ S. (s, T, k) ∈ ♦⇒ k = 1

2. ∀s ∈ S. (s, T, k) ∈ �⇒ k = 1

�

The refinement relation defined in [26] is a restriction of a generic refinement
relation, in effect it describes only the connection between a product (or LTS) and
a specification (or GEMTS), all intermediate steps of the refinement process are
ignored.

Definition 2.29:
Let P = (SP ,Σ,−→P , sP0) be a LTS. We say P belongs to the family (GEMTS)
F = (SF ,Σ,�,♦, sF0) if and only if (sP0 , sF0) ∈ R where (s, t) ∈ R if and only if:
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1. t
α1,...αn−−−−→�k

t1 . . . tn ⇒ ∃I ⊆ {1 . . . n}. k ≤ |I| ≤ n ∧ ∀i ∈ I. s αi−→ si∧ (si, ti) ∈
R

2. t
α1,...αn−−−−→♦k t1 . . . tn ⇒6 ∃I ⊆ {1 . . . n}. k < |I| ≤ n∧∀i ∈ I. s αi−→ si ∧ (si, ti) ∈
R

3. s
α−→ s′ ⇒ ∃k, U ⊆ Σ × SF , t′ ∈ SF . (α, t′) ∈ U ∧ ((t, U, k) ∈ � ∨ (t, U, k) ∈

♦) ∧ (s′, t′) ∈ R

�

We can also say P is a product of F or P conforms to F .

Example 2.3. Consider the requirement of our vending machine: “The choice of
drinks (coffee, tea, cappuccino) varies between the products. However, every product
of the family delivers at least two different drinks”. Then we can model the require-
ment using the GEMTS as showed in Figure 2.9.

Figure 2.9: An example of GEMTS and its implementations

As we can see the LTSs L, M and N are all possible implementations of our GEMTS.

2.2.6 OTS

Until now we have been seeing all models which use and generalize the concepts of
may (or possible) and must (or necessary) transition. As we will see, the last two
models take advantage of a new approach: the obligation formula. The main idea
is to describe only the necessary requirements, using a logic formula. The models
which we can derive are called OTS [12], formalized by Beneš and Křet́ınký.

The first important concept is the obligation formula:
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Definition 2.30 (Obligation formula syntax):
A positive boolean formula over set X of atomic propositions is given by the following
syntax:

ϕ ::= tt | ff | x | ϕ ∧ ϕ | ϕ ∨ ϕ (2.1)

where x ∈ X. The set of all positive boolean formulae over X is denoted as B+(X).
�

Definition 2.31 (Obligation formula semantics):
The semantics of ϕ, denoted like JϕK, is a subset of subsets of X satisfying ϕ and it
is inductively defined:

• JxK = {Y ⊆ X | x ∈ Y }

• Jϕ ∧ ψK = JϕK ∩ JψK

• Jϕ ∨ ψK = JϕK ∪ JψK

• JttK = P(X)

• JffK = ∅

�

We can deduce, therefore, that the obligation formula is a typical logic formula
and its semantics is a set of possible subsets of X and each element of this set satisfies
the formula.

Definition 2.32 (Transition System with Obligations (OTS)):
A Transition System with Obligations (OTS) is a tuple (S,Σ, 99K,Ω) where:

• S is a set of states

• Σ is a set of actions

• 99K⊆ S × Σ× S is the may transition relation

• Ω : S −→ B+(Σ× S) is the set of obligations

We denote the set of all possible OTSs by OTS.
�

Note that the formulae tt and ff are never needed as proper subformulae of any
other formula, they are used to specify, respectively, all possible implementations,
useful to describe a may transition, and the lack of possible implementations, useful
to describe a inconsistent specification.

Moreover, we can impose a consistency requirement :

Ω(s) 6= ff and if Ω(s) contains (α, t) then s
α
99K t (2.2)

which guarantees that all required behaviours are also allowed.
Using OTS it is possible to describe some of other models:
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1. a DMTS is an OTS where the must obligations are in CNF, so an arbitrary
OTS can be expressed as DMTS because any logic formula can be translated
into a CNF

2. a consistent DMTS is a DMTS which satisfies the consistency requirement

3. a MTS is an OTS where the must obligations are just conjunctions of atomic
predicates and it satisfies the consistency requirement

4. a LTS is a MTS such that whenever s
α
99K t then Ω(s) = (α, t) ∧ ϕ for some

ϕ, that is all behaviours are both allowed and required

The refinement concept is slightly more complicated than the classical definition
because we must handle the logic formulae. First of all we define a relation which
allows us to relate two formulae.

Definition 2.33:
Let R ⊆ X ×X, let ϕ, ψ ∈ B+(X). We write ϕ vR ψ to denote:

∀M ∈ JϕK. ∃N ∈ JψK. ∀n ∈ N. ∃m ∈M. (m,n) ∈ R (2.3)

�

Now we can define the refinement of an OTS.

Definition 2.34 (Refinement):
Let P = (S,Σ, 99K,Ω) be an OTS. We say that R ⊆ S × S is a refinement relation
if (s, t) ∈ R implies:

1. s
α
99K s′ ⇒ t

α
99K t′ ∧ (s′, t′) ∈ R

2. Ω(s) vΣR Ω(t) where ΣR = {((α, s), (α, t)) | α ∈ Σ, (s, t) ∈ R}
We say s refines t (s E t) if there is a refinement relation R such that (s, t) ∈ R

�

Of course a straightforward generalization is possible and in [12] the refinement
definition is directly presented in the generalized way.

We say that a process I is an implementation of a specification S if I is a LTS and
(s0 E t0) where s0 is the initial state of I and t0 is the initial state of S. We denote
the set of all implementations of S by JSK = {I | I is an implementation of S}.
Note that this refinement definition coincides with the refinement one on all other
models.

Example 2.4. Consider the requirement of our vending machine: “The choice of
drinks (coffee, tea, cappuccino) varies between the products. However, every product
of the family delivers at least two different drinks”. Then we can model the require-
ment using the OTS as described in Figure 2.10. For convenience, in the figure the
formulae ignore the states, moreover LTS L is described by an OTS. As we can see
the LTSs L, M and N are all possible implementations of our OTS.
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Figure 2.10: An example of OTS and its implementations

2.2.7 PMTS

The OTS formalism is very interesting but several useful requirements cannot be
expressed, for example the exclusive requirement. In [13] Beneš, Křet́ınký, Larsen
Møller and Srba introduce a new type of formalism which extends OTS, allowing to
model exclusive, conditional and persistent choices. Note that it is the first attempt
to describe conditional and persistent requirements.

First of all the logic formula syntax is extended:

Definition 2.35 (Obligation formula syntax):
A boolean formula over set X of atomic propositions is given by the following syntax:

ϕ ::= tt | ff | x | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ (2.4)

where x ∈ X. The set of all boolean formulae over X is denoted as B(X).
�

The semantics is modified and extended by the assignment:

Definition 2.36 (Satisfaction relation):
Let ν ⊆ X be a truth assignment, that is a set of elements with value true, and let
ϕ ∈ B(X) be a logic formula over X. Then the satisfaction relation |=⊆ P(X)×B(X)
is defined in the following way:

• ν |= tt
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• ν 6|= ff

• ν |= x⇔ x ∈ ν

• ν |= ¬ϕ⇔ ν 6|= ϕ

• ν |= ϕ ∧ ϕ1 ⇔ ν |= ϕ and ν |= ϕ1

• ν |= ϕ ∨ ϕ1 ⇔ ν |= ϕ or ν |= ϕ1

�

Now we can define the semantics of an obligation formula

Definition 2.37 (Obligation formula semantics):
The semantics of ϕ is a subset of subsets of X satisfying ϕ:

JϕK = {Y ⊆ X | Y |= ϕ} (2.5)

�

Definition 2.38 (Parametric Modal Transition System (PMTS)):
A Parametric Modal Transition System (PMTS) is a tuple (S,Σ, 99K,P ,Ω) where:

• S is a set of states

• Σ is a set of actions

• 99K⊆ S × Σ× S is the may transition relation

• P is a finite set of parameters

• Ω : S −→ B((Σ × S) ∪ P) is the set of obligations over atomic propositions
containing outgoing transitions and parameters

We implicitly assume that whenever (α, t) ∈ Ω(s) then (s, α, t) ∈99K.
We denote the set of all possible PMTSs by PMTS.

�

Moreover we call PMTS positive if, for all s ∈ S, any negation occurring in Ω(s)
is applied only to parameters. A PMTS is called parameter-free if P = ∅. Finally
we assume that T (s) = {(α, s′) | (s, α, s′) ∈99K},

∧
∅ = tt and if the obligation

function for some state is not listed in the system description then it is implicitly
understood as Ω(s) =

∧
T (s).

As we have seen with OTS, we can use PMTS to describe other models:

1. an OTS is a PMTS parameter-free and positive

2. a DMTS is an OTS where the must obligations are in CNF, for all s ∈ S
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3. a MTS is a DMTS where the must obligations are just conjunctions of atomic
predicates, for all s ∈ S

4. a LTS is a MTS such that for all s ∈ S Ω(s) =
∧
T (s)

Now we want to describe the refinement but first we need of a simple definition:

Definition 2.39:
Let M = (S,Σ, 99K,P ,Ω) be a PMTS and ν ⊆ P be a truth assignment of param-
eters. Then for all s ∈ S, we denote by Tranν(s) = {E ⊆ T (s) | E ∪ ν |= Ω(s)},
that is the set of all admissible sets of transitions from s under the fixed truth values
of the parameters.

�

We can now define the notion of refinement between PMTSs and we define
directly the generalized version.

Definition 2.40 (Refinement):
Let P1 = (S1,Σ, 99K1,P1,Ω1) and P2 = (S2,Σ, 99K2,P2,Ω2) be two PMTSs. We say
that R ⊆ S1 × S2 is a refinement relation if for each ν1 ⊆ P1 there exists ν2 ⊆ P2

such that for every (s, t) ∈ R holds:

∀M ∈ Tranν1(s). ∃N ∈ Tranν2(t). ∀(α, s′) ∈M. ∃(α, t′) ∈ N. (s′, t′) ∈ R ∧
∀(α, t′) ∈ N. ∃(α, s′) ∈M. (s′, t′) ∈ R

We say s refines t (s E t) if there is a refinement relation R such that (s, t) ∈ R
�

Of course the refinement as defined on PMTS coincides with the standard modal
refinement notions on MTS, DMTS and OTS. On LTS it coincides with bisimulation.

In Figure 2.11 we can see an example of this model and some steps of refinement:
the initial PMTS model has two parameters reqYfromR and reqYfromG and it is
the model on the right. By means of the refinement relation, described by ≤m, we
can derive another, more refined PMTS or some LTSs such as ones on the left in the
Figure 2.11. Note that the obligation function related to the state green requires
an exclusive choice between transitions labelled with stop and ready. In the model
it is possible to find a cycle such that, starting our execution from the state green,
we can return back to the green after some steps. When we reach the state green
we can choose stop or ready and this choice is non-deterministic and different every
time. To guarantee a persistent choice between these two transitions, namely every
time we stay in the state green, we must always make the same choice, we add the
parameter reqYfromG. Once we define the value of this parameter then, by means of
the obligation function, we have the guarantee that only one transition is taken and
it is always the same for every cycle. The same reasoning holds for the state red.
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Figure 2.11: An example of PMTS and its implementations

A possible refinement is a PMTS where parameters reqYfromG and reqYfromR are
unified in a single parameter reqY. Note that in this way we lose all models derived
by the choices reqYfromG=tt, reqYfromR=ff and reqYfromG=ff, reqYfromR=tt.

Anyway in this example it is possible to understand the importance of persistent
choice and when we need it, namely when we have two or more possible outgo-
ing transitions, a cycle and the need to guarantee the same choice among several
outgoing transitions in a state every time we reach it.

2.3 Logics

As we said in the introduction of this chapter, we would like to use formal methods
with a logical approach, where properties to be checked are described by logic for-
mulae. In the previous section we described some possible models useful to represent
product specifications. Now in this section we see some logics known in literature
and commonly used to formalize properties to be checked over the model.

Depending on the type of property which we would like to check, we have different
types of logics. Note that the choice of properties to be checked influences the type
of model used to describe the system too, in effect some characteristics are better
emphasized by certain models rather than other ones. For example, in some cases,
our concern is the behaviour of the system, which is described by labelled transitions,
and the best model is obviously LTS, seeing that the LTS describes as the behaviour
of a system evolves by means of states and labelled transitions. An example of these
logics is the Hennessy-Milner Logic. In other context, instead, we want to reason
only about properties of reached states, whereas we are not interested absolutely to
know what sequences of actions are necessary to reach the state. In general this is
typical of modal logics.

These logics extend the propositional logic (or first-order logic) by some new
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operators expressing modality. For example in the alethic logic, the operators �
and ♦ describe the necessity and possibility, respectively. Other types of modality
that can be used are temporal modalities, deontic modalities (which consider the
obligation, the prohibition and the permission), epistemic modalities (which consider
the knowledge) and doxastic modalities (which consider the belief). The semantics
of all these logics is usually formalized by the Kripke Semantics or Possible World
Semantics [14] [43].

In Computer Science these logics are widely used, in particular the Temporal
Logic, but recently the other logics have been studied in some different context, for
example the Deontic Logic in a Product-Line context, the Epistemic Logic in the
security context and in distributed systems. Seeing that our interest is in reached
states and not transitions, often the LTS model is a poor model for our purposes,
in effect in these cases it is used another type of model, called Kripke Structure,
which was introduced in [18].

Definition 2.41 (Kripke Structure (KS)):
Let AP be a set of atomic propositions. A Kripke Structure (KS) M over AP is a
tuple (S,S0,R,L) where:

1. S is a finite set of states

2. S0 is a set of initial states

3. R ⊆ S×S is a transition relation which must be total, that is, for every s ∈ S
there is a state s′ ∈ S such that (s, s′) ∈ R

4. L : S −→ P(AP ) is a function that labels each state with the set of atomic
propositions true in that state

�

As we can see a KS is a simple extension of a Transition System (TS), obtained
by adding a labelling function to the Transition System. This labelling function is
very important because it connects each state to some set of properties described
by atomic propositions.

When we want to model a behaviour of a system, we do not handle a TS but
we use a LTS. In some cases we would like to handle both behaviour aspects of the
model and properties of reached states, therefore we must extend the LTS model in
a similar way to what we have done in the extension of a TS in a KS, the derived
model is called Doubly Labelled Transition System (L2TS) [22].

Definition 2.42 (Doubly Labelled Transition System(L2TS)):
Let AP be a set of atomic propositions. A Doubly Labelled Transition System
(L2TS) M over AP is a tuple (S,Σ,−→,L) where:

1. S is a finite set of states
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2. Σ is a set of actions

3. −→⊆ S × Σ× S is a transition relation

4. L : S −→ P(AP ) is a labelling function that associates a set of atomic propo-
sitions to each state.

�

Note that this formalism is so really important in Model Checking techniques
that sometimes it is the only formalism described, like in [6] where L2TS is directly
called Transition System.

Also we introduce a new concept: the trace. We have already seen the concept
of path, that is a sequence of states, and execution, that is an alternating sequence
of states and actions. Actions are mainly used to model the behaviour of models,
but this is not our unique interest in KS and L2TS, in effect we would want to
focus on the states that are visited during executions too. Note that our concern
is not the state itself but properties related to the state, which are modelled by
atomic propositions. It is simple to understand that in these models it is interesting
to see all possible, reached atomic propositions, therefore we must also consider a
sequence of the form L(s0)L(s1)L(s2) . . ., namely the sequence which describes the
set of atomic propositions that are valid along the execution and we may call such
sequences traces. Moreover we can deduce that a trace is a word over the alphabet
P(AP ).

Definition 2.43 (Trace):
Let M = (S,Σ,−→,L) be a L2TS over the set AP , that is the set of atomic
propositions and let π = s0s1 . . . sn be a finite path fragment then the trace of
π, called trace(π), is trace(π) = L(s0)L(s1) . . .L(sn).
Let π = s0s1 . . . be an infinite path fragment then the trace of π, called trace(π), is
trace(π) = L(s0)L(s1) . . ..

�

As we can see the concept of trace is very simple and it is easy to be calculated
when we know the path of our L2TS, the definition of trace for a KS is easily derived
by the L2TS one.

Finally, we may say our models are grouped, conceptually, in several categories:

1. unlabelled system: systems which have got no labelled transitions and no
atomic propositions related to states.

2. action-based system: systems which have got labelled transitions and no
atomic propositions related to states. Labels describe actions to be executed
by our system
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3. state-based system: systems which have got no labelled transitions but they
have got atomic propositions related to states. Every state has a set of atomic
propositions which are true in the state itself.

4. action and state-based system: systems which have got labelled transitions
and atomic proposition related to states. Labels describe executable actions,
instead atomic propositions related to a state represent the properties true of
such state.

For example TS belongs to the first category, LTS to the second, KS to the third
and L2TS to the last one. In Figure 2.12 we summarize the categories and transfor-

Figure 2.12: The categories of Transition System

mations needed to change a category in another one, also it is possible to define a
transformation from KS to LTS and vice versa in a simple way [21].

Of course in literature many different types of logics exist but we will only present
the ones useful to understand the logic which we will describe in the Chapter 6.
Depending on what we will consider important, that is the behaviour or the current
state, we will utilize different models.

Before to introduce these logics, we describe some details about the Deontic
Logic. The Deontic Logic is a Modal Logic which extends the propositional logic
with the modalities O “it is obligatory that”, F “it is forbidden that” and P “it is
permitted that”. From an axiomatic pointview these operators are related in the
following way:

1. Fϕ = O¬ϕ, that is “it is forbidden that ϕ holds” is equivalent to “it is
obligatory that ϕ does not hold”

2. Pϕ = ¬O¬ϕ, that is “it is permitted that ϕ holds” is equivalent to “it is not
obligatory that ϕ does not hold”

3. Oϕ⇒ Pϕ, that is “it is obligatory that ϕ holds” implies “it is permitted that
ϕ holds”
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From a semantics pointview, specifically the possible-world semantics, these opera-
tors are equivalent to:

1. w |= Oϕ ⇔ ∀w′.(w,w′) ∈ R ⇒ w′ |= ϕ, namely given a current world w, w
satisfies Oϕ if and only if all possible world w′, which can be reached from w,
satisfies ϕ

2. w |= Fϕ ⇔ ∀w′.(w,w′) ∈ R ⇒ w′ 6|= ϕ, namely given a current world w, w
satisfies Fϕ if and only if all possible world w′, which can be reached from w,
does not satisfy ϕ

3. w |= Pϕ ⇔ ∃w′.(w,w′) ∈ R ∧ w′ |= ϕ, namely given a current world w, w
satisfies Pϕ if and only if it exists one possible world w′ which can be reached
from w and satisfies ϕ

For more details it is possible read [2], [30], [38] and [40].

2.3.1 Hennessy-Milner Logic

Hennessy and Milner in [29] described the first attempt of a logical characterization
of the behaviour, which allows us to describe properties of systems in a simple way
and to understand if two systems are behaviourally equivalent. In this context we
are concerned to reason about properties of the behaviour of systems, where the
behaviour can easily be seen as a set of executed actions by the system itself. In
order to verify these properties, we can describe a system by means of some kind of
model where actions are represented by labelled transitions, in addition note that the
possible reached states are not interesting for our purposes. The syntax of Hennessy
Milner Logic (HML) is the following:

Definition 2.44 (Hennessy Milner Logic (HML) Syntax):

ϕ ::= tt | ¬ϕ | ϕ ∧ ϕ1 | 〈α〉ϕ

where α ∈ Σ, that is α is an action.
�

Some other useful syntax notations are:

• ff = ¬tt

• ϕ ∨ ϕ1 = ¬(¬ϕ ∧ ¬ϕ1)

• all expressions derived by the classical propositional logic hold

• [α]ϕ = ¬〈α〉¬ϕ
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As we can see this logic is simple and it is derived by the classic propositional logic
by way of adding the modal operators 〈.〉 and [.] with the meaning of “possibility”
and “necessary”, respectively.

The semantics is described by the satisfaction relation |= that defines if a state
of a LTS satisfies a some property.

Definition 2.45 (Hennessy-Milner Logic (HML) Semantics):
Let M = (S,Σ,−→) be a LTS and φ, φ1 be two logic formulae. Then the satisfaction
relation |=⊆ S × ϕ holds the following:

• s |= tt

• s |= ¬φ⇔ s 6|= φ

• s |= φ ∧ φ1 ⇔ s |= φ and s |= φ1

• s |= 〈α〉φ⇔ ∃s′ ∈ S. s α−→ s′ ∧ s′ |= φ

�

Depending on these definitions, it holds also:

• s |= ff ⇔ s 6|= tt

• s |= φ ∨ φ1 ⇔ s |= φ or s |= φ1

• s |= [α]φ⇔ ∀s′ ∈ S.s α−→ s′ ⇒ s′ |= φ

Moreover in [29] Hennessy and Milner defined a relation between HML formulae
and the bisimilarity relation over LTS. In order to describe it we introduce a new
concept:

Definition 2.46:
Let M = (S,Σ,−→) be a LTS and s be a state. Then we denote by F(s) the set of
properties (or formulae) satisfied by the state s, that is F(s) = {ϕ | s |= ϕ}

�

Definition 2.47 (Image-Finite LTS):
Let M = (S,Σ,−→) be a LTS . We call it image-finite if and only if ∀s ∈ S, α ∈ Σ
the set {s′ ∈ S | s α−→ s′} is finite.

�

Theorem 2.1 (Hennessy-Milner Theorem). Let M = (S,Σ,−→) be an image-
finite LTS and s, t be two states. Then

s ∼ t⇔ F(s) = F(t)
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Example 2.5. Consider the LTSs in Figure 2.2. As we could see the LTSs (a)
and (b) are bisimilar, whereas (c) is not. Suppose that our HML formula is ϕ =
〈a〉〈a〉〈b〉[c]tt. Of course all LTSs in the figure satisfy ϕ.

Now we take the HML ϕ1 = 〈a〉[b]tt, we can see that in this case all LTSs satisfy
ϕ1 too. Finally, we make a slight change on ϕ1, ϕ2 = 〈a〉〈b〉tt, this time LTSs (a)
and (b) satisfy ϕ2, but (c) does not satisfy ϕ2, therefore we can conclude that (a)
and (c) are not bisimilar surely and the same holds for (b) and (c). To understand
if (a) and (b) are bisimilar, we should determine if it exists a HML formula φ such
that (a) satisfy φ and (b) does not satisfy it (or vice versa), in effect if this formula
exists then we can conclude that (a) and (b) are not bisimilar, otherwise the theorem
guarantees us that (a) and (b) are bisimilar.

2.3.2 Computation Tree Logic

The second type of logic which we see is a typical temporal logic widely used in
the Model Checking world. Initially Pnueli in [42] introduced a temporal logic for
the specification and verification of reactive systems and this logic is called Linear
Temporal Logic (LTL). We use the term “linear”, because the notion of time
is path-based and viewed to be linear, that is at each moment of time only one
possible successor state exists, so each time moment has a unique possible future. It
is simple to understand that the interpretation of LTL formulae is defined in terms
of paths. Paths, of course, are derived from a transition system where each state
might have several, distinct direct successor states, and thus several computations
(path) may derive by a state. The reason about this situation is that our system
may be branching. Unfortunately, a LTL formula ϕ is satisfied in a state s if and
only if all possible computations that start in s satisfy ϕ, that is the LTL implicitly
assumes the universal quantification over all possible computations. Obviously, this
requirement is very strong because sometimes we want to know if some property is
verified for only some possible computations (existential interpretation).

In [17], [23] Clarke and Emerson introduced a new type of logic which allows us
to handle formulae with an existential interpretation too. To handle this situation
the interpretation of time must be changed, now time is not linear but branching,
that is the time is not an infinite sequence of states anymore but it is an infinite tree
of states. The main idea of the branching time is that at each moment there may
be several different possible futures, each moment of time has several choice and so
several possible futures. For this reason the logic is known as branching temporal
logic. As we will see, the semantics of a branching temporal logic is based on the
usage of an infinite, directed tree of states rather than an infinite sequence. Each
state has different possible (infinite) computations and the tree itself represents all
possible computations. Of course we focus on computations with the initial state
as the root of tree, in fact each traversal of the tree starting in its root represents
a single possible path. We may see this tree as the tree which we can directly
obtain from a transition system by “unfolding” of some state. We call this logic
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Computation Tree Logic.
Note that in this section we do not present the LTL logic and the reason will

be explained later in this section, anyway a good presentation about LTL may be
found in [6].

First step of our presentation is the syntax of CTL

Definition 2.48 (Computation Tree Logic Syntax):
Let AP be a set of atomic propositions then the syntax of Computation Tree Logic
formulae is:

ϕ ::= tt | p | ¬ϕ | ϕ ∧ ϕ | ∃π | ∀π
π ::= Xϕ | ϕ U ϕ1

where p ∈ AP . We call ϕ formulae state formulae and π formulae path formulae.
�

It is possible to derive other formulae such as ff , ϕ ∨ ϕ using the negation and
the typical equivalences of propositional logic.

The meaning of operators ∃ and ∀ is the obvious one, on the other hand in
path-formulae we introduce two new types of operators:

• X is called “next” , it is a unary operator and its meaning is that a formula
Xϕ holds in a current state if and only if ϕ holds in the next state

• U is called “until”, it is a binary operator and its meaning is that a formula
ϕUφ holds in a current state if and only if in some future moment φ holds and
all states until that moment hold ϕ formula

Furthermore it is possible to add two new types of formulae:

1. ♦ϕ = tt Uϕ, also called “eventually” and its meaning is that in some moment
in the future ϕ will hold

2. �ϕ = ¬♦¬ϕ, also called “always” and its meaning is that ϕ is true from now
forever.

Before to see the semantics we introduce some new concepts:

Definition 2.49 (Path(s)):
Let s be a generic state of a some kind of transition system. We denote by Path(s)
the set of all possible paths with s as initial state. We denote the set of all possible
paths by Path.

�

Definition 2.50 (Suffix):
Let σ = s0, s1 . . . be a generic path and let i ∈ N be an index. We denote by σ[i] = si
the i-th state of σ, whereas we denote by suffix(σ, i) = ς the suffix of the path σ
from the i-th state, that is if ς = t0, t1 . . . then ∀j ∈ N . ς[j] = tj = si+j = σ[i+ j].

�
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Since CTL has two types of formulae, path and state-formulae then the semantics
of CTL formulae is defined by two satisfaction relations: one for the state-formulae
and one for the path-formulae. The semantics can be defined over a KS or a L2TS,
indifferently.

Definition 2.51 (Computation Tree Logic Semantics):
Let M = (S,Σ,−→, AP,L) be a L2TS, s ∈ S be a state, φ, ψ be state formulae
and ρ be a path formula. Then the satisfaction relation |=⊆ S × ϕ is defined for
state-formulae by:

• s |= tt

• s |= p⇔ p ∈ L(s)

• s |= ¬φ⇔ s 6|= φ

• s |= φ ∧ ψ ⇔ s |= φ and s |= ψ

• s |= ∃ρ⇔ ∃σ ∈ Path(s). σ |= ρ

• s |= ∀ρ⇔ ∀σ ∈ Path(s). σ |= ρ

For a path σ, the satisfaction relation |=⊆ Path×π is defined for path-formulae by:

• σ |= Xφ⇔ σ[1] |= φ

• σ |= φ U ψ ⇔ ∃j ≥ 0. σ[j] |= ψ ∧ ∀0 ≤ i < j. σ[i] |= φ

�

Unfortunately, some useful properties, easily described by a LTL formula, cannot
be expressed by CTL and it holds the vice versa too. In order to solve this lack
Emerson and Halpern in [24] proposed a new, more general logic called CTL*, which
combines the features of LTL and CTL.

CTL* allows us the usage of path quantifiers ∃ and ∀ arbitrarily nested with
typical LTL-formulae, in particular with linear temporal operators such as X and
U. For this reason CTL* is an extension of CTL: in CTL, indeed, each linear
temporal operator must be immediately preceded by a path quantifier. Finally, as
in CTL, the syntax of CTL* distinguishes between state and path formulae: the
first ones are the same of CTL, whereas the latter ones are defined as LTL formulae,
where CTL* state formulae can be used as atoms too.

Definition 2.52 (CTL* Syntax):
Let AP be a set of atomic propositions then the syntax of CTL* formulae is:

ϕ ::= tt | p | ¬ϕ | ϕ ∧ ϕ | ∃π
π ::= ϕ | ¬π | π ∧ π | Xπ | π U π

where p ∈ AP .
�
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As for CTL we can derive some operators like ∨ and other typical logic operators,
in addition ♦π = tt U π, �π = ¬♦¬π and ∀π = ¬∃¬π (note that this is not possible
in CTL).

Definition 2.53 (CTL* Semantics):
Let M = (S,Σ,−→, AP,L) be a L2TS , s ∈ S be a state, φ, ψ be state-formulae
and ρ, ρ1 be two path-formulae. Then the satisfaction relation |=⊆ S × ϕ is defined
for state-formulae by:

• s |= tt

• s |= p⇔ p ∈ L(s)

• s |= ¬φ⇔ s 6|= φ

• s |= φ ∧ ψ ⇔ s |= φ and s |= ψ

• s |= ∃ρ⇔ ∃σ ∈ Path(s). σ |= ρ

For a path σ, the satisfaction relation |=⊆ Path×π is defined for path-formulae by:

• σ |= φ⇔ σ[0] |= φ

• σ |= ¬ρ⇔ σ 6|= ρ

• σ |= ρ ∧ ρ1 ⇔ σ |= ρ and σ |= ρ1

• σ |= Xρ⇔ suffix(σ, 1) |= ρ

• σ |= ρ U ρ1 ⇔ ∃j ≥ 0. suffix(σ, j) |= ρ1 ∧ ∀0 ≤ i < j. suffix(σ, i) |= ρ

�

Example 2.6. Consider the L2TSs in Figure 2.13. As we may see these L2TSs are
derived by LTSs in Figure 2.2, adding to each state a set of labels which describes
actions of outgoing transitions.
For convenience we implicitly assume that a fairness condition holds, namely for
each state it is guaranteed that for any possible transition eventually it is enabled,
without this condition we may be deadlocked in the state with a self-loop labelled by
a.

Consider the CTL* formula ϕ = ∀♦C, that is for all possible paths eventually
C holds, obviously all L2TSs in Figure 2.13 satisfy ϕ. Now we suppose that ϕ =
∃♦(A ∧ ¬B ∧ ¬C), that is it exists a possible path that eventually only A holds, in
this case L2TSs M and N do not satisfy ϕ because all their states can be satisfy C or
A∧B, whereas O satisfies ϕ because it exists a path where eventually only A holds.

Another possible formula is ϕ = ∀�((A ∧B) ∨ C), namely for all possible paths
it always holds A∧B or C. If we see the Figure 2.13, we realize that L2TSs M and
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Figure 2.13: Examples of L2TSs

N satisfy ϕ because all their states can be satisfy C or A ∧ B, on the other hand O
does not satisfy ϕ because it exists a path where only A holds.

Finally we consider a formula ϕ = ∀X((A ∧ B) ∨ C), that is it for all possible
paths the next state holds A∧B or C. This time, L2TSs M and N satisfy ϕ because
for all possible paths the states reached satisfy C or A∧B, instead O does not satisfy
ϕ because it exists a path where the next state reached by this path does not hold C.

2.3.3 ACTL*

De Nicola and Vaandrager in [21] introduced a new type of logic: an action-version
based of CTL* interpreted over LTSs. They note that LTSs have been widely used to
interpret process algebra and to handle communicating systems, on the other hand
KS is the common model for handling many modal logics such as the temporal ones.
Also it is clear that KS and LTS are two partially different models, so it becomes
interesting to know if it is possible to find a connection between the logic interpreted
over KS and the one interpreted over LTS. Finally in [21] De Nicola and Vaandrager
showed two transformations: one from CTL* to ACTL* and the other one from
ACTL* to CTL*, proving that ACTL* is expressively equivalent to CTL*. This
property holds for their restrictions ACTL and CTL too.

ACTL* is derived by CTL*, simply removing atomic propositions on state-
formulae and adding a new operator to path-formulae: Xα.

Definition 2.54 (ACTL* Syntax):
Let Σ be a set of actions then the syntax of ACTL* formulae is:

ϕ ::= tt | ¬ϕ | ϕ ∧ ϕ | ∃π
π ::= ϕ | ¬π | π ∧ π | Xπ | Xαπ | π U π

where α ∈ Σ.
�
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Definition 2.55 (ACTL* Semantics):
Let M = (S,Σ,−→) be a LTS, s ∈ S be a state, φ, ψ be two state-formulae and
ρ, ρ1 be two path-formulae. Then the satisfaction relation |=⊆ S × ϕ is defined for
state formulae by:

• s |= tt

• s |= ¬φ⇔ s 6|= φ

• s |= φ ∧ ψ ⇔ s |= φ and s |= ψ

• s |= ∃ρ⇔ ∃σ ∈ Path(s). σ |= ρ

For a path σ, the satisfaction relation |=⊆ Path×π is defined for path formulae by:

• σ |= φ⇔ σ[0] |= φ

• σ |= ¬ρ⇔ σ 6|= ρ

• σ |= ρ ∧ ρ1 ⇔ σ |= ρ and σ |= ρ1

• σ |= Xρ⇔ suffix(σ, 1) |= ρ

• σ |= Xαρ⇔ (σ[0], α, σ[1]) ∈−→ ∧ suffix(σ, 1) |= ρ

• σ |= ρ U ρ1 ⇔ ∃j ≥ 0. suffix(σ, j) |= ρ1 ∧ ∀0 ≤ i < j. suffix(σ, i) |= ρ

�

As we can see, the new operator Xα is similar to X but in addition it requires
that the transition, executed by our path, has the label equals to α.

From this syntax is possible to derive some other operators like ff ,∨,♦,� and
so on. Also now we can define the operator Xτϕ = Xϕ∧¬

∨
{Xαϕ | α ∈ Σ}, where

τ describes the “invisible” action and
∨
{ϕi | i ∈ [1 . . . n]} = ϕ1 ∨ . . . ∨ ϕn.

In order to define more powerful modalities which will significantly shorten the
notation, a simple auxiliary logic of actions is introduced:

Definition 2.56 (Action formulae):
Let Σ the set of actions then an action formula γ is generated by:

γ ::= α | ¬γ | γ ∧ γ

where α ∈ Σ. We write tt for ¬(α0 ∧ ¬α0) where α0 is a generic action. All other
operators like ff ,∨ and so on can be introduced in the classic way.

�

Definition 2.57 (Satisfaction relation):
Let Σ be the set of actions, λ, λ1 be two action formulae and β be an action then
the satisfaction relation |=⊆ Σ× γ is inductively defined as:
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• β |= α⇔ β = α

• β |= ¬λ⇔ β 6|= λ

• β |= λ ∧ λ1 ⇔ β |= λ and β |= λ1

�

Definition 2.58 (Derived modalities):
Let λ, λ1 be two action formulae, ϕ, ϕ1 be two ACTL* formulae and α be an action
then we can introduce some useful modalities by using the action formulae:

• Xτϕ = Xϕ ∧ ¬
∨
{Xαϕ | α ∈ Act}

• Xλϕ =
∨
{Xαϕ | α ∈ Σ ∧ α |= λ}

• ϕλUλ1ϕ1 = (ϕ ∧ (Xτtt ∨Xλtt)) U (ϕ ∧Xλ1ϕ1)

• ϕλUϕ1 = (ϕ ∧ (Xτtt ∨Xλtt)) U ϕ1

• ϕ〈α〉ϕ1 = ∃(ϕff Uαϕ1)

• ϕ〈ε〉ϕ1 = ∃(ϕff U ϕ1)

• 〈α〉ϕ = tt〈α〉ϕ

• [α]ϕ = ¬〈α〉¬ϕ

where ε is the empty string. �

The restriction ACTL, instead, has the following syntax:

Definition 2.59 (ACTL Syntax):
Let Σ be a set of actions, γ, γ1 be two action formulae then the syntax of ACTL
formulae is:

ϕ ::= tt | ¬ϕ | ϕ ∧ ϕ | ∃π | ∀π
π ::= Xγϕ | Xτϕ | ϕγUγ1 ϕ | ϕγU ϕ

�

2.3.4 Hennessy Milner Logic over MTS

In preceding sections we saw some logics interpreted over a LTS or a KS and,
even though they are partially different like formalisms, anyway they have got a
common structure: a set of states and only one transition relation, that is the
type of transitions may be different between several formalisms, for example in KS
−→⊆ S × S and in LTS −→⊆ S × Σ × S, but each model has a unique type of
transition relation.

In [15], [34] Larsen defined a restriction of HML, that is a HML without negation
and described a semantics over MTS.
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Definition 2.60 (Hennessy-Milner Logic (HML) Syntax):

ϕ ::= tt | ff | ϕ ∧ ϕ1 | ϕ ∨ ϕ1 | 〈α〉ϕ | [α]ϕ

where α ∈ Σ. �

The semantics is described by the satisfaction relation |= that defines if a state
of a MTS satisfies a some property.

Definition 2.61 (Hennessy Milner Logic (HML) Semantics):
Let M = (S,Σ,−→♦,−→�) be a MTS and ϕ, ϕ be two logic formulae. Then the
satisfaction relation |=⊆ S × ϕ holds the following:

• s |= tt

• s 6|= ff

• s |= ϕ ∧ ϕ1 ⇔ s |= ϕ and s |= ϕ1

• s |= ϕ ∨ ϕ1 ⇔ s |= ϕ or s |= ϕ1

• s |= 〈α〉ϕ⇔ ∃s′ ∈ S. s α−→� s′ ∧ s′ |= ϕ

• s |= [α]ϕ⇔ ∀s′ ∈ S. s α−→♦ s′ ⇒ s′ |= ϕ

�

Note that the equivalence 〈α〉ϕ = ¬[α]¬ϕ is no more true, whereas if M is a LTS
then this satisfaction relation is the same of HML over LTS, described previously.

As for the HML over LTS, we can find a relation between the HML logic over
MTS and the refinement relation:

Definition 2.62:
Let M = (S,Σ,−→♦,−→�) be a MTS and s be a state. Then we denote by F(s)
the set of formulae satisfied by the state s, that is F(s) = {ϕ | s |= ϕ}

�

Theorem 2.2. Let s, t be two states of a MTS M . Then s E t⇔ F(s) ⊆ F(t)

Unfortunately, we cannot add the classical negation formula and the reason is
simple, since any F(s) of any specification is complete with respect to the negation,
that is for any formula ϕ either ϕ ∈ F(s) or ϕ 6∈ F(s). Therefore F(s) ⊆ F(t) ⇔
F(s) = F(t).
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2.3.5 MHML

Another type of logic interpreted over MTS is MHML, a particular action-based
and branching-time temporal logic based on the “Hennessy-Milner logic with Until”
[22] [33], defined by Asirelli, ter Beek, Fantechi and Gnesi in [3] [4]. In practice
the MHML extends the HML by adding of the until operator and existential and
universal state operators (quantifying over paths) like ones described in CTL.

Definition 2.63 (MHML Syntax):
Let Σ be a set of actions then the syntax of MHML formulae is:

ϕ ::= tt | ¬ϕ | ϕ ∧ ϕ | 〈α〉ϕ | [α]ϕ | Eπ | Aπ
π ::= ϕ Uϕ | ϕ U�ϕ

�

The informal meaning of the new non-standard operators of MHML is as follows:

• 〈α〉ϕ: a next state exists, reachable by a must transition executing action α,
in which ϕ holds

• [α]ϕ: in all next states, reachable by any must and may transition executing
action α, ϕ holds

• ϕ Uϕ1: in the current state, or in a future state of a path, ϕ1 holds, while ϕ
holds in all preceding states of the path

• ϕ U�ϕ1: in the current state, or in a future state of a path, ϕ1 holds, while ϕ
holds in all preceding states of the path and the path leading to that state is
a must path

Definition 2.64 (Must Path):
Let M = (S,Σ,−→♦,−→�) be a MTS and σ = s0s1 . . . be a path. Then σ is a must

path if and only if ∀i ≥ 0. si
αi−→� si+1 and it is denoted by σ�.

�

Definition 2.65 (MHML Semantics):
Let M = (S,Σ,−→♦,−→�) be a MTS , σ be a path, π be a path-formula and ϕ, ϕ1

be two state-formulae. Then the satisfaction relation for state-formulae |=⊆ S × ϕ
holds the following:

• s |= tt

• s |= ¬ϕ⇔ s 6|= ϕ

• s |= ϕ ∧ ϕ1 ⇔ s |= ϕ and s |= ϕ1

• s |= 〈α〉ϕ⇔ ∃s′ ∈ S. s α−→� s′ ∧ s′ |= ϕ



2.3. LOGICS 45

• s |= [α]ϕ⇔ ∀s′ ∈ S. s α−→♦ s′ ⇒ s′ |= ϕ

• s |= Eπ ⇔ ∃ρ ∈ Path(s). ρ |= π

• s |= Aπ ⇔ ∀ρ ∈ Path(s). ρ |= π

The satisfaction relation for path-formulae |=⊆ Path× π holds the following:

• σ |= ϕ Uϕ1 ⇔ ∃j ≥ 0. σ[j] |= ϕ1 and ∀0 ≤ i < j.σ[i] |= ϕ

• σ |= ϕ U�ϕ1 ⇔ ∃j ≥ 0. σ�[j] |= ϕ1 and ∀0 ≤ i < j.σ�[i] |= ϕ

�

In this case the equation 〈α〉ϕ = ¬[α]¬ϕ does not hold, also these operators can be
interpreted in a deontic way, in particular 〈α〉ϕ is equivalent to O(α)ϕ and ¬[α]¬ϕ
is equivalent to P(α)ϕ.

2.3.6 vaCTL

vaCTL, introduced in [5] is an extension of MHML: it adds action formulae and
implicitly the deontic operators O “it is obligatory that” and P “it is permitted
that”.

Definition 2.66 (vaCTL Syntax):
Let Σ be a set of actions, γ, γ1 be two action formulae then the syntax of v-ACTL
formulae is:

ϕ ::= tt | ¬ϕ | ϕ ∧ ϕ | 〈α〉ϕ | [α]ϕ | 〈α〉�ϕ | [α]�ϕ | Eπ | Aπ
π ::= ϕ{γ}U{γ1} ϕ | ϕ{γ}U�{γ1} ϕ

�

The informal meaning of the new operators of vaCTL is as follows:

• 〈α〉�ϕ: a next state exists, reachable by a must transition executing action α,
in which ϕ holds

• [α]�ϕ: in all next states, reachable by must transitions executing action α, ϕ
holds

• ϕ{γ}U{γ1}ϕ1: in a state of a path reached by an action satisfying γ1, ϕ1 holds,
whereas ϕ holds in all preceding states and all actions executed meanwhile
along the path satisfy γ

• ϕ{γ}U�{γ1}ϕ1: in a state of a path reached by an action satisfying γ1, ϕ1

holds, whereas ϕ holds in all preceding states and the path leading to that
state is a must path along which all actions executed meanwhile satisfy γ
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Note that the operators 〈α〉�ϕ and [α]�ϕ represent the classical deontic operators
O and P, respectively.

Before to introduce the semantics we define a new concept:

Definition 2.67:
Let M = (S,Σ,−→) be a LTS and σ = s0s1 . . . be a path. For every i ≥ 0 we
denote the i-th action of σ by σ{i} = αi such that (σ[i], αi, σ[i+ 1]) ∈−→.

�

Of course this concept is easily extended to MTS.

Definition 2.68 (vaCTL Semantics):
Let M = (S,Σ,−→♦,−→�) be a MTS , σ be a path, π be a path formula and ϕ, ϕ1

be two state formulae. Then the satisfaction relation for state-formulae |=⊆ S × ϕ
holds the following:

• s |= tt

• s |= ¬ϕ⇔ s 6|= ϕ

• s |= ϕ ∧ ϕ1 ⇔ s |= ϕ and s |= ϕ1

• s |= 〈α〉ϕ⇔ ∃s′ ∈ S. s α−→♦ s′ ∧ s′ |= ϕ

• s |= [α]ϕ⇔ ∀s′ ∈ S. s α−→♦ s′ ⇒ s′ |= ϕ

• s |= 〈α〉�ϕ⇔ ∃s′ ∈ S. s α−→� s′ ∧ s′ |= ϕ

• s |= [α]�ϕ⇔ ∀s′ ∈ S. s α−→� s′ ⇒ s′ |= ϕ

• s |= Eπ ⇔ ∃ρ ∈ Path(s). ρ |= π

• s |= Aπ ⇔ ∀ρ ∈ Path(s). ρ |= π

The satisfaction relation for path formulae |=⊆ Path× π holds the following:

• σ |= ϕ{γ}U{γ1}ϕ1 ⇔ ∃j ≥ 0. σ[j] |= ϕ, σ{j} |= γ1, σ[j + 1] |= ϕ1 and
∀0 ≤ i < j. σ[i] |= ϕ, σ{i} |= γ

• σ |= ϕ{γ}U�{γ1}ϕ1 ⇔ σ is a must path and σ |= ϕ{γ}U{γ1}ϕ1

�



Chapter 3

Constrained Modal Transition
System

In this chapter we will introduce a new formalism: Constrained Modal Transi-
tion System. It is one of main contributions of this Thesis and it is an extension of
work and ideas described in [26], where Fantechi and Gnesi introduced the GEMTS
formalism.

Reasons about the need of developing of a new formalism are multiple. On
the hand we would want to study and understand very well the properties and
potentialities of GEMTSs, which could be difficult to see and to realize due to
the formalism itself, namely the mathematical description of several concepts. In
addition we would like to understand if it is possible to extend GEMTSs, that is
if it makes sense adding features to GEMTSs, and how to make it: we should so
reason about what features can be added, where these features should be included in
the formalism and what consequences are derived by the chosen features, both from
a conceptual pointview, namely the ideas represented by the formalism itself, and
from a practical pointview, namely how these ideas are described mathematically in
the formalism.

On the other hand, whereas GEMTSs follow the classic approach, namely the
formalism is defined like a transition system enhanced with two different kinds of
transitions (may and must), OTS and PMTS, the last developed models, introduce
a new approach, namely an approach based on logic formulae, called obligation for-
mulae, which describe needed requirements. Moreover in [12] Beneš and Krět́ınský
describe a process algebra for OTS, enriching the ways to reason about all these
systems, obtaining an alternative characterization of them and, at the same time,
providing a more compact description language for them. These concepts are very
important in the study of specification models from a theoretical pointview, but
in the product lines the modeller must often handle requirements as “exactly two
features are requested” or “at most four features are requested” or “at least two fea-
tures and at most three features are requested”, therefore the description of these
requirements by means of a logic formula, in some cases, could be little intuitive or
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the formula itself could hide some requirements. In effect we must reason about the
semantics of logic operators, which is described by sets of transitions satisfying the
formula hence, in this way, we might see all satisfying sets of transitions but not the
property described through these sets.

Example 3.1. Suppose we have four different features F = {A,B, C,D} and suppose
we want to model this requirement R = “at least two features of F must be present”.
A first attempt to represent R is an obligation formula with all possible implementa-
tions described directly, but in this way, of course, we have a very large formula. An-
other possibility is a “smart” formula like ϕ = (A∧(B∨C∨D))∨(B∧(C∨D))∨(C∧D),
effectively it is described the situation where if we choose A then at least one among
B, C,D must be taken, or if we choose B (and implicitly assume that A is not taken)
then at least one between C,D must be considered or we must take both C and D,
assuming implicitly that A and B are not present. As we can see, our requirement is
correctly described by ϕ but suppose that we only know ϕ then our initial requirement
will not be easily deducible from ϕ.

Now we reason about the requirement R1 = “at most three features of F must be
requested”. In this case we could define our formula by means of all possible imple-
mentations described directly, as before we have a very large formula again. Anyway,
this time, we have a simple and clever formula, which represents the requirement,
ϕ = (¬A ∨ ¬B ∨ ¬C ∨ ¬D). In effect any implementation which satisfies ϕ must
have one or more missing features. Again our requirement is correctly described by
ϕ but it is not easily deducible by ϕ.

So we would want a formalism more useful than the OTS one from modeler
pointview and, at the same time, expressively equivalent to the OTS one.

3.1 CMTS definition

The starting point to develop our new formalism is to find out if a more useful way
to represent relations ♦ and � of GEMTSs exists. For this purpose we can note that
� means “at least k of n” and ♦ means “at most k of n”, so it is simple to realize
that � describes the minimum number of features required and ♦ the maximum
one.

Therefore starting from this remark, we can introduce some new concepts:

Definition 3.1 (Choice Set):
Let E be a set of elements. Then we call Choice Set a set CS ⊆ E of elements of E
that may be chosen.

We denote the set of all possible choice sets of E by CS(E).
�

Note that if E is clear from the context then it is omitted, moreover CS(E) =
P(E), namely the powerset of E .
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Definition 3.2 (Constraint):
Let E be a set of elements and N be the set of natural numbers. Then we call
Constraint a tuple < CS, [min,max] > where:

• CS ∈ CS(E) describes a choice set, namely a set of elements which can be
chosen

• [min,max] ∈ N × N is an interval where min describes the minimum num-
ber of required elements of CS and max represents the maximum number of
required elements of CS

We denote the set of all possible constraints of E by Constraints(E).
�

Again in this case, if E is clear from the context then it is omitted, moreover the
type of Constraints(E) is CS(E)× (N ×N ).

The meaning of a constraint < CS, [min,max] > related to a set E of elements
is very simple: it requires that any possible subset of E to be correct must have K
elements of CS such that min ≤ K ≤ max. Note that we do not require:

• to choose always and only a unique possible subset of CS, we can choose any
possible subset of CS provided that its size is included between min and max

• to choose always and only all possible subsets of CS with sizemin ≤ H ≤ max,
we can choose any possible subset of CS with any possible size provided that
this size is included between min and max

This idea can be described formally as follows:

Definition 3.3 (Constraint Satisfaction):
Let E be a set of elements, c =< CS, [min,max] > be a constraint and I ⊆ E a
possible set of elements of E . Then we define a satisfaction relation |=⊆ P(E) ×
Constraints(E) as follows:

I |= c⇔ min ≤ |I ∩ CS| ≤ max

where the operator |.| : P(E) −→ N is the classic cardinality operator, namely |S|
describes the cardinality or the size of a set S.

�

Definition 3.4 (Constraint Semantics):
Let E be a set of elements and c =< CS, [min,max] > be a constraint. Then we
denote the semantics of c by JcK where:

JcK = {I ⊆ E | I |= c}

�
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Note that in this case ∅ and {∅} are two different elements: the first one describes
a constraint with an empty semantics, the second one represents the semantics with
only one set of transitions which satisfies the constraint, that is the empty set of
transitions.

Definition 3.5 (Solution):
Let E be a set of elements, c =< CS, [min,max] > be a constraint and I ⊆ E be a
possible subset of E . We call I solution of c if and only if I ∈ JcK.

�

First of all, to simplify the notation in the following sections, we introduce some
utility functions:

1. ∀c =< CS, [min,max] >∈ Constraints(E) we denote the choice set of c by
Choice(c), namely Choice(c) = CS

2. ∀c =< CS, [min,max] >∈ Constraints(E) we denote the interval of c by
Card(c), namely Card(c) = [min,max]

3. ∀c =< CS, [min,max] >∈ Constraints(E) we denote the minimum value of
the interval of c by Cardmin(c), namely Cardmin(c) = min

4. ∀c =< CS, [min,max] >∈ Constraints(E) we denote the maximum value of
the interval of c by Cardmax(c), namely Cardmax(c) = max

5. ∀c ∈ Constraints(E) and ∀I ⊆ E we denote the number of elements of
Choice(c) in I by #cI, namely #cI = |I ∩ Choice(c)|

Trivially, let E be a set of elements then the following two properties always hold:

1. if c ∈ Constraints(E) and Card(c) = [min,max] such that max < min then
JcK = ∅, in effect ∀I ⊆ E . I 6|= c because if max < min then an any I cannot
hold, at the same time, min ≤ #cI and #cI ≤ max.

2. if c, c1 ∈ Constraints(E) such that

• c =< CS, [min,max] >

• c1 =< CS, [min,max1] >

• |CS| < max

• max1 = |CS|

then JcK = Jc1K.

The reason is simple: from set theory we know that let A,B be two sets then
it holds:

• ∅ ⊆ A ∩B ⊆ A



3.1. CMTS DEFINITION 51

• ∅ ⊆ A ∩B ⊆ B

Therefore, in our case, for any I ⊆ E it always holds

0 ≤ #cI ≤ |CS| = |Choice(c)| = |Choice(c1)|

Note that ∀I ⊆ E .#cI = #c1I because Choice(c) = Choice(c1).

Trivially, for hypothesis,

I ∈ Jc1K⇔ min ≤ #c1I ≤ max1 ⇒ min ≤ #cI ≤ max⇔ I ∈ JcK

If I ∈ JcK then surely #cI ≤ |CS| = max1 because this property always holds
for every I, so we can say:

I ∈ JcK⇔ min ≤ #cI ≤ max⇒ min ≤ #c1I ≤ max1 ⇔ I ∈ JcK

The two properties are very important because they allow to reduce the number of
useful constraints which we can use to model requirements.

Definition 3.6 (Correct Constraint):
Let c =< CS, [min,max] > be a possible constraint. Then we say that c is a correct
constraint if and only if holds:

0 ≤ min ≤ max

�

From now on, we will assume implicitly that our constraints are correct. The next
step is to understand how to extend the semantics concept to the set of constraints:
the simple idea is that when we have a set S of constraints, we want every constraint
in S is satisfied.

Definition 3.7 (Semantics of a Set of Constraint):
Let E be a set of elements and S be a set of constraints. Then we denote the
semantics of S by JSK where:

JSK = {I ⊆ E | ∀c ∈ S. I |= c}

�

Trivially, the definition of solution can be extended to a set of constraints:

Definition 3.8 (Solution):
Let E be a set of elements, S be a set of constraints and I ⊆ E be a possible subset
of E . We call I solution of S if and only if I ∈ JSK.

�
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Theorem 3.1. Let E be a set of elements and S be a set of constraints, such that
S ⊆ Constraints(E). Then:

JSK =
⋂
c∈S

JcK

Proof.
From Definition 3.7 we know that

I ∈ JSK⇔ ∀c ∈ S. I ∈ JcK⇔
∧
c∈S

I ∈ JcK

for classic semantics of ∀. So we can easily conclude that∧
c∈S

I ∈ JcK⇔ I ∈
⋂
c∈S

JcK

for typical definition of intersection of sets.

Corollary 3.1:The semantics of the union of constraints is equivalent to the in-
tersection of the semantics of single constraints. Formally,

I ∈ J
⋃
i

ciK⇔ I ∈
⋂
i

JciK

Let S be a set of constraints and c be a constraint then, as we have just said,
JS ∪ cK = JSK ∩ JcK and from the set theory we can say JSK ∩ JcK ⊆ JSK. In effect
the addition of a new constraint to a set S entails a restriction of the semantics of S
and the more restrictive the added constraint is, the larger the number of solutions
of S to be deleted is.

Of course, taken a set S of constraints, the most restrictive constraint is a con-
straint c such that JSK∩ JcK = ∅. Trivially constraints with semantics equal to ∅ are
the most restrictive but, depending on the set S, we can also find out many other
constraints which are the most restrictive, for example taken S we can consider a
constraint c such that JcK = P(E) \ JSK. In this case obviously JSK ∩ JcK = ∅.

On the other hand, the less restrictive constraint is a constraint c such that
JSK ∩ JcK = JSK. Trivially constraints with semantics equal to P(E), where E is the
set of elements which can be considered, are the less restrictive. Again, we can also
find out several other constraints which are the less restrictive, for example, taken
S, any constraint c such that JSK ⊆ JcK is the less restrictive, indeed JSK∩JcK = JSK.

Definition 3.9 (More-restrictive and non-restrictive):
Let S be a set of constraints, such that JSK 6= ∅, and c be a constraint. Then we
call c:

• more-restrictive for S if and only if JSK ∩ JcK = ∅
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• non-restrictive for S if and only if JSK ∩ JcK = JSK

We call c:

• general more-restrictive if and only if ∀S ⊆ Constraints(E). JSK ∩ JcK = ∅

• general non-restrictive if and only if ∀S ⊆ Constraints(E). JSK ∩ JcK = JSK

�

Note that for set theory, taken a set T :

• ∀S ⊆ X. S ∩ T = ∅ ⇔ T = ∅

• ∀S ⊆ X. S ∩ T = S ⇔ T = P(X)

For now we focus on general non-restrictive constraints and we try to understand
what characteristics these constraints must have.

Theorem 3.2. Let c =< CS, [min,max] > be a constraint. Then c is the general
non-restrictive constraint ⇔ min = 0 ∧ max = |CS|.

Proof.
Case ⇒): c is the general non-restrictive constraint if and only if JcK = P(E).
Suppose for absurdum that min 6= 0 ∨max 6= |CS|. Suppose min 6= 0 but if we
take I ⊆ E , such that |I ∩CS| = 0, then I 6|= c because |I ∩CS| < min, but this is
impossible as I ∈ JcK.

Suppose max 6= |CS| but if we take I ⊆ E , such that |I ∩ CS| = |CS|, then
I 6|= c because |I ∩ CS| > max, but also this is impossible as I ∈ JcK. So we can
deduce min = 0 ∧max = |CS|.
Case ⇐): from set theory we know that ∀I ⊆ E . 0 ≤ |I ∩ CS| ≤ |CS|, so ∀I ⊆
E . I |= c, deducing JcK = P(E).

So it is clear that a general non-restrictive constraint deletes nothing from se-
mantics pointview, therefore if a general non-restrictive constraint is considered or
not it is not important. For these reasons in the following sections we implicitly
assume that if a subset T of outgoing transitions has not a constraint explicitly
related to it, then it has a implicitly constraint cT =< T, [0, |T |] >.

In addition let S be a set of constraints, we denote the semantics of an empty
set of constraints J∅K = P(E), namely it is equivalent to J{< ∅, [0, 0] >}K.

Definition 3.10 (Consistency):
Let E be a set of elements, c ∈ Constraints(E) a constraint and S be a set of
constraints. Then we call:

• c consistent if and only if JcK 6= ∅, namely it exists at least one combination of
elements such that the constraint is satisfied. This type of consistency is call
Local Consistency.
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• S consistent if and only if JSK 6= ∅, namely it exists at least one combination
of elements such that every constraint is satisfied. This type of consistency is
call Global Consistency

. �

Note that we can derive two properties from these definitions:

Theorem 3.3 (Global Consistency implies Local Consistency). Let S be a
set of constraints then it holds:

S is consistent⇒ ∀c ∈ S. c is consistent

Proof.
If S is consistent then:

JSK 6= ∅ ⇔ J
⋃
c∈S

cK 6= ∅

For Theorem 3.1 we know that:

J
⋃
c∈S

cK 6= ∅ ⇔
⋂
c∈S

JcK 6= ∅ ⇒ ∀c ∈ S. JcK 6= ∅

The vice versa is not true as we can see in the following example:

Example 3.2. Suppose that our set E = {a, b, c} and it exists three constraints:

1. c1 =< {a, b}, [1, 1] >

2. c1 =< {b, c}, [1, 1] >

3. c1 =< {a, c}, [1, 1] >

It is simple to demonstrate that each constraint is consistent:

1. Jc1K = {{a}, {b}, {a, c}, {b, c}}

2. Jc2K = {{b}, {c}, {a, c}, {a, b}}

3. Jc3K = {{a}, {c}, {a, b}, {b, c}}

But the set S =
⋃

i∈[1,3]

ci is not consistent. In effect we can note that JSK =
⋂

i∈[1,3]

JciK =

∅

Furthermore we add a function to handle and describe the outgoing transitions
of a state:



3.1. CMTS DEFINITION 55

Definition 3.11:
Let s ∈ S be a state, Σ be a set of actions and −→⊆ S × Σ × S be a transition
relation. Then we denote the outgoing transitions of s by Trans(s) where:

Trans(s) = {(α, s′) | (s, α, s′) ∈−→}

We denote the set of all possible outgoing transitions by Trans.
�

For convenience we represent the constraint c of a state s with Choice(c) = ∅
like a constraint c′ =< Trans(s), [0, |Trans(s)|] >, in this way JcK = P(Trans(s)).

Now we have enough information to present the new formalism: Constrained
Modal Transition System.

Definition 3.12 (Constrained Modal Transition System):
A Constrained Modal Transition System is a tuple (S,Σ,−→,C) where:

• S is a finite set of states

• Σ is a finite set of actions

• −→⊆ S × Σ× S is a transition relation

• C : S −→ P(Constraints(Trans)) is a function which taken a state s as input
returns a set of possible constraints where constraints are defined over outgoing
transitions of s

Moreover it holds that:

1. ∀s ∈ S. ∀c ∈ C(s). c is a correct constraint.

2. ∀s ∈ S. ∀c ∈ C(s). Choice(c) 6= ∅.

3. ∀s ∈ S. ∀c ∈ C(s). Choice(c) ⊆ Trans(s).

4. ∀s ∈ S. ∀c, c1 ∈ C(s). Choice(c) 6= Choice(c1).

We denote the set of all possible CMTS by CMTS.
�

Note that the further conditions mean:

1. “every constraint must be correct”

2. “every constraint must not have an empty choice set”

3. “for every state, any possible constraint must have only outgoing transitions
of the state itself as choice set”
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4. “for every state, any possible choice set derivable by outgoing transitions must
be correlated to a only one constraint”

We call this last property: uniqueness of choice sets. These conditions make
sense because:

1. if a CMTS have an incorrect constraint then it is surely an inconsistent CMTS

2. if a constraint c has an empty choice set then this means we want to reason
about no outgoing transitions and, of course, this makes little sense.

3. if we have a constraint of a certain state s with a choice set such that some
transitions are not outgoing transitions of s then it is impossible to satisfy the
constraint. From more conceptual pointview, it makes less sense to define a
constraint which introduces some restrictions over not-present transitions.

4. if we have several constraints with the same choice set CS then this means
we must consider several limitations over transitions of CS then it make more
sense if we have only one constraint which describes all these limitations in an
equivalent way.

In addition, note that, for every state s, the semantics of s, JsK, has as type
P(P(Trans(s))).

Example 3.3. Suppose we want to describe the requirement: “ The choice of drinks
(coffee, tea, cappuccino) varies between the products. However, every product of the
family delivers coffee, and every product of the family delivers at least two different
drinks” of our vending machines. A possible CMTS which describes this requirement
could be like one in the Figure 3.1

Figure 3.1: An example of CMTS

As we can see, we have a constraint related to all features and it requires that at least
two of them and at most three of them must be considered. Moreover we have further
singleton constraints: the one related to coffee feature which requires implicitly that
the feature must be always considered. The other ones, indeed, require implicitly that
the features associated may be considered.
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In addition we can easily extend the semantics concept from constraints to states:

Definition 3.13 (Semantics of a CMTS state):
Let M = (S,Σ,−→,C) be a CMTS and s be a possible state in S. Then we denote
the semantics of s by JsK where:

JsK = JC(s)K

�

It is clear that the semantics of a single state s is univocally determined by the
semantics of constraints related to s.

Definition 3.14 (Global and Local Consistency in CMTS):
Let M = (S,Σ,−→,C) be a CMTS and let s ∈ S be a state. Then we say that:

• s is consistent if and only if JsK 6= ∅. We call this type of consistency local
CMTS consistency.

• M is consistent if and only if ∀s ∈ S. JsK 6= ∅. We call this type of consistency
global CMTS consistency.

�

Corollary 3.2 (Global CMTS Consistency implies Local CMTS Consis-
tency):Let M = (S,Σ,−→,C) be a CMTS. If M is consistent then ∀s ∈ S. s is
consistent

Example 3.4. In Figure 3.2 there are four different CMTSs:

M) is an inconsistent CMTS even though every constraint is consistent. In this
case the set of constraints has not a possible solution.

N) is a consistent CMTS, in effect a possible solution of these constraints is the
set I = {a, b}. Note that for convenience I is only a set of actions, from
theoretical pointview I should be a set of pairs (αi, si), where αi ∈ Σ is action
and si ∈ S is a target state.

O) is an inconsistent CMTS because it exists an inconsistent constraint: in this
case the constraint is < {b, c}, [3, 3] >.

P) is an inconsistent CMTS because it exists an incorrect constraint: in this case
the constraint is < {a, b, c}, [2, 1] >.
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Figure 3.2: Consistency of CMTSs

For our dissertation we will restrict CMTSs to a particular class: the action-
deterministic systems. This choice is motivated by the observation that in a real
context and in particular in the Product-Lines one, for any state of a possible speci-
fication, each feature, which describe a particular characteristic of the product, must
be unique. Of course each state has some different features but it is never possible
to have two features which described the same characteristic and, at the same time,
are different.

Definition 3.15 (Action-Deterministic CMTS):
An Action-Deterministic CMTS is a tuple (S,Σ,−→,C, s0) where:

• (S,Σ,−→,C) is a CMTS

• s0 is the unique initial state

Moreover it holds another property :

∀s ∈ S, α ∈ Σ. (s, α, s′) ∈−→ ∧ (s, α, s′′) ∈−→ =⇒ s′ = s′′

�

In the following chapters we will implicitly assume that a CMTS is an action-
deterministic CMTS, note that almost all properties which we will describe for
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action-deterministic CMTS are easily extendible to the non-deterministic case. In
every case where this extension is not so simple or it can create some troubles, we
will shortly explain the problem and the possible solutions.

Figure 3.3: Several syntactically different CMTSs but semantically equivalent

Finally, we want to observe a property of CMTSs: taken a CMTS M , it is
possible to find some other CMTSs such that they are syntactically different but
semantically equivalent to M , namely all CMTSs model the same specification but
they describe this specification in a different way. An example of this property can
be seen in Figure 3.3.

3.1.1 Constraints study

The new concept of constraint is very simple but it hides several useful properties
which could be used to a better understanding of properties of the entire CMTS
model. In this subsection we will describe some theorems and properties directly
related to the constraint idea.

In the preceding section we introduced the concept of semantics of a constraint
but if we want to calculate the semantics of a certain constraint c, we must generate
all possible combinations of elements and determine which combinations satisfy c
and this method clearly requires a very hard work. Unfortunately, if we will want
the exact set of all combinations of elements which satisfy c, this method is the only
possible one.

On the other hand, for some problems, we can avoid to calculate the semantics
in this way by means of a “smart” use of information described by the constraint as
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we will see in next theorems. Note that these theorems are general and independent
by the set E of elements to be considered.

Theorem 3.4 (Local Consistency). Let c =< CS, [min,max] > be a constraint
in Constraints(E). Then it holds:

JcK 6= ∅ ⇔ 0 ≤ min ≤ max ∧min ≤ |CS|

Proof.
Case ⇒): JcK 6= ∅ ⇔ ∃I ⊆ E . I |= c, namely min ≤ #cI ≤ max. Moreover we know
from the set theory ∀J. 0 ≤ |J ∩ CS| ≤ |CS|. Since min ≤ #cI and #cI ≤ |CS|,
for transitivity we can conclude min ≤ |CS|.
Case ⇐): if min ≤ max and min ≤ |CS| then we can consider a set I ⊆ E such
that #cI = min and this is possible because min ≤ |CS|. In effect 0 ≤ #cI ≤ |CS|,
so if min > |CS| then #cI = min is impossible for any possible I. Seeing that
min ≤ #cI ≤ max, we can deduce I ∈ JcK.

We can deduce a very important corollary:

Corollary 3.3:If a constraint c is local consistent then it is correct.

The vice versa is not true: for example we could have a constraint c =<
CS, [min,max] > such that:

1. 0 ≤ min ≤ max ∧ |CS| < min, so JcK∅ and we can deduce that c is not local
consistent

2. seeing that 0 ≤ min ≤ max, then c is correct

Theorem 3.5 (Constraints Inclusion). Let c =< CSc, [minc,maxc] >, c1 =<
CSc1 , [minc1 ,maxc1 ] > be two consistent constraints in Constraints(E). If CSc =
CSc1 then it holds:

JcK ⊆ Jc1K⇔ (minc1 ≤ minc ≤ maxc ≤ maxc1)

Proof.
We know that I ∈ JcK ⇔ I |= c ⇔ minc ≤ #cI ≤ maxc and the same holds for c1.
Moreover CSc = CSc1 , for hypothesis, so we have that ∀I ⊆ E . #cI = #c1I because
#cI = |I ∩ CSc| = |I ∩ CSc1| = #c1I.
Case ⇒): Suppose true JcK ⊆ Jc1K then we know that ∀I ⊆ E . I |= c ⇒ I |= c1.
Consider #cI = minc then I |= c and, for hypothesis, I |= c1. Since we know that
#cI = #c1I we have that I |= c1 ⇔ minc1 ≤ #c1I = #cI = minc ≤ maxc1 . So
we can conclude that minc1 ≤ minc ≤ maxc1 . By using the same reasoning with
maxc we can deduce that minc1 ≤ maxc ≤maxc1 . In addition, for correctness of
constraints, minc ≤ maxc, concluding minc1 ≤ minc ≤ maxc ≤ maxc1 is true.
Case ⇐): Suppose that minc1 ≤ minc ≤ maxc ≤ maxc1) and I ∈ JcK. We know
that this is equivalent to minc ≤ #cI ≤ maxc and, using the hypotheses, we can
deduce that minc1 ≤ minc ≤ #cI = #c1I ≤ maxc ≤ maxc1 , therefore I |= c1.
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Theorem 3.6 (Global consistency implies Local consistency). Let S be a set
of constraints. Then it holds:

JSK 6= ∅ ⇒ ∀c ∈ S. JcK 6= ∅

Proof.
We know that JSK = J

⋃
c∈S
cK =

⋂
c∈S

JcK. It is simple to understand J
⋃
c∈S
cK 6= ∅ ⇔⋂

c∈S
JcK 6= ∅.

Obviously if ∃c ∈ S. JcK = ∅ then
⋂
c∈S

JcK = ∅, so we can deduce that ∀c ∈ S. JcK 6=

∅

The vice versa is not true, in Figure 3.2 the CMTS (a) has two consistent constraints
but their union is not consistent.

Corollary 3.4:The Local inconsistency implies the Global inconsistency.

Theorem 3.7 (Constraints strict inclusion). Let c =< CSc, [minc,maxc] > and
c1 =< CSc1 , [minc1 ,maxc1 ] > be two consistent constraints in Constraints(E). If
CSc = CSc1 then it holds:

JcK ⊂ Jc1K⇔ (minc1 < minc ≤ maxc ≤ maxc1) ∨
(minc1 ≤ minc ≤ maxc < maxc1)

Proof.
For hypothesis, we have ∀I ⊆ E . #cI = #c1I.
Case ⇒): In this case we have two properties:

1. ∀I ⊆ E . I ∈ JcK⇒ I ∈ Jc1K

2. ∃I ⊆ E . I ∈ Jc1K ∧ I 6∈ JcK

The first property describes the constraints inclusion and so, for Theorem 3.5, we
know that JcK ⊆ Jc1K⇔ (minc1 ≤ minc ≤ maxc ≤ maxc1).
The second property says us that ∃I ⊆ E . (minc1 ≤ #c1I = #cI ≤ maxc1)∧((#cI <
minc) ∨ (maxc < #cI)).
Suppose #cI < minc, we know that minc1 ≤ #c1I = #cI ≤ maxc1 so we can deduce
minc1 ≤ #cI < minc ≤ maxc ≤ maxc1 .
On the other hand, if we suppose true maxc < #cI, then we can deduce minc1 ≤
minc ≤ maxc < #cI ≤ maxc1 .
Case ⇒): Suppose true ((minc1 < minc ≤ maxc ≤ maxc1) ∨ (minc1 ≤ minc ≤
maxc < maxc1)). If (minc1 < minc ≤ maxc ≤ maxc1) then ∀I ⊆ E . minc ≤
#cI ≤ maxc ⇒ minc1 ≤ #c1I = #cI ≤ maxc1 . In addition taken J ⊆ E , such
that #cJ = #c1J = minc1 , then minc1 ≤ #cJ = #c1J = minc1 ≤ maxc1 and
minc1 = #cJ < minc, so we can conclude that ∃J ⊆ E . J ∈ Jc1K ∧ J 6∈ JcK.
By using a similar reasoning we can demonstrate the theorem for (minc1 ≤ minc ≤
maxc < maxc1).
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Theorem 3.8. Let c =< CSc, [minc,maxc] >, c1 =< CSc1 , [minc1 ,maxc1 ] > be two
consistent constraints. If CSc = CSc1 then:

JcK ∩ Jc1K = ∅ ⇔ (minc1 > maxc) ∨ (minc > maxc1)

Proof.
Note that if at least one of two constraints is not consistent, then it is simple to
verify JcK ∩ Jc1K = ∅. Moreover the two constraints have the same choice set, so
∀I ⊆ E . #cI = #c1I.
Case ⇒): if JcK ∩ Jc1K = ∅ is true then we may say ∀I ∈ JcK. I 6∈ Jc1K. We know
that I 6∈ Jc1K⇔ (#c1I < minc1) ∨ (maxc1 < #c1I). Since #cI = #c1I for any I, we
can say that ∀I. minc ≤ #cI ≤ maxc ⇒ (#c1I = #cI < minc1) ∨ (maxc1 < #c1I =
#cI).
From this observation it becomes simple to deduce (minc ≤ maxc < minc1) ∨
(maxc1 < minc ≤ maxc), obtaining our theorem. Note that the same reasoning
holds if we consider ∀I ∈ Jc1K. I 6∈ JcK.
Case ⇐): Suppose (minc1 > maxc) ∨ (minc > maxc1) is true.
If (minc1 > maxc) is true, since we have consistent constraints, we can deduce
minc ≤ maxc < minc1 , so ∀I. minc ≤ #cI ≤ maxc ⇒ #cI = #c1I < minc1 ,
therefore ∀I. I ∈ JcK⇒ I 6∈ Jc1K.
On the other hand, if (minc > maxc1) is true, since we have consistent constraints,
we can deduce maxc1 < minc ≤ maxc, so ∀I. minc ≤ #cI ≤ maxc ⇒ maxc1 <
#cI = #c1I. Again ∀I. I ∈ JcK⇒ I 6∈ Jc1K.

Unfortunately, the reasoning about the global consistency is a very complicated
work and it is impossible to find out a simple property which characterizes it, so we
can only reason by means of the semantics of sets of constraints. Anyway, sometimes
we may resolve the problem to compare two different set of constraints in a simple
way, indeed we may define a over-approximation for each set of constraints and then
compare these over-approximations.

Definition 3.16 (Over-approximation):
Let S ⊆ Constraints(E) be a set of constraints, such that S is consistent. We
denote the over-approximation of S by Ŝ =< CSŜ, [minŜ,maxŜ] > where:

• CSŜ =
⋃
c∈S
Choice(c)

• minŜ = min{|I ∩ CSŜ| | I ∈ JSK}

• maxŜ = max{|I ∩ CSŜ| | I ∈ JSK}

�

Note that if S = {c}, where c is a single constraint, then Ŝ =< CSŜ, [minŜ,
maxŜ] > where:
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• CSŜ = Choice(c)

• minŜ = min and maxŜ = max, where c =< CS, [min,max] >

Theorem 3.9. Every over-approximation constraint is a consistent constraint.

Proof.
Let Ŝ =< CSŜ, [minŜ,maxŜ] > be a over-approximation of S. For construction,
surely 0 ≤ minŜ ≤ maxŜ, in effect we use the operator min and max over the
same set {|I ∩ CSŜ| | I ∈ JSK}. In addition, from the set theory, we know that
∀I ⊆ E . |I ∩ CSŜ| ≤ |CSŜ|, so minŜ ≤ maxŜ ≤ |CSŜ|.

The only particular case is when JSK = ∅ but in this case S is inconsistent,
therefore we do not consider it.

It is simple to understand why Ŝ is a over-approximation of S, in effect JSK ⊆ JŜK by
means of Ŝ definition. Now we will see some properties about over-approximation.

Theorem 3.10 (Over-approximations maintain inclusion). Let S, S1 be two
sets of constraints of Constraints(E) and Ŝ, Ŝ1 the over-approximations of S and
S1, respectively. Then if Choice(Ŝ) = Choice(Ŝ1) it holds:

JSK ⊆ JS1K⇒ JŜK ⊆ JŜ1K

Proof.
If JSK ⊆ JS1K is true then we can deduce that ∀I ⊆ E . I ∈ JSK⇒ I ∈ JS1K.
From over-approximation definition, we know that ∃J ∈ JSK. |J ∩CSŜ| = minŜ and
∃K ∈ JSK. |K ∩ CSŜ| = maxŜ.
Moreover, for hypothesis, we can say J ∈ JS1K and K ∈ JS1K. We do not know the
values of minŜ1

and maxŜ1
, but we note that Choice(Ŝ) = Choice(Ŝ1). Therefore

we can surely say that minŜ1
≤ |J ∩CSŜ1

| = |J ∩CSŜ|, in addition we can say the
same for maxŜ1

, namely |K ∩ CSŜ| = |K ∩ CSŜ1
| ≤ maxŜ1

.
It is simple to conclude that minŜ1

≤ minŜ ≤ maxŜ ≤ maxŜ1
and for Theorem 3.5

the theorem is true.

Unfortunately, the vice versa is not true and the next example show us a negative
case:

Example 3.5. Suppose we have the set of elements E = {a, b, c} and two sets of
constraints, S and S1. S has the following constraints:

1. c1 =< {a, b}, [0, 1] >

2. c2 =< {b, c}, [0, 1] >

3. c3 =< {a, c}, [0, 2] >

On the other hand, S1 has the following constraints:
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1. c4 =< {a, b}, [0, 2] >

2. c5 =< {b, c}, [0, 1] >

3. c6 =< {a, c}, [0, 1] >

Their semantics are:

• JSK = {∅, {a}, {b}, {c}, {a, c}}

• JS1K = {∅, {a}, {b}, {c}, {a, b}}

It is clear that JSK 6⊆ JS1K and JS1K 6⊆ JSK.
Now we calculate the two over-approximations, using the definition:

• Ŝ =< {a, b, c}, [0, 2] >

• Ŝ1 =< {a, b, c}, [0, 2] >

In this case Ŝ is the same constraint Ŝ1 so, obviously, JŜK = JŜ1K. Finally we can
deduce JŜK ⊆ JŜ1K but JSK 6⊆ JS1K.

Theorem 3.11. Let S ⊆ Constraints(E) be a set of constraints, Ŝ be a over-
approximation of S and c =< CS, [minc,maxc] >∈ Constraints(E) be a constraint.
Then if Choice(Ŝ) = Choice(c) it holds:

JSK ⊆ JcK⇔ JŜK ⊆ JcK

Proof. Case ⇒): if JSK ⊆ JcK then ∀I ∈ JSK. minc ≤ |I ∩ CS| ≤ maxc. Now we
define Ŝ =< CSŜ, [minŜ,maxŜ] > as we have just described in Definition 3.16. For
construction we know that ∃J ⊆ E . |J ∩ CSŜ| = minŜ and ∃K ⊆ E . |K ∩ CSŜ| =
maxŜ. Note that CSc = CSŜ, therefore we can deduce:

1. minc ≤ |J ∩ CSc| = |J ∩ CSŜ| = minŜ ≤ maxc

2. minc ≤ |K ∩ CSc| = |K ∩ CSŜ| = maxŜ ≤ maxc

Since Ŝ is a single constraint, Choice(Ŝ) = Choice(c) and minc ≤ minŜ ≤ maxŜ ≤
maxc, by means of Theorem 3.5 we can conclude the theorem.
Case ⇐): if JŜK ⊆ JcK then, since Ŝ is a over-approximation of S, we have JSK ⊆
JŜK ⊆ JcK.
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3.1.2 Refinement

In this subsection we focus on the concept of refinement of a CMTS. Recall the
conceptual idea of refinement: let M and M1 be two specifications, then we can
say M is a refinement of M1 if and only if the set of implementations satisfying M
is a subset of the set of implementations satisfying M1. Moreover note that, from
modelling pointview, a generic specification is modelled by MTS, DMTS, GEMTS
and so on, whereas the implementation is always represented by LTS.

The refinement relation has deeply been studied and in literature it is possible
to find two different types of refinements: modal and thorough [1], [35]. In Sec-
tion 2.2 we saw several models which describe specifications and for each model we
described a particular refinement relation R and we denoted the maximal refine-
ment relation by E. Moreover we can note that each presented relation defines the
conceptual idea of refinement by means of properties over syntactic components, for
example in MTS the refinement relation is based on two conditions over may and
must transitions, which are syntactic components of MTS together with states and
label. This type of refinement relation is called modal refinement relation.

Unfortunately, this relation is not complete. For example, suppose to have two
MTSs M and N like ones in Figure 3.4. Trivially, the set of implementations (or
LTSs) which satisfy the specification modelled by M is the same of the one of N ,
but M 6E N .

To solve this problem is introduced the concept of thorough refinement rela-
tion which exploits the concept of semantics of a model. The idea is simple: taken a
model M which describes a specification like MTS, DMTS and so on, we define the
semantics of M , denoted by JMK such that JMK = {I | I EM∧I is a LTS}, namely
the semantics describes the set of all LTSs which derived from the specification M .
Note that the semantics of M is defined by means of E, therefore the definition of
semantics depends by the typical modal refinement relation of a MTS, DMTS and
so on.

Now it is possible to define a new type of refinement: let M and M1 be two mod-
els which represent a specification then we say a thorough refinement relation
between M and M1 exists if and only if JMK ⊆ JM1K, that is if every LTS L, which
satisfies the specification M , also satisfies M1. This refinement describes exactly the
conceptual idea of refinement. In addition an inconsistent specification S is a wrong
specification, hence any possible LTS cannot satisfy S and we describe this concept
by JSK = ∅.

We want to highlight that the non completeness of modal refinement relations
is a clear disadvantage, on the other hand the modal refinement has an important
property: it is a “syntactic” relation, namely it considers only syntactic aspects of
models, so from computational pointview the modal refinement is less expensive than
the thorough refinement, in effect the thorough refinement requires the computation
of all LTSs which satisfy the specification.

For avoid confusion in the meaning of JK, we introduce a convention:



66 CHAPTER 3. CONSTRAINED MODAL TRANSITION SYSTEM

Figure 3.4: An example of two MTSs not modal refinable but semantically equivalent

• if the operator J.K is applied to constraints or single states, then the meaning
of J.K is one defined in Definition 3.4, Definition 3.7 and Definition 3.13.

• if the operator JJ.KK is applied to states or the entire model, namely to a
CMTS, then the meaning of JJ.KK is one defined by thorough modal refinement,
previously described. In effect, taken a CMTS M , the semantics of M is the
set of all implementations which satisfy the specification M and this idea is
exactly captured by thorough refinement relation.

Now our task is to find a some formalization to describe the refinement idea in the
CMTS world. Initially, we focus on the modal refinement relation and the first idea
is to exploit the semantics of constraints: taken two states s and t we can determine
the set JsK and JtK, namely two sets of sets of outgoing transitions which satisfy
constraints of s and t, respectively, then we compare these two sets.

In this context we can observe as JC(s)K for a some state s, namely the semantics
of constraints related to s described in previous sections, and JΩ(s)K, defined in
[12] for OTS models, represent the same thing, namely a set of sets of outgoing
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transitions. The difference, of course, is how this set is determined, in first case we
use the constraint concept, whereas in the second we use logic formulae. Anyway
we could define a refinement relation in the same way of OTSs. First we introduce
a relation to compare two sets of sets of transitions by means of a some relation R:

Definition 3.17:
Let R ⊆ S×S be a relation and S, T ∈ P(P(Σ×S)) be two sets of sets of outgoing
transitions. We write S vR T to denote:

∀I ∈ S. ∃J ∈ T. ∀(α, s) ∈ I. ∃(α, t) ∈ J. (s, t) ∈ R ∧
∀(α, t) ∈ J. ∃(α, s) ∈ I. (s, t) ∈ R

�

Of course this definition can be extended to a more general case, where we have
R ⊆ S × S1. Note that it describes the bisimulation relation over a set of sets of
outgoing transitions.

The refinement of CMTSs is defined consequently:

Definition 3.18 (Refinement):
Let M = (SM ,Σ,−→M ,CM , sM0), N = (SN ,Σ,−→N ,CN , sN0) be two CMTSs. We
say that R ⊆ SM × SN is a refinement relation if (s, t) ∈ R implies:

1. s
α−→ s′ ⇒ t

α−→ t′ ∧ (s′, t′) ∈ R

2. JC(s)K vR JC(t)K

We say s refines t (s E t) if there is a refinement relation R such that (s, t) ∈ R.
We say M refines N if and only if sM0 E sN0 .

�

This formalization is simple and clear but it has a problem: we use the semantics
of constraints by means of the second condition, so it requires the computation of all
possible sets of transitions which satisfy every constraint in C(s), for some s. From
computational pointview, this choice is very expensive so we would like to under-
stand if it is possible to define another refinement relation more “syntactic”, namely
a relation which does not exploit the semantics of constraints. For convenience we
call the refinement relation, just described, semantic modal refinement relation
to explain the nature of concepts used to formalize the modal refinement relation. In
the remaining section we will describe the syntactic modal refinement relation.
In addition the relation E is characterized in two different ways:

• ESem: it is used in the context of semantic modal refinement relation, namely
s ESem t if there is a semantic modal refinement relationR such that (s, t) ∈ R

• ESyn: it is used, instead, in the context of syntactic modal refinement relation,
that is s ESyn t if there is a syntactic modal refinement relation R such that
(s, t) ∈ R
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Our idea of refinement is simple: for every state, at each refinement step, we must
reduce the sets of outgoing transitions and this is possible if we delete some outgoing
transitions and/or the constraints reduce the possible valid sets. Both operations
are very delicate. The deleting of transitions must be executed in a correct way:
suppose we must remove the transition t = (α, s′) but, unfortunately, this transition
t might be in some choice set of some constraints, therefore we must also remove
the transition t from every choice set where it is present.

Instead, the refinement of a single constraint can be divided in two different
aspects:

1. we reduce the choice set, eliminating some transitions

2. we reduce the interval [min,max] in some suitable way

The first operation is simple but it has a side effect: if we delete a transition t
from a choice set of a constraint c, then c does not handle t any longer. If t is not
deleted as outgoing transition then the restriction over t which has been imposed
by c does not exist any longer. In some case this situation implies the introduction
of a new possible solution for the constraint which was not allowed before of the
refinement step. It is clear that if this happens, it is wrong. We can conclude that
every transition which is deleted from a choice set must be also deleted as outgoing
transitions.

Figure 3.5: A possible step of wrong refinement

Example 3.6. Suppose we have the CMTS N of Figure 3.5. The possible solutions
which satisfy all conditions are: JNK = {{b}, {a, c}}.

Now we see a possible refinement step where the transition (a, s1) is deleted by the
choice set of the constraint < {(a, s1), (b, s2)}, [1, 1] > but this transition (a, s1) is not
deleted as outgoing transition, for example we consider the CMTS M of Figure 3.5.
In this case the requirement < {(a, s1), (b, s2)}, [1, 1] >, which means that transitions
(a, s1) and (b, s2) can be exclusively chosen, misses. This situation is wrong, indeed,
the possible semantics of CMTS M is: JMK = {{b}, {a, b}}. Therefore we can deduce
JMK 6⊆ JNK.
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Now we try to reason about the second operation: in this case we want to reduce
the semantics of a constraint c without change the choice set, but from Theorem 3.5
we know that this is possible if the new constraint c′ =< CS, [min′,max′], refined
by c =< CS, [min,max] >, holds the property min ≤ min′ ≤ max′ ≤ max. Of
course we reason about only correct constraints. Therefore, taken two states s and
t, s refines t if every constraint c of t is reduced in some constraint c′ of s.

Moreover, for the refinement concept, the local and global inconsistency must
be maintained in each refinement step, in effect taken two CMTSs M and M1 if
JM1K = ∅, namely M1 is inconsistent then M is a refinement of M1 if and only if
JMK = ∅ and the reason is simple: we say M is a refinement of M1 if and only
if JMK ⊆ JM1K. On the other hand, for the same reason, the local and global
consistency need not be maintained in each refinement step.

Figure 3.6: A possible refinement step from a consistent CMTS to an inconsistent
CMTS

Example 3.7. Suppose we have the CMTS N of Figure 3.6. The possible sets of
outgoing transition which satisfy all conditions are: JNK = {{a, b, c}}. By means of
a refinement step we can derive the CMTS M of Figure 3.6. This refinement step
is correct even though the CMTS M is inconsistent, indeed, JMK = ∅ ⊆ JNK.

Note that, taken two CMTSs like M and N in Figure 3.7, we can have some
“strange cases”. In effect it is simple to see that M and N are inconsistent, but
for refinement concept M is a refinement of N and N is a refinement of M, even
though they are very different. Note that their semantics JMK = ∅ and JNK = ∅,
so JMK ⊆ JNK and JNK ⊆ JMK. Anyway, in general we are not interested in
inconsistent specifications, so we will avoid inconsistent CMTSs.

In conclusion our refinement relation must guarantee us:

1. in each step a generic constraint can lose some transitions in its choice set or
its cardinality can be reduced

2. new transitions cannot be added in a generic state
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Figure 3.7: A strange case of refinement

3. local and global inconsistency must always hold

Before to see the syntactic modal refinement relation, we introduce a new con-
cept to reason about the deleted transitions of a state. Since CMTSs are action-
deterministic, we can take account of labels directly, seeing as each label identifies
univocally a transition.

Definition 3.19:
Let M = (S,Σ,−→,C, s0) be a CMTS and s be a state. We denote the set of all
labels related to outgoing transitions by Label(s) = {α ∈ Σ | ∃s′ ∈ S. (s, α, s′) ∈−→
}.

�

We can extend this definition to constraints too.

Definition 3.20:
Let M = (S,Σ,−→,C, s0) be a CMTS and c ∈ C(s) be a constraint of a some state
s. We denote the set of all labels related to choice set of c by Label(c) = {α ∈
Σ | ∃s′ ∈ S. (α, s′) ∈ Choice(c)}.

�

Now we have enough information to describe the refinement between two con-
straints:

Definition 3.21 (Refinement between two constraints):
Let c, c1 be two constraints. We say c is a refinement of c1 regarding a relation
R ⊆ S × S, denoted by c ER c1 if and only if:

• ∀(α, s′) ∈ Choice(c). ∃(α, t′) ∈ Choice(c1). (s′, t′) ∈ R

• c and c1 are correct constraints

• Cardmin(c1) ≤ Cardmin(c)
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• Cardmax(c) ≤ Cardmax(c1)

�

Note that this refinement definition of constraints is not correct, for example all
constraints of CMTS (a) in Figure 3.5 are correctly refined for constraints of CMTS
(b) but, as we said previously, that refinement is wrong. The definition of refinement
of constraints is correct under a further hypothesis:

Theorem 3.12 (Correctness of refinement of consistent constraints). Let
c =< CSc, [minc,maxc] >∈ C(s), c1 =< CSc1 , [minc1 ,maxc1 ] >∈ C1(s1) be two
consistent constraints for certain states s, s1 of some CMTSs and R be a relation.

If Label(s) ⊆ Label(s1) \ (Label(c1) \ Label(c)) then it holds:

c ER c1 ⇒ JcK vR Jc1K

Before to see the proof, we try to reason about the theorem: it says that taken
two constraints of certain states of CMTSs then they are a correct refinement if
Label(s) ⊆ Label(s1) \ (Label(c1) \ Label(c)), namely if the refined state s loses
some transitions of s1 or more precisely if s loses at least all and only the transitions
which are present in c1 but not in c, described by (Label(c1) \ Label(c)). We want
to highlight that in the models being CMTSs, transitions are univocally determined
by labels, hence we have so many transitions as labels and, implicitly, Label(s) =
Label(s1) \ (Label(c1) \Label(c)) requires that s has a number of transitions less or
at most equal to s1.

Proof.
We suppose c ER c1 and we take a set of transitions I ⊆ Label(s) such that I ∈ JcK,
namely minc ≤ #cI ≤ maxc. So we define J = {(α, t′) | (α, s′) ∈ I ∧ (s′, t′) ∈ R},
trivially, for construction I vR J .

Now we must understand if J ∈ Jc1K. Since c ER c1, we know that Label(c) ⊆
Label(c1) and the labels determine univocally transitions. Moreover, seeing that we
have the guarantee I vR J is true, we can reason directly over labels.

For construction of J , we have that |J ∩Label(c1)\Label(c)| = |J ∩ (Label(c1)|−
|J ∩ Label(c))| = 0. In effect all labels of J are the same of I, for construction, and
I ⊆ Label(s), where the labels in Label(c1) \ Label(c) does not exist.

Therefore we can deduce that, #cI = #c1J , even though I and J have different
elements and c and c1 have different choice sets. In conclusion, since c ER c1, we
have also minc1 ≤ minc ≤ #cI = #c1J ≤ maxc ≤ maxc1 , deducing J ∈ Jc1K.

Another observation is necessary: suppose we have two state s and t and more-
over a constraint c ∈ C(t) exists but no constraint in s derives from a reduction of
c. We have previously said that this situation is wrong and in general this sentence
is true, except for a particular case. If constraint c =< CS, [min,max] > with
min = 0 exists then a set of transitions I such that |I ∩ CS| = 0 is valid for c
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because min = 0 ≤ |I ∩ CS| = 0. So if the state s has no transitions of CS and it
has the same constraints (modified conveniently) of t, except the constraint c, it is
simple to understand that JsK ⊆ JtK. The Example 3.8 explains the situation.

Figure 3.8: A special case of the refinement

Example 3.8. Suppose we have the CMTS N in Figure 3.8 and we compute its
semantics JNK = {{b}, {c}, {a, c}}. Now we consider the CMTS M in Figure 3.8.
As we can see some constraints being in N are lost in M, therefore inasmuch as we
said previously M should be not a refinement of N. Anyway we try to compute the
semantics of M JMK = {{c}}, then we can deduce JMK ⊆ JNK. From theoretical
pointview M is a refinement of N. The reason is simple: we consider the constraint
cons =< {a, b}, [0, 1] >, in this case it is possible to have a set of outgoing transitions
I which have not transitions a and b. For cons is correct the choice of not taking
any transitions in its choice set hence a state, where each transition of the choice
set of cons is not present, is a possible valid state, under the condition that other
constraints are modified in a suitable way.

Another way to see this situation is to interpret the absence of a set of transitions
T as a constraint cons1 =< T, [0, 0] >, in effect its semantics is equal to {I | 0 ≤
|I ∩ T | ≤ 0}.

In conclusion we can interpret the absence of {a, b} as < {a, b}, [0, 0] > and,
trivially, this constraint is a valid reduction of cons.

Definition 3.22 (Syntactic modal refinement):
Let M = (SM ,Σ,−→M ,CM , sM0), N = (SN ,Σ,−→N ,CN , sN0) be two CMTSs. A
binary relation R ⊆ SM × SN is called syntactic modal refinement if and only if
(s, t) ∈ R implies:

• ∀(s, α, s′) ∈−→M . ∃(t, α, t′) ∈−→N . (s′, t′) ∈ R

• ∀ct ∈ CN(t) exactly one of two conditions must hold:

– ∃cs ∈ CM(s) such that:

1. cs ER ct
2. (Label(ct) \ Label(cs)) ∩ Label(s) = ∅
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– ct =< CS, [min,max] > such thatmin = 0 and Label(CS)∩Label(s) = ∅

We may say s is a refinement of t (s ESyn t) if a syntactic refinement relationR exists
such that (s, t) ∈ R. We say M is a refinement of N if and only if sM0 E

Syn sN0 .
�

Now we can try to explain this definition:

1. the first condition ∀(s, α, s′) ∈−→M . ∃(t, α, t′) ∈−→N . (s′, t′) ∈ R requests
that no new transitions can exist in the state s.

2. the second condition is more complex and it tries to reason about the con-
straints. s can be considered a refinement of t if and only if s reduces or
at most satisfies exactly each constraint defined in t. The first sub-condition
requires that, taken a constraint ct of t, must exist a constraint cs which re-
fines ct, as we have previously explained. The second sub-condition handles
the special case, namely if ct allows allows to have sets of transitions without
transitions of Choice(ct) and if in s all transitions of Choice(ct) are deleted
then we have a possible refinement of t and constraints of s, related to ct, are
rightly absent.

Note that the global and local consistency do not hold in a refinement step, an
example is described in Figure 3.9.

Figure 3.9: An example of not maintaining of the consistency in a refinement step

Theorem 3.13 (Local inconsistency is maintained). Let s ∈ SM , t ∈ SN be two
states of two CMTSs such that (s, t) ∈ R, for some syntactic refinement relation R.
Let ct be a constraint of t and cs be a constraint of s such that cs ER ct. Then it
holds:

ct is inconsistent⇒ cs is inconsistent

Proof.
We know from Theorem 3.4 that ct =< CSt, [mint,maxt] > is inconsistent if and
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only if (mint > maxt) ∨ (mint > |CSt|). Since ct is a constraint of a CMTS state
we have the guarantee mint ≤ maxt is always true, so we can deduce mint > |CSt|.

Moreover, taken cs =< CSs, [mins,maxs] > we know that cs ER ct if and only
if (mint ≤ mins) ∧ (maxs ≤ maxt) and all transitions in CSs are also present in
CSt such that the reached target states are in the relation R. Since our CMTSs are
action-deterministic, we can guarantee that every transition is univocally determined
by labels, so in practice ER requires |Label(CS)s| ≤ |Label(CSt)|.

Now we can deduce that if cs ER ct then |CSs| ≤ |CSt| < mint ≤ mins, so also
cs is inconsistent.

Finally note that ifmint = 0, trivially, ct will never be able to be inconsistent.

Theorem 3.14 (Global inconsistency is maintained). Let s ∈ SM , t ∈ SN be
two states of two CMTSs such that (s, t) ∈ R, for some syntactic refinement relation
R. Then it holds:

t is inconsistent⇒ s is inconsistent

Proof.
Trivially if an inconsistent constraint exists in t then t is inconsistent and so also s
is inconsistent, for Theorem 3.13.

The only particular case is when t has all consistent constraints but their union
is inconsistent, namely

⋂
c∈CN (t)

JcK = ∅.

As we have said, if a constraint ct =< CSt, [mint,maxt] > and mint = 0 and
Label(s) ∩ Label(cst) = ∅ then s might not have a constraint related to ct, but this
equivalent to have a constraint cs =< CSs, [0, 0] > where cs ER ct. Therefore for
convenience we can suppose that every constraint ct has a corresponding constraint
cs.

In addition we know that JcsK ⊆ JctK, seeing that cs ER ct, hence trivially we
can say

⋂
c∈CM (s)

JcK ⊆
⋂

c∈CN (t)

JcK = ∅, deducing the global inconsistency for s too.

Now we demonstrate the correctness of syntactic modal refinement.

Theorem 3.15 (Correctness of syntactic modal refinement). Let M = (SM ,Σ,
−→M ,CM , sM0), N = (SN ,Σ,−→N ,CN , sN0) be two CMTSs. Let s ∈ SM , t ∈ SN be
two states such that (s, t) ∈ R for some syntactic refinement relation R. Then it
holds:

JsK vR JtK

Proof.
First of all, for Theorem 3.14 if t is inconsistent then s is inconsistent too. Trivially,
if s is inconsistent and t is not the theorem is true. Note that this is a possible
situation for our syntactic modal refinement and it happens, for example, when we
delete too many transitions from a choice set of a certain constraint.
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Now we restrict to the situation where JsK 6= ∅ and JtK 6= ∅.
As we have said, if a constraint ct =< CSt, [mint,maxt] > and mint = 0 and

Label(s) ∩ Label(cst) = ∅ then s might not have a constraint related to ct, but
this equivalent to have a constraint cs =< CSs, [0, 0] > where cs ER ct. Therefore
for convenience we can also suppose that every constraint ct has a corresponding
constraint cs, such that JcsK vR JctK.

It is simple to understand that JsK =
⋂

c∈CN (s)

JcK vR
⋂

c∈CM (t)

JcK = JtK

The last topic about refinement for CMTSs is the thorough refinement relation.
This definition is based on concept of semantics of MTSs and states:

Definition 3.23:
Let M = (SM ,Σ,→M , 99KM) be a MTS and E be a modal refinement relation. Then
the semantics of a state s ∈ S is :

JJsKK = {I | I E s ∧ I is a LTS}

The semantics of M is equal to
⋃

si is an initial state of M

JJsiKK

�

The idea of the semantics of a state s is to describe all possible LTSs which are
derived by s exploiting a refinement relation, in effect the semantics of a specifica-
tion can be described by the set of all implementations (or LTS) which satisfy the
specification itself. In addition, note that the refinement relation stipulates which
specifications refine which specifications, but since our implementations are just spe-
cial specifications the refinement serves as an implementation relation at the same
time.

In order to simplify the notation taken two sets of LTSs S and T , we say S ⊆ T
to denote that ∀I ∈ S. ∃J ∈ T. I ∼ J .

Now we recall the definition of thorough refinement for MTS:

Definition 3.24 (Thorough refinement relation for MTS):
Let M = (SM ,Σ,→M , 99KM), N = (SN ,Σ,→N , 99KN) be two MTSs. Then a rela-
tion R ⊆ SM × SN is called thorough refinement relation if and only if ∀(s, t) ∈ R
it holds JJsKK ⊆ JJtKK.

We may say s is a refinement of t (s EThorough t) if a thorough refinement relation
R exists such that (s, t) ∈ R.

�

In the CMTS context we have some problems to be solved. First of all, we do not
know how the implementation concept must be represented, but following the other
works in literature, we can assume that an implementation is described by a LTS.
In effect a LTS can be seen as a specification which cannot be modified anymore.
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The second problem is how to correlate a LTS to a CMTS by means of a refine-
ment relation, in effect our refinement relations take into account two initial CMTSs
hence the solution is to find a way to describe a LTS as a CMTS. Of course, this
is possible seeing that a LTS can be conceived as a CMTS where all constraints
are satisfied and the set of constraints has only one possible valid solution. Only
in Chapter 5 we will have enough information to formalize the concept of LTS de-
scribed by CMTS and hence, the concept of thorough refinement too. Finally we
make an observation as simple as important: from theoretic pointview a LTS L is
an implementation of a specification M if and only if L satisfies the requirements
of M . In the CMTS context the requirements of M are described by constraints, so
we can deduce the following property:

Definition 3.25 (LTS is a solution):
Let L be a LTS, M be a CMTS. Then L is an implementation of M if and only if
for each state sL of L then the set of outgoing transitions of sL is a possible solution
of the set of constraints C(sM) such that sM is the related state of sL in M .

�

Anyway this result will be more clear in Chapter 5, when we introduce how a
LTS can be described by means of CMTS. It is clear that, seeing that thorough
refinement depends on the modal refinement then in the CMTS case we can have
two types of thorough refinement: syntactic, if we consider the ESyn relation, or
semantic, if we consider the ESem relation.

Definition 3.26 (Thorough semantic refinement relation for CMTS):
Let M = (SM ,Σ,−→M ,CM , s0M ), N = (SN ,Σ,−→N ,CN , s0N ) be two CMTSs. Then
a relation R ⊆ SM ×SN is called thorough semantic refinement relation if and only
if ∀(s, t) ∈ R it holds JJsKKSem ⊆ JJtKKSem.

�

Definition 3.27 (Thorough syntactic refinement relation for CMTS):
Let M = (SM ,Σ,−→M ,CM , s0M ), N = (SN ,Σ,−→N ,CN , s0N ) be two CMTSs. Then
a relation R ⊆ SM ×SN is called thorough syntactic refinement relation if and only
if ∀(s, t) ∈ R it holds JJsKKSyn ⊆ JJtKKSyn.

�

As we can see, the concept of thorough refinement relation can be easily described
in the same manner done for the MTS. However we want to highlight that these
definitions are based on the concept of semantics of a CMTS but, unfortunately,
in this context we does not give a formal definition of semantics because we does
not know how to describe LTS in a correct way. Only in Chapter 5 we describe the
concept of semantics in a formal way, in this section we must be satisfied only of
an informal description: the semantics of a CMTS M is the set of all LTSs which
satisfy the requirements of M . Unfortunately, we find that our two modal refinement
relations are not complete: the syntactic modal refinement relation is not complete
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both for consistent CMTSs and for inconsistent CMTSs. For example in Figure 3.10
CMTSs M and N are inconsistent, so it should be true M ESyn N , but it is simple
to see M 6ESyn N , because M has a further transition labelled with d which is not
present in N . For consistent CMTSs, we can see the example in Figure 3.11, in

Figure 3.10: An example of non completeness of syntactic and semantic refinement
between two inconsistent CMTSs

this case CMTSs M and N have the same semantic but M 6ESyn N . Finally in the

Figure 3.11: An example of non completeness of syntactic and semantic refinement
between two consistent CMTSs

Figure 3.12 we have two CMTSs M and N such that the semantics of M is equal
to {{a, c}, {b, c}}, whereas the semantics of N is equal to {{a}, {b}, {a, c}, {b, c}},
so it is simple to understand that M is a refinement of N but again M 6ESyn N .

Also the semantic modal refinement relation is not complete for inconsistent
CMTSs and the example is the one in Figure 3.10. In this case, indeed, JJMKK =
JJNKK = ∅ but M 6ESem N . The incompleteness is also maintained for consistent
CMTS as we can see in Figure 3.11, M and N have the same semantic but M 6ESem
N .

Another example of non-semantic modal completeness over consistent CMTSs
is the one described in Figure 3.13. In this context JJMKK = JJNKK = {(a, b)} but
M 6ESem N .

Theorem 3.16 (Completeness of the Semantic modal refinement). Let M =
(SM ,Σ,−→M ,CM , s0M ) and N = (SN ,Σ,−→N ,CN , s0N ) be two CMTSs. If both
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Figure 3.12: An other example of non completeness of syntactic refinement between
two consistent CMTSs

Figure 3.13: An example of non completeness of the semantic refinement between
two consistent CMTSs

CMTSs satisfy the following property:

∀s. ∀(α, s′) ∈ Trans(s). ∃I ∈ JsK. (α, s′) ∈ I

then JJMKKSem ⊆ JJNKKSem ⇒M ESem N .

Note that the property implicitly discards inconsistent CMTSs and CMTSs with
an outgoing transition t in some state s, which is never considered in some solution,
because constraints prevent the presence of t. For the property, each transition must
be present in some solution.

Proof.
We consider the relation:

R = {(sM , sN) | ∀α. (sM , α, s
′
M) ∈−→M⇒ (sN , α, s

′
N) ∈−→N ∧(s′M , s

′
N) ∈ R}

and we prove that it is a semantic modal refinement relation.
Trivially, taken sM and sN the first condition of semantic modal refinement holds,

in effect if (sM , α, s
′
M) ∈−→M then (sN , α, s

′
N) ∈−→N , for definition of R.

Now suppose IM ∈ JC(sM)K then surely a LTS LM such that Trans(sLM
) = IM

exists, since a LTS L derived from a CMTS K is a set of solutions of constraints
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related to states of K. For hypotheses, exists a LTS LN derived from N such that
LN ∼ LM , but then a set IN ∈ JC(sN)K exists, such that ∀(α, s′) ∈ IM . ∃(α, t′) ∈
IN ∧ (s′, t′) ∈ R and ∀(α, t′) ∈ IN . ∃(α, s′) ∈ IM ∧ (s′, t′) ∈ R. Trivially, JC(sM)K vR
JC(sN)K.

Both syntactic modal refinement and semantic modal refinement are preorders,
in Appendix A we show in a detail way that both refinements hold the reflexive and
transitive property.

3.1.3 Non Determinism

Now we imagine that our hypothesis of action-determinism in the CMTS definition
is deleted, it is interesting to understand what happens to our syntactic refinement
relation. Surely it does not work any longer, because in its definition we use the
function Label which exploits the action-determinism. It is simple to extend this
function in order to handle the non-determinism: a transition is not uniquely deter-
mined any longer by means of a label, in this case it is determined by a label and a
target state.

Anyway, also changing the function Label, our refinement relation does not work.
The problem is in the constraint concept together with the non-determinism. Pre-
viously we have implicitly assumed that a constraint is refined if and only if its
cardinality is reduced or some transition is deleted, seeing that the CMTS is action-
deterministic then, in each refinement step, the transitions of constraints can only
be reduced. In a non-deterministic context this is not true any longer, in effect we
can add further transitions provided they are equivalent to some existent transitions.
For example in Figure 3.14 the two CMTSs M and N have the same semantics:

• JMK = {{(a, s1), (a, s2), (b, s3)}, {(a, s1), (a, s2), (c, s4)}}

• JNK = {{(a, t1), (b, t2)}, {(a, t1), (c, t3)}}

Moreover ∀I ∈ JMK. ∃J ∈ JNK. I ∼ J and also the vice versa holds. So our syntactic
modal refinement should be able to handle these situations. Unfortunately, adding
transitions make trouble because some requirements can be lost, in effect min and
max of each constraint count the number of transitions without considering if and
what transitions are “equivalent”, for some relation R. For example in Figure 3.15
we have two CMTSs M and N . As we can see, M and N have only one constraint
and using the definition of syntactic refinement of constraints we can find out that
the constraint in M is a refinement of the constraint in N , in effect the cardinality
does not change and we add only a transition labelled with a, equivalent to another,
already existing transition. If we allow this situation then we are in error, in effect
the LTSs I and J in Figure 3.15 are bisimilar and they are derivable from M , but at
the same time they are wrong for N . In conclusion we have M E N but JMK 6⊆ JNK.

The solution could be modified in a “smart” way: for example we can require
that all equivalent transitions are connected to a single constraints which has the
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Figure 3.14: An example of two non-deterministic CMTSs

Figure 3.15: An example of problem in the refinement of non-deterministic CMTSs

set of all equivalent transitions as choice set and [1, 1] as cardinality. In our case, in
Figure 3.16 M has a constraint < {(b, s2), (b, s3)}, [1, 1] > and this solve our problem.
Unfortunately, this solution is not correct and also in this case we could lose some
requirements. In effect the semantics of N is JNK = {{(a, t1), (c, t3)}, {(b, t2)}},
whereas the semantics of M is JMK = {{(a, s1), (b, s3)}, {(b, s2), (c, s4)}}, so for our
syntactic refinement M E N , but from semantic pointview M is not a refinement
of N .

A solution does not likely exist because we would like to reason about refinement
in a syntactic way, as we have previously described, by means of using of semantic
concepts like equivalence between transitions. From another pointview, we would
want to find out a way to count only transitions which are different according to a
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Figure 3.16: Another example of problem in the refinement of non-deterministic
CMTSs

some relation R, namely a semantic concept, by exploiting constraints and transi-
tions which are typical syntactic concepts and they know nothing about equivalence
or refinement.

In this case the only possible useful refinement is the semantic modal refinement
which handles directly the semantics of constraint.

3.2 Minimalization problem

In this section we would like to understand if, taken a CMTS M , it is possible to
find a CMTS M ′ such that JMK = JM ′K, namely they are semantically equivalent
but M ′ has less constraints than M . Of course if it is possible then we would like to
reason about the CMTS with the minimal number of possible constraints, in effect
our refinements are computed by means of constraints, hence from computational
pointview it is useful to determine the semantics using less constraints as possible.

First of all, we define a particular type of constraint which is a witness of the
semantics of a set of constraints S and a constraint c.

Definition 3.28:
Let S be a set of constraints of a CMTS. Then we extend the function Choice to a
set of constraints in the following way:

Choice(S) =
⋃
c∈S

Choice(c)

�

Definition 3.29 (Witness of the semantics of a set of constraints):
Let c be a consistent constraint of a CMTS and S be a consistent set of constraints
of a CMTS, such that Choice(c) = Choice(S). If JSK ∩ JcK 6= ∅ we define a witness
for JSK ∩ JcK, wc,S =< CSw, [minw,maxw] > where:

• CSw = Choice(c) = Choice(S)



82 CHAPTER 3. CONSTRAINED MODAL TRANSITION SYSTEM

• minw = min{|I ∩ CSw| | I ∈ JSK ∩ JcK}

• maw = max{|I ∩ CSw| | I ∈ JSK ∩ JcK}

�

When S and c are clear from the context they are omitted. Anyway it is simple
to understand that minw describes the minimal number of transitions in Choice(c)
for a generic set of transitions satisfying both S and c, whereas maxw describes the
maximal number. In addition, note that the constraint wc,S is an over-approximation
of the set of constraints (S ∪ c). From this last observation we can deduce the
following corollary:

Corollary 3.5:Let c be a consistent constraint of a CMTS , S be a consistent set of
constraints of a CMTS such that Choice(c) = Choise(S) and wc,S be the constraint
defined as described in Definition 3.29. Then it holds:

JcK ∩ JSK ⊆ Jwc,SK

Trivially, being wc,S a over-approximation, the vice versa is not always true. In
addition we can see an important property between the two single constraints c and
wc,S:

Theorem 3.17. Let c be a consistent constraint of a CMTS , S be a consistent set of
constraints of a CMTS such that Choice(c) = Choise(S) and wc,S be the constraint
defined as described in Definition 3.29. Then it holds:

Jwc,SK ⊆ JcK

Proof.
Initially, taken wc,S =< CSw, [minw,maxw] > and c =< CSc, [minc,maxc] >, note
that CSc = CSw for construction. Moreover for construction, we know that :

• ∃J ∈ JSK ∩ JcK. |J ∩ CSc| = minw

• 6 ∃K ∈ JSK ∩ JcK. |K ∩ CSc| < minw

Therefore we can deduce that surely minc ≤ |J ∩ CSc| is true, seeing that J ∈ JcK,
deducing minc ≤ minw

By using the same reason we can demonstrate that maxw ≤ maxc. For Theo-
rem 3.5, we can conclude the theorem.

The vice versa is not true, trivially. In effect if ∀I ∈ JSK. |I ∩ Choice(c)| >
minc then we have minw > minc hence, taken a set of transitions J such that
|J ∩ Choice(c)| = minc, we can conclude that J ∈ JcK but J 6∈ Jwc,SK.

Now we introduce an important concept about constraints:
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Definition 3.30 (Useless constraint):
Let S be a set of constraints and c ∈ S be a constraint. We call c useless constraint
regarding the semantics of S if and only if it holds:

JSK = JS \ cK

�

The meaning of useless constraint regarding a set of constraints S is simple: if
we delete the useless constraint from S then the semantics of S does not change,
that is the useless constraint does not add useful information about the semantics.

Theorem 3.18. Let c be a consistent constraint of a CMTS , S be a consistent set of
constraints of a CMTS such that Choice(c) = Choise(S) and wc,S be the constraint
defined as described in Definition 3.29. Then it holds:

Jwc,SK ∩ JSK = JSK ∩ JcK

Proof.
We know that Jwc,SK ⊆ JcK, so it is simple to understand Jwc,SK ∩ JSK ⊆ JSK ∩ JcK.

We must only demonstrate the vice versa. We know that JSK ∩ JcK ⊆ Jwc,SK,
hence it is simple to deduce JSK ∩ JcK ⊆ Jwc,SK ∩ JSK.

In the following theorems of this section we assume implicitly some important
hypotheses. Our starting point is to consider a set of constraints S and a constraint
c such that:

1. Choice(c) = Choice(S) and |Choice(c)| > 0

2. JSK ∩ JcK 6= ∅

3. let |Choice(c)| = n then S = {si =< CSi, [mini,maxi] >} holds:

• 1 ≤ i ≤ n

• ∀i, j. Choice(si) = Choice(sj) ⇔ i = j, that is the constraints in S are
all different

• ∀i. |Choice(si)| = n − 1, that is every constraint has a choice set equals
to the choice set of constraint c minus a transition

For convenience we call them the key hypotheses.

Theorem 3.19. Let c be a consistent constraint of a CMTS , S be a consistent set
of constraints of a CMTS such that they satisfy the key hypotheses. Let w be the
constraint defined as described in Definition 3.29 using S and c.

If JSK ⊆ JcK then it exists a useless constraint regarding the semantics of S and
c in the set S ∪ w.
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Proof.
We know that JSK ⊆ JcK, hence we can say JSK ∩ JcK = JSK. For construction of w
we know that JSK ∩ JcK = JSK ⊆ JwK.

It is simple to understand JSK ∩ JwK = JSK and to conclude that the constraint
w is useless for the semantics of S and c. Note that the semantics of S and c, that
is JSK ∩ JcK is the same of S and w, that is JSK ∩ JwK.

Another interesting observation is that also c is a useless constraint, trivially
JSK ∩ JcK = JSK, seeing that JSK ⊆ JcK.

Theorem 3.20. Let c be a consistent constraint of a CMTS , S be a consistent set
of constraints of a CMTS such that they satisfy the key hypotheses. Let w be the
constraint defined as described in Definition 3.29 using S and c.

If JcK ⊆ JSK then it exists a useless constraint regarding the semantics of S and
c in the set S ∪ w.

Proof.
Trivially, JSK ∩ JcK = JcK, so the constraint w derivable from S and c is equivalent
to c. We can so deduce that JSK ∩ JwK = JwK, concluding all constraints in S are
useless.

The most complicated case is when JSK 6⊆ JcK and JcK 6⊆ JSK.

Theorem 3.21. Let c be a consistent constraint of a CMTS , S be a consistent set
of constraints of a CMTS such that they satisfy the key hypotheses. Let w be the
constraint defined as described in Definition 3.29 using S and c.

If JSK 6⊆ JcK and JcK 6⊆ JSK then it exists a useless constraint regarding the
semantics of S and c in the set S ∪ w.

Proof.
Unfortunately, we do not know which constraint in S ∪ w is useless.

Case 1) suppose for absurdum that w is useless: if it is true then JSK∩JwK = JSK.
Moreover we know that JSK ∩ JwK = JSK ∩ JcK, so we can conclude that JSK ⊆ JcK,
but this result is opposite of our hypotheses, so it is impossible. We can deduce w
is useful.

Case 2) suppose for absurdum that no constraint in S is useless. Moreover we
suppose that w is useful. Seeing that ∀si ∈ S. si is useful then we can say that
∀si ∈ S. ∃I ∈ J(S \ si)K ∩ JwK. I 6∈ JsiK, that is ∀si ∈ S. ∃I ∈ JwK. I 6∈ JsiK.
Note that ∃J ∈ JSK such that |J ∩ Choice(w)| = minw and ∃K ∈ JSK such that
|K ∩ Choice(w)| = maxw, for definition.

In addition we know that I ∈ JwK, so surely minw ≤ |I ∩ Choice(w)| = |I ∩
Choice(si)|+ |I∩ri| for any si. Therefore minw−1 ≤ |I∩Choice(si)|, if |Icapri| = 1
otherwise minw ≤ |I ∩ Choice(si)|, for any si. In the same way |I ∩ Choice(w)| =
|I ∩ Choice(si)| + |I ∩ ri| ≤ maxw, so |I ∩ Choice(si)| ≤ maxw − 1, if |Icapri| = 1
otherwise |I ∩ Choice(si)| ≤ maxw, for any si.
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From all this information we can say I 6∈ JsiK⇔ (|I ∩Choice(si)| < mini)∨ (|I ∩
Choice(si)| > maxi) and so we can deduce that ∀si. minw < mini ∨maxw − 1 >
maxi.

If ∀si. minw < mini, we have three possibilities:

1. minw = |Choice(w)|, namely J has all transitions in Choice(w) but in this
case ∀i. mini = minw − 1 and it is impossible for our hypothesis

2. 0 < minw < |Choice(w)|, in this case exists a set of transitions J such that
|J ∩Choice(w)| = minw. For any constraint si we have |J ∩Choice(si)|+ |J ∩
ri| = minw and, in addition, it holds |J ∩Choice(si)| ≥ mini > minw. Seeing
that 0 ≤ |J ∩ ri| ≤ 1 we can deduce that J 6∈ JSK. This is an absurdum.

3. minw = 0 we know that |J ∩Choice(w)| = 0 is possible and J ∈ JSK, therefore
we can deduce ∀i. mini = 0. Again it is an absurdum

In the similar way, if ∀si. maxw − 1 > maxi, we have three possibilities:

1. maxw = 0 it is simple to understand the absurdum.

2. 0 < maxw < |Choice(w)|, in this case exists a set of transitions J such that
|J ∩Choice(w)| = maxw. For any constraint si we have |J ∩Choice(si)|+ |J ∩
ri| = maxw and, in addition, it holds |J ∩ Choice(si)| ≤ maxi < maxw − 1.
Seeing that 0 ≤ |J ∩ri| ≤ 1 we can deduce that J 6∈ JSK. This is an absurdum.

3. maxw = |Choice(w)| then |J ∩ Choice(w)| = |Choice(w)| is possible. In
this case, for any si, |J ∩ Choice(si)| = maxw − 1 and at the same time
|J ∩ Choice(si)| ≤ maxi < maxw − 1, reaching an absurdum.

The last case is when we have three sets of constraints:

• S1 = {si | minw < mini ∧maxw − 1 ≤ maxi}

• S2 = {si | minw < mini ∧maxw − 1 > maxi}

• S3 = {si | mini ≤ minw ∧maxw − 1 > maxi}

Of course these sets are a partition of S. Now we must understand if it is possible
to find:

1. J ∈ JSK. |J ∩ Choice(w)| < minw

2. K ∈ JSK. |K ∩ Choice(w)| > maxw

Case 1) Of course minw > 0. If minw = |Choice(w)| then some constraint si
exists such that mini > |Choice(w)| and surely J 6∈ JSK. In addition, seeing that
S1 6= ∅ and S2 6= ∅ then taken a constraint s1 ∈ S1 we can say ∀J ∈ Js1K ⇔
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|J ∩ Choice(s1)| = min1 > minw, so surely |J ∩ Choice(s1)| + |J ∩ r1| > minw,
concluding that for every J ∈ JSK. J ∩ Choice(w)| 6< minw

Case 2) Of course maxw < Choice(w). If maxw = 0 then surely K 6∈ JSK as
some constraints si with maxi < −1 should be exists and this is impossible. In
addition, seeing that S2 6= ∅ and S3 6= ∅ then taken a constraint s2 ∈ S2 we can say
∀K ∈ Js2K ⇔ |K ∩ Choice(s2)| ≤ max2 < maxw − 1, so surely |K ∩ Choice(s2)| +
|K ∩ r2| < maxw, concluding that for every K ∈ JSK. K ∩ Choice(w)| 6> maxw.

Seeing that minw and maxw are computed using JSK too, then we have that
semantics of S has enough information, in effect at least one set of transitions H
such that |H ∩ Choice(w)| = minw and I such that |I ∩ Choice(w)| = maxw exist,
whereas no set of transitions J such that |J ∩Choice(w)| < minw and K such that
|K ∩ Choice(w)| > maxw exist. Hence it is possible to deduce that S could be a
restriction of semantics of w, then we can conclude that w is useless, obtaining an
absurd.

Theorem 3.22 (Minimality theorem). Let c be a consistent constraint of a
CMTS , S be a consistent set of constraints of a CMTS such that they satisfy the
key hypotheses. Let w be the constraint defined as described in Definition 3.29.

Then it exists a useless constraint regarding the semantics of S and c in the set
S ∪ w

Proof.
The proof follows from Theorem 3.19, Theorem 3.20 and Theorem 3.21.

Now suppose to delete one condition from the minimality theorem, in the specific
the condition JSK∩JcK 6= ∅ then it exists some cases where all constraints are needed.
The reason about that is we do not compute the constraint w because the intersection
is empty.

Example 3.9. Suppose we have S = {s1, s2, s3} such that:

• s1 =< {a, b}, [0, 1] >

• s2 =< {a, c}, [0, 1] >

• s3 =< {b, c}, [0, 1] >

Their semantics is simple:

• Js1K = {∅, {a}, {b}, {c}, {a, c}, {b, c}}

• Js2K = {∅, {a}, {b}, {c}, {a, b}, {b, c}}

• Js3K = {∅, {a}, {b}, {c}, {a, b}, {a, c}}

Moreover we suppose c =< {a, b, c}, [2, 2] > where its semantics is JcK = {{a, b},
{b, c}, {a, c}}.

Trivially, JSK ∩ JcK = ∅. In addition we have not got useless constraints:
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• JSK = {∅, {a}, {b}, {c}}

• Js1K ∩ JcK = {{a, c}, {b, c}}

• Js2K ∩ JcK = {{a, b}, {b, c}}

• Js3K ∩ JcK = {{a, b}, {a, c}}

• Js1 ∪ s2K ∩ JcK = {{b, c}}

• Js1 ∪ s3K ∩ JcK = {{a, c}}

• Js2 ∪ s3K ∩ JcK = {{a, b}}

In our dissertation we have introduced key hypotheses that are very restrictive.
For each state s we could define a constraint tree, where the root is the constraint
with choice set Trans(s) and leaves is singleton constraints. Each internal node c is
connected to its child node c1, if Choice(c1) = Choice(c) \ t where t is a particular
transition, namely each child node has a choice set equivalent to father one minus
a transition. By means of our minimality theorem we can reason about only one
level. We would like to understand if the minimality is maintained between different
levels. For example in Figure 3.17 we describe the situation of our constraint tree
when we handle only one level of constraints. In this case we have a constraint with
a choice set of size N and N constraints related to it such that their choice set has
size N − 1. Instead, in Figure 3.18 we describe the situation of our constraint tree

Figure 3.17: A graphical idea of the single level of a constraint tree

when we handle two levels of constraints. In this case we describe the situation
which we consider in the following theorem: we handle a constraint w with a choice
set of size N , a set S of constraints related to w such that the size of S is N and for
each constraint si ∈ S the choice set of si has size N − 1. Finally, taken a specific
constraint sj ∈ S we consider a set T of constraints related to sj such that T has
size N − 1 and each constraint tk ∈ T has a choice set with size N − 2.
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Figure 3.18: A graphical idea of more levels of a constraint tree

Theorem 3.23. Let c be a constraint such that |Choice(c)| = n, S be a set of n
distinct constraints such that ∀1 ≤ i ≤ n. |Choice(si)| = n − 1 and T be a set of
n− 1 distinct constraints such that ∀1 ≤ i ≤ n. |Choice(ti)| = n− 2.

If the following properties hold:

1. Choice(c) = Choice(S)

2. ∃1 ≤ k ≤ n. Choice(sk) = Choice(T )

3. JcK ∩ JSK ∩ JT K 6= ∅

Then at least one useless constraint exists in the set c ∪ S ∪ T

Proof.
From Theorem 3.22 we know that at least one useless constraint between w and S
exists, where w is derived by c and S. In addition, at least one useless constraint
between wk and T exists, where wk is derived by sk and T . Some different cases can
happen:

1. w is a useless constraint and all constraints in S are useful:

(a) ∃1 ≤ l ≤ n− 1. tl ∈ T is useless

(b) wk is useless

2. w is a useful constraint and a constraint sj ∈ S is useless:
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(a) the useless constraint sj is the constraint sk, namely j = k and we have
two possibilities:

(i) wk is the useless constraint and T has only useful constraints

(i) wk is the useful constraint and ∃th ∈ T which is the useless constraint

(b) the useless constraint sj is not the constraint sk, namely j 6= k and we
have two possibilities:

(i) wk is the useless constraint and T has only useful constraints

(i) wk is the useful constraint and ∃th ∈ T which is the useless constraint

Case 1) Seeing that w is useless we have JSK∩ JwK = JSK. We have two possibilities:

(a) wk is useful, namely JskK∩JT K = JwkK∩JT K = JwkK∩JT \tlK. Since w is useless
then c is a useless constraint too. Therefore JcK ∩ JSK ∩ JT K = JSK ∩ JT K =
JS \ skK ∩ JskK ∩ JT K = JS \ skK ∩ JwkK ∩ JT K = JS \ skK ∩ JwkK ∩ JT \ tlK. In
this context two constraints are useless: w and tl.

(b) wk is useless, namely JskK∩JT K = JwkK∩JT K = JT K, deducing sk is useless too.
Since w is useless then c is a useless constraint too. Therefore JcK∩JSK∩JT K =
JSK∩JT K = JS\skK∩JskK∩JT K = JS\skK∩JT K. In this context two constraints
are useless: w and sk.

Case 2) This case is slightly more complicated because we have several possible
situations.

Case 2.a) This time w is useful and sk is the useless constraint, namely JcK∩JSK =
JwK ∩ JSK = JwK ∩ JS \ skK.

Case 2.a.i) wk is useless and so JT K ∩ JskK = JT K ∩ JwkK = JT K. Therefore
JcK∩ JSK∩ JT K = JwK∩ JSK∩ JT K = JwK∩ JS \ skK∩ JskK∩ JT K = JwK∩ JS \ skK∩ JT K.
We have only one useless constraint: sk.

Case 2.a.ii) wk is useful and so JT K ∩ JskK = JT K ∩ JwkK = JwkK ∩ JT \ tlK.
Therefore JcK ∩ JSK ∩ JT K = JwK ∩ JSK ∩ JT K = JwK ∩ JS \ skK ∩ JskK ∩ JskK ∩ JT K =
JwK ∩ JS \ skK ∩ JwkK ∩ JT K = JwK ∩ JS \ skK ∩ JwkK ∩ JT \ tlK.

We know that sk is useless so JwK ∩ JSK = JwK ∩ JS \ skK and this is true if and
only if JwK ∩ JS \ skK ⊆ JskK. In addition JwkK ⊆ JskK. Unfortunately we have not
a relation between JwkK and JwK ∩ JS \ skK, hence wk is useful as it contains the
missing information of tl.

Case 2.b) w is useful and sj 6= sk, so we have JcK∩JSK = JwK∩JSK = JwK∩JS\sjK.
As before we can have two possibilities:
Case 2.b.i) wk is useless and so JT K ∩ JskK = JT K ∩ JwkK = JT K, so sk is useless

too. Therefore JcK∩ JSK∩ JT K = JwK∩ JSK∩ JT K = JwK∩ JS \ sjK∩ JT K = JwK∩ JS \
(sj ∪ sk)K∩ JskK∩ JT K = JwK∩ JS \ (sj ∪ sk)K∩ JT K. We have two useless constraint:
sk and sj.

Case 2.b.ii) wk is useful and so JT K∩JskK = JT K∩JwkK = JwkK∩JT \tlK. Therefore
JcK∩JSK∩JT K = JwK∩JSK∩JT K = JwK∩JS\sjK∩JT K = JwK∩JS\(sj∪sk)K∩JskK∩JT K =
JwK ∩ JS \ (sj ∪ sk)K ∩ JwkK ∩ JT \ tlK.
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For each situation at least one constraint is useless and our theorem is true.

Definition 3.31:
Let s be a state. Then we say that s has a minimal set of constraints if and only if
it holds:

∀c ∈ C(s). JC(s)K 6= JC(s) \ cK

�

Definition 3.32:
Let M = (S,Σ,−→,C) be a CMTS. Then we say that M is minimal if and only if
it holds:

∀s ∈ S s has a minimal set of constraints

�

Figure 3.19: Two semantically equivalent CMTSs with a different number of con-
straints
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This theorem extends the minimality from local context to global one. Unfor-
tunately, these theorems are only existence theorems and it is an open problem if,
taken a CMTS M , we can derive the exact minimal number of possible constraints.

Moreover it is simple to define some algorithms which allow to compute, taken
a CMTS M , the minimal CMTS semantically equivalent to M . In addition we can
develop in a simple way an algorithm to determine if a CMTS M is consistent or
not. For more detail it is possible to see the Appendix.

Last observation: in a few contexts we may have a CMTS with an high number
of constraints like one in Figure 3.19. As we have seen, each new constraint reduces
the semantics of a CMTS, hence in general increasing the number of constraints, we
decrease valid sets of transitions for constraints themself.

In Figure 3.19 CMTS M has many constraints but the only possible set of correct
transitions are {{(a, s1)}, {(a, s1), (c, s3)}}, for example the CMTS N is semantically
equivalent to M and it has few constraints. Of course each modeller can describe
the family in some different ways, but in general a very high number of constraints
is symptom of a wrong modelling.

3.3 No-Choice CMTS

The CMTS is a peculiar formalism because it uses the concept of a strange con-
straint. When we consider a constraint c =< CS, [min,max] >, if we want to
generate a set of transitions which satisfies c, we have two types of choices:

1. the number of transitions in CS which we want to take

2. the exact transitions of CS to be taken

We can observe that a special class of CMTS, where we have no choice, exists.

Definition 3.33 (No-Choice CMTS):
Let M = (S,Σ,−→,C, s0) be a CMTS. We say that M is a No-Choice CMTS if and
only if holds:

1. ∀s ∈ S. ∀c =< CS, [min,max] >∈ C(s). |CS| = min = max

2. ∀s ∈ S. ∀t ∈ Trans(s). ∃c ∈ C(s). t ∈ Choice(c)

�

Consider the situation where we have a constraint c =< CS, [min,max] > where
min = max. In this case we do not choose the number of transitions to be taken
because each possible valid solution I must hold min = |I ∩ CS| = max, therefore
we can only choose which transitions in CS must be taken. If we add the con-
dition |CS| = min = max then we cannot even choose which transitions may be
taken, because we have only one possibility: we must consider all transitions of CS.
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The second property guarantees us every possible transition is connected to some
constraint, so we have the guarantee that each possible transition must be always
taken. We have previously said if a transition t is not related to any constraint, then
we can implicitly assume that exists a constraint c =< {t}, [0, 1] >, so if we would
have only first property, then we might have a transition t ∈ Trans(s), which is not
related to a constraint. We can so deduce that exists an implicit constraint c which
does not satisfy property (1), therefore our CMTS is not no-choice. Moreover, we

Figure 3.20: Some examples of No-Choice CMTSs

know that, taken a generic CMTS M , it is possible to define some different CMTSs
N such that M and N are semantically equivalent. Of course, in the context of
CMTS No-Choice this property is still held but, due to the particular structure of
a CMTS No-Choice, it implies some further characteristics. As we can see in the
Figure 3.20, taken a No-Choice CMTS, we can find out some syntactic different
No-Choice CMTSs which are all semantically equivalent. Therefore we could want
to a “witness” or a “descriptor” which represents the class of these all semantically
equivalent CMTSs.
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Definition 3.34 (No-Choice CMTS Witness):
Let M = (S,Σ,−→,C, s0) be a CMTS. We say that M is a Witness of a set of
semantically equivalent No-Choice CMTSs if and only if it holds:

1. M is a No-Choice CMTS

2. ∀s ∈ S. ∀c =< CS, [min,max] >∈ C(s). |CS| = min = max = 1

We call Normal Form this CMTS and we denote it by NF (M).
�

A Normal Form of a CMTS is a CMTS where each transition is related to a
constraint with a choice set singleton and cardinality equals to [1, 1]. Moreover note
that a Normal Form is not the minimal CMTS, in effect the minimal No-Choice
CMTS is a CMTS which satisfies the following property:

∀s ∈ S. C(s) = {c}

where:

1. c =< CS, [min,max] >

2. CS = Trans(s) ∧min = max = |CS|

In addition, note that for each couple of CMTS No-Choice (C,C ′) of Figure 3.20 it
always holds C ESem C ′, whereas sometimes C ESyn C ′ does not hold. The reason
is simple ESem take into account the semantics derived by constraints, therefore the
relation abstracts from the real syntactic structure of the CMTS and it considers
only the global meaning of all constraints. On the other hand, ESyn considers
the syntactic description of constraints and, hence, some problem might exist, for
example M 6E N , even if they describe the same set of solutions.

Definition 3.35 (Construction of Normal Form):
Let M = (S,Σ,−→,C, s0) be a No-Choice CMTS. We can easily derive NF (M) in
the following way:

NF (M) = (S,Σ,−→,CNF (M), s0)

where:

1. ∀s ∈ S. ∀c =< CS, [min,max] >∈ CNF (M)(s). |CS| = min = max = 1,
namely every constraint has a choice set singleton and cardinality [1, 1]

2. ∀s ∈ S. ∀t ∈ Trans(s). ∃c ∈ CNF (M)(s). Choice(c) = {t}, namely every
transition is related to a constraint

�
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For our purpose a product of a product family is a No-Choice CMTS. In the
following chapters we will show that each No-Choice CMTS is equivalent to a LTS,
therefore we will use indistinctly LTS, product and implementation to denote the
same thing.

Theorem 3.24 (Uniqueness of Normal Form). Let M = (S,Σ,−→,C, s0) be a
No-Choice CMTS, then its Normal Form is unique.

Proof.
Suppose for absurdum that we have two different normal forms N and N ′. Since
N and N ′ are normal forms of M , namely they have only constraints with choice
set as singleton and cardinality equals to [1, 1], and at the same time N and N ′ are
different, then one of the following properties holds:

1. ∃s ∈ S. ∃α ∈ Σ, s′ ∈ S. (s, α, s′) ∈−→N ∧ (s, α, s′) ∈−→′N

2. ∃s ∈ S. ∃c =< CSc, [minc,maxc] >∈ CN(s). such that:

∀c′ =< CSc′,[minc′ ,maxc′ ] >∈ CN ′(s). (CSc 6= CSc′) ∨ (minc 6= minc′) ∨
(maxc 6= maxc′)

The first case holds when −→N 6=−→′N , that is some outgoing transitions of some
state s is not present in N ′, but we know −→M=−→N=−→N ′ , for construction of
Normal Form, so this case is impossible.

The second case holds if N has some constraint c which does not exists in N ′.
As before, for construction of Normal Form, we know that for every state we have
as many constraints as transitions, each constraint has a singleton choice set and
cardinality equals to [1, 1]. Therefore we can deduce that every constraint in N and
N ′ have cardinality equals to [1, 1], so the second case is possible if and only if a
constraint in N with a different choice set regarding all constraints in N ′ exists, but
also this is impossible because each constraint in N and N ′ has a singleton choice
set related to a particular transition and −→N=−→N ′ , deducing all constraints in
N are equivalent to constraints in N ′, so the second case is impossible too. In this
way we can reach the absurdum.

Note that we can generalize the normal form concept to a general CMTS but
in this case the uniqueness is lost, because we have some different possible Normal
forms which are as many as implementations of CMTS are. The no-uniqueness
derives from missing of no-choice property, in effect if we have some choices we have
some different Normal Forms, depending by the made choices.

Theorem 3.25. The semantics of a No-Choice CMTS M = (S,Σ,−→,C) is a
singleton set and it is a LTS L = (S,Σ,−→).

Proof.
Initially, we prove that for each state sM of M its semantics is a singleton set. We
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know that I ∈ JsMK⇔ ∀c ∈ C(sM). I ∈ JcK⇔ ∀c ∈ C(sM). min ≤ |I ∩Choice(c)| ≤
max. In the No-Choice context the property ∀c ∈ C(sM). min ≤ |I ∩ Choice(c)| ≤
max is equivalent to ∀c ∈ C(sM). |I ∩ Choice(c)| = |Choice(c)|. Trivially, we
can derive that ∀c ∈ C(sM). Choice(c) ⊆ I. Seeing that ∀t ∈ Trans(sM). ∃c ∈
C(sM). t ∈ Choice(sM), then we can conclude that ∀t ∈ Trans(sM). t ∈ I, where I is
the possible solution. Of course, another solution does not exists. In fact suppose for
absurdum that I1 is a solution and it is different from I then I1 = Trans(sM)\{t} for
some transition t. For definition of No-Choice, taken t, surely it exists a constraint
ct such that t ∈ Choice(ct) and, therefore, |I1∩Choice(ct)| = |I1∩Choice(ct) \{t}|,
since t is not in I1, deriving that |I1 ∩ Choice(ct)| < minct = |Choice(ct)|. In
conclusion I1 6∈ JctK, namely I1 is not a solution but this is an absurd.

Finally, we know that a LTS L is derived by a CMTS M if, for each state sL, its
outgoing transitions are a possible solution of constraints of the corresponding state
sM . Since sM has only one possible solution I then Trans(sL) = {(α, s′L) | (α, s′M) ∈
I = Trans(sM)}, namely all possible outgoing transitions of sM are the same of sL.
Hence, a LTS L exists and it has all transitions of M and it is impossible to have
another solution.

It is clear that the refinement concept in No-Choice CMTS is few significant:
the only possible CMTS which refines a No-Choice CMTS is an inconsistent CMTS.
In this context it is more interesting to define an equivalence relation between No-
Choice CMTSs, using a relation similar to refinement one.

Definition 3.36 (Equivalence relation between No-Choice CMTSs):
Let M = (S,Σ,−→,CM , sM0) and N = (S,Σ,−→,CN , sN0) we say M and N are
equivalent, denoted by M ≡ N , if and only if (sM0 , sN0) ∈ R≡ where (s, t) ∈ R≡ if
and only if:

1. ∀(α, s′) ∈ Trans(s). ∃(α, t′) ∈ Trans(t). (s′, t′) ∈ R≡

2. ∀(α, t′) ∈ Trans(t). ∃(α, s′) ∈ Trans(s). (s′, t′) ∈ R≡

�

Definition 3.37:
Let M = (S,Σ,−→,CM , sM0) and N = (S,Σ,−→,CN , sN0) be two CMTSs No-
Choice, we say M and N are equivalent, denoted by M ≡ N , if and only if NF (M) E
NF (N).

�

This definition allow us to connect the equivalence concept to normal form and
refinement relation.

Theorem 3.26. The Definition 3.36 and Definition 3.37 are equivalent.
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Proof.
First of all, note that for the peculiar structure of the normal form we have only
constraints c =< {t}, [1, 1] > for any t ∈ Trans(s). So the condition of refinement
over constraints can be simplified: ∀ct ∈ CN(t). ∃cs ∈ CM(s). Choice(ct) = {(α, t′)}∧
Choice(cs) = {(α, s′)} ∧ (s′, t′) ∈ R.

Therefore (s, t) ∈ R is equivalent to say:

• (s, α, s′) ∈−→M=⇒ ∃(t, α, t′) ∈−→N . (s′, t′) ∈ R

• ∀ct ∈ CN(t). ∃cs ∈ CM(s). Choice(ct) = {(α, t′)} ∧ Choice(cs) = {(α, s′)} ∧
(s′, t′) ∈ R.

Trivially the first condition of refinement is equivalent to the first condition of rela-
tion R≡. Moreover it is simple to see as the second condition of R≡ is the same of
second condition of simplified refinement relation.

In effect if (α, t′) ∈ Trans(t) then ∃ct ∈ CN(t). Choice(ct) = {(α, t′)}, in addition
if (α, t′) ∈ Trans(t) implies that ∃(α, s′) ∈ Trans(s). (s′, t′) ∈ R≡ then ∃cs ∈
CN(s). Choice(cs) = {(α, s′)} ∧ (s′, t′) ∈ R.

Conversely if exists a ct ∈ CM(t). Choice(ct) = {(α, t′)} then in M it holds
(α, t′) ∈ Trans(t), so seeing that ct ∈ CM(t)⇒ ∃cs ∈ CN(s). Choice(ct) = {(α, t′)}∧
Choice(cs) = {(α, s′)}∧ (s′, t′) ∈ R we can say that cs ∈ CN(s). cs = {(α, s′)} exists
and therefore in N it holds (α, s′) ∈ Trans(s) and (s′, t′) ∈ R, concluding our
theorem.

Theorem 3.27. Let M = (SM ,Σ,−→M ,CM , sM0) and N = (SM ,Σ,−→N ,CN , sN0)
be two CMTSs No-Choice, such that M ≡ N . Then M and N are semantically
equivalent

Proof.
We know that the only LTS LM derived from M is a LTS with all transition of M ,
namely LM = (SM ,Σ,−→M) and the same holds forN , namely LN = (SN ,Σ,−→N).
In addition, we know that M ≡ N , hence LM ≡ LN . Note that, in the LTS
context the relation≡ is the bisimulation, concluding that M and N are semantically
equivalent.



Chapter 4

Extensions of CMTS

In the previous section we described a new formalism, the CMTS, and we saw some
interesting properties related to it. In this chapter we will see some simple exten-
sions of CMTSs and how previous definitions will be changed. Of course the CMTS
is a very expressive formalism, so it is difficult to understand why we need to de-
fine further extensions. The main reason is related to the concept of “conditional
features”, namely features such that their existence (or absence) depends on some
conditions. In each model which we saw in Section 2.2 we can only define if a feature
must be present or may be present or, taken a set of features, how many of them
must be at least taken or at most taken. Therefore it is impossible to define that
the presence of a transition is only dependent on the presence of another specific
transition. Unlike all other formalisms, the PMTS allows to define conditional re-
quirements and it introduces the negation in the obligation function, in this way
we can say if a transition must be present or may be present and, in addition, we
can also say if a transition needs not be present, in particular we can define if it
must be always absent or only in some special cases. Note that in all formalisms we
implicitly assume that if a feature is not represented by some outgoing transitions
of the state s, then it is forbidden or absent for the state s. On the other hand, a
feature can exist if a transition related to it exists and, in this case, we describe in
some way if a transition must or may be present and what sets of transitions are
correct. The negation is important because we can reason about the absence of a
feature in a direct way, even if a transition related to it exists.

Observe that for all other formalisms this aspect is implicit: a feature is ab-
sent if and only if it is not present, however they do not allow to handle directly
requirements which need to the absence of a transition in some specific contexts.
The possibility of handling the absence in a direct way it is fundamental to define
conditional features: we can force two different transitions to be absent or present
simultaneously in each possible contexts. This is possible by means of the definition
of two different representations of the same transition: one for the absence concept,
another one for the presence concept.

Moreover, the introduction of the negation in a PMTS allows to derive a more
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interesting property, we can decide in a more selective way what sets of transitions
are valid, for example we can require that some transitions are absent only in certain
sets, whereas they are present only in other specific sets.

For instance, taken a state s and the set of outgoing transitions Trans(s) =
{(α, s′), (β, s′′)}, we can consider the requirement R where only {(α, s′), (β, s′′)}
and ∅ are correct sets of transitions. Note that all formalisms in Section 2.2, except
PMTS, cannot represent this requirement because surely both (α, s′) and (β, s′′) are
may transitions and, at the same time, they might be not must transitions. From
this deduction we can also derive that the set of transitions {(α, s′)} is possible, but
this is wrong for our requirement R.

Unfortunately, the CMTS has this lack too. By means of the CMTS, we can
only define the minimal and the maximum number of transitions to be considered,
but we are not able to express that a particular transition must be absent in some
specific cases or it must be present in other ones, so we are not able to handle in an
explicit way the absence and the presence of a transition.

For a better understanding, we consider the requirement R again for a some
state s, and for convenience, we suppose that Trans(s) = {(α, s′), (β, s′′)}, namely
we have only two outgoing transitions. The requirement has only the following
correct sets of transitions: {{∅}, {(α, s′), (β, s′′)}}.

In addition we can observe that both (α, s′) and (β, s′′) are not necessary, there-
fore we can define the following possible constraints:

• c1 =< {(α, s′)}, [0, 1] >

• c2 =< {(β, s′′)}, [0, 1] >

• c3 =< {(α, s′), (β, s′′)}, [0, 2] >

Unfortunately, for these constraints, also the set {(α, s′)} is valid. Of course we
cannot modify the minimum of an any constraint, because the set {∅} is valid and,
in the same way, we cannot modify the maximum of an any constraint seeing that
the set {(α, s′), (β, s′′)} is possible. On the other hand, we cannot add further
constraints because all possible constraints, which are definable for the state s, can
have one of these choice sets: {(α, s′)}, {(β, s′′)}, {(α, s′), (β, s′′)}.

Intuitively, we realize that the requirement R cannot be expressed by means of
a CMTS. Our extensions will be introduced to resolve these lacks.

4.1 CMTS(GT )

The first step is to understand how we can handle the presence and the absence of
a feature in an explicit way. First of all, we observe that the concept of presence
and absence of a feature exists in two different levels:

1. model level:
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• a feature α is present in a state s of a CMTS if and only if ∃(α, s′) ∈
Trans(s)

• a feature α is absent in a state s of a CMTS if and only if 6 ∃(α, s′) ∈
Trans(s)

2. solution level: taken a state s of a CMTS and a solution T for requirements
of s

• a feature α is present in T if and only if ∃(α, s′) ∈ T
• a feature α is absent in T if and only if 6 ∃(α, s′) ∈ T

Note that we are only interested to features which are present in the model level
and, at the same time, present or absent in the solution level, therefore all absent
features in the model level are automatically discarded. We want to handle in a
direct way the absence of features in the solution level, therefore we must divide
in some way the representation of a feature, namely a labelled transition, in two
different representations: one for the presence and one for the absence of the feature
in the solution. We implicitly assume that all features to be considered are present
in the model level.

In addition we can remember that, taken a state s, a solution of s describes a
piece of an implementation, namely the part of implementation related to the state
s. Therefore if a feature α is present in a solution T of s then a labelled transition
in T exists and it can be executable, on the other hand if α is absent in T then
surely the transition labelled with α is an outgoing transition of s, but it must not
be executable for T . From this observation we can deduce that if we choose the
representation of the presence of the feature α then α can be executable, whereas if
we choose the representation of the absence of α then α must be not executable. At
the same time these two representations must be present as outgoing transitions of s,
in effect both represents the same feature but they describe two different situations,
namely when the feature must be present and when the feature must be absent. It
is important to understand that in this context we allow to choose in a direct way
if a feature is present or absent, through the choice between two similar labelled
transitions: they have the same label but one is always executable, whereas the
other one is never executable.

It is clear that we must model in some way the possibility of executing or not
the transition. In order to solve this problem we introduce the concept of labelled
transitions with guards and, initially, we suppose that our guards can only assume
values tt or ff, namely true and false, respectively. For convenience we call the set
G = {tt,ff} Guard Set. Of course, now our transitions have type S × G × Σ× S,
where S is the set of states and Σ is the set of actions. To distinguish clearly outgoing
transitions with or without guards, in the following we denote by Trans the type of
outgoing transitions without guards, and Trans(G), the type of outgoing transitions
with guards belonging to G, namely Trans = Σ× S and Trans(G) = G × Σ× S.
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Moreover we must update the definition of Trans:

Definition 4.1:
Let s ∈ S be a state, Σ be a set of actions, G be a set of guards and−→⊆ S×G×Σ×S
be a transition relation. Then we denote the outgoing transitions of s by Trans(s)
where:

Trans(s) = {(g, α, s′) | (s, g, α, s′) ∈−→}

�

Definition 4.2 (Enabling of transitions):
Let s, s′ ∈ S be two states, α ∈ Σ be a label and G be a set of guards. We say a
transition t ∈ S ×G ×Σ×S is enabled if and only if t = (s, tt, α, s′), or graphically

s
tt→α−−−→ s′.

�

Definition 4.3 (Executable transitions):
Let t ∈ S × G × Σ× S be a transition. We say that t can be executable if and only
if t is enabled.

�

Definition 4.4 (Disabling transitions):
Let s, s′ ∈ S be two states, α ∈ Σ be a label and G be a set of guards. We say a
transition t ∈ S ×G ×Σ×S is disabled if and only if t = (s,ff , α, s′), or graphically

s
ff→α−−−→ s′.

�

In this way a transition t can be always considered but if t is disabled then it
is never executed. From our pointview, this is equivalent to say that the feature α
does not exist, note that in the MTS this also equals to say that α is forbidden.
On the other hand, a transition enabled can be always executed and therefore it is
equivalent to the typical transition of a LTS, namely a transition without guards.

This last observation is useful to understand the difference between transition
with guards and without guards: both types of transitions hold the property “if an
outgoing transition of s is executable then it is in Trans(s)”. On the other hand,
these two types of transitions differ in the contrary property “if a transition t is in
Trans(s) then it is an executable outgoing transitions”. In effect, in the transition
without guards we can guarantee that a transition is an outgoing transition if and
only if it is executable, whereas in the transition with guards we cannot guarantee
the same thing, because depending on the value of the guard itself, we can determine
if the outgoing transition is executable or not.

Of course it is possible to enrich the Guard Set G, but for now we only consider
the set {tt,ff}
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Definition 4.5 (Equivalence):
Let t = (st, gt, αt, s

′
t), u = (su, gu, αu, s

′
u) be two transitions. We can say t is equiva-

lent to u if following conditions hold:

• st = su

• αt = αu

• s′t = s′u

We can say t is equivalently enabled in respect to u if and only if gt = gu.
�

Trivially, if t is equivalent to u then t and u are the same transition up to the
guard, if t is equivalently enabled to u then t is enabled if and only if u is enabled,
finally if t and u are equivalent and equivalently enabled then t and u are the same
transition.

Now suppose two equivalent transitions t = (s, tt, α, s′) and u = (s,ff , α, s′)
exist, where t represents the presence of the feature α and u the absence, trivially
we know that concepts of presence and absence are exclusive, namely only one
concept is possible in each case. In effect a feature can be present or absent but
it cannot be present and absent at the same time. Hence, for our model, we have
a further condition of consistency: for any t and u, such that they are equivalent,
must exist a constraint c =< {t, u}, [1, 1] >, namely exactly one of t and u must
always exist.

Definition 4.6 (Constrained Modal Transition System with guarded tran-
sitions):
A Constrained Modal Transition System with guarded transitions is a tuple (S,Σ,G,
−→,C) where:

• S is a finite set of states

• Σ is a finite set of actions

• G is a finite set of guards

• −→⊆ S × G × Σ× S is a transition relation

• C : S −→ P(Constraints(Trans(G))) is a function which, taken a state s as
input, returns a set of possible constraints where constraints are defined over
outgoing transitions with guards of s.

Moreover it holds that:

1. ∀s ∈ S. ∀c ∈ C(s). c is a correct constraint.

2. ∀s ∈ S. ∀c ∈ C(s). Choice(c) 6= ∅.
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3. ∀s ∈ S. ∀c ∈ C(s). Choice(c) ⊆ Trans(s).

4. ∀s ∈ S. ∀c, c1 ∈ C(s). Choice(c) 6= Choice(c1).

5. ∀s ∈ S. ∀t, u ∈ Trans(s) if t and u are equivalent then < {t, u}, [1, 1] >∈ C(s).

We denote the set of all possible CMTS(G) by CMTS(G).
�

Note that changes introduced by the extension compared to the CMTS defini-
tion are minimal: we introduce only guards in transitions and a further consistency
requirement. In addition, the syntactic modal refinement and the semantic modal
refinement are unchanged, except the definition of refinement between two con-
straints:

Definition 4.7 (Refinement between two constraints):
Let c =< CSc, [minc,maxc] >, c1 =< CSc1 , [minc1 ,maxc1 ] > be two constraints.
We say c is a refinement of c1 regarding a relation R ⊆ S × S, denoted by c ER c1

if and only if:

• ∀(g, α, s′) ∈ CSc. ∃(g, α, t′) ∈ CSc1 . (s′, t′) ∈ R

• c and c1 are correct constraints

• minc1 ≤ minc

• maxc ≤ maxc1

�

In addition, the introduction of the guard entails a problem with the definition of
Label, seeing that the function Label considers only the label related to a transition,
we can have a wrong step refinement such as in Figure 4.1. Note that for our
syntactic refinement relation, the step in Figure 4.1 is correct, but it is obvious that
CMTSs M and N have two different semantics. In effect, in M the absence of the
feature a must be considered, whereas in N the presence of α must be taken into
account. It is clear that now a transition is univocally determined by its label and
its guard.

Definition 4.8:
Let M = (S,Σ,G,−→,C, s0) be a CMTS(G) and s be a state. We denote the set
of all labels related to outgoing transitions by Label(s) = {(g, α) ∈ G × Σ | ∃s′ ∈
S. (s, g, α, s′) ∈−→}.

�

Again, we can extend this definition to constraints.
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Figure 4.1: Syntactic refinement fails in CMTS(G)

Definition 4.9:
Let M = (S,Σ,G,−→,C, s0) be a CMTS(G) and c ∈ C(s) be a constraint of a some
state s. We denote the set of all labels related to choice set of c by Label(c) =
{(g, α) ∈ G × Σ | ∃s′ ∈ S. (g, α, s′) ∈ Choice(c)}.

�

In addition, note that an element t ∈ Choice(c), where c is a constraint, is an
element of G ×Σ×S. Finally, we can observe that the action-determinism concept,
defined for CMTS, must be changed for CMTS(G):

Definition 4.10 (Action-Deterministic CMTS(G)):
An Action-Deterministic CMTS(G) is a tuple (S,Σ,G,−→,C, s0) where:

• (S,Σ,G,−→,C) is a CMTS(G)

• s0 is the unique initial state

Moreover it holds another property :

∀s ∈ S, g, g′ ∈ G, α ∈ Σ. (s, g, α, s′) ∈−→ ∧ (s, g′, α, s′′) ∈−→ =⇒ s′ = s′′

�

In this case the determinism of a CMTS(G) depends on the label of a transition
and, of course, if we have two transitions with the same guard and label, the require-
ment of having the same target state is obvious, seeing that this is the requirement
of the typical action-determinism of a CMTS, extended to guarded transitions. The
special case is when we have two transitions with the same label and different guards,
in this case (tt, α) describes the presence of α, whereas (ff , α) describes the absence
of α, therefore the two guarded transitions must describe the same transition, but
one describes only the presence, whereas the other one describes only the absence.
From another pointview, the simple transition of a CMTS can stand in two differ-
ent situations: it can be present or not, by means of the guard we describe in a
direct way these situations, distinguishing them by way of two different types of
transitions.
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Unfortunately, the introduction of guards in the formalism entails some problems.
In the previous chapter we said:

1. the semantics of a CMTS is a set of LTSs which can be refined by a CMTS

2. the semantics of a CMTS is defined by means of some refinement relation,
which correlates together two CMTSs

3. a CMTS No-Choice is strictly correlates to a LTS

We observe that transitions of a LTS are typical transitions without guards, whereas
transitions of CMTS(G) can be with or without guards. By means of the refinement,
some transitions of a CMTS(G) can be lost and other ones can be maintained and
therefore a CMTS(G) No-Choice derivable by a CMTS(G) can have some transi-
tions with guard ff and other ones with guard tt. It becomes fundamental to find
out a way to transform a CMTS(G) No-Choice in a LTS, namely a transformation
from a system with guarded transitions to a system without guarded transitions,
maintaining the semantics. First of all, we define the concept of LTS with guarded
transitions.

Definition 4.11 (Labelled Transition System with guarded transitions):
A Labelled Transition System with guarded transitions is a tuple (S,Σ,G,−→) where:

• S is a finite set of states

• Σ is a finite set of actions

• G is a finite set of guards

• −→⊆ S × G × Σ× S is a transition relation

We denote this extension by LTS(G).
�

It is simple to understand that if it exists a relation between a CMTS No-Choice
and a LTS, then the same relation must exist between a CMTS(G) No-Choice and
a LTS(G), in effect a CMTS(G) No-Choice is equal to a CMTS No-Choice, except
for the type of transition relations and the same holds for a LTS and a LTS(G).

Therefore we must find out a relation between LTS(G) and LTS. In a LTS(G) we
have two types of transitions:

1. the ones with guard equals to tt, which describe executable transitions

2. the ones with guard equals to ff , which describe non-executable transitions

Instead, in LTS we know that every transition is executable, hence we can deduce
the following property:
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Definition 4.12:
A LTS is a LTS(G) M = (S,Σ,G,−→) where:

∀s ∈ S. ∀(g, α, s′) ∈ Trans(s)⇒ g = tt

�

In conclusion a LTS is a restriction of a LTS(G), where each transition with
guard ff is deleted.

On the other hand, we do not often handle a LTS but we reason about solutions
of a set of constraints related to a state s. We have already explained the relation
between these solutions and a LTS, so we try to see the problem derived by the
introduction of guards in these sets and how to solve it.

Definition 4.13:
Let T ⊆ Trans(G) be a set of outgoing transitions and H ⊆ G be a set of possible
guards. Then we say T is restricted by the set H, denoted by T|H , to represent
the set of all outgoing transitions of T which have a guard in H.

Formally, T|H = {t = (g, α, s′) | (g, α, s′) ∈ T ∧ g ∈ H}.
�.

Trivially, ∀H ⊆ G. T|H ⊆ T and T|∅ = T . Moreover, this definition is easily
extendible to a set of sets of transitions.

Definition 4.14:
Let T, S ⊆ Trans(G) be two sets of outgoing transitions and H ⊆ G be a set
of possible guards. Then we say T is equivalent to S regarding H if and only if
T|H = S|H .

�

Seeing that, from our pointview, these sets of transitions describe possible out-
going transitions of a state s of a LTS(G) and we are interested in only executable
transitions, namely transitions with guard equals to tt, we must take into account
sets of transitions which are equivalent regarding the set {tt}.

Definition 4.15:
Let T, S ⊆ Trans(G) be two sets of outgoing transitions. Then we say T is executable-
equivalent to S if and only if T|{tt} = S|{tt}

�

Definition 4.16:
Let T ⊆ Trans(G) be a set of outgoing transitions and H ⊆ G a set of guards. Then
we define the function EquivalenceSet : P(Trans(G))×G −→ P(P(Trans(G))) such
that, taken T and H, returns all sets of transitions equivalent to T regarding H.

Formally, EquivalenceSet(T,H) = {S ⊆ Trans(G) | S|H = T|H}.
�
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Definition 4.17:
Let T ⊆ Trans(G) be a set of outgoing transitions and H ⊆ G a set of guards. Then
we define the function Ker : P(Trans(G))×G −→ P(Trans(G)) such that, taken T
and H, returns a set of transitions equivalent to T regarding H, but minimal with
respect to the number of transitions.

Formally, Ker(T,H) = J where:

• J ∈ EquivalentSet(T,H), namely it is equivalent to T regarding H

• ∀I ∈ Ker(T,H). |J | ≤ |I|

�

Of course we are interested in EquivalenceSet and Ker functions related to the
set {tt}, namely these functions must be based on executable-equivalence.

Definition 4.18:
Let T ⊆ Trans(G) be a set of outgoing transitions. Then we define the function
ExecutableKer : P(Trans(G)) −→ P(Trans(G)) such that, taken T , returns a set
of transitions executable-equivalent to T , but minimal with respect to the number
of transitions.

Formally, ExecutableKer(T ) = Ker(T, {tt}).
�

Trivially, the set with the minimal number of transitions is the set with all and
only transitions with guard equals to tt.

Definition 4.19:
Let T ⊆ Trans(G) be a set of outgoing transitions. Then:

ExecutableKer(T ) = {(tt, α, s′) | (tt, α, s′) ∈ T}

�

Again, this function can be extended to a set of sets of transitions.

Theorem 4.1. Let T, S ⊆ Trans(G) be two sets of outgoing transitions. Then
∀H ⊆ G. T 6∈ EquivalenceSet(S,H)⇔ S 6∈ EquivalenceSet(T,H)

Proof.
For definition of EquivalenceSet, taken a H ⊆ G:

• T 6∈ EquivalentSet(S,H)⇔ T|H 6= S|H

• S 6∈ EquivalentSet(T,H)⇔ S|H 6= T|H

The theorem holds trivially.
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In this context, we can define two types of semantics related to states or con-
straints: one which describes the meaning of constraints, namely all possible solu-
tions for constraints and another one which describes the possible behaviour deriv-
able by the set of constraints, namely all possible sets of executable transitions. In
the first case we use the notation J.KG to denote that elements computed by this se-
mantics can have transitions with guards, whereas for the second we use the notation
J.K to denote that elements computed have only executable transitions.

Definition 4.20:
Let S ⊆ Constraints(Trans(G)) be a set of constraints defined over outgoing la-
belled transition with guards. We denote by J.KG the set of all sets of outgoing
transitions which satisfy constraints in S.

Formally, JSKG = {I ⊆ Trans(G) | ∀c ∈ S. I |= c}
�

Definition 4.21:
Let S ⊆ Constraints(Trans(G)) be a set of constraints defined over outgoing la-
belled transition with guard. We denote by J.K the set of all sets of outgoing exe-
cutable transitions which satisfy constraints in S.

Formally, JSK = {ExecutableKer(I) | I ∈ JSKG}
�

Note that this technique, which deletes transitions with guards equal to ff ,
is surely correct for CMTS(G) No-Choice, whereas it can be wrong for a generic
CMTS(G). The reason of the correctness for CMTS(G) No-Choice is simple: every
state s of a CMTS(G) No-Choice has only one possible solution, namely the one
which takes into account all outgoing transitions of s, therefore if we delete some
outgoing transitions then we do not reduce the number of possible solution for con-
straints and we do not change the semantics related to a solution, at most we restrict
the semantics seeing that some transitions are deleted.

Now suppose to have a generic CMTS(G) and, taken a state s, to delete all
outgoing transitions with guard equals to ff . Trivially, we must also change all
constraints of s because the deleted transitions might influence some constraints.
Let D be the set of transitions to be deleted and c =< CS, [minc,maxc] > be a
constraint of s. Then we must redefine c in the following way:

• CS = CS \D, namely in CS must remain all transitions which are not elimi-
nated

• minc = max{0,minc− |CS ∩D|}, namely the new minc is derived by consid-
ering the worst case: when we have a solution with minc transitions and the
maximum number of transitions in CS ∩D is taken. Of course this maximum
number is |CS ∩D|. In order to avoid to derive a minc < 0, we introduce the
operator max.



108 CHAPTER 4. EXTENSIONS OF CMTS

• maxc = min{maxc, |CS \D|}, namely the new maxc is derived by considering
the best case: when we have a solution with maxc transitions and we take the
maximum possible number of transitions in CS \D Of course this maximum
number is |CS \D|. Of course if we have more transitions in CS \D in respect
to the needed ones to reach the value maxc, then we take maxc. On the
other hand if we have not enough transitions to reach maxc then we take more
possible transitions, namely all transitions in |CS \D|

Now we consider the CMTS(G) in Figure 4.2, note that in this figure we can also
observe some its LTS(G). Trivially, LTSs which can be derived are LTS with a
transition labelled with a or with b. Now suppose to delete all transitions with guard

Figure 4.2: An example of CMTS(G) and its LTS(G)

equals to ff in M , then the derived CMTS(G) is in Figure 4.3. As we can see, in this
case, we have some additional LTS(G). Moreover each LTS(G) has only transitions
with guard equals to tt, so they are exactly equivalent to LTSs. Therefore, we can
deduce that, deleting transitions with guard ff , we can change the semantics and this
is obviously wrong. The reason of this mistake is that transitions with guard ff and
constraints related to them might describe some useful information. Of course if we
delete these transitions we also lose this information and in this way the semantics
is changed.
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Figure 4.3: The same CMTS(G) of Figure 4.2 without disabled transitions and its
LTS(G)

Now we try to extend the Guard Set with boolean parameters, namely let Q be
a set of parameters we consider our Guard Set G = {tt,ff} ∪ Q. To distinguish
CMTSs with simple guards and with parametric guards we denote by CMTS(G), all
CMTSs with Guard Set G = {tt,ff} and CMTS(GQ), all CMTSs with Guard Set
G = {tt,ff} ∪ Q, where Q is a set of parameters. First of all, we try to understand
the meaning of a transition with a parametric guard, if the parameter is tt then the
transition is enabled, otherwise is disabled. In this case the presence of a feature
depends on some parameters which are the guards of transitions related to the
feature.

This change is simple to do from a pointview of the formalism but it hides some
troubles.

• in CMTS(G) we have a consistency requirement connected to two equivalent
transitions, that is two similar transitions with different guards. We know that
this requirement is necessary because these two transitions model the presence
and the absence of a feature, so it is impossible that these two transitions are
simultaneously present. In the parametric context, this situation is slightly
more difficult. For example, we suppose to have a state s with the following
transitions:
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– (s, tt, α, s1)

– (s, p, α, s2)

– (s, q, α, s3)

where s1 6= s2, s2 6= s3, s1 6= s3 and p, q ∈ Q.

Trivially, if p = q = tt then all transitions describe an executable transition
for the feature α. On the other hand, if p = ff or q = ff then we can have two
transitions which describe simultaneously the presence and the absence of the
feature α, but in this case we do not know a priori which are exactly these
transitions.

To solve this problem, we can define a constraint which have the set of all
equivalent transitions as choice set and [1, 1] as cardinality

• suppose to have a CMTS(GQ) M . Then, at each step, we can take a parameter
p ∈ Q and decide the value of p, namely p = ff or p = tt. From M , we can
derive a CMTS(GQ1) M

′, where Q1 = Q \ p. Now we suppose to iterate this
procedure, for every element in Q, until we have a CMTS(GQR) N , where
QR = ∅. Note that a CMTS(G∅) is trivially a CMTS(G). In addition we
would like to have only deterministic CMTS(GQ). Unfortunately, it exists
case where the initial CMTS(GQ) M is deterministic and the CMTS(G) N
derived by M is not deterministic. For example in Figure 4.4 the CMTS(GQ)
M is deterministic but the derived CMTS(GQ) O is not deterministic, in effect
in O we have two transitions with the same label and guard but target states
different.

To guarantee the determinism, we must transform in some way the set of
transitions with the same guard and label in only one transition such that
the semantics is unchanged. A possible idea is, taken a set T = {(s, g, α, si}
of transitions with the same guard and label, to define a new transition t =
(s, g, α, sfusion) where sfusion = {si} is the state which describes the union of
target states of transitions in T. Unfortunately, as we can see in Figure 4.5 this
is problematic as this fusion changes the semantics. For example the semantics
of O in Figure 4.5 requires the feature a with exactly one features between b
and c, whereas the semantics of P requires the feature a or features b and c
together.

In conclusion the introduction of parameters on the guard of transitions can create
several problems.

For convenience we do not consider anymore CMTS(G) with parametric guards,
but only with simple guards.

In the following sections we call these models CMTS(GT ) to highlight that the
guards are correlated to transitions.
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Figure 4.4: An example of transformation of a CMTS(GQ)

Example 4.1. Now we take again the requirement R which has the following se-
mantics: {{∅}, {(α, s1), (β, s3)}}. A possible CMTS(GT ) with the same semantics is
the one in Figure 4.6. In the figure we also describe all LTS(G) which we can derive.

Of course, from them we can derive some LTSs and, trivially, these LTSs are
{{∅}, {(α, s1), (β, s3)}}, namely the semantics of R.

4.2 CMTS(GQ)

In this context we try to make a different extension: instead of adding guards to
transitions, we add guards to constraints. Again, initially we suppose that our set
of guards is G = {tt,ff}. Obviously, the type of a constraints must be changed.

Definition 4.22 (Guarded Constraints):
Let E be a set of elements and G be a set of guards. Then a guarded constraint c is
a tuple < g,CS, [min,max] > where:

• g ∈ G is a guard

• CS ⊆ E is a choice set, namely a set of elements which can be chosen

• [min,max] ∈ N × N is an interval where min describes the minimum num-
ber of required elements of CS and max represents the maximum number of
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Figure 4.5: An example of transformation from a non-deterministic CMTS(GQ) to
a deterministic one

required elements of CS

Graphically, we can denote c as g =⇒< CS, [min,max] >. Moreover, the type of a
guarded constraint is G × P(E)×N ×N .

We denote the set of all possible guarded constraints related to the set of guards
G by Constraints(G, E).

�

In this context the guard of a constraint c describes if c must be considered in
the computation of the semantics or not.

Definition 4.23 (Constraint Satisfaction):
Let E be a set of elements, G be a set of guards, c =< g,CS, [min,max] > be a
guarded constraint and I ⊆ E a possible set of elements of E . Then we define a
satisfaction relation |=⊆ P(E)× Constraints(G, E) as follows:

I |= c⇔ g ⇒ min ≤ |I ∩ CS| ≤ max

�

We can note that if g = ff then any I ⊆ E satisfies the constraint c, otherwise if
g = tt then I ⊆ E satisfies the constraint if the number of transition of CS in I is
included between min and max.

Let c =< g,CS, [min,max] > be a guarded constraint then we can define some
utility functions:

• Choice: the function which, taken a constraint, return the choice set of the
input constraint, namely Choice(c) = CS

• Card: the function which, taken a constraint, return the cardinality of the
input constraint, namely Card(c) = [min,max]

• Cardmin: the function which, taken a constraint, return the minimum of the
cardinality of the input constraint, namely Cardmin(c) = min
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Figure 4.6: A solution for the problematic requirement R

• Cardmax: the function which, taken a constraint, return the maximum of the
cardinality of the input constraint, namely Cardmax(c) = max

• Guard: the function which, taken a constraint, return the guard of the input
constraint, namely Guard(c) = g

The concept of semantics is unchanged:

Definition 4.24 (Constraint Semantics):
Let E be a set of elements, G be a set of guards and c =< g,CS, [min,max] > be a
guarded constraint. Then we denote the semantics of c by JcK where:

JcK = {I ⊆ E | I |= c}

�

Trivially, we can extend these definitions to a set of guarded constraints. Now
we can introduce the concept of constraint enabled and disabled.

Definition 4.25 (Enabling and Disabling of Constraints):
Let E be a set of elements and c ∈ S be a guarded constraint. Then we say that:
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• c is enabled if and only if Guard(c) = tt

• c is disabled if and only if Guard(c) = ff

�

Corollary 4.1:Let E be a set of elements and c =< g,CS, [min,max] > be a
guarded constraint. Then we say that:

• if c is enabled then JcK = {I ⊆ E | min ≤ |I ∩ CS| ≤ max}

• if c is disabled then JcK = P(E)

�

Of course, all previous definitions about constraints are equivalent to guarded
constraints.

Theorem 4.2. Let E be a set of elements, G be a set of guards, S, U be two sets of
guarded constraints such that U ⊆ S ⊆ Constraints(G, E) and U represents the set
of all enabled constraints in S.

Then it holds JSK = JUK

Proof.
First of all, we define the set V = S \ U , namely the set of disabled guarded
constraints. Moreover we know that:

• JV K =
⋂
c∈V

JcK

• any disabled constraint c holds JcK = P(E), namely the powerset of E

Now we can deduce JV K =
⋂
c∈V

JvK =
⋂
c∈V
P(E) = P(E). Therefore JSK = JV K∩ JUK =

P(E) ∩ JUK = JUK.

This theorem is important because it shows us that all disabled constraints can
be omitted.

Moreover, in this context, we release the property of the uniqueness of choice
set, namely ∀s ∈ S. ∀c, c′ ∈ C(s). Choice(c) 6= Choice(c′).

Note that in a simple way, taken a set of constraints where all constraints have
the same choice set, we can derive a single equivalent constraint, so it is possible to
transform a generic CMTS without the uniqueness of choice set in a CMTS with
the uniqueness of choice set.

Definition 4.26 (Witness of a set of constraints with the same choice set):
Let E be a set of elements, CS ⊆ E be a possible choice set, G be a set of
guards and S ⊆ Constraints(G, E) be a set of guarded constraints such that ∀c ∈
S. Choice(c) = CS.

Then we call witness of S a constraint w =< CSw, [minw,maxw] > such that:
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• CSw = CS

• minw = max
c∈S

Cardmin(c)

• maxw = min
c∈S

Cardmax(c)

�

Theorem 4.3. Let E be a set of elements, CS ⊆ E be a possible choice set,G be a
set of guards and S ⊆ Constraints(G, E) be a set of guarded constraints such that
∀c ∈ S. Choice(c) = CS and w be the witness of S.

Then JSK = JwK

Proof.
First of all, we note that, for the construction of w, it holds:

∀c =< CS, [minc,maxc] >∈ S. minc ≤ minw ∧maxw ≤ maxc

We have three different cases:

1. JSK = ∅.
In this case we have that ∀I ⊆ E . ∃c =< CS, [minc,maxc] ∈ S. I 6∈ JcK ⇔
|I ∩CS| < minc ∨ |I ∩CS| > maxc. Then we can deduce ∀I ⊆ E . |I ∩CS| <
minw ∨ |I ∩ CS| > maxw, therefore JwK = ∅.

2. JwK = ∅.
In this case we have that ∀I ⊆ E . |I ∩ CS| < minw ∨ |I ∩ CS| > maxw.
Suppose that |I ∩ CS| < minw then surely ∃c ∈ S. minc = minw, therefore
|I ∩ CS| < minc it is true, namely ∃c ∈ S. I 6∈ JcK holds.

Suppose that |I ∩ CS| > maxw then surely ∃c ∈ S. maxc = maxw, therefore
|I ∩ CS| > maxc it is true, namely ∃c ∈ S. I 6∈ JcK holds.

Finally we can deduce ∀I ⊆ E . ∃c =< CS, [minc,maxc] ∈ S. I 6∈ JcK and
hence JSK = ∅.

3. JSK 6= ∅ and JwK 6= ∅.
Now we must demonstrate that, taken a J ⊆ E , then J ∈ JSK⇔ J ∈ JwK.

Suppose J ∈ JSK then ∀c =< CS, [minc,maxc] > . minc ≤ |J ∩ CS| ≤ maxc.
Seeing that, ∀c =< CS, [minc,maxc] > . minc ≤ |J ∩ CS| then max

c∈S
minc =

minw ≤ |J ∩CS|. It is possible to reason in the same way for maxc, therefore
we can conclude that J ∈ JwK.

Suppose J ∈ JwK then minw ≤ |J ∩ CS| ≤ maxw. Seeing that, ∀c =<
CS, [minc,maxc] > . minc ≤ minw then ∀c =< CS, [minc,maxc] > . minc ≤
minw ≤ |J ∩CS|. It is possible to reason in the same way for maxw, therefore
we can conclude that ∀c =< CS, [minc,maxc] > . J ∈ JcK, so J ∈ JSK.
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Now we can define the CMTS with guarded constraints.

Definition 4.27 (Constrained Modal Transition System with guarded con-
straints):
A Constrained Modal Transition System with guarded constraints is a tuple (S,Σ,G,
−→,C) where:

• S is a finite set of states

• Σ is a finite set of actions

• G is a finite set of guards

• −→⊆ S × Σ× S is a transition relation

• C : S −→ P(Constraints(G,Trans)) is a function which taken a state s as in-
put returns a set of possible guarded constraints where constraints are defined
over outgoing transitions of s

Moreover it holds that:

1. ∀s ∈ S. ∀c ∈ C(s). c is a correct constraint.

2. ∀s ∈ S. ∀c ∈ C(s). Choice(c) 6= ∅.

3. ∀s ∈ S. ∀c ∈ C(s). Choice(c) ⊆ Trans(s).

4. G = {tt,ff}

We denote the set of all possible CMTS by CMTS(GC).
�

Note that in this case the uniqueness property of choice set is not present.

Definition 4.28:
A CMTS is a CMTS(GC) where the following conditions hold:

• ∀s ∈ S. ∀c, c1 ∈ C(s). Choice(c) 6= Choice(c1), namely the uniqueness prop-
erty

• ∀s ∈ S. ∀c ∈ C(s). Guard(c) = tt, namely every defined constraints must be
enabled.

�

The next step is the introduction of parameters in the set of guards.
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Definition 4.29 (Constrained Modal Transition System with parametric
guarded constraints):
A Constrained Modal Transition System with guarded constraints is a tuple (S,Σ,Q,
G,−→,C) where:

• S is a finite set of states

• Σ is a finite set of actions

• Q is a finite set of parameters

• G is a finite set of guards

• −→⊆ S × Σ× S is a transition relation

• C : S −→ P(Constraints(G,Trans)) is a function which taken a state s as in-
put returns a set of possible guarded constraints where constraints are defined
over outgoing transitions of s

Moreover it holds that:

1. ∀s ∈ S. ∀c ∈ C(s). c is a correct constraint.

2. ∀s ∈ S. ∀c ∈ C(s). Choice(c) 6= ∅.

3. ∀s ∈ S. ∀c ∈ C(s). Choice(c) ⊆ Trans(s).

4. G = {tt,ff} ∪ Q
We denote the set of all possible CMTS by CMTS(GQ).

�

Trivially, we can make some observation:

• if Q = ∅ then a CMTS(GQ) is a CMTS(GC)

• in the CMTS(GC), if two constraints have the same choice set then it is pos-
sible to determine directly their witness, seeing that enabled constraints are
known “a priori”. By introducing of parameters, this direct computation of
the witness for a set of constraints with the same choice set is not possible
anymore because now the witness depends on the value of parameters.

• a CMTS with parametric guarded transitions can be modelled by a CMTS
with parametric guarded constraints. The idea is simple: suppose to have a
transition t = (s, p, α, s′), therefore if p = tt then t is enabled, otherwise it
is disabled. We can model the same behaviour in the CMTS with parametric
guarded constraints: in effect, taken a transition t1 = (s, α, s′), we define a
constraint c =< q, t1, [0, 0] > where q = ¬p. In this case if p = ff then c is
enabled and, in each possible solution, t1 is not present. On the other hand,
if p = tt then c is disabled, then no other one constraint is related to t1 and
we can conclude that t1 can be present.
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Anyway, sometimes we would like that a constraint is disabled when a some
parameter assumes value tt, other times we would like that a constraint is disabled
when some parameter assumes value ff. Therefore we suppose that a guard can be
derived by the following grammar:

ϕ :: tt | p | ¬ϕ

where p ∈ Q is a parameter.
We can suppose that this grammar enriches further the power of the model, in

effect we might think that the introduction of negation allows us to describe new
types of requirements. Instead this supposition proves to be not true: we could
simply define a new parameter q, for any negation, such that q = ¬p. In this way
we can model the same things but using only positive parameters. Therefore the
introduction of negation in the guard is only useful to describe in a simpler way the
same model.

A concept to be updated due to the introduction of parameters is the refinement
relation. Suppose that Q is the set of parameters and we define a partition of
Q = Q+ ∪ Q− ∪ Q⊥, where Q+ represents the set of all parameters with value tt,
Q− the set of all parameters with value ff and Q⊥ the set of all parameters without
a specific value.

Trivially, taken Q, we can consider a parameter p ∈ Q, then we can assign a
value to p: if p = tt then Q+ = Q+ ∪ {p}, otherwise Q− = Q− ∪ {p}. Finally
we consider the set Q⊥ = Q \ {p}. Of course we can iterate this procedure until
Q⊥ = ∅, that is Q = Q+ ∪Q−.

Definition 4.30 (Assignment):
Let Q be a set of parameters. We call a set of parameters A ⊆ Q assignment.

�

The assignment describes all and only parameters with value tt. Note that if we
know the set of parameters Q and the assignment A then we can deduce the set of
all parameters with value ff . In effect if we see A as the set Q+, then it is simple to
determine the set Q−.

In addition, we have already said that a CMTS(GQ) with Q = ∅ is equivalent to
a CMTS(GC) and this last one is strictly related to the classic CMTS.

The idea of refinement exploits this last observation: taken two CMTS(GQ) and
an assignment A, then we can instantiate parameters by means of A, obtaining two
CMTSs. If these two CMTSs are correlated by some refinement relation, then also
two CMTS(GQ) are correlated by the same refinement relation.

Definition 4.31 (Instantiation of a CMTS(GQ)):
Let Q be a set of parameters and M be a CMTS(GQ). We define the instantiation
function σ : CMTS(GQ) −→ CMTS that, taken a CMTS(GQ) M and an assignment
A ⊆ Q, return a CMTS σ(M,A) which is derived by enabling and disabling all
constraints through parametric guards.

�
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Definition 4.32:
Let Q be a set of parameters, M = (SM ,Σ,Q,−→M ,CM) be a CMTS(GQ) and
σ : CMTS(GQ) −→ CMTS a instantiation function. Then the CMTS N = σ(M,A)
is defined by the tuple (SN ,Σ,−→N ,CN) such that:

• SM = SN

• −→M=−→N

• ∀s ∈ SN . CN(s) = {(tt, α, s′) | (p, α, s′) ∈ CM(s) ∧ p ∈ (A ∪ {tt})} ∪
{(ff , α, s′) | (p, α, s′) ∈ CM(s) ∧ p ∈ (Q \ A ∪ {ff})}

�

The first two conditions are obvious, only the last one is slightly more compli-
cated. The third condition requires that taken a constraint c then:

• if in M , Guard(c) = {tt}, namely c is enabled, or Guard(c) ∈ A, that is c
becomes enabled through A, then c is enabled in N too;

• if in M , Guard(c) = {ff}, that is c is disabled or Guard(c) 6∈ A, namely c
becomes disabled through A, then in N c is disabled.

Definition 4.33 (Semantic modal refinement relation):
Let M = (SM ,Σ,QM ,−→M ,CM , sM0), N = (SN ,Σ,QN ,−→N ,CN , sN0) be two
CMTS(GQ). We say that R ⊆ SM × SN is a semantic modal refinement relation if
∀AM ⊆ QM . ∃AN ⊆ QN . R is a semantic modal refinement relation for σ(M,AM)
and σ(N,AN).

�

Definition 4.34 (Syntactic modal refinement relation):
Let M = (SM ,Σ,QM ,−→M ,CM , sM0), N = (SN ,Σ,QN ,−→N ,CN , sN0) be two
CMTS(GQ). We say that R ⊆ SM × SN is a syntactic modal refinement relation if
∀AM ⊆ QM . ∃AN ⊆ QN . R is a syntactic modal refinement relation for σ(M,AM)
and σ(N,AN).

�

Of course, the guarded constraints can be further generalized: we know that a
guarded constraint is a constraint which can be enabled or disabled by its guard.
Moreover each constraint has exactly one single guard but clearly this request is
very restrictive, in effect in some cases we might need to connect the enabling or
disabling of a constraint to some different parameters. Therefore we should allow
to have a set of parameters as guard of a constraint.

Definition 4.35 (Constraint with Multi-guard):
Let E be a set of elements, G be a set of guards, CS be a choice set and [min,max] be
a cardinality. Then a constraint with multi-guard c is a tuple < g,CS, [min,max] >
where:
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• g ⊆ G is a set of guards, called multi-guard

• CS ⊆ E is a choice set, namely a set of elements which can be chosen

• [min,max] ∈ N × N is an interval where min describes the minimum num-
ber of required elements of CS and max represents the maximum number of
required elements of CS

In this case the type of a guarded constraint is P(G)× P(E)×N ×N .
We denote the set of all possible constraints with multi-guard related to the set

of guards G by MultiConstraints(G, E).
�

Let G be the set of guards, c be a constraint with a multi-guard g and A ⊆ G be
an assignment. In this context we must understand which semantics can be related
to a set of guards:

• OR semantics: a constraint c is enabled if and only if tt ∈ g or ∃p ∈ g. p ∈ A,
namely c is enabled if at least one guard has value tt in an assignment A

• AND semantics: a constraint c is enabled if and only if ∀p ∈ g. p ∈ A and
ff 6∈ g, namely c is enabled if all guards has value tt in an assignment A and
ff is not present in g

Trivially, note that the OR semantics is already present implicitly as we can see in
the following theorem.

Theorem 4.4. Let c =< g,CS, [min,max] > be a constraint with multi-guard with
OR-semantics. We define a set S of constraint such that:

S = {< gi, CS, [min,max] > | gi ∈ g}

Then JcK = JSK

Proof.
Let A ⊆ G be an assignment. We have two different cases:

1. tt 6∈ g and g∩A = ∅ but then c is disabled and JcK = P(E). The semantics of S
is equal to

⋂
cs∈S

JcsK. In addition ∀cs ∈ S. Guard(cs) 6∈ A or Guard(cs) = ff , so

any cs is a disabled constraint. Therefore we can deduce ∀cs ∈ S. JcsK = P(E),
concluding that JcK = JSK = P(E).

2. tt ∈ g or g ∩ A 6= ∅. Trivially, JcK = {I ⊆ E | min ≤ |I ∩ CS| ≤ max}. For
construction of S, we have a particular cs ∈ S such that Guard(cs) = tt or
Guard(cs)∩A 6= ∅. Now divide S in two subsets S+, namely the set of enabled
constraints and S− the set of disabled constraints, but then JSK = JS+K ∩
JS−K = JS+K. Seeing that all constraints in S+ are equal, for construction of
S, we can deduce that JS+K = {I ⊆ E | min ≤ |I ∩ CS| ≤ max}. Again the
two semantics are the same.
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In our context, we know that it is possible to have different guarded constraints
with the same choice set and the same cardinality, so the construction described in
the theorem is possible. From this observation and the theorem we can derive that
our formalism implicitly allows constraints with multi-guard and OR-semantics.

Unfortunately, constraints with multi-guard and AND-semantics cannot be mod-
elled by simple guarded constraints. The reason is simple, taken a constraint c with
multi-guard, then we derive a set S of constraints such that ∀cs ∈ S. |Guard(cs)| = 1,
namely each constraint in S has a singleton guard. But from the previous theo-
rem we know that this set S is equivalent to a constraint with multi-guard and
OR-semantics, obviously OR-semantics is different from AND-semantics and it is
impossible to relate them.

From this observation, we can deduce that the introduction of constraints with
multi-guard is possible and this multi-guard is interpreted with an AND-semantics,
the OR-semantics is not considered because it is implicitly present in the formalism.

Definition 4.36 (Constraint with multi-guard Satisfaction):
Let E be a set of elements, G be a set of guards, c =< g,CS, [min,max] > be a
guarded constraint such that g ⊆ G and I ⊆ E a possible set of elements of E . Then
we define a satisfaction relation |=⊆ P(E)×MultiConstraints(G, E) as follows:

I |= c⇔
∨
gi∈g

gi ⇒ min ≤ |I ∩ CS| ≤ max

�

Trivially all other definitions are unchanged.

4.3 CMTS(GT ,GQ)

In this last section we merge the models described in this chapter. The merge
is possible because the model of first section introduces guards in the transitions,
whereas the model of second section adds guards to constraints.

Definition 4.37 (Constrained Modal Transition System with guarded tran-
sitions and constraints):
A Constrained Modal Transition System with guarded transitions and constraints is
a tuple (S,Σ,Q,GT ,GQ,−→,C) where:

• S is a finite set of states

• Σ is a finite set of actions

• Q is a finite set of parameters
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• GT , is a finite set of guards of transitions

• GQ, is a finite set of guards of constraints

• −→⊆ S × GT × Σ× S is a transition relation

• C : S −→ P(MultiConstraints(GQ,Trans(GT )) is a function which taken a
state s as input returns a set of possible constraints with multi-guard where
constraints are defined over outgoing guarded transitions of s

Moreover it holds that:

1. ∀s ∈ S. ∀c ∈ C(s). c is a correct constraint.

2. ∀s ∈ S. ∀c ∈ C(s). Choice(c) 6= ∅.

3. ∀s ∈ S. ∀c ∈ C(s). Choice(c) ⊆ Trans(s).

4. GT = {tt,ff}

5. GQ = {tt,ff} ∪ Q

6. ∀s ∈ S. ∀t, u ∈ Trans(s) if t and u are equivalent then < {tt}, {t, u}, [1, 1] >∈
C(s).

We denote the set of all possible CMTS(GT ,GQ) by CMTS(GT ,GQ).
�

Note that this formalism has parameters only for guards of constraints, whereas
parameters are lost for guards of transitions for the the same reasons saw in Sec-
tion 4.1. Moreover constraints has multi-guards with AND-semantics. In addition
the refinement of this models is the same of CMTS(GQ), seen in Section 4.2, namely
we must consider all possible assignments which can be derivable from Q. See-
ing that transitions are labelled transitions with guard like in CMTS(GT ) then all
possible products derivable from models are LTS(GT )

Of course, in this case the definition of semantic modal refinement and syntactic
modal refinement must consider that, taken an assignment A and a CMTS(GT ,GQ)
M , then σ(M,A) returns a CMTS(GT ). The definitions changes in the obvious way.

We can add a further observation: if we change the type of transitions by means
of adding guards then the type of target product must be changed. Instead if we
change the type of constraints, no change is needed for the type of target products.
In some way we can say that the adding of guards over constraint is implementation
type-free, namely it is independent by the actual type of implementation. This
result is very important because, taken a CMTS of any type, then we can extend it
by adding guards over constraints and no other changes are needed.



Chapter 5

Hierarchy of Models Expressivity

In the Section 2.2, Chapter 3 and Chapter 4 we have introduced and described
several models with some properties like refinement and in some case we sketched
an expressivity relation between them

In literature, some works [12], [26] and [27] introduce a more or less detailed
hierarchy of expressivity but no work handles all models together. Now in this
chapter we try to solve this lack, adding in this hierarchy CMTS and its extensions
too. Results reached in this chapter are very important because not only at the end
we determine relations of expressivity between all models, namely we will see which
models can describe what requirements, but in addition we describe how classical
models like LTS, MTS and so on can be represented by means of a CMTS.

First of all, we must understand what we mean about expressivity of a formalism:
in the previous chapter we introduced the concept of semantics of a model M , where
the semantics is interpreted as the set of LTSs which can be derived by M through a
refinement relation. This concept is useful to define the expressivity relation between
two formalisms:

Definition 5.1:
Let F be a formalism, then we denote by MF a model defined by means of the
formalism F .

�

Definition 5.2:
Let F and F1 be two different formalisms. Then F is less expressive than F1,
denoted by F  F1, if and only if it holds:

1. for each model MF exists a semantically equivalent model MF1

2. it exists a model NF1 such that for any model NF , JJNFKK 6= JJNF1KK

�

Note that each formalism has different characteristics useful to describe some
requirements, but all formalisms have a common syntactic structure, namely all
formalisms have states and labelled transitions.
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Trivially, when we will compare two models MF and MF1 of two different for-
malism, we will assume that these properties hold:

1. for each state s of MF exists a state t of MF1 such that Label(s) = Label(t)

2. for each state t of MF1 exists a state s of MF such that Label(s) = Label(t)

Of course, if a model MF has a state s such that for each state t of MF1 Label(s) 6=
Label(t), then they are not semantically equivalent most likely, because from MF
we can derive a LTS which is not derivable from MF1 .

Definition 5.3:
Let F and F1 be two different formalisms. Then F is equivalently expressive to
F1, denoted by F! F1, if and only if it holds:

1. for each model MF exists a semantically equivalent model MF1

2. for each model MF1 exists a semantically equivalent model MF

�

In addition, the understanding of how a LTS can be defined by means of a CMTS
becomes a very useful and important result because in this way we can deduce
as a product, typically described by a LTS, can be derived from a specification,
represented by a CMTS. Finally, we can cover pending topics of Section 3.1.2 related
to the thorough refinement and the semantics of a specific CMTS.

Note that all models are divided in two large family: Modal Family and Obli-
gation Family. This classification has already described in Section 2.2, but we can
remember that:

• in Modal Family we have many models: LTS,MTS, DMTS, 1MTS, GEMTS,
EMTS

• in Obligation Family we have the most recent models: OTS and PMTS

Note that only for convenience we handle the LTS model in the Section related to
the Modal Family. Finally, we assume that the action-determinism property holds
in each formalism and in each section, which describes a particular formalism, we
also define how this property can be formalized.

5.1 Hierarchy of the Modal Family

A first attempt to compare all models of this family can be found in [26], where
all models are compared with the GEMTS formalism. In this section we will try
to make a similar comparison but considering CMTS formalism as well. Note that
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we will make a description of the relation between models and CMTSs in an in-
creasing way, that is from less-expressive models to more-expressive models and
we will also see the relation between the refinement concept of the particular con-
sidered model and CMTS. Last but not least observation is that the CMTS is an
action-deterministic formalism, hence each formalism which is compared to it must
be action-deterministic too. This property, as we will see, will become fundamen-
tal in some contexts because it allows us to derive some particular results over the
expressivity, which are different regarding the ones known in literature.

Finally, taken two different models MF and MF1 , described by two different for-
malisms F and F1, we must reason about the semantics of M and N . Of course, the
computation of the semantics of a model also depends on the formalism considered.
To highlight this aspect, we introduce some further definitions:

Definition 5.4:
We denote by MODELS the set of formalisms composed by: LTS, MTS, DMTS,
1MTS, GEMTS, OTS, PMTS and CMTS. Formally,

MODELS ={LTS,MTS,DMTS, 1MTS,GEMTS,OTS,PMTS,CMTS}

�

Definition 5.5:
Let F ∈ MODELS be a specific formalism and M be a model defined by the
formalism F . Then we denote by JJMKKF the semantics of M where the semantics
is defined as:

JJMKKF = {I | I is a LTS ∧ I EF M}

where EF is the typical modal refinement relation for the formalism F .
�

For example, ELTS is the bisimulation, EMTS is the modal refinement for MTS
and so on.

5.1.1 LTS

The first model to be considered is surely the LTS and in this context the only
expressible requirement is that “each feature is allowed and necessary”. For example,
in [36] a LTS is described as a MTS M = (S,Σ,−→♦,−→�) such that −→♦=−→�.

First of all, we must define the concept of an action-deterministic LTS:

Definition 5.6 (Action-deterministic LTS):
A LTS L = (S,Σ,−→, S0) is an action-deterministic LTS if and only if:

• ∀s ∈ S. (s, α, s′) ∈−→ ∧(s, α, s′′) ∈−→=⇒ s′ = s′′
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• |S0| = 1

�

This is the typical definition of determinism in the LTS world. Now, we want
to understand if it is possible to describe a LTS by means of a CMTS: let M =
(S,Σ,−→,C, s0) be a CMTS , then we should find a way to guarantee that, for any
state s, each outgoing transition of s is always considered for each possible product.

This is possible if and only if ∀s ∈ S. ∀t ∈ Trans(s). ∃c ∈ C(s) such that it
holds:

t ∈ Choice(c) ∧ |Choice(c)| = Cardmin(c) = Cardmax(c)

Essentially, we require that each transition t must be handled by a constraint c and
this constraint must guarantee that t is always present.

Note that this property is exactly the property being satisfied by a CMTS No-
Choice, hence we can deduce that a LTS must be a CMTS No-Choice. Unfortunately,
as we seen in Section 3.3, we can have some syntactically different but semantically
equivalent CMTS No-Choice. This is a very complicated situation because we would
like to have a unique particular description of a LTS by means of a CMTS which
identifies univocally the LTS, whereas in this case a LTS is identified by a class of
possible CMTS.

In order to solve this ambiguity we might use the “witness” of a class of CMTSs
No-Choice (as we saw in Section 3.3), which identifies univocally the class of CMTSs.

Definition 5.7 (LTS):
A LTS L = (S,Σ,−→, s0) is a particular CMTS M = (S,Σ,−→,C, s0) such that:

• M is a CMTS No-Choice

• M is a CMTS No-Choice Witness

�

An equivalent but more syntactic definition is the following:

Definition 5.8 (LTS):
A LTS L = (S,Σ,−→, s0) is a particular CMTS M = (S,Σ,−→,C, s0) such that:

∀s ∈ S. C(s) = {< {(α, s′)}, [1, 1] > | (s, α, s′) ∈−→}

�

In this second definition we requires that for any state s, the set of constraints
of s is arranged by all constraints with

• a singleton choice set
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• a cardinality equals to [1, 1]

• any possible outgoing transition of s is included in the choice set of a specific
constraint of s

Trivially, the following theorem holds:

Theorem 5.1. Let L = (S,Σ,−→L, s0) be a LTS and M = (S,Σ,−→M ,C, s0) be a
CMTS. If:

• M is a CMTS No-Choice

• −→L=−→M

then JJLKKLTS = JJMKKCMTS

Proof.
We know that a LTS is equivalent to a CMTS No-Choice in Normal Form hence,
taken L, we can say N is the CMTS No-Choice in Normal Form related to L. In
addition N and M are equivalent, seeing that they have the same transition relation.

Finally, we know that if N and M are two CMTSs No-Choice and they are
equivalent then they are semantically equivalent.

Another interesting topic is to understand if the refinement relation for the
CMTS becomes equivalent to the bisimulation when CMTSs describe LTSs or if
the refinement relation and the bisimulation are two different relations in any case.

For our purposes, we use the syntactic refinement relation because it is the most
difficult from a pointview of formalizations and, at the same time, it is less accurate
than the semantic one, hence we consider the worst case.

Theorem 5.2. Let M = (SM ,Σ,−→M ,CM , sM0), N = (SN ,Σ,−→N ,CN , sN0) be
two CMTSs such that they describe two different LTSs. If it exists a syntactic
refinement relation R ⊆ SM × SN between M and N then R is a bisimulation.

Proof.
For convenience, we recall the definition of bisimulation: R is called bisimulation if,
whenever sRt:

1. if s
α−→ s′ then ∃t′ ∈ S such that t

α−→ t′ and s′Rt′

2. if t
α−→ t′ then ∃s′ ∈ S such that s

α−→ s′ and s′Rt′

Trivially, the first condition of bisimulation is equivalent to the first condition of the
syntactic refinement relation. The problem is only in the second condition because
in the syntactic refinement we handle constraints.

First of all, note that M and N have a special property:

∀s ∈ S. C(s) = {< {(α, s′)}, [1, 1] > | (s, α, s′) ∈−→}
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Therefore, if t
α−→ t′ then, surely, (t, α, t′) ∈−→ and c =< {(α, t′)}, [1, 1] >∈ C(t).

Seeing that R is a syntactic refinement relation then either Cardmin(c) = 0 ∨ ∃cs ∈
C(s) such that holds some properties. Trivially, Cardmin(c) = 0 is false, hence a
constraint cs exists and it holds the following properties:

1. ∀(α, s′) ∈ Choice(cs). ∃(α, t′) ∈ Choice(ct). (s′, t′) ∈ R

2. cs and ct are correct constraints

3. Cardmin(ct) ≤ Cardmin(cs)

4. Cardmax(cs) ≤ Cardmax(ct)

5. (Label(ct) \ Label(cs)) ∩ Label(s) = ∅

For the structure of a CMTS, when it describes a LTS, we know that conditions
(2), (3), and (4) always hold. Since cs also satisfies conditions (1) and (5) and
each constraint has a singleton choice set, we deduce that cs =< {(α, s′)}, [1, 1] >.
Therefore, if the state s has the constraint cs then surely a transition (s, α, s′) exists
and for the condition (1) we also know that (s′, t′) ∈ R

We can conclude that the condition (2) of the definition of the bisimulation holds
and R is also a bisimulation.

Now we can solve the pending topic of Section 3.1.2, namely how to define the
semantics of a CMTS.

Definition 5.9 (Semantics of a CMTS):
Let M = (S,Σ,−→M ,C, s0) be a CMTS. Then the semantics of M is the set of LTSs
satisfying the requirements described by M , namely LTSs which can be derived by
M through the refinement relation.

We denote by JJMKKSem the semantics derived by ESem and JJMKKSyn the se-
mantics derived by ESyn.

Formally,

• JJMKKSem = {I is a LTS | I ESem M}.

• JJMKKSyn = {I = NF (J) is a LTS | J is a CMTS No-Choice ∧ J ESyn M}.

where I = NF (J) describes the transformation of a CMTS No-Choice J in its
normal form.

�

Note that, in the semantic refinement relation, we abstract from structure of
constraints and we only consider their semantics, in this way we can directly derive
the LTS I. On the other hand, in the syntactic refinement relation we must handle
constraints and their structure and in the end we reach a CMTS No-Choice, which
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is equivalent to a LTS. For this reason we need to transform this derived CMTS
No-Choice in the LTS related to it.

Now we can realize why a LTS is a solution of all constraints of a CMTS M .
Take a state s, then C(s) describes the set of constraints in s. Trivially, a solution
I for C(s) is derived by choosing, for each constraint =< CSc, [minc,mxc] > in
C(s), a value K included between min and max and a subset T of transition in CSc
such |T | = K. This is equivalent to reduce the constraint c in such a way that all
transitions in CSc\T are deleted and min is increased up to K and max is decreased
up to K, the derived constraint is equal to c′ =< T, [K,K] >. This is true for any
c ∈ C(s), seeing that I is a solution. Note that all these derived constraints hold
the property of a CMTS No-Choice, moreover we know that a LTS is equivalent to
a CMTS No-Choice, hence a LTS can be seen as a composition of solutions for each
state of M .

Of course, in this context we can also define the semantics of extensions of
CMTSs: first of all, we define a special type of semantics of a CMTS(GT ), namely
a semantics which considers all LTS(GT ) derivable from the initial CMTS(GT ) and
we call it the extended semantics. In effect the CMTS(GT ) formalism changes
the type of the transition relation and this semantics keeps unchanged the type of
transitions.

Definition 5.10 (Extended Semantics):
Let M(S,Σ,G,−→,C, s0) be a CMTS(GT ). Then the extended semantics of M is
the set of LTSs(GT ) satisfying the requirements described by M , namely LTS(GT )
which can be derived by M through the refinement relation.

We denote the semantics derived through ESem by JJMKKSemGT and the semantics

derived through ESyn by JJMKKSynGT .
Formally,

• JJMKKSemGT = {I is a LTS (GT ) | I ESem M}

• JJMKKSynGT = {I = NF (J) is a LTS (GT ) | J is a CMTS(GT ) No-Choice ∧
J ESyn M}.

where I = NF (J) describes the transformation of a CMTS(GT ) No-Choice J in its
normal form.

�

Unfortunately, when we must compare two formalisms, we use the semantics
defined by means of LTSs, hence we must change the semantics of a CMTS(GT ).

Definition 5.11 (Semantics of a CMTS(GT )):
Let M(S,Σ,G,−→,C, s0) be a CMTS(GT ). Then the semantics of M is the set
of LTSs satisfying the requirements described by M , namely LTSs which can be
derived by M through the refinement relation.
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We denote by JJMKKSem the semantics derived by ESem and JJMKKSyn the se-
mantics derived by ESyn.

Formally,

• JJMKKSem = {ExecutableKer(I) | I ∈ JJMKKSemGT }

• JJMKKSyn = {ExecutableKer(I) | I ∈ JJMKKSynGT }.

where ExecutableKer is the function to transform a LTS(GT ) in LTS.
�

Finally, when we introduce the parametric guarded constraints, the semantics
becomes slightly more complicated, in effect now the semantics depends on the
assignment of parameters too. Moreover, taken a CMTS(GT ,GQ) M and an assign-
ment A ⊆ Q, we know that σ(M,A) is a CMTS(GT ). Hence, we can deduce that
the semantics of CMTS(GT ,GQ) is the union of all possible semantics of CMTS(GT )
derived by means of an assignment.

Definition 5.12 (Semantics of a CMTS(GT ,GQ)):
Let M = (S,Σ,Q,GT ,GQ,−→,C) be a CMTS(GT ,GQ). Then the semantics of M
is the set of LTSs satisfying the requirements described by M , namely LTSs which
can be derived by M through the refinement relation.

We denote by JJMKKSem the semantics derived by ESem and JJMKKSyn the se-
mantics derived by ESyn.

Formally,

• JJMKKSem =
⋃
A⊆Q

JJσ(M,A)KKSem

• JJMKKSyn =
⋃
A⊆Q

JJσ(M,A)KKSyn

where σ is the assignment function defined for CMTS with parametric guarded
constraint.

�

5.1.2 MTS

The next model to be considered is the Modal Transition System (MTS). In this
case we have two types of transitions:

1. the necessary ones, namely transitions which must be always present in each
possible product

2. the allowed ones, namely transitions which may be present in each possible
product

Again, we must define the concept of an action-deterministic MTS:
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Definition 5.13 (Action-deterministic MTS):
A MTS L = (S,Σ,−→♦,−→�, S0) is an action-deterministic MTS if and only if:

• ∀s ∈ S. (s, α, s′) ∈−→♦ ∧(sα, s′′) ∈−→♦⇒ s′ = s′′

• |S0| = 1

�

This definition was introduced in [8].
Now, suppose we have a state s and a possible product P then we denote by

P (s) ⊆ Trans(s) the set of outgoing transitions of s in the possible product P . In
addition suppose we have a transition t then we have two possibilities:

1. t is a necessary transition hence, for any possible product P, t ∈ P (s) must be
always true. Trivially, we must guarantee that ∀P. |P (s) ∩ t| = 1

2. t is an allowed transition hence, for any possible product P, t ∈ P (s)∨t 6∈ P (s)
must be always true. Trivially, we must guarantee that ∀P. |P (s) ∩ t| =
1 ∨ |P (s) ∩ t| = 0

The first condition ∀P. |P (s) ∩ t| = 1 can be seen as a constraint c =< {t}, [1, 1] >,
namely a constraint which always requires the transition t. Instead, the second
condition ∀P. |P (s) ∩ t| = 1 ∨ |P (s) ∩ t| = 0 can be seen as ∀P. 0 ≤ |P (s) ∩ t| ≤ 1
and this is equivalent to a constraint c =< {t}, [0, 1] >, namely a constraint which
may require the transition t.

The last observation is that in a MTS the must transition relation is a subset of
a may transition relation and, seeing that we can have only constraints univocally
determined by its choice set then we cannot have two constraints such that c =<
{t}, [1, 1] > and c1 =< {t}, [0, 1] >. In this case c is a more-restrictive constraint
compared with c1, hence, seeing that both c and c1 must be satisfied, we can only
consider the constraint c. Therefore we can deduce that for any must transition t
(and therefore also may) we have a constraint c =< {t}, [1, 1] >, whereas for any
may transition t but not must we have c =< {t}, [0, 1] >.

From these observation, we can derive a MTS described by means of a CMTS.

Definition 5.14 (MTS):
A MTS L = (S,Σ,−→♦L ,−→�L

, s0) is a particular CMTS M = (S,Σ,−→M ,C, s0)
such that:

1. −→♦L=−→M

2. ∀s ∈ S. C(s) = Cmay(s) ∪ Cmust(s) where:

• Cmay(s) = {< {(α, s′)}, [0, 1] > | (s, α, s′) ∈−→♦L \ −→�L
}

• Cmust(s) = {< {(α, s′)}, [1, 1] > | (s, α, s′) ∈−→�L
}
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�

Moreover, we know that, taken a CMTS M , we can have some other CMTSs
which are syntactically different but semantically equivalent to M . In Figure 5.1 we
describe a MTS and different CMTSs which are semantically equivalent to the MTS.
Note that the CMTS described in the Definition 5.14 is the CMTS R in Figure 5.1.

Figure 5.1: An example of different CMTSs semantically equivalent to a MTS

Another similar example is the one described in Figure 5.2. Again, the CMTS
described in the Definition 5.14 is the CMTS R. The way to find all these CMTSs,
taken a MTS M , is simple: initially we derive the CMTS MC related to M as we
have just see in the Definition 5.14. Then we note that all constraints related to
may but not must transitions are special constraints, in effect they are the general
non-restrictive constraints because they have the minimum equals to 0 and the max-
imum equals to the size of the choice set. We know that this type of constraints
is very important because adding or deleting a general non-restrictive constraint,
the semantics does not change. Therefore, taken MC , we can derive other seman-
tically equivalent CMTSs simply adding or deleting some general non-restrictive
constraints. Again, it is interesting to understand if the refinement relation for the
CMTS becomes equivalent to the refinement relation of the MTS when CMTSs
describe MTSs or if these two relations are different in any case.

Theorem 5.3. Let M = (SM ,Σ,−→M ,CM , sM0), N = (SN ,Σ,−→N ,CN , sN0) be
two CMTSs such that they describe two particular MTSs. If it exists a syntactic
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Figure 5.2: Another example of different CMTSs semantically equivalent to a MTS

refinement relation R ⊆ SM ×SN between M and N then R is a refinement relation
of the MTS.

Proof.
For convenience, we recall the definition of refinement relation of MTS: R is called
refinement if, whenever sRt:

1. s
α−→♦ s′ ⇒ t

α−→♦ t′ ∧ (s′, t′) ∈ R

2. t
α−→� t′ ⇒ s

α−→� s′ ∧ (s′, t′) ∈ R

First of all, note that each CMTS P equivalent to a MTS R holds the property
−→♦R=−→P , hence the first condition of refinement of the MTS is equivalent to
the first condition of syntactic refinement relation. The problem is in the second
condition because in the syntactic refinement we handle constraints.

In this case, we have two types of constraints:

1. constraints with singleton choice set and cardinality [0, 1]

2. constraints with singleton choice set and cardinality [1, 1]

Since, we cannot have constraints with an empty choice set, we deduce that in each
refinement step we cannot delete transitions from choice set of constraints.

Note that, for any constraint ct with cardinality [0, 1] and choice set {(α, t′)} we
have three possibilities:
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1. a constraint cs which satisfies the condition of refinement exists and in this
case cs =< {(α, s′)}, [0, 1] > and (s′, t′) ∈ R

2. a constraint cs which satisfies the condition of refinement exists and in this
case cs =< {(α, s′)}, [1, 1] > and (s′, t′) ∈ R

3. no constraint cs exists and Label(ct) ∩ Label(s) = ∅, namely no outgoing
transitions with label α can exist

From MTS pointview the previous possibilities describe:

1. the situation where a may outgoing transition, after a refinement step, remains
a may transition

2. the situation where a may outgoing transition, after a refinement step, becomes
a must transition

3. the situation where a may outgoing transition, after a refinement step, is
deleted

Anyway, if t
α−→� t′ then, surely, (t, α, t′) ∈−→M and c =< {(α, t′)}, [1, 1] >∈

CM(t).
Seeing that R is a syntactic refinement relation then either Cardmin(c) = 0 ∨

∃cs ∈ C(s) such that holds some properties. Again, Cardmin(c) = 0 is false, hence a
constraint cs exists and it holds the following properties:

1. ∀(α, s′) ∈ Choice(c). ∃(α, t′) ∈ Choice(c1). (s′, t′) ∈ R

2. c and c1 are correct constraints

3. Cardmin(c1) ≤ Cardmin(c)

4. Cardmax(c) ≤ Cardmax(c1)

5. (Label(ct) \ Label(cs)) ∩ Label(s) = ∅

From these properties, we can deduce that cs = {(α, s′)}, [1, 1] >, because the
cardinality [1, 1] cannot be restricted and we cannot delete transitions from singleton
choice set.

Hence, if the state s has the constraint cs then surely a transition (s, α, s′) exists
and (s, α, s′) ∈−→�S

. In addition for the condition (1) we also know that (s′, t′) ∈ R
We can conclude that the condition (2) of the definition of the refinement holds

and R is also a refinement of MTS.
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5.1.3 DMTS

The DMTS model is slightly different from the previous ones, in effect it introduces
the concept of hypertransition to describe the necessary requirements. By means
of a hypertransition we can require that at least one of transitions included in the
hypertransition must be present.

In addition, note that in the initial definition of DMTS two types of inconsistency
are introduced: the one derived by an hypertransition (s, T ) with T = ∅ and the
one derived by the presence of some transition t in hypertransition such that t, at
the same time, is not a may transition.

For convenience, we ignore the inconsistent DMTSs because they are less inter-
esting and anyway it is easy to derive a generic inconsistent CMTS.

First of all, we introduce the concept of action-deterministic for DMTS:

Definition 5.15 (Action-deterministic DMTS):
A DMTS L = (S,Σ,−→♦,−→�, S0) is an action-deterministic DMTS if and only if:

• ∀s ∈ S. (s, α, s′) ∈−→♦ ∧(sα, s′′) ∈−→♦⇒ s′ = s′′

• |S0| = 1

�

This definition was introduced in [10]. Now we can define a DMTS by means of
a CMTS:

Definition 5.16 (DMTS):
A DMTS L = (S,Σ,−→♦L ,−→�L

, s0) is a particular CMTS M = (S,Σ,−→M ,C, s0)
such that:

1. −→♦L=−→M

2. ∀s ∈ S. C(s) = Cmay(s) ∪ Cmust(s) where:

• Cmay(s) = {< {(α, s′)}, [0, 1] > | (s, α, s′) ∈−→♦L ∧ 6 ∃(s, V ) ∈−→�L

. (α, s′) ∈ V }
• Cmust(s) = {< V, [1, |V |] > | (s, V ) ∈−→�L

}

�

In this case L and M must have the same set of transitions too. Compared
with the definition of MTS, this time the constraints must change: as for the MTS
we must identify outgoing transitions which are may but not must, namely outgo-
ing transitions which are not included in any possible must hypertransition. For
the must transitions, instead, we must consider their particular structure and their
meaning, namely we must guarantee that all transitions in hypertransition are con-
sidered by a constraint and its cardinality is [1, K] where K is the size of the set of
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transitions in hypertransition. The reason about this cardinality is simple: at least
one of transition must be always considered and at most all transitions must be
considered, for the semantics of hypertransition, so the correct cardinality is [1, K].
If we decrease the value of the maximum, we might introduce a further restriction
about the maximum size of a valid set of transitions and this is clearly wrong in this
context.

Again, we can define syntactically different CMTSs such that they are all seman-
tically equivalent to the same DMTS and an example is showed in Figure 5.3. This is

Figure 5.3: An example of different CMTSs semantically equivalent to a DMTS

a very interesting example since the DMTS M in Figure 5.3 has an hypertransition
with two transitions, another hypertransition with only one transition and a may
transition. The CMTS which can be determined by M through the Definition 5.16
is the CMTS R. Note that all other CMTSs are derived by R adding or deleting
the general non-restrictive constraints. Now we see if the refinement relation for the
CMTS becomes equivalent to the refinement relation of the DMTS when CMTSs
describe DMTSs or if these two relations are different in any case.

Theorem 5.4. Let M = (SM ,Σ,−→M ,CM , sM0), N = (SN ,Σ,−→N ,CN , sN0) be
two CMTSs such that they describe two particular DMTSs. If it exists a syntactic
refinement relation R ⊆ SM ×SN between M and N then R is a refinement relation
of the DMTS.

Proof.
For convenience, we recall the definition of refinement relation of DMTS: R is called
refinement if, whenever sRt:

1. s
α−→♦ s′ ⇒ t

α−→♦ t′ ∧ (s′, t′) ∈ R

2. t→� V ⇒ s→� U such that ∀(α, s′) ∈ U. ∃(α, t′) ∈ V ∧ (s′, t′) ∈ R
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First of all, note that each CMTS P equivalent to a DMTS R holds the property
−→♦R=−→P , hence the first condition of refinement of the MTS is equivalent to
the first condition of syntactic refinement relation. The problem is in the second
condition because in the syntactic refinement we handle constraints.

In this case, we have two types of constraints:

1. constraints with singleton choice set and cardinality [0, 1]

2. constraints with a generic choice set and cardinality [1, K], where K is the size
of choice set

Note that, for any constraint ct with cardinality [0, 1] and choice set {(α, t′)} we
have three possibilities:

1. a constraint cs which satisfies the condition of refinement exists and in this
case cs =< {(α, s′)}, [0, 1] > and (s′, t′) ∈ R

2. a constraint cs which satisfies the condition of refinement exists and in this
case cs =< {(α, s′)}, [1, 1] > and (s′, t′) ∈ R

3. no constraint cs exists and Label(ct) ∩ Label(s) = ∅, namely no outgoing
transitions with label α can exist

From DMTS pointview the previous possibilities describes:

1. the situation where a may outgoing transitions, after a refinement step, re-
mains a may transitions

2. the situation where a may outgoing transitions, after a refinement step, be-
comes a must transitions

3. the situation where a may outgoing transitions, after a refinement step, is
deleted

Anyway, if t
α−→� V where V = {(α, t′i)} for some i then, surely, it holds

∀i. (t, α, t′i) ∈−→N and c =< {V, [1, |V |] >∈ CN(t).
Seeing that R is a syntactic refinement relation then either Cardmin(c) = 0 ∨

∃cs ∈ C(s) such that holds some properties. Again, Cardmin(c) = 0 is false, hence a
constraint cs exists and it holds the following properties:

1. ∀(α, s′) ∈ Choice(c). ∃(α, t′) ∈ Choice(c1). (s′, t′) ∈ R

2. c and c1 are correct constraints

3. Cardmin(c1) ≤ Cardmin(c)

4. Cardmax(c) ≤ Cardmax(c1)
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5. (Label(ct) \ Label(cs)) ∩ Label(s) = ∅

From these properties, we can deduce that cs =< {U}, [1, K] >, where:

• ∀(α, s′i) ∈ U. ∃(α, t′i) ∈ V. (s′i, t
′
i) ∈ R

• K ≤ |V |

In addition, seeing that both CMTSs describes DMTSs, then we can deduce that
K = |U |, hence |U | ≤ |V |.

Hence, if the state s has the constraint cs =< U, [1, |U | > then surely ∀(α, s′i) ∈
U. (s, α, s′) ∈−→M .

Finally, the set of transitions U such that ∀(α, s′i) ∈ U. ∃(α, t′i) ∈ V. (s′i, t
′
i) ∈ R

exists and (s, U) ∈−→�S
.

We can conclude that the condition (2) of the definition of the refinement holds
and R is also a refinement of DMTS.

5.1.4 1MTS

The next model is slightly different from the DMTS, in effect it introduces the
concept of hypertransition to describe not only the necessary requirements but also
the allowed requirements. In addition it requires that one and only one transitions
in a hypertransition must be considered.

In this context, moreover, the idea of inconsistency is not present because the
initial definition of 1MTS handles only hypertransitions (s, V ) with V 6= ∅ and
1MTS has a consistency requirement, that is −→�⊆−→♦.

The first problem is to understand what the action-determinism means in hy-
pertransition context. A simple idea is to handle the set of labels and target states
as a single label and a single target state, namely taken a hypertransition t = (s, U)
we can define the label Lt = {αi | (αi, si) ∈ U} and St = {si | (αi, si) ∈ U}, namely
a transition with multi-labels and multi-target states. Then the action-determinism
is possible if the following property holds:

∀t = (s, U), t1 = (s, U1). Lt = Lt1 ⇒ St = St1

The conceptual idea is that we transform each hypertransition in a special transition
with the set of labels of transitions in the hypertransition as label and the set of
target states of transitions in the hypertransition as target state and then we handle
the classic action-determinism property over these new transitions. In this way, we
can have some “strange” situations like in Figure 5.4. For example, in the case
2) we have the transition (a, s3) in two different hypertransitions, then (a, s3) is
considered two times in the computation of corresponding transitions with multi-
labels and multi-target states. In the case 3) we have two hypertransitions with the
same set of labels but the set of target states is different. Finally, in the case 4) we
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Figure 5.4: Some strange situations in a deterministic hypertransition

have two hypertransitions with the same set of labels and target states except that
a hypertransition has a further transition. Anyway, in each case the two derived
transitions are always action-deterministic.

Unfortunately, this solution does not work, for example it is possible to have an
initial action-deterministic 1MTS that, after a refinement step, loses the property
of action-determinism, becoming an action-non deterministic 1MTS as we can see
in Figure 5.5. To solve this problem we must handle in a better way the action of a
hypertransition, in particular we must guarantee that the target state connected to
an action α is always the same in any possible hypertransition.
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Figure 5.5: The not-maintaining of determinism in the refinement of hypertransition

Definition 5.17 (Action-deterministic 1MTS):
A 1MTS L = (S,Σ,−→♦,−→�, S0) is an action-deterministic 1MTS if and only if:

• ∀s ∈ S. ∀α ∈ Σ. |{s′ | ∃U ∈ P(Σ× S). (α, s′) ∈ U ∧ (s, U) ∈−→♦}| ≤ 1

• |S0| = 1

�

In this way each action identifies univocally the target state, even if the action is
present in different hypertransitions. Unfortunately, this solution for 1MTS is not
enough because they also introduce the choice function concept and it can handle
the same transition in different possible ways. For example, suppose we have a
1MTS M of Figure 5.6 and a choice function γ defined in the following way:

γ(S) =

{
(a, s1) if S = {(a, s1), (b, s2)}
(b, s2) if S = {(b, s2), (c, s3)}

The derived LTS is the LTS L in Figure 5.6. On the other hand, the possible
semantics related to M is that we want to consider exactly one features between
a and b and between b and c, of course the possible correct implementations are
{(a, s1), (c, s3)} and {(b, s2)}. The problem is raised because for the choice function
the same transition in different hypertransitions is different, whereas in this context
we would like that the same transition in different hypertransitions is always the
same.
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Figure 5.6: An example of why an action-determinism property for 1MTS is not
sufficient

Definition 5.18 (Action-deterministic choice function):
Let L = (S,Σ,−→♦,−→�, S0) be an action-deterministic 1MTS , s ∈ S be a state
of L and γ ∈ choice(s,−→♦) be a choice function. We say that γ is action-
deterministic if and only if it holds:

∀α ∈ Σ. ∀U, V ∈ P(Σ× S). (s, U) ∈−→♦ ∧(s, V ) ∈−→♦ ∧(α, s′) ∈ U ∩ V ⇒
γ(V ) 6= (α, s′)⇔ γ(U) 6= (α, s′)

�

Note that L is action-deterministic hence, taken a label α, we can deduce that it
exists a unique target state related to it. This property requires that for each label
α, if two hypertransitions U and V exist such that (α, s′) is in U and in V , then
the choice function make the same choice in respect to α, namely either in both
hypertransition α is chosen or in both α is not chosen. In this way we solve the
previous problem.

Unfortunately, this solution introduces another problem: consider the 1MTS
M in Figure 5.7 then our choice function γ, for the must hypertransition, must
choose a transition between (a, s1) and (b, s2). At the same time the function γ
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for the singleton may hypertransition labelled with b must choose the only possible
transition and the same holds for the other may hypertransition. Then we can
conclude that each possible choice function is not action-deterministic. Note that

Figure 5.7: An example of the problem of action-deterministic choice functions

this problem is present when we handle singleton hypertransitions where the choice
is obligated. Trivially, we have two possibilities:

• a singleton hypertransition is must: in this case the choice is obligated, we
must take the hypertransition

• a singleton hypertransition is may: in this case our choice function allows to
consider the transition if the transition is taken in some other hypertransition,
or it guarantees that the single hypertransition may is discarded and this is
described by a new element ⊥.

Definition 5.19:
Let A be a set of element, PA ⊆ P(A) then we define an extended choice function a
choice function γ : PA −→ A ∪ {⊥}, where ⊥ 6∈ A.

We denote by extendedchoice(PA) the set of all possible extended choice func-
tions on PA

�

Now we implicitly assume that, for each state s of a 1MTS:

choice(s,−→♦) =choice(s,−→�) ∪
{choice(U) | (s, U) ∈−→♦ \ −→� ∧ |U | > 1} ∪
{extendedchoice(U) | (s, U) ∈−→♦ \ −→� ∧ |U | = 1}

Definition 5.20 (1MTS):
A 1MTS L = (S,Σ,−→♦L ,−→�L

, s0) is a particular CMTS M = (S,Σ,−→M ,C, s0)
such that:

1. −→M= {(s, α, s′) | ∃U ∈ Σ× S. (α, s′) ∈ U ∧ (s, U) ∈−→♦L}

2. ∀s ∈ S. C(s) = Cmay(s) ∪ Cmust(s) where:
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• Cmay(s) = {< U, [0, 1] > | (s, U) ∈−→♦L \ −→�L
}

• Cmust(s) = {< U, [1, 1] > | (s, V ) ∈−→�L
}

�

In this case the transition relation of M is equal to the union of all possible
transition including in some may hypertransitions. Compared with the definition
of DMTS, this time the constraints must change: from each hypertransition we can
derive at most one transitions, hence the maximum for may and must hypertran-
sitions is 1. On the other hand, the must hypertransition require that exactly one
transition must be always taken, whereas the may hypertransition requires that ex-
actly one transition may be taken. Hence the minimum value for these two types of
hypertransitions is obvious: 0 for may hypertransitions, 1 for must ones.

Also in this case, we can define syntactically different CMTSs such that they
are all semantically equivalent to the same 1MTS and an example is showed in
Figure 5.8. The CMTS which can be determined by M through the Definition 5.20

Figure 5.8: An example of different CMTSs semantically equivalent to a 1MTS

is the CMTS R. Note that all other CMTSs are derived by R adding or deleting
the general non-restrictive constraints.

Finally, we see if the refinement relation for the CMTS becomes equivalent to
the refinement relation of the 1MTS when CMTSs describe 1MTSs or if these two
relations are different in any case.

Theorem 5.5. Let M = (SM ,Σ,−→M ,CM , sM0), N = (SN ,Σ,−→N ,CN , sN0) be
two CMTSs such that they describe two particular 1MTSs. If it exists a syntactic
refinement relation R ⊆ SM ×SN between M and N then R is a refinement relation
of the 1MTS.
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Proof.
For convenience, we recall the definition of refinement relation of 1MTS: R is called
refinement if, whenever sRt: ∀γ ∈ choice(s −→♦). ∃γ̂ ∈ choice(t −→♦) such that
the following holds:

1. ∀Θs ∈ (s −→♦). ∃Θt ∈ (t −→♦). (γ(Θs), γ̂(Θt)) ∈ R

2. ∀Θt ∈ (t −→�). ∃Θs ∈ (s −→�). (γ(Θs), γ̂(Θt)) ∈ R

In this context we do not reason about choice functions because they represent a
possible choice among all transitions in a hypertransition, effectively we can abstract
from this choice because it is implicitly made in the refinement, namely once we
choose a transition t in a hypertransition then we can refine our CMTS by means
of reducing of the cardinality and deleting transitions from choice sets and states
unless the transition t.

Now suppose to have a set Θs ∈ (s −→♦) then, in the corresponding CMTS, we
have a constraint cs with a choice set equivalent to Θs. Of course, this hypertransi-
tion (s,Θs) can be:

• a must hypertransition but then Card(cs) = [1, 1]

• a may but not must hypertransition but then Card(cs) = [0, 1]

Since cs exists and a refinement relation R exists then we can deduce that also a
constraint ct related to cs exists such that choice set of ct can have the same tran-
sitions of cs and possibly some more transitions and the cardinality is an extension
of [1, 1] and [0, 1]. Suppose that [mint,maxt] is the cardinality of ct then it holds:

• mint ≤ maxt

• mint ≤ 0 or mint ≤ 1

• 1 ≤ maxt

Hence we can deduce that surely mint = 0 or mint = 1 and maxt = 1, seeing
that all possible constraints of a CMTS representing a 1MTS have the maximum
equals to 1. In each case we can conclude that in t exists a constraint ct related to
cs, and a may hypertransition with Θt = Choice(ct) exists. In addition ∀(α, s′) ∈
Choice(cs). ∃(α, t′) ∈ Choice(ct). (s′, t′) ∈ R for the refinement definition, so for
any possible choice function of s and t γ(Θs), γ̂(Θt)) ∈ R holds.

Note that the first condition of refinement for 1MTS implicitly assume that no
new transition is added in s: if a new transition us is added, then us is included in
some hypertransition (s, V ) and some choice function such that γ(V ) = us exists.
Of course, in t this transition does not exist hence for any possible choice function
and for any possible hypertransition we do not succeed to compare γ(V ), deducing
that the refinement of 1MTS fails.
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In our context this property is directly verified by the first condition of CMTS
refinement.

Now suppose Θt ∈ (t −→�) then a constraint ct such that ct =< Θt, [1, 1] >
exists. Trivially, for the definition of refinement, a constraint cs =< Θs, [1, 1] >
must exist in s such that ∀(α, s′) ∈ Θs. ∃(α, t′) ∈ Θt. (s′, t′) ∈ R. Also in this case,
for any possible choice function of s we can derive a choice function in t such that
γ(Θs), γ̂(Θt) ∈ R.

5.1.5 GEMTS

The last model which we see is the Generalized Extended Modal Transition System
(GEMTS). In this case we have two types of transition relations:

1. ♦ which describes the requirement “at most k of n”

2. � which describes the requirement “at least k of n”

First of all, we define the concept of an action-deterministic GEMTS:

Definition 5.21 (Action-deterministic MTS):
A GEMTS L = (S,Σ,♦,�, S0) is an action-deterministic MTS if and only if:

• ∀s ∈ S. (α, s′) ∈ PossibleTrans(s) ∧ (α, s′′) ∈∈ PossibleTrans(s)⇒ s′ = s′′

• |S0| = 1

where PossibleTrans(s) =
⋃

∃k∈N . (s,U,k)∈♦
U ∪

⋃
∃k∈N . (s,C,k)∈�

U .

�

As we said in the hyperref[ChapterCMTS]Chapter 3, CMTS is a formalism which
is introduced to describe in a different way the GEMTS concepts in order to study
properties and possible extensions in a more simple way.

Hence it is trivial to understand the equivalence between GEMTS and CMTS.
From these observation, we can derive a MTS described by means of a CMTS.

Definition 5.22 (MTS):
A GEMTS L = (S,Σ,♦L,�L, s0) is a particular CMTS M = (S,Σ,−→M ,C, s0)
such that:

1. −→M= {(s, α, s′) | ∃k ∈ N , U ∈ Σ× S. (α, s′) ∈ U ∧ (s, U, k) ∈ (♦ ∪�)}

2. ∀s ∈ S. C(s) = C♦(s) ∪ C�(s) ∪ C♦∧�(s) where:

• C♦(s) = {< U, [0,max] > | (s, U,max) ∈ ♦L ∧ ∀min > 0. (s, U,min) 6∈
�L}
• C�(s) = {< U, [min, |U |] > | ∀max ∈ N . (s, U,max) 6∈ ♦L∧(s, U,min) ∈
�L}
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• C♦∧�(s) = {< U, [min,max] > | (s, U,max) ∈ ♦L ∧ (s, U,min) ∈ �L}

�

Moreover, in this case, we do not handle the refinement relation because in the
GEMTS the defined relation connect the GEMTS to product directly, whereas our
refinement definition describe a step-by-step refinement. Anyway in [26] a product
is described by a LTS and we know that a CMTS No-Choice is equivalent to a LTS,
hence it is clear that the refinement relation of a GEMTS is equivalent to the union
of all refinement steps necessary to transform a CMTS in a CMTS No-Choice.

5.1.6 Hierarchy

In the previous sections we have seen that we can represent all models of the Modal
Family by means of a CMTS. Now in this section we determine the hierarchy of
expressivity existing among all models of the Modal Family, note that for hypothesis
all considered models are action-deterministic. Since some proofs are very long, in
some case we will describe only the theorem and the proof, instead, will be presented
in Appendix B.

Theorem 5.6. The formalism LTS is less expressive of a MTS, namely LTS  
MTS

Proof.
First of all, we know that, taken a LTS L = (S,Σ,−→L), L is equivalent to a MTS
M = (S,Σ,−→♦M ,−→�M

) such that:

−→L=−→♦M =−→�M

In addition no possible LTS can describe the MTS in Figure 5.9. The reason is
simple: taken a LTS L then the semantics of L is the set of LTSs which are bisimilar
to L. Instead the semantics of a MTS is the set of LTSs which can be derived by
means of the refinement relation and these LTSs could also be not bisimilar between
them as we can see in Figure 5.9. Hence the semantics of a MTS can represent more
LTSs compared with the semantics of a LTS itself.

Theorem 5.7. The formalism MTS is less expressive of a DMTS, namely MTS 
DMTS

Proof.
First of all, we know that, taken a MTS L = (S,Σ,−→♦L ,−→�L

), L is equivalent
to a DMTS M = (S,Σ,−→♦M ,−→�M

) such that:

• −→L=−→♦M

• ∀s ∈ S. (s, U) ∈−→�M
∧|U | = 1
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Figure 5.9: An example of a MTS and its derived LTS

Moreover no possible MTS can describe the DMTS in Figure 5.10. Suppose that
a MTS L which describes the DMTS M in Figure 5.10 exists then we can deduce
that transitions (a, s1), (b, s2) are may transitions because they must not be always
present. If it is true then the LTS with no transitions is correct for L but is wrong
for M , because as we can see in Figure 5.10 all possible LTSs must have at least one
transition. On the other hand, if we suppose that (a, s1) is the must transition in L
then the LTS J in Figure 5.10 is wrong for L and the same reasoning is true if we
suppose (b, s2) as must transition or if we suppose that all transitions are must.

Finally, we can deduce that this hypothetical MTS does not exist.

Figure 5.10: An example of a DMTS and its derived LTS
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Note that in [27] it is demonstrated that taken a generic DMTS is possible to
derive a semantically equivalent 1MTS and the vice versa holds too, namely DMTS
and 1MTS are equivalently expressive. Unfortunately, if we consider only DMTS
and 1MTS action-deterministic this equivalence is not maintained.

Theorem 5.8. The formalism MTS is less expressive of a 1MTS, namely MTS 
1MTS

Theorem 5.9. The formalism DMTS and 1MTS are not comparable, namely DMTS
6 1MTS and 1MTS 6 DMTS

Theorem 5.10. The formalism DMTS is less expressive of the CMTS, namely
DMTS CMTS

Theorem 5.11. The formalism 1MTS is less expressive of the CMTS, namely
1MTS CMTS

Finally, we have seen that GEMTS and CMTS are the same model, represented
in two different ways.

We can conclude that our family has the following hierarchy:

LTS MTS DMTS 1MTS GEMTS! CMTS

5.2 Hierarchy of the Obligation Family

In this context we focus on OTS and PMTS formalisms and, in addition, we also
introduce a new simple formalism: OTS*. The idea is simple: the OTS formalism
has the property that, for any state s, the obligation function related to s is a positive
boolean formula, namely Ω(s) ∈ B(Σ× S). This is a very important restriction as
we will see, then we would like to understand how the expressivity changes for an
OTS with a generic boolean formula. Formally,

Definition 5.23 (Obligation formula syntax):
A boolean formula over set X of atomic propositions is given by the following syntax:

ϕ ::= tt | ff | x | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ (5.1)

where x ∈ X. The set of all boolean formulae over X is denoted as B(X).
�

Definition 5.24 (OTS*):
An OTS* is a tuple (S,Σ, 99K,Ω) where:

• S is a set of states

• Σ is a set of actions
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• 99K⊆ S × Σ× S is the may transition relation

• Ω : S −→ B(Σ× S) is the set of obligations

We denote the set of all possible OTSs* by OTS*.
�

In addition, seeing that OTS, OTS* and PMTS have the same structure and
changes are only the type of obligation function we can define the action-determinism
property which is valid for all models:

Definition 5.25 (Action-deterministic LTS):
A OTS L = (S,Σ,−→,Ω, S0) is an action-deterministic OTS if and only if:

• ∀s ∈ S. (s, α, s′) ∈−→ ∧(s, α, s′′) ∈−→=⇒ s′ = s′′

• |S0| = 1

�

The definition is the same for OTS* and PMTS.

5.2.1 OTS

In [12] Beneš and Křet́ınký proved that the OTS is semantically equivalent to a
DMTS. The idea is simple: a DMTS is an OTS with obligation functions in a
(positive) conjunctive normal form (CNF). Moreover, we know that each boolean
formula can be transformed in an equivalent CNF formula, hence taken a generic
OTS M we can derive a OTS N where each obligation function is in CNF and
M and N are equivalent, but trivially N also describes a DMTS, concluding that
OTS! DMTS.

Adding the action-determinism property, of course, the result does not change
and the proof is similar to the one of a generic OTS.

Note that, for example, no 1MTS can be effectively modelled by a OTS because
for each hypertransition (s, T ) the semantics of the 1MTS requires that exactly one
transition of T must be considered in a valid implementation. By means of positive
obligation formula this requirement is impossible to describe:

• (α, s′) ∧ (β, s′′): requires that both transitions are always present

• (α, s′) ∨ (β, s′′): requires that at least one transition is always present

We need to say “take a transition t and not take all other transitions of the set”, but
unfortunately we do not have a way to describe “not take a particular transition”.
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5.2.2 OTS*

To solve the problem of describing the concept “not take a particular transition”, we
introduce the negation in the obligation formula. First of all, we must understand
which is the level of the expressivity of an OTS*, surely it is true OTS  OTS* ,
hence we must compare it to CMTS.

Theorem 5.12. The formalism CMTS is less expressive of OTS*, namely CMTS 
OTS*

A typical example where CMTS is less expressive than OTS* is in the case
of conditional requirement. As we saw in Chapter 4, the conditional requirement
cannot be modelled by means of a CMTS, whereas a OTS* can easily model it, using
the typical implication operator of the logic formulae. In Chapter 4, in addition, we
saw that to solve this problem, we must introduce the CMTS(GT ), hence we want
to understand if a relation between CMTS(GT ) and OTS* exists.

In this context

Theorem 5.13. The formalism OTS* is as much expressive as CMTS(GT ), namely
OTS* ! CMTS(GT )

5.2.3 PMTS

The last formalism that we see is the PMTS. Trivially, PMTS is an extension of
OTS* where parameters are introduced in the obligation formula and of course
OTS*  PMTS, because they cannot handle the parameter in OTS*.

For example, we consider the PMTS in Figure 5.11 and now we try to find out
a OTS* equivalent to PMTS. Of course we must focus on the obligation function of
the state s1. Suppose that OTS* which is semantically equivalent to PMTS exists,

Figure 5.11: An example of a PMTS

then surely the state s1 of the OTS* must have an obligation formula equals to
((b, s0)⊕ (c, s0)) ∧ ϕ, for some logic formula ϕ. Of course, we must guarantee that,
for each cycle step, exactly one and always the same transition t must be taken.
Then, in order to guarantee always the same choice, we can deduce that ϕ = (b, s0)
or ϕ = (c, s0).



5.2. HIERARCHY OF THE OBLIGATION FAMILY 151

Suppose ϕ = (b, s0), hence if p = true then PMTS and OTS* are equivalent,
otherwise PMTS and OTS* are completely different and we have no common solu-
tion effectively. Essentially we can see a PMTS as a set of possible different OTS*,
namely we have as many OTS* as possible different assignments are.

Finally, we want to understand the relation between the CMTS(GT ,GQ) and the
PMTS, where the first one is an extension of CMTS(G)

Theorem 5.14. The formalism PMTS is as much expressive as CMTS(GT ,GQ),
namely PMTS! CMTS(GT ,GQ)

In Figure 5.12 we describe all expressivity results where each arrow from a for-
malism M to a formalism N , describes the concept of M  N , whereas the double
arrow describes that the formalism M and N are expressively equivalent.
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Figure 5.12: The hierarchy of expressivity of models



Chapter 6

Logics for Model Checking

In this chapter we introduce a new logic, based on the CTL* and the Deontic Logic,
in particular we will consider the typical operators O,P and F which mean “it is
obligatory that”, “it is permissible that” and “it is forbidden that”, respectively.

Contrary to CTL* where the used models are state-based, in this context we
will use CMTS and its extensions which are typically action-based. This is not a
restriction and we do not lose expressive power in respect to CTL* and the reason
is simple, instead of using CTL* we can use ACTL* and in [21] De Nicola and
Vaandrager prove that CTL* and ACTL* are equivalent.

In addition, we will see in an incremental way how our logic can be derived by
ACTL* and the Deontic Logic. Then we will introduce some optimizations which
reduces the computational cost of algorithms useful to verify properties over CMTSs.
Finally we will extend these logics to the CMTS extensions and we will see some
further possible optimizations.

Finally, in this context, we reuse the concept of path and other definitions related
to it described in Section 2.3. For convenience, we recall them:

Definition 6.1 (Path(s)):
Let s be a generic state of a some kind of transition system. We denote by Path(s)
the set of all possible paths with s as initial state. We denote the set of all possible
paths by Path.

�

Definition 6.2 (Suffix):
Let σ = s0, s1 . . . be a generic path and let i ∈ N be an index. We denote by σ[i] = si
the i-th state of σ, whereas we denote by suffix(σ, i) = ς the suffix of the path σ
from the i-th state, that is if ς = t0, t1 . . . then ∀j ∈ N . ς[j] = tj = si+j = σ[i+ j].

�

Note that a path is a simple sequence of states.
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6.1 Logic for CMTS

The logic which we consider as starting point is a special logic because it is derived
by a merge of the syntax of the ACTL* logic and the HML logic. From another
pointview, we can see this logic as the HML logic extended with the until operator
and path quantifiers, which are typical operators of CTL*. Moreover, as we could
see in Section 2.3, the ACTL* logic introduce a new operator Xα, which describes a
operator “next” with a further requirement, namely we can move in the next state
only by means of the action α, and in addition the typical operator next of CTL*
can be easily derived by this new operator.

Anyway, we call this logic Hennessy Milner with Until and path quantifier
(HMUL) [5].

Definition 6.3 (Syntax of HMUL):
A correct HMUL formula can be defined according to the following grammar:

ϕ ::= tt | ¬ϕ | ϕ ∧ ϕ | 〈α〉ϕ | [α]ϕ | ∃π | ∀π
π ::= ϕ Uϕ1

where α is a label describing an action.
The formulae derived by ϕ is called state formulae, whereas the formulae derived

by π is called path formulae.
�

Trivially, we can derive from this initial set some other derived formulae like
ff , ϕ ∨ ϕ1 and so on, using the known rules of propositional logic. In addition we
introduce an axiom, typical in the HML context: 〈α〉ϕ = ¬[α]¬ϕ. The “Until”
operator is defined by U . In addition, note that this logic cannot have nested path
operator because it has a structure typical of CTL and not of the extension CTL*.

The next step is the definition of the semantics of HMUL logic formulae over
CMTS and it is described by means of a satisfaction relation denoted by |=, in a
more detailed way we have two satisfaction relations: one for state formulae and
one for path formulae. Of course, the intended meaning of s |= ϕ is: it is true if and
only if s satisfies the formula ϕ and the same holds for path formulae.

Definition 6.4 (Semantics of HMUL):
Let M = (S,Σ,−→,C, s0) be a CMTS, s ∈ S be a state and φ be a state formula.
The satisfaction relation |=⊆ S × ϕ for state formulae is defined by:

• s |= tt

• s |= ¬ϕ⇔ s 6|= ϕ

• s |= ϕ ∧ ϕ1 ⇔ s |= ϕ and s |= ϕ1

• s |= 〈α〉ϕ⇔ ∃s′. s α−→ s′ ∧ s′ |= ϕ
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• s |= [α]ϕ⇔ ∀s′. s α−→ s′ ⇒ s′ |= ϕ

• s |= ∃π ⇔ ∃σ ∈ Path(s). σ |= π

• s |= ∀π ⇔ ∀σ ∈ Path(s). σ |= π

Let σ be a path, then the satisfaction relation |=⊆ Path× π is defined by:

• σ |= ϕ Uϕ1 ⇔ ∃j ≥ 0. σ[j] |=S ϕ1 ∧ ∀0 ≤ i < j. σ[i] |= ϕ

�

Note that 〈α〉ϕ is semantically equivalent to the ACTL* operator Xαϕ. More-
over, as we can do in CTL and in CTL*, we can add some further operator like
Fϕ = ttUϕ called eventually or finally and Gϕ = ¬F¬ϕ called always or glob-
ally.

Finally, we want to highlight a strange case: in general the operator 〈.〉 is the
weaker than [.] because 〈.〉 requires that the property is true for at least one element,
whereas [.] requires the same for all elements. In the context of CMTS, which we
implicitly assume to be action-deterministic, the roles are inverted. In effect, seeing
that we can have at most only one possible target state related to an action α, then
〈α〉ϕ requires that a transition labelled with α exists and the target state satisfies
the property ϕ, whereas [α]ϕ is true if either no transition labelled with α exists or
a transition exists and the target state satisfies ϕ. It is clear that, in this case, [.] is
weaker than 〈.〉.

We keep operators 〈.〉 and [.] for two different reasons:

1. they are “standard” operator in the literature

2. we keep them for possible future extensions to a non-deterministic case

Anyway, this logic might be also interpreted in L2TS because it uses in no way
the characteristics of CMTS. Effectively, taken a CMTS M , we can derive a set of
LTSs which satisfies constraints described in M . It is clear that in general we are
interested in which possible transitions can be executed and which requirements are
described by means of constraints.

For example, taken a LTS L, we might say that L, in order to be a correct
product for a CMTS M , must have certain transitions whereas all other remaining
transitions may be present. In this way we can reason about the deontic logic.

Unfortunately, in the CMTS context is not so clear when an action is obliga-
tory or permissible, on the contrary in the MTS these two concepts are directly
represented by two different types of transitions.

From the previous chapter we know that an action α is allowed but not obligatory
if a transition t labelled with α has a constraint c related to it such that the choice
set of c is singleton and the cardinality is equal to [0, 1], α is obligatory if t is related
to a constraint c such that the choice set of c is singleton and the cardinality is
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equal to [1, 1]. Moreover in the MTS context an action α is forbidden if no outgoing
transition labelled with α exists . In the CMTS context, another condition for
the prohibition is possible, in effect to say that a transition t is not an outgoing
transition is equivalent to have t as outgoing transition and a constraint related to
t such that the choice set is singleton and the cardinality is [0, 0]. Note that in this
case, each possible valid solution I must guarantee that 0 ≤ |I∩t| ≤ 0, namely t 6∈ I.
These conditions are not sufficient to guarantee the permission, the obligation or
the prohibition.

Figure 6.1: Some examples of CMTS with obligatory or forbidden transition not
directly visible

Suppose to have the CMTS M of Figure 6.1: in this case the action b appears to
be a permitted action but if we see all possible solutions for M , we can observe that
(b, s2) is never present, namely an outgoing transition labelled with b exists and b is
forbidden. From this observation we deduce that conditions:

1. if a transition t labelled with α is related to a constraint c =< {t}, [0, 0] >

2. if no transition with label α exists

are not sufficient conditions for a forbidden action.

Definition 6.5 (Property 1):
Let α ∈ Σ be an action and s be a state. If

(6 ∃s′. (α, s′) ∈ Trans(s)) ∨ (∃c ∈ C(s). Choice(c) = {(α, s′′)} ∧ Card(c) = [0, 0])



6.1. LOGIC FOR CMTS 157

then α is forbidden. The vice versa is not true.
�

Suppose to have the CMTS N of Figure 6.1: in this case the action b appears
to be an obligatory action but if we see all possible solutions for M , we can observe
that (b, s2) is never present, namely an outgoing transition t labelled with b exists
and a constraint exists with a singleton choice set related to t and the cardinality
equals to [1, 1] but b is forbidden. This is possible when we have an inconsistent
CMTS, but we implictly assume that each considered CMTS is consistent.

Finally, suppose to have the CMTS O of Figure 6.1: in this case the action a
appears to be a permitted transition but not obligatory, on the contrary if we see
all possible solutions for M , we can observe that (a, s1) is always present, namely
an outgoing transition t labelled with a exists, a constraint exists with a singleton
choice set related to t and the cardinality equals to [0, 1] but a is obligatory. From
this observation we deduce two properties:

Definition 6.6 (Property 2):
Let α ∈ Σ be an action and s be a state. If

∃c ∈ C(s). Choice(c) = {(α, s′)} ∧ Card(c) = [1, 1]

then α is obligatory. The vice versa is not true.
�

Definition 6.7 (Property 3):
Let α ∈ Σ be an action and s be a state. If α is permitted but not obligatory then

∃c ∈ C(s). Choice(c) = {(α, s′)} ∧ Card(c) = [0, 1]

The vice versa is not true.
�

Hence, we can deduce that to reason about only transitions is not enough to
determine the obligatory, permission or prohibition in a correct way.

A CMTS is a model describing a set of valid LTSs, hence we can define the
concept of obligatory, permission and prohibition from the pointview of this set of
valid LTSs.

Definition 6.8:
Let M be a CMTS. Then we say:

• the action α is obligatory for the state s of M if and only if for each valid
LTS, derived by M , the action α is an outgoing transition of the state sI ,
where sI is the corresponding state of s in LTS

• the action α is forbidden for the state s of M if and only if for each valid
LTS, derived by M , the action α is not an outgoing transition of the state sI ,
where sI is the corresponding state of s in LTS



158 CHAPTER 6. LOGICS FOR MODEL CHECKING

• the action α is permitted for the state s of M if and only if exists a valid
LTS, derived by M , such that the action α is an outgoing transition of the
state sI , where sI is the corresponding state of s in LTS

Formally,

• the action α is obligatory for the state s of M if and only if ∀I ∈ JsK. (α, s′) ∈
I

• the action α is forbidden for the state s of M if and only if ∀I ∈ JsK. ¬∃s′.
(α, s′) ∈ I, namely ∀I ∈ JsK. ∀s′. (α, s′) ∈ I

• the action α is permitted for the state s of M if and only if ∃I ∈ JsK. ∃s′.
(α, s′) ∈ I

�

Now we want to define operators O,P and F. Note that operators F and F are
two different operators: the first is the eventually temporal operator, whereas the
second describes the deontic operator of prohibition. In addition we want to define
these operators in such a way that deontic axioms holds:

• Fα = O¬α

• Pα = ¬O¬α

• Oα⇒ Pα

First of all, we must define what means the formula α in our context: trivially, α
should represent the presence of a transition labelled with α in some set of transitions
I and, hence, α = ∃s′. (α, s′) ∈ I. Note that the semantics of α operator depends
on I, therefore the semantics of α in some way is parametric.

Trivially, we can suppose that the semantics of the operator O = ∀I ∈ JsK
for some state s, namely the property must be always true, for each possibility.
Then the formula Oα can be seen as the composition of O and α, deriving ∀I ∈
JsK. ∃s′. (α, s′) ∈ I.

In this way, we can derive operators F and P:

• F = O¬α, namely ∀I ∈ JsK. ¬(∃s′. (α, s′) ∈ I) = ∀I ∈ JsK. ∀s′. (α, s′) 6∈ I.
This is exactly the conceptual semantics of F

• P = ¬O¬α, namely ¬(∀I ∈ JsK. ¬(∃s′. (α, s′) ∈ I)) = ∃I ∈ JsK. ∃s′. (α, s′) ∈ I.
Again, this is exactly the conceptual semantics of P

Anyway, often we do not only want to understand if a transition with label α
is executed but we want to know if a transition with label α is executed and the
reached target state satisfies some property ϕ. Hence, our atomic deontic operator
is not α but it is α(ϕ), where its semantics is α(ϕ) = ∃s′. (α, s′) ∈ I ∧ s′ |= ϕ.

Trivially the semantics of operators O,F and P changes in the correct way:
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• Oα(ϕ), namely ∀I ∈ JsK. ∃s′. (α, s′) ∈ I ∧ s′ |= ϕ, namely “it is obligatory
that a transition labelled with α is executed and the reached state satisfies ϕ”

• Fα(ϕ) = O¬α(ϕ), namely ∀I ∈ JsK. ¬(∃s′. (α, s′) ∈ I ∧ s′ |= ϕ) = ∀I ∈
JsK. ∀s′. (α, s′) ∈ I ⇒ s′ 6|= ϕ. This is exactly the conceptual semantics of F,
namely “it is forbidden that a transition labelled with α is executed and the
reached state satisfies ϕ”

• Pα(ϕ) = ¬ O¬α(ϕ), namely ¬(∀I ∈ JsK. ¬(∃s′. (α, s′) ∈ I ∧ s′ |= ϕ)) = ∃I ∈
JsK. ∃s′. (α, s′) ∈ I ∧ s′ |= ϕ. Again, this is exactly the conceptual semantics
of P, namely “it is permitted that a transition labelled with α is executed and
the reached state satisfies ϕ”

Of course, we can extend the semantics of the deontic operator to a set of actions A or
we can change the semantics of the deontic operator α(ϕ) = ∀s′. (α, s′) ∈ I ⇒ s′ |= ϕ
but, if we also want to satisfy the deontic axioms, the formal semantics which we can
derive is slightly different with respect to the conceptual semantics. For example,
this difference can be derived by the ambiguity of the redefined α(ϕ) and this is
the typical ambiguity between the logic implication and the implication of natural
language.

Now we can define our deontic extension of HMUL: the DHMUL.

Definition 6.9 (Syntax of DHMUL):
A correct DHMUL formula can be defined according to the following grammar:

δ ::= tt | ¬δ | α(ϕ)

ϕ ::= tt | ¬ϕ | ϕ ∧ ϕ | 〈α〉ϕ | [α]ϕ | Oδ | Fδ | Pδ | ∃π | ∀π
π ::= ϕ Uϕ1

where α is a label describing an action.
The formulae derived from ϕ are called state formulae, the formulae derived by

π is called path formulae and the formulare derived from δ are called atomic deontic
formulae.

�

Note that deontic operators are related to state formulae because they describe
a property of the state and not of the path. In addition the semantics of δ cannot
only be computed by means of a state s or a path π, we also need of having a set of
transitions.

Of course, we can derive operator like Fϕ = ttUϕ, Gϕ = ¬F¬ϕ and all other
one typical of CTL logic.

Definition 6.10:
Let M = (S,Σ,−→,C, s0) be a CMTS, s be a state and φ be a state formula. The
satisfaction relation |=⊆ S × ϕ for state formulae is defined by:
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• s |= tt

• s |= ¬ϕ⇔ s 6|= ϕ

• s |= ϕ ∧ ϕ1 ⇔ s |= ϕ and s |= ϕ1

• s |= 〈α〉ϕ⇔ ∃s′. s α−→ s′ ∧ s′ |= ϕ

• s |= [α]ϕ⇔ ∀s′. s α−→ s′ ⇒ s′ |= ϕ

• s |= Oδ ⇔ ∀I ∈ JsK. s, I |= δ

• s |= Pδ ⇔ ∃I ∈ JsK. s, I |= δ

• s |= Fδ ⇔ ∀I ∈ JsK. s, I 6|= δ

• s |= ∃π ⇔ ∃σ ∈ Path(s). σ |= π

• s |= ∀π ⇔ ∀σ ∈ Path(s). σ |= π

Let s be a state, I be a set of transitions and ϕ be a state formula then the satisfaction
relation |=⊆ S × P(Σ× S)× δ for deontic formulae is defined by:

• s, I |= tt

• s, I |= ¬δ ⇔ s, I 6|= δ

• s, I |= α(ϕ)⇔ ∃(α, s′) ∈ Trans(s). (α, s′) ∈ I ∧ s′ |= ϕ

Let σ be a path and ϕ, ϕ1 be two state formulae then the satisfaction relation
|=⊆ Path× π for path formulae is defined by:

• σ |= ϕ Uϕ1 ⇔ ∃j ≥ 0. σ[j] |= ϕ1 ∧ ∀0 ≤ i < j. σ[i] |= ϕ

�

The next step is to understand if deontic operators hold after a refinement step,
that is if we have two CMTSs M and N , such that N is a refinement of M and
we have a deontic operator D and a deontic formula δ then sM |= Dδ implies that
sN |= Dδ, where (sN , sM) ∈ R for some refinement relation R.

Theorem 6.1. Let sM be a state of a CMTS M and δ be a deontic formula. Then
for any sN of a CMTS N , such that N is a refinement of M and (sN , sM) ∈ R for
some refinement relation R, it holds:

sM |= Oδ ⇒ sN |= Oδ
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Figure 6.2: An example of a CMTS and its implementations

Proof.
We know that sM |= Oδ ⇔ ∀I ∈ JsMK. s, I |= δ. In addition, we know that if
(sN , sM) ∈ R for some refinement relation then ∀I. I ∈ JsNK ⇒ I ∈ JsMK. For
convenience, we suppose that M and N have the same set of states, in this way we
do not verify if each couple of states is in the refinement relation R.

Trivially, we can deduce that ∀I ∈ JsNK. s, I |= δ.

The vice versa is not true: for example, taken the CMTS M and the formula
φ = Oa(tt), trivially s0 6|= φ. On the other hand, in the CMTS O, which is a
refinement of M , u0 |= φ. The reason is simple: by means of a refinement some
permitted actions becomes obligatory and, hence the vice versa does not hold.

Theorem 6.2. Let sM be a state of a CMTS M and δ be a deontic formula. Then
for any sN of a CMTS N , such that N is a refinement of M and (sN , sM) ∈ R for
some refinement relation R, it holds:

sM |= Fδ ⇒ sN |= Fδ

Proof.
Since Fδ = O¬δ then the theorem is true for Theorem 6.1.
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Again, the vice versa is not true: for example, taken the CMTS M and the
formula φ = Fa(tt), trivially s0 6|= φ. On the other hand, in the CMTS N , which
is a refinement of M , t0 |= φ. The reason is simple: by means of a refinement
some permitted actions becomes forbidden and, hence the vice versa does not hold.
Unfortunately, this property is not maintained for the operator P: for example,
taken the CMTS M and the formula φ = Pa(tt), trivially s0 |= φ. On the other
hand, in the CMTS O, which is a refinement of M , u0 6|= φ. The reason is simple: by
means of a refinement some permitted actions is deleted and, hence, some actions
becomes forbidden.

6.1.1 Optimizations

It is clear that DHMUL is a very expensive logic from computational pointview
because, for each state, we must compute its semantics, on the other hand, for the
model checking technique the computational cost is fundamental. In this section we
try to modify the initial CMTS in such a way that the verification of the property
is less expensive.

First of all, we note that a label α is obligatory, namely it is always present, if
a constraint c =< {t}, [1, 1] > for the transition t related to α exists, in effect in
this way we say that t is a must transition. On the other hand, if the constraint
c =< {t}, [0, 1] > for a transition t related to α exists then t is a may transition and
t can be present in some solutions.

Unfortunately, properties Property 1, Property 2 and Property 3, defined
in the previous section, prove us that the obligatoriness, the permissibility and the
prohibition, which we can derive from the semantics, are not always computed in a
correct way if we consider only outgoing transitions and constraint related to them.
Anyway, if we succeed to solve these properties, then we can verify the obligatory,
the permission and the prohibition directly by means of outgoing transitions and
singleton constraints.

Definition 6.11 (Forbidden action-free):
Let M be a CMTS, s be a state of M and α be a label of some outgoing transition
of s. Then we say that α is forbidden if and only if ∀I ∈ JsK. ∀s′. (α, s′) 6∈ I.

We say that a state s is forbidden-action free if and only if it holds that, for each
action α: if ∃s′. (α, s′) ∈ Trans(s) then α is not an action forbidden.

We say that a CMTS M is forbidden-action free if and only if for each state s,
s is forbidden action-free.

�

Trivially, the following corollary holds:

Corollary 6.1:Let M = (S,Σ,−→,C, s0) be a CMTS forbidden action-free then:

∀s ∈ S. ∀α ∈ Σ.α is forbidden⇔ ∀s′ ∈ S. (α, s′) 6∈ Trans(s)



6.1. LOGIC FOR CMTS 163

Of course, it is possible to define an algorithm which transforms a generic CMTS
M in a CMTS forbidden action-free N such that M and N are semantically equiva-
lent. The hint of how to develop this algorithm is: for each state s, we can compute
the semantics of s, then we determine a set TransPerm of outgoing transitions of s
which are present in some solution of constraints of s. Hence, we delete, in a correct
way, each transition in Trans(s) \ TransPerm. In this way, we solve all problems
related to the property Property 1.

Definition 6.12 (Hidden must action-free):
Let M be a CMTS, s be a state of M and α be a label of some outgoing transition
of s. Then we say that α is obligatory if and only if ∀I ∈ JsK. ∃s′. (α, s′) ∈ I.

We say that a state s is hidden must-action free if and only if for each action α
it holds: ∃c ∈ C(s).=̧ < {(α, s′)}, [1, 1] > if and only if α is an obligatory action.

We say that a CMTS M is hidden must-action free if and only if for each state
s, s is hidden must action-free.

�

In this way, we describe in an explicit way the obligatory of a transition t labelled
with α.

Trivially, the following corollary holds:

Corollary 6.2:Let M = (S,Σ,−→,C, s0) be a CMTS hidden must action-free then:

∀s ∈ S. ∀α ∈ Σ.α is obligatory ⇔ ∃c ∈ s. c = {(α, s′)}, [1, 1]1 >

Of course, it is possible to define an algorithm which transforms a generic CMTS
M in a CMTS hidden must action-free N such that M and N are semantically
equivalent. The hint of how to develop this algorithm is: for each state s, we
can compute the semantics of s, then we determine a set TransObb of outgoing
transitions of s which are always present. At this point, we add a new constraint
< {t}, [1, 1] > for each transition in TransObb. In this way, we solve all problems
related to the property Property 2.

In addition, we suppose that, for each transition t, a constraint c such that
Choice(s) = {t} always exists, then also the Property 3 is solved:

Theorem 6.3. Let M be a CMTS hidden must-action free and forbidden action
free. Taken a state s of M , then an action α is allowed but not obligatory for s if
and only if ∃s′. (α, s′) ∈ Trans(s)∧ 6 ∃c ∈ C(s). c =< {(α, s′), [1, 1] >.

Proof.
Since M is forbidden action-free then surely if ∃s′. (α, s′) ∈ Trans(s) then α is not
forbidden, moreover seeing that M is hidden must-action free then α is obligatory
if and only ∃c =< {(α, s′)}, [1, 1] >. Note that for a CMTS we can have only one
constraint for any outgoing transition, hence the possible constraints for t are:

• c =< {(α, s′)}, [1, 1] >: in this case α is obligatory
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• c =< {(α, s′)}, [0, 1] >: in this case (α, s′) is present in some solution, namely
α is an allowed but not obligatory action

• c =< {(α, s′)}, [0, 0] >: in this case (α, s′) is never present in some solution,
then α is forbidden but for property of forbidden action-free, this case is im-
possible

• c =< {(α, s′)}, [1, 0] >: in this case c is a incorrect constraint and this is
impossible

Note that c =< {(α, s′)}, [0, 1] > is a general non-restrictive constraint, hence it
can be present in C(s).

Theorem 6.4. Let M be a CMTS hidden must-action free and forbidden action
free. Taken a state s of M , then an action α is allowed if and only if ∃s′. (α, s′) ∈
Trans(s)

Proof.
An action α is permitted if and only if it is obligatory or allowed but not oblig-
atory. In the first case we have that in the state s we must have a constraint
c =< {(α, s′)}, [1, 1] > and (α, s′) ∈ Trans(s).

On the other hand, if α is allowed but not obligatory we must have and (α, s′) ∈
Trans(s) and a constraint c =< {(α, s′)}, [1, 1] > does not exists.

Then we can deduce that an action is permitted if and only if ∃(α, s′) ∈ Trans(s)
∧ (∃c =< {(α, s′)}, [1, 1] >∈ C(s) ∨ ¬(∃c =< {(α, s′)}, [1, 1] >∈ C(s))), deducing
the theorem.

Definition 6.13 (Fully described action):
Let M be a CMTS. Then we call M is a fully described action CMTS if and only if
M is hidden must-action free and forbidden action free.

�

Moreover, note that the transformation algorithm from CMTS to CMTS forbid-
den action free holds the hidden must-action free property, in effect this transforma-
tion takes into account only forbidden action, and the transformation algorithm from
CMTS to CMTS hidden must action free holds the forbidden action free property,
this time the transformation takes into account only obligatory action.

Now we want to highlight that the computational cost related to the computation
of the semantics of each state s is not deleted obviously, but now it is reduced to
only one initial computation, namely the computation which transforms a CMTS
in a fully described action CMTS.

In addition, we can further delete this computation, in effect in the first phase
of handling of a CMTS, we would like to check some properties like the consistency
property. To verify the consistency property we must derive all possible solutions
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for constraints of s, in this phase we can add the needed operations for the CMTS
fully described action. In this way we compute only one time the semantics of states
and in a previous phase with respect to the verification of property described by
means of the logic.

Now we extend the action to the action with state property and we try to un-
derstand what means α(ϕ) is permitted, obligatory or forbidden:

Definition 6.14:
Let α(ϕ) be an action with state property and s be a state of a CMTS. Then we
say:

• α(ϕ) is permitted for s if and only if the action α is permitted and the target
state satisfies ϕ, namely α(ϕ) is permitted if and only if ∃I ∈ JsK. ∃(α, s′) ∈
Trans(s). (α, s′) ∈ I ∧ s′ |= ϕ

• α(ϕ) is obligatory for s if and only if the action α is obligatory and the target
state satisfies ϕ, namely α(ϕ) is obligatory if and only if ∀I ∈ JsK. ∃(α, s′) ∈
Trans(s). (α, s′) ∈ I ∧ s′ |= ϕ

• α(ϕ) is forbidden for s if and only if the action α is forbidden or the target state
does not satisfies ϕ, namely α(ϕ) is forbidden if and only if ∀I ∈ JsK. ∀(α, s′) ∈
Trans(s). (α, s′) 6∈ I ∨ s′ 6|= ϕ

�

Now we see these definitions in fully described action CMTS:

Definition 6.15:
Let α(ϕ) be an action with state property and s be a state of a fully described action
CMTS. Then we say:

• α(ϕ) is permitted for s if and only if the action α is permitted and the tar-
get state satisfies ϕ, namely α(ϕ) is permitted if and only if ∃s′. (α, s′) ∈
Trans(s) ∧ s′ |= ϕ

• α(ϕ) is obligatory for s if and only if the action α is obligatory and the tar-
get state satisfies ϕ, namely α(ϕ) is obligatory if and only if ∃s′. (α, s′) ∈
Trans(s) ∧ (∃c ∈ C(s). c =< {(α, s′)}, [1, 1] >) ∧ s′ |= ϕ

• α(ϕ) is forbidden for s if and only if the action α is forbidden or the target
state does not satisfies ϕ, namely α(ϕ) is forbidden if and only if ∀s′. (α, s′) 6∈
Trans(s) ∨ s′ 6|= ϕ

�



166 CHAPTER 6. LOGICS FOR MODEL CHECKING

Note that the definition of permitted and obligatory actions with state property
are very similar, the only difference is the condition

(∃c ∈ C(s). c =< {(α, s′)}, [1, 1] >)

which describes the obligatory.
Unfortunately, this definition does not hold the deontic axiom Fα(ϕ) = O¬α(ϕ),

because we do not know what means ¬α in the condition of obligatory (∃c ∈
C(s). c =< {(¬α, s′)}, [1, 1] >).

The first step is to observe that the condition (∃c ∈ C(s). c =< {(α, s′)}, [1, 1] >)
can be rewritten in another way: ∃s′. ∃c ∈ C(s). Choice(c) = {(α, s′)} ∧ Card(c) =
[1, 1]). Now we focus on the obligatory condition which is described by Card(c) =
[1, 1].

The idea of the obligatory is that “for each possible solution a transition t must be
always present” and this concept is modelled with two different conditions: suppose
that Card(c) = [min,max] then

• min = max describes the concept of “for each possible solution a transition t
always satisfies the same property”

• max = 1 describes the concept of “a transition t can be present in some
solution”, in effect, seeing that 0 ≤ min ≤ max for each constraint and the
constraint has a singleton choice set, then in this way we require that for each
solution the transition t can be present.

Hence the conjunction max = min ∧ max = 1 describes the property “for each
possible solution a transition t always satisfies the property of being present”. Note,
for example, that max = min ∧max = 0 describes the property “for each possible
solution a transition t always satisfies the property of not being present”.

Moreover, we can observe that max = min ∧ max = 1 is composed by two
different conditions:

• max = min is a condition strictly related to the operator O

• max = 1 is the condition related to the deontic formula α(ϕ), because α(ϕ)
requires the existence of a transition labelled with α.

Now we try to understand the meaning of Oα(ϕ). In this case we want to describe
that it is obligatory the presence of a transition labelled with α and the reached state
satisfies ϕ. This requires, hence, that a constraint c exists such that it describes a
transition labelled with α and the target state satisfies ϕ, in addition we want that
this constraint describes the obligatoriness.

We know that our deontic operators reason about only the actions, that is Oα(ϕ)
can be seen as O(α ∧ (ϕα)) = Oα ∧ ϕα, where ϕα describes the idea that a target
state, reached by means of α satisfies ϕ.
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We can say that a constraint c satisfies Oα(ϕ) if c satisfies Oα∧ϕα. Trivially, c
satisfies (ϕα) if and only if it describes a transition labelled with α and the target
state satisfies ϕ. On the other hand, c satisfies Oα if and only if it describes a
transition labelled with α and its cardinality [min,max] is defined in such a way
that min = max ∧max = 1.

Now we try to consider O¬α(ϕ). Conceptually, this equivalent to say that a
transition with label ¬α is obligatory and the target state s¬α satisfies ϕ. Seeing
that ¬α describe the not-presence of a transition α, this means that for each possible
executions which we can do from s we can never execute an action α and reach a
state s¬α satisfying ϕ.

In the “real world”, we have only transitions with “positive” label then we must
guarantee that for each possible transition or the transition is not labelled by α or
the reached state does not satisfy ϕ. Note that these hypotheses are very restrictive
because we only want that the not-executability of α is always true, therefore it is
not required that outgoing transitions (α, s′) of s must be necessarily absent but
simply it requires that such outgoing transitions must be never executable.

The second step is to understand what means O¬α, that is it is obligatory
the not-presence of α, so it is required that no transition labelled with α can be
executed. This is possible if no outgoing transition with label α exists or, if some
transition t exists but it is never executed in some LTS and this is possible if and
only if t = (α, s′) is correlated to a constraint with cardinality [0, 0], that is it is
obligatory to take never the transition. Seeing that the the obligatoriness is defined
by max = min and the absence of the transition is described by max = 0, then we
can deduce that the condition becomes max = min ∧max = 0.

We want to highlight as conditions for O¬α and conditions for Oα are strange
because some are negated, whereas other ones are not. In effect the condition about
action is correctly changed, whereas the condition about the operator is correctly
unchanged.

The last step is to understand the semantics of O¬α(ϕ). Previously, we have
said that the meaning of Oα(ϕ) is that a constraint c satisfies Oα(ϕ). Conceptually,
in the context of O¬α(ϕ) we should have a constraint c which satisfies ϕ¬α and
O¬α, that is a transition with label ¬α must exist, the reached state must satisfy
ϕ and it is obligatory. Again, in the real world we have only positive label, hence
a constraint c =< {¬α, s′}, [1, 1] such that s′ |= ϕ is equivalent to say that any
possible executions which we can do for any possible product must always verify
that the not-executability of α satisfies ϕ, that is a possible executability of α must
not satisfy ϕ. Hence, in this context, we must check all possible outgoing transitions
and verify that a transition labelled with α cannot exist, or the target state does
not satisfy ϕ, or iif it exists and satisfies ϕ, it never can be executed.

Definition 6.16:
Let c =< CS, [min,max] > be a constraint. Then we call Obligatoriness condition
over c the expression min = max∧max = k for some k ∈ {0, 1}. We call min = max
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Operator condition, denoted by OPc and max = k Action Condition, denoted by
ACTIONc

The negation for an operation condition OPc of a constraint c is denoted by
OPc and it is equal to OPc, whereas the negation for an action condition ACTc of a
constraint c is denoted by ACTc and it is equal to ¬ACTc.

The negation for an obligatoriness condition Condc of a constraint c is denoted
by Condc and it is defined in the following way:

Condc = OPc ∧ ACTIONc = OPc ∧ ACTIONc = OPc ∧ ACTIONc

�

Moreover, note that Condc = Condc
Now we define a predicate which describes the semantics of Oα and O¬α and

call it OBB(c). Taken a constraint c, OBB(c) = Condc
The negation concept for OBB(c) exploits the negation of obligatoriness condi-

tion, in particular ¬OBB(c) = Condc.
The next step is defined a predicate to describe Oα(ϕ) and we call it DeonticObb.

Taken a state s, a satisfaction relation |= and the deontic formula α(ϕ), then it is
inductively defined by:

• DeonticObb(s, |=, α(ϕ)) = ∃c ∈ C. OBB(c) ∧ s, c |= α(ϕ)

• DeonticObb(s, |=,¬δ) = ¬(DeonticObb(s, |=, δ)

Definition 6.17:
Let M = (S,Σ,−→,C, s0) be a fully described action CMTS, s be a state and φ be
a state formula. The satisfaction relation |=⊆ S × ϕ for state formulae is defined
by:

• s |= tt

• s |= ¬ϕ⇔ s 6|= ϕ

• s |= ϕ ∧ ϕ1 ⇔ s |= ϕ and s |= ϕ1

• s |= 〈α〉ϕ⇔ ∃s′. s α−→ s′ ∧ s′ |= ϕ

• s |= [α]ϕ⇔ ∀s′. s α−→ s′ ⇒ s′ |= ϕ

• s |= Oδ ⇔ DeonticObb(s, |=, δ)

• s |= Pδ ⇔ ¬DeonticObb(s, |=,¬δ)

• s |= Fδ ⇔ DeonticObb(s, |=,¬δ)

• s |= ∃π ⇔ ∃σ ∈ Path(s). σ |= π
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• s |= ∀π ⇔ ∀σ ∈ Path(s). σ |= π

Let s be a state, c be a constraint and ϕ be a state formula then the satisfaction
relation |=⊆ S × Constraints(Σ× S)× δ for deontic formulae is defined by:

• s, c |= tt

• s, c |= α(ϕ)⇔ Choice(c) = {(α, s′)} ∧ s′ |= ϕ

• s, c |= ¬δ ⇔ s, c 6|= α(ϕ)

Let σ be a path and ϕ, ϕ1 be two state formulae then the satisfaction relation
|=⊆ Path× π for path formulae is defined by:

• σ |= ϕ Uϕ1 ⇔ ∃j ≥ 0. σ[j] |= ϕ1 ∧ ∀0 ≤ i < j. σ[i] |= ϕ

�

As we can see, from formalization pointview this change introduces a few compli-
cation, but from computation pointview we improve the computational cost, because
now we must to check only outgoing transitions and the deontic axioms hold.

Finally, note that if we expand previous definition, we derive:

• Oa(ϕ) = ∃c ∈ C(s). Choice(c) = {(α, s′)} ∧ s′ |= ϕ∧ (max = min∧max = 1)

• Fa(ϕ) = ∀c ∈ C(s). Choice(c) 6= {(α, s′)} ∨ s′ 6|= ϕ ∨ (max = min ∧max 6= 1)

• Pa(ϕ) = ∃c ∈ C(s). Choice(c) = {(α, s′)} ∧ s′ |= ϕ ∧ (max 6= min ∨max = 1)

In the CMTS fully described action, we can derive that:

• Oa(ϕ) describes exactly the concept of obligatoriness

• Fa(ϕ) is equal to ∀c ∈ C(s). Choice(c) 6= {(α, s′)} ∨ s′ 6|= ϕ, seeing that no
possible constraint has a cardinality such that min = max and max 6= 1. It
is describes exactly the prohibition.

• Pa(ϕ) is equal to ∃c ∈ C(s). Choice(c) = {(α, s′)} ∧ s′ |= ϕ, seeing that any
possible constraint has a cardinality min ≤ max or max = 1. It is describes
exactly the permission.

6.2 Logic for CMTS(GT )

The introduction of guards in the transitions does not add new special properties,
of course now the interesting transitions are the ones with guard equals to tt, hence
in the general semantics of DHMUL the only changes are the following:

• s |= 〈α〉ϕ⇔ ∃s′. s tt→α−−−→ s′ ∧ s′ |= ϕ
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• s |= [α]ϕ⇔ ∀s′. s tt→α−−−→ s′ ⇒ s′ |= ϕ

• s |= Oδ ⇔ ∀I ∈ JsK. s, I |= δ

• s |= Pδ ⇔ ∃I ∈ JsK. s, I |= δ

• s |= Fδ ⇔ ∀I ∈ JsK. s, I 6|= δ

• s, I |= α(ϕ)⇔ ∃(tt, α, s′) ∈ Trans(s). (tt, α, s′) ∈ I ∧ s′ |= ϕ

Note that for deontic operators, we consider the semantics of constraints J.K, namely
the semantics where for each element, the transition with guards equal to ff is
deleted.

The next step is to understand how the fully described action CMTSs change.
In this context we have:

Definition 6.18:
Let M be a CMTS(GT ), s be a state and α be an action. Then we say that α is a
forbidden action if and only if ∀s′. ∀I ∈ JsK. (tt, α, s′) 6∈ I.

�

Definition 6.19:
Let M be a CMTS(GT ), s be a state. Then we say that s is forbidden action free if
∀α. ∃s′. (tt, α, s′) ∈ Trans(s) then α is not forbidden.

We say that M is forbidden action if and only if each state s is forbidden action
free.

�

In this case the algorithm to derive a CMTS(GT ) forbidden action free from
a generic CMTS(GT ) is slightly complicated, in effect we cannot simply delete all
transitions with guard equals to ff , because for definition of CMTS(GT ) for each
transition with guard ff we also have a similar transition but with guard tt and,
hence, the action related to these transition might be present. On the other hand, a
transition t with guard ff and a constraint with choice set singleton equals to t and
cardinality equals to [1, 1] describe a forbidden action, because we must choose, for
each possible solution, the transition t and then it is lost when the LTS(GT ) is trans-
formed in LTS. This algorithm can be derived anyway but it is more complicated
than the one for CMTS.

Corollary 6.3:Let M = (S,Σ,GT ,−→,C, s0) be a CMTS(GT ) forbidden action
free then the following property holds:

∀s ∈ S. ∀α ∈ Σ. α is a forbidden action if and only if ∀s′. (tt, α, s′) 6∈ Trans(s)

Definition 6.20:
Let M be a CMTS(GT ), s be a state and α be an action. Then we say that α is an
obligatory action if and only if ∀I ∈ JsK. ∃s′. (tt, α, s′) ∈ I.

�
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Definition 6.21:
Let M be a CMTS(GT ), s be a state. Then we say that s is a hidden must action free
if α is an obligatory action then ∃s′. ∃c ∈ C(s). Choice(c) = {(tt, α, s′)}∧Card(c) =
[1, 1].

We say that M is a hidden must action free if and only if each state s is hidden
must action free.

�

In this case the algorithm to derive a hidden must action free CMTS(GT ) from
a generic CMTS is very similar to the one for CMTS.

Corollary 6.4:Let M = (S,Σ,GT ,−→,C, s0) be a CMTS(GT ) hidden must action
free then the following property holds:

∀s ∈ S. ∀α ∈ Σ. α is an obligatory action if and only if ∃c ∈ C(s). ∃s′ ∈ S.
Choice(c) = {(tt, α, s′)} ∧ Card(c) = [1, 1]

As for the CMTS the following two theorems hold:

Theorem 6.5. Let M = (S,Σ,GT ,−→,C, s0) be a CMTS(GT ) hidden must action
free and forbidden action free. Then the following property holds:

∀s ∈ S. ∀α ∈ Σ. α is a permitted but not obligatory action if and only if

∃c ∈ C(s). ∃s′ ∈ S. Choice(c) = {(tt, α, s′)} ∧ Card(c) 6= [1, 1]

Theorem 6.6. Let M = (S,Σ,GT ,−→,C, s0) be a CMTS(GT ) hidden must action
free and forbidden action free. Then the following property holds:

∀s ∈ S. ∀α ∈ Σ. α is a permitted if and only if ∃c ∈ C(s). ∃s′ ∈ S.
Choice(c) = {(tt, α, s′)} ∧ Card(c) 6= [1, 1]

Trivially, the general semantics of deontic operators changes because now an
action α is obligatory if a transition t with label α exists, a constraint with a singleton
choice set equals to t exists and its cardinality is equal to [1, 1], in addition this
transition must have tt as guard.

For our optimized logic, the interpretation is modified but in a simple way:
clearly, no change is directly needed for deontic operators, the only modification
concerns the way of defining the satisfaction relation about the deontic formula,
indeed now a constraint c satisfies a formula α(ϕ) if and only if Choice(c) =
{(g, α, s′)} ∧ s′ |= ϕ ∧ g = tt.

Hence, the second optimized version of logic for fully described action CMTS
(GT ), compared to the one for fully described action CMTS, requires only one change:

s, c |= α(ϕ)⇔ Choice(c) = {(g, α, s′)} ∧ s′ |= ϕ ∧ g = tt
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6.3 Logic for CMTS(GT ,GQ)
The last logic is the extension of DHMUL to CMTS(GT ,GQ).

First of all, we can observe that in this case we have parametric guarded con-
straints and, hence, it is interesting to develop a logic which takes into account of
parameters and to allow to verify properties based on parameters and assignments.

Of course, the set of considered parameters is Q, namely the set related to the
CMTS(GT ,GQ). An interesting type of properties to be checked is the one where
we want to check if properties must be true for all or some possible assignment of
parameters. The simple idea is, taken a generic assignment A, we verify typical
DHMUL formulae over CMTS(GT ), derived by the initial CMTS(GT ,GQ) and the
assignment A.

Hence, the new logic is an extension of the DHMUL, which simply introduces
parametric formulae and we call this logic PDHMUL (Parametric DHMUL).

Definition 6.22 (Syntax of PDHMUL):
A correct PDHMUL formula can be defined according to the following grammar:

φ ::= p.φ | p.φ | ρ
ρ ::= ∀P ϕ | ∃Pϕ
ϕ ::= tt | ¬ϕ | ϕ ∧ ϕ | 〈α〉ϕ | [α]ϕ | Oδ | Fδ | Pδ | ∃π | ∀π
δ ::= tt | ¬δ | a(ϕ)

π ::= ϕ Uϕ1

where α is a label describing an action, p is a parameter of Q
The formulae derived from:

• φ is called parameter formulae

• ρ is called assignment formulae

• ϕ is called state formulae

• δ is called deontic formulae

• π is called path formulae

�

The intended meaning of parameter formulae and assignment formulae is the
obvious one.

Taken a parameter formula φ then:

• p.φ means “ defined p = tt then φ holds”

• p.φ means “ defined p = ff then φ holds”
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Consider an assignment formula then:

• ∀Pϕ means “ for any possible assignment, ϕ holds”

• ∃Pϕ means “ exists a possible assignment such that ϕ holds”

Note that the formula p. q. r. ∀Pϕ is interpreted as “fixed p = q = tt and r = ff
then for all possible assignment A, ϕ holds”. Note that each assignment must be
defined in such a way that {p, q} ⊆ A and r 6∈ A hold.

First of all, we define some useful concept to handle the parameters:

Definition 6.23 (Condition Set):
Let Q be a set of parameters, we call C = {p | p ∈ Q}∪{p | p ∈ Q} a condition set.

We denote by COND the set of all possible condition set. �

Trivially, a condition set is a possible subset of parameters, that describes which
parameters assume value tt and which ones assume value ff .

Definition 6.24 (Satisfiability of a condition set):
Let Q be a set of parameters, C be a condition set and A ⊆ Q be an assignment.
Then we say that

A |= C ⇔ ∀p ∈ C. p ∈ A ∧ ∀p ∈ C. p 6∈ A

�

Definition 6.25:
Let Q be a set of parameters, M be a CMTS(GT ,GQ), s be a state of M and A be
an assignment.

Then we denote by σ(s, A) the state s in the CMTS(GT ) N = σ(M,A).
�

Definition 6.26:
Let M = (S,Σ,P ,GT ,GQ,−→,C, s0) be a CMTS(GT ,GQ), s be a state, C be a
condition set.

Then the satisfaction relation |=⊆ S × COND × ϕ for parameter formula is
defined by:

• s, C |= p. φ⇔ s, (C ∪ p) |= φ

• s, C |= p. φ⇔ s, (C ∪ p) |= φ

• s, C |= ρ⇔ s, C |= ρ

The satisfaction relation |=⊆ S × COND × ρ for an assignment formula is defined
by:

• s, C |= ∀P ϕ⇔ ∀A ⊆ P .A |= C ⇒ σ(s, A) |= ϕ
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• s, C |= ∃Pϕ⇔ ∃A ⊆ P .A |= C ∧ σ(s, A) |= ϕ

The satisfaction relation |=⊆ S × ϕ for a state formula is defined by:

• s |= tt

• s |= ¬ϕ⇔ s 6|= ϕ

• s |= ϕ ∧ ϕ1 ⇔ s |= ϕ and s |= ϕ1

• s |= 〈α〉ϕ⇔ ∃s′. s α−→ s′ ∧ s′ |= ϕ

• s |= [α]ϕ⇔ ∀s′. s α−→ s′ ⇒ s′ |= ϕ

• s |= Oδ ⇔ ∀I ∈ JsK. s, I |= δ

• s |= Pδ ⇔ ∃I ∈ JsK. s, I |= δ

• s |= Fδ ⇔ ∀I ∈ JsK. s, I 6|= δ

• s |= ∃π ⇔ ∃σ ∈ Path(s). σ |= π

• s |= ∀π ⇔ ∀σ ∈ Path(s). σ |= π

Let I be a set of outgoing transitions of s, then the satisfaction relation |=⊆ P(Σ×
S)× δ for a deontic formula is defined by:

• s, I |= tt

• s, I |= ¬δ ⇔ s, I 6|= δ

• s, I |= α(ϕ)⇔ ∃(α, s′) ∈ Trans(s). (s, α, s′) ∈ I ∧ s′ |= ϕ

Let σ be a path of s, then the satisfaction relation |=⊆ Path× π for a path formula
is defined by:

• σ |= ϕ Uϕ1 ⇔ ∃j ≥ 0. σ[j] |= ϕ1 ∧ ∀0 ≤ i < j. σ[i] |= ϕ

�

Despite of all possible optimization described in the previous section, in this case,
this logic has an high computational cost because we must generate several possible
assignments.

We want to highlight that, for each assignment A ⊆ Q, we derive a CMTS(GT )
N from M and then we must verify properties over N and, unfortunately, the set
of all possible CMTS(GT ) can be very large.

In effect, if we suppose that the computational cost of a single formula ϕ over
a CMTS(GT ) equals to Kϕ, the set of our parameters is Q and its size is NQ
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and for each formula ρ we define an initial set of parameters of size NP then the
computational cost of ρ = ∀Pϕ or ρ = ∃Pϕ is equivalent to 2NQ−NP ∗Kϕ

Trivially, this is a very high computational cost. Of course, once we determine
a CMTS(GT ) from an assignment A, then we can verify properties using the op-
timization previously seen, nevertheless the transformation from the CMTS(GT )
to the CMTS(GT ) fully described action must be computed for each new derived
CMTS(GT ). Again, we have the cost of transformation repeated for each possible
assignment.
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Chapter 7

Conclusion

In this thesis, we have presented a new specification formalism deriving by the Gen-
eralized Extended Modal Transition System (GEMTS). The Constrained Modal
Transition System (CMTS) revisits the GEMTS by defining the same concept but
in a different way, namely introducing the concept of constraint over outgoing tran-
sitions. By means of a constraint we can decide how many transitions must be
present in a correct implementation, moreover this new approach allow us to find
out some useful properties of the model in a more direct way.

In addition, we have defined a concept of refinement step-by-step, which is absent
in the GEMTS formalism and we have presented two different types of refinement:
one slightly more semantic, which uses the concept of semantics of constraints, the
other one more syntactic, which uses the syntactic concept of constraints and we
have also described how we can refine a constraint in another one in a correct way.

For convenience, it has been assumed that the CMTS is action-deterministic,
hence in the Chapter 3 we have shortly described as a CMTS can change in a non-
deterministic context and finally we have studied the problem of minimalization,
namely if taken a CMTS M , it is possible to find a CMTS N semantically equivalent
but with a reduced number of constraints. Furthermore, an initial definition of
parallel composition is described in the Appendix.

Thereafter we have introduced some further extensions of the CMTS formalism,
introducing guards both in transition and constraint concepts.

Hence, by using CMTS and its extensions we have compared some different
specification formalisms, which can be found in literature: LTS, MTS, DMTS,
1MTS, GEMTS, OTS and PMTS, deriving a hierarchy of expressivity of all
these models, considered in a context of action-determinism.

Finally, we have introduced a new modal logic, which has both deontic and
temporal operator, and it allows to verify both typical properties of CTL and prop-
erties like “it is obligatory that”, or “it is permitted that”, or “it is forbidden that”,
namely typical deontic property. In addition we have described how the CMTS can
be improved in order to decrease the computational cost. Then this logic has been
extended to CMTS extensions, deriving a deontic-temporal logic with parameters.
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7.1 Future work

As for future work, there are many possibilities. One possibility is to study and
to understand if it is possible to determine the exact minimal number of constraint
for each possible CMTS M , because our theorem is only an existential theorem.
Moreover, we might define some useful algorithms to compute the consistency of a
CMTS and how to derive the minimal CMTS from a generic one, for example by
means of the use in a smart way of constraints. On the other hand, it is interesting
to study how the CMTS, its extensions and the derived hierarchy change by deleting
of action-determinism requirement. In particular if this non-determinism is useful
and how to handle constraints with some multiple transition with the same label.
Note that the most part of definitions allow to handle the non-determinism context
and we have rarely used to the action-determinism requirement in view of a possible
general extension.

Another possibility is to determine if other extensions of CMTS are possible or
if it is interesting and useful to introduce some further conditions over constraints
and transitions.

Moreover, it is possible to study the complexity problem about the refinement
introduced for CMTSs and possibly compare these results to the ones related to the
PMTS and OTS formalisms. The study of complexity can be a useful tool to find
some other special properties or some useful extension/restriction of CMTS which
reduces the possible computational costs.

Another interesting topic is the one related to the logic introduced in Chapter 6,
in effect we might study in a deeper way some useful properties of the logic itself
or of the logic related to the refinement. On the other hand, it is interesting to
understand if the optimization which we have described can be further extended or
improved, in particular in order to derive some less-expensive algorithms to check
logic formulae and to handle, in a smart way, the logic with parameters. Again, it is
possible to try to realize how the interpretation of logic formulae, in particular the
deontic ones, changes with the introduction of non-determinism and if this change
is significant or not.

Last but not least, it is possible to develop these concepts from a practical
point view and, hence, to define some algorithms and/or programs which allow to
verify properties and/or to describe a CMTS and derive its implementations in a
simple way in order to understand in which real contexts these models are useful or
are too much expressive and what lacks they have for an effective utilization in a
company/product-family context.
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Refinement Properties

All refinement definitions which we have seen are preorders, namely they have a
reflexive and transition property, so it is interesting to know if semantic and syntactic
modal refinements are preorders too.

Theorem A.1. The semantic modal refinement is a preorder.

Proof.
Reflexive: taken a state s, we must demonstrate that (s, s) ∈ R, for some semantic
refinement relation R. Now we suppose R = {(s, s) | s ∈ S} then we try to see if R
is a semantic refinement relation.

Trivially, the first condition ofR is satisfied. In addition for the second JC(s)K vR
JC(s)K holds. In effect, taken a set of transitions I ∈ JC(s)K then ∃J ∈ JC(s)K such
that I vR J , simply it is sufficient to consider J such that J = I.
Transitive: let s0, s1, s2 be three states such that (s0, s1) ∈ R1 and (s1, s2) ∈ R2,
we must demonstrate that (s0, s2) ∈ R, for some semantic refinement relation R.
We suppose R = {(s, s2) | ∃s1. (s, s1) ∈ R1 ∧ (s1, s2) ∈ R2}.

The first condition is simple, we know:

• s0
α−→ s′0 ⇒ s1

α−→ s′1 ∧ (s′0, s
′
1) ∈ R1

• s1
α−→ s′1 ⇒ s2

α−→ s′2 ∧ (s′1, s
′
2) ∈ R2

It is simple to understand that s0
α−→ s′0 ⇒ s2

α−→ s′2 ∧ (s′0, s
′
2) ∈ R.

Now we consider the second condition: if (s0, s1) ∈ R1 then ∀I ∈ Js0K. ∃J ∈
Js1K. I vR1 J . Moreover if (s1, s2) ∈ R2 then ∀J ∈ Js1K. ∃K ∈ Js2K. J vR2 K.

Therefore, taken I ∈ Js0K, we can derive J ∈ Js1K and so K ∈ Js2K. We need to
understand if I vR K, namely ∀(α, s′) ∈ I. ∃(α, t′) ∈ K. (s′, t′) ∈ R.

We consider a generic (α, s′) ∈ I then we know that (α, s′J) ∈ J and (s′, s′J) ∈ R1,
for hypothesis. In addition, for hypothesis, (α, s′J) ∈ J then (α, t′) ∈ K such that
(s′J , t

′) ∈ R2, so (s′, t′) ∈ R, deducing ∀(α, s′) ∈ I. ∃(α, t′) ∈ K. (s′, t′) ∈ R.

Theorem A.2. The syntactic modal refinement is a preorder.
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Proof.
Reflexive: taken a state s, we must demonstrate that (s, s) ∈ R, for some syntactic
refinement relation R. Suppose R = {(s, s) | s ∈ S} then we try to see if R is a
syntactic refinement relation.

Trivially, the first condition ofR is satisfied. In addition for the second, ∀c ∈ C(s)
we can find a c′ ∈ C(s) such that c ER c′ and (Label(c) \ Label(c′)) ∩ Label(s) = ∅.
In effect it is sufficient to consider c′ = c.
Transitive: let s0, s1, s2 be three states such that (s0, s1) ∈ R1 and (s1, s2) ∈ R2,
we must demonstrate that (s0, s2) ∈ R, for some syntactic refinement relation R.
We suppose R = {(s, s2) | ∃s1. (s, s1) ∈ R1 ∧ (s1, s2) ∈ R2}.

The first condition is simple, in effect we know:

• s0
α−→ s′0 ⇒ s1

α−→ s′1 ∧ (s′0, s
′
1) ∈ R1

• s1
α−→ s′1 ⇒ s2

α−→ s′2 ∧ (s′1, s
′
2) ∈ R2

Again it is simple to understand that s0
α−→ s′0 ⇒ s2

α−→ s′2 ∧ (s′0, s
′
2) ∈ R.

As we saw in other previous theorems, we suppose that if it exists a constraint
c =< CS, [min,max] > such that min = 0 and it does not exist a refined constraint
of c, then this is equivalent to have a constraint c′ =< CS ′, [0, 0] > where c′ E
c. Therefore we can modify the second refinement condition in this way: ∀ct ∈
CN(t). ∃cs ∈ CM(s) such that: cs ER ct and (Label(ct) \ Label(cs)) ∩ Label(s) = ∅.

Since (s0, s1) ∈ R1 then ∀c0 ∈ C(s0). ∃c1 ∈ C(s1) such that: c0 ER1 c1 and
(Label(c1) \ Label(c0)) ∩ Label(s0) = ∅. Moreover if (s1, s2) ∈ R2 then ∀c1 ∈
C(s1). ∃c2 ∈ C(s2) such that: c1 ER2 c2 and (Label(c2) \ Label(c1)) ∩ Label(s1) = ∅.

Now consider c0 =< CS0, [min0,max0] >, c1 =< CS1, [min1,max1] > and
c2 =< CS2, [min2,max2] >. Trivially all constraints are correct.

Since c0 ER1 c1 then min1 ≤ min0 ≤ max0 ≤ max1, in addition seeing that
c1 ER2 c2 then min2 ≤ min1 ≤ max1 ≤ max2. It is simple to conclude that
min2 ≤ min0 ≤ max0 ≤ max2.

Furthermore for c0 ER1 c1 we have that ∀(α, s′0) ∈ CS0. ∃(α, s′1) ∈ CS1 ∧
(s′0, s

′
1) ∈ R1 and the same holds for c1 ER2 c2. So we can deduce that ∀(α, s′0) ∈

CS0. ∃(α, s′1) ∈ CS1 ∧ ∃(α, s′2) ∈ CS2. (s′0, s
′
1) ∈ R1 ∧ (s′1, s

′
2) ∈ R2, concluding

∀(α, s′0) ∈ CS0. ∃(α, s′2) ∈ CS2. (s′0, s
′
2) ∈ R.

The last thing to be demonstrated is (Label(c2) \ Label(c0)) ∩ Label(s0) = ∅.
First of all note that if (s0, s1) ∈ R1, for definition of syntactic modal refine-
ment, Label(s0) ⊆ Label(s1) and the same holds for (s1, s2), hence we can deduce
Label(s0) ⊆ Label(s2). From set theory we know that S \ S1 is equivalent to say
that for each element x, x ∈ S ∧ x 6∈ S1 holds. In addition we know:

1. (Label(c1)\Label(c0))∩Label(s0) = ∅ is true, namely ∀α. α ∈ Label(c1)∧α 6∈
Label(c0)⇒ α 6∈ Label(s0)

2. (Label(c2)\Label(c1))∩Label(s1) = ∅ and Label(s0) ⊆ Label(s1), so we can say
(Label(c2) \ Label(c1)) ∩ Label(s0) = ∅ is true, hence ∀α. α ∈ Label(c2) ∧ α 6∈
Label(c1)⇒ α 6∈ Label(s0)
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It is simple to deduce that taken α ∈ Σ then α ∈ Label(c1)∨α 6∈ Label(c1). Therefore
if α ∈ Label(c2) ∧ α 6∈ Label(c0) we have two possibilities: if α ∈ Label(c1) then
surely α 6∈ Label(s0), otherwise α 6∈ Label(c1) again surely α 6∈ Label(s0).

In conclusion we can say that (Label(c2)\Label(c0))∩Label(s0) is always true.
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Appendix B

Theorems and proofs of Chapter 5

In these theorems and proofs we implicitly assume that each model is action-
deterministic.

Theorem B.1. The formalism MTS is less expressive of a 1MTS, namely MTS 
1MTS

Proof.
First of all, we know that, taken a MTS L = (S,Σ,−→♦L ,−→�L

), L is equivalent
to a 1MTS M = (S,Σ,−→♦M ,−→�M

) such that:

• ∀s ∈ S. (s, U) ∈−→♦M ∧ |U | = 1

• ∀s ∈ S. ∀(α, s′) ∈ Σ× S. (s, α, s′) ∈−→♦L⇔ ∃(s, U) ∈−→♦M .U = {(α, s′)}

• ∀s ∈ S. ∀(α, s′) ∈ Σ× S. (s, α, s′) ∈−→�L
⇔ ∃(s, U) ∈−→�M

.U = {(α, s′)}

Moreover no possible MTS can describe the 1MTS in Figure B.1. Suppose that
a MTS L which describes the 1MTS M in Figure B.1 exists then we can deduce
that transitions (a, s1), (b, s2) are may transitions because they must not be always
present. If it is true then the LTS with no transitions is correct for L but is wrong
for M , because as we can see in Figure B.1 all possible LTSs must have at least one
transition. On the other hand, if we suppose that (a, s1) is the must transition in L
then the LTS J in Figure B.1 is wrong for L and the same reasoning is true if we
suppose (b, s2) as must transition or if we suppose that all transitions are must.

Finally, we can deduce that this hypothetical MTS does not exist.

Theorem B.2. The formalism DMTS and 1MTS are not comparable, namely 1MTS
6 DMTS and DMTS 6 1MTS.

Proof.
No possible DMTS can describe the 1MTS in Figure B.1. Suppose that a DMTS
L which describes the 1MTS M in Figure B.1 exists then we can deduce that tran-
sitions (a, s1), (b, s2) are may transitions because they must not be always present.
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Figure B.1: An example of 1MTS and its derived LTSs

If we have not a must hypertransition then the LTS with no transitions is correct
for L but is wrong for M . If we introduce the must hypertransition we have three
possibilities:

1. we add only one must hypertransition (s, {(a, s1)})

2. we add only one must hypertransition (s, {(b, s2)})

3. we add only one must hypertransition (s, {(a, s1), (b, s2)})

Of course, we can combine these cases, adding more hypertransitions but these three
cases are the base ones. In the first case the LTS K is never derivable, in the second
one the LTS J is never derivable, whereas in the third case J and K are derivable
but, unfortunately, we can derive another LTS with both transitions and this is
obviously wrong.

Finally, we can deduce that this hypothetical DMTS does not exist.
On the other hand, no possible 1MTS can describe the DMTS in Figure 5.10.

Suppose that a 1MTS L which describes the DMTS M in Figure 5.10 exists. We
have some possibilities:

• we have two may singleton hypertransitions, one for (a, s1) and one for (b, s2)

• we have a may hypertransition which considers both (a, s1) and (b, s2)

In each case we can derive the LTS wit no-transitions and it is impossible for M .
Hence, we need of some must transition but again we have two possibilities:

• we have two must singleton hypertransitions, one for (a, s1) and one for (b, s2)

• we have a must hypertransition which considers both (a, s1) and (b, s2)
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In the first case LTSs I and J are impossible for L, in the second case the LTS K
is impossible.

The last chance is if we have:

• two may singleton hypertransitions, one for (a, s1) and one for (b, s2)

• a may hypertransitions, which considers both (a, s1) and (b, s2)

• a must hypertransition which considers both (a, s1) and (b, s2)

Now LTS K is possible, because if the must hypertransition choose, for exam-
ple, (a, s1) then we have in any case the may hypertransition (b, s2). In this way
K is derivable. But as we said, we must have action-deterministic choice func-
tions and they must be extended for the singleton may hypertransition. Hence, if
γ({(a, s1), (b, s2)}) = (a, s1) then γ({(a, s1)}) = (a, s1) and γ({b, s2)}) = ⊥, deduc-
ing that in this case the LTS K is not derivable.

Theorem B.3. The formalism 1MTS is less expressive of the CMTS, namely
1MTS CMTS

Proof.
Trivially, no possible 1MTS can describe the CMTS in Figure B.2. Suppose that a
1MTS L which describes the CMTS M in Figure B.1 exists then we can deduce that
transitions (a, s1), (b, s2), (c, s3) are may transitions because they must not be always
present. If we have not a must hypertransition then the LTS with no transitions is
correct for L but it is wrong for M . If we introduce the must hypertransition we
have three possibilities:

1. we add a single must hypertransition which handles only one transition

2. we add a single must hypertransition which handles only two transitions

3. we add a single must hypertransition which handles all transitions

Of course, we can add more hypertransitions simultaneously but this three cases
are the base cases. In the first case some LTSs are not derivable, for example if the
must hypertransition has only (a, s1), then the LTS K is never derivable.

In the second case some possible LTSs are not derived, for example if we consider
a hypertransition with (a, s1), (b, s2) then the LTS I is impossible.

In the third case if we interpret the must hypertransition with XOR semantics
then no derived LTS is possible.

Finally, we can deduce that this hypothetical 1MTS does not exist.

Theorem B.4. The formalism DMTS is less expressive of the CMTS, namely
DMTS CMTS
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Figure B.2: An example of a CMTS and its derived LTSs

Proof.
Trivially, no possible DMTS can describe the CMTS in Figure B.2. Suppose that a
DMTS L which describes the CMTS M in Figure B.1 exists then we can deduce that
transitions (a, s1), (b, s2), (c, s3) are may transitions because they must not be always
present. If we have not a must hypertransition then the LTS with no transitions is
correct for L but it is wrong for M . If we introduce the must hypertransition we
have three possibilities:

1. we add a single must hypertransition which handles only one transition

2. we add a single must hypertransition which handles only two transitions

3. we add a single must hypertransition which handles all transitions

Of course, we can add more hypertransitions simultaneously but this three cases
are the base cases. In the first case some LTSs are not derivable, for example if the
must hypertransition has only (a, s1), then the LTS K is never derivable.

In the second case we have a must hypertransition with two transitions and, for
each transition in the hypertransition, we have a further may transition, then the
result depends on the type of remaining transition. If it is may then we can derive
a LTS with only one transition and this is wrong. If it is must we can derive a LTS
with all transitions and again, this is wrong. For example, if the hypertransition
has (a, s1), (b, s2) then:

• if (c, s3) is may then LTS with only (a, s1) is possible

• if (c, s3) is must then LTS with (a, s1), (b, s2), (c, s3) is possible
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In the third case if we have a must hypertransition with all transitions then a
LTS with all transitions is possible and this is obviously wrong.

Finally, we can deduce that this hypothetical DMTS does not exist.

Now we consider a generic OTS O and a LTS I derived from O. We know that
a LTS is a OTS where, for each state, the obligation function is a conjunction of all
outgoing transitions.

Suppose to consider a state sO of O and the corresponding sI of I then, seeing
that I is derived by O, we have that each set of transitions which satisfies the
obligation formula of sI also satisfies the obligation formula of sO. Trivially, we
have only one set of transitions which satisfies the obligation formula of sI , namely
the set of all outgoing transitions and, hence, we deduce that the set of all outgoing
transitions of sI is included in the set of all possible sets of transitions of sO. We
can conclude that each possible LTS I derived from O has the property that, for
each state sI , Trans(sI) ∈ JΩ(sO)K, namely for each state sI , its set of outgoing
transitions is a correct set for the obligation formula of corresponding state sO.

Conceptually, this is the same idea used to describe that a LTS I, derived from a
CMTS M , is composed by states sI such that its outgoing transitions are solutions
of constraints of the corresponding state sM of M .

In addition, taken two sets of sets of transitions S and S1, we say that S vR S1

if and only if the following property holds:

∀I ∈ S. ∃J ∈ S1. ∀(α, s′) ∈ I. ∃(α, s′1) ∈ J ∧ (s′, s′1) ∈ R∧
∀(α, s′1) ∈ J. ∃(α, s′) ∈ I ∧ (s′, s′1) ∈ R

Note that this operator has already been described in Section 2.2.7. We say that
S =R S1 if and only if S vR S1 and S1 vR S

First of all, we introduce a special construction that we will use in the subsequent
three theorems. This construction allow us to determine that the CMTS model can
be represented by an OTS* and we call it construction by semantics.

Theorem B.5 (Construction by semantics). Let M = (SM ,Σ,−→M ,CM , s0M )
be a CMTS. Then we can deduce an OTS* O = (SO,Σ,−→O,ΩM , s0O) such that it
holds:

JJMKKCMTS = JJOKKOTS*

Proof.
Suppose to compute the semantics JJMKKCMTS. Seeing that the CMTS is an ac-
tion deterministic CMTS, then each computed LTS in the semantics is action-
deterministic. Now we try to derive the OTS* O in the following way:

• SO = SM

• −→O=−→M
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• ∀sO ∈ SO. Ω(sO) is derived in this way: we denote by sM the corresponding
state in M of sO. If JC(sM)K = ∅ then Ω(sO) = ff , otherwise taken a I ∈
JC(sM)K, we denote NotPresI = Trans(sM) \ I.

Now we define the formula ϕI =
∧

(α,s′M )∈I
(α, s′O) ∧

∧
(α,s′M )∈NotPresI

¬(α, s′O).

The obligation formula Ω(sO) =
∨

I∈JC(sM )K
ϕI .

Note that this obligation formula is in DNF.

In addition if JC(sM)K = P(Trans(sM)), namely each possible combination of
outgoing transitions of sM is possible, then our obligation formula is an OR of
all possible combinations. Trivially, it is possible to prove that this obligation
formula is also equivalent to the obligation formula tt.

Now we must prove the semantic equivalence. Instead of checking if a LTS derived
from O is also derived by M and the vice versa too, we can note that in both
formalisms a LTS can be derived by the semantics of constraints and obligation for-
mula, hence if we take a generic state s and we prove that JC(sM)K =R J
(sO) where
R = {(sM , sO)} and sM , sO describe the same state s in M and O, respectively. In
this way we implicitly deduce the semantic equivalence.

Initially, we prove the inconsistency:

• JC(sM)K = ∅, in this case, for construction, we impose that Ω(sO) = ff and
hence JΩ(sO)K = ∅

• JΩ(sO)K = ∅ hence Ω(sO) = ff and for construction, we can derive that
JC(sM)K = ∅

Now we consider the consistent case:
Case 1) ∀I. I ∈ JC(sM)K⇒ I ∈ JΩ(sO)K.
Suppose I ∈ JC(sM)K, then for construction a disjunct ϕ of Ω(sO) exists such

that I ∈ JϕK. Trivially, we can deduce that I ∈ JΩ(sO)K.
Case 2) ∀I. I ∈ JΩ(sO)K⇒ I ∈ JC(sM)K.
Suppose I ∈ JΩ(sO)K, then a disjunct ϕ of Ω(sO) exists such that I ∈ JϕK.

Trivially, for construction, ϕ is a conjunction of all possible outgoing transitions of
sO and, hence, of sM . We can deduce that each set of transitions J satisfying ϕ
holds this property: each positive atom in ϕ is in J , whereas each negative atom
is not in J . Therefore we can deduce that JϕK has only one possible valid set of
transitions, namely I. For construction, a set of transition formed by only positive
atoms of ϕ exists in JC(sM)K too, hence I ∈ JC(sM)K must be true.

Theorem B.6. The formalism CMTS is less expressive of OTS*, namely CMTS 
OTS*
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Proof.
In Theorem B.5 we prove that for each CMTS is possible to find a semantically
equivalent OTS*. The vice versa is not true. For example, we consider the OTS*
in Figure B.3, in this case we can have three different possible constraints:

1. the constraint with choice set {(a, s1)}

2. the constraint with choice set {(b, s2)}

3. the constraint with choice set {(a, s1), (b, s2)}

In the first and second case we must have the cardinality equals to [0, 1] because
(a, s1) and (b, s2) can be taken or not, and the same reasoning holds for the third
case, deducing that its cardinality is [0, 2]. Trivially, the LTS with only (a, s1) is
possible for our CMTS and this is wrong. To solve this problem we can change some
cardinality, but each change reduces the semantics of the CMTS in a wrong way.

Figure B.3: An example of an OTS* and its derived LTSs

We want to highlight that in some case in the next proof we compare LTS and
LTS(G) where each transition has guard equals to tt. Conceptually, they represent
the same model, hence we handle indistinctly a LTS as LTS(G) and vice versa.

Lemma B.1. Let M be a CMTS(GT ) then exists an OTS* O such that JJOKKOTS* =
JJMKKCMTSGT .
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Proof.
In this case we have guards over transitions and, for each state sM , the semantics
of C(sM) is a set of guarded transitions. We can derive that for each state s of a
LTS(GT ) derived by M through a refinement relation, the outgoing transitions of s
are a solution of C(sM). On the other hand, the semantics of M takes into account
only LTSs, which are derived by LTS(GT ) deleting each transition with guard equals
to ff . Then we easily derive a new set JC(sM)K|{tt} = {ExecutableKer(I) | I ∈
JC(sM)K}.

We use the same construction used for Theorem B.5:

• SO = SM

• −→O= {(sO, α, s′O) | (sM , g, α, s
′
M) ∈−→M}

• ∀sO ∈ SO. Ω(sO) is derived in this way: we denote by sM the corresponding
state in M of sO.

If JC(sM)K = ∅ then Ω(sO) = ff , otherwise taken a I ∈ JC(sM)K. We denote
PresI = {(α, s′O) | (tt, α, s′M) ∈ I} and NotPresI = Trans(sO) \ PresI . In
this case PresI represents all possible transitions which is surely present in
the LTS derived by LTS(GT ) which are refinable from M .

Now we define the formula ϕI =
∧

(α,s′M )∈PresI
(α, s′O) ∧

∧
(α,s′M )∈NotPresI

¬(α, s′O).

The obligation formula Ω(sO) =
∨

I∈JC(sM )K
ϕI .

Note that this obligation formula is in DNF.

In addition if JC(sM)K = P(Trans(sM)), namely each possible combination of
outgoing transitions of sM is possible, then our obligation formula is an OR of
all possible combinations. Trivially, it is possible to prove that this obligation
formula is also equivalent to the obligation formula tt.

Now we prove that JC(sM)K|{tt} =R JΩ(sO)K, where R = {(sM , sO)} and sM , sO
describe the same state s in M and O, respectively.

Trivially if JC(sM)K|{tt} = ∅ then we can derive that JC(sM)K = ∅, hence for
construction Ω(sO) = ff and its semantics is empty. Otherwise, if JΩ(sO)K = ∅
then, the only possibility is Ω(sO) = ff and, for construction we can conclude that
JC(sM)K|{tt} = ∅.

Case 1) ∀I. I ∈ JC(sM)K|{tt} ⇒ I ∈ JΩ(sO)K.
Suppose I ∈ JC(sM)K|{tt}, then a J ∈ JC(sM)K such that I = ExecutableKer(J)

exists. For construction, we compute PresJ and NotPresJ and we derive a formula
ϕ from these two sets. Note that this property holds (α, s′O) ∈ PresJ ⇔ (tt, α, s′M) ∈
J ⇔ (tt, α, s′M) ∈ I.

In addition ϕ is a disjunct of Ω(sO) and, seeing that ϕ is a conjunction of all
outgoing transitions of sO, where all positive atoms are all and only the guarded
transitions in I, then I ∈ JϕK. Trivially, we can deduce that I ∈ JΩ(sO)K.
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Case 2) ∀I. I ∈ JΩ(sO)K⇒ I ∈ JC(sM)K|{tt}.
Suppose I ∈ JΩ(sO)K, then a disjunct ϕ of Ω(sO) exists such that I ∈ JϕK.

Trivially, for construction ϕ is a conjunction of all possible outgoing transitions
of sO and we can deduce that JϕK has only one possible valid set of transitions,
namely I. For construction, then ∃J ∈ JC(sM)K such that each positive atom in ϕ is
related to a transition with guard tt in J . Seeing that each positive atom must be
present in I, then we can deduce that I = ExecutableKer(J) is true and, therefore,
I ∈ JC(sM)K|{tt} holds

Lemma B.2. Let O be an OTS* then exists a CMTS(GT ) M such that JJOKKOTS* =
JJMKKCMTSGT .

Proof.
First of all, taken O = (SO,Σ,−→O,ΩM , s0O) we change conveniently its obligation
function, for each state s, in the following way:

• if JΩ(s)K = JttK then we define Ω(s) = tt

• if JΩ(s)K = JffK then we define Ω(s) = ff

• if JΩ(s)K 6= JffK and JΩ(s)K 6= JttK then we simplify Ω(s) such that in Ω(s)
we have only atomic literals and it is in CNF

These changes do not modify the semantics and not introduce some type of restric-
tion, they are only useful to simplify the proof.

Since, for any state s, the obligation formula ϕ is in CNF then we can say
ϕ =

∧
1≤i≤K

ϕi for some K. Note that if ϕ = tt then K = 1 and ϕ1 = tt, the same

holds for ff .
Now taken a generic ϕj, we define three categories:

1. ATOM+
j is the set of all positive atoms in ϕj, namely elements like (α, s′)

2. ATOM−
j is the set of all negative atoms in ϕj, namely elements like ¬(α, s′)

3. NOATOMj is the set of all possible values which are not atomic literals,
namely tt or ff

Note that an atom is an element of Σ × S and ATOM+
j ∪ ATOM−

j ⊆ Trans(sj)
because we can have may transitions which are not considered in the obligation
function.

In addition, we defineATOM+ =
⋃

1≤j≤K
ATOM+

j andATOM− =
⋃

1≤j≤K
ATOM−

j .

Now we define a CMTS(GT ) M = (SM ,Σ,−→M ,CM , s0M ) such that:

• SM = SO
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• −→M= {(sM , g, α, s′M) | (g, α, s′M) ∈ DerivTrans(sM)} where:

DerivTrans(sM) =DerivTrans+(sM) ∪DerivTrans−(sM)∪
DerivTrans⊥(sM)

These sets are computed in the following way: initially, we take the state sM
and determine the related state sO ∈ SO and the set ATOM+ and ATOM−,
then

– DerivTrans+(sM) =
⋃

(α,s′O)∈ATOM+

{(tt, α, s′M)}, where s′M is the state

related to s′O

– DerivTrans−(sM) =
⋃

(α,s′O)∈ATOM−
{(tt, α, s′M), (ff , α, s′M), }, where s′M is

the state related to s′O

– DerivTrans⊥(sM) = {(tt, α, s′M) | (α, s′O) ∈ Trans(sO) \ (ATOM+ ∪
ATOM−)}, where s′M is the state related to s′O. This set describes all
may transitions which are not considered in the obligation function

• ∀sM we compute the related state sO and Ω(sO), suppose that Ω(sO) = ϕ
then:

– if ϕ = tt then we define only one constraint c =< CS, [min,max] > such
that CS = {(sM , tt, α, s′M) | (sM , tt, α, s′M) ∈ Trans(sM)}, min = 0 and
max = |CS|

– if ϕ = ff then we define only one constraint c =< CS, [min,max] > such
that CS = Trans(sM), min = |CS|+ 1 and max = |CS|+ 1

– if ϕ is in CNF and it has only atomic literals then ϕ =
∧

1≤j≤K
ϕj. Now we

define the following sets of constraints:

∗ ∀(α, s′O) ∈ ATOM− we define:

c =< {(tt, α, S ′M), (ff , α, S ′M)}, [1, 1] >

. We call the set of all these constraints Ccons
∗ ∀1 ≤ j ≤ K we define cj =< CSj, [minj,maxj] > where:

1. minj = 1

2. maxj = |CS|
3. CSj = {(tt, α, s′M) | (α, s′O) ∈ ATOM+

j } ∪ {(ff , α, s′M) |
(α, s′O) ∈ ATOM−

j }
We call the set of all these constraints Cdisjuncts

In addition ∀(α, s′O) ∈ Trans(sO)\(ATOM+∪ATOM−) we define c =<
{(tt, α, s′M)}, [0, 1] > and we call the set of all these constraints Cno−atom.

The set C(sM) = Ccons ∪ Cdisjuncts ∪ Cno−atom.



193

Now we prove the semantic equivalence and again we consider the semantics of
constraints and obligation formula. If for each state sM and sO the semantics of
constraints of sM is equivalent to the semantics of the obligation formula of sO then
M and O have the same semantics, because they can derive the same set of LTSs.

Take states sM and sO, we can note that the semantics of sO is a set of LTS,
whereas the semantics of constraints of sM is a set of LTS(GT ). In Section4.1
we define two types of semantics of constraints: J.KG to denote the set of guarded
transitions with both types of guard, whereas J.K to denote the set of guarded tran-
sition with the only guard tt. Then we prove that JC(sM)K =R JΩ(sO)K, where
R = {(sM , sO)}.

Trivially, suppose that JΩ(sO)K = ∅ then this is possible if and only if Ω(sO) = ff
but, for construction, the set of constraints in sM is formed by only one constraint,
which is inconsistent and then JC(sM)KG = JC(sM)K = ∅.

Now suppose that JC(sM)K = ∅ and this is possible if and only if we have at
least one inconsistent constraint. Note that all constraints in Ccons, Cdisjuncts and
Cno−atom are consistent, the only possible inconsistent constraint is the defined ones
when Ω(sO) = ff , concluding that JΩ(sO)K = ∅.

At this point, we want to prove that JΩ(sO)K =R JC(sM)K, when Ω(sO) is a CNF
formula ϕ =

∧
1≤i≤K

ϕi for some K.

Suppose that I ∈ JΩ(sO)K then I ∈ JϕjK for any 1 ≤ j ≤ K. Now try to verify if
I ∈ JC(sM)K, namely if ∃J ∈ JC(sM)KG such that I = ExecutableKer(J). Trivially,
J satisfies a constraint in Ccons if two equivalent transitions with different guards
are not both in J , this is an important restriction to guarantee the consistency.
Note that in I a transition cannot be simultaneously present and not, so J trivially
can satisfy these constraints. Constraints in Cno−atom are general non-restrictive
constraints, hence any possible J satisfies these constraints. Finally, we take a
constraint c ∈ Cdisjuncts and J ∈ JcK⇔ 1 ≤ |J ∩CSc| ≤ |CSc|. For definition, taken
the constraint c then exists some disjunct ϕh related to c. Seeing that I ∈ JϕhK then
we can deduce that ∃(α, s′O) ∈ ATOM+

h . I ∈ J(α, s′O)K ∨ ∃(α, s′O) ∈ ATOM−
h . I ∈

J¬(α, s′O)K.
Suppose that ∃(α, s′O) ∈ ATOM+

h . I ∈ J(α, s′O)K is true then (α, s′O) ∈ I. Since
I = ExecutableKer(J) then (tt, α, s′M) ∈ J , deducing that surely 1 ≤ |J ∩ CSc|.

On the other hand, if ∃(α, s′O) ∈ ATOM−
h . I ∈ J¬(α, s′O)K is true then (α, s′O) 6∈

I. Since (α, s′O) ∈ ATOM−
h then (sM ,ff , α, s

′
M) exists.

In addition I = ExecutableKer(J) then (tt, α, s′M) 6∈ J and for some consistency
constraint we can derive that (ff , α, s′M) ∈ J , deducing that surely 1 ≤ |J ∩ CSc|.

Now suppose that I ∈ JC(sM)K then ∃J ∈ JC(sM)KG and I = ExecutableKer(J).
Trivially, J satisfies constraints in Cno−atom and Ccons but in the first case we

consider may transitions which are not handled by an obligation function, whereas
in the second case we require that a transition is not simultaneously present and not
present and this is always true.

Now we consider a constraint c ∈ Cdisjuncts, we know that a ϕh exists and ϕh is
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a disjunct of ϕ. If J ∈ JcKG then at least one transition of Choice(c) exists in J .
Therefore if this transition is (ff , α, s′M), then in I = ExecutableKer(J) it does not
exist, in addition a negative atom (α, s′O) exists in ϕ and, trivially, I ∈ J¬(α, s′O)K.
On the other hand, if this transition is (tt, α, s′M), then in I = ExecutableKer(J)
it exists, in addition a positive atom (α, s′O) exists in ϕ and, trivially, I ∈ J(α, s′O)K.

Hence, if J satisfies each constraint in Cdisjuncts then I satisfies each constraint
in ϕ, then I ∈ JΩ(s′O)K.

Finally, the special case is when Ω(sO) = tt. Trivially the semantics of this
logic formula is equal to P(Trans(sO)), namely all possible sets of transitions. In
addition, we note that by means functions DerivTrans if (sO, α, s

′
O) exists then

(sM , tt, α, s
′
M) exists too. If Ω(sO) = tt then the derived constraint is a general

non-restrictive constraint and its choice set has all possible transitions with guard
equal to tt. It is clear that, in this way, we have all possible sets of transitions with
guard equal to tt, deducing that JC(sM)K = P({(sM , tt, α, s′M)}).

On the other hand, if JC(sM)K = P({(sM , tt, α, s′M)}) then we have two possi-
bilities:

• exists a general non-restrictive constraint which describes the powerset and in
this case we can derive that Ω(sO) = tt

• the powerset is derived by a set of possible constraints. The only possibility
of having a set of constraints is if JΩ(sO)K 6= JffK and JΩ(sO)K 6= JttK. But
we have just seen that, in this case, JC(sM)K = JΩ(sO)K, hence JΩ(sO)K =
P({(sO, α, s′O)}). In this case we can deduce that JΩ(sO)K = JttK and, for
hypotheses, we should have changed Ω(sO) = tt and hence, we cannot have a
set of possible constraints, deriving an absurd

Theorem B.7. The formalism OTS* is as many expressive as CMTS(GT ), namely
OTS* ! CMTS(GT )

Proof.
The theorem holds for Lemma B.1 and Lemma B.2.

Theorem B.8. The formalism PMTS is as many expressive as CMTS(GT ,GQ),
namely PMTS! CMTS(GT ,GQ)

Proof.
We know that, taken an assignment A, then we can derive an OTS* from PMTS
and the assignment A. The same reasoning holds for a CMTS(GT ,GQ).

Hence, the hint is touse these two observations and useful constructions deter-
mined for Theorem B.7.

We must prove two cases:
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1. from a CMTS(GT ,GQ) M we can derive a PMTS P

2. from a PMTS P we can derive a CMTS(GT ,GQ) M

Case 1) we use a similar construction to the one seen in Lemma B.1. Take an
assignment A, we derive a logic formula related to A, namely ϕA =

∧
p∈A

p ∧
∧
p 6∈A
¬p.

Then we define the formula logic Ω(sP , A) = ff∧ϕA, if Jσ(sM , A)K = ∅, otherwise
Ω(sP , A) =

∨
I∈Jσ(sM ,A)K

ϕI∧ϕA where σ(sM , A) is the state sM such that each guarded

constraints is assigned in respect to the value A. Then Ω(sP ) =
∨
A⊆Q

Ω(sP , A).

Trivially, for an assignment A the CMTS(GT ,GQ) M becomes a CMTS(GT ),
namely σ(M,A). At the same time, for each assignment B 6= A ⊆ Q, we have that
ϕB = ff and, hence, Ω(sP ) becomes equal to Ω(sP , A), in particular it is equivalent∨
I∈Jσ(sM ,A)K

ϕI ∧ tt. Then the PMTS becomes the same OTS* used in Lemma B.1.

Trivially this OTS* and CMTS(GT ) have the same semantics and this is true for a
generic assignment A, hence it is always true, for any possible assignment.

Case 2) we use a similar construction to the one seen in Lemma B.2. Take an
assignment A, our PMTS becomes an OTS*, seeing that we can simplify logic for-
mulae of P by means of A. Hence, derived this OTS*, we use the same construction
of Lemma B.2 to determine a CMTS(GT ) but this time each constraint derived by
means of the construction of Lemma B.2 becomes a guarded constraint where the
guard is a multi-guard equals to A. Note that, in this case, a certain constraint
could have different multi-guard simultaneously.

Now, take an assignmentA, the PMTS becomes an OTS* and the CMTS(GT ,GQ)
becomes a CMTS(GT ). In particular, note that in σ(M,A) enabled constraints
are all and only constraints which we can derive by means of the construction of
Lemma B.2 when we have an OTS*. Trivially, the derived OTS* and CMTS(GT )
are equivalent for Lemma B.2 and this holds for any possible assignment A.
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Appendix C

Parallel Composition

In this chapter we introduce the idea of how to handle the parallel composition in
CMTS context, in particular how, taken two CMTSs M and M1, we can represent
the CMTS M ||M1, where || is the parallel composition. This topic is very important
because we might have a system L composed by several subsystems Li, so we might
describe several subsystems separately by means of suitable specifications Si then
we might connect all together these subsystems in order to obtain the specification
S of the general system L.

The idea of parallel composition is simple, indeed if two states s and t must be
composed in parallel way then:

• if both states have a transition labelled with the same action α and the same
transition type (for example both transitions are may transitions or both are
must transitions), then the two states can be synchronized over the execution
of this particular transition.

• otherwise we execute a possible transition of only one state, whereas the other
state is unchanged, namely a subsystem makes progress, whereas the other
one staying in its current state.

First of all, we introduce the composition in the LTS world [39] and in the MTS
world [11] [28] [36] [44]:

Definition C.1 (LTS composition):
Let M = (S,Σ,−→),M1 = (S1,Σ1,−→1) be two LTSs. Then we denote the parallel
composition of M and M1 by M ||M1.

M ||M1 is a LTS described by the tuple (SP ,ΣP ,−→P ) where:

• SP = S × S1

• ΣP = Σ ∪ Σ1

• −→ is inductively defined by:

(1)
s

α−→ s′ 6 ∃t′. t α−→ t′

s||t α−→P s
′||t

(2)
t
α−→ t′ 6 ∃s′. s α−→ s′

s||t α−→P s||t′
(3) s

α−→ s′ t
α−→ t′

s||t α−→P s
′||t′
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�

Definition C.2 (MTS composition):
Let M = (S,Σ,−→♦,−→�),M1 = (S1,Σ1,−→♦1 ,−→�1) be two MTSs. Then we
denote the parallel composition of M and M1 by M ||M1.

M ||M1 is a MTS described by the tuple (SP ,ΣP ,−→♦P ,−→�P
) where:

• SP = S × S1

• ΣP = Σ ∪ Σ1

• −→♦P is inductively defined by:

1.
s

α−→♦ s′ 6 ∃t′. t
α−→♦1 t′

s||t α−→♦P s′||t
and vice versa

2.
s

α−→♦ s′ t
α−→♦1 t′

s||t α−→♦P s′||t′

3.
s

α−→� s′ t
α−→♦1 t′

s||t α−→♦P s′||t′
and viceversa

• −→�P
is inductively defined by:

1.
s

α−→� s′ 6 ∃t′. t
α−→♦1 t′

s||t α−→�P
s′||t

and viceversa

2.
s

α−→� s′ t
α−→�1 t

′

s||t α−→�P
s′||t′

All rules are simple except the following:

–
s

α−→� s′ t
α−→♦1 t′

s||t α−→♦P s′||t′
: in this case we have a must outgoing transition la-

belled with α from s and a may outgoing transition labelled with α from
t. Since −→�⊆−→♦ then we can deduces s

α−→♦ s′ exists, so we can only
compose transitions of the same types, that is may transitions of s and
t, reaching s||t α−→♦P s′||t′

–
s

α−→� s′ 6 ∃t′. t
α−→♦1 t′

s||t α−→�P
s′||t

: the condition 6 ∃t′. t α−→♦1 t′ means that from

t is impossible to execute the action α, since −→�⊆−→♦, in this way
we guarantee that it exists neither a may transition nor must transition
labelled with α.

�
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As we can see, the parallel composition both for LTSs and for MTSs is a very
simple operation. Unfortunately, in CMTS context this operation becomes slightly
more complicated and the reason is related to the constraint concept. In effect the
bigger problem which we must resolve is, taken two states s and t of two differ-
ent CMTSs, to understand how derive the set Choice(s||t) by sets Choice(s) and
Choice(t).

We want to point out again that the constraint concept is “strange”: it does
not express which transitions must be considered from a particular predefined set
but it expresses the minimum and maximum number of transitions which must
be taken from the set, allowing a “free choice” about the exact transitions to be
considered. This free choice entails obvious problems when we try to reason about
parallel composition, but we will try to solve them in a simple way.

First of all, suppose we have two CMTSs M = (S,Σ,−→,C) and M1 = (S1,
Σ1,−→1,C1) which have a particular property: ∀s ∈ S, s1 ∈ S1 the following holds:

• ∀c ∈ C(s). Label(c) ⊆ Label(s1)⇒ ∃c1 ∈ C1(s1). Label(c) = Label(c1)

• ∀c1 ∈ C1(s1). Label(c1) ⊆ Label(s)⇒ ∃c ∈ C(s). Label(c) = Label(c1)

This property is simple: it requires that for any constraint c of a state s of M , if the
choice set of c, which is composed by a set of outgoing transitions of s, also describes
a set of possible outgoing transitions of a some state s1 of M1, then in s1 must exist
a constraint which handle the same choice set and this property must be true for
states of M1 too. The property is not a restriction because if a constraint related to
a set of transitions S is absent then we know that it is equivalent to < S, [0, |S|] >,
moreover it is very useful because it allow us to reason about the same constraint,
even if it is simultaneously related to two different states when these states have
a common subset of outgoing transitions. It is possible to make another simple
observation: suppose we have a constraint c =< CS, [min,max] >∈ C(s) of a some
state s and a set T ⊆ CS such that |T | = max. In this case c implicitly requires
that the set CS \T has only transitions “forbidden”, namely transitions which must
not be executed by the state s. In effect if we have I ⊆ Trans(s) such that T ⊆ I,
then I |= c ⇔ I ∩ (CS \ T ) = ∅, that is if I describes a possible solution which
includes the set T and if I satisfies c then we can simply deduce that transitions in
CS \ T are not present surely. In conclusion we can suppose to have two types of
transitions: executable and forbidden.

From all these observations we have the needed knowledge to solve the problem
of parallel composition in CMTSs. Our aim is to determine the set C(s||t), taken
two states s and t of two different CMTSs and their constraints C(s) and C(t).

We consider these two states s and t, then three situations are possible:

1. exists a constraint c of s such that Label(c) 6⊆ Label(t)

2. exists a constraint c of t such that Label(c) 6⊆ Label(s)
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3. exists a constraint c of s such that Label(c) ⊆ Label(t) and so, for hypothesis,
exists a constraint c1 of t such that Label(c) = Label(c1)

In first case the chosen constraint c introduces some restrictions over transitions but,
unfortunately, c must handle some outgoing transitions of s which do not exist in t.
Therefore c cannot be deleted, seeing that it describes some type of restriction in s
not present in t, and hence we can deduce that c must be included in C(s||t). The
second case is obviously symmetric to the first one. The third is the special case:
we have a constraint c of s and a constraint c1 of t such that Label(c) = Label(c1),
furthermore we suppose c =< CS, [minc,maxc] > and c1 =< CS1, [minc1 ,maxc1 ] >.
Now we imagine to have a set of transitions T ⊆ Trans(s) and a set of transitions
T1 ⊆ Trans(t) such that Label(T ) = Label(T1). Moreover we know that Label(c) =
Label(c1), hence for convenience we can reason about only labels, ignoring target
states. Note that this is not a restrictive assumption for two reasons:

1. CMTSs are action-deterministic, so labels identify univocally transitions

2. in non-deterministic CMTS we can change the label of a single transitions with
a couple < label, targetstate >, returning to a CMTS action-deterministic

We call L = Label(T ), L1 = Label(T1), Lc = Label(c) = Label(c1), in addition note
that L = L1. Suppose that minc ≤ |L∩Lc| ≤ maxc, then we have three possibilities:

1. minc1 ≤ |L1 ∩ Lc| ≤ maxc1

2. maxc1 < |L1 ∩ Lc|

3. |L1 ∩ Lc| < minc1

In the first case we have a set of transitions in T and T1 and all together can be
executed both from s and from t, so s and t can be synchronized by means of the set
of actions L. In the second case we have too many transitions if we want to satisfy
c1, so the correct number of transitions which we can consider is min{maxc,maxc1}.
For a better understanding of this result, we try to reason in a different way: our set
T satisfies the constraint c but the corresponding T1 does not satisfy c1, therefore we
divide the set L in two components LV and LR, where LV ⊆ L and |LV ∩Lc| = maxc1
and LR = L\LV . From the pointview of c1, actions in LV can be executable, whereas
actions in LR are forbidden. The reached situation is the following:

• in s all actions in L are executable, so their type is executable

• in t actions in LV are executable, whereas actions in LR are not executable

So if we compose s and t, we reach s||t such that it can execute all actions in LV ,
whereas all transitions in LR cannot be executed. Note that the transitions in LR
have type as “executable” in s, as ‘forbidden” in t and as “forbidden” in s||t, so
it is possible to deduce that the type “forbidden” is prioritary compared to type
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“executable”, and the reason is simple: in parallel composition we can synchronize
only transitions with the same type and the same action, in this case some transitions
have different types.

Now we try to reason about the third case: this time all actions in L can be
carried out both in s and in t, unfortunately they are not enough for t. Therefore
we can try to add new actions in L to reach the value minc1 . In this context we
must remember that constraints c and c1 have the same actions, so if we add a
new action to satisfy c1, implicitly we add a new action to c too. As before, we
suppose that our set T satisfies the constraint c, namely minc ≤ |L ∩ Lc| ≤ maxc
but the corresponding T1 does not satisfy c1, because |L1 ∩ Lc1| < minc1 . Now we
focus on T : once we choose a set of transition from the set Trans(s), we implicitly
assume that all other transitions must be missing. In particular, taken T and L, we
can deduce that all labels in L ∩ Lc must be present, whereas all labels in Lc \ L
must be absent. Again we can divide the set Lc in two components LT = L ∩ Lc,
namely all labels in Lc and in L, and LR = Lc \ L. In addition we suppose that
minc ≤ |LT | < maxc then we can deduce that all labels in LR would be still valid
for the constraint c because |LT | < maxc, therefore we might still add k labels at
most, where k = maxc − |LT |. Unfortunately, seeing that we have chosen exactly
the set LT of labels then we have assumed implicitly that all transitions labelled
by a label in LR are forbidden. Therefore, s and t can be only synchronized over
labels LT , even though they are not enough for t. Of course, in the computation of
the minimum value of parallel composition we must take into account this situation
too. The worst case is when |L ∩ Lc| = maxc and |L ∩ Lc| < minc1 , in effect in this
situation if we try to add new k actions of Lc to T , where k = minc1 − |L1 ∩ Lc|
that is the needed number of transitions to obtain |L1∩Lc| = minc1 , then obviously
|L ∩ Lc| > maxc. But, as before, we know that if |L ∩ Lc| = maxc then, for c, the
actions in Lc \L are forbidden. On the other hand, we may take k actions from set
Lc \ L1 and they are executable for t, concluding that for s||t this k transitions are
not allowed. The minimum value for s||t is, therefore, equals to min{minc,minc1}.

A simple way to see why these choices are correct is: we generate all possible
implementations for s and t, then we compose in parallel all together and eventu-
ally we compute the value of mins||t and maxs||t by means of all possible parallel
compositions which can be created. For parallel composition of implementations we
can use the rules which we have seen for LTS, but we must note that each outgoing
transition, existing in the CMTS but not in the derived LTS, is a transition which
we establish being forbidden. Now we see an example of these concepts: suppose
we have two CMTSs M Figure C.1 and N Figure C.2. In these figures we also show
all possible derived LTSs. In Figure C.3, Figure C.4 and Figure C.5 we describe all
possible compositions between derived LTS of M and N . As we can see, the state
s0||t0 has at most one of actions of set {(a, b)}, so the constraints related to s0||t0
should be c|| =< {(a, s1||t1), (b, s2||t2)}, [0, 1] >. We can derive the same result if we
compute minc|| = min{mincs ,minct} and maxc|| = min{maxcs ,maxct}.
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Figure C.1: A possible CMTS with its derived LTSs

Definition C.3:
Let c =< CSc, [minc,maxc] >, c1 =< CSc1 , [minc1 ,maxc1 ] > be two constraints of
two different states such that Label(c) = Label(c1) then we denote their parallel
composition by c||c1 =< CS||, [min||,max||] > where:

• CS|| = {(α, s||s1 | (α, s) ∈ CSc ∧ (α, s1) ∈ CSc1}

• min|| = min{minc,minc1}

• max|| = max{minc,minc1}

�

Definition C.4:
Let M = (SM ,ΣM ,−→M ,CM), N = (SN ,ΣN ,−→N ,CN) be two CMTSs. We call
their parallel composition M ||N = (S||,Σ||,−→||,C||) where:

• S|| = SM × SN

• Σ|| = ΣM ∪ ΣN

• ∀sM ∈ SM , sN ∈ SN we have:

1. c ∈ CM(sM) ∧ Label(c) 6⊆ Label(sN)⇒ c ∈ C||(sM ||sN)

2. c ∈ CN(sN) ∧ Label(c) 6⊆ Label(sM)⇒ c ∈ C||(sM ||sN)

3. ∃cM ∈ CM(sM), cN ∈ CN(sN). Label(cM) = Label(cN) ⇒ (c||c1) ∈
C||(sM ||sN)
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Figure C.2: Another possible CMTS with its derived LTSs

• −→|| is inductively defined by:

(1)
s

α−→ s′ 6 ∃t′. t α−→ t′

s||t α−→P s
′||t

(2)
t
α−→ t′ 6 ∃s′. s α−→ s′

s||t α−→P s||t′
(3) s

α−→ s′ t
α−→ t′

s||t α−→P s
′||t′

�
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Figure C.3: Composition of derived LTSs
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Figure C.4: Composition of derived LTSs
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Figure C.5: Composition of derived LTSs
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[8] Benes, N., Kret́ınský, J., Larsen, K. G., and Srba, J. On determinism
in modal transition systems. Theor. Comput. Sci. 410, 41 (2009), 4026–4043.
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