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Abstract 

This thesis presents a theoretical and experimental study of the Hall thruster Direct-

Drive configuration: an innovative way to deliver power to electric thrusters and a 

candidate for future spacecraft’s propulsion system architecture. The direct connection 

between the solar array and the Hall thruster allows a drastic simplification of the Power 

Processing Unit (PPU) of the propulsion system. This has an immediate impact also on 

the thermal control system (TCS) which can be consequently lightened. Further mass 

benefits can be obtained in other subsystems of the spacecraft such as the electric power 

system. 

The work is mainly divided in two parts. The first one assesses, in terms of mass 

reduction, the impact that the Direct-Drive configuration entails in the spacecraft 

subsystems; different kinds of space missions are considered, with different level of Hall 

Effect thruster power. Although the mass advantages that the Direct-Drive can afford are 

mission dependent, it has been proved that as the thruster and spacecraft power increase 

also the mass benefits become larger.  

The second part of thesis concerns an experimental demonstration of a Direct-Drive 

system supplying the Alta’s HT-100, a low power Hall thruster. The test required the 

procurement of the solar panel and the design of an electrical filter. By means of 

simulations with Pspice software and experimental tests, a LC filter was developed and 

then arranged between the solar array and the thruster in order to dampen the current 

oscillations. This test successfully proved the correct ignition and the thruster operations 

up to 370 W of discharge power, representing in this way the first accomplished attempt in 

Europe of a Direct-Drive application. 
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Sommario 

Questa tesi si occupa dello studio teorico e sperimentale della configurazione Direct-

Drive per i motori ad effetto Hall: un modo innovativo di fornire potenza ai propulsori 

elettrici e candidata per futuri sistemi propulsivi di veicoli spaziali. La connessione diretta 

tra i pannelli solari e il motore Hall permette una drastica semplificazione dell’unità di 

processo della potenza del sistema propulsivo. Questo ha un impatto immediato anche 

nel sistema di controllo termico che può essere di conseguenza alleggerito. Inoltre, 

ulteriori benefici di massa possono essere ottenuti in altre parti del veicolo spaziale come 

per esempio nel sistema elettrico di potenza. 

Il lavoro è principalmente diviso in due parti. Nella prima parte si è valutato in termini di 

riduzione di massa l’impatto che la configurazione Direct-Drive comporta nei sistemi del 

veicolo spaziale; sono stati analizzati differenti tipi di missione con motori Hall con diversi 

livelli di potenza. Nonostante i vantaggi di massa dipendano dal tipo di missione,  si è 

dimostrato che in generale all’aumentare della potenza del motore e del veicolo anche i 

benefici di massa crescono. 

La seconda parte della tesi riguarda una dimostrazione sperimentale di un sistema 

Direct-Drive che ha alimentato il propulsore HT-100, un motore di bassa potenza 

sviluppato ad Alta. Il test ha richiesto l’approvvigionamento di pannelli solari e il progetto 

di un filtro elettrico. Mediante simulazioni con il software Pspice e test sperimentali, è stato 

sviluppato un filtro LC che poi è stato interposto tra il motore e il pannello solare per 

smorzare le oscillazioni di corrente. Questo test ha dimostrato con successo il corretto 

funzionamento del motore fino ad una potenza di scarica di 370 W, rappresentando in 

questo modo il primo tentativo riuscito in Europa di una dimostrazione Direct-Drive. 
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Introduction 

Since the early sixties, when the Hall Effect thruster started to be developed both in 

United States and Soviet Union, it was already clear that this kind of engines, and in 

general all the electric thrusters, could have ensured large propellant savings with respect 

to the chemical thrusters. In fact, since the atoms accelerated through the chamber reach 

exhaust velocity about one order of magnitude higher than in the case of chemical 

thrusters, this leads to a reduction of the propellant needed for the same velocity change 

(to the detriment of a longer thrust period). After the launch in 1971 of the first Soviet Hall 

thruster (SPT-50) the interest and the use of this type of devices increased, first in Russia 

and then in the Western world since the nineties. 

The discharge voltage required by the Hall thruster is in the order of 300 V, but the 

energy produced by the solar array is generally characterized by a lower voltage (e.g. 28 

V, 50 V). Therefore, a Power Processing Unit (PPU) is interposed between the thruster 

and the solar array in order to step up the voltage and to manage the thruster functions. 

The removal of the DC-DC converter (anode supply) dedicated to the thruster discharge 

involves a significant simplification of the PPU. Thus, the Direct-Drive configuration 

proposes to directly connect the solar array, arranged for producing power at 300 V, to the 

thruster. Even if there are some technological issues to overcome (e.g. avoid arcing in the 

solar array), this simplification involves direct benefits not only in the PPU but also in its 

Thermal Control System (TCS). Indirect advantages can also be exploited by the 

implementation of high voltage bus, in fact this configuration allows to improve the 

electrical power system efficiency and thus to reduce its overall mass. 

The idea of the Direct-Drive was born in the early seventies in NASA laboratories [58] in 

relation to the ion thrusters. “For large electrical loads such as ion thruster and high-power 

radio frequency amplifiers, the necessary power processors are heavy, complex, and 

expensive to design and build and are a substantial burden on the spacecraft thermal 

control system” stated Gooder in 1977. As said, the opportunity to simplify and then 

lighten the power processor of the electric propulsion system was and is still now a very 

attractive opportunity for space missions. 

 The Comet Halley rendezvous which would be occurred in 1986 pushed the engineers 

to study a feasible mission strategy with solar electric propulsion; the NASA’s 30-cm-
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diameter gridded ion thruster, directly supplied by a solar array, was a real candidate for 

such a mission. The task revealed too much demanding for the state-of-the-art 

technology, however the first experimental tests of a Direct-Drive configuration were 

fulfilled. The ion thruster was correctly operated at a discharge supply up to 1 A at a beam 

voltage of 1100 V, the solar array was placed indoor and illuminated with a set of lamps. 

Gooder highlighted that the tests were successfully accomplished and no issues were 

detected in thruster operations; in parallel, some studied involving plasma interactions in 

high voltage solar array were carried out.  

After the desertion of the comet Halley mission, in the 1980s the interest in Direct-Drive 

waned, also because the possibility to develop reliable space solar array, capable to 

produce more than 1000 V for ion thruster, seemed to be very remote. 

But in the first years of the nineties, after the confirmation of the Russian Hall thruster 

performance, the attention toward the Direct-Drive revived. As already outlined, the Hall 

thruster needs a discharge voltage of about 300 V; this entails the use of a much more 

manageable solar array than in the case of the ion thruster.  

First in 1997, Hamley et al. [25] tested the 4.5 kW T-160 Hall thruster directly driven by 

a 1 kW linear concentrator terrestrial solar array placed outdoor. The thruster, firing up to 

1 kW at 200 V and 780 W at 300 V, correctly operated during start up and steady state 

phases. 

In 2001, NASA undertook the Direct-Drive Hall Effect Thruster (D2HET) program whose 

scope was to understand and overcome the issues related to the Direct-Drive 

implementation. System studies were carried out and the interactions in high voltage solar 

array immersed in a plasma environment were investigated. 

In 2009, the first test using triple junction solar cells is documented. In this case 

Brandhorst et al. [8] employed a 1.2 kW stretched-lens concentrator solar array to supply 

the Russian 1.3 kW T-100 Hall thruster. The results proved that the thruster successfully 

worked up to 600 W and 550 V. 

The current interest in high-power solar electric propulsion for human missions toward 

near-Earth asteroids [9] makes the Direct-Drive concept a natural option for such 

missions. In this context, NASA decided (in 2011) to set up at JPL an 11 kW solar array 

test-bed constituted by mono-crystalline silicon cells. A dedicated power control station 

ensures flexibility of the array performance by varying the series-parallel configuration of 

the solar panels. In 2012, at JPL, the most extensive and detailed Direct-Drive 

experimental investigation [58] was carried out in order to understand the several issues 

identified in previous tests. The Hall thruster utilized was the American H6, capable to 
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reach a discharge power up to 12 kW. The experimental campaign involved the 

examination of thruster operations in various portions of the solar array I-V curve, different 

procedures of start-up and shut-down were analyzed and then, also how filter capacitance 

affects the system oscillations was studied. The thruster correctly operated up to 10 kW 

and a lot of useful answers came out from these tests. 

Arising from the above literature, this thesis has the scope to assess in terms of mass 

reduction the Direct-Drive implementation impact in spacecraft systems and then, to 

experimentally demonstrate that the Alta’s HT-100 low power Hall Effect thruster can be 

effectively supplied by a solar array (in particular a set of thin-film amorphous silicon solar 

panels capable to provide up to 370 W). 

 The first part of the thesis is related to the assessment of the Direct-Drive effects on the 

spacecraft systems; after a brief description of Hall thruster principles of operation 

(chapter 1), it is illustrated the standard Power Processing Unit (PPU) architecture 

(chapter 2) and in particular the discharge supply which is its most significant element in 

terms of mass, inefficiency and complexity. Then, the chapter 3 explains in detail what is 

and which advantages can be exploited by the Direct-Drive implementation; the mass 

advantages are subdivided in direct and indirect referring to the ones attainable as a direct 

consequence of the Direct-Drive and the ones that can be exploited by the adoption of 

solutions strictly related to the Direct-Drive (e.g. the high voltage bus); in this chapter, also 

the issues related to such a configuration are qualitatively analyzed. The following 

chapters (4, 5, 6 and 7) quantitatively assess the mass benefits that the Direct-Drive 

would afford if implemented in existing (or existed) missions propelled by respectively low 

(less than 1 kW), medium (1-2 kW) , high (in the order of 5 kW) and very high-power Hall 

thrusters (more than 10 kW). Here, a remark must be made: the Hall thrusters’ subdivision 

in terms of power level depends on the current state-of-the-art. In the medium-brief term, 

this classification will be probably obsolete and the development of very high-power 

thruster (only prototypes to date) will have an influence also in the subdivision. For 

instance, nowadays a 5 kW thruster belongs to the class of high-power, in fact there are 

only one operative mission (AEHF) propelled by Hall thrusters in this range of power. In 

the next years, this thruster will be probably classified as medium-power thruster and, as 

the 10 kW (or more) thruster will become more common, they will belong to the high-

power category. The chapter 8 shows the conclusions inferred by the analysis of the 

previous chapters. 

The second part of the thesis is related to the Direct-Drive demonstration for the Alta’s 

HT-100 low-power thruster. The list of the devices, facilities and instrumentation employed 



Introduction 

 

 
4 

 

in the experimental test is displayed in the chapter 9. Then, in the chapter 10, the steps 

toward the filter design are shown: circuit simulations with Pspice software and HT-100 

tests with laboratory power supply were carried out in order to achieve satisfactory filter 

performance. The chapter 11 describes the effort in understanding and evaluating the 

influence of several factors such as the solar irradiance, cells temperature, and losses, 

involved in the solar array output performance. The chapter 12 illustrates the procedure 

and the results of the experimental test which has successfully demonstrate the HT-100 

Direct-Drive operations. Finally the chapter 13 explains the conclusions derived from the 

experience of this work. 


