

UNIVERSITÀ DI PISA

DIPARTIMENTO DI INGEGNERIA DELL’INFORMAZIONE

Laurea Specialistica in Ingegneria Informatica per la Gestione d’Azienda

A single-objective and a multi-objective genetic algorithm to

generate accurate and interpretable fuzzy rule-based classifiers

for the analysis of complex financial data

Supervisors

Candidate

Prof. Francesco Marcelloni Simona Palmeri
Dipartimento di Ing. dell’Informazione

Università di Pisa

Prof.ssa Beatrice Lazzerini

Dipartimento di Ing. dell’Informazione
Università di Pisa

ACADEMIC YEAR 2012-2013

3

Table of contents

Abstract .. 7

1 Data mining as a tool for data analysis .. 9

1.1 Introduction .. 9

1.2 Data mining in business and finance: motivations and examples 13

1.3 Main issues in financial data analysis .. 15

1.4 Approaches to financial data analysis issues .. 18

1.4.1 Artificial neural networks .. 18

1.4.2 Decision trees .. 22

1.5 Discussion .. 24

2 Fuzzy Logic Theory ... 26

2.1 Introduction .. 26

2.2 Crisp sets ... 27

2.3 Fuzzy sets... 29

2.3.1 Linguistic variables .. 29

2.3.2 Membership functions .. 30

2.3.3 Operations ... 32

2.3.4 Fuzzy relations and compositions ... 33

2.4 Crisp logic .. 35

2.5 Fuzzy logic ... 38

2.6 Fuzzy logic systems .. 42

2.6.1 Fuzzification ... 43

2.6.2 Knowledge base .. 44

2.6.3 Inference engine.. 45

2.6.4 Defuzzifier ... 47

2.7 Discussion .. 48

3 Fuzzy Rule Based Classifiers ... 50

3.1 Introduction .. 50

4

3.2 Classification as a process ... 51

3.3 Structure of fuzzy rule based classifiers .. 52

3.3.1 Knowledge base learning approaches ... 54

3.3.2 Reasoning methods ... 63

3.4 Evaluation metrics ... 65

3.5 Main issues in classification problems .. 69

3.5.1 Unbalanced datasets ... 70

3.5.2 Accuracy versus interpretability .. 73

3.6 Discussion .. 78

4 Genetic Fuzzy Rule Based Classifiers .. 79

4.1 Introduction .. 79

4.2 Genetic algorithms .. 80

4.2.1 Representation and initialization .. 82

4.2.2 Fitness function ... 83

4.2.3 Main operators .. 84

4.3 Multi-Objective genetic algorithms... 86

4.3.1 Pareto Archived Evolution Strategy (PAES) ... 89

4.4 Genetic Fuzzy Rule Based Classifier .. 92

4.4.1 Genetic learning of the rule base .. 93

4.4.2 Genetic tuning of the membership functions ... 95

4.4.3 Genetic learning of the knowledge base ... 97

4.5 Beyond the accuracy-interpretability tradeoff ... 98

4.6 Discussion .. 101

5 Proposed genetic algorithms ... 103

5.1 Introduction .. 103

5.2 A single objective algorithm for the generation of accurate rule bases 104

5.2.1 Encoding scheme ... 105

5.2.2 Initialization ... 107

5.2.3 Operations ... 107

5.2.4 Fitness function ... 112

5.2.5 Stopping criteria .. 113

5.2.6 Additional operations .. 113

5

5.2.7 Configuration parameters ... 114

5.3 A multi objective genetic algorithm for designing accurate and interpretable rule

bases 115

5.3.1 Encoding scheme ... 116

5.3.2 Objectives and fitness function ... 116

5.3.3 Operations and initialisation ... 117

5.3.4 (2+2) M-PAES ... 117

5.3.5 Additional operations .. 118

5.4 Other approaches to learn the rule base using genetic algorithms 119

5.4.1 Rule selection approach .. 119

5.4.2 A multi objective algorithm to generate accurate and interpretable rule bases

 122

5.5 Main differences between the approaches described ... 127

6 Experimental results .. 129

6.1 Introduction .. 129

6.2 Dataset characteristics .. 129

6.3 Results of the state-of-the-art algorithms .. 130

6.3.1 Dataset 1 ... 132

6.3.2 Dataset 2 ... 133

6.3.3 Dataset 3 ... 134

6.3.4 Summary of the results ... 135

6.4 Comparison between single objective algorithms .. 135

6.4.1 Results ... 137

6.4.2 Comments ... 141

6.5 Comparison between multi-objective algorithms .. 143

6.5.1 Results ... 146

6.5.2 Comments ... 148

6.6 Conclusions and future work .. 155

Bibliography .. 157

6

7

Abstract

Nowadays, organizations deal with rapidly increasing amount of data that is stored in

their databases. It has therefore become of crucial importance for them to identify the

necessary patterns in these large databases to turn row data into valuable and actionable

information. By exploring these important datasets, the organizations gain competitive

advantage against other competitors, based on the assumption that the added value of

Knowledge Management Systems is first and foremost to facilitate the decision making

process. Especially if we consider the importance of knowledge in the 21st century, data

mining can be seen as a very effective tool to explore the essential data that foster

competitive gain in a changing environment.

The overall aim of this study is to design the rule base component of a fuzzy rule-based

system (FRBS) through the use of genetic algorithms. The main objective is to generate

accurate and interpretable models of the data trying to overcome the existing tradeoff

between accuracy and interpretability. We propose two different approaches: an

accuracy-driven single-objective genetic algorithm, and a three-objective genetic

algorithm that produces a Pareto front approximation, composed of classifiers with

different tradeoffs between accuracy and complexity. The proposed approaches have

been compared with two other systems, namely a rule selection single-objective

algorithm, and a three-objective algorithm. The latter has been developed by the

University of Pisa and is able to generate the rule base, while simultaneously learning

the definition points of the membership functions, by taking into account both the

accuracy and the interpretability of the final model.

8

9

1 Data mining as a tool for data analysis

1.1 Introduction

Our age is popularly known as the “Information age” due to the widespread diffusion of

the information technology (IT) and the availability of cutting-edge and more effective

tools for the collection and storage of data that have increasingly facilitated the access

to all kind of information we need, with improving levels of accuracy and rapidity.

During the ‘90s, the amount of data generated and collected in all sort of fields, from

business to medicine, science and so on, grew so exponentially as to make it very

challenging to find new and intelligent ways to extract useful information (or

knowledge) from this potential source of knowledge. [Bal, 2011].

In fact, traditional methods of data analysis (linear and multiple regression analysis,

correlation analysis, principal component analysis and many other statistical techniques)

have proved to be largely inadequate in achieving this goal, mainly due to an intrinsic

limitation: conventional methods let the user interact directly with the data. This

involves a twofold drawback: first, the user needs to know what to look for and will

make use of these methods to prove it; second, the user is not able to handle properly

large datasets. In this scenario, turning data into knowledge is not a trivial task and this

is why alternative data mining techniques have been explored with the overall objective

of responding to the new emerging needs.

The first step required to approach the study of these techniques is to provide a

definition of data mining. This thesis will adopt the definition provided by Han and

10

Kamber [Han, 2001], namely the “process of discovering interesting patterns and

knowledge from large amounts of data”.

The keyword of this definition is “interesting” which means that the main aim of data

mining techniques is to shed the light on non-trivial, implicit and previously unknown

patterns within the data. This explains why a simple search or a query processing cannot

be considered data mining.

While data mining techniques help establishing a model reflecting the data, the latter

are only one ring of that chain process that, starting from raw data, generates useful

knowledge. The process is known as Knowledge Discovery from Data (KDD) and

consists of an iterative sequence of five steps, as described below (see figure 1.1).

1) Data selection:

Data are selected among the wealth of information collected according to their

relevance to the aim of the analysis, previously identified.

Figure 1.1: An overview of the steps that compose the KDD process [Fayyad, 1996]

11

2) Data preprocessing:

The data stored can be affected by noise, inconsistency or be incomplete (missing data).

Data processing therefore refers to the strategy adopted for dealing with these

problems.

3) Data transformation:

Performing complex analysis of cumbersome amount of data is computationally

expensive and extremely time-consuming. Techniques of data reduction are applied to

the original data in order to reduce the amount of data to a representative sample, while

retaining their characteristics. More specifically, data reduction strategies operate:

- dimensionality reduction, i.e. removing the least important attributes using

PCA or feature selection techniques;

- numerosity reduction i.e. removing samples using regression, histograms,

clustering or sampling;

- data compression i.e. data are compressed by using, for instance,

discretization techniques.

4) Data mining:

At this stage, data are ready to be analysed using one of the data mining strategy to

search for patterns (classification, clustering and association rules). The quality of the

patterns so obtained is closely linked to the correct performance in the previous steps.

5) Interpretation/evaluation

Finally, the patterns extracted are evaluated to identify the most interesting ones, which

are usually stored into a knowledge base.

This study will focus on the data mining techniques. The main kind of analysis that they

support are:

12

• Classification/Regression

The aim of classification techniques is to classify the data into a set of pre-defined

classes. They employ a set of labelled examples called training set, to learn and build a

model (i.e. neural networks, rules, decision trees) of the data. Then, this model is used

to classify new objects. Typical problems faced by classification techniques are: optical

character recognition (OCR), which allows automating the document digitalization

process, medical image analysis, fraud detection and so on. The classification paradigm

will be described more in detail in the following.

Regression techniques are similar to classification ones, but the output variable can take

continuous values instead of discrete ones.

• Clustering

The aim of clustering algorithms is to group input data into subsets, called clusters.

Each cluster contains data objects sharing some similarities, which are dissimilar to the

data objects belonging to other clusters. These techniques are very effective only if the

distribution of data objects is clustered, otherwise the model built performs poorly.

Cluster analysis is widely used in many applications: information retrieval to cluster

documents; customer relationship management (CRM) for the clustering of a large

number of customers into few categories and then develop a common business strategy

for each of them; and so on.

• Association

These techniques are used to reveal association relationships and correlations among

data. They are often formulated as rules in the form X −> Y which means that all data

satisfying X are likely to satisfy Y. Association techniques are largely applied in the

13

business sector, more specifically in the so called market basket analysis, whose aim is

to analyse and understand the buying habits of customers.

From the above overview of the different strategies used in data mining techniques, it is

clear that these can be applied to a variety of sectors, from bioinformatics to

telecommunication, from business and finance to medicine.

Indeed, thanks to its wide application data mining has become one of the most

interesting and popular research areas.

The paragraph that follows will give an account of the main applications of data mining

in business and finance, including some operational examples.

1.2 Data mining in business and finance: motivations and

examples

Organizations need to be proactive if they want to have a chance to survive in today’s

competitive and dynamic environment, and information plays a pivotal role in

supporting the achievement of such a goal. In fact, it is only by disposing of the right

information at the right time that managers can timely expand their knowledge and

strengthen their decision making process, by ultimately increasing their responsiveness

to the market demands.

During their daily working routine, organizations produce and store cumbersome

amount of data. Filtering this data through traditional data analysis tools would entail

an equally cumbersome amount of work and a time-consuming process.

14

Here data mining techniques reveal their strength, meaning their ability to unlock and

unveil the potential hidden behind mountains of data . [Singh, 2012]. The information

extracted can then be used to create new knowledge within a very short time, which in

turn supports the organizations in elaborating better action-oriented strategies with the

potential to generate added value in terms of customer satisfaction, internal processes

performance (elimination of inefficiencies), money and time savings, increased

productivity and related revenue.

This is what in literature is usually defined the virtuous cycle of data mining [Berry,

1997 in Bal, 2011]. Briefly, the information acquired through data mining give

organizations a competitive advantage against their competitors and, by strengthening

the knowledge management process, become a critical success factor. [Bal, 2011].

Some of the most common applications of data mining techniques in financial area are:

stock forecasting, prediction of bankruptcy and detections of financial fraud. In the

following sections these areas of application are analysed more in detail.

The forecast of market stocks is very important for investors, since their priority is to

buy and sell at the most convenient moment. However, the non-linearity of the price

variation makes it almost impossible to foresee when this is going to happen. It follows

that traditional analysis techniques like regressions, producing only linear models, are

not the best placed to forecast future trends. The most used technique to deal with these

kind of problems is neural network modelling. [Zhang, 2004]

The prediction of bankruptcy is an important issue in finance, because it can prevent

huge economic losses for companies, stockholders and also employees. In this field, it is

of utmost importance to rely on a model for prediction as well as to dispose of a good-

15

enough explanation of how this prediction has been reached. The main techniques used

in this field include genetic algorithms and decision trees for classification and

regression problems. [Zhang, 2004]

Another big issue of our time is credit card frauds detection. The number of credit card

transactions increases every day, therefore is more and more important to prevent this

misconduct. The task is not easy , first of all due to the nature of the problem: data

distribution is highly skewed because of the huge amount of valid transactions against

the slim number of fraudulent transactions. Secondly, it is not easy to deal with such

large datasets. The main data mining techniques used to face these problems are neural

networks and classifier systems specialized in the recognition of the fraudulent pattern.

[Zhang, 2004].

The following paragraph will explore the main features of financial data, by

highlighting the most common drawbacks that emerge when dealing with this kind of

data.

1.3 Main issues in financial data analysis

In the financial sector, the analysis of data can be particularly onerous, as emphasized

by the study on the main applications of data mining in this field. This is due to several

factors. First of all, financial data are often in the form of non-linear time series. A time

series is a sequence of data that represents values of a real variable measured at equal

temporal intervals, such as daily, weekly, monthly and so on [Zhang, 2004]. In order to

perform an analysis of a time series, the sequence of the data is important. The primary

16

purpose of the analysis is to predict the future trend of the phenomenon under

observation. The main characteristic of financial time series is their nonlinearity, which

represents a big issue in the analysis task. In fact, traditional tools of analysis, such as

correlation and linear regressions, can predict only linear patterns [Taylor, 1986].

Another important issue is represented by the unbalanced frequencies of financial data.

If we recall at the example of fraud detection, it is clear that there are a huge number of

legitimate transactions and only a few of fraudulent ones. Thus, the training set used to

create the model has a skewed distribution of the data which makes it difficult both the

setting up of the model and its evaluation. In fact, it is clear that missing a fraud is more

expensive than a false alarm, so the cost per error is not uniform and this should be

taken into consideration in the evaluation stage. How to handle unbalanced datasets is

an open research area and some approaches from literature will be discussed in chapter

3.

In addition, datasets used for financial applications are usually huge and with lots of

attributes. Statisticians usually consider the data as a matrix, whose rows represent the

different observations and the columns the variables measured. For instance, in credit

card frauds detection, transactions of a lot of customers are recorded and, for each of

them, several variables are available. Or if we consider the forecast of exchange rates,

the columns could represent the various currencies, while the rows the time sampling

which should refer to a long period of time to obtain an accurate prediction. Data

matrixes with lots of records and attributes are called large and high dimensional

datasets. A systematic search in a high dimensional space is highly time demanding and

requires a discrete amount of computational resources. For instance, consider the

17

optimization problem of a function over a continuous space of 10 variables and suppose

to face this problem by discretizing the search space using a grid of ten intervals for

each variable. In this case, we should consider 10�� different points. If we increase the

number of dimensions to 20, then we would have 10�� points and, generally speaking,

let 	 be the number of dimensions, 10
 points. Therefore, linear increasing of the

number of dimensions results in an exponential growth of the search space. This is

known as the “curse of dimensionality” problem. [Bellman, 1961 in Donoho, 2000].

Then, in order to reduce the complexity of the task, techniques of dimensionality

reduction are often used. The main idea underlying these techniques is that only some of

the variables measured are responsible for the overall behaviour. One of the techniques

employed to reduce the number of dimensions is the Principal Component Analysis

(PCA), which is based on the concepts of covariance matrix and eigenvectors. It aims at

transforming the data by projecting them onto a lower-dimensional space that preserves

as much data variation as possible.

Thus, the techniques used to analyse large and high dimensional datasets should take

scalability and efficiency issues into account. Dealing with high dimensional datasets is

one of the most challenging areas of research.

Moreover, once the model is built, its interpretability is of great value. In fact, as

mentioned before, the final goal of the application of the various techniques of data

analysis is to extract useful knowledge in order to ease the decision making process. It

is of crucial importance that the model can be easily understood and interpreted in order

to be trusted. The flip side of the coin is that interpretability, being a subjective concept,

makes it not easy to find a measure to assess it.

18

Last but not least, another characteristic of financial data is their uncertainty. Decisions

in the financial field are usually related to risks, such as credit, liquidity risks and input

data that are often inaccurate. Thus, uncertainty needs to be part of the model. Although

traditionally the probabilistic approach has been chosen to address this problem, such

approach is often too difficult to handle. [Guerra, 2012]

1.4 Approaches to financial data analysis issues

A variety of techniques for data analysis have been used in financial applications. The

aim of this paragraph is to provide an overview of the most common approaches

identified and described in the literature.

As stated by [Robles-Granda, 2010], in the area of financial data analysis many studies

demonstrate that machine learning techniques often outperform classical statistical

methods, especially in the classification task. For this reason, the first section of this

study will focus on neural networks modelling, which is considered the classical

machine learning approach in financial data analysis. Then, rule induction methods will

be investigated. Finally, the last section will approach a comparative analysis of these

techniques in order to stress strength and weakness of each of them.

1.4.1 Artificial neural networks

Artificial neural networks are mathematical models that try to mimic the structure of the

human brain. The basic element of the brain is the neuron, a special type of cell with the

19

capacity to link to other neurons. The incredible number of connections that may be

established among neurons is the power of the human brain. Similarly, the artificial

neural networks consist of a set of elementary processing elements called artificial

neurons whose structure is shown in the figure below.

Figure 1.2: Artificial neurons structure

As illustrated in figure 1.2, a neuron has 	 input variables and each of them has a

connectivity coefficient called weight which is a real number representing the strength

of the connection. The output � of the neuron is calculated by applying a transfer

function � to the weighted sum of the inputs.

� = ���� = �	�	� ���� 	

���
�	 �1.1�	

Some of the most used transfer functions are: linear, Sigmoid, step and piecewise linear.

Each neuron receives the input from many neurons and produce a single output which is

communicated to other neurons. The connections among this simple units create a

network with a precise topology. There are different architectures, the most common is

the multilayered feed-forward, illustrated in figure 1.3.

20

Figure 1.3: Multilayer feed-forward neural network

This kind of networks consists of three layers: input, hidden (one or more) and output

layer. Each neuron of a layer is connected to all the neurons of the following layer,

while there are not connections among neurons in the same level. The number of layers

and the number of neurons for each layer depend on the specific problem to be solved.

Starting from a defined structure, training samples are presented to the network and the

weights of the connections are iteratively adjusted in order to produce the desired

output. In this way, artificial neural networks can learn from the input data and

approximate any function, both linear and nonlinear. Many algorithms to perform the

learning task have been developed and the most famous one is called backpropagation.

It is a supervised learning algorithm used for classification and numeric prediction

problems. In the former task the output of the network is a class label, while in the latter

is a continuous value. Typically, starting from a random initialization of the weights, a

dataset of training examples is presented to the network and the final output for each

input data is calculated. Then, the mean squared error is computed by comparing the

prediction of the network with the actual known target value. The weights of the

connections are adjusted, in order to minimize the overall error, by propagating it

21

backward, from the output layer to the input one. The process is iteratively repeated

unless a convergence is reached, i.e. the error on the training set is less than a pre

specified threshold. Then, the training phase is over and the model created can be

evaluated against previously unseen examples, called test set [Han, 2001].

Artificial neural networks have been the most used technique in the field of financial

data analysis because of their ability to create a nonlinear input-output mapping which

can model very complex behaviours.

To sum up, advantages of artificial neural networks include:

• Nonlinear mapping ability

• high tolerance of noisy data

• well suited to handle with continuous values output (unlike decision trees

algorithms).

On the other hand, neural networks have also many disadvantages which include:

• long time to build the model

• lots of empirical parameters, such as number of layers, number of neurons for

each layer, best transfer function and so on

• black box model, then poor interpretability

The main drawback of neural networks is their poor interpretability, due to their

knowledge representation. They can be considered like black boxes, which means that

users can be aware of inputs and outputs, but they cannot understand how the model

works because it is difficult to figure out a clear interpretation of what weights and

hidden layers represent. [Han, 2001]

22

1.4.2 Decision trees

Decision tree induction algorithms aim to generate tree structures, called decision trees

which represent the knowledge acquired directly from the data. An example of decision

tree is shown in the following figure. In this example, the task of the analysis is to

predict whether a customer is likely to buy a computer or not, considering his age, credit

rating and employment.

Figure 1.4: Decision tree [Han, 2001]

Generally speaking, the leaves of the tree represent the class labels, while the other

nodes denote a test on an attribute. Each branch represents one of the possible outcomes

of the test. The tree is constructed using a top down strategy, then starting from the root,

at each step, one of the attributes is selected and the training set is partitioned according

to the split criterion. A greedy approach is used to choose the attribute for the split, in

fact, at each stage the attribute that can generate the purer partitions of the training set is

chosen. A partition is considered pure if all the examples belonging to it have the same

class label and statistical measures (information gain, gain ratio or Gini index) are used

23

to determine the degree of purity of the partitions . When a pure partition is generated a

leaf is added to the tree. The most common algorithms used to generate decision trees

are CART and C4.5. [Han, 2001]

Decision trees are widely used in many application areas, such as finance, medicine,

biology, to solve classification problems. Their main advantage is the possibility to

extract rules which clearly explain how the label has been assigned to the examples, that

is how the classification task is performed. More in depth, one rule can be extracted

following a path from the root to a leaf node. It is clear that decision trees can be

considered a white box because they allow to know exactly how the classification task

has been performed.

The main advantages of decision trees include:

• to construct a decision tree there is no need to set parameters or have domain

knowledge

• they can handle high dimensional datasets

• the learning process is simple and fast but also accurate

• white box approach

On the other hand, decision trees have also some drawbacks:

• they perform well only if there is a minimum number of relevant attributes,

otherwise repetition and replication issues are likely to occur. Since the tree is

24

constructed using a greedy approach, an attribute can be tested more than once

in the same branch (repetition) or equal sub-trees can be generated (replication).

• they are not scalable, so they are inefficient with large datasets. This is why, if

the training set is too big to fit in memory, frequently swaps are necessary

• they can be deeply influenced by noise and outliers in the training set.

1.5 Discussion

In this chapter two of the most common techniques to analyse data for classification

purposes have been studied. Now we want to investigate their ability to deal with the

main issues of financial data analysis outlined in paragraph 1.3.

The table below shows a brief summary of the comparison between the two techniques.

 Neural networks Decision trees

Nonlinearity Good Good

Unbalanced Good Bad

Scalability Good Bad

High dimensionality Good Bad

Interpretability Bad Good

Uncertainty Bad Bad

Table 1.1: Neural networks versus decision trees

As the table above shows, the two methods are very different, particularly from an

interpretability point of view. In fact, neural networks can be considered black box

25

models because they do not give explanations of how the results are generated. On the

contrary, decision trees are white box models because following the paths within the

tree it is possible to have a clear idea of the reasoning process generating the results.

Since the aim of the financial data analysis is to support the decision making process,

interpretability is a key issue. Therefore it is advisable to use white box systems in order

to gain decision makers’ trust on the model constructed.

Finally, the main weakness of both systems resides in their limited capacities in dealing

with the uncertainty which is an intrinsic feature of financial data. Moreover models

should not only handle the uncertainty but also include it in the model.

These findings suggest that other kind of systems, namely the fuzzy rule based

classifiers, should be used in order to benefit from their strengths while at the same time

overcoming their drawbacks.

 Fuzzy rule based classifiers create a model made up of simple interpretable rules and

take into account the uncertainty of data included in the model through the application

of the fuzzy sets theory.

26

2 Fuzzy Logic Theory

2.1 Introduction

In this chapter the basic principles of fuzzy logic theory will be discussed and, more

specifically, the capacity of this framework to introduce uncertainty into the models will

be clarified.

The theory of fuzzy sets was proposed by Zadeh back in 1965 [Zadeh, 1965]. The aim

of this theory is to create a model that simulates human reasoning processes in solving

complex problems. The main concept is that humans do not think using numbers, but

labels of fuzzy sets, which are defined as “classes of objects in which transition from

membership to non-membership is gradual rather than abrupt”. [Zadeh, 1973]

Furthermore, the human reasoning is not Boolean, but fuzzy. To make this concept

clear, we can think, for example, at the temperature in a room. If we ask people in the

room to find a common value for which temperature can be considered high, they will

never agree on a precise value. Moreover, suppose that we can consider 25°C as high

temperature, this does not mean that other values just below that temperature, e.g. 24°C

are not high. According to our natural way of reasoning, 24°C has a lower degree of

membership to the sets of high temperatures than 25°C.

In a nutshell, fuzzy logic allows to model the vagueness of human thoughts. This

fuzziness plays a fundamental role in our ability to summarize information, i.e. to

extract from a massive quantity of data only the relevant information for the task to be

performed. [Zadeh, 1973]. The inclusion of this vagueness and the “subjective

27

knowledge” that it implies would positively affect the decision making processes.

[Zadeh, 1973]. .

It is worth specifying that fuzzy logic theory is grounded on crisp logic and, starting

from its principles, it tries to introduce a degree of uncertainty. Some notions on the

crisp sets and logic need to be introduced and clarified before exploring more in detail

the fuzzy counterparts and the main components of a fuzzy logic system.

2.2 Crisp sets

A crisp set can be defined as a collection of elements in a universe of discourse.

According to this definition we can identify a crisp set by listing all the elements

belonging to it or by specifying the condition satisfied by all its elements. Thus, the two

following definitions of a crisp set A can be used:

A =	 {	1, 2, 3,4,5	}	 �2.1�	
A = 	 {	x	|	x	˃2	}	 �2.2�	

We can also define a characteristic function (or membership function) μ#�x� which

indicates whether an element x belongs to A. More in detail the membership function

can assume only the values specified in (2.3) with the meaning in (2.4).

$%��� 	∈ 	 {0,1}	 �2.3�	

$%��� = 	 ' 1	(�	� ∈)0	(�	�	 ∉)	 �2.4�	

28

The basic operations that can be performed on crisp sets are union, intersection and

complement. Let) and + be two crisp sets. We can define these operations as in the

following:

• Union:

) ∪ + = 	 {�|� ∈)	-.	� ∈ +}	 �2.5�	
• Intersection:

)	 ∩ + = 	 {�|� ∈)	012	� ∈ +}	 �2.6�	
• Complement:

) =	 {�|�	 ∉)}	 �2.7�	

Finally, we can define the operations on crisp sets in terms of their membership

functions as in (2.8), (2.9), (2.10).

• Union:

$%∪5��� = 678	9$%���, $5���:	 �2.8�	

• Intersection:

$%∩5��� = <=>9$%���, $5���:	 �2.9�	

• Complement:

29

$%��� = 1 −	$%���	 �2.10�	

These formulas have been introduced to frame and support the following discussion on

fuzzy sets.

2.3 Fuzzy sets

Fuzzy set can be considered a generalization of the crisp set. A fuzzy set @ is

characterized by a membership function which, unlike crisp sets, can take continuous

values in the interval [0,1]. This values specify the degree of membership of the element

to the fuzzy set. Thus, a fuzzy set @ in the universe A can be represented as a set of

ordered pairs of a generic element � and its degree of membership (2.11).

F = 	 {x, μC�x�	|	x ∈ U}	 �2.11�	
The basic elements of the fuzzy set theory are linguistic variables and membership

functions.

2.3.1 Linguistic variables

As stated before, humans don’t think in terms of numbers but using more vague

elements such as words or sentences. For this reason, linguistic variables have been

introduced. A linguistic variable is a variable that can assume words as values. It can be

decomposed into a set of terms which cover the entire universe of discourse. Formally,

a linguistic variable is characterized by a quintuple: the name of the variable �, the

30

universe of discourse A, the set of terms in which the variable is divided E���, a

syntactic rule F for generating the names of values of � and a semantic rule G for

associating its meaning to each value. For instance, let consider the linguistic variable

Temperature, it can be decomposed into the following set of terms:

E�EHIJHK�LMKH� = 	 {NO�, IHP(MI, ℎ(Rℎ}. The next step is to associate a membership

function with each term.

2.3.2 Membership functions

The main difference between crisp and fuzzy sets, is that the latter use continuous

membership functions. Formally, a membership function is defined as a real values

function defined in the interval [0,1]. Let be) a linguistic term, the membership

function allows to associate with each point in the universe of discourse a real number

in the interval [0,1] which represents the degree of membership of that point to).

Different shapes can be used to model this relationship, the most common are

triangular, trapezoidal, Gaussian and singleton (see figure 2.1 (a), (b), (c), (d)

respectively).

Figure 2.1: Common shapes for membership functions

31

Going back to the previous example, a linguistic label Temperature could be divided

into the following terms, each of them having a membership function as reported in the

figure below.

Figure 2.2: Membership functions of the linguistic labels of the variable Temperature

In this case, we interpret a value of temperature as “Low” if it belongs to the interval

[0°C, 15°C] , “Medium” if it is in the interval [10°C, 27°C] and “High” if it is in the

interval [25°C, 40°C]. Although it is not compulsory, the main strength of this

representation is that membership functions can be partially overlapped in order to let

some values be part of more than one of the fuzzy sets. For instance, if we consider the

value 12°C, it is included both in the “Low” and “Medium” sets, but with different

degrees of membership. In this way, the vagueness is represented and incorporated in

the model.

32

2.3.3 Operations

As already done with the crisp sets, we can define union, intersection and complement

for fuzzy sets in terms of their membership functions as follows:

• Union:

$%∪5��� = 678	9$%���, $5���:	 �2.12�	

Figure 2.3: Union

• Intersection:

$%∩5��� = <=>9$%���, $5���:	 �2.13�	

Figure 2.4: Intersection

33

• Complement:

$%��� = 1 −	$%���	 �2.14�	

Figure 2.5: Complement

Different kind of operators can be employed, instead of maximum and minimum, to

model union and intersection between fuzzy sets. The operators used for the union are

called t-conorms, while the ones for the intersection t-norms.

In engineering applications the most common operations are minimum or product as t-

norm and maximum as t-conorm.

2.3.4 Fuzzy relations and compositions

The remaining basic elements that need to be addressed to complete the understanding

of fuzzy logic systems are fuzzy relations and compositions.

34

The first represents “a degree of presence or absence of association or interaction

between the elements of two or more fuzzy sets”. [Mendel, 1995]

Let A and S be two universes of discourse, then the fuzzy relation T�A, S� is a fuzzy set

in the product space A × S that can be expressed graphically as in the next figure.

Figure 2.6: Fuzzy relation [Lazzerini, 2009]

If � ∈ A and � ∈ S, then the membership function of the relationship T can be

expressed as:

$V��, �� = μW×X��, �� = I(�$W	���, $X 	����	 �2.15�	
Since fuzzy relations are fuzzy sets, it is possible to apply the operations of union and

intersection previously defined. Let assume T��, �� and S��, �� two fuzzy relations in

the same product space U x V. The intersection and union of R and S can be defined as:

35

μY∩Z�x, y� = 	min	�μY�x, y�, μZ�x, y��	 �2.16�	
μY∪Z�x, y� = 	max�μY�x, y�, μZ�x, y�	 �2.17�	

Note that the minimum and maximum operations can be replaced, respectively, by any

T-norm or T-conorm operators.

Moreover, it is possible to compose fuzzy relations from different spaces. The definition

is the same as the crisp composition, except that in this case the sets are fuzzy sets.

Then, let R(X,Y) and S(Y,Z) be two fuzzy relations, the fuzzy composition W(X,Z) is

denoted by (2.18) and defined by its membership function μY∘Z�x, z�.
b�c, d� = T�c, e� ∘ f�e, d�	 �2.18�	

The membership function of the composition can be calculated as in (2.19) or (2.20):

• Max-Min composition:

μY∘Z�x, z� = max�∈e 	9I(�$T��, ��, $f��, g��:	 �2.19�	

• Max-Product composition:

$V×h��, g� = max	i∈j 9	$k��, ��, $l��, g�:	 �2.20�	

2.4 Crisp logic

Conventional logic is based on propositions. According to [Mendel, 1995], a

proposition is “a statement involving terms which have been defined”, i.e. “It is

raining”. A proposition must be true or false, i.e. it is always possible to assign a truth

36

value to it. Classical reasoning is based on combinations of propositions. Some of the

operators used to combine them are:

• Conjunction:

“It’s raining” AND “the temperature is low”

The whole proposition is true only if both propositions are true.

• Disjunction:

“It’s raining” OR “the temperature is low”

The whole proposition is true if at least one of the proposition is true.

• Implication:

It is usually formulate as IF-THEN rules, such as:

IF “it is raining” THEN “I will take my umbrella”

The IF part is called antecedent, while the THEN part is called consequent.

For each operation we can define a truth table which is a convenient way to summarize

the relationships between several propositions. The table 2.1 shows the truth table of the

operations mentioned above.

37

p q m ∧ o m ∨ o m → o

T T T T T

T F F T F

F T F T T

F F F F T

Table 2.1: Truth table of “and”, “or” and “implicat ion” in crisp logic

Finally, crisp logic uses two main types of inference rules. Let r and s be two

propositions:

r : “It’s raining”

s : “I will take my umbrella”

• Modus Ponens:

If r implies s and r is true, then s is true, i.e.

“IF it’s raining THEN I will take my umbrella” (r −> 	s)

“It’s raining” (r)

Therefore, “I will take my umbrella”. (s)

38

• Modus Tollens:

If P implies Q and Q is false, then P is false, i.e.

“IF it’s raining THEN I will take my umbrella” (r −> s)

“I will not take my umbrella” (s)

Therefore, “It’s not raining” (r)

2.5 Fuzzy logic

Classical logic has a direct correspondence with the Boolean algebra. [Mendel, 1995]

The uncertainty in the reasoning process is introduced by expanding the concepts

previously used to describe the crisp logic. It is worth noting that, since fuzzy sets are

described by continuous membership functions, the truth values of a proposition will

assume real values in the interval [0,1].

As an example, consider the variable Temperature defined by the linguistic labels in

figure 2.2 and the proposition “The temperature is low”. Given a value in the universe

of discourse, suppose 12°C, the truth value of the proposition is not 0 or 1, but for

example 0.5.

More in general, let now consider two propositions r and s defined as follows:

r : “� is)”

39

s : “� is +”

where) and + are two fuzzy sets and $%��� and $5��� are respectively the truth values

of r and s obtained as in the previous example. Like in the crisp case, we can combine

propositions using the operators previously declared. The result of the operations is

calculated based on the truth values of the propositions.

• Conjunction:

$k⋀s = 6uv	9$%���, $5���:	 �2.21�	

• Disjunction:

$k⋁s = 678	9$%���, $5���:	 �2.22�	

• Implication:

$k→s = x	9$%���, $5���:	 �2.23�	

where I represents the implication operator. It can be seen as a relation between the

fuzzy sets) and +, whose result is a fuzzy set characterized by a membership function

indicated by (2.23). It can be expressed in many different ways. The most used are the

“Mamdani implication” and the “product implication”, that can be expressed as in

(2.24) and (2.25) respectively.

40

$k→s = 6uv	9$%���, $5���:	 �2.24�	
$k→s = $%���$5���	 �2.25�	

Finally, we can expand the classical Modus Ponens to the fuzzy case by defining the

Generalized Modus Ponens. Let consider two fuzzy sets)	and +, a conditional

proposition can be expressed in the form:

“IF � is), THEN � is +”

where � ∈) and � ∈ +.

If we consider the propositions:

r: “� is)*”

s: “IF � is), THEN � is +”

The Generalized Modus Ponens structure is:

“x is A*” (r′)
“IF � is), THEN � is +” (r	−> Q)

Therefore, “� is +*” (s′)

Note that A* can be different from A, then, giving a new antecedent A*, it is possible to

get a new consequent B*. To make this clear, let consider the following example from

41

[Mendel, 1995]. Let) be the set of short men, + the set of not professional basketball

players and the following rule:

“IF a man is short THEN he will not be a professional basketball player”

The Generalized Modus Ponens allows to use as first premise:

“This man is under 170 cm tall” ()*)

And obtain the following consequence:

“he is not a good professional player” (+*)

Then,)* is the set of men under 170cm tall which is similar to), but clearly not the

same. To sum up, starting from a premise that is similar to the rule’s antecedents, it is

possible to get a consequent which is similar, although not exactly the same, to the

rule’s consequent. This result can be obtained mathematically by considering that the

implication is a relation, therefore it is possible to combine it with a fuzzy set A* other

than the antecedent of the rule and obtain a different output set, B* in the example.

Then, we can write:

B* = A* ∘	R

+*��� = sup E9)*���, }�)���, +����:
where I is one of the implication operators (minimum or product) and E	is a t-conorm

(usually maximum).

42

2.6 Fuzzy logic systems

A fuzzy logic system (FLS) is a “nonlinear system that maps an input data (feature)

vector into a scalar output” [Mendel, 1995]. Like artificial neural networks, fuzzy

systems can be considered universal function approximators. As such, they have been

successfully employed in a wide variety of applications like nonlinear time series

forecasting, controllers and so on so forth.

As shown in figure 2.7 fuzzy logic systems consist of four components:

• Fuzzifier

• Knowledge base

• Inference engine

• Defuzzifier

The functioning of a FLS will be explained by providing an overview of the general.

architecture. The focus will then shift to the building blocks of a FLS for a more fine-

grained analysis.

43

Figure 2.7: Architecture of a FLS

The input of a FLS is a crisp value, which is converted through the fuzzifier into a fuzzy

set. Then, a fuzzy reasoning is performed using the set of rules included into the

knowledge base. Finally, the resulting fuzzy output is transformed again into a crisp

value during the defuzzification step.

2.6.1 Fuzzification

The crisp nature of the observed data in many applications has implications when it

comes to the introduction of uncertainty in the model. This will in fact require the

conversion of a crisp number into a fuzzy set.

The step just described is called fuzzification. The most widely used fuzzifier is the so

called singleton fuzzifier, which maps a crisp number into a fuzzy set whose support is

a single point.

When data are corrupted by measurement noise, the application of nonsingleton

fuzzification can be more appropriate. In this case, a crisp value is mapped into a fuzzy

membership function, whose shape is usually triangular or Gaussian.

44

2.6.2 Knowledge base

The knowledge base is made of two different components, the database and the rule

base. The former contains the membership functions, while the latter includes a set of

fuzzy rules. The choice of the membership functions, both in terms of shape and

number, is subjective and context-dependent and can heavily influence the success of

the model so created. This is why, many different approaches have been developed in

literature in order to learn the best configuration for the problem at stake. Some of them

include the use of evolutionary algorithms and will be discussed in chapter 4 .

With reference to the rules, they are the heart of a FLS. The fuzzy rule base consists of a

collection of IF-THEN rules which can be implemented by fuzzy conditional

statements. A fuzzy rule can be expressed as:

T�~�:	}@	M�	(�	@�~)��	M�	(�	@�~)�� …	M�	(�	@�~		E���	�	(�	F~ 	 �2.26�	
where N = 1, 2, … , G,		with G	number of rules. 	@�~ and F~ 	are fuzzy sets in A� ⊂ ℝ	and

	S ⊂ ℝ respectively. Finally M	 = 	�ON�M�, … , M�� ∈ A�, … , A�	�	P	� ∈ S, are linguistic

variables.

Since the rules represent the knowledge, they are crucial for the success of the

approximate reasoning process. Many different approaches to learn rules have been

proposed in the literature. See for instance [Wang, 1992(b)] an algorithm for the

extraction of the rules, starting directly from the data, is proposed. Other techniques

include the use of rules provided by domain experts or their generation using

evolutionary algorithms. The latter approach will be discussed in detail in chapter 4.

45

2.6.3 Inference engine

The inference engine implements the approximate reasoning by using fuzzy logic

principles discussed in the previous sections. It employs fuzzy rules included in the rule

base to determine the output of the system. As mentioned before, an IF-THEN rule can

be interpreted as a fuzzy implication, then the result is a fuzzy set whose membership

function is usually computed using the minimum or the product operator. Since the rules

can have multiple antecedents, in this case, the input is not a single value but a vector.

Note that, since a rule is fired when the degree of membership of the premise to the

antecedents of the rule is not zero, more than one rule is usually fired by the same input

vector. This is why, a strategy to combine the output of the fired rules has to be decided.

In order to perform an approximate reasoning, some parameters have to be decided.

First of all, the implication operator (a T-norm), then how model the logical connective

“and” (a T-norm) and finally, how to aggregate the output of all the fired rules (a T-

conorm).

Let assume to have a system with two inputs and a single output. It can be described by

the two following rules:

T�: }@	��	(�)��)��	��	(�)��	E���	�	(�	+�	
R�: IF	x�	is	A��	AND	x�	is	A��	THEN	y	is	B�

where x�, x� are the crisps inputs.

The figure 2.8 shows a graphical representation of the inference procedure. The steps to

perform the approximate reasoning are:

46

1. Fuzzify the crisp inputs, i.e. compute the degree of membership of each input to

the fuzzy sets which represent the antecedents of the rule. Typically fuzzy

singleton are used to this purpose.

2. Apply the t-norm operator chosen to implement the “and” connective to all the

antecedents of the rule.

3. Apply the t-norm operator chosen to implement the implication. If the minimum

is used both in step 2 and 3, this means to cut the membership function of the

fuzzy set specified by the consequent of the rule at the height corresponding to

the minimum value between the degrees of membership of the inputs to the

antecedents of the rule.

4. Aggregate the consequent fuzzy sets of the fired rules obtained in the previous

step using a t-conorm.

Figure 2.8: Fuzzy inference using minimum for "and" connective and for the implication and

maximum for the aggregation.

47

2.6.4 Defuzzifier

In order to obtain a crisp output value from the FLS, the last step is the defuzzification.

Many defuzzifiers have been proposed in the literature, but there are no scientific basis

for any of them, consequently the defuzzification can be considered an art rather than a

science. [Mendel, 1995].

Usually the computational simplicity is the criterion used to choose a defuzzifier. The

most used defuzzifiers are:

• Maximum defuzzifier:

It chooses as output value the point � for which $5��� is a maximum. This method can

lead to interpretability problems when more than a single point reach the maximum

value.

• Mean of maxima defuzzifier:

To overcome the problems of the previous method, all the points in which the output set

assumes the maximum value are considered and the mean is returned as result of the

defuzzification. It can lead to some interpretation problems, for instance in the situation

shown in figure 2.9.

• Centroid defuzzifier:

It determines the centre of gravity of the output fuzzy set and returns this value as

output of the FLS. The main drawback of this method is that the centroid can be

difficult to compute.

48

Figure 2.9: Interpretation issue in the mean of maxima defuzzifier

• Height defuzzifier:

It determines the centre of gravity of the output fuzzy set of each rule and then compose

the results using the following:

�� =		 �� ��~$5�
�

~��
���~�� �� $5�

�

~��
���~��� 	 �2.27�	

The main advantage with respect to the previous method is that the centre of

gravity of the typical shapes used to represent the membership functions is well

known.

2.7 Discussion

Fuzzy logic systems are universal function approximators [Wang, 1992(a)]. They share

this property with artificial neural networks, introduced in the first chapter. The aim of

this brief discussion is to stress the reasons that make FLSs a better solution in order to

49

create an interpretable but also accurate model for the analysis of financial data. Both

models can be applied to perform this task, then a brief comparison of the main features

of each of them, may make clearer what are the advantages of using FLSs.

First of all, both models share the necessity of setting many configuration parameters.

As for neural networks, their design needs to specify the number of layers, the number

of neurons for each layer and the type of transfer functions to be used. On the other

hand, also FLSs need to set, for instance, the type of fuzzification, the shape and

parameters of membership functions, the operators for the implementation of inference

and composition and the defuzzifier method. In both cases, the choice of these

parameters can heavily influence the performance of the model. What makes FLSs a

better option than a neural network is the possibility to choose the parameters in a

smarter way. [Mendel, 1995] In fact, the former, being considered as white boxes, give

the possibility to investigate how the choice of the parameters can influence the model.

Consequently, the tuning of these systems is faster than for neural networks, for which

the parameters are randomly initialized.

Finally, but most importantly, FLSs can handle linguistic knowledge and include

uncertainty in the model in a very spontaneous way. [Mendel, 1995]

In light of the above, all the limitations of neural networks systems discussed in chapter

one are overcome by the use of fuzzy logic systems. In addition, FLSs increase the

interpretability of the models created thanks to the linguistic knowledge representation,

and are able to embed uncertainty through the approximate reasoning process.

50

3 Fuzzy Rule Based Classifiers

3.1 Introduction

FLSs discussed in the previous chapter have been used in many application areas, such

as control, clustering, regression and classification. This chapter will explore, more

specifically, their application to solve classification problems and support decision

making process. The aim of classification is to extract a model of the data describing

important data classes [Han, 2001]. In this way, through the model created it is possible

to “classify”, i.e. assign a class label to, previously unseen data objects. As concern

financial data analysis, a classification model can be built, for instance, to decide if a

bank loan is safe or risky, or if a credit card transaction is legitimate or fraudulent.

However, in order to really support decision makers in their analysis, the model should

be as simple as possible and, at the same time, have a significant explanation ability.

Fuzzy rule based classifiers (FRBC) are particularly suitable for this purpose because

they are able to mix the simplicity of a rule-based system with the interpretability of

linguistic labels that only fuzzy systems can provide.

This chapter attempts to concisely summarize some of the approaches proposed in the

literature to generate fuzzy classifiers. First, a general description of the classification

process and the structure of fuzzy rule based classifiers will be presented. Then, some of

the approaches to learn rules and membership functions will be discussed and, finally,

major classification issues will be analysed, with particular attention to the

interpretability-accuracy tradeoff.

51

3.2 Classification as a process

The aim of the classification process is to create a model which describes the data to be

analysed and predict the class, i.e. the categorical label, of previously unseen data

points. [Han, 2001] This process comprises two main steps:

1) building a classifier starting from a predetermined training set, consisting in a set

of data points with an associated label. Each example is represented by a 	-

dimensional attribute vector, also called feature vector, which can be seen as the

description of the data point and a label that is a categorical attribute indicating

the class whose the point is assumed to belong to. Briefly, in the first step of the

classification process a mapping or a function that separates the data classes is

learnt. Although many different forms to express the mapping function can be

used, this study will focus on the fuzzy rule-based approach, in which the

mapping is represented through fuzzy IF-THEN rules.

2) Once the mapping is learnt, the model is complete and the second step of the

classification process can be performed. In this phase the model built in the

previous step is used to predict the associated class label of a given data point,

which is not included in the training set. The set of tuples used to evaluate the

generalization ability of the model is called test set. The reason why a set of

unseen examples is used to estimate the accuracy of the classifier, is that a

phenomenon called overtraining could occur. It means that the classifier over-

fits the training data, including in the model also some anomalies that are not

present in the general dataset. The structure of the test set is exactly the same as

52

the training set one and the accuracy of the model is calculated by submitting the

test tuples to the classifier and comparing the label predicted with the actual one.

The accuracy is then calculated as the percentage of test tuples correctly

classified. More details about the evaluation metrics used to evaluate classifiers

will be discussed further below.

3.3 Structure of fuzzy rule based classifiers

A fuzzy rule-based classification system (FRBCS) consists of two main components:

the inference system and the knowledge base. The latter, in turn, is comprised of a rule

base that contains the set of fuzzy rules and the database including the parameters that

define the membership functions associated to the input variables. The overall structure

of a FRBCS is shown is fig, 3.1

Figure 3.1: Structure of a FRBCS [Cordòn, 1999]

Thus, the design of a FRBC implies the choice of the rules’ structure in the rule base,

the specification of the membership functions, and the definition of a reasoning method.

53

The literature provides several approaches for the creation of FRBCs, but before

digging into more details, it is important to frame the classification problem starting

with a formal definition.

Formally, the aim of a �-class pattern classification problem is to assign a class �� from

the set of all possible classes � = {��, … , ��	} to an object represented by a 	-

dimensional point in the feature space ℜ
. Let c	 = 	 {��, … , �
} be the set of the input

variables and A
 the universe of the 	th variable and suppose it is partitioned, for each

variable, into (= 1, … , � fuzzy partitions. A generic rule of the FRBC can be expressed

as:

}@	��	(�)�� 	�	P … �	P	�
	(�)
� 	E���	e	(�	��	
where e is the output of the classifier, �� is the label associated with the rule and)��
represents the (th fuzzy partition of the first variable.

A weight is often added to each rule and it represents the certainty degree of the

classification in the class �� for a pattern belonging to the fuzzy subspace delimited by

the antecedents of the rule. Many alternatives have been proposed in the literature to

compute rule weights, the most used are the following:

• Certainty factor [Cordon, 1999]

�@� = ∑ ����¡�¢£∈¤¥∑ ����¡�¦¡�� 	 �3.1�	

54

• Penalized certainty factor [Ishibuchi, 2005]

r_�@� = �@� − ∑ ����¡�¢£∉¤¥∑ ����¡�¦¡�� (3.2)

where ��(��) = ∏)©�(�¡)
ª
©�� is the matching degree of the rule with the input.

Then, the parameters of a FRBC are: the rules to be used by the reasoning method to

perform the classification task; the reasoning method; the shapes and the number of

fuzzy partitions for each input variable.

In the following, some of the approaches proposed in the literature for each of the above

mentioned parameters, will be analysed.

3.3.1 Knowledge base learning approaches

In order to achieve its goal, a FRBC needs to learn the rules and the fuzzy partitions of

each variable. In some applications, especially in control field, they are often provided

by human experts. However, specialized literature has recently proposed new

approaches that allow to learn the knowledge base automatically and directly from the

numerical data thereby enabling the creation of classifiers also when there is not enough

expert knowledge.

Usually, these approaches assume a fixed number of linguistic terms for each input

variable and a uniform distribution of the linguistic terms into the universe of discourse.

The number of membership functions per variable is usually between three and nine and

55

can be different from a variable to another. [Cordon, 2001] In this way, these

approaches are only focused on the rule base learning.

Based on the demonstrated influence of the shape and number of linguistic labels per

variable on the performance of classifiers, other approaches include a tuning process of

the database, which modifies only the definitions of membership function.

Finally, additional approaches to learn database and rule base simultaneously have also

emerged. One of them will be used as a case study in chapter 5.

To sum up, the different approaches to knowledge base learning can be divided into

three categories:

1. RB learning using a predefined DB

2. Tuning of membership functions

3. Simultaneously learning of the KB components

3.3.1.1 Rule base learning using predefined membership functions

One of the most popular approaches to the rule base learning was proposed by Ishibuchi

in his work “Distributed representation of fuzzy rules and its application to pattern

classification” [Ishibuchi, 1992]. It describes the extraction of rules directly from

numerical data as a two-phases process:

• Fuzzy partitioning of the pattern space

56

• Determination of a fuzzy rule for each fuzzy subspace

With regard to the first phase, a simple grid partition is employed to divide the input

space. For the sake of clarity, let us assume a two-dimensional pattern space and

suppose to partition each variable into five fuzzy sets. Using the grid approach, we will

generate 5� = 25 subspaces and then 25 potential rules (see fig. 3.2)

Figure 3.2: Fuzzy grid partitioning [Ishibuchi, 1995]

The main drawback of this approach is that the number of partitions chosen can

significantly influence the performance of the system, because if the partitioning is too

coarse then many patterns will be misclassified; on the contrary, a too fine partition will

generate problems in those subspaces with no training patterns, due to the impossibility

of generating rules for them.

It is important to note that the distribution of data should be taken into account when the

number of partitions is chosen. This explains why, in this paper, the concept of

57

distributed fuzzy rules has been introduced. The main idea is to use the if-then rules

generated through different numbers of partitions (see fig 3.3) simultaneously.

Figure 3.3: Classification system with multiple fuzzy rule tables [Ishibuchi, 1995]

Let « = 3 be the maximum level of partitioning, i.e. each variable is partitioned at most

using three linguistic labels. In the two-dimensional case the total number of rules

generated is: 2� + 3� = 13. A generic rule can be expressed as:

}@	��	(�)�	�	P	��	(�)© 	THEN …

Once all the possible combinations are generated, the class label is determined using the

training data. More in detail, the algorithm assigns each rule to the label of the class

with the larger sum of compatibilities to the premise. The procedure to assign the class

and the weight to the rule is the following:

• For each class E = 1, … G, ®¤¯, i.e. the sum of the compatibility of � with the

class E, is calculated as:

58

®¤¯ =	 � $����� ∗ $©����
¢±∈¤¯

	 �3.3�	

• The label of the class for which this coefficient is the maximum is assigned as

consequent of the rule. If more than one ®¤¯ take the maximum value or if all

the ®¤¯ are zero, then the class label cannot be determined and the rule is

defined as dummy rule, which means that it is not used during the classification

process.

• If only a single class takes the maximum value, then the weight is calculated as:

�@�©� = �®¤¯ − ®� � ®¤¯
�

¯��
² 	 �3.4�	

The main drawback of this procedure resides in the incredible number of rules that can

be generated, especially in the case of high dimensional datasets. In fact, the number of

rules increases exponentially with the number of features. For the sake of clarity, let us

assume that six different linguistic values are used for each variable. Then, 6
	rules will

be generated in a 	-dimensional space. A copying strategy was proposed by [Ishibuchi,

1997] in a later work, based on the intuition of generating only rules with a pre-

specified number of antecedents, instead of generating all possible rules. In doing so,

[Ishibuchi, 1997] introduced a new linguistic value for the antecedents, the so called

“don’t care” condition. It is represented by a membership function with value 1 in the

whole domain of the attribute. Consequently, the antecedents presenting this value can

59

be omitted from the rule. The effect generated in a two-dimensional space is shown in

fig. 3.4.

Figure 3.4: Effect of "don't care" condition in a two-dimensional space [Ishibuchi, 1997]

In this way only a small part of the all candidates rule is generated. They also apply

genetic algorithms for the selection of the most relevant rules.

Another approach allowing the extraction of fuzzy rules directly from the data has been

proposed by Abe in [Abe, 1995]. This study tries to overcome the limitations derived

from the necessity of dividing the input space in advance, by introducing a technique to

extract fuzzy rules with variable fuzzy regions. The idea is to divide the input region

recursively using hyperboxes. There can be two types of hyperbox: activation and

inhibition. The former defines the existence region of a class while the latter inhibits the

existence of data in that activation hyperbox. A membership function is associated with

each hyperbox and the degree of membership of a point � is 1 if � is inside the

activation hyperbox, while it decreases as � moves away from it. The process of

partitioning can be divided in the following steps:

60

• Determine activation hyperboxes by including the maximum number of data for

each class.

• If the activation hyperboxes of two different classes (and ³	are overlapped, then

the overlapping region is defined as an inhibition hyperbox.

• The inhibition hyperbox is analysed and if there exist data from both classes (
and ³, an additional activation hyperbox is defined for each of these classes.

• Then, recursively the process is repeated by investigating the overlap region of

these new activation hyperboxes and defining inhibition hyperboxes if

necessary.

The recursive process to resolve the overlap of activation hyperboxes is summarized in

fig. 3.5.

Figure 3.5: Recursive definition of activation and inhibition hyperboxes [Abe, 1995]

Once the partitions are determined, the fuzzy rules have to be generated. The process to

obtain fuzzy rules starting from the data can be summarized as follows:

61

• Determine the activation hyperboxes of level 1,)���1�, using the set of input

data c�

• If there is no overlap between activation hyperbox of class (and the others

hyperboxes of level 1, then a fuzzy rule for class (can be generated:

}@	�	(�)���1�	E���	�N���	(
• Otherwise, assuming that)���1� overlaps)©©�1�, it is resolved by defining the

overlap region as an inhibition hyperbox of level 1, denoted as }�©�1�
• Then it is possible to define a new fuzzy rule of level 1 using the inhibition

hyperbox:

}@	�	(�)���1�)��	�	(�		OL	}�©�1�	E���	�N���	(
• If the activation box of a class coincides with the overlap region, the rule for the

inhibition hyperbox is not created, because it is a void rule.

• Finally, if some data of class (belong to the inhibition hyperbox	}�©�1�, then an

activation hyperbox of level 2 is defined inside 	}�©�1�, and the process

recursively continues until a termination condition is reached.

• The process is ended when there is no overlap between the activation

hyperboxes of level N.
Finally, a new branch of research is focusing on applying genetic algorithms in order to

create the fuzzy rule base. This kind of approaches can be divided in two main

categories: rule selection and rule generation approach. The former is focused on

62

selecting the best set of rules from a large amount of candidate rules in order to obtain

compact rule base; the latter tries to directly generate a set of rules, without any

previous knowledge. Both approaches will be discussed in detail in the chapter 5.

3.3.1.2 Tuning of membership functions

Regarding the definition of the membership functions, in the presence of enough

information about the domain, a default partition is usually provided by experts.

Otherwise, equally spaced partitions, i.e. uniformly distributed in the domain of the

attribute, are often used in order to maintain an important property of the fuzzy systems

which is the interpretability. In fig. 3.6 an example of equally spaced (a) and non-

uniform partitioning (b) is provided. Uniform partitions can be universally considered

the most interpretable, while some problems can arise when the membership functions

are excessively overlapped.

Figure 3.6: equally spaced partitioning (a), non-uniform partitioning (b) [Ishibuchi, 2009]

63

 Convenience would suggest using equally spaced partitions, but there is a caveat that

goes along this solution: as mentioned above, the shape of membership functions can

strongly influence the accuracy of the classifier. This is why, some techniques to learn

also the DB component of an FRBC have been proposed in the literature. The process

of adjusting the definition points of the membership functions is called “tuning”. In

light of the above, this tuning should be performed using constraints which avoid the

generation of excessively overlapped partitions. In order to achieve this goal, some

partition integrity indexes used during the learning process have been proposed in the

literature. One of the most common approaches to perform the tuning of membership

functions include the use of genetic algorithms [Antonelli, 2011] and will be discussed

further below.

3.3.1.3 Learning the KB components simultaneously

The study mentioned before, suggests a way to concurrently learn the rule base and the

parameters of the membership functions associated with the linguistic labels. In this

work, a multi-objective genetic algorithm is used for optimizing the accuracy of the

classifier and the interpretability of the fuzzy partitions. It will be discussed in detail in

chapter 5.

3.3.2 Reasoning methods

The reasoning method is the inference procedure through which, starting from an input

pattern, it is possible to derive the belonging class. Recalling what explained in the

64

chapter above, the main characteristic of fuzzy reasoning is that it is possible to classify

that pattern even in the absence of a perfect match of the new pattern with the

antecedents of a rule. In this way a great generalization capability is achieved.

Obviously, many different rules can be fired by an input pattern, then a way to

univocally determine its class label should be decided.

Several reasoning methods have been proposed in the literature. The classical one is

called maximum matching method. In order to classify a new pattern it considers the

rule with the maximum matching degree between the pattern and the antecedent part of

the rule, as the winner rule and assigns the pattern to the class specified by the

consequent part of the rule. More in detail, the process to classify a new pattern can be

described as follows:

• Calculate the matching degree of the pattern with the antecedents of the rule. It

expresses the strength of activation of the if-part of the rule.

T~��� = E ´$%µ¶����,… , $%·¶ ��¦�¸ (3.5)

 where E is a t-norm operator (typically product or minimum) and)¦
 is the 	th

antecedent of the rule.

• Calculate the degree of association ℎ(T~(�), �@~) of the pattern with the class

specified in the consequent of the rule, by applying a combination operator

(typically product) to the matching degree and the certainty factor of the rule.

ℎ(T~(�), �@~) = T~(�) ∗ �@~ (3.6)

where �@~ is the certainty factor of the Nth rule.

65

• Finally, the winning rule is the one with the highest value of association degree.

This reasoning method considers only the winner rule to determine the class of the new

pattern, while ignoring the others. Yet, other reasoning methods proposed in the

literature try to combine the various rules fired by the input pattern in order to obtain a

result which takes into consideration the output of all the rules.

3.4 Evaluation metrics

Once the classifier is built, we need to define some measures to evaluate its

performance and assess the quality of the model. A set of labeled tuples is given to the

classifier and, for each of them, the actual class is compared with the predicted one.

Before moving forward with the evaluation of the classifier, it is worth clarifying some

of the central and recurring terms and concepts:

Positive tuples: patterns belonging to the main class of interest

Negative tuples: patterns belonging to all the other classes

With respect to the definitions above, when the classifier prediction is compared with

the known class of the input pattern, four possible situations can be distinguished:

True positive (TP): positive patterns correctly labeled by the classifier

True negative (TN): negative patterns correctly labeled by the classifier

False positive (FP): negative patterns incorrectly labeled as positive by the classifier

66

False negative (FN): positive patterns incorrectly labeled as negative by the classifier

These elements are usually summarized in the confusion matrix, which is a convenient

way to visualize how the errors are distributed with respect to the various classes. A

confusion matrix for a binary class problem, i.e. a classification task with only two

possible classes, is shown in figure 3.7.

Figure 3.7: Confusion matrix

Each row of the matrix represents the actual patterns belonging to a class, let r and �

be the total number of instances belonging to the positive and negative classes,

respectively. Each column shows the total number of predicted positive and negative

patterns. Finally, a generic element �G�© indicates the number of tuples belonging to

class (that the classifier assigned to class ³.
In light of the above, several measures have been proposed to assess the performance of

a classifier. The most common one is the accuracy. It is defined as the percentage of

tuples correctly classified and can be expressed as:

67

)����� = 	Er + E�r + � 	 �3.7�	

This measure can be seen from another perspective and be expressed in terms of the

misclassified tuples. In this case it is called error rate and is expressed by:

Then, a classifier with a good accuracy should have a confusion matrix where most of

the elements are distributed along the principal diagonal, while the rest of the entries

would be close to zero.

However, the main drawback of the accuracy is that it is not representative of the true

performance of a classifier when the dataset is unbalanced, i.e. when the number of

patterns of the class of interest is significantly greater than the number of patterns

belonging to the other classes. For the sake of clarity, assume that our task is to

construct a classifier for the detection of credit card frauds. The related dataset are to be

highly unbalanced because most of the transactions are legitimate while the fraudulent

ones, which are our class of interest, are sporadic. In such circumstances, suppose that

our dataset is composed of 990 negative patterns (legitimate transactions) and only 10

positive patterns (fraudulent transactions). If the classifier under assessment predicts the

majority class for all the patterns in the dataset, its accuracy will be 99%. It goes alone

that the result obtained is not significant, since the error rate on the class of interest is

100%. In other words, the accuracy is highly biased by the distribution of the class

tuples in the dataset.

Err�C� = 1 − Acc�C� = FP + FNP + N 	 �3.8�	

68

To tackle this problem, a variety of alternative measures to assess the performance of a

classifier have been suggested, among which the most important are: sensitivity,

specificity, precision, recall and F-measures.

Sensitivity: It is also referred to as true positive rate and expresses the proportion of

positive tuples correctly classified. It can be computed as:

Specificity: It is also referred as the true negative rate and expresses the proportion of

negative tuples correctly classified. It can be computed as:

Precision: It can be considered a measure of the exactness of the classifier and

expresses what percentage of predicted positive tuples is actually positive. It can be

computed as:

Recall: It can be considered a measure of completeness and expresses the percentage of

actual positive tuples which are recognised as positive by the classifier. It can be

computed as:

�H	�(L(�(L� = Err (3.9)

�JH�(�(�(L� =
E�

�
 (3.10)

JKH�(�(O	 =
Er

Er + @r
 (3.11)

KH��NN =
Er

Er + @�
=

Er

r
 (3.12)

69

F-measures: They allow to combine the precision and recall measures. It is possible to

give prominence to precision or recall by fixing the value of the parameter ® which can

be considered a weight. A general expression of this measure is the following:

The most common values of ® are 0.5 and 2.

To sum up, the accuracy is the most common measure used for the evaluation of

classifiers, however its reliability depends on the evenly distribution of data classes,

while the other measures perform well with unbalanced datasets.

The next chapter will discuss some of the most compelling issues related to unbalanced

datasets. Approaches to tackle such issues will be also flagged and examined as

suggested by the mainstream literature.

3.5 Main issues in classification problems

The main issues encountered when performing the classification task are mostly related

to the dataset structure, in particular to high dimensional and unbalanced datasets. While

the problems emerging in high dimensional spaces have been already discussed in the

first chapter, the focus of our analysis in the following section will be on unbalanced

datasets.

Another issue is related to the so called “accuracy-interpretability tradeoff”. It has been

demonstrated that an increase in the interpretability of an FRBC will proportionally

@½ = �1 + ®�� ∗ JKH�(�(O	 ∗ KH��NN®� ∗ JKH�(�(O	 ∗ KH��NN (3.13)

70

decrease the level of accuracy and vice versa. In the following section this problem will

be explained.

3.5.1 Unbalanced datasets

As previously explained, an unbalanced dataset is characterized by an uneven

distribution of the class patterns, i.e. considering a two-class problem it is possible to

identify a majority and a minority class. Moreover, it is important note that the minority

class is usually pivotal to the analysis task. Dealing with unbalanced datasets gives rise

to some difficulties both in the construction and evaluation phases of the model.

[Lopez, 2012] points out the following issues with regard to the construction phase:

• Learning algorithms are usually biased towards the majority class, because they

often tend to attribute higher weights to those rules that predict larger number of

samples.

• Learning algorithms do not easily detect small areas with examples of the

minority class which are included in a larger area of examples of the other class

(see fig. 3.8(a)).

• Overlapping between the samples of the positive and negative class (see fig.

3.8(b)).

71

Figure 3.8: Problems with unbalanced datasets: (a) small disjucts and (b) overlapping between

classes [Lopez, 2012]

As far as the evaluation phase is concerned, we have already introduced some metrics

based on the values contained in the confusion matrix. Another good metric that can be

used to assess the performance of classifiers over unbalanced datasets is the Receiver

Operating Characteristic (ROC) curve. This shows the trade-off between the true

positive rate, i.e. the sensitivity, and the false positive rate.

The latter is defined as:

The ROC curve offers a visual representation of this trade-off. The point) in figure 3.9

indicates the ideal point where the optimal classifier should be placed. In fact, all

positive examples in correspondence to it, are classified as correct, while no negative

example is misclassified as positive. The line � = � (C) represents a random guessing.

The closer the ROC curve is to the diagonal line, the less accurate the model.

@rT = @r� = 1 − �JH�(�(�(L� (3.14)

72

Figure 3.9: ROC curve.

Source: <http://circ.ahajournals.org/content/115/5/654/F2.expansion.html>

The ROC curve is a very effective way to compare different classifiers. It is usually

obtained by varying the parameters which represent the classifier and plotting a point in

the ROC space for each of them.

In light of the above, the Area Under the ROC Curve (AUC) can be used to evaluate the

performance of a classifier and it can be computed as:

The closer this area is to 0.5, the less accurate the model is. A classifier with a perfect

accuracy will have an AUC of 1.0.

)A� = 1 + Er¾¿¡À − @r¾¿¡À2 (3.15)

73

3.5.2 Accuracy versus interpretability

The design of accurate and interpretable FRBC is not a trivial task. In fact, the attempt

of improving the accuracy generally results in a degradation of its interpretability and

vice versa. Since the strength of FRBCs is their explanation ability, it is important to

preserve this characteristic. Thus, when a model is generated, these two factors has to be

taken into account and a compromise between accuracy and interpretability needs to be

found (see fig 3.10).

Figure 3.10: Accuracy-Interpretability tradeoff [Is hibuchi, 2009]

In order to study the different methodologies identified in the literature to find the best

trade-off, we have to look first at the factors that can influence the interpretability of a

classifier. Given the subjectivity intrinsic to the concept of interpretability, this can be

influenced by several factors to name a few the shape and number of membership

functions, and the structure and amount of rules in the rule base. [Guillaume, 2001]

points out the following factors:

74

• Rule base structure:

o The number of rules in the rule base should be as limited as possible in

order to avoid the overtraining and favour the generalization process,

while at the same time facilitating the extrapolation of useful knowledge,

from the rules, by the user. The rules in the rule base should be

incomplete, i.e. not all the variables should be involved in the rules.

• Membership function definition:

o Increase the number of membership functions for each variable can

produce positive effects on the accuracy of a classifier, since this will

enhance the creation of more complexes decision boundaries (see fig.

3.11) However, the number of fuzzy partitions should be carefully

considered, because, as already mentioned, too many partitions may

results in overfitting of the training data.

75

Figure 3.11: Decision boundaries with five fuzzy sets per variable and with six fuzzy sets per

variable [Ishibuchi, 1992]

o Fuzzy partitions must be as readable as possible. It is clear that the

equally spaced partitioning is the most interpretable, but it has been

demonstrated that in order to increase the accuracy of the classifier, the

tuning of the membership function can be very useful. The main concern

is that by modifying the definition points of the membership functions,

the interpretability of the model is downgraded (see fig. 3.12). To

preserve the interpretability some constraints should be defined.

Figure 3.12: Tuning of membership functions [Ishibuchi, 2009]

76

The literature contains many examples of how to obtain a good trade-off between

interpretability and accuracy. Some ideas include: the use of weighted objective

functions that take into consideration both the accuracy and the interpretability; the

design of two-step fuzzy systems, which search for an accurate solution and then try to

simplify it; the use of multi-objective genetic algorithms.

In recent years, most of the studies in this field have focused on the application of

genetic algorithms to solve the accuracy-interpretability trade off.

[Ishibuchi, 1995] proposes an approach based on genetic algorithms for selecting a

small number of significant fuzzy rules to construct a compact classifier with high

accuracy and good interpretability. In order to maximize the accuracy and minimize the

number of rules selected, an aggregated objective function is chosen as fitness function.

where f is the subset of rules selected by the algorithm and �� and 	�� are positive

numbers.

This approach presents a main drawback, namely it does not ease the identification and

attribution of the best values to the weights, which the system strongly depends on. As

shown in fig 3.13 if the weight for the complexity minimization is too high (a), a very

simple but not accurate model is obtained; on the contrary, if the weight for the error

minimization is too high (b), a very accurate, but also very complex system is obtained.

��f� = �� ∗ �Á¾¾Â¾�f� +	�� ∗ �¤Â��~À¢�¡i�f�	 �3.16�	

77

Moreover, even when the weights are aptly specified, the best value f∗ is not always

found (see fig. 3.13 (c)).

(a)

(b)

(c)

Figure 3.13: Different trade-off depending on the values of the weights [Ishibuchi, 2009]

This explains why the last studies are focused on the application of multi-objective

evolutionary algorithms (MOEA). They allow to take into account each objective

individually and generate a set of valid solutions. Each solution is characterized by a

different tradeoff between accuracy and interpretability (see fig 3.14)

78

Figure 3.14: Results of a multi-objective evolutionary algorithm [Ishibuchi, 2009]

3.6 Discussion

Once the model is built, its interpretability is of great value. The final goal of the

various techniques of data analysis is to extract useful knowledge in order to ease the

decision making process and make it more efficient. In order to do so, the process

leading to the generation of the results needs to be interpreted and understood, which in

turn contributes to increase the reliability of the model created. Given the importance of

interpretability, fuzzy rule based classifiers are one of the most common approaches

used for the classification task. Their strength lies in the possibility to combine the high

interpretability of the linguistic representation with the accuracy and simplicity of a

rule-based structure. The main drawback of these systems is that it is not easy to find a

good compromise between interpretability and accuracy. As proved by several studies,

accuracy and interpretability are conflicting objectives and the most effective way to

create a system with a good-enough trade-off is through genetic algorithms. In light of

these assumptions, the so-called genetic fuzzy rule based classifiers (GFRBC) will be

introduced and analysed in the next chapter.

79

4 Genetic Fuzzy Rule Based Classifiers

4.1 Introduction

In the previous chapters we suggested that the design of an FRBC requires the learning

of the two components of the knowledge base (KB): rules (RB) and membership

functions (DB). The possibility of defining these two components automatically would

be of great help. It has been demonstrated that the process of automatic definition of a

fuzzy system can be considered an optimization task [Cordon, 2004]. Given their

capacity to find near optimal solutions in large and complex search spaces, genetic

algorithms (GAs) are proposed as possible solution to the issue at stake. This said, the

combination of FS and GA is expected to be a convenient solution for the attainment of

a well-designed classifier. The hybridization of FS and GS is known as Genetic Fuzzy

System (GFS).

Figure 4.1: Structure of a genetic fuzzy system (GFS) [Herrera, 1997]

80

Moreover, genetic algorithms can be useful in order to find a good tradeoff between

accuracy and interpretability. In fact, generating rule bases through GA makes it

possible to create a series of classifiers, each with different tradeoff values. Among the

solutions so created, none of them is better than the others, this means that the user’s

choice is based on the application context that he/she considers the most appropriate.

In light of the above, this chapter will first introduce single and multi-objective genetic

algorithms, and then will explore learning opportunities by means of GAs (both for RB

and DB components). The final part of the chapter will focus on the multi-objective

GAs (MOGA) application for the solution of the tradeoff between accuracy and

interpretability.

4.2 Genetic algorithms

Genetic algorithms are general purpose search algorithms that mimic the processes

observed in natural evolution [Herrera, 1997]. The main idea is to reproduce the natural

evolution processes to solve optimization problems. The basic element is the

chromosome, which represents one of the possible solutions to the problem at hand, i.e.

a point in the search space. Each chromosome has an associated fitness, i.e. a value

through which the survival of the fittest among all the individuals is simulated. At a

certain time L, the set of solutions r�L� is called a population.

The analogy with the living organism evolution process is clear. Then, in order to allow

the evolution, the individuals of the population must compete one each other for mating.

Only some of the individuals are selected for the reproduction, particularly, the ones

81

with a greater fitness value are more likely to be selected. In fact, the fitness value is

proportional to the utility or adaptation of the solution represented by the chromosome.

The operation that simulates the reproduction is called crossover and it allows the

combination of the genes of two good chromosomes to generate new individuals that,

in some circumstances, are even better than their parents.

Moreover, an important role in the living organism evolution process is played by the

mutation. It consists in a small change into the genetic material of an individual and it

allows to maintain a certain structural variability within a population.

The main reason of the success of genetic algorithms is that they are able, starting from

a completely unknown search space, to bias the research towards the more useful

subspaces. This is reason why they perform particularly well in large and complex

spaces. However, it is not guaranteed that the optimal global solution is found, but

surely a local optimal one is found in a very short time considering the search space

complexity [Herrera, 1997]. The outline of a simple genetic algorithm is shown in the

figure 4.2.

From the above, it is clear that the implementation of a genetic algorithm requires the

definition of the following elements:

• Genetic representation of solutions

• A method to generate the initial population

• Evaluation function to assign the fitness value

• Crossover and mutation operators

82

• Values of the parameters of the genetic algorithm, such as population size,

probabilities of mutation and crossover, etc.

Figure 4.2: Outline of a simple genetic algorithm [Cordon, 2004]

The steps needed to design a genetic algorithm will be explained more in detail in the

following section.

4.2.1 Representation and initialization

The representation of solutions plays a key role in the design of a genetic algorithm. It is

called encoding scheme and the binary representation is the most common one,

although not the only one. In the binary representation a chromosome is composed of

83

several genes, each of them encoded by a bits string. Other types of encoding schemes

include, for instance, the use of real numbers to represent the solutions. As stated by

[Herrera, 1997], the choice of the encoding scheme is crucial because it can limit the

GA capacity of exploring the search space.

Moreover, the initialization of the solutions should be performed thoroughly, because it

represents the inception of the research. It can influence the whole evolution of the

algorithm, causing, for instance, a premature convergence to suboptimal or undesired

points, or also a slow convergence speed, if the similarity among the initial

chromosomes is too high or their fitness values are too low. [Chou, 2000]

4.2.2 Fitness function

Another important element in the design of a genetic algorithm is the definition of the

fitness function. Given its leading role in the search process, a fitness function must be

chosen for each problem, so as to make sure that the returned values are proportional to

the goodness of the solution. In this way, the research is biased through the most

interesting areas of the search space.

84

4.2.3 Main operators

The main operators performing the evolution are: selection, crossover and mutation.

• Selection

This operator allows to select the chromosomes for the mating process from a

population r by preferring the ones with a high fitness value over the ones with a low

fitness value. After its execution, a new population rÃ is generated which generally

contains copies of chromosome with higher fitness values, in order to give them a

greater participation in the generation of the offspring. There are many different ways to

perform the selection, the most common one is the so called “roulette wheel”. As shown

in fig. 4.3, it assigns a section of the wheel to each chromosome and the size of the

space associated is proportional to its fitness. The selection is then performed by

repeatedly spinning the wheel and adding the correspondent chromosome to the

population rÃ.

Figure 4.3: Roulette Wheel. Source: New Castle University, Engineering Design Centre.

<http://www.edc.ncl.ac.uk/highlight/rhjanuary2007g02.php/>

85

• Crossover

The crossover operator simulates the mating by combining the genes of two parent

chromosomes to create two new chromosomes that can have a better fitness value than

their parents. However, not all the individuals in the population rÃ will generate

offspring, usually a crossover probability which represents the likelihood of the

application of the crossover is fixed as a parameter of the algorithm. Many different

types of crossover have been proposed in the literature, such as one point, two points

and uniform crossover. They all consist in choosing one or more cut points into the

parents genetic material and recombining it such that each child inherits something from

both parents. An example of one-point crossover is shown in figure 4.4.

Figure 4.4: One-point crossover

• Mutation

This operator simulates the mutation that happens in the reproduction process. It

consists in a small change of some genes and it usually happens with an equal

86

probability for all the genes in a chromosome. Its implementation consists in a random

alteration of the genes, each one with a certain probability, whose value is fixed as a

parameter of the algorithm. This probability should be not too high in order to avoid a

chaotic search.

Figure 4.5: Mutation

Finally, after the application of mutation and crossover, the best chromosomes of the

population r can disappear, then an elitist strategy is usually implemented. This helps

to make faster the convergence of the algorithm, but the number of chromosomes to be

preserved should be chosen carefully because if it is too high it could cause a premature

convergence of the algorithm.

4.3 Multi-Objective genetic algorithms

Most practical problems need the optimization of multiple and often conflicting

objectives. These kind of problems are known as “multi-objective optimization

problems” (MOP). In order to solve these problems, decision makers need not just a

87

single, fix-all-solution, but a set of possible solutions, among which they can choose

the one they deem the most appropriate to the application context. The solutions of a

MOP are points in the search space that minimizes (or in some cases maximizes) the

values of a set of objective functions. [Tamaki, 1996]

Thus, a MOP can be formulated as:

Minimize ���� = {�����, �����, … , �
���}

where �����… �
��� are a set of objective functions.

When dealing at the same time with many objective functions, the notion of “Pareto

dominance” has to be introduced in order to compare the different solutions generated.

A solution � dominates a solution � if and only if the following conditions hold:

• � is not worse than � for any of the objectives

• � performs better than � at least for one of the objectives

If one of these conditions does not hold, then � does not dominate �.

Starting from this definition, we can define a solution as Pareto-optimal if it is not

dominated by any other solution in the search space. The set of Pareto-optimal solutions

is denoted as Pareto front. For the sake of clarity, the Pareto front for a problem with

two-fold objectives is shown in the following figure:

88

Figure 4.6: Pareto front representation for a two-objectives problem.

Source: University of Sheffield, Automatic Control and Systems Engineering

< http://www.shef.ac.uk/acse/staff/peter_fleming/intromo>

Multi-objective genetic algorithms (MOGA) can be considered a very effective way to

search for Pareto-optimal solutions. Their goal is to find a family of solutions that are a

good approximation of the Pareto front [Cococcioni, 2007].

In our study, MOGAs are applied for the generation of FRBSs with high interpretability

and accuracy, so as to overcome the existing tradeoff. Several algorithms have been

proposed in the literature, such as PAES [Knowles, 1999], NSGA [Srinivas, 1994] and

its variation NSGA-II [Deb, 2002]. In the following paragraph we will focus our

discussion on the PAES algorithm.

89

4.3.1 Pareto Archived Evolution Strategy (PAES)

The Pareto Archived Evolution Strategy (PAES) was proposed by [Srinivas, 1994]. The

aim of the authors was to implement a simple but non-trivial algorithm for generating a

good approximation of the Pareto front, by performing a local search in the space of the

solutions. The outline of the algorithm is shown in fig. 4.7.

The algorithm is comprised of three main phases:

1. Generation of candidate solution

2. Acceptance of the candidate solution

3. Management of the non-dominated solutions archive

Figure 4.7: PAES algorithm outline [Srinivas, 1994]

90

Since the aim of the algorithm is to perform a local search, only the mutation operator is

applied to the “current solution” in order to generate the new “candidate solution”. The

original version considers a single current solution and generates a single candidate

solution at each iteration. This explains the appellation “(1+1)PAES”. Other variants

are proposed in the literature, such as the (1+Ä) and the ($ + Ä) PAES. The former

generates Ä mutants from the current solution, while the latter maintains a population of

$ current solutions and makes Ä copies of the fittest ones vis-à-vis the archive. These

copies are then mutated to generate the candidate solutions.

Going back to the original version, once the candidate solution is generated and

evaluated, it is compared with the current one. If the candidate solution is not dominated

by its parent, it is accepted and compared with the solutions within the archive. In such

a case, the following conditions might occur:

1. The candidate solution dominates the set of non-dominated solutions. In

this case the current solution is always accepted and archived.

2. The candidate solution is dominated by the set of non-dominated

solutions. In this case the current solution is always rejected.

3. The candidate solution do not dominate or is not dominated by any

solution in the archive. If this is the case, the candidate solution is

accepted and/or archived based on the degree of crowding of its grid

location.

A complete description of the acceptance and archiving logic is shown in fig. 4.8.

91

Figure 4.8: Archiving and acceptance logic. Adapted from [Srinivas, 1994]

A grid is used to manage the solutions in the archive, having the latter a maximum size.

More in detail, a 	-dimensional grid, where 	 is the number of objectives, allows the

partition of the space in a set of 	-dimensional cells. Each solution is assigned a cell,

depending on the values of the objectives. If a new solution needs to be added to a full

archive, the so called “crowding degree” is computed by counting the number of

solutions belonging to each location. The new solution will replace the previous one,

which belongs to the most crowded region of the solution space. This process facilitates

the creation of solutions that are uniformly distributed along the Pareto front

[Cococcioni, 2007]. A modified version of the PAES, called (2+2)M-PAES [Antonelli,

2009], will be explained in the following chapter.

92

4.4 Genetic Fuzzy Rule Based Classifier

Genetic fuzzy systems (GFSs) use genetic algorithms to design fuzzy logic systems.

Although genetic algorithms do not solve learning tasks, it is possible to model these

kind of problems as optimization tasks. Since the main characteristic of GAs is their

ability to search in vast and very complex spaces, they can be successfully applied with

the aim of designing optimal fuzzy systems.

This study will focus on the application of GFSs for the design of FRBCs. As already

analysed in the previous chapter, it is possible to apply GAs to generate and modify

automatically the knowledge base. The structure of a GFRBC is shown in fig. 4.9.

Figure 4.9: Structure of a GFRBC [Cordon, 2004]

It is possible to distinguish three different groups of GFSs according to the KB

components that are to be learnt:

1. Genetic learning of the rule base (RB)

93

2. Genetic tuning of the membership functions (DB)

3. Genetic learning of both components (KB)

The most common approaches to learning process identified in the literature are the

Michigan and Pittsburgh approaches. In the former, a chromosome denotes a rule,

meaning that a rule set is represented by an entire population; while in the latter, each

chromosome is an entire rule base.

The main drawback of the Michigan approach is that it generates a conflict between

individual and collective interests: during the evolution, rules compete with each other,

in contrast with the final objective that is to identify the best set of rules having,

together, the capacity to solve the problem at stake. The Pittsburgh approach, where the

competition is between entire rule bases, overcome this limitation, but at the cost of a

greater computational complexity. [Herrera, 1997]

4.4.1 Genetic learning of the rule base

The approaches to learn the rule base of an FRBC usually assume a predefined set of

membership functions designed with the help of domain experts. Genetic algorithms

can be used to automatically generate the rule base component from the data. Two

different types of approaches have been proposed by the literature. The rule selection

approach assumes that a predefined rule base is already available and the genetic

algorithm is applied in order to generate a compact rule base with a good accuracy and

interpretability. Then in this perspective, the aim of the genetic algorithm is to search

the optimal subset of rules. The first contribution in this field has been provided by

94

[Ishibuchi, 1995] with a single objective genetic algorithm applied for selecting a small

number of linguistic rules from a large amount of candidate rules, previously generated.

In this implementation each chromosome represents a rule set and a weighted fitness

function is defined in order to take into consideration both the minimization of the

number of rules and the maximization of the number of patterns correctly classified.

Each chromosome is represented as a string f = ���� … �¦ where � is the number of

candidate rules and the following coding scheme is used:

• �© = 1	 the ³th rule is included in the rule base

• �© = −1 the ³th rule is not included in the rule base

• �© = 0 the ³th rule is a dummy rule which means that it has no effect in the

classification process.

The main drawback of this approach is that the choice of the weights strongly influence

the execution of the algorithm and the quality of the solution generated. This is why, in

later works, they proposed two multi objective versions of the algorithm, a two-

objective one that considers the same objectives, but separately and a three-objective

one that also includes the minimization of the total number of antecedent conditions in

order to obtain a better interpretability.

However, the main limitation of rule selection approaches is the necessity of a two-step

learning process, in fact, first, the set of all candidate rules has to be generated and then

it is possible to apply the genetic algorithm to perform the selection. Moreover the

generation of all candidate rules can be computationally heavy in an high dimensional

problem.

95

Then, other alternative approaches to learn the rule base have been investigated in the

literature. Another way to address this task is to apply the genetic algorithm to generate

the fuzzy rules. In this case the aim of the genetic algorithm is to choose the whole

configuration of the rules, i.e. the value of the antecedents of each rule. In this way, it is

not necessary to generate all the possible rules, but it is the algorithm that explore all of

them by finding the best configuration.

In the next chapters a rule selection and a rule generation algorithm will be

comparatively analysed, in terms of computational burden, number of rules and

accuracy.

4.4.2 Genetic tuning of the membership functions

This paragraph will focus on the application of GAs for the so called “tuning” of the

membership functions, which are an important element of the knowledge base. A

“tuning” is the process of adjusting the definition points of the membership functions to

increase the accuracy of a classifier. As shown in figure 4.10, the decision areas formed

through the tuning process effectively reflect the underlying data distribution.

96

Figure 4.10: Decision areas obtained through the tuning of the membership functions

The genetic tuning process usually assumes a predefined rule base. The logic behind

this is to parameterize the membership functions so to obtain a representation of them,

then to encode it into a chromosome and let the GA find the best configuration

according to a defined fitness function. The most common representation of

membership functions is the “piecewise linear transformation”. It allows to

parameterize the membership functions by using a limited number of parameters to

finally obtain an efficient representation in terms of memory occupation. Its

implementation for triangular membership functions will be discussed more in detail in

paragraph 5.4.2.

It is worth noting that the increased accuracy of the model runs in parallel with a

degradation of its interpretability. In the final stage of the tuning process, the

membership functions might be heavily overlapping and, consequently, it could be very

difficult for the decision maker to understand the rules that have been generated. This is

why, MOGAs are usually applied to perform the genetic tuning of the membership

functions. The two objectives taken into consideration are the maximization of both the

accuracy and the interpretability. As already discussed, the interpretability is a

97

subjective concept and researchers do not agree on the application of a single measure.

Several partition integrity indexes have been consequently proposed in the literature

with a view to assessing the extent of the overlapping among the membership functions,

and ultimately the interpretability of the model itself. During the roll-out of the tuning

such measures can function as constraint to avoid the generation of overly overlapping

partitions.

4.4.3 Genetic learning of the knowledge base

In the previous two paragraphs, different approaches for the genetic learning of the RB

component have been discussed, by considering a pre-defined DB and the genetic

tuning of DB using a pre-defined rule base. As a complement to this discussion, the

benefits of using multi-objective approaches have been also presented.

As reflected in the literature, the two components of the knowledge base are strictly

correlated hence the focus on the concurrent learning of both the DB and RB

components. This two-pronged approach generally involves a two-parts coding for the

chromosomes. A chromosome is composed by two sub-chromosomes that encode

separately the two components to be learnt: the first sub-chromosome is composed by

the genes representing the rule base, while the other contains an encoding scheme for

the configuration of the membership functions. The sub-chromosomes are considered

independently as per the crossover and mutation operators application concerned, but

are treated as a single entity during the evolutionary process. [Herrera, 1997]

98

The main drawback of the above mentioned approach is related to the resulting search

space, way too large to be handled even by GAs.

 The following chapter is dedicated to the MOGAs for the concurrent learning of RB

and DB components developed by the researchers of the University of Pisa.

4.5 Beyond the accuracy-interpretability tradeoff

As discussed in chapter 3, the design of a highly accurate and interpretable FRBS is not

an easy task, mainly because of the “conflictivity” between accuracy and

interpretability. This means that any attempt to improve the accuracy results in a

degradation of the interpretability and vice versa. The main advantage of multi-

objective approaches over the single objective ones is their ability to generate a family

of solutions along the accuracy-interpretability tradeoff surface. [Ishibuchi, 2011] To

obtain the same result with a single-objective approach, it is necessary to repeatedly

execute the algorithm with different values for the weights of the fitness function. On

the contrary, multi-objective approaches allow to achieve the same result with a single

execution. Moreover, since in the Pareto front none of the solutions is better than the

other, the decision maker can select the final solution according to his/her preferences

in the given context application.

99

Figure 4.11: Solutions generated by a MOGA [Ishibuchi, 2009]

Since the result of MOGAs is not a single solution but a set of non-dominated solutions,

the main drawback of these approaches is to find a way to evaluate and compare their

performances. Researchers agreed upon two criteria:

• Minimize the distance between the generated Pareto front and the true one

• Find solutions that are uniformly distributed along the entire tradeoff surface

(see fig. 4.11)

Figure 4.12 shows some of the possible distributions of the results generated by an

MOGA. It can happen that only a small part of the surface is covered as in fig. 4.12(c)

or that the solutions are far from the surface (see fig. 4.12(d)). The solutions to these

problems could be, for the situation in 4.12(c), the increase of the diversity among the

generated solutions, while for the situation in 4.12(d), the increase of the pressure

and/or the computational load in order to approach the solutions to the surface.

100

Figure 4.12: Distributions of non-dominated solutions along the tradeoff surface [Ishibuchi, 2001]

However, as pointed out by [Ishibuchi, 2001] the surface is generated considering the

accuracy on the training set, whereas the performance of an FRBS should be evaluated

with respect to the test set, in order to assess its generalization ability. This means that

the tradeoff between the interpretability and the test data accuracy should be

investigated. With respect to the test data accuracy the following situations can occur.

Figure 4.13: Tradeoff between complexity and test data accuracy [Ishibuchi, 2001]

101

The figure 4.13(a) shows a non-over-fitting phenomenon, which means that an

increased accuracy on training set results in an increased accuracy on the test set. If this

is the case, solutions should cover all the surface, as in fig. 4.12(b). On the contrary, in

fig. 4.13(b) a severe overfitting occurs, meaning that some solutions with high accuracy

on training set poorly perform on test set, hence frustrating the need for their generation.

If this is the case, the distribution of solutions among the tradeoff surface shown in fig.

4.12(c) might be the most appropriate. Finally, sometimes the solutions in fig. 4.12(d)

can have a higher accuracy on test set with respect to the ones in fig. 4.12(b), and

therefore a better generalization ability. If this is the case, the approximation of the

Pareto front in fig. 4.12(d) is better than the one in fig. 4.12(b).

Finding a reliable and realistic method for assessing the performance of MOGAs has

become one of the hot issues and main challenges upon which studies and research have

focused and invested in recent years.

4.6 Discussion

In this chapter the GAs were introduced as a tool for the design of accurate and

interpretable FRBC. Since the process of automatic definition of a fuzzy system can be

considered an optimization task, it is possible to use GAs for this purpose.

GAs are search algorithms capable of solving optimization problems even when the

search space is very large and complex. They also display “temporal” benefits, by

facilitating the timely detection of sub-optimal solutions. Finally, in order to overcome

the accuracy-interpretability tradeoff, the MOGAs have been presented. The advantage

102

of using MOGAs to design FRBS’s components is two-fold: they allow to consider both

the accuracy and the interpretability during the evolutionary process; and generate a

family of solutions which are an approximation of the Pareto front. The final solutions

are all equally valid, but each of them represents a different compromise between

accuracy and interpretability. Therefore, the decision maker can pick the solution that

he/she deems to be the most appropriate vis-à-vis the given application context.

Consequently, all the objectives set at the beginning of this study have been achieved.

More specifically:

1) Automatically design, from the data, the components of an FRBS through the

introduction of GAs, resulting in an accurate and easily interpretable model.

2) Increased capacity of the decision maker to understand how the system

generates the results and to acquire useful knowledge by means of the linguistic

representation and the rule-based structure.

This said, one major drawback affecting the approach proposed, resides in the

evaluation and comparison of different multi-objective approaches. In this regard, a new

branch of research is currently focusing on the identification of good measures for this

purpose.

In the following chapter we will introduce two single-objective and two multi-objective

GAs for the design of the rule base of an FRBC. The single-objective approaches are

accuracy driven, while the multi-objective approaches also take the interpretability of

the final system into consideration.

103

5 Proposed genetic algorithms

5.1 Introduction

This study is focused on the application of genetic algorithms for the automatic

generation of the rule base of a fuzzy rule-based classifier. In this chapter two genetic

algorithms, a single objective and a multi objective one are proposed. They both

generate directly the rules, without any previous knowledge except from the number

and shape of the membership functions which are predefined.

The aim of this chapter is to clarify the implementation of these algorithms and to

compare them with two other systems, namely a single objective algorithm based on

[Ishibuchi, 1995], and a multi objective algorithm developed by researchers of the

Department of Information Engineering at the University of Pisa.

The former is based on a rule selection approach and is accuracy driven, while the latter

is able to generate the rules and simultaneously provide a learning of the definition

points of the membership functions. In seeking a good tradeoff, the multi objective

algorithm takes into account both the accuracy and the interpretability.

104

5.2 A single objective algorithm for the generation of

accurate rule bases

The aim of this algorithm is to go beyond the limitations of the rule selection approach

which assumes that a set of candidate rules is defined a priori. The main drawback of

this approach is the “curse of dimensionality” problem. In fact, it is necessary to

generate an amount of rules that grows exponentially with the number of features of the

input data. For the sake of clarity, let assume a dataset with 10 features and suppose to

use six membership functions for each variable, the number of all possible rules is

6�� ≅ 6 ∗ 10Æ which is a huge number. Then [Ishibuchi, 1997] proposed to limit the

number of candidate rules by fixing a maximum length, i.e. a maximum number of

antecedents for each rule. Even if the length of the rules is less than or equal to three,

the problem is not completely solved because the possible combinations in a high

dimensional space are computed using the following formula:

where 	 is the number of features, � the length of the rules and I the number of

membership functions for each variable, assuming it is constant for each variable. It is

clear that the increase of the dimensions () or the length of the rules (�) has a great

effect on the number produced by the (5.1). The curse of dimensionality problem,

obviously leads to scalability problems, in terms of both computational and memory

burden.

Ç	�È = É 	!�! �	 − ��!ËI� (5.1)

105

The use of genetic algorithms to generate directly the rules avoids this problem and

takes full advantage of the strength of the genetic algorithms i.e. their capability to

wisely drive the research towards the most interesting areas of the search space even if

it is very large and complex.

In the proposed approach a genetic algorithm for the generation of the rules is

implemented with the aim of creating an accurate rule base for a fuzzy rule-based

classifier.

5.2.1 Encoding scheme

The Pittsburgh approach is used for the learning task, thereby an entire rule base is

codified in a chromosome. More in detail, a chromosome is composed by a fixed

number of genes, each of them represents a rule. The maximum number of rules per

chromosome can be set through a configuration parameter of the genetic algorithm.

A rule is implemented as an object containing the values of the antecedents. The

number of antecedents for each rule is equal to the number of features of the input

dataset.

Each antecedent can assume the following values:

• -1 which means a “don’t care” condition, i.e. the antecedent is removable from

the rule.

• An integer number, which indicates the selected membership function for that

variable, starting from 0.

106

The “don’t care” condition allows to generate rules with only few antecedents, so as to

simplify the structure of a rule by making it more generic. This also entails the

possibility to reduce the final number of rules, given that the specific rules are

embedded into the more generic ones and can therefore be removed from the final rule

base.

Finally, the “don’t care” condition also increases the interpretability of the rule base as

demonstrated by the fact that for human users it is difficult to understand long fuzzy

rules, i.e. rules with many antecedents.

Thus, given a dataset composed by seven features and three linguistic labels for each

variable, “Low”, “Medium” and ”High”, a gene can be represented as follows:

Figure 5.1: Representation of a gene

The correspondent rule will be:

}@	�Ì	(�	�(Rℎ	�	P	�Í	(�	«O�	�	P	�Æ	(�	GHP(MI		E��� …	
The number of membership functions per variable is fixed by the classifier and can be

different for each variable.

The class label is not considered part of the rule during the evolution of the genetic

algorithm, but the classifier is used to determine the correct value of the consequent,

107

given the antecedents. In order to assign the class value, the classifier takes confidence

and support measures into account [Ishibuchi, 2005].

Finally, it is possible to set the maximum length of the rules as a parameter of the

algorithm, i.e. how many antecedents different from the “don’t care” condition are

allowed. Then, rules of different length can be generated during the execution.

5.2.2 Initialization

The initial population is generated by randomly choosing for each rule the position of

valid antecedents and also the values they assume. The number of valid antecedents per

rule can be set as a configuration parameter of the genetic algorithm. Moreover, each

chromosome is generated so that it does not include equal rules.

5.2.3 Operations

The implementation of the main operations for the design of a genetic algorithm are

explained in the following sections. For each of them different implementations have

been realized.

5.2.3.1 Selection

The selection strategy allows to select the best individuals for the generation of the

offspring. Although it is more likely that good individuals, combining their good

genetic materials, generate good solutions, this is not always true. On the contrary, the

108

selection pressure should not be too high, so as to give some probability to be selected

for the reproduction also to worse individuals. In this way, the diversity among the

individuals that are going to produce the offspring is increased resulting in a better

exploration of the search space and consequently avoiding the premature convergence

of the algorithm to the nearest local optimum. [Al Jaddan, 2005]

In light of the above two different selection strategies have been implemented: the

tournament selection and the probabilistic binary tournament selection. The former

includes the choice of the so called “tournament size”, which is the number of random

individuals to be picked from the current population. Among them, the chromosome

with the best fitness value is chosen and is moved to the mating pool, i.e. the set of

individuals selected for crossover. The selection pressure can be adjusted by changing

the tournament size, particularly, the increase of the size reduces the possibilities of the

weaker individuals to be selected. In the probabilistic binary selection, each

“tournament” selects only two individuals and the winner is the one with the greater

fitness with a certain probability, otherwise the weaker individual is moved to the

mating pool. The tournament probability impacts the selection pressure and can be

chosen by setting a configuration parameter for the algorithm.

5.2.3.2 Crossover

Once the selection is performed, the crossover operation is applied to the individuals in

the mating pool with a probability fixed as configuration parameter of the algorithm.

The most famous types of crossover have been implemented: the one point, the two

points and the uniform crossover. All of them are implemented so as the new

109

individuals inherit part of the genes, meaning the rules, from both parents. This implies

that the rules are not modified, but only combined differently in the offspring in order to

create new rule bases.

The one point crossover is implemented by choosing a cut point which is equal for

both parents. Let assume the parents and the cut point in the figure:

F�� F�� F�Ì F�Î F�Í F�Ï

F�� F�� F�Ì F�Î F�Í F�Ï

Figure 5.2: Parents configuration

The offspring will have the following configuration:

F�� F�� F�Ì F�Î F�Í F�Ï

F�� F�� F�Ì F�Î F�Í F�Ï

Figure 5.3: Offspring configuration

In the two-points crossover, two different cut points are randomly generated, but some

constraints have to be satisfied. If the chromosome is composed of 	 genes, then the

first cut point is randomly chosen in the interval [1 , 	 − 2], while the second one is

110

chosen in the remaining part of the chromosome. Let assume to have randomly

generated the cut points illustrated in the next figure:

F�� F�� F�Ì F�Î F�Í F�Ï

F�� F�� F�Ì F�Î F�Í F�Ï

Figure 5.4: Parents configuration

The offspring will be the following:

F�� F�� F�Ì F�Î F�Í F�Ï

F�� F�� F�Ì F�Î F�Í F�Ï

Figure 5.5: Offspring configuration

Finally the uniform crossover has been implemented by randomly generating a binary

mask whose length is the same as the number of genes in the chromosome. The

offspring is generated by choosing, for the first child the (th gene of the first parent if

the (th bit of the mask is 1, otherwise the (th gene of the second parent is inherited by

the child. For the second child the opposite choice is assumed, i.e. if the (th bit is 1 the

(th gene of the second parent is inherited and vice versa.

111

It is possible to choose which type of crossover operator has to be used by the genetic

algorithm by specifying it as a configuration parameter.

5.2.3.3 Mutation

Since the crossover does not change the structure of the rules, the only operator

responsible for the creation of new combinations of antecedents is the mutation. Two

different types of mutation are used during the evolution process and each of them has a

different probability to be executed. The probabilities are fixed as a configuration

parameter of the algorithm. In order to change the antecedents configuration, one of the

mutation operators replace a valid antecedent with a “don’t care” condition, while the

other one replace any antecedent, i.e. a “don’t care” or a valid one, with a different

linguistic label. More in detail, for each gene in the chromosome the mutation is applied

with a certain probability and if it is applied, then one of the two operators is executed.

Some constraints need to be satisfied, for instance, the operator that adds “don’t care”

conditions cannot be applied if, as a result, a rule without any valid antecedent would be

generated. On the other hand, the operator that adds a valid antecedent cannot change a

“don’t care” condition if the rule has already reached the maximum number of valid

antecedents that are allowed.

112

5.2.3.4 Elitist strategy

As previously mentioned, the elitist strategy avoids that after the application of

crossover and mutation the best chromosomes of the previous population disappear. A

configuration parameter is available to fix the number of solutions that have to be

shifted from the old population to the new one. Since the size of the population is fixed,

a replacement becomes necessary, i.e. the chromosomes to be added have to replace

some of the individuals in the new population. The chromosomes of the new population

that has to be replaced are randomly selected, but they cannot be replaced in order to

preserve the best solutions of the new population. The chromosomes of the new

population, which are to be replaced, are selected randomly. Nevertheless the best

chromosomes of the new population cannot be replaced.

5.2.4 Fitness function

Each chromosome has an associated fitness value which is calculated by the classifier.

This is a real number in the interval [0,1] and the best value is 1. The first step to

evaluate a chromosome is the translation of the encoding scheme into a rule base. Then,

the classifier assigns the class label to each rule, by using the training set and the

support and confidence measures. Finally, the goodness of the generated classifier is

computed as:

���� = 	ErT + 1 − @rT2 	 �5.2�	

113

where ErT is the true positive rate and (1 − @rT) = E�T is the true negative rate, i.e.

the final fitness value is the average recall on the two classes.

5.2.5 Stopping criteria

The genetic algorithm evolves for a predefined number of generations which can be

defined by setting the corresponding configuration parameter. Another stopping criteria

has been implemented, i.e. if the accuracy of the best solution calculated on the

validation set does not improve for a certain number of iterations (fixed by a parameter)

then the algorithm is stopped and the best solution on the validation set is selected as

final result. This strategy is also useful to avoid that the rule base generated has a good

performance on the training set, but a poor generalization ability, i.e. the phenomenon

called overtraining.

5.2.6 Additional operations

Some additional operations are necessary to make the algorithm evolve properly.

First of all, since the antecedents of the rules are generated randomly, it can happen that

for some of them the classifier is not able to determine the value of the consequent

because no training pattern belongs to the part of space identified by the antecedents. In

this case these rules are not considered as part of the rule base generated and are ignored

when the fitness of the chromosome is computed. Moreover, especially if the maximum

114

number of genes is low, a solution can be composed only by non-valid rules. If this is

the case, in order to penalize this individual a fitness value of 0.5 is assigned to it.

It is also important that a rule base has at least one rule for each class. Given that the

decision regarding the class label of the rule is taken by the classifier, the genetic

algorithm only checks this constraint. If the latter is not satisfied, it assigns

automatically a fitness value of 0.5 to the solution as a penalization.

Finally, in order to generate more compact rule bases, the classifier deletes the rules

covered by a more general rule. For instance, suppose having these two rules:

T�:	}@	��(�	«O�)��	�Ì	(�	�(Rℎ)��	�Î(�	«O�	E���	��

T�: }@	��(�	«O�)��		�Î(�	«O�	E���	��

Between the two, T� is more specific than	T�, the latter containing all the information

needed for the classification. Such a case, the classifier will retain only the second rule,

while discarding the other one.

5.2.7 Configuration parameters

To sum up, the most important parameters that can be set to configure the genetic

algorithm are:

• Population size

• Number of rules per chromosome

• Maximum number of antecedents per rule

115

• Maximum number of generations

• Stop condition on validation

• Tournament size

• Tournament probability

• Type of crossover

• Crossover probability

• Mutation probability

• Mutation adding a “don’t care” probability

• Number of elite solutions

5.3 A multi objective genetic algorithm for designing

accurate and interpretable rule bases

The aim of this algorithm is to transform the single-objective approach proposed in the

previous paragraph into a multi-objective approach in order to bypass the accuracy-

interpretability tradeoff. The main drawback of single-objective algorithms is that, given

their accuracy-driven nature, they usually tend to generate complex systems, i.e. rule

bases with a high number of rules that are not easily comprehensible to the user. As

such, the most important advantage of using a linguistic representation and a rule-based

structure, namely the interpretability, is lost. This is why the following multi-objective

116

approach has been implemented. Here the (2+2) M-PAES [Antonelli, 2009] has been

implemented to facilitate the comparison with the multi-objective algorithm developed

by the University of Pisa.

5.3.1 Encoding scheme

The same encoding scheme used in the single-objective algorithm is implemented. The

Pittsburgh approach is also used in this case, implying a chromosome, composed by a

pre-defined number of genes, which represent the rules. The maximum number of rules

per chromosome is set through a configuration parameter.

The only difference between the two approaches is that in the multi-objective

implementation the maximum length of the rules does not represent a constraint. The

logic behind this choice is that the minimization of the complexity, expressed as the

total number of valid antecedents in the rule base, is one of the objectives of the

algorithm. Hence the minimization of the total number of antecedents, during the

evolutionary process, is performed by the algorithm that tries to find the best

compromise between accuracy and complexity of the rule base.

5.3.2 Objectives and fitness function

The system implemented is a three-objective GA striving for the identification of a good

compromise between accuracy and interpretability in the generated FRBC. To achieve

this goal, three objectives are taken into consideration: 1) the maximization of the true

117

positive rate (TPR); 2) the minimization of the false positive rate (FPR); and 3) the

minimization of the rule base complexity. The fitness value associated to each

chromosome therefore consists of three different values, stored in the objective vector.

5.3.3 Operations and initialisation

The crossover and mutation operators are the same as in the single-objective approach.

The only difference is that if the crossover is not performed, then the mutation is always

applied so as to generate different solutions.

As for the initialisation of the solutions, the same strategy used in the single-objective is

implemented.

5.3.4 (2+2) M-PAES

A modified version of the well-known (2+2) PAES, denoted as (2+2) M-PAES, has

been implemented. The following elements differentiate it from the original version:

• The mutation operator is applied to the current solutions along with the

crossover operator;

• The current solutions are changed at each iteration by randomly picking in the

archive of non-dominated solutions.

118

More in detail, the first two solutions are randomly generated. At each iteration, the

crossover operator is first applied to the current solutions with a certain probability.

Two new solutions, namely candidate solutions, are generated and the mutation operator

is applied to those with a certain probability. These solutions are compared with the

solutions included in the archive and added to it only if they are dominated by no

solution within the archive. If this is the case, all the solutions included in the archive

that are dominated by the new solution are removed. Otherwise, if the new solution is

dominated by some solution in the archive, it is simply discarded and a new iteration

starts by randomly selecting the new current solutions from the archive.

To be noted that since the size of the archive is determined by a configuration parameter

of the algorithm, said archive may be filled in some cases. If this is the case and a new

solution needs to be added to the archive, this solution will replace the one belonging to

the most crowded region of the archive.

5.3.5 Additional operations

Some additional operations are necessary to make the algorithm evolve properly. The

solutions composed by only non-valid rules, i.e. those which the classifier is not able to

assign the class label to, are penalized by setting the first objective (1-TPR) to 1, the

second (FPR) to 0 and the third one (complexity) to a number obtained by considering

the maximum number of antecedents for each rule. The same penalization is assigned to

those solutions that do not have a rule as a minimum for each class.

119

5.4 Other approaches to learn the rule base using genetic

algorithms

In this section two different approaches to learn a rule base starting directly from the

data and using genetic algorithms will be discussed. The first one is a single objective

genetic algorithm whose aim is to select a compact subset of rules from a set of all

possible rules, in order to find the combination that gives the best accuracy. The second

one is a multi-objective genetic algorithm that learns an accurate but also interpretable

rule base by randomly generate the set of rules. These algorithms and the proposed ones

will be tested on some datasets and compared. The experimental results will be

presented in the next chapter.

5.4.1 Rule selection approach

The main idea of the rule selection approach is to generate all the possible rules of a

defined length and then select a subset of rules in order to find the combination that

maximize the number of patterns correctly classified.

It has to be noted that the number of all possible rules increases exponentially with the

number of dimensions. For example, let assume I the number of membership functions

of each input and 	 the number of inputs, the total number of rules � is defined by the

following formula:

 � = I
 (5.3)

120

In order to reduce the number of rules and the amount of memory required to store

them, the maximum length of the rules is defined. In [Ishibuchi, 1997] it has been

demonstrated that the number of candidate rules is not large if we generate rules whose

length is less or equal to three. The length of a rule is given by the number of

antecedents that are different from “don’t care”. Let us consider a 10-dimensional

pattern problem and suppose to define five membership functions for each variable, the

following table shows the total number of rules according to their length:

Length of fuzzy rules Number of fuzzy rules

0 1

1 50

2 1.125

3 15.000

4 131.250

5 787.500

6 3.281.250

7 9.375.000

8 17.578.125

9 19.531.250

10 9.765.625

Table 5.1: Number of fuzzy rules [Ishibuchi, 1997]

 The rules generated using this assumption are stored in memory or in a database if the

total number is too large to fit in memory. A unique identifier (ID) is also assigned to

each rule.

121

The genetic algorithm follows the Pittsburgh approach, then a chromosome represents a

rule base. The number of rules in each solution is defined by a configuration parameter

of the genetic algorithm. Each gene contains an integer number representing the ID of

the rule. The initial population is created by initialising the genes with random values in

the range of the IDs.. The evaluation of the goodness of a rule base is computed by

using the same function described in the proposed approach. The crossover operator

allows to create new individuals by combining blocks of rules from two parent

chromosomes. In order to perform the crossover operation, the population is divided

into two halves, which contain the chromosomes with the higher and lower fitness

values, respectively. The crossover is implemented by piking one individual from the

first half and one from the other. In this way a multithreading strategy can be

performed, reducing the execution time. The mutation operator substitutes one of the

rules with a random one chosen from the set of all candidate rules. A random number in

the range of the ID’s is generated and the corresponding rule is added to the

chromosome. Finally an elitist strategy is also implemented in order to preserve the best

individuals of each generation. The number of elite solutions can be specified by a

configuration parameter of the algorithm. Finally, the same stopping criteria described

in the proposed single-objective approach are used.

122

5.4.2 A multi objective algorithm to generate accurate and

interpretable rule bases

The multi-objective algorithm developed by the University of Pisa is an implementation

of the (2+2) Pareto Archived Evolutionary Strategy (PAES), namely (2+2)M-PAES.

Its overall objective is to generate, through evolutionary algorithms, FRBCs with a good

tradeoff between accuracy and interpretability from data. The main characteristic of this

approach is that the rules and the membership function parameters are learnt

concurrently during the evolutionary process. To do this, a special encoding scheme for

the chromosomes is used.

5.4.2.1 Encoding scheme

The Pittsburgh approach is used for the learning task, thereby a chromosome represents

an entire rule base. More in detail, a chromosome is composed of two parts: one for the

encoding of the rules (��) and the other (��) for the membership function parameters.

The structure of a chromosome is shown in the following figure.

Figure 5.6: Chromosome encoding scheme [Antonelli, 2011]

123

The encoding scheme assumes that each variable is partitioned by using a certain

number (Eª) of triangular membership functions. This number is specified through a

configuration parameter of the algorithm. Each rule is coded by using an integer string

where each integer represents one of the fuzzy sets of that variable. The “don’t care”

condition is represented by the integer value 0. It is important to note that in this

approach also the class label is included in the rule representation and is manipulated by

the GA. A chromosome, i.e. a rule base, is obtained by concatenating a certain number

of rules. A maximum and a minimum value is defined through configuration

parameters.

With reference to the part �� of a chromosome, the piecewise linear transformation

(PWLT) described in [Klawonn, 2006] and [Pedrycz, 2007] is used in order to obtain a

good representation of the membership functions with a limited number of parameters.

More in detail, triangular membership functions are adopted, therefore each fuzzy set

can be described by three parameters: (�ª , Ðª , �ª). During the tuning process, only the

core parameters (Ðª) can change their position. Furthermore, in order to preserve the

interpretability of the model, adjacent fuzzy sets cannot be overly overlapped. This

explains why the position of the Ðª parameter of a generic fuzzy set is bounded by the

cores of the fuzzy sets next to it.

Given a generic variable cª, the equally spaced initial partition rÑª =	 Ò)Óª,�, … ,)Óª,¯ÔÕ
and the transformed partition rª =	 Ò)ª,�, … ,)ª,¯ÔÕ, the piecewise linear transformation

can be described as shown in fig. 5.7.

124

Figure 5.7: Piecewise linear transformation [Antonelli, 2011]

Since only the cores can change their position, they are the only to be included in the

representation of the chromosome. In addition, Ðª,�	and Ðª,¯Ô are defined and match

with the extremes of the variable’s universe, so they are not included in the

chromosome.

To sum up, the vector Ðª = ´Ðª,�, … , Ðª,¯ÔÖ�¸ defines the piecewise linear transformation

for each variable. The �� part of the chromosome is represented by concatenating the Ðª

vector of all the variables.

5.4.2.2 Objectives and fitness function

As mentioned above, the aim of this algorithm is to generate solutions that are both

accurate and interpretable. In order to achieve this goal, three objectives have been

125

identified. The first objective is the minimization of the complexity of the solution. It is

measured by summing, the number of valid antecedents for each rule, i.e. the

antecedents different from a “don’t care” condition. The second and third objectives are

the maximization of the TPR, true positive rate, and the minimization of the FPR, false

positive rate, respectively. In order to evaluate a solution, a weight is assigned to each

rule by using the certainty factor defined by [Cordon, 1999]. Then, the maximum

matching method is used as reasoning method to classify the training patterns and

compute the TPR and FPR.

Concluding, the fitness value associated to a chromosome consists of three different

values, one for each objective. These are stored in a three dimensions vector associated

with the chromosome.

5.4.2.3 Operations

The operators are the most important part of the algorithm, because they make it

possible the identification of new solutions and the exploration of the search space.

Since a chromosome consists of two main parts, different types of crossover and

mutation are implemented for each of them.

With regard to the crossover operator, one-point crossover is applied to ��, while a

BLX-α crossover, with α = 0.5, is applied to ��. The crossover point is in the same

position for both chromosome and it is selected by randomly extracting a number in the

interval [1, ×��
 − 1], with ×��
 as the minimum number of rules in the parent

126

solutions. Moreover the crossover point is chosen between two rules and never within a

rule.

As far as the mutation operator is concerned, three different types of mutation operator

have been implemented for ��. The first one adds 	 rules to the rule base. The number

of rules to be added is randomly generated, but in such a way that the constraint on the

maximum number of rules per solution, established through a configuration parameter,

is satisfied.

So, let be G the maximum number of rules and G¿Ø¡Ù¿~ the actual number of rules in

the solution, the number of rules to be added is randomly generated in the interval

91, Ú�:, with Ú� = G − G¿Ø¡Ù¿~. Also the configuration of the rules is randomly

generated both in terms of number and values of the valid antecedents.

The second mutation operator removes 	 rules from the rule base. The number of rules

to be removed is randomly chosen, but so that the resulting chromosome has at least a

minimum number of rules established through a configuration parameter by the user.

Finally, the third mutation operator changes 	 antecedents in the rule base. Both the

number, the position and the new values of the antecedents are randomly generated.

As for the mutation operator of ��, first a variable is randomly selected, then one of the

fuzzy sets is randomly chosen, and the related core value (Ðª©) is changed to a random

value in the interval 9Ðª,©Ö�, Ðª,©Û�:.
For all the above mentioned operators, the probability to be executed is defined through

configuration parameters.

127

5.5 Main differences between the approaches described

Before presenting the experimental results, it is worth specifying the main differences

between the approaches described in the last paragraphs.

The main characteristics of the algorithms that are going to be compared are shown in

the following tables.

Rule selection approach

Rule generation approach

Type of approach

Two-step process:

generation of all the possible

rules and selection of a

subset of them

Random generation of the

rules

Encoding scheme

Each gene is an integer

number containing the ID of

the rule

Each gene is a rule

represented by an object

containing the value of the

antecedents

Class label decision

Decided only once during the

generation of the rules using

confidence and support

measures

Confidence and support

measures are computed

every time a rule is generated

Number of rules per solution

Fixed during the evolution

and reduced only after a

post-processing phase

Fixed, but during the

evolution non valid rules can

be generated so that the

solution length can actually

change

Mutation operators

Randomly substitute a rule in

the chromosome with one of

the rules in the set of the

candidate rules

Turn a valid antecedent into

a “don’t care” or vice versa

Table 5.2: Comparison between the single-objective algorithms discussed

128

Multi-objective algorithm

developed in Pisa

Multi-objective algorithm

proposed

Encoding scheme

Each chromosome is

composed of two parts: rules

and parameters of the

membership functions

Each gene is a rule

represented by an object

containing the value of the

antecedents

Number of rules per solution
Variable and influenced by

the mutation operators

Fixed, but during the

evolution non valid rules can

be generated so that the

solution length can actually

change

Class label decision
The class label is included

into the encoding scheme

Confidence and support

measures are computed

every time a rule is generated

Shape of membership

functions

Triangular but the “tuning”

process is performed
Triangular and equally spaced

Mutation operators

Can add, change or remove a

random number of rules in a

solution

Turn a valid antecedent into

a “don’t care” or vice versa

Table 5.3: Comparison between the multi-objective algorithms discussed

129

6 Experimental results

6.1 Introduction

In this section the approaches to learn the rule base of FRBCs using genetic algorithms

described in the previous chapter will be tested on three financial datasets and the

results will be compared.

First of all, the characteristics of the datasets will be analysed, then some well-known

classifiers will be tested on these datasets in order to obtain some benchmark results

with which compare the performance of the described algorithms. Finally, the results of

the single objective rule generator approach will be compared with the rule selection

one and the proposed multi-objective rule generator approach will be compared with the

multi-objective algorithm developed at the University of Pisa.

6.2 Dataset characteristics

The proposed approaches have been tested on three unbalanced datasets representing

two-class problems. The characteristics of each of them in terms of distribution of the

patterns among the classes and number of features are summarized in the table below.

As shown in the table below, the datasets are characterized by different numbers of

features and patterns. In this way, the algorithms will be evaluated both on simple and

complex datasets.

130

 Patterns of the
majority class

Patterns of the
minority class

Total number
of patterns

Number of
features

Dataset1_trainingSet

Dataset1_testSet

Dataset1_validationSet

764 (75.94%) 242 (24.06%) 1006

7 476 (74.96%) 159 (25.04%) 635

268 (76.57%) 82 (23.43%) 350

Dataset2_trainingSet

Dataset2_testSet

Dataset2_validationSet

54606 (98.50%) 832 (1.50%) 55438

10 30271 (98.54%) 448 (1.46 %) 30719

36445 (98.61%) 513 (1.39%) 36958

Dataset3_trainingSet

Dataset3_testSet

Dataset3_validationSet

10492 (78.62%) 2854(21.38%) 13346

20 3556 (79.93%) 893 (20.07%) 4449

3161 (78.97%) 842 (21.03%) 4003

Table 6.1: Dataset characteristics

6.3 Results of the state-of-the-art algorithms

In this section, the well-known classifiers C4.5, Naïve Bayes and �-nearest neighbours

will be tested on the datasets. The training set have been firstly rebalanced by using

SMOTE, implemented in WEKA1. In order to evaluate the generalization capability of

these classifiers the imbalanced test set is used in the evaluation phase.

1 Weka is an open source software which contains the implementation of the most common machine

learning algorithms for data mining tasks. For more information visit

http://www.cs.waikato.ac.nz/ml/index.html

131

The execution options for each algorithm are shown in the table below.

Options Values

binarySplits False

collapseTree True

confidenceFactor 0.25

debug False

minNumObj 2

numFolds 3

reducedErrorPruning False

saveInstanceData False

seed 1

subtreeRaising True

unpruned False

useLaplace False

useMDLcorrection True

Table 6.2: C4.5 options

Options Values

KNN 3

crossValidate False

debug False

distanceWeighting
No distance

weighting

meanSquared False

nearestNeighbour

SearchAlgorithm

(Default)

LinearNNSearch

windowSize 0

Table 6.3: IB-k options

Options Values

debug False

displayModelInOldFormat False

useKernelEstimator False

useSupervisedDiscretization False

Table 6.4: Naive Bayes options

132

6.3.1 Dataset 1

The characteristics of the rebalanced training set are shown in the table below.

 Patterns of the

majority class

Patterns of the

minority class

Total number of

patterns

Dataset1_BalancedTrainingSet 764 726 1490

Dataset1_testSet 476 (74.96%) 159 (25.04%) 635

Table 6.5: Distribution of patterns after the execution of SMOTE

The performance values obtained considering the AUC measure are reported in the

following table.

 Recall class 0 Recall class 1 AUC

J48 96.8% 96.9% 96.85%

IB-k 97.9% 98.1% 98.00%

Naïve Bayes 60.4% 92.6% 76.65%

Table 6.6: Summary of the results

The best result is obtained by the instance based classifier.

133

6.3.2 Dataset 2

The characteristics of the rebalanced training set are shown in the table below.

 Patterns of the

majority class

Patterns of the

minority class

Total number of

patterns

Dataset2_BalancedTrainingSet 54606 50752 105358

Dataset2_testSet 30271 (98.54%) 448 (1.46 %) 30719

Table 6.7: Distribution of patterns after the execution of SMOTE

The performance values obtained considering the AUC measure are reported in the

following table.

 Recall class 0 Recall classe1 AUC

J48 9.4% 98.00% 53.7%

IB-k 24.8% 94.00% 59.4%

Naïve Bayes 33.00% 86.8% 59.9%

Table 6.8: Summary of the results

The best result is obtained by the probabilistic classifier.

134

6.3.3 Dataset 3

The characteristics of the rebalanced training set are shown in the table below.

 Patterns of the

majority class

Patterns of the

minority class

Total number of

patterns

Dataset3_BalancedTrainingSet 10492 9989 20481

Dataset3_testSet 3556 (79.93%) 893 (20.07%) 4449

Table 6.9: Distribution of patterns after the execution of SMOTE

The performance values obtained considering the AUC measure are reported in the

following table.

 Recall class 0 Recall classe1 AUC

J48 87.7% 19.6% 53.65%

IB-k 70.6% 39.6% 55.1%

Naïve Bayes 51.1% 64.8% 57.95%

Table 6.10: Summary of the results

The best result is obtained by the probabilistic classifier.

135

6.3.4 Summary of the results

The following table shows the best result obtained on each dataset in terms of AUC on

test set. These results will be used as benchmarks for the next tests.

 AUC

Dataset1 98.00%

Dataset2 59.9%

Dataset3 57.95%

Table 6.11: Benchmark results

6.4 Comparison between single objective algorithms

The configuration parameters used for the rule selection and the rule generation

approaches are shown, respectively, in table 6.12 and 6.13.

Parameters Value

Population size 50

Crossover probability 0.7

Mutation probability 0.07

Max generation number 600

Tournament size 3

Elite solution number 3

Stopping criteria on
validation

150

Table 6.12: Configuration parameters Rule
Selection approach

Parameters Value

Population size 50

Crossover probability 0.8

Mutation probability 0.2

Add “don’t care”
probability

0.03

Max generation number 600

Tournament size 3

Elite solution number 3

Stopping criteria on
validation

150

Table 6.13: Configuration parameters Rule
Generation approach

136

The following trials have been conducted:

 Number of rules in a rule set Number of antecedents for each rule

Trial 1 100 3

Trial 2 100 5

Trial 3 300 3

Trial 4 300 5

Table 6.14: Additional configuration parameters

The two single-objective approaches have been compared with respect to the following

criteria:

• Accuracy, measured in terms of AUC on test set

• Complexity of the rule base, measured in terms of number of rules in the final

rule base

• Execution time

137

6.4.1 Results

The results obtained in the four trials for each dataset are shown in the following tables.

The best results for each criterion are stressed in boldface.

Dataset 1:

AUC on
Training

AUC on Testing
Number of

rules
Execution

Time

Trial 1

Rule selection 94.47% 93.91% 74 121

Rule generation 94.28% 93.17% 36 104

Trial 2

Rule selection 95.28% 94.33% 90 111

Rule generation 94.28% 93.38% 26 98

Trial 3

Rule selection 92.42% 92.33% 186 205

Rule generation 93.39% 92.54% 73 178

Trial 4

Rule selection 94.78% 93.70% 233 165

Rule generation 93.57% 93.17% 47 123

Table 6.15: Dataset1 results

138

Dataset 2:

 AUC on
Training

AUC on Testing
Number of

rules
Execution

Time

Trial 1

Rule selection 74.80% 74.21% 82 2208

Rule generation 75.65% 74.04% 35 3202

Trial 2

Rule selection 72.80% 71.80% 98 4155

Rule generation 74.96% 73.16% 18 2215

Trial 3

Rule selection 74.52% 72.99% 125 4611

Rule generation 74.46% 74.40% 40 5560

Trial 4

Rule selection 74.03% 73.42% 262 11226

Rule generation 75.75% 74.00% 37 7876

Table 6.16: Dataset2 results

139

Dataset 3:

 AUC on
Training

AUC on Testing
Number of

rules
Execution

Time

Trial 1

Rule selection 63.71% 61.14% 93 981

Rule generation 62.08% 60.79% 33 337

Trial 2

Rule selection 62.12% 60.89% 100 6240

Rule generation 62.46% 61.12% 17 317

Trial 3

Rule selection 63.54% 61.85% 295 1324

Rule generation 62.17% 61.70% 93 657

Trial 4

Rule selection 62.31% 60.20% 300 7022

Rule generation 61.77% 61.36% 106 574

Table 6.17: Dataset3 results

The following tables show the results taking into consideration a single criterion per

time. The results obtained will be discussed in the next section.

Accuracy on test set:

 AUC on Test Set: “Rule Selection” Method
Trial 1 Trial 2 Trial 3 Trial 4

Dataset1 93.91% 94.33% 92.33% 93.70%
Dataset2 74.21% 71.80% 72.99% 73.42%
Dataset3 61.14% 60.89% 61.85% 60.20%

 AUC on Test Set: “Rule Generation” Method
Trial 1 Trial 2 Trial 3 Trial 4

Dataset1 93.17% 93.38% 92.54% 93.17%
Dataset2 74.04% 73.16% 74.40% 74.00%
Dataset3 60.79% 61.12% 61.70% 61.36%

Table 6.18: Comparison on test set accuracy

140

Number of rules:

 Number of rules: “Rule Selection” Method
Trial 1 Trial 2 Trial 3 Trial 4

Dataset1 74 90 186 233
Dataset2 82 98 125 262
Dataset3 93 100 295 300

 Number of rules: “Rule Generation” Method
Trial 1 Trial 2 Trial 3 Trial 4

Dataset1 36 26 73 47
Dataset2 35 18 40 37
Dataset3 33 17 93 106

Table 6.19: Comparison on number of rules

Execution Time:

 Execution Time: “Rule Selection” Method
Trial 1 Trial 2 Trial 3 Trial 4

Dataset1 121 111 205 165
Dataset2 2208 4155 4611 11226
Dataset3 981 6240 1324 7022

 Execution Time: “Rule Generation” Method
Trial 1 Trial 2 Trial 3 Trial 4

Dataset1 104 98 178 123
Dataset2 3202 2215 5560 7876
Dataset3 337 317 657 574

Table 6.20: Comparison on execution time

141

6.4.2 Comments

The following conclusions can be drawn from the tables above.

First of all, except for the dataset1, both the algorithms outperform the results obtained

by the well-known classifiers in terms of AUC. Consequently they can be considered

valid approaches.

Concerning the comparison between the “rule selection” and the “rule generation”

approaches, the experimental results suggest the following conclusions.

Regarding the accuracy on test set, the best value for dataset1 and dataset3 is achieved

by the “rule selection” approach. On the contrary, for dataset2, the “rule generation”

approach outperforms the other system. Moreover, since the random generation of

numbers can influence the evolution of both algorithms and the performance of the final

solution, we cannot conclude if one of the systems is better than the other one

considering a so small number of trials. It would be interesting to perform a statistical

test on a higher number of executions in order to determine if a statistical difference

exists in the average results. Anyway, from the experimental results we can conclude

that the two approaches are similar in terms of AUC on test set.

Moreover, the number of rules of the final solution is significantly reduced by the “rule

generation” approach. This means that it is able to generate more interpretable rule

bases than those generated by the “rule selection” approach. Thus, considering both

accuracy and interpretability, we can conclude that the “rule generation” approach

manages to find a better compromise than the “rule selection” approach.

142

Finally, regarding the execution time, the two algorithms show quite different

behaviours with respect to the characteristics of the dataset they are tested on. More in

detail, both the approaches perform well on datasets with few features and examples,

such as dataset1. On the contrary, with large datasets, such as dataset2, the “rule

generation” approach shows some difficulties, due to the fact that the “rule generation”

approach creates only the antecedents of each rule. The classifier determine the

consequent of the rules by computing support and confidence measures that require to

take into consideration all the samples of the training set. Therefore, the greater is the

number of patterns, the greater is the time necessary to assign the class label to the rules.

All these computations are not necessary in the “rule selection” approach, because the

rules, including the consequent, are generated in advance and stored in memory or in a

database.

On the other hand, the “rule selection approach” performs worse in terms of execution

time with high-dimensional datasets, such as dataset3. Even using the constraint on the

maximum length of the rules, the number of possible combinations is so large that they

do not fit in memory. In order to store them, it is necessary to use a database, but this

affect negatively the execution time. The database access is, in fact, significantly slower

than the access to the memory.

Concluding, we can summarize the advantages and the drawbacks of the “rule

generation” approach with respect to the “rule selection” one, as follows:

143

Advantages of the “rule generation” approach:

• Since the number of rules generated is always lower using the rule generation

approach, we can conclude that it generates more interpretable rule bases.

• Moreover, it can handle high dimensional datasets better than the “rule

selection” approach, in terms of execution time.

Drawbacks of the “rule generation” approach:

• The “rule generation” approach is quite slower with large datasets, cause the

choice of the class label of each rule requires to consider the whole training set.

• The accuracy of the rule base generated by the “rule generation” approach is

sometimes slightly lower than the accuracy produced by the “rule selection”

approach. Anyway, this is not always true, as confirmed by the results on

dataset2.

6.5 Comparison between multi-objective algorithms

The multi-objective genetic algorithm developed at the University of Pisa and the

proposed one have been tested on the datasets whose characteristics are reported in table

6.1. Only training and test sets have been considered, since no stop condition on

validation is specified.

The results achieved by the two multi-objective algorithms are compared taking into

consideration the following criteria:

144

• Accuracy, measured in terms of AUC on test set

• Number of rules

• Complexity, i.e. total number of valid antecedents in the final rule base

The configuration parameters of the two genetic algorithms are shown in table 6.21 and

6.22.

Parameters Value

Number of
Evaluation

30000

Population length 64

Maximum number
of rules

30

Minimum number
of rules

2

Maximum number
of antecedents

-

Minimum number
of antecedents

1

Starting number of
rules

30

Prob. RBcross 0.5

Prob. RBmutation 0.01

pmAdd 0.4

pmRemove 0.4

pmModify 0.2

probCrossTuning 0.1

probMutTuning 0.1

TuningPW 1

IndexObj 178

dimVettObj 8

vinc 1

Granularity of digits 100

MAXPARTI 5

MAXPARTO 2

Table 6.21: Configuration parameters multi-objective approach developed in Pisa

145

Parameters Value

Archive size 64

Crossover probability 0.8

Mutation probability 0.2

Add “don’t care” probability 0.01

Number of Evaluation 30000

Number of rules 30

Table 6.22: Configuration parameters multi-objective approach

It has to be noted that for the algorithm developed in Pisa, the number of fuzzy sets per

variable has been reduced to 3 for the dataset3. In fact, using 5 fuzzy sets per variable

too many rules with no training pattern belonging to them are generated and the

algorithm cannot evolve properly.

On the other hand, as already discussed for the single objective version, the proposed

algorithm shows some difficulties with large datasets. In fact, the execution time

increases since the classifier needs to do some computations in order to assign the

consequent to the rules. This is why, 20000 evaluations, instead of 30000, have been

performed for dataset2. Anyway, the reduction of number of evaluations has no effect

on the final performance of the algorithm.

146

6.5.1 Results

In the following paragraphs the results obtained by the multi-objective algorithm

developed in Pisa and the proposed one will be presented. For each dataset six trials

have been executed, each of them with a different value of the seed for the random

function generator. A Pareto front containing the non-dominated solutions is generated

from each trial.

6.5.1.1 Multi-objective algorithm developed in Pisa

In the following table the solutions with the highest AUC on the training sets are

reported:

 Complexity # Rules
Total #

Features
AUC_TR AUC_TS

Dataset1 12 5 7 92.59% 92.86%

Dataset2 12 5 8 74.73% 74.46%

Dataset3 7 2 7 60.75% 61.37%

 TPR_TR TPR_TS FPR_TR FPR_TS

Dataset1 97.10% 96.22% 11.91% 10.50%

Dataset2 81.78% 81.25% 32.31% 32.31%

Dataset3 62.82% 64.27% 41.30% 41.53%

Table 6.23: Best solution on training set in terms of accuracy

From the six Pareto fronts generated by the different trials, the non-dominated solutions

have been extracted and in the following table the average results achieved by the

algorithm are presented.

147

 AUC_TR std_dev AUC_TS std_dev TPR_TR std_dev TPR _TS std_dev

Dataset1 88.41% 3.13% 87.7% 3.45% 93.8% 5.13% 92.35% 5.13%

Dataset2 70.92% 5.13% 70.02% 5.46% 77.7% 8.59% 75.74% 8.59%

Dataset3 59.81% 0.79% 59.92% 0.95% 55.23% 7.26% 55.56% 7.26%

 FPR_TR std_dev FPR_TS std_dev Complexity std_dev # Rules std_dev

Dataset1 16.97% 4.97% 16.95% 4.97% 12.3333 1.2472 5.5 0.5

Dataset2 35.85% 4.4% 35.7% 4.4% 6.8333 2.6087 3 1.1547

Dataset3 35.6% 6.25% 35.72% 6.25% 15 5.9161 3.8333 0.8975

Table 6.24: Average results

6.5.1.2 Proposed multi-objective algorithm

The same trials have been conducted for the multi-objective version of the “rule

generation” approach. The solutions with the highest AUC on the training sets are

presented in the following table:

 Complexity # Rules AUC_TR AUC_TS

Dataset1 18 9 92.60% 92.34%

Dataset2 25 9 74.97% 74.19%

Dataset3 11 4 60.94% 60.54%

 TPR_TR TPR_TS FPR_TR FPR_TS

Dataset1 93.95% 92.85% 8.75% 8.17%

Dataset2 78.84% 77.00% 28.89% 28.61%

Dataset3 55.58% 55.57% 33.69% 34.49%

Table 6.25: Best solution on training set in terms of accuracy

148

From the six Pareto fronts generated by the different trials, the non-dominated solutions

have been extracted and in the following table the average results achieved by the

algorithm are presented.

 AUC_TR std_dev AUC_TS std_dev TPR_TR std_dev TPR_TS std_dev

Dataset1 91.69% 0.89% 91.71% 0.83% 94.32% 0.58% 93.80% 0.58%

Dataset2 74.63% 0.13% 74.51% 0.25% 80.29% 3.51% 79.87% 3.51%

Dataset3 60.56% 0.46% 60.03% 1.02% 59.43% 6.53% 59.34% 6.53%

 FPR_TR std_dev FPR_TS std_dev Complexity std_dev # Rules std_dev

Dataset1 10.94% 2.05% 10.38% 2.05% 20.1667 2.7335 8.3333 0.7454

Dataset2 31.04% 3.21% 30.84% 3.21% 19.6667 8.5180 7.0000 2.1602

Dataset3 38.30% 5.83% 39.29% 5.83% 10.8333 2.7335 4.6667 1.1055

Table 6.26: Average results

6.5.2 Comments

As already discussed, it is not easy to compare the results obtained by multi-objective

algorithms. In this study, the comparison will be performed, firstly, considering the best

solution in terms of AUC on training set generated by the two approaches. Secondly,

the average results in terms of AUC, complexity and number of rules, will be compared.

Finally, the method proposed by [Alcalà, 2009] is applied to identify the key points of

the Pareto fronts. More in detail, since the algorithms have three objectives, first the

solutions are projected into the AUC-Complexity plane and then three representative

points are extracted. They represents the average of the most, median and least accurate

solutions generated in the six trials.

149

 The following tables summarize the best results in terms of AUC on training set

obtained by the two approaches.

Dataset1:

 Multi-objective
developed in Pisa

Multi-objective
proposed

AUC_TR 92.59% 92.60%

AUC_TS 92.86% 92.34%

TPR_TR 97.10% 93.95%

TPR_TS 96.22% 92.85%

FPR_TR 11.91% 8.75%

FPR_TS 10.50% 8.17%

Complexity 12 18

#Rules 5 9

Table 6.27: Best solution on training set for dataset1

Regarding the performances on dataset1, the AUC obtained both on training and test set

using the two approaches are similar. However, the solution generated by the proposed

approach has more rules and is slightly more complex than the one generated by the

other approach.

Dataset2:

Multi-objective

developed in Pisa
Multi-objective

proposed
AUC_TR 74.73% 74.97%

AUC_TS 74.46% 74.19%

TPR_TR 81.78% 78.84%

TPR_TS 81.25% 77.00%

FPR_TR 32.31% 28.89%

FPR_TS 32.31% 28.61%

Complexity 12 25

#Rules 5 9

Table 6.28: Best solution on training set for dataset2

150

Regarding the results on dataset2, the proposed approach generates a solution that is

comparable, in terms of AUC, with the solution generated by the algorithm developed

in Pisa. Anyway, the best solution of the proposed approach has a higher complexity

than the other one.

Dataset3:

Multi-objective

developed in Pisa
Multi-objective

proposed
AUC_TR 60.75% 60.94%

AUC_TS 61.37% 60.54%

TPR_TR 62.82% 55.58%

TPR_TS 64.27% 55.57%

FPR_TR 41.30% 33.69%

FPR_TS 41.53% 34.49%

Complexity 7 11

#Rules 2 4

Table 6.29: Best solution on training set for dataset3

The results obtained on dataset3 show a similar performance of the two algorithms in

terms of AUC on training set. However, on test set the algorithm developed in Pisa

outperforms the proposed one. Considering the complexity and the number of rules of

the best solution, the results are quite similar.

151

The following table shows the comparison of the average results in terms of AUC,

complexity and number of rules, for both approaches.

 AUC_TR StdDev AUC_TS StdDev Complexity StdDev #Rules StdDev

Proposed
multi-

objective

Dataset1 91.69% 0.89% 91.71% 0.83% 20.1667 2.7335 8.3333 0.7454

Dataset2 74.63% 0.13% 74.51% 0.25% 19.6667 8.5180 7.0000 2.1602

Dataset3 60.56% 0.46% 60.03% 1.02% 10.8333 2.7335 4.6667 1.1055

Multi-
objective
developed

in Pisa

Dataset1 88.41% 3.13% 87.7% 3.45% 12.3333 1.2472 5.5 0.5

Dataset2 70.92% 5.13% 70.02% 5.46% 6.8333 2.6087 3 1.1547

Dataset3 59.81% 0.79% 59.92% 0.95% 15 5.9161 3.8333 0.8975

Figure 6.1: Comparison between average results

The comparison of the results shown in the table above reveals that the proposed

approach tends to create solutions that are more complex, but with an average accuracy

greater than the other approach. On the contrary, the algorithm proposed in Pisa

manages to find solutions characterized by a lower number of rules and complexity, but

to the detriment of the average accuracy of the solutions.

Finally, the method proposed in [Alcalà, 2009] is used to compare the two multi-

objective algorithms. In the following figures, three representative points are plotted for

each approach. They represents the average of the best, average and worst solutions

respectively, in the six Pareto fronts.

152

Dataset1:

Multi-objective developed in Pisa

Multi-objective proposed

Figure 6.2: Representative points in the complexity-AUC plane for dataset1

153

Dataset2:

Multi-objective developed in Pisa

Multi-objective proposed

Figure 6.3: Representative points in the complexity-AUC plane for dataset2

154

Dataset3:

Multi-objective developed in Pisa

Multi-objective proposed

Figure 6.4: Representative points in the complexity-AUC plane for dataset3

From these figures we can see that the proposed approach manage to find average

solutions characterized by a greater accuracy, except for the dataset3, but this

improvement results in a higher complexity of the solutions.

155

6.6 Conclusions and future work

In this study we have developed a single objective and a multi-objective genetic

algorithm for the automatic learning of the rule base component of a fuzzy rule based

classifier.

The single objective algorithm is an accuracy-driven approach that takes into

consideration the interpretability of the final model by defining a maximum length for

the rules. The application of this algorithm helps overcome the main drawback of “rule

selection” approaches, namely the necessity of generating all the possible rules in

advance. As such its application is also suitable for the resolution of high dimensional

classification problems.

The proposed single objective algorithm and a “rule selection” approach have been

applied to three financial datasets. The final solutions generated by the two systems

have been compared considering the accuracy, the number of rules and the time of

execution of the algorithm. The experimental results show that the models created

through the “rule generation” approach are similar to those generated through the “rule

selection” approach, in terms of accuracy, but they involve a smaller number of rules

and, consequently, a greater interpretability. With regard to the time of execution, the

“rule selection” approach performs better than the proposed approach when applied to

large datasets, while the opposite is true when it is applied to high dimensional datasets.

Moreover, a multi-objective approach has been introduced to overcome the accuracy-

interpretability tradeoff. During the evolutionary process, three objectives are taken into

consideration: TPR, FPR and number of valid antecedents in the rule base. The

proposed algorithm has been applied to the same datasets used for the single-objective

156

algorithm. The experimental results show that through the multi-objective approach it is

possible to obtain very compact rule bases with a lower complexity. This approach has

been compared with another three-objective algorithm developed by researchers of the

University of Pisa. Said algorithm is able to learn the rule base and the definition points

of the membership functions simultaneously. The results of the research show how the

approach developed in Pisa prompts rule bases that are slightly more accurate and

interpretable than the multi-objective algorithm proposed.

Concluding, the following windows of opportunity for improvement and further

investigation are suggested:

• Regarding the single-objective approach, the main drawback identified is related

to the time required for the execution of the algorithm on large datasets. This is

due to the fact that the class label of each rule has to be decided by the classifier.

In order to overcome this limitation it would be interesting to assess the effect

that the random choice of the class label produces on the accuracy of the final

model.

• With regard to the multi-objective approach, it would be recommended to

explore the effects of a representation that includes chromosomes with a variable

length, i.e. a number of rules that can vary during the evolutionary process.

• Finally, the effect produced by more sophisticated mutation operators capable of

perform a better exploration of the search space both in terms of complexity and

accuracy, likewise forms the basis for future research and investigation.

157

Bibliography

[Abe, 1995] Abe S., “A method for fuzzy rules extraction directly from numerical data

and its application to pattern classification”, IEEE Transactions on fuzzy systems,

Vol.3, No.1, February 1995

[Al Jaddan, 2005] Al Jaddan O., Rajamani L. and Rao C.R. 2005. “Improved Selection

Operator for GA”. Journal of Theoretical and Applied Information Technology, 269–

277

[Alcalà, 2009] Alcalá R., Ducange, P., Herrera, F., Lazzerini, B., and Marcelloni, F.

(2009). “A multi-objective evolutionary approach to concurrently learn rule and data

bases of linguistic fuzzy-rule-based systems”. Fuzzy Systems, IEEE Transactions on,

17(5), 1106-1122.

[Antonelli, 2009] Antonelli M., Ducange P., Lazzerini B. and Marcelloni F. (2009).

“Learning concurrently partition granularities and rule bases of Mamdani fuzzy

systems in a multi-objective evolutionary framework”. International Journal of

Approximate Reasoning, 50(7), 1066-1080.

[Antonelli, 2011], Antonelli M., Ducange P., Lazzerini B. and Marcelloni F., "Learning

knowledge bases of multi-objective evolutionary fuzzy systems by simultaneously

optimizing accuracy, complexity and partition integrity." Soft Computing 15.12 (2011):

2335-2354.

 [Bal, 2011] Bal M., Bal Y., Demirhan A. “Creating competitive advantage by using

data mining technique as an innovative method for decision making process in

business”. Annual Conference on Innovations in Business & Management London, UK,

2011

158

[Bellman, 1961] Bellman R., “Adaptive Control Processes: A Guided Tour”. Princeton

University Press, 1961.

[Berry, 1997] Berry M. J. A. and Linoff G., “Data mining techniques for marketing,

sales and customer support”. USA: John Wiley and Sons.

[Chou, 2000] Chou C. H., and Chen J. N., "Genetic algorithms: initialization schemes

and genes extraction". Fuzzy Systems, 2000. FUZZ IEEE 2000. The Ninth IEEE

International Conference on. Vol. 2. IEEE, 2000.

[Cococcioni, 2007] Cococcioni M., Ducange P., Lazzerini B. and Marcelloni F. "A

Pareto-based multi-objective evolutionary approach to the identification of Mamdani

fuzzy systems". Soft Computing 11, no. 11 (2007): 1013-1031.

[Cordòn, 1999] Cordòn O., de1 Jesus M. J., Herrera F., “A proposal on reasoning

methods in fuzzy rule-based classification systems”, International Journal of

Approximate Reasoning 20 (1999) 2145

[Cordon, 2001] Cordón O., Herrera F. and Villar P. “Generating the Knowledge Base of

a Fuzzy Rule-Based System by the Genetic Learning of the Data Base” IEEE

TRANSACTIONS ON FUZZY SYSTEMS, VOL. 9, NO. 4, AUGUST 2001

[Cordon, 2004] Cordon O., Gomide F., Herrera F., Hoffmann F. and Magdalena L. "Ten

years of genetic fuzzy systems: current framework and new trends". Fuzzy sets and

systems 141, no. 1 (2004): 5-31.

[Deb, 2002] Deb K., Pratap A., Agarwal S. and Meyarivan T. A. M. T. "A fast and

elitist multiobjective genetic algorithm: NSGA-II". Evolutionary Computation, IEEE

Transactions on 6, no. 2 (2002): 182-197.

159

[Donoho, 2000] Donoho D.L., “High-Dimensional data analysis: the curses and

blessings of dimensionality”. Department of Statistics, Stanford University, August

2000.

[Fayyad, 1996] Fayyad U., Shapiro G. P. and Smyth P., “From data mining to

knowledge discovery in databases”. AI Magazine, 17(3):37-54, Fall 1996.

[Guerra, 2012] Guerra M. L. and Sorini L., “Incorporating Uncertainty in Financial

Models”, Applied Mathematical Sciences, Vol. 6, 2012, no. 76, 3785 – 3799

[Guillaume, 2001] Guillaume S., “Designing fuzzy inference systems from data: an

interpretability-oriented review” IEEE Trans Fuzzy Syst. 9(3): 426-443

[Han, 2001] Han J., Kamber M., “Data mining: concepts and techniques”, Morgan

Kaufmann, San Francisco, CA (2001)

[Herrera, 1997] Herrera F. and Magdalena L., “Genetic Fuzzy Systems: a tutorial” Tatra

Mountains Mathematical Publications Vol.13, 1997, 93-121. Mesiar, B. Riecan (Eds.)

Fuzzy Structures. Current Trends.

[Ishibuchi, 1992] Ishibuchi H., Nozaki K. and Tanaka H., “Distributed representation of

fuzzy rules and its application to pattern classification”, Fuzzy Sets Systems 52 (1992)

21-32

[Ishibuchi, 1995] Ishibuchi H., Nozaki K., Yamamoto N. and Tanaka H., “Selecting

fuzzy if-then rules for classification problems using genetic algorithms”. IEEE

Transactions on fuzzy systems, Vol. 3 No. 3 August 1995

160

[Ishibuchi, 1997] Ishibuchi H. and Murata T., “Minimizing the fuzzy rule base and

maximizing its performance by a multi-objective genetic algorithm” Fuzzy Systems,

1997., Proceedings of the Sixth IEEE International Conference on. Vol. 1. IEEE, 1997.

[Ishibuchi, 2005] Ishibuchi H., Yamamoto T. (2005) “Rule weight specification in fuzzy

rule-based classification systems”. IEEE Trans Fuzzy Systems 13(4):428–435.

[Ishibuchi, 2009] “Multi-objective Genetic Fuzzy Systems” Available:

<http://sci2s.ugr.es/gfs/ppt/ISDA-2009_PlenaryTalk_Hisao-Ishibuchi.pdf> Last

accessed 26 May 2013

[Ishibuchi, 2011] Ishibuchi H., Nakashima Y. and Nojima Y. "Performance evaluation

of evolutionary multi-objective optimization algorithms for multi-objective fuzzy

genetics-based machine learning". Soft Computing 15.12 (2011): 2415-2434.

[Klawonn, 2006] Klawonn F., “Reducing the number of parameters of a fuzzy system

using scaling functions”. Soft Computing 10(9):749–756 (May 2006)

[Knowles, 1999] Knowles J. and Corne D. "The Pareto archived evolution strategy: A

new baseline algorithm for Pareto multi-objective optimisation". Evolutionary

Computation, 1999. CEC 99. Proceedings of the 1999 Congress on. Vol. 1. IEEE, 1999.

[Lazzerini, 2009] Lazzerini B., “Computational Intelligence”, Lecture, University of

Pisa. Unpublished

[Lopez, 2012] Lopez V., Fernandez A., Moreno-Torres J. C., Herrera F., “Analysis of

preprocessing vs. cost-sensitive learning for imbalanced classification. Open problems

on intrinsic data characteristics”. Expert system with applications 39 (2012) 6585-6608

161

[Mendel, 1995] Mendel J., “Fuzzy logic systems for engineering: a tutorial”.

Proceedings of the IEEE, 83(3):345-377, March 1995.

[Pedrycz, 2007] Pedrycz W., and Gomide F., “Fuzzy systems engineering: toward

human-centric computing”. Wiley-IEEE Press, 2007.

[Robles-Granda, 2010] Robles-Granda P. D. and Belik I. V., “A Comparison of

Machine Learning Classifiers Applied to Financial Datasets”. Proceedings of the World

Congress on Engineering and Computer Science 2010 Vol. I WCECS 2010, October

20-22, 2010, San Francisco, USA

[Singh, 2012] Singh H., “Implementation benefit to Business Intelligence using data

mining techniques”. International Journal of Computing & Business Research ISSN

(Online): 2229-6166

[Srinivas, 1994] Srinivas N., and Deb K., "Multiobjective optimization using non-

dominated sorting in genetic algorithms". Evolutionary computation 2.3 (1994): 221-

248.

[Tamaki, 1996] Tamaki H., Kita H. and Kobayashi S., "Multi-objective optimization by

genetic algorithms: A review". Evolutionary Computation, 1996., Proceedings of IEEE

International Conference on. IEEE, 1996.

[Taylor, 1986] Taylor S., “Modelling Financial Time Series”. New York: Wiley, 1986.

[Wang, 1992a] Wang L. X. “Fuzzy systems are universal approximators”. Proc. IEEE

Int. Conf. on Fuzzy Syst., San Diego, CA, 1992

162

 [Wang, 1992b] Wang L. X. and Mendel J. M., “Generating Fuzzy Rules by Learning

from Examples”, IEEE Transactions Systems, Man and Cybernetics, 22(6), 1414-

1427,1992

[Zadeh, 1965] Zadeh L.A., “Fuzzy sets”. Information and Control, Volume 8, Issue 3,

June 1965, Pages 338–353

[Zadeh, 1973] Zadeh L.A., “Outline of a new approach to the analysis of complex

systems and decision processes”. IEEE Transactions on systems, man, and cybernetics,

vol. smc-3, No. 1, January 1973, Pages 28-44

[Zhang, 2004] Zhang D. and Zhou L. “Discovering golden nuggets: data mining in

financial application”. IEEE Transactions on systems, man, and cybernetics—Part C:

Applications and reviews, vol. 34, No. 4, November 2004.

