
UNIVERSITÀ DI PISA
Facoltà di Ingegneria

Corso di Laurea Magistrale in Ingegneria Informatica

An IP Geolocation Approach

Based on Smartphones of a

Mobile Crowdsourcing System

Relatori:

Prof. Luciano Lenzini

Ing. Alessio Vecchio

Candidato:

Enrico Sallusti

Anno accademico 2012-2013

"The saddest aspect of life right now is that science gathers

knowledge faster than society gathers wisdom."

Isaac Asimov

Abstract

In the recent years the attention of the scientific community has been focused
on the research field of the geolocation of hosts on the Internet, or IP[1] ge-
olocation. The motivations that make this topic so interesting are various: the
pop up of new location-aware applications like smartphones apps, web site
contents and advertisement, or the importance of finding the sources of mal-
wares and viruses, or else academic studies on the way people use the Internet
and so on. There are numerous projects dedicated to the IP Geolocation, since
it is a major challenge: as a matter of fact, there is no direct relationship be-
tween the IP address of a host and its geographic location. These projects,
of academic and commercial nature, try to find a way to get the best possible
geolocation accuracy in order to give a full working service to the users. The
contribution of this thesis is to design an IP geolocation approach using the
tools provided by The PORTOLAN PROJECT [2, 3], a Internet measurement
system based on traceroute that aims at obtaining the Internet graph at the
Autonomous system abstraction level and building maps of the signal cover-
age through smartphone-based crowdsourcing, developed by the departement
of Information Engineering of the University of Pisa and the Institute of In-
formation and Technology of the Italian National Research Council. This
geolocation approach is based on the theoretical background provided by a
project called SPOTTER, developed by the Eötvös Loránd University of Bu-
dapest [4, 5]. We cooperated with SPOTTER authors to carry out the experi-
mentation on the implemented geolocation service and the discoveries made
within this work let us build some hypotheses useful to develop a landmark
selection algorithm and to tune up the measurements in order to lower the er-
ror rate of the geolocation process. This thesis work could be considered as a
starting point for the development of a tool which makes possible to a user of
the PORTOLAN Android App to geolocate any IP addresses on the Internet.

v

Table of Contents

Table of Contents vii

List of Figures ix

List of Tables xi

1 Introduction 1
1.1 The internet: history, structure, protocols 2

1.1.1 A brief history of the Internet origins 2

1.1.2 The Internet topology 3

1.1.3 IP geolocation . 6

1.2 Objectives and contents of this thesis 7

2 IP Geolocation Techniques 9
2.1 State of the art . 10

2.1.1 Passive methods . 10

2.1.2 Active methods . 11

2.2 Spotter . 12

2.2.1 Delay-Distance model 13

2.2.2 The Hierarchical Triangular Mesh Tesselation 17

2.2.3 The service algorithm 18

3 The PORTOLAN System Design 21
3.1 The PORTOLAN system . 22

3.1.1 Current research projects 22

3.1.2 PORTOLAN system features 24

3.2 The server structure . 24

3.2.1 Google Cloud Messaging 27

vii

3.2.2 Geolocation Service module 29
3.3 Client Apps . 30
3.4 Geolocation measurements 33
3.5 Portolan Geolocation DataBase 36
3.6 PortolanSpotter Web Interface 39

4 Implementation 45
4.1 System structure . 46
4.2 Portolan-Spotter module . 47

4.2.1 Geolocation Result Insert 48
4.2.2 GCM Message Sender 51
4.2.3 Query DB . 53
4.2.4 Ping and Trace Retrieve 54

4.3 Client modules . 54
4.3.1 Geolocation Service 56
4.3.2 Geolocation Sender 60
4.3.3 GPS Tracker . 60
4.3.4 GCM Intent Service 61
4.3.5 Traceroute Async Task 62
4.3.6 Communicator . 63

5 Experimentation 65
5.1 Access Technology Experiments 66
5.2 Ping Interval Experiments 71

6 Conclusion and future work 83

Bibliography 87

List of Figures

1.1 The actual Internet infrastructure [http://en.wikipedia.org/ auth:
Ludovic.ferre] . 3

1.2 Autonomous System Relationships 4

2.1 Example of CBG technique 12

2.2 Example of an estimated region 15

2.3 fd approximation with the standard normal distribution 16

2.4 HTM hierarchy. 17

3.1 Link between ASG and ASC is lost in M1 wich is at the top of
the graph, respect to M2 located on the bottom edge 23

3.2 PORTOLAN Basic structure 25

3.3 PORTOLAN architecture revisited 27

3.4 Example of GCM urgent message delivery 28

3.5 Home Screen of the PORTOLAN App 30

3.6 Example of Traceroute execution 32

3.7 Portolan-Spotter web interface index 40

3.8 GCM Message Sender . 41

3.9 Query to DataBase . 42

3.10 The architecture of the PORTOLAN system 44

4.1 Portolan-Spotter module schematics 49

4.2 Client operation flow . 55

4.3 Android priority hierarchy 56

5.1 detail of the taken path on HSDPA_WIND campaign from
Pisa to Bari . 68

ix

5.2 detail of the taken path on WIFI_TISCALI campaign from
Pisa to Bari . 69

5.3 detail of the taken path on WIFI_UNIPI campaign from Pisa
to Bari . 70

5.4 WiFi behaviour when lowering the sampling time 75
5.5 3G behaviour when lowering the sampling time 76
5.6 Variable Interval Test and WiFi Pc Test example plots 77
5.7 Variation of the RTTs for each technology 78
5.8 The 3 RTT levels can be found where the concentration of

samples is higher . 79
5.9 Time - RTT variation dependency 80

List of Tables

3.1 GeolocationPing Table . 36
3.2 Traceroute Table . 38
3.3 Network Table . 39

4.1 HTTP Post parameters sent by the landmarks 50
4.2 HTTP response status for the GeolocationResultInsert mod-

ule . 50
4.3 GCM parameters that are sent to the landmarks 52
4.4 HTTP response status for the GCMMessageSender module . . 52
4.5 Query parameters example 53
4.6 HTTP response status for the QueryDB module 53

5.1 Resume of the first measurements test 72

xi

1 Introduction

The Internet is a global system of interconnected computer networks based
on the TCP/IP standard Internet protocol suite. It serves several billion users
worldwide and it is considered one of the greatest invention since the tele-
phone, because it has revolutionized the computer and communications world
like nothing before. It is, indeed, a network-of-networks that consists of mil-
lions of private, public, academic, business, and government networks, of
local to global scope, that are linked by a broad array of electronic, wireless
and optical networking technologies. In this introduction chapter we present
a brief history of the Internet, and a description of the importance of the In-
ternet Topology Analysis. To follow we describe the field of IP Geolocation
and the motivations behind it, then we give a quick view at the PORTOLAN

PROJECT and finally we explain the objectives of this thesis work.

1

1 Introduction

1.1 The internet: history, structure,

protocols

1.1.1 A brief history of the Internet origins

It is universally recognized that the history of the Internet [6] can be bring
back to the researches of the 1960s at DARPA (Defense Advanced Research
Projects Agency), firstly known simply as ARPA. Researches were commis-
sioned by the U.S. government in collaboration with private commercial in-
terests in order to build robust, fault-tolerant, and distributed networks be-
tween computers. In 1965 the first wide-area computer network ever built
was created: it connected the TX-2 computer in Massachusetts to the Q-
32 in California with a low speed dial-up telephone line. All this came
together in September 1969 when the first packet switching node was in-
stalled at UCLA (University of California, Los Angeles) and the first host
computer was connected. Later on two more nodes were added and, by
the end of 1969, four host computers were connected together into the early
ARPANET. ARPANET was initially funded by the U.S. Department of De-
fense for military use and for the research laboratories in the U.S. and in the
universities.

The funding of a new U.S. backbone by the National Science Foundation
in the 1980s, as well as private funding for other commercial backbones, led
to worldwide participation in the development of new networking technolo-
gies; at this time many heterogeneous networks existed and they merged to
create a more complex wordlwide network. Commercial ISPs (Internet Ser-
vice Providers) began to emerge in the late 1980s and early 1990s. Since
the beginning of the 1990s, the Internet has undergone impressive, exponen-
tial, growth, which can be appreciated in terms of the number of links that
are added everyday, as well as in the numbers of users and in its economi-
cal value. This growth led to the current Internet, which connects more than
two billion users through a global communication infrastructure that consists
of thousands of service providers of different business types such as regional
or international transit providers, content providers, enterprise and academic
networks, access providers, and content distribution networks.

2

1.1 The internet: history, structure, protocols

Figure 1.1: The actual Internet infrastructure [http://en.wikipedia.org/ auth:
Ludovic.ferre]

In the next section we explain the basis of the Internet topology and how
the nodes are interconnected.

1.1.2 The Internet topology

The actual Internet is obviuosly more complex than the Internet of the 1990s,
due to the exponential growth of the number of links and nodes. The Inter-
net is so extended that still now we know that despite the increasing effort
to unveil the connectivity map (at the Autonomous System Level1) at least
35% of the links are still missing from all known databases. Moreover, less
conservative estimations indicate that the percentage of the link remaining
hidden is greater (more than 50%) [7]. Furthermore every day a great number
of links are created and many are suspended or else are completeley deleted;
this makes even more difficult to discover every possible link.

The core of the actual Internet is a multi-tier hierarchy of IP[1] transit
providers that are connected because of commercial and business agreements

1An Autonomous System (AS) is a collection of connected Internet Protocol (IP) routing
prefixes under the control of one or more network operators that presents a common,
clearly defined routing policy to the Internet.

3

1 Introduction

Figure 1.2: Autonomous System Relationships

(see fig. 1.1). When the Internet was opened to the commercial markets,
and for-profit Internet backbone and access providers emerged, the network
routing architecture was decentralized with new exterior routing protocols, in
particular the BGP (Border Gateway Protocol [8]). According to Wikipedia2

there are 13 Tier-1 networks that can reach every other network on the Inter-
net without purchasing IP transit or paying settlements: those are transit-free
network that peer with every other tier-1 network, but not all transit-free net-
works are tier 1 networks. The regional tiers or Tier-2 networks purchase IP
transit from Tier-1 to reach at least some portion of the Internet, and at last
we have Tier-3 networks that offer residential and small-business access to
the Internet.

As we already said the ISPs talk between them because of commercial or
business agreements: this is possible because the BGP allows each AS to
choose its own administrative policy in selecting the best route, and announc-
ing and accepting routes . The commercial agreements between ISPs can be
classified into [9] (see fig. 1.2):

• Customer To Provider: A customer pays its provider for connectivity to
the rest of the Internet. Therefore, a provider does transit traffic for its
customers. However, a customer does not transit traffic between two of
its providers.

• Peer To Peer: Peers agree to exchange traffic between their respective
2http://en.wikipedia.org/wiki/Tier_1_network#List_of_tier_1_networks

4

1.1 The internet: history, structure, protocols

customers free of charge.

• Sibling To Sibling: A mutual-transit agreement allows a pair of ISPs to
provide connectivity to the rest of the Internet for each other.

In this thesis work we are not strongly interested in the dinamics of the com-
munications between computer networks but we focus mainly on the possi-
bility of mapping logical address on the Internet (IP addresses) in a geograph-
ical context. In the next section we introduce the problems that arises when
studiyng the IP Geolocation.

The Portolan Internet topology measurement system project The
PORTOLAN3 system is, as described in [2, 3], a Internet measurement sys-
tem based on traceroute that aims at obtaining the Internet graph at the Au-
tonomous system level and building maps of the signal coverage through
smartphone-based crowdsourcing. Basically, the system is composed by a
Client side, an Android App installed on several mobile phones, and a Server
side. The PORTOLAN system is developed by University of Pisa and IIT/CNR.

The idea behind this project is to collect information on the topology and
the structure of the Internet with the contribution of volunteers. Another
substantial difference with other existing projects is that PORTOLAN tries to
discover the Internet topology from the edge of the Internet. Connected to
their wireless access networks, which can be WiFi or mobile network (such
as GSM, UMTS, GPRS, 3G or the new LTE network), the smartphones can
probe the Internet from the periphery up to the Internet core and from end-user
to end-user.

The most difficult portion of the Internet to be detected by the existing
measurement systems is the very same periphery on which PORTOLAN is
focused; this make PORTOLAN an extremely useful measurement system on
the panorama of the existing projects, in order to discover new links on the
Internet. More information on this project can be found in chapter 3 and in
the dedicated scientific papers[2, 3], or else directly in the web site.

3http://portolan.iet.unipi.it/

5

1 Introduction

1.1.3 IP geolocation

The Internet Protocol (IP) is the principal communication protocol in the In-
ternet protocol suite for relaying datagrams across the network. the IP, to-
gether with the TCP4, has the task of delivering packets from a source host
to a destination host. For this purpose, this protocol provides an addressing
system that has two functions: identifying hosts and providing a logical lo-
cation service. An IP address is tipically a binary number, but expressed in a
human readable dot-decimal numeric notation; in particular the Internet Pro-
tocol Version 4 addresses (we will not consider IPv6 addresses in this thesis)
are commonly written using the quad-dotted notation of four decimal inte-
gers, ranging from 0 to 255 each. An Ipv4 address consists of 32 bits, which
may be divided into four octets .

The interest on IP geolocation, i.e. the geographical localization of Logical
IP addresses on the Internet, arised in the last decade. The motivations that fo-
cus the interest around this topic are various: the pop up of new location-aware
applications like smartphones apps, web site contents and advertisement, or
the importance of finding the sources of malwares and viruses, or even spam-
mers, or else scientific studies on the way people use the Internet and more.
There are various projects, of commercial or scientific nature, dedicated to the
IP geolocation (we will see them in chapter 2), since it is a major challenge,
i.e. there is no direct relationship between the IP address of a host and its
geographic location.

Basically, there are two ways of getting the location of network hosts which
are not known a-priori: the first method is to use passive measurements, based
on the information collected by registries, or databases on the Internet like
WHOIS [10] databases, DNS LOC records or DNS names [11]. The sec-
ond approach is based on active measurements to approximate IP locations,
like the time needed to reach a certain destination on the internet and then to
return back to the source (Round Trip Time); this approach try to find a rela-
tion between the delay experienced by an IP packet on the Internet sent to a
certain host and the spatial distance. Moreover, some of the projects based on
this approach use topological informations to refine the geolocation process.

The next chapter is dedicated to these commercial and academic projects
4http://tools.ietf.org/html/rfc793

6

1.2 Objectives and contents of this thesis

that make use of one of the two approaches or the other. In the next section,
instead, we present the Internet measurement system developed by the Uni-
versity of Pisa and the IIT/CNR. In this thesis work, an IP geolocation service
has been integrated in the framework of PORTOLAN system.

Spotter project SPOTTER5 is a web service based on a novel probabilis-
tic geolocation approach developed by the Eötvös Loránd University of Bu-
dapest where the relationship between network delay and geographic distance
is statistically analysed. Spotter authors show in [4, 5] that the distribution
of spatial distances for a given delay follows a universal distribution and is
independent of a landmark’s position from where the measurement was per-
formed. While the state-of-the-art techniques use separate calibration data for
each landmark to determine their internal models (see chapter 2), this method
handles all these data together to derive this delay-distance model. In this the-
sis work we developed an IP Geolocation approach that is based on SPOTTER

theories.

1.2 Objectives and contents of this thesis

The main purpose of this thesis is to design a new IP Geolocation approach
based on smartphones inside the PORTOLAN PROJECT context. This ap-
proach has to:

• Be based on RTT measurements;

• Take advantage of the theoretical background provided by SPOTTER

approach (see Chapter 2, section 2.2);

• Be stable and efficient in a mobile environment (it has to work as a tool
for an Android App);

• Be transparent to the smartphone owner, who can not be bothered by
the measurements.

We developed both in the client side and in the server side a specific module
for the geolocation, and we added a Database in the server side where to

5http://spotter.etomic.org/Default.aspx

7

1 Introduction

store the measurements taken with the smartphones. The experimentation
was taken in collaboration with the University of Budapest and in particular
with the SPOTTER project authors.

The thesis is structured into five more chapthers. Chapter 2 gives an overview
on the existing projects on the IP Geolocation field and then it focus on the
SPOTTER project and its theoretical bacgkground.

Chapter 3 describes the design process of the geolocation module, which
includes a brief description on how the PORTOLAN system works, the integra-
tion with previously implemented components and of components developed
by third party.

Chapter 4 shows the implementation of every single component of the ge-
olocation module, of their sub-components, of the communication protocols
between them and also focuses on the modification produced to previously
implemented components on the system.

Chapter 5 describes the experiments carried out for testing the implemented
modules and the validation and evaluation of the achieved results.

Finally, chapter 6 concludes this thesis and gives an overview on some of
the possible future developments.

8

2 IP Geolocation Techniques

In this chapter we want to give a full view on the most important techniques
developed in the relatively new field of IP geolocation. As we will see in
section 2.1 there are two opposed approaches to geolocation: based on passive
or active methods. We then focus in section 2.2 on a web geolocation service
called SPOTTER based on a probabilistic model to determine the most likely
position of a certain IP address. The information presented in this chapter is
useful in order to comprehend how the geolocation actually works and then
being able to build a system to geolocate IP addresses.

9

2 IP Geolocation Techniques

2.1 State of the art

This section offers an overview of the IP geolocation state of the art.

During the recent years several IP geolocation projects have emerged, all
of them aim at giving an accurate approximation of the location of network
hosts which are not known a-priori.

Many of these projects use a passive measurements approach, based on
the information collected by registries like WHOIS or DNS records, that are
unreliable due to the fact that the addresses contained on those registry usually
differs from the real locations of its routers (in case of large ISP those errors
grows larger).

The second, more mature approach, considers active delay and topology
measurements to approximate IP locations. These projects try to find a rela-
tion between network delay (i.e Round Trip Time) and spatial distance.

2.1.1 Passive methods

Many of the existing geolocation projects use WHOIS databases, DNS LOC
records or DNS names to determine the location of a given host. From
WHOIS one can retrieve the name and street address of the organization
which registered the address block (examples of registries are ARIN1 in north
america, RIPE NCC2 in Europe and APNIC3 in Asia).

However, for a large ISP or a geographically dispersed organization the
registered street address usually differs from the real location of its hosts, as
previously stated. A similar problem arises in the use of DNS names, since
the names can be both useful or misleading due to the naming conventions of
the ISP[12].

Other registry based techniques include commercial approaches where one
obtains the description of the geographic layout of an ISP’s network and in-
ternal routing policies. There are several commercial solution that can be
easily found (some are freeely available) like Ip2location, MaxMind, Tamo

Soft and IPligence. For a much finer search traceroute command is used to

1https://www.arin.net/
2http://www.ripe.net/
3http://www.apnic.net/

10

2.1 State of the art

find clues to the location of the IP address as the names of the routers through
which packets flow from the source to the destination host might hint at the
geographical path of the final location.

In general, these passive methods are very accurate, but in some cases their
errors are very large. For IP-to-country databases, some vendors claim to
offer 98% to 99% accuracy although typical Ip2Country database accuracy
is more like 95%. For IP-to-Region, accuracy range anywhere from 50%

to 75% if neighboring cities are treated as correct [13]. In [4] and [5] the
authors demonstrate that those method can’t be always reliable. They tried to
locate GEANT [14] routers in Budapest using MaxMind4, which is one of
the leading passive IP-to-location database, and it provided fake locations for
them (according to MaxMind the routers were located in Cambridge, where
GEANT is registered).

2.1.2 Active methods

These methods apply a completely different approach and they take advan-
tage of active measurements to overcome the above limitations. IP2Geo [15],
for example, contains a tool called Geoping, which tries to approximate the
geographical location of network hosts on the basis of packet delay measure-
ments.

A more complete approach is the simultaneous application of several delay
constraints to infer the location of a network host. This is done by constraint
based geolocation (CBG) techniques[16]. CBG introduces a triangulation-
like method to combine the distance estimates from all landmarks. To esti-
mate delay-distance relation, each landmark measures the delay from itself to
all the others. In general, each delay measurement defines a circle around the
landmark from where the delay was measured. The possible locations of the
target node are determined by intersecting all of these circles as you can see
in Fig. 2.1. In most of the cases this intersection produces a region in which
the target node must be located.

Another technique is where the topology information and latency measure-
ments are used together in the location estimation. This method type is called

4http://www.maxmind.com

11

2 IP Geolocation Techniques

Figure 2.1: Example of CBG technique

topology based geolocation (TBG) [17]. TBG localizes all the intermediate
routers between the landmarks and the target node, using traceroute tech-
niques. This approach is based on link-latency estimations and on precise
topology discovery.

In [5] the authors improved these two approaches demonstrating how an
accurate approximation of the propagation delay can improve the accuracy of
distance estimation. They developed a path-latency model where they sepa-
rate the propagation and per-hop delays in the overall packet latency. Besides,
they introduced the importance of one-way delay measurements, instead of
classical RTT delays. This type of constraint yields additional information
into the geolocation process by limiting the overall physical length of a given
measurement path. The same authors then, based on these studies, developed
a geolocation service on which this thesis work rely, called SPOTTER[4].

In the next subsection we give a detailed technical description of SPOTTER

and his theoretical background since we cooperated strongly with his authors
to make this service work with the PORTOLAN system.

2.2 Spotter

This section offers a detailed overview of SPOTTER geolocation service.

The first subsection take focus on the theoretical background on which the

12

2.2 Spotter

service is based, then the second subsection briefly describes the world sur-
face tesselation method used, while the final subsection present the algorithm
of the web interface.

2.2.1 Delay-Distance model

Spotter is a geolocation service based on a probabilistic model to determine
the most likely position of the target based on signal propagation delay values
between the landmarks and the target. Let L denote the landmark given by its
latitude and longitude coordinates:

L = (Llat ,Llng).

Let T represent the target node, whose actual T = (Tlat ,Tlng) coordinates
are unknown. In the following the target’s position will be described with a
random variable:

τ = (τlat ,τlng).

The spatial probability density function of τ determines how likely the tar-
get is at given regions of the globe. In this approach the density function
depends on the location of the landmark and the signal propagation delay be-
tween L and T5. For a given L and a fixed delay d the function is denoted by
gLi

di
(τ). With this notation the conditional probability that T falls into region

H is provided by

P(T ∈ H |L ./ d) =
ˆ

gL
d(τ)dτ , (2.1)

where the condition L./d indicates that d is the propagation delay between
L and T. As delay measurements do not carry any information on packet con-
tents, constraints can be derived only on their distance. Hence, the first im-
portant assumption is that the behavior is isotropic, as the distance probabil-
ities are equal in all geographic directions from L. gL

d function then defines
a ring-like surface around the landmark. Considering that a single landmark

5Note that L and T represents the node while L and T are coordinates (lat, lng).

13

2 IP Geolocation Techniques

does not provide a well-defined location for the target, a multiple landmark
model is much more convenient. Suppose we have n Landmarks: L1,...,Ln

and di propagation delay from Li to the target T, given that i ∈ {1,2, . . . ,n}
with 1 ≤ i ≤ n. The target position is described with a random variable τ ,
as previously said. The conditional probability that the target is located in a
certain H region can be expressed as the product of every landmark densities:

P(T ∈ H |L1 ./d1, . . . ,Ln ./dn) =

=
n

∏
i=1

P(T ∈ H |Li ./ di) =

= AH

N

∏
i=1

ˆ
gL

d(τ)dτ (2.2)

• AH =P(T∈H)1−n depends on the area of H and can be substituted with
a constant for all regions having the same area (we’ll see next what this
means);

• gLi
di
(τ) represent the corresponding spatial probability densities. The

basic principle of the localization method is that the estimated position
must fall into the region designated by the gLi

di
(τ) functions such that the

joint probability in (2.2) is maximized for a reasonably sized region H.

To be able to apply the previous results gLi
di
(τ) had to be calculated. In [4] the

two fundamental hypothesis are:
First, as assumed early in this section, gL

d is considered an isotropic func-
tion, since there is no reason to doubt that signal propagation characteristics
agree in different geographical directions. As a consequence, gL

d it is de-
scribed with its f L

d radial profile.
Second the f L

d distribution it is considered independent of the actual loca-
tion of L, and thus it is substituted with fd , that is to say a distribution common
for all landmarks. This is the most important and controversial hypothesis of

14

2.2 Spotter

this model, as it has a strong impact on the quality of the service but has not
sufficiently been explained on this paper work, as the authors presented only
a few validation tests (refer to [4] on section IV.B for more details).

Figure 2.2: Example of an estimated region

To determine the spatial probability density of τ the surface of the globe
is divided into a finite number of cells with equal area (like this AH can be
substituted with a constant) and calculate (2.2) over them (see subsection 2.2.2
for details about the tesselation method used by SPOTTER). This way we
obtain a probability value for each cell, which is a much finer information on
the possible position of the target than the one provided by the CBG method
described in [16] (see section 2.1.2). To deliver position estimations from the
individual cell probabilities Spotter provide two differents methods:

• In case an estimated region of the target is needed, the algorithm calcu-
late the union of the 3 most probable cells like in figure 2.2. The regions
emerge where all the involved rings provide high probability values;

• On the other hand, for certain purposes an estimated region is not ap-
propriate, instead a single best target location value is necessary. Due
to the nature of the probabilistic approach of SPOTTER there are several
choices to define a single location. For instance, one can simply select
the center of the estimated region or use the coordinates corresponding
to the maximum for mean value of the probability distribution.

15

2 IP Geolocation Techniques

Figure 2.3: fd approximation with the standard normal distribution

The approximation of fd is done by an analysis of real world calibration
data collected in PlanetLab. In brief the authors determined the probabil-
ity distribution of the standardized data values and as you can see in Figure
2.3, where each dot represents a measurement between two nodes, there is
a good match with the standard normal distribution. This means that fd is
well approximated by a normal distribution at any fixed delay d. The above
observations enable a simple approximation of fd with a normal distribution:

fd(s) ≈
1√

2πσ(d)
exp(−(s−µ(d))2

2σ2(d)
), (2.3)

where s is a random variable describing the distance. During the evaluation
process the (2.3) distance distribution is used to calculate the gL

d(τ) spatial
probability densities. For a given delay L./d this is done by the following
formula:

gL
d(τ) = Ad fd(S(L,τ)). (2.4)

Here, S(L,τ) represents the great-circle distance between L and τ , while Ad

denotes the normalization factor.

To validate Spotter hypotheses the authors in [4] examine the localization
accuracy of its approach and compare the results with the performance of the
state of the art delay models of CBG and Octant6. Comparing the numer-
ical results Spotter shows significantly better performance and it appears to

6http://www.cs.cornell.edu/~bwong/octant/

16

2.2 Spotter

(a) Level 0 and views of the projection of
the octahedron onto the sphere.

(b) Trixels division example.

Figure 2.4: HTM hierarchy.

be more robust against measurement anomalies (due to his probabilistic ap-
proach).

As we said earlier in 2.2 to substitute AH with a constant value the surface
of the globe is divided into a finite number of cells with equal area. In the
next subsection we describe the HTM technique, used in Spotter to subdivide
the surface of the earth with great precision.

2.2.2 The Hierarchical Triangular Mesh Tesselation

The Hierarchical Triangular Mesh (HTM) [18] is a method to subdivide the
spherical surface into triangles of nearly equal shape and size. The HTM
gives a very efficient indexing method for objects localized on the sphere,
organized in levels. It start with an octahedron, this will be level 0. As you
project the edges of the octahedron onto the sphere 8 spherical triangles are
created, 4 on the Northern and 4 on the Southern hemispheres. Four of these
triangles share a vertex at the pole and the sides opposite the pole form the
equator. You can imagine these by orienting a regular octahedron so that
two of its vertices are at the poles, and the other 4 are equally spaced on
the equator. The spherical polygons are the projection of the edges of the
octahedron onto the circumscribing sphere.

As you can see in figure 2.4a the 8 spherical triangles [N0 ; N3] and [S0 ; S3]

represent respectively the 4 northern and southern spherical triangles. These
are called level 0 trixels. Each trixel can be split into four smaller trixels by

17

2 IP Geolocation Techniques

introducing new vertices at the midpoints of each side, and adding a great
circle arc segment to connect the new vertices with the existing one; trixels
division repeats recursively and indefinitely to produce smaller and smaller
trixels.

This subdivision scheme (shown in figure 2.4b) suggests a way of labeling
the trixels. Each trixel has three vertices labeled 0, 1 or 2. The opposite
midpoints are labeled 0’, 1’ and 2’, respectively. The newly created trixels
receive a label formed by the name of the parent appended with one of {0,
1, 2}, indicated by the vertex shared with the parent. The central trixel is
suffixed with a ’3’. Smaller trixels have longer names. The length of the
name of the trixel also indicates its level. Points in this decomposition are
represented by a leading 1 bit and then the level 0 trixel number [0 . . .7] and
then the successive sub-trixel numbers [0 . . .3]. This gives each trixel and
its center-point a unique 64 bit identifier, called an HTMID that represents a
particular trixel in the HTM hierarchy (the smallest one is 8). Though the
division process can continue indefinitely, the 64-bit representation runs out
of bits at level 31. Level 25 is good enough for most applications as it has an
accuracy of about 0.6 meter on the surface of the Earth.

2.2.3 The service algorithm

Spotter implementation follows a modular structure: the system is accessed
via a web interface where the user can enter the target domain name or IP ad-
dress to be localized, then PlanetLab landmarks measure delays to the target
and the results are forwarded to the evaluation module. This module applies
the probabilistic model described in subsection 2.2.1 to determine the location
of the requested IP address. After evaluation, the expected target position is
returned to the user, while the individual cell probabilities are visualized on
Google Maps. Let’s see in detail the algorithm steps:

1. Targets choice: Users enter the targets domain name or IP address to be
localized on the web interface7;

2. Data Collection: PlanetLab landmarks measure delays to the target and
the results are forwarded to the evaluation module. Spotter measures

7http://spotter.etomic.org/Default.aspx

18

2.2 Spotter

10 round-trip delays (RTT) from each PlanetLab landmark to the tar-
get node. The evaluation module extracts the base values (tipically the
minimum round-trip delay for each landmark). This way the effect of
routers queuing can be significantly decreased [5];

3. Model Evaluation: Execution of the probabilistic delay-distance model
through the division of the globe surface in regions H via the Hierar-
chical Triangular Mesh (see 2.2.2). At a given resolution level Spotter
determines the probability value for each HTM cell by approximating
the integral in 2.2;

4. Visualization: The outcome of the evaluation is a spatial probability
distribution and its moments. The Spotter web interface displays the
estimated region and the expected location on a Google Maps applica-
tion.

[4] shows that SPOTTER accuracy is greater than in CBG and TBG and ev-
ery hypothesis is verified, but something missing in the paper is the method
used to select the landmarks for the experimentation, as they only say that
the selection is made between PlanetLab routers. We think that an algorithm
for the filtering of landmarks (based on geographical and logical constraints,
i.e the country or the Autonomous System number of the target) is of great
importance to enhance the accuracy of the geolocation. In this thesis work we
determined some hypotheses that allow the implementation, on future work,
of an algorithm that can be used to select the best landmarks available as we’ll
discuss later.

19

3 The PORTOLAN System
Design

The PORTOLAN1 system is, as described in [2, 3], a Internet measurement sys-
tem based on traceroute that aims at obtaining the Internet graph and building
maps of the signal coverage through smartphone-based crowdsourcing. Ba-
sically, the system is composed by a Client side, an Android App installed
on several mobile phones, and a Server side. In this thesis work, as already
introduced in chapter 1, we developed a geolocation service based on RTT
measurements and on the SPOTTER service, used by the PORTOLAN system
to find the geographic position (latitude and longitude) of an IP address. The
chapter is structured into four parts. In sections 3.1,3.2 and 3.3 we give an
overwiev of PORTOLAN system client and server side as developed in [2, 3].
Then in section 3.4, we show how the geolocation measurement subsystem
works in the Android app. In section 3.5, we focus on the description of the
Database used to collect the measurements taken from the mobile devices.
Finally, in section 3.6 we describe the web interface developed to send the
targets list to the devices and then gather the information collected in the
database, used by SPOTTER authors to calibrate their service to work with
our system.

1http://portolan.iet.unipi.it/

21

3 The PORTOLAN System Design

3.1 The PORTOLAN system

As previously said the PORTOLAN system is composed by a Server side (de-
scribed in section 3.2) and a great number of Android smartphones with the
Portolan Client App installed. The paradigm of crowdsourcing used by Por-
tolan, is, according to [19], the practice of outsourcing tasks to a large group
of people. The crowdsourcing encourages the best-qualified and most cre-
ative participants to join in on a project and it can involve possibly milions of
people in helping the scientific research. Furthermore PORTOLAN project fol-
lows a bottom-up approach where the phones are used as mobile monitors. In
this approach the measurements are taken from the edge of the Internet, and
not from the top, like in common approaches followed by previous research
projects (top-down).

3.1.1 Current research projects

There are two different approaches used to discover the topology of the In-
ternet: based on passive measurements or active measurements. We present
a brief description of the most important research projects that follow these
approaches:

Passive measurements based Research projects like RouteViews2, PCH3

and RIPE RIS4 make use of passive data gathering for Internet topology dis-
covery, i.e. they provide raw BGP data that can then be used to discover the
topology at the AS level. The Border Gateway Protocol (BGP) is the de facto

routing protocol used to connect routers, called BGP speakers, that belong to
distincts ASes. Two BGP speakers forms a transport protocol connection be-
tween each others. When the connection is established, a speaker sends its
entire routing table to the peer. Every time there is a change in the speak-
ers routing table, the peers exchanges BGP update messages. The research
projects already mentioned collect these messages using monitors that act as
BGP speakers (called Route Collectors). Despite the significant measurement

2http://www.routeviews.org/
3https://www.pch.net/home/index.php
4http://www.ripe.net/data-tools/stats/ris/routing-information-service

22

3.1 The PORTOLAN system

Figure 3.1: Link between ASG and ASC is lost in M1 wich is at the top of the
graph, respect to M2 located on the bottom edge

efforts, these methods have not been useful to fully discovered the Internet
Topology [20]. The previous projects failed because of two main reasons:

• the measurement campaigns are carried out with a small number of
Route Collectors, e.g. 8 RC for the RouteViews project and 15 for
RIPE RIS;

• these monitors are often located closer to the Internet core than to the
Internet edges. This prevents the monitors from observing the large part
of the Internet near a vast majority of Internet users as you can see in
the example of Fig. 3.1.

Active measurements based The most used active measurement method
is traceroute. Traceroute is a computer network diagnostic tool for displaying
the path and measuring transit delays of packets across an Internet Protocol
network. The history of the route is recorded as the RTTs of the packets re-
ceived from each successive host in the path. Traceroute allows the discovery
of the topology at the IP interface level. As previously stated PORTOLAN

topology discover is traceroute based. The most important research projects

23

3 The PORTOLAN System Design

that takes advantage of active measurements are CAIDA ARCHIPELAGO5

and DIMES6.

3.1.2 PORTOLAN system features

The PORTOLAN server is responsible for:

• Managing the smartphones, giving them IDs that can serve as key to
permits the communication between the server and the clients;

• managing and supervising the measurement campaigns, through the use
of these IDs;

• storing the collected measurements.

On the other hand the PORTOLAN client side, besides the measurements, pro-
vides differents services to motivate the user to give his contribute to the
project such as:

• a Traceroute and a Ping tool;

• a tool to estimate the maximum throughput of a network;

• a WiFi scanner;

• a mobile network signal analyser.

In this thesis work a geolocation module has been added to the original archi-
tecture, both in the server and in the client infrastucture. We’ll describe the
features of the PORTOLAN system in the next two section.

3.2 The server structure

In this section we’ll describe the architecture of the PORTOLAN system server
side as it is in the present moment, since there are some evolutions ongoing
in this context. In order to have a simple way to control the complexity due to
the increasing number of smartphones and, as a consequence, the increasing

5http://www.caida.org/projects/ark/
6http://www.netdimes.org/new/

24

3.2 The server structure

Figure 3.2: PORTOLAN Basic structure

number of data, and to give the user a standard interface for the interactions
with the server, the PORTOLAN system takes advantage of the Sensor Web

Enablement framework of Open Geospatial Consortium (OGC). The com-
ponent used is called SPS (Sensor Planning Service): this is a Java Servlet
that offers an XML web interface to manage the operations to the sensor net-
work. In detail the most common operations are:

• Submit task;

• Get the feasibility of a task;

• Cancel a previously submitted task;

• get confirmation on the status of a previosuly submitted task.

As the name suggests, this framework is normally used with sensor networks.
In this context the server considers the smartphone network as a mobile sensor
network; thus the human user can submits tasks with the help of this frame-
work.

The system architecture presented so far is summarized in Fig. 3.2, nev-
ertheless this structure presents some limitations due to the fact that SWE
framework was developed to work with a relatively small number of sensors.
There are three main issues that must be considered in our case:

25

3 The PORTOLAN System Design

• Availability

The mobile devices can’t be always available, since they are smart-
phones on which we have no control;

• NAT Reachability

The devices can reside in a private network, thus they have a private IP
address and they connect to the Internet via a gateway. The only way to
reach such devices is by maintaining a persistent connection between
the server and the devices. It becomes difficult to set up this connection
for a large number of devices;

• Scalability

The number of smartphones that contribute to the PORTOLAN project
is growing fast. The structure as we have seen till now can not afford to
work with a large number of devices.

In order to pass through limitations imposed by the nature of mobile devices
and by the SWE framework, a new system architecture that differs from the
basic architecture shown in figure 3.2 has been designed. Instead of register-
ing all the smartphones with the SPS, now it has been developed a module
that registers to the SPS as a single sensor. This module then communicates
with the mobile devices. This way the user becomes unaware of the complex-
ity of the system, i.e. the user submits tasks to the system and the system
is responsible for sending the tasks to the most suitable devices. The system
knows which device to select according to the following properties: country
(mandatory), geographic area, Autonomous System, network type, provider
name, mobile ID [3]

To make the system scalable Proxies have been added to the original ar-
chitecture, one for each country theoretically (currently only one proxy is
available, in Italy). A mobile device registers itself with the proxy of his ge-
ographic area, via a Proxy Assigner that is located in the main server. The
proxy assigner sends information about the proxies at the moment of the first
installation of the client. From this moment on the device polls the proxy with
a regular frequency in order to ask if there are available tasks; if at least there
is one task available, the proxy sends the task to the device that polled to it.

26

3.2 The server structure

Figure 3.3: PORTOLAN architecture revisited

In conclusion, we list all the steps of PORTOLAN system working principles
(for a detailed description refer to [3]):

1. The user submits a task to the SPS;

2. SPS module splits the original task in microtasks and delivers them to
the proxy identified by the original task;

3. The proxy waits for mobile devices polls, and assigns microtasks to the
most suitable devices;

4. When the execution of a microtask is terminated, the mobile device
sends the results to his proxy and notifies of microtask completion;

5. When the execution of a task is terminated, the proxy notifies the human
user of task completion via a module that sends him an e-mail.

See Fig. 3.3 for a schematic resume of the most important features of POR-
TOLAN system architecture

3.2.1 Google Cloud Messaging

As already mentioned earlier, even if the user submits a task to the system
he doesn’t have control on which device the submitted task will be executed;
this was necessary due to ensure the transparency of system complexity to

27

3 The PORTOLAN System Design

Figure 3.4: Example of GCM urgent message delivery

the user. The normal behaviour of the system lets the smartphones ask their
proxy for a task if there is at least one, this way the proxy can select the most
suitable devices among the ones that polled it and not among every device
available. This way, as we expect that the number of devices will grow larger
quickly, the complexity of the selection algorithm is cutted down. Actually,
there is one way to change this behaviour, that takes advantage of Google
Cloud Messaging Service (GCM) provided by GOOGLE7. GCM is a service
that allows to send data from a server to Android powered devices, even if
the application is not running. In order to use this service there are some
important conditions:

• The application must have a GCM registration ID;

• Android OS versions under 2.2 are not supported;

• Under version 4.0.4, the device must have at least one logged in Google
account;

• The server must get an API key for using the service.

When the user submits a task he can set a flag, named Urgent, wich gets
the mobile devices to poll immediately instead of waiting for the time interval
to expire. When the proxy receives an urgent task it send via GCM service a
message to all mobile devices it handles, notifying the arrival of the task as
showed in Fig. 3.4. All mobile devices receiving the message immediately

7http://developer.android.com/google/gcm/index.html

28

3.2 The server structure

poll to the proxy, which assigns them microtasks from the urgent task, if they
satisfy task requirements. This mechanism allows to keep a low polling fre-
quency when tasks to execute are not urgent, and, on the other hand, when
an urgent task is submitted, to force polling from mobile devices, in order to
assign urgent microtasks as quickly as possible.

In this thesis work, in addition to the usage just described, we use GCM
service to send geolocation campaign requests to mobile devices, which will
be our landmarks (From now on we refer to the mobile devices as landmarks

in order to harmonize with SPOTTER terminology [4]). In brief, the user
submits a geolocation campaign via a web interface where he can specify a
list of targets, or a single target as well, to be pinged by landmarks8. Then,
the system asks the GCM service to deliver the measurements requests to all
smartphones registered to GCM. An algorithm for the selection of landmarks
is still under development; in this thesis work we create the conditions for
the design of this algorithm by presenting some hypotheses arised from the
experimentation taken on geolocation measurements (see Chapter 6).

3.2.2 Geolocation Service module

In addition to the architecture showed earlier in this section we developed
a specific module for the geolocation composed by two Java Servlets and a
PostgreSQL9 Database where to store the results sent by the landmarks after
a measurement campaign. In order to start a campaign the user has to fill a
form in a web interface (see Section 3.6) that is responsible for sending the
requests to the landmarks. This is done by GCM which, in a best effort fash-
ion, tries to deliver the message to all connected smartphones, as we already
described, and then notifies the user that the operation was a full success or
if some device has not been reached. When a landmark receives a message
from GCM it controls if the measurements can take place (i.e. if there are
no tasks already running) and, if so, it starts taking the measurements. This
is done in background without notifications, as we decided not to bother the
smartphone user every time the service starts. When the target list is empty

8The Packet InterNet Grouper (Ping) network tool is used to measure the RTT between the
landmark and the target

9http://www.postgresql.org/

29

3 The PORTOLAN System Design

and the measurements are completed the landmark automatically sends back
the results to the server, which stores them on a Database. Results can be
examined later via a web interface.

3.3 Client Apps

The PORTOLAN Android App is responsible for executing the microtasks sent
by proxies after the polling operation and to send the results back to the server
when the execution is terminated. As we introduced in 3.1, besides the mea-
surements, this app provides differents services to the users to motivate them
to contribute to the project: a traceroute and a ping tool, a maximum through-
put estimator, a WiFi scanner and a mobile network signal analyser. In this
section we introduce the principles of the software and its modules.

Figure 3.5: Home Screen of the PORTOLAN App

The Android app runs background measurements, i.e. traceroutes and pings,
and retrieves data on the signal coverage of cellular networks. Since we do
not want to bother the user, the Internet graph measurements are limited to
max 200 traceroutes per day, i.e. peak traffic rate ≤1 KB/s and average traffic
rate ≤ 2 MB/day. Signal coverage measurements does not cost on battery
or bandwidth, as the Portolan app passively collects signal strength samples
using GPS positions generated by other apps. Since the geolocation mod-
ule is still a prototype, even if the user is unaware of the measurements, we

30

3.3 Client Apps

did not put limitations on the max numbers of RTT measurements, or on the
maximum traffic rate. The application stops its background activity when the
battery level decreases under 40%. No personal data are sent to PORTOLAN

server; thus, it is not possible to connect any measurement to the device, or
the user identity, that performed them.

Traceroute The smartphones execute the Internet topology analysis via
Traceroute. The approach is the one provided by MDA (Multipath Detection
Algorithm), an evolution of Paris traceroute that provides an exaustive re-
search of every possible path between a source and a destination. Paris Tracer-
oute is able to detect the presence of load balancers by implementing heuris-
tics to recover from their effects. However, Paris Traceroute discovers only
one of the available paths from a source towards a destination, this is why we
use MDA (for more informations on MDA refer to [21]). In addition to the
traceroute tool used by the device when a task is requested, there is a manual
service available for the user in the network tools activity. Another available
tool is the AS Traceroute, or ISP Traceroute, wich, instead of returning the
list of crossed IPs, like classic traceroute, lists the traversed Internet Service
Providers (ISPs) in the path to the target. In Fig. 3.6 the steps of a traceroute
task are showed.

Ping The manual ping tool employs the Android native ping command and
offers a simple graphic interface to the user.

Maximum Throughput Estimation This module let the user get an es-
timate of the maximum throughput that can be achieved along an Internet
path whose end points are the client that starts the measurement and the POR-
TOLAN Server. In order to get the estimate the client performs a defined set of
attempts. In particular, it implements 20 attempts in download and 20 in up-
load. Moreover the tool provides the trend of experienced throughput for each
attempt in form of graphical plots. As the measure is an estimation, if there is
an high packet loss during the measurement it is possible that the results may
differ from the actual values.

31

3 The PORTOLAN System Design

Figure 3.6: Example of Traceroute execution

32

3.4 Geolocation measurements

WiFi Scanner This service scans all availables Wireless LANs in range
and shows a list of them, specifying the network signal strenght and the type
of authentication required. It is also possible to exclude those networks that
require authentication from scanning.

GSM/UMTS Coverage This tool is used to test the GSM/UMTS signal
strength and to get informations about cells of the smartphone operator. Also
it is possible to track the signal coverage along a path. The results are then
collected on a layer of Google Maps10 that can be checked online.

In the next section we show how the geolocation service works in the An-
droid app, and how it coordinates with the existing tasks.

3.4 Geolocation measurements

In this thesis work we designed and developed a geolocation system both
on the server side and on the client side. In this section we introduce the
operations executed on the Android client app. More information about the
implementation can be found in chapter 4.

The measurements of geolocation tasks are completely invisible to the user,
since we don’t want the user to be bothered by any notification. The funda-
mental steps of the geolocation service are:

1. The landmark receives a geolocation campaign request by GCM. The
request is processed, and if possible, the geolocation service is started;

2. The geolocation service starts a traceroute task towards the target then,
when the traceroute is finished and the results are stored, it starts the
RTT measurements. We use traceroutes in our geolocation module to
have a more complete view over the possible paths taken by the RTT
measurements towards a target;

3. When the measurements are over, both the traceroute and the RTT mea-
surements results are sent to the PORTOLAN server.

10http://portolan.iet.unipi.it/outcomes.html

33

3 The PORTOLAN System Design

To describe the measurements we follow the steps of the geolocation in the
same order.

Step 1: Receiving the request As we mentioned in 3.2.1 the GCM ser-
vice is used in the original system architecture to send urgent tasks to clients.
In order to send a geolocation campaign task to all the landmarks registered
with the system we decided not to pass through the SPS, like in the tracer-
oute tasks. This happens because we give the user the opportunity to perform
synchronyzed measurements, i.e. all landmarks receive the task at the same
time. In brief, when the landmark is in an idle state it waits for messages sent
by GCM; this does not bother the polling service served by the coordinator,
as GCM is based on Intents. In Android, an Intent is an abstract descrip-
tion of an operation to be performed; it is used for performing late runtime
binding between the code in different applications (see [?]). When a message
arrives from the GCM the application starts an IntentService, that is used to
handle the operations described by the Intent. Clearly the landmark has to be
registered with the GCM service, or it will never receive messages. When a
message arrives, the landmark process it as it is possible that the operation
contained in the message is relative either to an urgent traceroute or a ge-
olocation campaign. If it is the case of a geolocation campaign request, the
landmark collects the list of target to be located, the number of measurements,
the waiting time between these measurements and other option that are mostly
useful for testing purposes. All this parameters are inserted by the user via the
web interface developed in the server side (see Section 3.6).

Step 2: Taking the measurements The geolocation service in the An-
droid app is the heart of the entire process. Its purpose is not to give directly
to the user the geolocation of a certain target but to collect a great number of
RTT measurements through the execution of pings toward the target.

PING is a computer network administration utility used to test the reacha-
bility of a host on an IP network and to measure the round-trip time (RTT)
for messages sent from the originating host to a destination computer. The
name comes from active sonar terminology which sends a pulse of sound and
listens for the echo to detect objects underwater. PING operates by sending

34

3.4 Geolocation measurements

Internet Control Message Protocol (ICMP) echo request packets to the tar-
get host and waiting for a response. In the process it measures the time from
transmission to reception (the RTT) and records any packet loss. The Ping
tool is normally present in all modern operating systems but in Android you
must define a function that runs a native unix command in order to execute it.
Moreover, to modify the behaviour of the probes sent by the Ping command
you must be a privileged user. Due to this probems we use the same traceroute
function developed inside the PORTOLAN project with different options that
simulates the behaviour of the original Ping tool.

We need a great number of pings because we use them to calibrate the
SPOTTER service (it uses fixed landmarks), which then will give us the ge-
olocation results on a certain target, or a list of targets. As we already said,
not only pings, but also traceroutes measurements are carried out in order to
have a more complete view on what happen to the IP packets sent towards the
target.

In the last version of the application, when the system has examined the list
of targets and all the parameters passed by the GCM, it select the first target
and start a traceroute. After the traceroute ended (if there were network errors,
the system tries to execute again the traceroute), the system store the results
in the phone memory and start the execution of the RTT measurements, in the
form of pings. The pings are executed as threads, i.e. every ping is executed
by a thread that saves the results of its ping in memory. Then, when all pings
are executed, i.e. when all threads are done, the results are combined in a
string that will be then sent to the PORTOLAN server.

Step 3: Sending the results When the measurements are over the ge-
olocation service takes the results collected in the landmark internal memory
and modifies the format to prepare an HTTP Post to PORTOLAN Server. Both
the traceroute and the pings are sent in the same string; it is the server duty
to split the message in two parts and save the results to its database. If there
are network failures, like timeouts on the server side or connection losses on
the landmark, the service tries to send the results for three times; if even after
these attempts the system fails to send the results, the burden is passed to the
Coordinator service which every 60 seconds wakes up and controls if there is

35

3 The PORTOLAN System Design

data that needs to be sent to the PORTOLAN server.

In the next section we describe the structure of the database used to collect
the geolocation results.

3.5 Portolan Geolocation DataBase

In this section we focus on the way RTT measurements are collected by the
PORTOLAN system. The results of all measurements campaign are sent from
the landmarks to a Servlet via HTTP Post. The servlet then processes the
information and stores them in a PostgreSQL Database. In the following we
describe all the tables that were created in the DataBase.

geolocationPing Table see table 3.1

The geolocationPing table is used to collect the RTT measurements, taken
via the geolocation service. The information stored on this table will be used
to execute the probabilistic delay-distance model described in 2.2.1.

Field Type
cid Char Var NOT NULL
pid Char Var NOT NULL
burst Integer NOT NULL
nseq Integer NOT NULL
target Char Var
tstamp Tstmp w t zone NOT NULL
coordinates Char Var
accuracy Double Precision
rtt Double Precision
bsid Char Var

Table 3.1: GeolocationPing Table

• cid: The ID used for the measurements campaign. It is provided by
the server, based on the information entered by the user on the web
interface (key); e.g. test2013-04-19-09:41:31

36

3.5 Portolan Geolocation DataBase

• pid: stands for PhoneID, it is assigned by the proxy assigner and has
an univocal correspondance with the landmark (key); e.g.
DID13672382925552084382417001714

• burst: when > 1 is used to test the service on the landmark. The first
burst of pings is the only one used in the normal execution while the
others can be set up as a countercheck to verify the results of the first
one (key);

• nseq: Sequence number of pings in a burst [0 ; MAX_PING-1] (key);

• target: The target we want to geolocate (key); e.g. 193.206.142.81

• tstamp: Timestamp stored when the ping starts; e.g. 2013-04-19

09:41:31.522+02

• coordinates: The landmark coordinates (format: LAT LONG); e.g.
43.7157638 10.3955942

• accuracy: The accuracy of the positioning system for the landmark (in
meters);

• rtt: The RTT taken with the precision of microseconds; e.g.
109.192000031471

• bsid: Stands for Base Station Identification. In case of a mobile network
we collect the BSID of the BTS, so we can use an online Database to
locate the BTS. In the case of a Wifi network we have "wifi" written on
this field instead of the BSID. e.g. 270060603605488222

Traceroute Table (See Table 3.2)

This table is used to collect informations on the traceroutes executed by the
geolocation service. As previously stated, we use these information mostly to
have a more complete view over the possible paths taken by the pings towards
a target. Every row with the same tuple (CID,Target,PID) represents a hop of
the same traceroute campaign.

• CID: The ID used for the measurements campaign (key);

37

3 The PORTOLAN System Design

Field Type
CID Char Var NOT NULL
Target Char Var NOT NULL
Timestamp Tstmp w t zone NOT NULL
Hop Integer NOT NULL
Interface_IP Char Var
NextHop_IP Char Var
RTT Double Precision
Skip_TTL Integer
AS_number Char Var
PID Char Var NOT NULL

Table 3.2: Traceroute Table

• Target: The target we are tracing (key);

• Timestamp: Timestamp stored when the traceroute starts (key);

• Hop: It is a progressive number that specifies the hop (key);

• Interface_IP: The source Interface at the specific hop;

• NextHop_IP: The destination Interface at the specific hop;

• RTT: The RTT taken between interface_IP and NextHop_IP interfaces,
with the precision of microseconds;

• Skip_TTL: The number of routers that did not respond to traceroute
request before the specific hop;

• AS_number: It refers to the Autonomous System number of the source
interface specified in the Interface_IP field at the specific hop;

• PID: stands for PhoneID, it is assigned by the proxy assigner and has
an univocal correspondance with the landmark (key).

Network Table (See Table 3.3)
This table is used by the server as a support to store informations on the

Autonomous System on which the landmark is connected. Moreover is used
to distinguish the access technology used by the landmark; this is important
because we experienced that the RTT variations behaviour differ accordingly

38

3.6 PortolanSpotter Web Interface

Field Type
CID Char Var NOT NULL
Access_ASnum Char Var
Net_type Char Var
PID Char Var NOT NULL
Timestamp Tstmp w t zone NOT NULL

Table 3.3: Network Table

to the technology used (we will describe this phenomenon in depth in chapter
5).

• CID: The ID used for the measurements campaign (key);

• Access_ASnum: AS number of the ISP which the landmark is connected
to;

• Net_type: The tecnology used by the landmark when the measurements
were taken. The possible technologies are:

– WiFi, in case of a Wireless network;

– GSM, EDGE, GPRS, UMTS, HSDPA, HSUPA, HSPA+, LTE,
in case of a mobile network.

The Net_type field is used to distinguish between technologies when the
user wants to retrieve the geolocation data via the web interface (we’ll
see this in details in section 3.6);

• PID: stands for PhoneID, it is assigned by the proxy assigner and has
an univocal correspondance with the landmark (key);

• Timestamp: Timestamp stored when the AS number is found (key);

3.6 PortolanSpotter Web Interface

In this last section of chapter 3 we present the interface developed during
this thesis work whose aim is to trigger measurements on smartphones and
to retrieve collected data. At the end of this section we’ll be able to show a
complete vision of the structure of PORTOLAN system.

39

3 The PORTOLAN System Design

Figure 3.7: Portolan-Spotter web interface index

As you can see in Fig. 3.7, the web interface offers the following options:

• Start a Measurement Campaign: this link takes the user to a page where
he can specify the parameters nedeed to start a measurement campaign
that will be sent to every landmark registered to the GCM service;

• Recover Pings data for the Geolocation: through this link the user can
gain access to the results of an entire campaign, after having filled a
form. These results are used then to calbrate SPOTTER;

• Ping Table: This link takes to a page that shows every ping ever stored
in the geolocationPing Table described in 3.5;

• Traceroute table: This link takes to a page that shows every traceroute
ever stored in the Traceroute Table described in 3.5.

In the following we describe in detail the first two options.

Start a Measurement Campaign When starting a new campaign the
user has to provide an identifier, which has to be used subsequently to retrieve
the data of such campaign (it will be used as the cid, see 3.5). In addition, the
user has to specify the target (or a list of targets) of the campaign and, if he
want, he can modify the number of RTT measurements (number of pings) for
that campaign and/or the time interval between pings. The system awakes the
landmarks, which start pinging the specified target. Once finished, the results

40

3.6 PortolanSpotter Web Interface

Figure 3.8: GCM Message Sender

of the measurement campaign are stored into a database. Awakening of mo-
bile devices is performed in a best-effort fashion as already specified in 3.2.2,
because of GCM peculiarity. The system gives the possibility to synchronize
the measurements, i.e. the landmark probes the same target all together. It
is important not to ignore the fact that if the number of PORTOLAN clients
increases, then the probing process may be recognized as a DDoS attack by
the targets. Instead, if the NO Synchronization flag is set, the landmarks waits
for a random time (the range is [1 sec; 15 sec]) before starting the geoloca-
tion service. In addition to that the user can set a flag to let the landmark
use a variable time interval between pings, e.g. instead of using a fixed time
interval of 1 second, the landmark decreases the interval of 1/MAX_PINGS

41

3 The PORTOLAN System Design

Figure 3.9: Query to DataBase

seconds at each ping11. Not all landmarks are always available: some of them
may be turned off or they could be in a no service area. Once the campaign
is started, the system will display a new screen with the status of the request
and the number of involved devices.

Recover Pings data for the Geolocation Through this form the user
can retrieve data from the database described in section 3.5. There are differ-
ents options available, in depth:

• Campaign ID: this field is used to insert the search key, i.e. the cid,
given by the system when the user starts the measurement campaign;

• Target IP addresses: In the second field the user can insert a specific
target or the character * in case he want to retrieve the results generated
by all the targets for that specific campaign;

11MAX_PINGS represents the maximum number of pings executed by the landmark on a
geolocation campaign. It can be changed by the user (the default value is 20).

42

3.6 PortolanSpotter Web Interface

• Synchronization interval: As mentioned, awakening of landmarks is
a best-effort process. This means that some devices may start sending
probes with some delay. Through this field, the user can specify the size
of the synchronization window (in seconds): the system will return the
largest set of results that fits within the specified interval. The default
value for the synchronization interval is 10 seconds. If the user set
the flag No synchronization, when a new campaign is submitted, the
synchronization window is not needed. To remove the window the user
has to insert * in the text box.

• Technology: since the landmarks are distinguished by the technology
used to connect to their ISP, as described in section 3.5, it is possible to
filter the results on the base of the communication technology used by
the landmarks when they performed the measurements (WiFi or Mobile
network subtypes).

The results given by this query are in the form of a table, composed by fields
of the tables described in 3.5. The fields are the following: cid, pid, burst,

nseq, target, tstamp, coordinates, accuracy, rtt, bsid, net_type, .
Since we described at a high abstraction level the features of PORTOLAN

system, we are now able to resume these aspects in a schematic way (in
fig.3.10 you can see the full structure of the system).

If you want to examine in depth the aspects concerning the tracerouting or
the control plane of PORTOLAN system we recommend [2, 3]; on the other
hand, in Chapter 4 of this Master’s thesis we present the implementation of
the geolocation service at a more accurate abstraction level.

43

3 The PORTOLAN System Design

Figure 3.10: The architecture of the PORTOLAN system44

4 Implementation

In chapter 3 we discussed the PORTOLAN system design, starting from the
components implemented before this thesis work, in [2, 3], to the newly intro-
duced services. We gave an overview of the main components of the system
and their interactions at a high level of abstraction. In this chapter we pro-
vide a detailed description of system modules developed for the geolocation
service. In the first section of this chapter we summarize system modules and
their features, and show which of them were implemented in this thesis work.
Then, in the following sections, we explain in detail each one of the mod-
ules implemented in this thesis work, subdividing them in server and client
components.

45

4 Implementation

4.1 System structure

The PORTOLAN system has a complex, yet modular, architecture that can be
separated into two macro area:

1. PORTOLAN Server

• SPS module

• Proxy Assigner

• Portolan-Spotter module

• Proxies

• GCM

2. PORTOLAN Android Client

• Traceroute module

• RSSI module

• Maximum Throughput Estimator module

• WiFi Scanner module

• Geolocation module

In this thesis we focus on the Portolan-Spotter module and the Geolocation
module. For a detailed description of the other modules of the PORTOLAN

system refer to [2, 3].

Geolocation Measurements features the geolocation module or, to be
precise, the Portolan-Spotter module does not rely on SPS like the other mod-
ules (see chapter 3). The human user inserts the requests in a web form. The
module passes the burden to GCM, which then sends the tasks to landmarks.
When landmarks complete measurements, they send back the results to the
Portolan-Spotter module, which analyses and stores them on a Database.

The clients are responsible for the execution of tasks, whichever task they
receive. If it’s the case of Internet analysis they poll their assigned proxy for
receiving a microtask to execute, but if the task concerns geolocation mea-
surements they wait for GCM messages. When execution is finished, in the

46

4.2 Portolan-Spotter module

first case they send data to their proxy and, finally, they notify it about task
completion; while in the second case they send the results to the Portolan-
Spotter module.

In the next two sections we concentrate upon the following modules im-
plemented in this thesis work, which are the ones concerning the geolocation
measurements; more precisely:

• The Portolan-Spotter module which is responsible for preparing RTT
measurements campaign, inserting measurements results into a database
and retrieving these results from the same database;

• The landmarks functionality to take measurements, connect with GCM
and with the server;

• All changes on previously developed code to avoid errors and to inte-
grate the geolocation service with the other implemented modules.

Clearly, the programming language used to implement these modules is Java1.
In particular, the server side modules are Java Servlets2 that are runned by
an Apache Tomcat web server3, the database management system used is
PostgreSQL4, while the client side is developed using the Java Android API
165. Refer to the official documentation in [22, 23, 24, 25, 26] for a detailed
description of the methods, the classes and the libraries specified in the next
sections.

4.2 Portolan-Spotter module

As explained in chapter 3 the architecture of PORTOLAN server has been mod-
ified to let the user control the landmarks in order to make them measure RTTs
delays towards a target or a list of targets. As you can see in Fig. 4.1 four
modules have been added:

1http://www.oracle.com/it/technologies/java/overview/index.html
2http://www.oracle.com/technetwork/java/index-jsp-135475.html
3http://tomcat.apache.org/
4http://www.postgresql.org/about/
5http://developer.android.com/about/versions/android-4.1.html

47

4 Implementation

1. GeolocationResultInsert is used by the landmarks to send the results of
a geolocation campaign to the Portolan-Spotter Database;

2. GCMMessageSender is responsible for retrieving the data inserted by
the user in the web interface presented in section 3.6 par. “Start a Mea-

surement Campaign”, finding the android terminals that are registered
with GCM and then preparing a message that will be sent to landmarks
via GCM;

3. QueryDB uses the information inserted by the user in the web interface
presented in the “Recover Pings data for the Geolocation” paragraph of
section 3.6 to recover data, useful to calibrate SPOTTER, stored in the
Portolan-Spotter Database;

4. Ping/TraceRetrieve is used to retrieve all pings or traceroutes stored in
the Portolan-Spotter Database.

4.2.1 Geolocation Result Insert

This module is the link that connects the landmarks with the Portolan-Spotter
Database. As we already stated, when the measurements requested by the user
are completed, the landmarks send the results to the server which is responsi-
ble for analysing and storing the data. Since it is a Java Servlet, the module
waits for clients incoming connections. The method used by the landmarks to
submit the results is HTTP Post, even if the servlet is programmed to accept
HTTP Get requests as well. The landmarks send the results in the form of
a string; table 4.1 lists the Post parameters required to insert the data in the
database (see table 4.2 to a list of the possible server HTTP response status).
The most important parameters are traceroute and ping, since they contain
information relative to the measurements taken by the landmarks.

In detail the format of traceroute and ping data is:

• traceroute: The character used to separate the triple (CID, target, times-

tamp) from the n hops of a traceroute campaign is the unix end-of-line
character ’\n’, while the one used to separate every hop is the ’T’. To
identify the end of the traceroute entry a second ’\n’ is used. Finally,

48

4.2 Portolan-Spotter module

Figure 4.1: Portolan-Spotter module schematics

49

4 Implementation

Parameter name Parameter value
op what the message is about
type type of the operation
traceroute see description in 4.2.1
ping see description in 4.2.1
network One of the possible network types and subtypes
pid The smartphone identifier, given by the server

Table 4.1: HTTP Post parameters sent by the landmarks

Request Response
Valid request HTTP 200 OK
Invalid Request HTTP 400 Bad Request if no data received

HTTP 400 Bad Request if errors in op and type

Table 4.2: HTTP response status for the GeolocationResultInsert module

the field separator is the comma character. In section 3.5 are described
the fields contained in a hop;

• ping: As already stated in section 3.6, the user can choose the number of
pings that will be performed by the landmarks for a certain campaign.
The character used to separate the pings is the ’\n’, while the fields
of a single ping are separated by the comma character (for a detailed
description of this fields see section 3.5).

Moreover, the server recovers from the landmark its IP address, using the
getRemoteAddr() method, in order to find the number of the Autonomous
System it belongs to; this information is used to fill the Access_ASnum field
in the Network table of the Portolan-Spotter Database described in section
3.5.

After this the servlet fills the geolocationPing, Traceroute and Network ta-
bles, respectively. This task is fulfilled by two methods:

• insert_ping_DB(): the first operation executed by this method, in order
to connect with the Portolan-Spotter database, is to load the PostgreSql
JDBC driver. JDBC (Java DataBase Connectivity) is a Java interface
that defines how a client can access a database independent from the
database management system. In order to connect with the database, af-
ter having loaded the driver (the one used is the “org.postgresql.Driver”),

50

4.2 Portolan-Spotter module

JDBC provides the getConnection() method. This method needs the
url of the database and its username and password. After initializing
the DB connection, the servlet can filter the string content, using split
methods; then, it executes the JDBC executeUpdate() method in order
to insert the data in the geolocationPing table.

• insert_trace_DB(): the behaviour of this method is similar to the in-

sert_ping_DB() method one. This method fills both the traceroute and
Network table. In order to find the information relative to the Au-
tonomous System number of a certain hop of a traceroute, a whois

[10] command throught the use of radb.net database is executed on
the source interface at every step.

After these operations the servlet ends its execution. From now on the infor-
mation inserted in the campaign identified by the cid field are available for
the user.

In the next section we present the servlet used to prepare a measurement
campaign and send it to the landmarks.

4.2.2 GCM Message Sender

This module is used to manage all data inserted by the user when starting a
new campaign. The servlet is used in combination with the “Start a measure-

ment campaign” web interface where, as explained in Section 3.6, the user
can specify the options that will be sent to the landmarks via the GCM ser-
vice, in order to start a new measurement campaign. The parameters inserted
by the user are listed in table 4.3, for a detailed description refer to par. “Start

a measurement campaign” of Section 3.6.

The first operation done by the servlet is to prepare the connection with
the PORTOLAN database, in order to search for landmarks registered with the
GCM service. After these initialization operations the servlet gets the pa-
rameters inserted by the user and elaborates them in order to check if there
are errors, i.e. the targets need to be one per row in order to be recognized
by the system and the time interval between pings must be a number in the
]0;2]sec interval. If there are no errors in this step the servlet can prepare the

51

4 Implementation

Parameter name Parameter value
cid The identifier for the campaign
targetList list of targets, one per row (IP or host address)
pingsNum Number of pings sent per target
timeIntvalBtwPings Pings rate
nosync Synchronization between pings (Y/N)
dinterval Variable rate between pings (Y/N)

Table 4.3: GCM parameters that are sent to the landmarks

message that will be sent via GCM to the landmarks and it searches for the de-
vices registered with the service in the android_terminals table in PORTOLAN

database, using a method called findGcmRegIDs().

To prepare and send the messages to the landmarks via GCM, the servlet
make use of the Message.Builder and Sender classes of GCM API. Then
the servlet waits for results, using the MulticastResult methods getTotal() and
getSuccess(); these two methods returns respectively the total number of mes-
sages sent and the maximum number of messages that have been sent suc-
cesfully. Clearly, if the two methods return the same value, this means that
all messages have been sent (attention: this does not means that all messages
have been received by landmarks).

Depending on the results returned, the servlet finally displays a message to
the user using the values returned by the getTotal() and getSucces() methods;
moreover it specifies the campaignID, that is composed of: the cid inserted by
the user and a timestamp, taken at the time of the request, appended to it. This
information is used for searching the data for that specific campaign. In Table
4.4 a list of the possible response status returned by the servlet is showed.

Request Response
Valid request HTTP 200 OK
Invalid Request HTTP 400 Bad Request if there are errors in text

HTTP 400 Bad Request if parameters are missing
HTTP 400 Bad Request if parameters are invalid

Server Error HTTP 500 Internal Server Error

Table 4.4: HTTP response status for the GCMMessageSender module

In the next section we present the servlet used to make a query to the

52

4.2 Portolan-Spotter module

Portolan-Spotter database in order to recover the data inserted by the land-
marks.

4.2.3 Query DB

This module is used in combination with the Query to database web interface
showed in 3.6 to recover the data relative to a certain campaign previously
submitted by the user. As shown in table 4.5 there are several parameters that
can be set up via the web interface.

Parameter name Parameter value
campaignID The identifier for the campaign
targets list of the targets, one per row (IP or host address)
tech_X one or more access technology
sync time interval of the sync window (in seconds)

Table 4.5: Query parameters example

Not all the parameters are mandatory, except for the campaign ID, the tar-
get(s) and at least one type of communication technology. As the name of the
servlet suggests, depending on the parameters passed from the web interface
to it, a different query is executed. Before executing one of the queries the pa-
rameters passed are examined in order to set the response status of the servlet
(see Table 4.6).

Request Response
Valid request HTTP 200 OK
Invalid Request HTTP 400 Bad Request if invalid campaign id

HTTP 400 Bad Request if invalid target or targets
HTTP 400 Bad Request if no technology selected

Server Error HTTP 500 Internal Server Error

Table 4.6: HTTP response status for the QueryDB module

The query changes heavily depending on the value of sync parameter; that
is to say, if the syncronization is enabled the query takes the starting mea-
surement time for all landmarks for a certain campaign and orders them in
chronological order (using the tstamp field). Then these pings are splitted in
synchronization windows of x seconds (the default value is 10 seconds) and it

53

4 Implementation

is examined the window in which the largest set of landmarks started the mea-
surements; the query then returns to the user the pings data of these landmarks
with their corresponding phoneIDs. Clearly, the pings showed by the query
must match the requirements established by the other parameters inserted by
the user.

If, conversely, the sync flag is not enabled the query simply recovers all
pings that match the other parameters (cid, target, tecnology).

In order to connect with the Portolan-Spotter database, the JDBC Post-
greSql driver is used, in the same way described in Subsection 4.2.1. Since
this query is a SELECT, the method used to execute the query is the exe-

cuteQuery(). After the execution of the query the servlet prepares an HTML
page where to show the results to the user and fills it with these data; then the
communication flow is closed and the servlet ends its service.

4.2.4 Ping and Trace Retrieve

This module, composed by two servlets, is used to recover all geolocation
measurements (pings and traceroutes), of all campaigns ever requested on
all landmarks registered with the PORTOLAN system. The methods used to
recover the information stored on the Portolan-Spotter database are the same
already described in Subsection 4.2.3. The only substantial difference is given
by the quantity of data that the servlet has to load. these two queries can
produce very large result sets; if a SELECT statement returns too much data,
memory can be exhausted. In order to bypass this problem JDBC provides
the setFetchSize() method, which can be used to control the size of the buffer
used by the driver when fetching rows; this will prevent memory problems.

4.3 Client modules

The landmark waits for incoming messages from the GCM. When a message
is received, the landmark controls if it is in the right format, and that starts the
measurements to send back to the PORTOLAN server. In the previous section
we showed how the user can set up a geolocation campaign task and how he
can retrieve the results sent by the landmarks when the task ends. Instead,

54

4.3 Client modules

Figure 4.2: Client operation flow

in this section we show how things work on the clients side. As highlighted
by figure 4.2, there are three new modules implemented specifically for the
geolocation service and five modules that have been modified. In particular:

1. New modules:

• GeolocationService;

• GeolocationSender;

• GPSTracker.

2. Modified modules:

• GCMIntentService;

• TracerouteAsyncTask and Tracerouter;

• Communicator;

• Coordinator.

55

4 Implementation

Figure 4.3: Android priority hierarchy

4.3.1 Geolocation Service

As already stated, this module is the heart of the entire geolocation process.
For this reason this module should never have to be interrupted during the
measurements.

In Android there is a particular applications priority policy due to the lim-
ited resources that a smartphone can provide. The Android system is respon-
sible of ensuring that these limited resources are managed efficiently and that
both the operating system and the running applications remain responsive to
the user. The system tries to maintain an application process for as long as
possible, but eventually needs to remove old processes to reclaim memory. To
determine which processes to keep and which to kill, the system places each
process into a priority scale based on the components running in the process
and the state of those components; this hierarchy is showed in fig. 4.3.

In order to prevent the system to kill the Geolocation process during the
measurements, we decided to make the service run in the foreground. More
precisely, the service runs in foreground only for the time needed to perform
the measurements, which can be variable, depending on the number of pings
and targets and on the time interval between pings. After this initial clarifi-
cation, we can present the algorithm implemented by the module in order to

56

4.3 Client modules

perform the RTT measurements:

1. the GCMIntentService module retrieves data from the Intent that started
the service. The collected fields are: the list of targets (targetList), the
identifier for the campaign (cid), a flag used to determine if the time
interval between pings is constant or variable (flagVariableIntval), the
maximum number of pings to send in a burst (MaxPings), the time in-
terval between concurrent pings (timeIntval). When all fields are col-
lected, the GeolocationService module is started:

a) if the Intent is not null and the targetList string is not empty then
the GeolocationService module:

i. splits the targetList string in a List of targets6;

ii. shuffles the list of targets. If the user submits a target list and
it is pinged from e.g. 100 landmarks, without some sort of
randomization the landmarks go through the list sequentially
in the same order and almost at the same time. Without this
shuffling is possible that a target could consider the measure-
ments as Ddos attacks [27].

b) else the GeolocationService module is stopped.

2. the GeolocationService module starts a thread, using the method newSched-

uledThreadPool() of the Executors class, that is scheduled every Round-

IntVal7 milliseconds in order to manage the measurements towards the
targets. This thread is scheduled once per target:

a) The thread controls if there are targets to analyse: if so, it takes
the first target in the list and sends information about this target
to a BroadcastReceiver (GeolocationReceiver) specifying the op-
tion “StarttraceOp”. After that it stops its execution. When the
RoundIntVal expires the thread is started again by the Geoloca-

tionService module (restart from point 2).

b) else, if there are no targets left, the thread stops the Geolocation-

Service module.
6using the java.util.LinkedList class [22]
7RoundIntVal = (MaxPings * timeIntval) * nburst + offset

57

4 Implementation

3. The GeolocationReceiver method onReceive() is triggered with the op-
tion specified in point 2.(a), then the TracerouteAsyncTask module is
executed in order to collect traceroute data towards the target:

a) to be sure that the measurements are consistent, before and after
the traceroute operation the TracerouteAsyncTask module controls
if the network changed (if the measurements are performed within
a WiFi network), or if the cell changed (if the measurements are
performed within a mobile cellular network):

i. if the connection did not change then the TracerouteAsync-

Task module uses the output_trace_ping() method to build the
string that will be sent to the PORTOLAN server, as described
in 4.2.1;

ii. else the GeolocationReceiver retries the operation starting from
3.(a):

A. if for the second time the operation is not succesfully
completed then skip to point 4, specifying that the tracer-
oute has failed.

4. When the traceroute operation is completed, the TracerouteAsyncTask

module sends to the GeolocationReceiver the results, using the option
“startpingOp”, and returns. Then the GeolocationReceiver:

a) appends the triple (cid,target,timestamp) to the result string (as
described in 4.2.1);

b) gets the network type and subtype at the moment of measurements
and save them in memory;

c) starts the localization of the landmark using the GPSTracker mod-
ule (the landmark coordinates are then stored in the SharedPrefer-

ences).

5. the GeolocationReceiver schedules a thread that executes every timeInt-

val milliseconds doing the following operations:

a) if the number of bursts completed is less than the MAX_BURST

constant value then:

58

4.3 Client modules

i. if the number of pings executed is less than the MaxPings

value then starts a worker thread (PingThread) that will exe-
cute the operations needed to ping the target, that is:

A. finds the base station identifier of the landmark if the
get_network() method returns a mobile subnetwork;

B. creates the socket for sending probes to the target. In
order to avoid conflicts between different PingThreads
the source port number of the socket is different for all of
them;

C. uses the trace() method of Tracerouter class (for details
refer to 4.3.5) to send the ping towards the target;

D. If the trace() method returns an ICMP echo reply “Des-

tination Unreachable - Port Unreachable” the target has
been reached. Thus, the PingThread creates the string
described in the ping section of 4.2.1;

E. puts the string in a thread-safe8 data structure, then closes
the socket stream and returns.

ii. else waits until all threads have finished, then stores the pings
results in the SharedPreferences and clears the thread-safe

data structure.

b) else the measurements are completed, then the thread:

i. if the target list is not empty stops the execution and returns
to point 2;

ii. else recovers traceroute and ping results from the landmark
memory and sends them using the sendTracePingRes() method
of the Communicator class (see 4.3.6):

A. if the communication with Portolan server is interrupted
then retries (max 3 times). If after the third time it is still

8A piece of code is thread-safe if it manipulates shared data structures in a way that guar-
antees safe execution by multiple threads at the same time. In this case, multiple threads
write in the data structure pings results in a dedicated memory location (identified by a
numeric key).

59

4 Implementation

impossible to send the results then stops the Geolocation-

Service module. It will be GeolocationSender responsi-
bility to send the results later.

B. else if the results are succefully sent, stops the the Geolo-

cationService module.

4.3.2 Geolocation Sender

This module is used to send previously obtained geolocation results. More
precisely, the module is an Android AsyncTask started by the Coordinator

class if there are geolocation data (ping and/or traceroute) that can be found in
the shared memory of the landmark. An asynchronous task allows to perform
background operations without using threads; it is an helper class that can
be used to perform short operations. The Coordinator class is used, indeed,
to coordinate the operations executed automatically by the landmark. Every
POLL_INTERVAL seconds the coordinator, among other things, controls if
there is something saved in the shared memory of the phone. If there are other
services running or if there is nothing to do, like polling or sending results,
the Coordinator stops and set its wake timer to trigger after POLL_INTERVAL

seconds. If, instead, there are previous results in memory, the Geolocation-

Sender AsyncTask receives from the Coordinator the information needed to
send them. Then the AsyncTask is responsible of creating a string from the
raw results in the format specified in 4.2.1 and then to send this string us-
ing the sendTracePingRes() method of the Communicator class. When the
operation is done the phone memory is freed and the task is stopped.

4.3.3 GPS Tracker

This class extends the Android Service class and implements the LocationLis-

tener interface in order to request updates about the location of an Android
phone. It is an helper class used by the geolocation service to retrieve the
location of the landmark at the moment of the measurements. The service is
started before taking the measurements and stopped after the last ping of the
last burst of pings. Every PingThread (see 4.3.1) calls the canGetLocation()

method before executing a ping, to control if the location can be collected. If

60

4.3 Client modules

so, then the thread collects the triple (latitude, longitude, accuracy) and ap-
pends it to the result string of the single ping; otherwise, the three fields are
appended to the string as 0 values.

4.3.4 GCM Intent Service

This is the counterpart of the GCMMessageSender seen in Subsection 4.2.2.
When a message arrives from the GCM the application starts the GCMIntentSer-

vice, that handles the operations described in the message. This module has
not been newly implemented but it has been modified from the original ap-
plication; it was already present because not only the geolocation module but
also the Internet topology analysis relies on the GCM service (an example is
given by the urgent flag described in 3.2.1).

This IntentService extends the functionalities of the GCMBaseIntentSer-

vice. First the landmark has to be registered to the GCM service through the
GCMRegistrar class methods, executed when the application is started for the
first time (after the user agreed with the disclaimer). Then, after the device
has been registered, the onRegistered() method is called and its registrationId

argument, returned by the GCM service, is collected by the system. This
GCMid is used to identify the landmark with Google service. If an error oc-
curs during the registration, it is handled by the onError() method. When the
device is correctly registered with GCM service, every time a message arrives
from the server, the onMessage() method handles the message. If another
service is already running, which could be another geolocation campaign or a
traceroute or the signal analysis, the operation is stopped and the onMessage()

returns, else the system retrieves the op field from the GCM message:

• if the string content is equal to “trace” this means that an urgent poll is
needed, so the Coordinator service is started [2, 3];

• else if the value is “geo” the message contains a new geolocation task
to execute. In this case the system collects the information contained
in the message, like the targets to ping or the id of the campaign (see
table 4.3), and checks if there are errors in the values of these fields. At
this point the system runs the GeolocationService but, if the NO Syn-

chronization flag was set in the web interface described in 3.6, then it

61

4 Implementation

postpones the service for a random time in the range of [1 ; 15] seconds,
using the AlarmManager set() method.

4.3.5 Traceroute Async Task

The second module modified in order to work in the geolocation task is an
AsyncTask originally created for the Internet topology analysis module. As
it’s name suggests this AsyncTask is used mainly to execute a traceroute to-
wards a certain target: in this thesis we describe only the modification intro-
duced to let the task work in the geolocation module, more information about
other functionalities can be found in [2, 3].

The task is started by the GeolocationService module before taking the
RTT measurements via the Ping tool; as previously stated we decided to use
traceroutes to have a more complete view over the possible paths taken by the
pings towards a certain target. When the AsyncTask is executed the arguments
mTr_Ping, mServer and mMda are used by the system to determine if the
traceroute is requested by the geolocation module or the Internet topology
analysis module or else is requested manually by a user via the network tools
of the PORTOLAN App; the first argument, mTr_Ping, is the only one that was
added in this thesis work.

The most important modification produced to the normal functionalities
of this class is the output_trace_ping() method which uses the results of the
traceroute to build the trace string that is then sent to the server. Then, using
the arguments specified before, if the traceroute is requested by the geoloca-
tion module the system sends back the string just created to the geolocation
broadcast receiver implemented in the GeolocationService module. This way
the geolocation module knows that the traceroute to the specified target is
done and so can start the RTT measurements towards the same target.

TracerouteAsyncTask uses the Tracerouter helper class to execute the tracer-
oute function implemented in C language and then integrated in the POR-
TOLAN app, through the Android Native library (Android NDK); the only
modification introduced is given by the timeout (5 seconds instead of the pre-
viously set 10 seconds) of the probes sent by the system to find the various
possible path taken by the pings towards a certain target.

62

4.3 Client modules

4.3.6 Communicator

This helper class was introduced in the PORTOLAN App to group all the meth-
ods needed to communicate with the server side. Since the geolocation mod-
ule needs to send the results directly to the Portolan-Spotter module in the
PORTOLAN server we added a single method that does the work. This method,
called sendTracePingRes() takes five arguments from the Geolocation mod-
ule:

1. traceres: a string that contains the traceroute results given by the Tracer-

outeAsyncTask;

2. pingres: this string contains all pings executed by the GeolocationSer-

vice towards all the targets of a single campaign;

3. net: a string that contains the network type and subtype returned by the
get_network() method. We remember that the value can be one of the
following: WIFI, EDGE, GPRS, UMTS, HSPA(D/U/+), LTE;

4. server: the address of the module of PORTOLAN server where to send
the geolocation results;

5. pid: the phoneID of the landmark.

the operation and type fields inserted in the Http POST request to the server
are described in table 4.1 of subsection 4.2.1.

The next chapter focus on the experimentation taken in this thesis work,
together with SPOTTER authors, in order to validate the results returned by
the RTT measurements collected by the PORTOLAN system.

63

5 Experimentation

In this chapter we want to show the various tests carried out within the POR-
TOLAN system in order to validate this thesis work on the Geolocation mod-
ule. Moreover we want to build the hypotheses on the landmark selection
algorithm that will be developed in the next future using the results and the
discoveries of the experimentation on the designed module. We will describe
two of the realized experiments that were particularly significant because they
were useful to discover how the system reacts to specific network conditions.
Section 5.1 is dedicated to the Access Technology Test that proves how in a
wireless environment a significant delay is introduced in the RTT measure-
ments, then section 5.2 describe the Ping Interval Test and the week Test used
respectively to establish a treshold on the waiting time between consecutive
pings executions an to discover if there are differences when the measure-
ments are taken in a particular hour or day of the week.

65

5 Experimentation

5.1 Access Technology Experiments

The first significant measurement test was carried out because we wanted to
see the responses of PORTOLAN system in different network environments,
i.e in WiFi or mobile networks. We used only one landmark to do the test and
it consisted in 1 Paris Traceroute (see 3.3) and 500 pings per target, where
pings were separated by a time interval of 10 seconds each.

Data were collected in the three tables described in 3.5, with a difference:
the geolocationPing table (previously called Ping table) presented two fields
that are now deprecated, but at the time of the test were important to under-
stand the behaviour of the system. These two fields are:

• RTT_AT_TTL_1: The RTT taken with the precision of microseconds
just for the first hop of the measurement. We took this measurement be-
cause we noticed that the first hop in a WIFI/GSM/UMTS environment
is the source of a long delay. As a first approximation, we may assume
that the difference between the smallest RTT towards the final target
and the smallest RTT associated with the first hop can be a reasonable
metric for calculating the distance. In other words, we can assume that
the first router is located next to the associated BTS (Base Transceiver
Station) or WiFi access point and that the related landmark is close to
the BTS or WiFi access point. Note that we are able to find the location
of the BTS using the BSID (see 3.5) which is, thus, an approximation
of the landmark position;

• Ping_type: As we already said, in the first versions of the implementa-
tion we made a distinction between pings at first hop and pings towards
the target. To verify the problem arised in a wireless environment de-
scribed in the RTT_AT_TTL_1 field we developed two algorithms:

– in the first one the two pings were executed sequentially (first hop,
then target);

– in the second one we implemented a concurrent execution where
the two pings were represented by two threads executed at the
same time in order to experiment the same network conditions;

66

5.1 Access Technology Experiments

The test consisted of four different measurement campaigns with different
conditions:

1. HSDPA(3G) test with the italian mobile operator "Wind Infostrada";

2. HSDPA(3G) test with the italian mobile operator "Tim Telecom Italia";

3. WiFi test with the italian internet provider "Tiscali";

4. WiFi test within the GARR (Gruppo per l’Armonizzazione delle Reti
della Ricerca) network, from the University of Pisa to the targets.

The targets were located in the same GARR network, and in particular in the
cities of Bari (Puglia) and Palermo (Sicily).

The HSDPA(3G) tests revealed a high delay in the first hop. We thus mea-
sured this delay by sending a probe with ttl = 1 option1 immediately after the
ping sent towards the target; this way we have a high probability of being in
the same traffic conditions. After this, we took the smallest RTT of the 500
pings and did the same with the RTT of the first hop and noticed that the dif-
ference between these two values is more similar to the RTT taken with the
WiFi network. We can not know how threads are schedulated in an Android
system, so there is no guarantee that a Ping is sent immediately or if there
is a queue due to other applications sending data on the network (the same
can happen for the ping response). We suppose then that using the difference
between the smallest RTTs is a good way to clean the measurement from the
delay of the technology.

Regarding the WiFi tests, the delay is much smaller (~1ms) than the one
measured in 3G and this is because normally a wifi router (or an access point)
is located near the mobile device. In a tipical WiFi environment the number
of devices connected with the router is smaller than the number of devices
connected to a BTS; this means that the router has to serve less devices than
the ones served by a BTS, i.e the queues are smaller.

Another important cause of delay is the number of hops and the route taken
by the pings; this is why we used Paris Traceroute. We know that the pings

1The TimeToLive value can be thought of as an upper bound on the time that an IP datagram
can exist in the network. The TTL field, present in the IPv4 header, is set by the sender
of the datagram, and reduced by every router on the route to its destination.

67

5 Experimentation

Figure 5.1: detail of the taken path on HSDPA_WIND campaign from Pisa to
Bari

follow the same routes as the Paris traceroute launched just before the pings,
with the same source and destination ports. In this test we found these condi-
tions:

1. HSDPA_WIND campaign took 8 hops to the target located in Bari (see
figure 5.1)

• 4 hops in AS1267 (Infostrada). We could not find where the
routers are located but we start from Pisa;

• 1 hop in AS16004 (MIX) in Milan;

• 3 hops in AS137 (GARR) Route: Milan -> Rome -> Bari.

the trace for the target located in Palermo has the same first 5 hops. The
differences are in the GARR network; 4 hops in AS137 (GARR) Route:
Milan -> Bologna -> Palermo.

2. HSDPA_TIM campaign took 11 hop to the target located in Bari

• 9 hops where we couldn’t find the AS number;

68

5.1 Access Technology Experiments

Figure 5.2: detail of the taken path on WIFI_TISCALI campaign from Pisa to
Bari

• 1 hop in AS24796 (NAMEX) in Rome;

• 1 hop in AS137 (GARR) Route: Rome -> Bari.

the trace for the target located in Palermo took 12 hops and it has the
same first 10 hops. The differences are in the GARR network; 2 hops
in AS137 (GARR) Route: Rome -> Bologna -> Palermo.

3. WIFI_TISCALI campaign took 12 hops to the two targets; the differ-
ence is only in the hops in the Tiscali network where we can not know
all routers locations (see figure 5.2)

• 4 hops in AS8612 (Tiscali) from Pisa;

• 3 hops in AS3257 (Tinet), according to the Looking Glass tool of
Tiscali2 one of the routers of the path, probably the last, is located

2http://www.ip.tiscali.net/lg/

69

5 Experimentation

Figure 5.3: detail of the taken path on WIFI_UNIPI campaign from Pisa to
Bari

in Turin;

• 2 hops in AS3549 (Level3) in Milan;

• 3 hops in AS137 (GARR) Route: Milan -> Bologna -> Bari/Palermo.

4. WIFI_UNIPI campaign took 7 hops to the target located in Bari and
the same for Palermo. All of them are in the same AS (GARR) so we
assume that with OSPF(Open Shortest Path First) the shortest route is
taken (see figure 5.3)

• Route to Palermo: Pisa -> Rome -> Bologna -> Palermo;

• Route to Bari: Pisa -> Rome -> Bari;

The best results, i.e. the minimum delays, were found in the WIFI_UNIPI
test; this is not unexpected since the landmark access technology used is WiFi
and there are no BGP routes but only OSPF ones.

Test results The results of this test are extremely relevant because they
are necessary to design an algorithm for the correct selection of landmarks

70

5.2 Ping Interval Experiments

in the geolocation process. As we already said in chapter 2, when describing
SPOTTER web service, an algorithm for the filtering of landmarks, based on
geographical and logical constraints, is of great importance to enhance the
accuracy of the geolocation process.

Two major conclusions can be made from the intensive measurements cam-
paign. In order to lower the delay of RTT measurements and then approximate
the correct distance to the target it is a good idea to select landmarks:

1. in the same Autonomous System where the target is located or at least
“near” the AS of the target (1 hop of distance between ASes). If this
condition can be provided the protocol used to route the pings to the
target will be OSPF, which tipically chooses the best path to a target
located in the same Autonomous System (or if the landmark is in a
neighbour AS we can assume that BGP will forward directly the IP
datagram to the near AS);

2. connected to Internet via WiFi. This way the delay generated in the
first hop is cutted down compared with the delay on a mobile tech-
nology (and also avoids operations like calculating the differences be-
tween RTTs to refine the measurements). Furthermore the position of
the landmark connected with a wireless router (or access point) is less
approximated compared with the position given by a BTS.

Table 5.1 summarizes the results of pings with statistical information about
the pings of the 4 different campaigns (minRTT,maxRTT,avgRTT,stddevRTT

and the same for the RTTttl1).

5.2 Ping Interval Experiments

In this section we show three experiments, composed by a series of test cam-
paigns with different parameters, where each one was performed in order to
find out the optimal sampling time between consecutive probes in a mea-
surement campaign. We will describe the three experiments in the order of
execution since they are interrelated. The experiments were executed from a
single landmark towards the same target in all the campaigns, more precisely
the target is an IP address of the GARR network located in Padova.

71

5 Experimentation

C
id

Target
N

etType
m

inR
T

T
m

inR
T

T
ttl1

diffR
T

T
m

axR
T

T
6480

193.206.142.81
W

IFI_IE
T

_U
N

IPI
16.6319999694824

1.79999995231628
14.8320000171661

805.817000031471
6480

193.206.137.201
W

IFI_IE
T

_U
N

IPI
52.9479999542236

4.24199998378754
48.7059999704361

904.572000026703
51237

193.206.142.81
W

IFI_T
ISC

A
L

I
60.7300000190735

1.64800000190735
59.0820000171661

360.564999997616
51237

193.206.137.201
W

IFI_T
ISC

A
L

I
59.6010000109673

1.98299998044968
57.6180000305176

362.458000004292
30253

193.206.142.81
H

SD
PA

_W
IN

D
80.933000087738

57.9839999675751
22.949000120163

970.641999959946
30253

193.206.137.201
H

SD
PA

_W
IN

D
89.6909999847412

38.7520000934601
50.9389998912811

1266.13899993896
6423

193.206.142.81
H

SD
PA

_T
IM

55.9380000829697
36.7439999580383

19.1940001249313
981.957000017166

6423
193.206.137.201

H
SD

PA
_T

IM
49.2549999952316

26.5499999523163
22.7050000429153

957.149000048637

m
axR

T
T

ttl1
avgR

T
T

avgR
T

T
ttl1

stddev
stddevR

T
T

ttl1
939.331000089645

118.753394001245
119.630796000242

103.859992549343
120.099867495094

943.848000049591
192.716566004992

159.030032000303
162.51519172197

147.131897739308
165.801999986172

168.736256000519
4.85718399822712

88.3879791984374
10.2950730981975

6.7140000462532
114.109253998756

3.82083600008488
65.7482367750027

0.656877899547801
959.350999951363

395.522223994493
297.604481997013

252.941469880338
147.713391908248

958.921000003815
390.062566948073

258.443675214069
259.068071074178

141.574641952328
989.319000005722

378.47376999712
187.444597996235

225.792853999987
105.4831012947

800.804000020027
386.508387295926

185.695395494094
222.777325074129

101.637195846056

Table
5.1:R

esum
e

ofthe
firstm

easurem
ents

test

72

5.2 Ping Interval Experiments

Ping Interval Campaigns Unlike in the Access Technology test, described
in section 5.1, the database tables used to carry out this first experiment are
exactly the same showed in section 3.5. The realized tests for this experiment
can be classify in 4 different categories:

• 3G Burst: it consists of a series of 3G campaigns, tipically HSDPA,
where the sampling time is constant and each campaign executes two
bursts of pings (e.g. in the campaign 3g_burst_intval_0.1sec every
100ms a ping is sent).

• WiFi Burst: same as 3G Burst but with WiFi as access technology. All
measurement campaigns are always within the GARR network.

• WiFi PC Test: series of test carried out with a laptop within the GARR
network, as a countercheck of the WiFi Burst campaigns.

• Variable Interval Test: single test executed in a 3G environment with a
decreasing interval time, starting from INTERVAL second down to the
limitation of the hardware (the mechanism is showed in section 3.6)

The motivation around these experiments is to find out a critical treshold in
the waiting time between consecutive probes that we can use as nominal sam-
pling value for one of the specified categories of measurement campaign. The
expected effect is that below a certain value the system experiences a phase
transition, i.e. the behaviour changes.

What we discovered, in collaboration with SPOTTER authors, analysing this
series of tests is that:

• We experienced large fluctuations, which we think are caused basically
by the network setup between devices and Internet providers (actually,
in the 3G campaigns the fluctuations are more evident). In many cases
the samples of the two bursts of pings showed very different behaviour;
we concluded that, with an high probability, the network was loaded
very differently for burst1 and burst2 in certain campaigns;

• In the 3g campaigns for dense burst (waiting time < 0.6s) the samples
are correlated since consecutive RTTs decrease linearly. This means
that some queue is emptying, and the samples evolution reveals the

73

5 Experimentation

speed of this emptying. This queue must be close to the client (with
an high probability the source of this queue is the BTS) because the
increase step seems random and it is not affected by the sampling traf-
fic. The conclusion that can be made from this results is that it seems
that (for the 3g case in particular) going below a 0.6s waiting time may
oversample the network; conversely, for higher gaps (more than 0.8s)
the minimum RTT could be approximately twice as large. Therefore,
from this experiment results, it seems that ~0.6s can be a good sampling
choice.

In figure 5.4 and 5.5 we show a collection of plots that describes the evo-
lution of the samples, sorted by sampling time and access technology. In
particular in fig. 5.4 you can see that:

• the fluctuations are evident in the 0.3s case;

• when the sampling time is below 0.8s the number of samples with RTT
> 400ms grows larger;

• The minimum sample value is ~20ms in all campaigns, so we can con-
clude that probably this is a good approximation of the real RTT to-
wards the target;

• The queue emptying effect can be seen in all the plots but it seems
not so strong as in the 3g case. As a matter of fact, when the queue
is emptying the differences between consecutive RTTs in the queue is
larger than in the 3g case. The 0.7s case or else the 0.5s case of WiFi
and 3g tests make this point.

Instead, in the 3G Burst series of test, whose plots are described in fig. 5.5,
we can see that:

• The fluctuations are more or less evident in all plots;

• Below 0.7s, but more strongly below 0.6s, the queue emptying effect
described before is visible;

• The minimum sample value is more variable than in the WiFi case, and
this is always a consequence of the BTS network policies. Despite that

74

5.2 Ping Interval Experiments

Fi
gu

re
5.

4:
W

iF
ib

eh
av

io
ur

w
he

n
lo

w
er

in
g

th
e

sa
m

pl
in

g
tim

e

75

5 Experimentation

Figure
5.5:3G

behaviourw
hen

low
ering

the
sam

pling
tim

e

76

5.2 Ping Interval Experiments

Fi
gu

re
5.

6:
Va

ri
ab

le
In

te
rv

al
Te

st
an

d
W

iF
iP

c
Te

st
ex

am
pl

e
pl

ot
s

77

5 Experimentation

Figure 5.7: Variation of the RTTs for each technology

we can assert that probably the smallest RTT is ~80ms; this confirm the
results of the Access Technology experiment, i.e. the delay at first hop
has a large impact on the minimum RTT when using a mobile technol-
ogy.

As we already said two more series of tests were executed to have a coun-
tercheck on the results obtained with the geolocation module of the POR-
TOLAN system. The first were executed using the WiFi of a laptop and the
Ping tool of a Linux system, while the second make use of the PORTOLAN

system with a variable sampling time between probes and a 3G access. As
you can see in fig. 5.6 the hypotheses arisen from the 3G and WiFi bursts
seems confirmed.

In the “Variable sampling burst” plot after the 55th sample the queue effect
is more evident and the parabolic behaviour means that the queue empties out
and immediately after is refilled with the following samples; in other words,
below 0.5s the system starts to oversample the network.

78

5.2 Ping Interval Experiments

Figure 5.8: The 3 RTT levels can be found where the concentration of samples
is higher

In conclusion in fig 5.7 we summarize the results arisen from this series
of tests. This plot shows, for each technology, the dependency on different
sample times of the variation of RTT measurements.

Week Campaigns With the series of tests described above we expected
that, below a certain value, the system experiences a phase transition; actually,
this effect can be seen in some of the plots but we need more information to
be sure that this phenomenon is consistent.

It is an interesting question whether the measured RTT variations depend
on the time when the measurement campaign take place. In order to validate
these hypotheses we designed another experiment:

• weekTest campaigns: we developed a mechanism that starts a new test
campaign every hour for an entire week to see if there are daily/weekly
variation on the network behaviour. We left the landmark in the same
position for the entire week, this way we were sure that the BTS was
always the same.

79

5 Experimentation

Figure 5.9: Time - RTT variation dependency

– The sample time has been set to 0.7s, while the number of sample
has been set to 100 and only one burst of pings has been executed
for each campaign. As we already stated, the target for the entire
experiment was always the same (located in Padova).

The number of samples that were collected in this experiment is of 16.526
different pings, grouped in 168 batches (every batch is one hour long). In
cooperation with Spotter authors we analysed these samples and we plotted
all the samples together in order to check the time evolution of the RTT.

We discovered that the samples spread around three RTT levels, i.e. ~109ms,
~212ms, ~1080ms (the evolution can be seen in fig. 5.8). The third level can
be neglected, because there are not so much samples as the other two levels
and the values are too high for our geolocation process (we need the minimum
values of RTT).

This discovery allows us to subdivide the samples in two RTT regions:
higher and lower than ~150ms. At this point, we analysed the time depen-
dency of the samples in this two levels and we found that, probably, there
is not a direct relation between the RTT variation and the time. If the varia-

80

5.2 Ping Interval Experiments

tions were caused by the traffic condition, it would be legit to assume that in
the night measurements the number of samples in the lower region would be
higher (less users connected, more bandwidth available), but, in this experi-
ment, the number of samples in the higher level and the number of samples
in the lower level does not change drastically depending on a particular time.
This means that, probably, the variations depend more on the used technology
than on the network traffic, i.e. the numbers of users connected to the BTS
(this is showed in fig. 5.9).

Since the experiments left us a certain number of uncertainties, especially
in the just discussed topic, we prepared new experiments that will not be
discussed in this thesis. This is due to the fact that we are still in an initial
phase of the studies on the IP geolocation field; nevertheless, we think that
in the forthcoming future we would gain the knowledge necessary to improve
our geolocation service.

81

6 Conclusion and future work

The goal of this thesis work is to design a new IP Geolocation approach based
on RTT measurements performed by mobile monitors, i.e. landmarks in the
geolocation terminology. Considering that in the recent years there is an ex-
ponential growth of new smartphones capable of connecting to the internet
via wireless technologies such as WiFi, Gsm, Gprs, Hsdpa and more, we de-
cided to use smartphones as mobile landmarks. The desired approach needs
to satisfy the following requirements:

• Be based on RTT measurements;

• Be stable and efficient in a mobile environment;

• Be transparent to the smartphone owner, who can not be bothered by
the measurements.

In order to accomplish these tasks we used the tools provided by the POR-
TOLAN PROJECT, a Internet measurement system that aims at obtaining the
Internet graph at the Autonomous system abstraction level and building maps
of the signal coverage through smartphone-based crowdsourcing. Moreover,
we cooperated with the authors of a geolocation web service called SPOTTER

in order to carry out the experimentation on our implemenation.
We designed and developed a new module over the original architecture of

the PORTOLAN system in order to send the measurement campaigns to the
smartphones and to retrieve these measurements. This module was subdi-
vided in client and server sides; in particular, the client side is an application
that runs in Android smartphones (the iOS version is still in developement).
On the server side we added a new Database where to store the measurements
collected by the landmarks; in addition, we created a web interface for speci-
fying the campaigns to be performed by mobile devices and then retrieve the
received data.

83

6 Conclusion and future work

The discoveries made within the experimentation phase of this thesis work
allowed us to build a system of hypotheses useful to develop a landmark se-
lection algorithm and to tune up the measurements in order to lower the error
rate of the geolocation process.

For the forthcoming future the implementation of the algorithm for the se-
lection of landmarks is scheduled. Moreover, we want to mantain the coop-
eration with SPOTTER authors in order to calibrate their service to work with
our approach and then provide a full working IP geolocation service.

84

Acknowledgements

First and foremost, I would like to thank my supervisor Prof. Luciano Lenzini
for offering me the opportunity of working on a particularly interesting re-
search field as the IP geolocation. Deepest gratitude is also due to my sec-
ond supervisor Ing. Alessio Vecchio, who helped me a lot when it comes to
deal with the Hungarian colleagues from the Eötvös Loránd University of Bu-
dapest, especially in the last days of the drafting of this thesis. I do not want
to forget my tutors, Valerio and Adriano: without them this thesis would not
have been ready in time.

Special thanks go to my Red Lab colleagues: Giovanni (I owe you one
million coffee), Alessandro “Zio”, Gloria (thanks for the cakes!), Angelo,
Gordon, Dario and all the others not directly related with the Red lab. I would
like to thanks also all my friends from Palermo and Pisa; the problem is that
you are so many that I do not have enough space, but if I do not thanks Assia
she will kill me, so thank you Assia for being my lovely housemate, and if I
do not mention Stefano I think it would not be fair (we did it, finally!).

Thank you from the deep of my heart, Benedetta, for always being there
for me and for supporting me when things are difficult (don’t worry, i would
not embarass you more!).

Last but not least, I would have not been here in Pisa to study if it was not
for my parents, my family.

Thank you.

85

Bibliography

[1] J. Postel, “Internet Protocol.” RFC 791 (Standard), Sept. 1981. Updated
by RFCs 1349, 2474.

[2] A. Faggiani, E. Gregori, L. Lenzini, S. Mainardi, and A. Vecchio,
“On the feasibility of measuring the internet through smartphone-based
crowdsourcing”, in WiOpt, pp. 318–323, IEEE, 2012.

[3] E. Gregori, L. Lenzini, V. Luconi, and A. Vecchio “Sensing the Internet
through crowdsourcing”, in Proceedings of the Second IEEE PerCom
Workshop on the Impact of Human Mobility in Pervasive Systems and
Applications (PerMoby), May 2013, pp. 248–254

[4] S. Laki, P. Mátray, P. Hága, T. Sebők, I. Csabai, G. Vattay “Spotter:
A Model Based Active Geolocation Service” In Proceedings of IEEE
INFOCOM 2011, April 10-15, 2011, Shanghai, China (2011).

[5] S. Laki, P. Mátray, P. Hága, I. Csabai, G. Vattay “A Model Based Ap-
proach for Improving Router Geolocation” Computer Networks, Vol-
ume 54, Issue 9, 17 June 2010, Pages 1490-1501, ISSN 1389-1286
(2010).

[6] B. M. Leiner, V. G. Cerf, D. D. Clark, R. E. Kahn, L. Kleinrock, D. C.
Lynch, J. Postel, L. G. Roberts, and S. Wolff, “A brief history of the
internet,” SIGCOMM Comput. Commun. Rev., vol. 39, pp. 22–31, Oct.
2009.

[7] R. Cohen and D. Raz. The Internet Dark Matter: on the Missing Links
in the AS Connectivity Map. In IEEE INFOCOM, 2006.

87

BIBLIOGRAPHY

[8] Y. Rekhter, T. Li, and S. Hares, “A Border Gateway Protocol 4 (BGP-
4).” RFC 4271 (Draft Standard), Jan. 2006. Updated by RFCs 6286,
6608.

[9] Lixin Gao, "On inferring autonomous system relationships in the Inter-
net," Networking, IEEE/ACM Transactions on , vol.9, no.6, pp.733,745,
Dec 2001

[10] L. Daigle, “WHOIS Protocol Specification” RFC 3912 (Standard), Sep.
2004.

[11] C. Davis, P. Vixie, T. Goodwin ,I. Dickinson “A Means for Expressing
Location Information in the Domain Name System” RFC 1876 (Stan-
dard), Jan. 1996.

[12] M. Zhang, Y. Ruan, V. Pai, and J. Rexford, “How DNS misnaming dis-
torts Internet topology mapping”, USENIX Conference, 2006.

[13] Ip2Location, http://www.iplocation.net/.

[14] GÉANT network <http://www.geant2.net/> and Looking Glass service
<http://www.stats.geant2.net/lg/>.

[15] Venkata N. Padmanabhan, Lakshminarayanan Subramanian, “An inves-
tigation of geographic mapping techniques for internet hosts”, Proceed-
ings of ACM SIGCOMM, p.173-185, August 2001, San Diego, CA,
USA.

[16] Bamba Gueye, Artur Ziviani, Mark Crovella and Serge Fdida
“Constraint-Based Geolocation of Internet Hosts”, in IEEE/ACM Trans-
actions on Networking, 14(6):1219–1232.

[17] E. Katz-Bassett, J. John, A. Krishnamurthy, D. Wetherall, T. Anderson,
Y. Chawathe: “Towards IP Geolocation using Delay and Topology Mea-
surements”, ACM IMC 2006, p71-84, Rio de Janeriro, Brazil (2006).

[18] The HTM library, http://skyserver.org/htm.

[19] http://searchcio.techtarget.com/definition/crowdsourcing.

88

BIBLIOGRAPHY

[20] E. Gregori, A. Improta, L. Lenzini, L. Rossi, and L. Sani, “On The In-
completeness of the AS-level Graph: a Novel Methodology for BGP
Route Collector Placement.” to appear in Internet Measurement Confer-
ence (IMC) 2012, 2012.

[21] D. Veitch, B. Augustin, R. Teixeira, and T. Friedman, “Failure Control in
Multipath Route Tracing,” in INFOCOM, pp. 1395–1403, IEEE, 2009.

[22] http://developer.android.com

[23] http://docs.oracle.com/javaee/6/api/javax/servlet/package-
summary.html

[24] http://tomcat.apache.org/tomcat-7.0-doc/index.html

[25] http://www.postgresql.org/docs/9.1/static/index.html

[26] http://docs.oracle.com/javase/1.5.0/docs/api/

[27] M. Handley, E. Rescorla, “Internet Denial-of-Service Considerations”
RFC 4732 (Standard), Nov. 2006.

89

	Table of Contents
	List of Figures
	List of Tables
	Introduction
	The internet: history, structure, protocols
	A brief history of the Internet origins
	The Internet topology
	IP geolocation

	Objectives and contents of this thesis

	IP Geolocation Techniques
	State of the art
	Passive methods
	Active methods

	Spotter
	Delay-Distance model
	The Hierarchical Triangular Mesh Tesselation
	The service algorithm

	The Portolan System Design
	The Portolan system
	Current research projects
	Portolan system features

	The server structure
	Google Cloud Messaging
	Geolocation Service module

	Client Apps
	Geolocation measurements
	Portolan Geolocation DataBase
	PortolanSpotter Web Interface

	Implementation
	System structure
	Portolan-Spotter module
	Geolocation Result Insert
	GCM Message Sender
	Query DB
	Ping and Trace Retrieve

	Client modules
	Geolocation Service
	Geolocation Sender
	GPS Tracker
	GCM Intent Service
	Traceroute Async Task
	Communicator

	Experimentation
	Access Technology Experiments
	Ping Interval Experiments

	Conclusion and future work
	Bibliography

