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π = 3.141592653..: The ratio of the circumference of a circle to its

diameter. And this is just the beginning. It keeps on going. Forever.

Without ever repeating. Which means that contained within this string of

decimals is every single other number.

Your birth date, combination to your locker, your social security number.

It's all in there somewhere. And if you convert these decimals into letters,

you would have every word that ever existed in every possible combination.

The �rst syllable you spoke as a baby, the name of your latest crush, your

entire life story from beginning to end. Everything we ever say or do... All

of the world's in�nite possibilities rest within this one simple circle. Now

what you do with that information... What it's good for... Well, that would

be up to you.
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Abstract

This work consists in investigating wireless communication protocols to pro-

vide services that are commonly required to support cooperation among

autonomous robots. Particular attention will be dedicated to RF-based rel-

ative localization services that are infrastructure-free. The main idea is to

research the joint use of RF-ranging with RSSI-based techniques to develop

a system that has improved accuracy with faster response.

Beyond these services, the work will also address local state data shar-

ing and global point-to-point communication on a volatile topology. Using

a self-synchronization technique, the work will build upon previous e�orts

to track the topology and provide reservations (channels) on-demand, that

route communications between nodes.
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Chapter 1

Introduction

The use of robotic vehicles to perform tasks autonomously is becoming

widespread due to both technological and scienti�c advances, for example,

the miniaturization of electromechanical systems and new sensing and con-

trol paradigms. It is natural to imagine that soon, teams of vehicles will be

fully autonomous and capable of carrying out challenging tasks. The use of

autonomous vehicles requires coordination through the use of cooperation

strategies because there are tasks that one vehicle alone could not perform

due to both its partial knowledge about the task and limited resources.

1.1 Mobile Applications

Multiple-robot systems can accomplish tasks that cannot be achieved indi-

vidually. That is why a cooperating team of mobile robots, joining together

to accomplish a common objective with no human intervention, is an inter-

esting possibility. This problem can be found in many robotic applications,

either for military or civil purposes. Some examples are:

� environmental: eg. prevention of �re, tracking of toxic clouds

� military : eg. surveillance, demining areas . . .

� healthcare: eg. search and rescue in catastrophic situations

� logitisics: eg. manufacturing, large volume transportation

Moreover, using multiple such units can increase the e�ectiveness of

surveillance in a big building or outside, improve the rate of coverage in

8



1.2. What is Localization

search and rescue, reducing cost of equipment using cooperative sensing and

inter-robot motion coordination. For example, When someone is lost during

a snowstorm or under a snow avalanche, improving the rate of coverage in

search and rescue is fundamental since the survival rate of a person under

the snow drops drastically after 15 minutes. So using multiple units that

autonomously navigate and start searching is really interesting. Another ex-

ample is in a mine sweeping application, it is advisable to spread a team of

robots with mine detecting capability and equip only a small portion of them

with sweeping ability, thus reducing the cost of equipment. When mines are

detected a robot with sweeping ability is informed to approach the speci�c

spot.

For such cooperation one of the key factors is to know the positions of

the robots, both absolute and relative.

1.2 What is Localization

Localization is fundamental in large number of applications. The term local-

ization means identifying the position of an object within a reference system.

Depending on the type of reference system we can have two types of localiza-

tion: absolute or relative. In several applications you need to know the real

position of an agent(e.g. search and rescue). In relative localization systems

each robot attempts to determine the position of every other robot in the

team, relative to itself.

In some situations, a possible solution is to build an infrastructure that

enables every robot to know its own absolute position. But, building infras-

tructure is costly and it is probably unavailable in urgent scenarios. GPS

may be a possible solution for outdoors but may be not available in indoor

spaces and street canyons. A possible solution, which is considered in our

work, is to derive relative positions from local communication using algo-

rithms such as the Multi-Dimensional Scaling (MDS)(See Chapter. 7) which

minimizes the dissimilarities of a connectivity matrix up to a rigid formation.

Howerer, in order to implement such solution the robots must �rst collect

inter-robot distance information.

One of the technologies used for obtaining distances with Radio-Frequency

(RF) communication is Time-of-Flight (ToF) measurements, where one unit

measures the time a message needs to reach the destination and return,thus

Chapter 1. Introduction 9



1.3. Proposal

obtaining the distance that separates them. This method produces a dis-

tance that is accurate enough to be used for localization but is only possible

to range one robot per ranging operation, thus making this method less re-

sponsive to fast robots dynamics and it is not scalable. Another possibility

is RSSI based ranging that uses the signal strength of a received message to

calculate the distance between the two nodes. This method produces faster

measurements but it is not very accurate because RSSI is a measurement of

signal strength , thus dependent of the propagation medium, antenna , and

obstacles.

1.3 Proposal

This work consists in investigating wireless communication protocols to pro-

vide services that are commonly required to support cooperation among

autonomous robots. Particular attention will be dedicated to RF-based rel-

ative localization services that are infrastructure-free. The main idea is to

research the joint use of RF-ranging with ToF and RSSI-based techniques to

develop a system that has improved accuracy with faster response.

In this work we propose to �ll the gap between the RSSI and the ToF

approaches. To accomplish that, we propose to use ToF ranging to estimate

the log-distance path loss model. This model will increase accuracy in the

transformation of RSSI measurements in distance values. The advantages to

previous work are:

1. no need for any extra sensors, since all the data is captured from the

transceiver module

2. no need for any a priori knowledge, the channel model is estimated

online and there are no a priori localised anchor nodes

3. to support the high dynamics of RSSI with the improved precision of

ToF

Beyond these services, the work will also address local state data shar-

ing and global point-to-point communication on a volatile topology. Using

a self-synchronization technique, the work will build upon previous e�orts

to track the topology and provide reservations (channels) on-demand, that

route communications between nodes.

Chapter 1. Introduction 10



1.4. Structure of the dissertation

1.4 Structure of the dissertation

In chapter 2 we will take an overview of location systems. We will show the

main methods of localization, and we will focus more on what we're going to

use. Chapter 3 will brie�y describe the related work that has already been

done on this topic. We are showing some of the articles that were close to

our work, showing strengths and problems that have not been addressed.

Chapter 4 will show the idea from which we want to start to create an

algorithm that meets our speci�cations. We will show the main idea that

underlies it (our online channel estimator model) and will outline a �rst

version of the algorithm. In Chapter 5 we will study a series of digital �lters

that will help us in the correction of errors caused by measurements. Will be

implemented some of them and will show the di�erences. Finally, the �nal

form of the algorithm will be outlined.

In Chapter 6 and 7 we will implement the algorithm on a real environ-

ment. This implementation will allow us to be able to clearly visualize the

results obtained. In Chapter 7 we will show an example of localization based

on the algorithm MDS that allows you to create local maps.

Finally in Chapter 8 will discuss about the entire work and we will de-

scribe some future works and topic that can be explored.

Chapter 1. Introduction 11



Chapter 2

Localization Systems

2.1 Types of Localization

Location 1 systems provide a new layer of automation called automatic object

location detection. Real world applications relying on such layer are many:

location of products stored in a warehouse, location of medical personnel

or equipment in a hospital, location of �remen in a building on �re, etc.

Di�erent applications may require di�erent types of location information:

physical/symbolic or absolute/relative.

2.1.1 Absolute Localization

In several applications you need to know the real position of a node. In these

cases the localization system is composed of two fundamental components:

� Mobile nodes: correspond to the objects that you want to locate, their

location is not known a priori and therefore, are free to move within

the area where you installed the tracking system.

� Anchor nodes: are installed at known positions and stay there perma-

nently. they are used as a reference point for the calculation of the

absolute position. The area in which you want to install the tracking

system will have to be completely covered by anchor nodes.

There are four di�erent system topologies for positioning systems:

1"location", "localization", and "positioning" can be used interchangeably along the
entire text.

12



2.1. Types of Localization

1. remote positioning : the signal transmitter is mobile and several �xed

measuring units receive the transmitter's signal. The results from all

measuring units are collected, and the location of the transmitter is

computed in a master station.

2. self-positioning : the unit receives the signals of several transmitters in

known locations, and has the capability to compute its location based

on the measured signals.

3. indirect remote positioning : if a wireless data link is provided in a

positioning system, it is possible to send the measurement result from

a self-positioning measuring unit to the remote side.

4. indirect self-positioning : the measurement result is sent from a remote

positioning side to a mobile unit via a wireless data link.

2.1.2 Relative Localization

In relative localization systems each robot attempts to determine the position

of every other robot in the team, relative to itself. For many team-oriented

behaviours, it is this latter kind of localization that is most important. Con-

sider, for example, a team of robots executing a formation behaviour: these

robots need not know their latitude and longitude, but must know the rela-

tive position of their neighbours. Naturally, given a set of absolute position

estimates for the robots, one can always derive relative positions. Sometimes

building infrastructure is not feasible because is costly and it is probably un-

available in urgent scenarios and you can only measure relative distances

between robots.

2.1.3 Range-Based and Range-Free Methods

There are two methods to locate a node: Range-Based and Range-Free Meth-

ods. In the Range-Based methods location discovery consists of two phases:

Ranging Phase and Estimation Phase:

� Ranging Phase: where each node estimates its distance or angle from

its neighbours

� Estimation phase: where nodes use ranging information and beacon

Chapter 2. Localization Systems 13



2.2. Measurable quantities for localization

node locations to estimate their positions( we will focus on the Esti-

mation phase in the last part of this work).

Range-free solutions estimate the location of sensor nodes by, either,

exploiting the radio connectivity information among neighbouring nodes, or

exploiting the sensing capabilities that each sensor node possesses. You need

a large number of anchors to estimate the sensor location. The advantages

are that you can use cheap sensor hardware and you can have low computa-

tional power, but the disadvantage is that you have less accuracy than range

based methods.

2.2 Measurable quantities for localization

There are several methods for estimating the distance between two robots.

These methods use various types of measurement. In general, measurements

involve the transmission and reception of signals between hardware compo-

nents of the system. You can measure the following physical quantities:

� time - Phis. q. second

� Intensity - Phis. q. decibel

� Phase(Interferometry) - Phis. q. meter

� Angle of Arrival - Phis. q. Radiant

2.3 Systems based on time

These systems can measure the time it takes for a signal to propagate from

a transmitting station to a receiving station. Radio waves propagate in the

air with a velocity slightly less than that of light (c = 299792468m/s) and

given that the light takes 3.3ns to travel a meter, in order to obtain an

accuracy of 30 cm should have a system able to detect time intervals up to a

nanosecond. Such precision is available on Ultra Wide Band (UWB) devices.

The UWB systems are the most precise but also more expensive. Instead

in other systems, to make the measurements, it was decided to use signals

slower compared to radio waves: ultrasound. Although Cheaper than UWB

systems, these systems present problems over long distances just for the fact

Chapter 2. Localization Systems 14



2.3. Systems based on time

of using the ultrasound and this results in the need to install more anchor

nodes.

2.3.1 Time of arrival

With Time-of-arrival (ToA),The distance from the mobile target to the mea-

suring unit is directly proportional to the propagation time. The one-way

propagation time is measured, and the distance between measuring unit and

signal transmitter is calculated. This method gives better results with long

distances because we work at the speed of the light.

Figure 2.1: Diagram showing the the ToA process

However it requires that all transmitters and receivers in the system are

precisely synchronized. The receiving unit will measure the time with his

internal clock that must be perfectly synchronized with the internal clock of

the transmitting unit. For example if you have a synchronization error of

100ns you will have a distance uncertainty that is 30 meters.

2.3.2 Time di�erence of arrival

Time-Di�erence-of-Arrival (TDoA) is a technique for measuring the propaga-

tion time of a signal when you have available devices capable of transmitting

signals with di�erent speeds of propagation. A node is equipped with sensors

that can transmit both radio waves (RF) and ultrasound (U.S.). It trans-

Chapter 2. Localization Systems 15



2.3. Systems based on time

mits a radio signal and immediately after an ultrasonic signal. Since sound

travels much more slowly than radio waves, nodes will receive �rst the RF

signal and only after a certain time will also get the U.S. signal.

Figure 2.2: Diagram showing the TDoA process

In 2.2 you can see a TDoA example. At instant t0 node m1 sends the two

signals. At t1 the node m2 receives the RF signal and at t2 the U.S. signal.

Whereas the RF signal propagation is much smaller than U.S. propagation

(t1 − t0 << t2 − t1), we can measure the U.S. propagation time simply like

a di�erence between t2 and t1. The distance will be

distance = (t2 − t1)× v (2.1)

where v is the velocity of the ultrasound signal. Similar to ToA or any other

time-based methods, synchronization must exist in order for di�erent time

measurements to be accurate but since TDoA does not use the distance be-

tween the transmitter and the receiver, the transmitter is not required to be

in sync with the sensor. However, it is expensive because it takes additional

hardware. In 2.3 the �gure an example of a device with an ultrasonic sensor

together with the RF interface.

Chapter 2. Localization Systems 16



2.3. Systems based on time

Figure 2.3: Device Cricket MCS410CA. You can see on the right the ultra-
sound transmitter and receiver.

2.3.3 Time of Flight

ToF ranging calculates the distance between units by measuring the time the

signal needs to reach the receiver and come back at the transmitter. Since

we will work with the NanoLOC Devices (See Section A.3) we will describe

Time of �ight directly from NanoLOC Data-sheets.

Ranging in the nanoLOC chip uses two types of transmissions, which are

Data packet and hardware Acknowledgements, to obtain two types of time

measurements:

� TX Propagation Delay: This delay is the time for a data or acknowl-

edgement packet to be transmitted from one station to another. As

the speed of a signal propagating through the air is known (the speed

of light), the time in which a packet is sent from one station to another

can be used to calculate the distance between the stations.

� Processing Delay : This delay is the time required to process a received

data packet and generate and transmit a hardware acknowledgement

packet to the sending station. This also is a known value and is used as

part of the ranging calculations. These time measurements are accu-

mulated and with a ranging formula used to obtain a ranging distance

between two nanoLOC nodes.

The chip also o�ers two ranging modes: Normal Ranging Mode and Fast

Ranging Mode. These are brie�y discussed below

Chapter 2. Localization Systems 17



2.3. Systems based on time

Requesting Unit Requested Unit
Request 1

Acknowledge 1

Request 2

Acknowledge 2

Results of Request 2

t1 t2

t4 t3

Figure 2.4: ToF - Ilustration of the ranging process

Normal Ranging Mode

Normal ranging mode uses a symmetrical ranging methodology that means

that the measurement from the transmitter to the receiver is mirrored by a

measurement from the receiver to the transmitter (ABA to BAB) (Fig. 2.4).

Ranging measurements between two stations in normal ranging mode are

obtained using the following formula:

distance =
(t1 − t2) + (t3 − t4)

4
(2.2)

where:

t1 is the propagation delay time of a round trip between the transmitter

and the receiver

t2 is the processing delay in the receiver

t3 is the propagation delay time of a round trip between a receiver and a

transmitter

t4 is the processing delay in the transmitter

Fast Ranging Mode

Fast ranging mode uses the same ranging methodology as normal ranging

mode, except that it is not symmetrical. Only one set of measurements are

used (ABA). This increases the speed at which ranging values can be deter-

mined, but without the additional validity of the second measurement in

normal ranging mode.

Chapter 2. Localization Systems 18



2.4. Systems based on Signal Strength

Ranging measurements between two stations in fast ranging mode are

obtained using the following formula:

distance =
t1 − t2

2
(2.3)

2.4 Systems based on Signal Strength

2.4.1 Received Signal Strength Indicator (RSSI)

Evaluating the intensity of a received signal it is possible to estimate the

distance of the station that has transmitted. In the case of sensor networks

andWiFi networks we can use RSSI that indicates an estimate of the received

signal power in dBm. To correlate the power of a signal received with the

distance from which it was sent, we can use the Friis equation:

PR = PT ∗
GTGRλ

2

(4π)2dα
(2.4)

where:

� PR: is understood to be the available power at the receive antenna

terminals in Watt

� PT : is understood to be the power delivered to the transmit antenna

� GT : is the gain of the transmitting antenna

� GR: is the gain of the receiving antenna

� λ: is the wavelength, λ = c/f where c is the speed of the light and f

is the frequency

� d: is the distance in meters

� α is the path loss exponent end is environment-dependent.

Since RSSI is usually in dBm, we have to convert it with the following

equation:

P [dBm] = 10 log(P [W ]× 103) (2.5)

assuming GT and GR equals to 1, and considering a maximum output power

PT equals to 1 mW, lambda = c/f = 0, 12277 ( freq: 2441,75 MHz)

Chapter 2. Localization Systems 19



2.5. Systems based on Phase

Table 2.1: Some α values in speci�c environments

Environment α

Free Space 2.0
Retail store 2.2
Grocery store 1.8
O�ce, hard partitions 3.0
O�ce, soft partitions 2.6
Metalworking factory,line of sight 1.6
Metalworking factory, obstructed line of sight 3.3

PR[dBm] = 10 log(P [W ]× 103) = 10 log

(
PT ∗

GTGRλ
2

(4π)2dα
× 103

)
= 10 log

(
PT ∗

9.5459 ∗ 1 ∗ 1

dα
× 103

)
=

= 10 log
(
9.5459 ∗ PT ∗ 103

)
− 10 log (dα) =

= ρ0 − 10α log (d) = (2.6)

where ρ0 is the transmitted power, in dBm. From 2.6 we can derive the

distance from the transmitting node that sent the message. Unfortunately

RSSI value is not very reliable, since it depends on the environment and

on the re�ected waves; hence the computed distance is not very accurate.

In table 2.1 you can see how the path loss exponent changes in di�erent

environments.

2.5 Systems based on Phase

2.5.1 Interferometry

If a node has two antennas separated by a distance d, on which the radio

waves arrive with an incident angle θ, we can see that the signal must travel

di�erent distances to reach both antennas. This di�erence results in a phase

di�erence ∆Θ of the received signal between the two antennas. With this

formula we can calculate the direction of arrival of the signal:

θ = sin− 1

(
λ∆Θ

2πd

)
(2.7)
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Figure 2.5: Principle of interferometry �g:interferometria

where λ is the wavelength of the signal. This principle is based on some

tracking systems, such as Radio Interferometric Positioning System (RIPS):

they provide good accuracy but problems can arise if the signal reaches

its destination from more paths through various re�ections. Indeed in the

case in which the signal is received through multiple paths (multipath) it

can be di�cult to understand what is the right phase di�erence to use in

calculations.

2.6 Systems based on Angles

2.6.1 Angle of arrival

With Angle of arrival (AoA) method, location is derived from the intersection

of several pairs of angle direction lines. It rquires estimating relative angles

between neighbours. It uses directional antennas or array of antennas and

no time synchronization is needed. The disadvantage is that it requires

additional hardware and is expensive to deploy in large sensor networks.
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Figure 2.6: First generation Medusa node prototype
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Chapter 3

Measuring Distances

Measuring distance between wireless nodes is a topic that has been widely

explored by many authors. Some focus on time-based techniques, some focus

on signal strength techniques, and others on hybrid approaches.

3.1 Time-based techniques

The most common time based techniques rely on one-way Time-of-arrival

(ToA) measurements, Time-Di�erence-of-Arrival (TDoA) andTime-of-Flight

(ToF) measurements [1]. However, ToA and TDoA require global time syn-

chronisation, since the measurement is unilateral.

On the other hand, ToF eliminates the need for global clock synchroni-

sation. In order to do that, instead of measuring the time of one-way trip, it

measures the time that a message needs to go to the receiver and return to

the transmitter. Since some local processing needs to be done on the receiver

before sending the reply, the processing time has to be very well known, thus

it is usually done in hardware. Adding to that, since the ranging operation

is between two units, it needs a long time to range several units, thus it may

not accommodate fast moving robots.

3.2 Signal Strength techniques

The signal strength based techniques, as the name implies, obtain range es-

timations from the strength of the received RF signal (see section 2.4 ) .

In open space and without interference there is a predictable relationship
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between RSSI and distance, however, in the presence of interference, re�ec-

tion, and refraction, this relationship is no longer accurate. Despite that,

most of the current wireless transceivers possess the capability of measuring

the RSSI intrinsically. Therefore, if the application only requires a coarse

localization, either for navigation or topology estimation purposes, the RSSI

can still be very useful. In order to obtain ranging data from RSSI, some

researchers use anchor-free RF only localization methods without previous

knowledge, such as in [2],[3] , where RF-based localization is performed. In

[2],[3] , the authors do not consider a propagation model and all localiza-

tion is performed considering the "distance in the RSSI space", i.e., not an

estimate of relative physical distance.

Other researchers rely on channel models to estimate real distance based

on RSSI, some using a priori channel measurements [4], and others perform-

ing online channel estimation, either based on anchor nodes [5] or based on

external sensors. However, a priori data may be unavailable or unreliable,

i.e. either there is no previous knowledge or there were severe changes to

the environment; estimations based on measurements between anchor nodes

are not compatible with unknown environments; and estimations performed

with external sensors require extra equipment.

3.3 Hybrid approaches

In this section present two works that make use of hybrid approaches:

1. Comparison of hybrid localization schemes using rssi,toa,tdoa [6]

2. A data fusion technique for wireless ranging performance improvement

[7]

The �rst work presents a simulation study of non-hybrid and hybrid

localization techniques using RSSI, ToA, and TDoA location dependent pa-

rameters. The assumed scenario here is a situation where the targeted mobile

is connected to di�erent anchors from which it is able to get di�erent param-

eters. In Fig. 3.1 we can see an example of a generic heterogeneous scenario.

Simulations( Fig. 3.2 ) have revealed that when ToAs and/or TDoAs have

high accuracy, the use of RSSIs is either marginal or not necessary. Nev-

ertheless, RSSIs are very important and may enhance positioning accuracy
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in cases where no su�cient number of ToAs or/and TDoAs is available or

when their precisions are not accurate.

In the second paper , a hybrid approach fusing RSSI and rToF mea-

surements is used. Here the authors proposed a data fusion algorithm to

combine both techniques assuming the channel parameters to be estimated

in advance.

One of the most limiting factors in the �rst work is that the authors

use anchors to improve the localization. Moreover, Time-based techniques

require a long time to range one robot, and RSSI allows several receivers to

"range" one transmitter simultaneously, thus making RSSI appealing for ap-

plications with mobile robots where the dynamics of the movements are not

negligible. Unlike the second work, which assumes the channel parameters

to be estimated in advance, our approach assumes no prior knowledge and

estimates the channel parameters in real time.

In our work we explore using the higher accuracy of ToF measurements to

improve the accuracy of a faster RSSI-based distance estimator by recurrent

online re-calibration.
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3.3. Hybrid approaches

Figure 3.1: Heterogeneus generic Scenario

Figure 3.2: CDFs of positioning error for di�erent non-hybrid and hybrid
schemes using ML technique
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Chapter 4

The Adaptive Radio-Frequency

Ranging Algorithm

As written in the Introduction, one of the main issues in the RSSI method

is the high dependency with the environment.

To get distance from RSSI we need to know some parameters from equa-

tion (4.11), namely the reference RSSI value (RSSI0) at the respective ref-

erence distance(d0) and the path loss exponent (α).

In order to calibrate the Channel model, we need to estimate RSSI0

and α. To do this we need to collect RSSId − distance pairs and for the

Estimation we can use the Maximum-Likelihood Estimator (MLE) or other

similar methods. After getting the parameters of the channel model we can

consider RSSI accurate enough for a certain interval of time. The length

of this interval can be for example a given time, or the interval after the

robot has moved a certain distance(Fig. 4.1). Thus we will have a periodic

online Channel Model estimation that will give us an enhacement of the

RSSI method performance.

The main steps to develop our approach are:

� Preliminary estimation and evaluation of the channel model

� Design and re�ning the Algorithm for the Adaptive Radio-Frequency

Ranging

� Evaluating the Algorithm with experiments
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4.1. Least Squares Estimator (LSE): Theory

Figure 4.1: Fusing ToF and RSSI for adaptive Radio-Frequency Ranging

4.1 Least Squares Estimator (LSE): Theory

The method of Least Squares is a standard approach to the approximate

solution of overdetermined systems, i.e., sets of equations in which there

are more equations than unknowns. "Least squares" means that the overall

solution minimizes the sum of the squares of the errors made in the re-

sults of every single equation. The method of least squares assumes that

the best-�t curve of a given type is the curve that has the minimal sum of

the deviations squared (least square error) from a given set of data. The

least squares criterion has important statistical interpretations. If appropri-

ate probabilistic assumptions about underlying error distributions are made,

least squares produces what is known as the maximum-likelihood estimate

of the parameters. Even if the probabilistic assumptions are not satis�ed,

years of experience have shown that least squares produces useful results.

The computational techniques for linear least squares

4.1.1 Problem Statement

Suppose that the data points are (x1, y1), (x2, y2), ..., (xn, yn) where x is the

independent variable and y is the dependent variable. The �tting curve f(x)

has the deviation (error) d from each data point, i.e., d1 = y1 − f(x1), d2 =

y2 − f(x2), ..., dn = yn − f(xn). According to the method of least squares,

the best �tting curve has the property that:
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4.1. Least Squares Estimator (LSE): Theory

S = d2
1 + d2

2 + ...+ d2
n =

N∑
i=1

d2
i =

N∑
i=1

[yi − f(xi)]
2 = is minimized. (4.1)

hence the name "least squares". In practical cases generally f(x) is paramet-

ric: in this way the problem is reduced to determining the parameters that

minimize the distance of the points from the curve. Of course, to obtain a

single optimized curve and not a bundle, you need a number of experimental

points greater than the number of parameters which determine the curve

(the problem usually known as overdetermined). In general the experimen-

tal data obtained would exhibit a distribution governed by certain analytical

relationships. Then it is useful to parametrize the theoretical curve and

determine the parameters so as to minimize S.

4.1.2 Solution of the linear case

Let f(x) be a linear function of the parameters:

f(x) = p1f1(x) + p2f2(x) + · · ·+ pkfk(x) (4.2)

where pi are k parameters with k � n, and n is the number of known points.

You can rewrite f(x) through the linear system oversized

Ap ≈ y (4.3)

where

A =


f1(x1) . . . fk(x1)

...
...

f1(xn) . . . fk(xn)

 , p =


p1

...

pk

 , y =


y1

...

yn

 (4.4)

The problem of minimizing S leads back therefore to minimizing the norm

of the residue

‖r‖ = ‖Ap− y‖, ‖r‖2 = ‖Ap− y‖2 = ([Ap]1 − y1)2 + · · ·+ ([Ap]n − yn)2(4.5)

=

n∑
i=1

(f(xi)− yi)2 = S(4.6)

where [Ap]i is the i-th component of the resulting vector y = Ap .
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4.2. Channel model Estimation with LSE

We can minimize ‖r‖ deriving ‖r‖2 in respect of each pm and setting the

derivative equal to 0:

d‖r‖2

dpm
=

n∑
i=1

2(
k∑
j=1

aijpj − yi)aim = 0 (4.7)

This is equivalent to the following system:

(Ap− y)TA = 0 (4.8)

Hence the vector p that minimizes S is the solution of the equation:

ATAp = AT y (4.9)

This latter equation is called normal equation. If the rank of A is complete

then ATA is invertible and therefore:

p = (ATA)−1AT y (4.10)

where the matrix (ATA)−1AT is called pseudo-inverse.

4.2 Channel model Estimation with LSE

In 4.1 we talked about a method, LSE, that is a standard approach to the

approximate solution of overdetermined systems. For a good estimate we

need to collect a large number of RSSI-distance pairs separated as much as

possible; for that purpose we can either rely on the movement of the robots,

or force them to move in order to collect more diversi�ed data. Let's consider

the Channel Model Equation:

RSSId = RSSI0 − 10α log

(
d

d0

)
↔ d = d0 × 10(RSSI0−RSSId)/(10α) (4.11)

Referring to (4.4) we want to estimate RSSI0 and α by knowing n known

RSSI-distance pairs (RSSI1,d1),(RSSI2,d2),..., (RSSIn,dn). If we assume
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d0 = 1 and de�ne A and b as:

A =


1 −10 log d1

...
...

1 −10 log d1

 , b =


RSSI1

...

RSSIN

 (4.12)

We can solve the equation system in the equation (4.13) and obtain the

estimated parameters ̂RSSI0 and α̂.

X̂ =

[ ̂RSSI0

α̂

]
= (ATA)−1AT b (4.13)

4.3 Preliminary estimation and evaluation of the

channel model

To evaluate the channel-model estimation method we did two experiments,

one in an open space and one in an indoor environment. We programmed

two nanoLOC devices, naming them as nodeA and nodeB.We connected

nodeA via UART to a PC. Then we put nodeB at the distance of one meter.

Every step for 10 steps:

1. STOPPED: nodeB is stopped

2. RF-RANGING: nodeA collects one hundred values of RSSI-distance

pairs repeating the RF-Ranging operation.

3. MOVING: nodeB moves away a meter from nodeA and sends messages

to it

4. RSSI: nodeA collects one hundred RSSI values

5. return to step 1

Note that the values collected in the two operations(RF-RANGING and

RSSI) include failures and need to been �ltered. Then we used the RSSI-

distance pairs to solve the equation (4.13).

From the two experiments we obtained the following data-sets:

Dataset1 =

Timestamp RealDistance MeasuredDistance(RF ) RSSI
...

...
...

...


(4.14)
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and

Dataset2 =

Timestamp RSSI
...

...

 (4.15)

Dataset1 includes all the measurements during the RF-Ranging Oper-

ation while the nodeB is always stopped at a precise position. Dataset2

includes all the measurements during the nodeB movement while remove

broadcasting a packet. NodeA will get only the RSSI measurement.

4.3.1 Outdoor Experiment: results

This Experiment was made in an open space, in the university garden.

With this experiment we want to see how the channel estimation works

in the best scenario. We used all the measurements from dataset1 to esti-

mate the channel model ( RSSI0,α). In �gure 4.2 you can see two curves.

The red curve is the estimated model with the coloured dots that are the

MeasuredDistance − RSSI pairs. To better understand the �gure, the

points are plotted with di�erent colors for every meter.

The black curve is the real model. To estimate it, we used the black

dots that are RealDistance− RSSI pairs. Note that in an open space the

measurements are really close to the real model. This leads to have two

curves that are very similar and we have a very good approximation.

Chapter 4. The Adaptive Radio-Frequency Ranging Algorithm 32



4.3. Preliminary estimation and evaluation of the channel model

0 2 4 6 8 10 12
−80

−70

−60

−50

−40

−30

−20

−10

distance (m)

R
S

S
I (

dB
m

)

 

 
Model with real distance
Model with measured distance
@ real distance
1m
2m
3m
4m
5m
6m
7m
8m
9m
10m

Figure 4.2: Collected data outside: Di�erent colours for each meter
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models using MLE with all points
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Figure 4.3: Collected data outside: measured distances with ToF ranging.
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4.3. Preliminary estimation and evaluation of the channel model

In �gure 4.3 we can see a comparison between measured distances and

real distance. The blue line is the bisecting line where every measured dis-

tance is equal to the real distance. The red line is an interpolated line that

show how good are the measured values. In this outdoor experiment the

slope of the line is 0.9825 and the o�set is 0.1209.
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Figure 4.4: Collected data outside: histogram of the distance error for each
meter.

In �gure 4.4 we can see the histograms of the collected data at every
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4.3. Preliminary estimation and evaluation of the channel model

meter. The measured data has a Gaussian noise. In �gure 4.5 we can see

how the bias and the Standard Deviation (Std.) change at every meter.

Finally we can say that, in an outside environment the measurements

present a Gaussian Noise with mean 0.0278 and Std. 0.2212

Measurements Noise : W ∼ N (µ, σ2)

µd = 0.0278 and σd = 0.2212 (4.16)

µρ = 0.0417 and σρ = 1.9043 (4.17)
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4.3.2 Indoor Experiment

In the second experiment we repeated the �rst experiment but in an indoor

environment(a corridor in the building).
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In �gure 4.7 we can see that now the measured values are more spread

and there are a lot of outliers. The measured model and the real model are

di�erent.

Rssi0 is -38.0277 and α is 1.9789
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Figure 4.8: Collected data indoor: measured distances with ToF ranging.

In �gure 4.3 we can see that now some measured values are far from the

real distance and the slope of the red line is 0.8831 with an o�set of 0.2824.

So an indoor environment we have underestimated distance.
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Figure 4.9: Collected data indoor: histogram of the distance error for each
meter.

As in the outdoor experiment, we can see in �gure 4.9 the histograms at

every meter.
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Figure 4.11: Collected data outside: Mean error and Standard deviation of
the Measured RSSI.

Finally we can say that, in our indoor environment the measurements

have an noise that can still be approximated with a Gaussian Noise with

mean -0.3842 and Std. 0.6039
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Measurements Noise : W ∼ N (µ, σ2)

µd = −0.3842 σd = 0.6039 (4.18)

µρ = −0.6086 σρ = 4.4322 (4.19)

4.4 Fixed-points MLE Model Estimator

The outdoor/indoor experiments gave us a clear idea about how good is the

measured model and the measurements. In the previous sections we saw that

the Mean error of the ToF measurements is relatively low and this gave to

us a Measured Channel model close to the Real Channel model(calculated

with real distances). However, our proposal is to create an algorithm that

automatically update the measured model when we have new ToF measure-

ments.

We want to use an algorithm like the Maximum-Likelihood Estimator

(MLE), but using only 1 new value instead of n. For that purpose, we de�ne a

vector of prede�ned n log-separated distances (g1×n ) and create the matrices

A(n+1)×2 and b(n+1)×1 (considering d0 = 1 ) (4.12). The �rst n lines represent

the previously estimated model x̂t−1, and the n+ 1 point represents the new

measurement d̂t, ̂RSSIt. Then we run a Maximum-Likelihood Estimator

(MLE) (4.13) to obtain the new channel model x̂t. This allows us to run

MLE using a �xed number of samples (n + 1), and at the same time to fuse

the new knowledge with previous knowledge, where n de�nes the weight of

the new measurement.

At =



1 −10 log(g(1))

1 −10 log(g(2))
...

...

1 −10 log(g(n))

1 −10 log d̂t


, bt =



RSSI0,t−1 − 10αt−1 log(g(1))

RSSI0,t−1 − 10αt−1 log(g(2))
...

RSSI0,t−1 − 10αt−1 log(g(n))̂RSSIt


(4.20)

X̂t =

[ ̂RSSI0,t

α̂t

]
= (ATA)−1AT b (4.21)
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t RSSI0 α R̂SSI d̂

0 -30 3 - -
1 -30.3532 2.9707 -43 2.2701
2 -30.7338 3.0510 -57 4.0232
3 -30.8802 2.9855 -55 7.3878
4 -31.6590 2.7187 -53 9.7562

Table 4.1: �rst 4 steps of the �xed-MLE

4.4.1 An example

To clarify our model estimator we wrote a basic example: At t = 0 we

initialize our model with:

X̂t|t=0 =

[ ̂RSSI0,t=0

α̂t=0

]
=

[
−30

3

]
(4.22)

that are common values in a ideal environment. Now we de�ne the vector

g1×n using n = 10 distances equally log-distributed:

g =



1.0000

1.2915

1.6681

2.1544

2.7826

3.5938

4.6416

5.9948

7.7426

10.0000



(4.23)

In Table 4.1 we re-assume the �rst 4 steps of a simulation. At step zero

we start with the initial values. At every step we obtain a measured RSSI-

distance pair, and we used it to modify the channel model.

In �gure 4.12 we can see how the model changes and tries to get closer

to the new measured value. At step 1 the measurement is close to the ideal

model and the model does not change a lot. At step 2 the measuredRSSI

is lower than the model curve and the model adapts to it and so on to the

others steps. Changing the number of n points we can give more or less
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weight to the goodness of the measurements. If we decrease the number of

points, the new measurement will be more relevant. n = 10 seems to be a

good trade-o� between reactivity and quality of the measurements.
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Figure 4.12: First 4 steps of the 1point-MLE ( with n = 10 points).The
Initial channel model (black) adapts itself every step(blu,green,cyan,and red)
to new RSSI measurements.

4.5 De�ning the Algorithm

In the past section we designed our Model estimator. Now we can arrange

an algorithm to get distance using only RSSI and the improved model. In

Figure 4.13 you can see the �rst version of the Algorithm. Basically:

� when the node can start a RF-ranging operation, it acquires a Distance-

RSSI pair and uses it to calculate the model. After that it returns a

�ltered distance.

� If the node cannot start a RF-ranging ( because it takes time, or simply

it cannot do so), it uses the RSSI value from an arriving packet to

calculate a �ltered distance using the model measured in the past with

distance-RSSI pair.

Once we have designed our algorithm, the next steps are to study and

design �lters that aim at eliminating eliminate the outliers in the measure-
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Figure 4.13: Adaptive Radio-Frequency Ranging Algorithm

ments and �lters that can improve the estimation of the distance. One other

issue is to evaluate how long has to be the period between RF-Ranging op-

erations. For Example we can perform a RF-ranging operation whenever

data is available, every second, etc. In Chapter 5 we will study and imple-

ment several �lters and we will evaluate performance with some experiments.

We will post-pone the issue regarding the rate of RF-Ranging operation to

Chapter 6 where we implement the Algorithm on real robots.
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Chapter 5

Filtering Distance Estimantes

5.1 Why use the word "Filter"?

We can de�ne a �lter as the process of �nding the "best estimate" from noisy

data amounts to "�ltering out" the noise. To understand why it is important

to �lter measurements we will do a motivating example.

Imagine you have a robot that needs to know the distance from another

robot B. The �rst thing the robot does, is to make a measurement. Mea-

surements are usually denoted by z. From experience it might be known

that the sensor is not so good, in other words the measurements are noisy.

You might know that the sensor has an error that is most of the time zero,

but sometimes (with a certain frequency)there is a certain range of error.

You can model that as a Random variable with a Gaussian probability den-

sity function. Now the best you can do is to maintain an estimate or belief

about your current position. The robot then moves toward B by putting

some known voltage on its motors which causes a translation in the direc-

tion of B. This motor control data (its actions) is usually denoted by u. We

can relate u to the robot's state (because we know that a high voltage leads

to a large translation..) and we can summarize this relationship in a matrix

C. Thus, Cu describes the e�ect of the robot's actions to its state. There-

fore, the robot can use the previously measured state at time t− 1 and Cu

to make a prediction about the next state that it is about to measure, i.e.

its expectation. Again: The robot has two sources of information to estimate

its own state: 1) its own actions under the assumption that the robot knows

how they change the world and 2) its measurements. What is needed is a
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tool to combine these two stochastic quantities together to achieve an opti-

mal state estimation. A Kalman �lter is an example of such a tool, and in

the following we are going to cover the necessary knowledge to understand

the Kalman �lter equations and to implementing them in our algorithm.

The key idea is to represent uncertainty explicitly, using the calculus of

probability theory. Probabilistic approaches are typically more robust in the

face of sensor limitations, sensor noise, environment dynamics, and so on.

They often scale much better to complex and unstructured environments,

where the ability to handle uncertainty is of even greater importance. In

fact, certain probabilistic algorithms are currently the only known working

solutions to hard robotic estimation problems

This family of �lters is collectively called Gaussian Filters. Gaussian

techniques all share the basic idea that beliefs are represented by multivariate

normal distributions. Multivariate normal distributions are characterized by

density functions of the following form:

p(x) = det(2πΣ)−
1
2 exp

{
−1

2
(x− µ)TΣ−1(x− µ)

}
(5.1)

The commitment to represent the posterior by a Gaussian has important

rami�cations. Most importantly, Gaussians are uni-modal, that is, they pos-

sess a single maximum. Such a posterior is characteristic of many tracking

problems in robotics, in which the posterior is focused around the true state

with a small margin of uncertainty. On the contrary, Gaussian posteriors

are a poor match for many global estimation problems in which many dis-

tinct hypotheses exist, each of which forming its own mode in the posterior.

However, these advantages come at a price. Traditionally, the two most

frequently cited limitations of probabilistic algorithms are computational in-

e�ciency, and a need to approximate.

In the previous chapter we have shown how RSSI and ToF are merged

in order to continually update the channel model and be able to measure

the distance between two robots directly through RSSI. In this chapter

we want to �lter our measurements so as to minimize the error. To do

this, we will describe Linear Kalman Filter, Extended Kalman Filter, and

Unscented Kalman Filter theory. Then we will show the implementations of

these �lters: we will do a comparison between them, showing which provides

the best results and explaining why.
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5.2 The Kalman Filter

Probably the best studied technique for implementing Bayes �lters is the

Kalman Filter (KF). The Kalman �lter was invented in 1950s by Rudolph

Emil Kalman as a technique for �ltering and prediction in linear systems.

The kalman �lter implements belief computation for continuous states.It is

not applicable to discrete or hybrid state spaces.

The Kalman �lter represents beliefs by the moments representation: At

time t, the belief is represented by the mean µt and the covariance Σt. Pos-

teriors are Gaussian if the following three properties hold, in addition to the

Markov assumptions of the Bayes �lter.

1. The next state probability p(xt|ut, xt−1) must be a linear function in

its arguments with added Gaussian noise. This is expressed by the

following equation:

xt = Atxt−1 +Btut + εt (5.2)

wherext and xt−1 are state vectors, and ut is the control vector at

time t. In our notation, both of these vectors are vertical vectors. At

and Bt are matrices. At is a square matrix of size n × n, where n

is the dimension of the state vector xt. Bt is of size n × m, with m

being the dimension of the control vector ut. By multiplying the state

and control vector with the matrices At and Bt, respectively, the state

transition function becomes linear in its arguments. Thus, Kalman

�lters assume linear system dynamics.

The random variable εt is a Gaussian random vector(GRV) that models

the randomness in the state transition. It is of the same dimension as

the state vector. Its mean is zero and its covariance will be denoted

Rt.

Equation 5.3 de�nes the state transition probability p(xt|ut, xt−1). This

probability is obtained by plugging Equation (5.3) into the de�nition

of the multivariate normal distribution (5.1):

p(xt|ut, xt−1) = det(2πRt)
− 1

2 exp

{
−1

2
(xt −Atxt−1 −Btut)TR−1

t (xt −Atxt−1 −Btut)
}

(5.3)
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2. The measurement probability p(zt|xt) must also be linear in its argu-

ments, with added Gaussian noise:

zt = Ctxt + δt (5.4)

Here Ct is a matrix of size k×n, where k is the dimension of the mea-

surement vector zt. The vector δt describes the measurement noise.

The distribution of δt is a multivariate Gaussian with zero mean and

covariance Qt. The measurement probability is thus given by the fol-

lowing multivariate normal distribution:

p(zt|xt) = det(2πQt)
− 1

2 exp

{
−1

2
(zt − Ctxt)TQ−1

t (zt − Ctxt)
}

(5.5)

3. Finally, the initial belief bel(x0) must be normal distributed. We will

denote the mean of this belief by µ0 and the covariance by Σ0:

bel(x0) = p(x0) = det(2πΣ0)−
1
2 exp

{
−1

2
(x0 − µ0)TΣ−1

t (x0 − µ0)

}
(5.6)

These three assumptions are su�cient to ensure that the posterior bel(xt)

is always a Gaussian, for any point in time t.

5.2.1 The Kalman �lter algorithm

The Kalman �lter algorithm is depicted in Algorithm 1 . In the �rst two

lines the predicted belief µ̄ and Σ̄ is calculated representing the belief ¯bel(xt)

one time step later, but before incorporating the measurement zt.

In the remaining lines the update step is conducted, by incorporating the

measurement zt. The variableKt, computed in line 4, is called Kalman Gain.

It speci�es the degree to which the measurement is incorporated into the new

state estimate. The Kalman gain is a function of the relative certainty of

the measurements and current state estimate, and can be "tuned" to achieve

particular performance. With a high gain, the �lter places more weight on

the measurements, and thus follows them more closely. With a low gain,

the �lter follows the model predictions more closely, smoothing out noise
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Algorithm 1 Algorithm Kalman �lter

1: procedure Algorithm KF(µt−1,Σt−1, ut, zt)
Prediction

2: µ̄t = Atµt−1 +Btut
3: Σ̄t = AtΣt−1A

T
t +Rt

Update:
4: Kt = Σ̄tC

T
t (CtΣ̄tC

T
t +Qt)

−1

5: µt = µ̄t +Kt(zt − Ctµ̄t)
6: Σt = (I −KtCt)Σ̄t

7: return µt,Σt

8: end procedure

but decreasing the responsiveness. At the extremes, a gain of one causes the

�lter to ignore the state estimate entirely, while a gain of zero causes the

measurements to be ignored.

5.3 Extended Kalman Filter

5.3.1 Formulation

The assumptions of linear state transitions and linear measurements with

added Gaussian noise are rarely ful�lled in practice. For example, a robot

that moves with constant translational and rotational velocity typically moves

on a circular trajectory, which cannot be described by linear next state tran-

sitions. This observation, along with the assumption of unimodal beliefs,

renders plain Kalman �lters, as discussed so far, inapplicable to all but the

most trivial robotics problems.

The extended Kalman �lter (EKF) overcomes one of these assumptions:

the linearity assumption. Here the assumption is that the next state proba-

bility and the measurement probabilities are governed by nonlinear functions

g and h, respectively:

xt = g(ut, xt−1) + wt (5.7)

zt = h(xt) + vt (5.8)

This model strictly generalizes the linear Gaussian model underlying

Kalman �lters, postulated in Equations (5.2) and (5.4). This function g

Chapter 5. Filtering Distance Estimantes 49



5.3. Extended Kalman Filter

replaces the matrices At and Bt in (5.2), and h replace Ct in (5.4). Unfortu-

nately with arbitrary functions g and h, the belief is no longer Gaussian. In

fact, performing the belief update exactly is usually impossible for nonlinear

functions g and h. Thus, the EKF inherits from the KF the basic belief rep-

resentation, but it di�ers in that this belief is only approximate, not exact

as was the case in Kalman �lters.

5.3.2 Linearization in EKF

The key idea underlying the EKF is called linearization. Suppose we are

given a non linear next state function g. A gaussian projected through

this function is typically non-Gaussian. This is because non-linearities in

g distort the belief in ways that destroy its Gaussian shape. Linearization

approximates g by a linear function that is tangent to g at the mean of the

Gaussian. By projecting the Gaussian through this linear approximation,

the posterior is Gaussian. In fact, once g is linearized, the mechanics of

belief propagation are equivalent to those of the KF. The same argument

applies to the multiplication of Gaussians when a measurement function h

is involved.

There exist many techniques for linearizing nonlinear functions. EKF

utilizes a method called (�rst order) Taylor expansion. Taylor expansion

constructs a linear approximation to a function g from its g′s value and

slope. The slope is given by the partial derivative:

g′(ut, xt−1) :=
δg(ut, xt−1)

δxt−1
(5.9)

Clearly, both the value of g and its slope depend on the argument of g.

A logical choice for selecting the argument is to chose the state deemed most

likely at the time of linearization. For Gaussians, the most likely state is

the mean of the posterior µt−1. In other words, g is approximated by its

value at µt−1 (and at ut), and the linear extrapolation is achieved by a term

propotional to the gradient of g at µt−1 and ut :

g(ut, xt−1) ≈ g(ut, µt−1)+g′(ut, µt−1)(xt−1−µt−1) = g(ut, µt−1)+Gt(xt−1−µt−1)

(5.10)

Notice that Gt is a matrix of size n×n, with n denoting the dimension of
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Kalman Filter EKF

State Prediction Atµt−1 +Btut g(ut, µt−1)
measurement prediction Ctµ̄t h(µ̄t)

Table 5.1: Main di�erence between KF and EKF algorithm

the state. This matrix is often called the Jacobian. The value of the Jacobian

depends on ut and µt−1, hence it di�ers for di�erent points in time.

EKFs implement the exact same linearization for the measurement func-

tion h. Here the Taylor expansion is developed around µt, the state deemed

most likely by the robot at the time it linearizes h:

h(xt) ≈ h(µ̄t) + h′(µ̄t)(xt − µ̄t) = h(µ̄t) +Ht(xt − ¯µt−1) (5.11)

5.3.3 Extended Kalman Filter Algorithm

In Algorithm 2 states the EKF algorithm. In many ways, this algorithm is

similar to the Kalman �lter algorithm stated in 1.

Algorithm 2 Extended Kalman Filter Algorithm

1: procedure Algorithm EKF(µt−1,Σt−1, ut, zt)
Prediction

2: µ̄t = g(ut, µt−1) . Predicted state estimate
3: Σ̄t = GtΣt−1G

T
t +Rt . Predicted covariance estimate

Update:
4: Kt = Σ̄tH

T
t (HtΣ̄tH

T
t . Near-optimal Kalman gain

5: µt = µ̄t +Kt(zt − h(µ̄t)) . Updated state estimate
6: Σt = (I −KtHt)Σ̄t . Updated estimate covariance
7: return xt,Σt

8: end procedure

The most important di�erences are summarized in table 5.1. That is,

the linear predictions in Kalman �lters are replaced by their nonlinear gen-

eralizations in EKFs. Moreover, EKFs use JacobianGt and Ht instead of

the corresponding system matrices At, Bt, and Ct in Kalman �lters. The

Jacobian Gt corresponds to the matrices At and Bt and the JacobianHt

corresponds to Ct.
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5.3.4 EKF implementation

De�ne xt and zt

The �rst thing we have to do is to de�ne the state vector and the state

equation of the model we want to describe. We want to estimate the distance

between two nodes, so the state vector will be:

x =

[
d

ḋ

]
(5.12)

where d is the estimated distance, and ḋ is the discrete-time approximation

of the derivative of distance. We include the speed in the state vector in

order to have a smoother trajectory, considering the uniform linear motion.

The state equations will be:

xt =

[
dt

ḋt

]
=

[
dt−1 + ∆t ∗ ẋt−1 + wd

ḋt−1 + wd

]
(5.13)

where ∆t is the time between consecutive state predictions and wd is a

Gaussian random vector that models the uncertainty introduced by the state

transition. Its mean is zero and its covariance will be denoted Rt:

Rt =

[
∆t2

2 0

0 ∆t

]
σ2
w (5.14)

where σw is the variance of the noise wd. Then, we have to write the mea-

surement vector and the measurement equations associated to it.When we

measure both ToF and RSSI, we use the measurement vector in 5.15 and

using the measurement equations in 5.16:

z =

[
d̂

ρ̂

]
(5.15)

zt =

[
d̂t

ρ̂t

]
=

[
dt − biasd + vd

ρ0 − 10α log dt + vρ

]
(5.16)

where biasd is the bias of the ToF measurement, vd and vρ describe respec-

tively the measurement Gaussian noise of the distance and of the channel.

The mean and the standard deviation will be denoted respectively µd, σd

and µρ, σρ previously calculated in 4.18 and 4.19. The Covariance will be
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denoted as Qt:

Rt =

[
σ2
d 0

0 σ2
ρ

]
(5.17)

When we have only the RSSI measurement, z will be a scalar and the

measurement equation will be:

zt = ρ0 − 10α log dt + vρ (5.18)

and Qt will be simply: Qt = σρ

De�ne Gt and Ht

Now that we have de�ned xt and zt in (5.13) and (5.16), we can use them

to calculate Gt and Ht introduced in (5.10) and (5.11):

Gt =
∂g

dx

∣∣∣∣
xt−1,ut

=

 ∂dt
dt−1

∂dt
ḋt−1

∂ḋt
dt−1

∂ḋt
ḋt−1

 =

[
1 ∆t

0 1

]
(5.19)

Ht =
∂h

dz

∣∣∣∣
xt

=

[
∂d̂t
dt

∂d̂t
ḋt

∂ρ̂t
dt

∂ρ̂t
ḋt

]
=

[
1 0
−10α
dt ln 10 0

]
(5.20)

5.4 UKF

The EKF has become a standard technique used in a number of nonlinear

estimation and machine learning applications. A central and vital operation

performed in the Kalman Filter is the propagation of a Gaussian random

variable (GRV) through the system dynamics. In the EKF, the state dis-

tribution is approximated by a GRV, which is then propagated analytically

through the �rst-order linearization of the nonlinear system. This can in-

troduce large errors in the true posterior mean and covariance of the trans-

formed GRV, which may lead to sub-optimal performance and sometimes

divergence of the �lter. The UKF addresses this problem by using a deter-

ministic sampling approach. The state distribution is again approximated

by a GRV, but is now represented using a minimal set of carefully chosen

sample points. These sample points completely capture the true mean and

covariance of the GRV, and when propagated through the true non-linear

system, captures the posterior mean and covariance accurately to the 3rd
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order (Taylor series expansion) for any nonlinearity. The GRV, in contrast,

only achieves �rst-order accuracy. Remarkably, the computational complex-

ity of the UKF is the same order as that of the EKF. To elaborate on this,

we start by �rst explaining the Unscented Transformation (UT).

5.4.1 The Unscented Transformation (UT)

The Unscented Transformation (UT) is a method for calculating the statis-

tics of a random variable which undergoes a nonlinear transformation. Con-

sider propagating a random variable x (dimension L) through a nonlinear

function, y = g(x). Assume x has mean x̄ and covariance Px. To calculate

the statistics of y, we form a matrix X of 2L + 1 sigma vectors Xi (with
corresponding weights Wi), according to the following:

X0 = x̄ (5.21)

Xi = x̄ +
(√

(L+ λ)Px

)
i

i = 1, . . . , L (5.22)

Xi = x̄−
(√

(L+ λ)Px

)
i−L

i = L+ 1, . . . , 2L (5.23)

W
(m)
0 = λ/(L+ λ) (5.24)

W
(c)
0 = λ/(L+ λ) + (1− α2 + β) (5.25)

W
(m)
i = W

(c)
i = 1/{2(L+ λ)} i = 1, . . . , 2L (5.26)

where λ = α2(L+ κ)−L is a scaling parameter. α determines the spread of

the sigma points around x̄ and is usually set to a small positive value ( e.g.,

1e-3). κ is a secondary scaling parameter which is usually set to 0, and β

is used to incorporate prior knowledge of the distribution of x (for Gaussian

distributions, β = 2 is optimal). (
√

(L+ λ)Px)i is the ith row of the matrix

square root.

These sigma vectors are propagated through the nonlinear function,

Yi = g(Xi) i = 0, . . . , 2L , (5.27)

and the mean and covariance for y are approximated using a weighted sample
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mean and covariance of the posterior sigma points,

ȳ ≈
2L∑
i=0

W
(m)
i Yi (5.28)

Py ≈
2L∑
i=0

W
(c)
i {Yi − ȳ} {Yi − ȳ}T (5.29)

Figure 5.1: Example of the UT for mean and covariance propagation. a)
actual, b) �rst-order linearization (EKF), c) UT.

A simple example is shown in Figure 5.1 for a 2-dimensional system: the

left plot shows the true mean and covariance propagation using Monte-Carlo

sampling; the center plots show the results using a linearisation approach as

would be done in the EKF; the right plots show the performance of the UT

(note only 5 sigma points are required). The superior performance of the

UT is clear.
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5.4.2 UKF algorithm

The UKF equations are given in Algorithm 3 . Note that no explicit calcu-

lation of Jacobians or Hessians are necessary to implement this algorithm.

Furthermore, the overall number of computations are the same order as the

EKF.

Algorithm 3 Extended Kalman Filter Algorithm

1: Initialize with:
x̂0 = E[x0]
P0 = E[(x0 − x̂0)(x0 − x̂0)T ]
x̂α0 = E[xα] = [x̂T0 00]T

Pα0 = E[(xα0 x̂
α
0 )(xα0 x̂

α
0 )T ] =

P0 0 0
0 PV 0
0 0 Pn

 . For k ∈ 1, . . . ,∞

2: Calculate Sigma points:

Xαk−1 =
[
x̂αk−1 x̂αk−1 ±

√
(L+ λ)Pαk−1

]
3: Time Update:
Xαk|k−1 = F [X xk−1,X vk−1]

x̂−k =
∑2L

i=0W
(m)
i X xk|k−1

P−k =
∑2L

i=0W
(c)
i

[
X xi,k|k−1 − x̂

−
k

] [
X xi,k|k−1 − x̂

−
k

]T
Yk|k−1 = H

[
X xk|k−1,X

n
k−1

]
ŷ−k =

∑2L
i=0W

(m)
i mathcalYi,k|k−1

4: Measurement update equations:

Pȳkȳk =
∑2L

i=0W
(c)
i

[
Yi,k|k−1 − ŷ−k

] [
Yi,k|k−1 − ŷ−k

]T
Pxkyk =

∑2L
i=0W

(c)
i

[
Xi,k|k−1 − x̂−k

] [
Yi,k|k−1 − ŷ−k

]T
K = PxkykP

−1
ȳkȳk

x̂k = x̂−k +K(yk − ŷ−k )
Pk = P−k −K − PȳkȳkK

T

where xα = [xT vTnT ]T , Xα = [(X §T )(XvT )(X \T )]T , λ = composite scaling

parameter, L = dimension of augmented state, Pv =process noise covariance,

Wi = weights as calculated before.
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5.5 Implementation on Matlab

5.5.1 Simulation Setup

In the previous section we described three important Filters: KF, EKF, and

UKF. It is known from the theory that the Kalman �lter is optimal in case

that a) the model perfectly matches the real system, b) the entering noise is

white and c) the covariances of the noise are exactly known. but it requires

that the model is linear.

We implemented the EKF and UKF algorithm in MATLAB using Equa-

tions and matrix described in 5.3.4. Then, We created a simulation using

our previously collected data. The simulation consists of two nodes, one

is static at 0, and the other is moved to di�erent positions (in the range of

1m−10m) according to a circular bu�er. For each of the positions, a random

measurement is selected from our dataset, and used to calculate an estimate

of the model parameters. A ToF measurement is selected after every 9 RSSI

measurements. When a ToF is received, the model trusts the new measure-

ment and estimates the distance. Then it updates the channel model with

our model estimator. When only RSSI is received it simply estimates the

distance.

5.5.2 Results

The nanoLOC device moves to di�erent positions. In Figure 5.2 you can

see the real Distance (blue line). You can also see the two Implementations:

EKF (black line) and UKF (magenta line). From that �gure we can see that

the model changes following the real distance very fast. This is because we

trust in the ToF Measurements.

In Figure 5.3 you can see the mean error between real distance and esti-

mated distance with the EKF implementation (black) and UKF implemen-

tation (magenta). From this and from the previous �gure you can see that

EKF and UKF are really similar. UKF is better only in few moments: For

example at second 38, after a fast movement from 9 meters to 1 meter, UKF

better �ts the real distance.

Figure 5.3 gives us another important information: The mean error has

zero mean, thus we obtained a good accuracy of the estimated distance.

Chapter 5. Filtering Distance Estimantes 57



5.5. Implementation on Matlab

0 10 20 30 40 50
0

2

4

6

8

10

12

time(s)

di
st

an
ce

 (
m

)

 

 

Real Distance
UKF Implementation
EKF Implementation

Figure 5.2: Real Distance(blue), Estimated distance with EKF(black),and
UKF(magenta)
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Figure 5.3: Di�erence between Estimated distance and Real Distance
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5.6 To UKF or not to UKF?

In the previous section we showed a comparison between an EKF and an

UKF implementation. We noticed that the two implementation are almost

the same. This is why unless the system is "very non-linear" the bene�ts of

an UKF implementation are very small. So the question is: to use UKF or

not?

Usually it is better to use UKF when f and/or h are non linear and when

there are di�culties in EKF implementation or poor EKF performances.

Instead, go for a KF implementation if the system is linear (KF is op-

timal if the model is linear); use EKF if the model is non-linear, it ex-

hibits an acceptable performance and the computations are lighter than us-

ing UKF.Finally, consider using others �lters if the model is "strange" (f

and h too non-linear, distribution are e.g. bimodal).

5.7 Filtering the RSSI readings

In indoors, the RSSI readings experience large �uctuations, even when the

robots are static, due to complex propagation phenomena. For a group of

mobile nodes, this instability becomes even harder to handle. Therefore, in

order to �lter those �uctuations, we use a sliding window median �lter.
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Figure 5.4: Sliding window median �lter (k = 5): The median �lter(black)
�lters out the outliers in the raw measurements(red)
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5.8. Final Algorithm

Whenever an RSSI reading is received, the measured value goes through

the �lter that returns the median of the last k measurements. This may a�ect

response time to true variations on the RSSI of moving robots, therefore a

small value of k should be used. The main di�erence between using just a

sliding window and a more complex �lter as the KF is that the latter not

only cleans up the data measurements but also projects these measurements

onto the state estimate.

In Fig. 5.4 we can see an example of the sliding window median �lter with

k = 5. The median �lter �lters out the outliers in the raw measurements.

As you can see this �lters removes all the spikes and gives a smoother curve.

We repeated the comparison between the EKF and UKF implementation

including the Sliding Window Median Filter. In Figure 5.5 we can see that

the error in both EKF and UKF implementations is slightly reduced. This

kind of �lter is extremely simple to implement (a simple vector of k elements).

5.8 Final Algorithm

In this chapter we studied and implemented several �lters. Based on these,

we can now propose a method for the estimation of distances between robots

using RF transmissions, i.e., our RF-adaptive algorithm. In Figure 5.7 you

can see the �nal version of the algorithm. It is composed of three main

blocks:

� The Sliding Window Median �lter applied to the raw RSSI data

� The log-distance path loss model estimator

� The Extended Kalman Filter to estimate the distance between robots

The First block helps us to improve the quality of the raw RSSI mea-

surements. When only an RSSI measurement is received, the algorithm uses

the past channel model and the EKF to estimate the distance. When a ToF

measurement is received we can update the model estimator and at the same

time estimate the distance with the EKF �lter.

Updating the channel model is the most powerful action in this algorithm

because in this way the algorithm adapts its parameters to the environment.

For each robot we will have several parameters that give us the best

approximation of the channel model for every other robots it communicates
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Figure 5.5: Di�erence between EKF and UKF without and with median
window.
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Figure 5.6: Error Distribution in EKF implementations with and without
median window.

Figure 5.7: Final version of the Adaptive RF-Ranging Algorithm
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with. For example if we have two robots in a courtyard and a third in a

building, the robots outside will store two very di�erent channel models, one

for the robot outside and one for the robot inside.
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Chapter 6

Algorithm-Implementation on

a real environment

6.1 Experiment setup

We programmed the nanoLOC devices with the software developed for,

which synchronized the communications with an adaptive TDMA scheme. In

our setup, we used three such units with a communication period of 250ms

(Fig. 6.1a). Consequently, in the absence of communication failures, each

node ranges one di�erent node every 250ms, and receives one communica-

tion from each node between ranges. Those three nodes were then placed on

top of three robots (Fig. 6.1b) in an indoor laboratory ( approx. 20m×6m),

with a small (9.90m × 5.75m) soccer �eld. There, the robots are able to

localize themselves using an omnidirectional camera, which we consider as

our ground-truth distance.

(a) (b)

Figure 6.1: (a) Communication period as seen by node 2: Receives broadcast
from node 1,ranges node 1, receives broadcast from node 3, receives broadcast
from node 1, ranges node 3, receives broadcast from node 3, and repeats.
(b) Robots in the soccer �elds.
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6.2. Five di�erent approaches

Robot 1 and Robot 3 where stopped in each side of the mid-�eld and

robot 2 was moved manually (remote control) to perform the trajectory, see

Fig.6.2.
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Rob 3

Rob 1

Figure 6.2: Soccer �eld where experiments were made: Robot 1 on the top
middle �eld, Robot 3 on the bottom mid-�eld, Robot 2 moving along the
magenta trajectory

6.2 Five di�erent approaches

We logged the data from three experiments containing ground truth, ToF

distances, and RSSI measurements. Then, we post-processed them using �ve

di�erent approaches, since we want to show that our system correctly adapts

to a new communication environment:

1. Using a corridor indoor propagation model with only RSSI

2. Using the pre-calculated lab propagation model with only RSSI

3. Using the online estimator whenever data is available

4. Using the online estimator every second

5. Using the online estimator every ten seconds

In the �rst approach we set both models to the parameters corresponding

to the corridor environment evaluated in the indoor experiment carried out

in Chapter 4. The corridor model is rede�ned in Eq. (6.1). In this way we

want to show how RSSI performs in a standard indoor environment.
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6.3. Results

[
ρ0

α

]
=

[
−37.6455

2.1849

]
(6.1)

In the second approach, the models were set to the parameters corre-

sponding to the lab environment (Eq. (6.2)). In this way, we want to show

the quality of the estimation with a pre-calculated propagation model. Note

that the corridor model is very di�erent from the model estimated in the

�eld for either robot.[
ρ0

α

]
robot1

=

[
−38.1485

1.6505

]
,

[
ρ0

α

]
robot2

=

[
−39.6955

1.1558

]
(6.2)

Finally, the last three approaches aim at testing the adaptability of the

model estimation algorithm to a di�erent environment. Therefore, in spite of

the robots being located in the lab environment, the initial channel parameter

values were set on purpose to the values in Eq. (6.1) corresponding to the

corridor environment.

Note that the behaviour in all three experiments was similar, favouring

their con�dence level. Therefore, only plots from the �rst experiment are

presented. Larger di�erences would be noticeable with sudden changes in

the environment, as when a robot crosses a door and enters a corridor. In

this case, the higher the rate of ToF rangings, the higher the reactivity of

the model adaptation.

6.3 Results

We use an online channel model estimator to improve the accuracy of RSSI-

based distance measurements. However, in order to estimate the true channel

parameters, we would need to take measurements at several distances. In our

case, the robots have access to a small observation window,only, in a certain

frame ∆t. Therefore, the estimated channel will not be the true channel,

but rather a local approximation about a given distance. Despite that, if

we can obtain parameters that approach the true channel locally, then we

can estimate correct distances from the RSSI measurements. In order to

prove the capabilities of our channel estimation algorithm to adapt to the

time-varying channel conditions we have plotted in the 15-sample average of

10(ρ0−medianrssi)/(10α) − dgT. (Fig.6.3 ).
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Figure 6.3: Error imposed by the communication channel model on the
accuracy of RSSI-based measurements ( 10(ρ0−medianrssi)/(10α)−dgT.) : (top)
Robot 1; (bottom) Robot 3

This data represents the error imposed by the communication channel

model on the accuracy of RSSI-based distance measurements. When the

corridor model is used (blue line with no markers), the distance is always

underestimated, i.e. is biased, and since this bias will vary with the environ-

ment it cannot be �ltered. Consequently if we change the environment, the

wrong model will degrade our estimate.

When the lab model is used (grey line with 'o' markers), the results are

substantially improved, the estimation bias tends to oscillate around the zero

error instead of being negative.

The third and fourth approaches ( black line with '+' markers, and ma-

genta line with 'x' markers respectively) produce a result very similar to the

lab model,which implies that the model is locally correct.

The �fth approach (red line with '.' markers) initially is very similar to

the corridor model. This was expected, since it only estimates the model

every ten seconds. Despite that, in the end it behaves very similar to the

lab model, which means that it converged to a locally correct model.
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mean(error)=−0.71946
std(error)=0.85146

mean(error)=0.13313
std(error)=1.1399

mean(error)=0.052893
std(error)=0.9171

mean(error)=0.18662
std(error)=0.99875

mean(error)=0.01847
std(error)=1.3478

Figure 6.4: Error distribution of the estimated distance between robot 1 and
2
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mean(error)=−1.1927
std(error)=1.0129

mean(error)=0.48493
std(error)=2.3984

mean(error)=−0.13414
std(error)=1.4321

mean(error)=−0.34956
std(error)=1.4109

mean(error)=−0.55926
std(error)=1.1715

Figure 6.5: Error distribution of the estimated between robot 2 and 3

The e�ect of these di�erent approaches on the estimated distance can be

seen in Table 6.1 and Table 6.2 , that summarises the results of the three

experiments for each robot. Figures 6.4,and 6.5 present the distribution of

the errors on experiment 1 using the �ve di�erent approaches. As expected

from the previous results, when the robots are using the corridor model,

the kalman �lter produces an error with a large bias. Moreover, when we

compare our online estimator with the lab model, we can still improve on

those results. That can be justi�ed by the usage of the highly accurate

ToF ranging on the data fusion. Finally, by comparing the three approaches
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Appr.1 Appr. 2 Appr. 3 Appr. 4 Appr. 5

Exp 1
mean -0.7195 0.1331 0.0529 0.1866 0.0185

std 0.8515 1.1399 0.9171 0.9988 1.3478

Exp 2
mean -0.8199 0.1033 0.0457 0.1024 0.0431

std 0.7640 0.9319 0.8025 0.8613 0.9024

Exp 3
mean -0.8086 0.0778 0.0394 0.1417 0.0452

std 0.6918 0.8676 0.8075 0.8637 0.8233

Table 6.1: Results from the three experiments - Mean and Std of the esti-
mated distance between Robot 1 and Robot 2 for each approach

Appr.1 Appr. 2 Appr. 3 Appr. 4 Appr. 5

Exp 1
mean -1.1927 0.4849 -0.1341 -0.3496 -0.5593

std 1.0129 2.3984 1.4321 1.4109 1.1715

Exp 2
mean -1.2319 0.3017 -0.1866 -0.3893 -0.5199

std 0.9976 2.7022 1.3593 1.9220 1.2927

Exp 3
mean -1.2279 0.1954 0.0151 -0.1349 -0.6710

std 0.9923 2.329 1.9418 1.8334 1.3242

Table 6.2: Results from the three experiments - Mean and Std of the esti-
mated distance between Robot 3 and Robot 2 for each approach

of the online estimation, we can see that by increasing the number of ToF

ranges we can improve the results estimation. This was expected because

of the high accuracy of ToF when compared with RSSI ranging. However,

we also show that if the medium is constant enough that allows for a small

number of channel estimates, we can still have a good accuracy with RSSI

only. consequently, depending on the conditions the robots are expected

to operate in, we can trade-o� accuracy for bandwidth. If we have a high

number of ToF rangings, we have more accuracy, if we have less ToF rangings

we have less accuracy. Note that each ranging uses 20ms, in which the robots

cannot communicate.

6.3.1 Considerations about Online-Channel-model

In Fig. 6.6 and 6.7 we can see how the channel model changes in all the

presented approaches. Robot 2 estimates online the channel model with

both robot 1 (6.6 ) and Robot 3 (6.7 ). For each �gure we can see plotted

the measured parameters ρ0 and α compared to those of the lab model. As

expected when the 3th approach is used ρ0 and α change very fast and adapt

to better estimate the true channel locally. The 4th and the 5th approaches
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change their parameters slower than the 3th approach but, as can we see,

they converge to the lab model parameters(blues lines).

These �gures represent one of the key factors of this Adaptive RF-ranging

algorithm. Doing an online estimation of the channel model allows us hav-

ing the best approximation of the model without having to worry about the

environment in which we �nd ourselves. If the robot moves from an indoor

environment to outdoors, the algorithm continuously adapts to the environ-

ment. Using longer RF-ranging periods, like the 5th approach( t = 10s) only

degrades the accuracy in rapid changes in the environment, but will give to

us more bandwidth gain.
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Figure 6.6: Comparison between pre-estimated ρ0 (2nd approach) and esti-
mated ρ0 in approaches 3,4,5 between Robot 1 and Robot 2
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Figure 6.7: Comparison between pre-estimated ρ0 (2nd approach) and esti-
mated ρ0 in approaches 3,4,5 between Robot 2 and Robot 3

Chapter 6. Algorithm-Implementation on a real environment 72



Chapter 7

From distance to location

In the previous chapters we have designed and implement an algorithm to

estimate the distance between two nodes. However, it is interesting to note

how accurate the algorithm is in relation to relative location between nodes.

As we said in 2 there are two types of location,relative and absolute. How-

ever, indi�erently by both, there are several localization algorithms based on

Ranging like:

� Triangulation

� Trilateration

� Multi-Lateration

7.1 Triangulation

In trigonometry and geometry, triangulation is the process of determining

the location of a point by measuring angles to it from known points at either

end of a �xed baseline, rather than measuring distances to the point directly

(trilateration). The point can then be �xed as the third point of a triangle

with one known side and two known angles.
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7.1. Triangulation

Figure 7.1: Triangulation may be used to calculate the coordinates of C.
With α, β, BR or the coordinates of A and B known, then the law of sines
can be applied to �nd the coordinates at C

Let's consider the triangle in Fig. 7.1. By knowing the two angles α and

β and the distance AB we can obtain the distance between our node C and

the line joining the vertices A and B, that is the height of the triangle:

AB =
CR

tanα
+

CR

tanβ
(7.1)

Therefore

CR =
AB

1
tanα + 1

tanβ

(7.2)

Using the trigonometric identities tanα = sinα/ cosα and sin(α+ β) =

sinα cosβ + cosα sinβ, this is equivalent to:

CR =
AB sinα sinβ

sin(α+ β)
(7.3)

From this, it is easy to determine the distance of the unknown point

C from either observation point,AR and RB distances, and �nally its full

coordinates.
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7.2. Trilateration

7.2 Trilateration

In geometry, trilateration is the process of determining absolute or relative

locations of points by measurement of distances, using the geometry of cir-

cles, spheres or triangles. In a localization system, the centers of the spheres

are given by coordinates of the reference points, while the radii are the dis-

tances detected by the node compared to the reference points nearby. The

intersection of the spheres thus identi�es the position of the node. In a

reference system installed on a �at surface, such as a �oor of a building,

eliminating the z axis, the problem is simpli�ed to �nding the intersection

of three circles.

Figure 7.2: with z = 0, three circle with center in P1, P2, P3 and radius
r1, r2, r3(distances d, i, j) you can �nd B as intersection of the three circles.
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7.2. Trilateration

We start with the equations for the three spheres:

r2
1 = x2 + y2 + z2, (7.4)

r2
2 = (x− d)2 + y2 + z2, (7.5)

r2
3 = (x− i)2 + (y − j)2 + z2 (7.6)

(7.7)

We need to �nd a point located at (x, y, z) that satis�es all three equations.

First we subtract the second equation from the �rst and solve for x:

x =
r2

1 − r2
2 + d2

2d
. (7.8)

We assume that the �rst two spheres intersect in more than one point,

that is:

d− r1 < r2 < d+ r1. (7.9)

In this case substituting the equation for x back into the equation for the

�rst sphere produces the equation for a circle, the solution to the intersection

of the �rst two spheres:

y2 + z2 = r2
1 −

(r2
1 − r2

2 + d2)2

4d2
. (7.10)

Substituting z2 = r2
1 − x2 − y2 into the formula for the third sphere and

solving for y there results:

y =
r2

1 − r2
3 − x2 + (x− i)2 + j2

2j
=
r2

1 − r2
3 + i2 + j2

2j
− i

j
x. (7.11)

Now that we have the x- and y-coordinates of the solution point, we can

simply rearrange the formula for the �rst sphere to �nd the z-coordinate:

z = ±
√
r2

1 − x2 − y2. (7.12)

Now we have the solution to all three points x, y and z. Because z is

expressed as the positive or negative square root, it is possible to get zero,

one or two solutions to the problem.

This last part can be visualized as taking the circle found from intersect-

ing the �rst and second sphere and intersecting that with the third sphere.

Chapter 7. From distance to location 76



7.3. Multi-lateration

If that circle falls entirely outside or inside of the sphere, z is equal to the

square root of a negative number: no real solution exists. If that circle

touches the sphere on exactly one point, z is equal to zero. If that circle

touches the surface of the sphere at two points, then z is equal to plus or

minus the square root of a positive number.

7.3 Multi-lateration

As can be seen from its name the multilateration is the generic case of tri-

lateration in which can have more than just 3 points of reference. In a

localization system in which the measures of distance with respect to the

reference points are subject to errors, it can be very useful to use this calcu-

lation technique, which allows taking into account the measures compared

to all the reference points detected by the mobile node.

Lets consider a mobile node that collects n distances to n nodes. For

simplicity let us consider that the robots move in the same plane with z=0.

This results in a system of n equations.Each equation is a circle with center

(xi, yi) (i-th node) and radius ri (distance between the mobile node and the

i-th node). 
(x1 − x)2 + (y1 − y)2 = r2

1

(x2 − x)2 + (y2 − y)2 = r2
2

...

(xn − x)2 + (yn − y)2 = r2
n

(7.13)

therefore, if we subtract the last equation to the others n − 1 equation you

obtain:


x2

1 − x2
n − 2(x1 − xn)x+ y2

1 − y2
n − 2(y1 − yn)y = r2

1 − r2
n

x2
2 − x2

n − 2(x2 − xn)x+ y2
2 − y2

n − 2(y2 − yn)y = r2
2 − r2

n
...

x2
n−1 − x2

n − 2(xn−1 − xn)x+ y2
n−1 − y2

n − 2(yn−1 − yn)y = r2
n−1 − r2

n

(7.14)

Now if we re-order the therms inside the equation we can solve the system

in the form Ax = b where:
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A =


2(x1 − xn) 2(y1 − yn)

2(x2 − xn) 2(y2 − yn)
...

...

2(xn−1 − xn) 2(yn−1 − yn)

 , b =


x2

1 − x2
n + y2

1 − y2
n + r2

n − r2
1

x2
2 − x2

n + y2
2 − y2

n + r2
n − r2

2
...x2
n−1 − x2

n + y2
n−1 − y2

n + r2
n − r2

n−1


(7.15)

Finally we can solve the system with the formula x = (ATA)−1AT b where

x is a vector with the abscissa and ordinate (xm, ym). If measurements are

without errors, all the circles touch in one point. In a more realistic case

all the measurements have an error and most of the circles intersect in more

than one point creating an area of possible solutions. This algorithm gives

the most likely solution.

7.4 Multidimensional Scaling

The techniques we have seen so far estimate the position of each mobile node

Mn independently, for n = 1, . . . N . In these techniques, the relationship be-

tween the ensemble of the nodes was neglected. In some cases, it is desider-

able to estimate the position of multiple nodes jointly. We want to estimate

the spatial topology of the entire network of nodes simultaneously. This

problem may be e�ciently solved by using the so called Multi-Dimensional

Scaling (MDS) Algorithm.

MDS is a modern technique for visualizing data in a multi-dimensional

space. It is a means of visualizing the level of similarity of individual cases

of a dataset. Applications include scienti�c visualisation and data mining

in �elds such as cognitive science, information science, psychophysics, psy-

chometrics, marketing and ecology. New applications arise in the scope of

autonomous wireless nodes that populate a space or an area. MDS uses pair-

wise "similarity" or "dissimilarity" measures. It orders multidimensional ob-

jects by mutual similarity (special case of ordination). The algorithm takes

as input data pairwise (dis)similarities (e.g. distances) and returns a set of

coordinates(a local map) (Fig. 7.4).

Given N nodes in two (or three dimensions), and estimated pairwise

distances ˆδl,q between nodes l and q, MDS recovers the nodes coordinates

xn = [xn, yn]T minimizing the mismatch between the estimated distances
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MDS
Pairwise Distances Local map

Figure 7.3: Multidimensional Scaling

ˆδl,q and the distances dl,q(xl, xq) corresponding to the unknown coordinates

xn, n = 1, . . . , N . The mismatch is called Stress Function.

Given exact range measurements, the entire spatial topology of the net-

work is perfectly recovered. The original distances are preserved exactly. It

is important to note that the coordinates are not "absolute", but "relative".

They are recovered up to a distance preserving (isometric) transformation.

Such transformations are called "rigid motions": rotations, re�ections ( or-

thogonal matrices) and translations. They can be computed in closed-form

based on the known locations of at least three reference nodes (or 4, in 3D). In

practice, not all pairwise distances are known. To obtain the complete map,

smaller maps are computed separately and stitched together by performing

rigid motions. We are only allowed to perform translations, rotations and

�ips.

Figure 7.4: Stitching local maps together

If the estimated distances are free of errors, the result will be the exact

map. However, we now that range estimation is subject to very large er-

rors. Preserving the exact distances is not possible (e.g. incompatible set

of distances). Therefore, the metric assumption becomes unnecessary. and

di�erent transformations of the distance may be used. Estimated distances
ˆδl,q are replaced by pseudo-distances f( ˆδl,q).

One approach is Ordinal Multi-Dimensional Scaling. Instead of attempt-

ing to preserve the exact distances between nodes, it tries to preserve their
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ordering, only, using a monotonically increasing distance mapping function

f (called pseudo-distance or disparity). f can be determined experimen-

tally (e.g. by using isotonic regression, monotone splines, etc.). It achieves

better performance than the metric MDS (and lower stress values) Another

approach is Weighted MDS where accuracies rn are assigned to each node

n's position. Nodes are then classi�ed as follows:

� A anchor nodes, perfect knowledge of their location rn = 1

� B unknown nodes, imperfect or no a priori position information 0 <=

rn < 1

� the total number of nodes is N = A+B

We can generalize if we consider that J estimates δ̂jl,q, j = 1, . . . , J are avail-

able for each distance dl,q.

7.4.1 Adjusting the relative coordinates

So far, we discussed the relative position of a team of mobile nodes with

no physical anchor. However, for the MDS algorithm, a small perturbation

in the distance matrix would bring totally di�erent results for the coordi-

nates X. One of the causes for such behaviour is the way MDS sorts out

certain ambiguities that are inherent to the relative localization process, e.g.

eigenvector switching causes map �ips. Since the nodes position is only re-

covered up to rigid motion, orientation of the team cannot be determined

just with pair-wise distances, neither can symmetry relationships. To obtain

relative positions estimates that vary smoothly, we carry out the follow-

ing adjustments of the coordinates provided by the MDS (considering only

the result presented in 2D space, i.e. m = 2) , as suggested in [2]. Let

R = [rij ] = (r0, r1, . . . , rn−1) denote the coordinates determined with MDS

and S = [si,j ]n×2 = (s0, s1, . . . , sn−1) denote the �nal coordinates. We con-

sider the three nodes with the smallest IDs as being local references (here in

referred as 0,1, and 2)(Fig. 7.5a). The coordinates adjustment includes shift

(Fig. 7.5b), rotation (Fig. 7.5c) and re�ection (Fig. 7.5d) so that node 0

is at the origin point (0,0), node 1 on the positive y-axis and node 2 on the

right half-plane. Thus, we �rst let s0 = (0, 0), and compute the clockwise

angle α from vector (r̄1 − r̄0) to y-axis, as in Equation 7.16 deducing an
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Figure 7.5: Adjusting Coordinates: a) Positions given by MDS; b) Positions
after shifting node 0 to origin ; c) Positions after rotation of node 1 ; d)
Position after �ipping node 2 to the right plane

intermediate position T. Finally, we check if t2 is on the right half-plane,i.e.

if node 2 has a positive x-coordinate. If so, S = T , else we re�ect T over the

vertical axis as in Eq. 7.17.

(t0, t1, t2, . . . , tn−1) = (s0, r1−r0, r2−r0, . . . , rn−1−r0)×

(
cos(α) − sin(α)

sin(α) cos(α)

)
(7.16)

S =


T, if t2 is in the right plane

T ×

−1 0

0 1

 , otherwise
(7.17)

7.5 Implementation and Results

In Chapter 6 we showed the implementation and the results of our ranging

algorithm. In that experiment we programmed 3 devices: Robot 1 and Robot

3 were stopped in each side of a mid-�eld and robot 2 was moved manually

(remote control) to perform the trajectory colored in magenta in Fig. 6.2 .

We used Classic MDS algorithm on MATLAB with our collected data.

Since we know Robot 1 and 3 positions, we can shift,rotate and �ip the

resulting map from MDS. In Figures 7.6,7.7,7.8,and 7.9 we plot only the

�rst meters of robot 2 path, to better understand how MDS work, and how

big is the error in the relative localization. For each �gure we can see:

� Blue line: the real path previously covered by Robot 2
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� Red and Green Circle: Respectively new estimated and ground truth

position of Robot 1

� Red and Green dot: Respectively new estimated and ground truth

position of Robot 3

� Red and Green x: Respectively new estimated and ground truth posi-

tion of Robot 2

In Figure 7.6 we can see the the �rst part of the path covered by Robot 2.

As we can see there are several estimated positions with x coordinate = 0.

This happens because the two estimated distances δ2,1 and δ2,3 sometimes

do not intersect, so no solution is given in 2D (only 1D),so x coordinate = 0.
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Est. Robot2
gT. Robot 3
Est. Robot3

Figure 7.6: Estimated and real position of Robot 2 (red and green) at steps
1-8

In �g. 7.7 we can see the second part of the path: the estimated positions

are near the real position but there is a visible error (about 1,2 meters). The

same things happens In �g. 7.8, and �g. 7.9 where the error increases.
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Figure 7.7: Estimated and real position of Robot 2 (red and green) at steps
9-40
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Figure 7.8: Estimated and real position of Robot 2 (red and green) at steps
41-60
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Figure 7.9: Estimated and real position of Robot 2 (red and green) at steps
61-80
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Figure 7.10: Error between Real and Estimated Distance in MDS

Finally �g. 7.10 shows the error between real and estimated distance of

robot 2. The mean error is µ = 1.2321 with a std = 0.6662, but there are

some considerations to do:

1. MDS works better with a larger number of nodes. Here in our im-

plementation we considered 3 nodes, only. With more nodes, MDS

improves signi�cantly and the error decreases.
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2. EKF gives to us two fundamental values: The estimated distance and

the covariance. With the covariance we have an important tool that

helps understanding how much we can trust in our estimation. This

leads us to be able to use Weighted MDS. However, In this particular

case we cannot implement it because our con�gurations have two an-

chors nodes in a known position, and only one moving. The Distance

Matrix and the Weight matrix should be:

D =

 0 δ̂1,2 5.75

δ̂2,1 0 δ̂2,3

5.75 δ̂3,2 0

 ,W =

 0 σ1,2 1

σ2,1 0 σ2,3

1 σ3,2 0

 (7.18)

where δ̂1,2, σ1,2(δ̂2,3, σ2,3) are the estimated distance and covariance

from EKF �lter between Robot 1 and Robot2 (Robot 3). In this case,

the weighted MDS will return exactly the same result as classic MDS

because two of three nodes have weight equal to 1.
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Chapter 8

Conclusion and future work

In this work, we have successfully combined the ToF and RSSI ranging to per-

form an online estimation of the indoor log-distance path loss model, which

together with an EKF was used to track distance between robots. Results

show that by using our online estimator, we can approach the performance of

a pre-calibrated channel model, with the advantage of supporting dynamic

changes on the communication environment. Moreover, we show that it is

possible to dramatically reduce the number of ToF ranges, with negligible

accuracy loss. This reduction is only possible if the communication chan-

nel is stable for large periods of time, however, it translates in bandwidth

gain. Some issues still remain open, speci�cally, the optimization of the time

interval between ranges.

8.1 Future work

Since some issues still remain open, we can brie�y describe some future

works:

� Implementation with a team of robots ( e.g. 5 ) in a dynamic environ-

ment: corridor, indoor, outdoor. This implementation will show the

real capabilities of the developed algorithm because we will be able to

show how it dynamically adapts to the rapid changes of the environ-

ment and because, as said before, EKF returns the covariance matrix

that should be used in the Weighted MDS to improve the localization

measurements.
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� Implementation of a Kalman �lter(or others) to reduce position error

in MDS estimation. This type of �ltering will reduce jumps in the

estimation coordinates, creating a smoother trajectory of the robots.

� Optimize the time period of ToF-ranges. We will study how the accu-

racy decreases using longer time periods. In this way we will able to

set the minimum time interval between ToF Ranges to have a certain

QoS.
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Appendix A

Middle-ware for teams of

mobile robots

Di�erent middle-ware layers have been developed to help the task of pro-

gramming teams of autonomous agents, providing logical abstractions to

support cooperation. Unfortunately, the actual use of communication and

synchronization by the speci�c middle-ware layer may impose di�erent delays

and, in the end, may cause the middle-ware to fail supporting the require-

ments referred above.

Therefore, to support such requirements e�ciently, a speci�c software in-

frastructure was developed for CAMBADA (Cooperative Autonomous Mo-

bile Robots with Advanced Distribuited Architecture) middle-size robotic

soccer team of the University of Aveiro, Portugal, which is composed by sev-

eral components Two main components are: a middleware based on a Real-

Time Database (RTDB) and a wireless communication protocol based on

WiFi and implementing a Recon�gurable and Adaptive TDMA(RA-TDMA).

The following sections may be useful for understanding the middleware at

the base of this dissertation and refer to the work done by Frederico Santos,

Luis Almeida, Luis Seabra Lopes, and Pauolo Pedreias from University of

Coimbra,and Aveiro, Portugal ([18],[17] ).

A.1 The Real-Time Database

A replicated blackboard called Real-Time Database (RTDB) was developed,

which holds the state data of each agent together with local images of the
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state data shared by other team members. A specialized communication

systems triggers the required transactions in the background at an adequate

rate to guarantee the refresh of those local images. In the robotic soccer

case, the information within the RTDB holds the absolute positions and

postures of all team members, as well as the position of the ball, among

other less relevant data. This approach allows a robot to easily use the other

robots sensing capabilities to complement its own. For example, if a robot

temporarily loses track of the ball it might use the position of the ball as de-

tected by another robot. this is done without explicit use of communication,

abstracting away the data distribution itself.

A.1.1 RTDB Implementation

The RTDB is fully implemented in ANSIC over several blocks of shared

memory. One of the blocks is private area for local information, only, i.e.,

which is not to be disseminated to the others robots; and the other blocks

( one corresponding to each team member) are the shared area with global

information. One of the shared blocks is written by the agent itself ( read-

write), whose data is sent to the others and could also be used for interpro-

cess communication, while the remaining blocks(read-only) are used to store

the information received from the others agents. The allocation of shared

memory is carried out by means of a speci�c function call, DBinit(), called

once by every process that needs access to the RTDB. The memory allo-

cation is executed by the �rst process to use such call, only. Subsequent

calls just return the shared memory block handler and increment a process

count. Conversely, the memoery space used by the RTDB is freed using the

function call DBfree() that decreases the process count and, when zero, re-

lease the shared memory. The RTDB is accessed concurrently by processes

that capture and process images and implement complex behaviours, and

by the periodic task that manages the communication with the other robots

through the wireless interface. All processes access the RTDB, with local

non-blocking function calls, DBput() and DBget() that allow writing and

reading records, respectively. DBget() further requires the speci�cation of

the agent from which the item to be read belongs to, in order to identify the

respective area in the database.

Chapter A. Middle-ware for teams of mobile robots 89



A.2. Adaptive TDMA protocol

A.1.2 Internal Structure

The RTDB is organized in a set of records plus a set of associated data

blocks. The records contain the �elds referred in �g. namely an identi�er, a

pointer to the respective data block, the size of that block, a timestamp for

computing the age of the data, the update period re�ecting the dynamism

of the respective item, and a control �eld for data consistency. To enforce

data consistency during concurrent accesses a double data block is used for

each record. With this scheme any write operation on that item is made on

the block that is free at that instant. This method ensures consistent data

retrieval, as long as there is only one process updating the same item.

A.2 Adaptive TDMA protocol

The basis of the communication protocol is a Time-Division Multiple-Access

(TDMA). However, since the load in the network cannot be totally con-

trolled by the team, the only alternative left is to adapt to the current chan-

nel conditions and reduce access collisions among team members. This is

achieved using an adaptive TDMA transmission control as proposed in [22].

The TDMA round period is set o�-line and called team update period(Ttup),

setting the responsiveness and the temporal resolution of the global com-

munication. It is, thus, an application requirement. Ttup is divided equally

by the number of the team members generating the TDMA slot structure.

With equal slots, if the agents transmit at the beginning of their slots, their

transmission are separated as much as possible. The target inter-slot period

can be computed as

Txwin =
Ttup
N

(A.1)

where N is the number of team agents. Normally each robot will only use a

fraction of its slot and the unused part constitutes leeway to accommodate

the uncontrolled load. When the respective TDMA slot comes, all currently

scheduled transmissions are piggybacked on one single 802.11 frame and sent

to the channel. The presence of uncontrolled load may lead to a delay (δ) of

the packet reception. Each agent uses this delay to compute its next trans-

mission instant, thus adapting the e�ective TDMA round period (Figure

A.1).
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Figure A.1: Adaptive TDMA round

when a robot j transmits at time tj,now it sets its own transmission instant

tj,next = tj,now + Ttup,i.e. one round after. However, it continues monitoring

the arrival of the frames from the others robots. When the frame from robot

i arrives, the delay δi of the e�ective reception instant with respect to the

expected instant is calculated. If this delay is within a validity window [0,∆],

with ∆ being a global con�guration parameter, the next transmission instant

is delayed according to the longest such delay among the frames received in

one round (Fig. A.1),i.e.,

tj,next = tj,now + Ttup +max(δi)i=0...N−1,i 6=j∧δi≤∆ (A.2)

On the other hand, if the reception instant is outiside that validity win-

dow, then δi is set to 0 and does not contribute to update ti,next.

The practical e�ect of the adaptation in the protocol is that the transmis-

sion instant of a frame in each round may be delayed up to ∆ with respect

to the prede�ned round period Ttup. Therefore, the e�ective round period

will vary within [Ttup, Ttup + ∆].

A.3 Hardware: nanoLOC Development Kit 3.0

One of the proposal is to do not use any extra sensors except that the

transceiver for the communications. For this reason we use the nanoLOC

Development Kit 3.0. It is a complete, easy to use set of tools for evaluat-

ing, prototyping and developing applications based on the nanoLOC TRX

Transceiver.

The nanoLOC TRX Transceiver is a highly integrated mixed signal chip

o�ering robust wireless communication and ranging capabilities. It utilizes

Chirp Spread Spectrum (CSS), a unique wireless communication technology

developed by nanotron for the 2.4 GHz ISM band.

The nanoLOC Development Kit 3.0 is composed of 5 nanoLOC DK
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boards. Each board, wich uses the nanoLOC TRX Transceiver and the

ATmega128L microcontroller1, is designed for location and ranging applica-

tions.

Figure A.2: NanoLOC Development Kit 3.0

1A low power CMOS 8-bit microcontroller based on the AVR enhanced RISC architec-
ture with 128 Kb Flash and 4 Kb SRAM. This microcontroller drives the nanoLOC TRX
Transceiver via the SPI interface. See also Atmel ATmega128L datasheet available from
Atmel.
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Figure A.3: NanoLOC Device
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Appendix B

Matlab Code

B.1 Chatpter 4

B.1.1 Maximum likelihood estimator (MLE)

function [ X ] = modelMLE( distance, rssi )

notBadDistances=distance>0;

notBadRSSI=rssi~=−35;
notBadDistances=notBadDistances&notBadRSSI;

goodDistances=distance(notBadDistances);

goodRSSI=rssi(notBadDistances);

A = [ ones(length(goodDistances(:)),1), −10*log10(goodDistances(:))];
b = goodRSSI(:);

X = pinv(A'*A)*A'*b;

end

B.1.2 Our Model estimator: 1point-MLE

function [ X ] = ourModelEstimator(X,measuredD,measuredRSSI)

%%

n = 10;

realdist = logspace(0,1,n)';
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A = [ ones(n,1), −10*log10(realdist)];
b = X(1) − 10 *X(2)* log10(realdist);

A = [ A ; [ 1 −10*log10(measuredD)]];
b = [ b ; measuredRSSI];

X = pinv(A'*A)*A'*b;

end

B.2 Chapter 5

B.2.1 EKF implementation

function [ X, S ] = KF_predict( X, S, A, R )

X = A*X;

S = A*S*A' + R;

end

function [ X,S ] = KF_measure_distance( X,S,Q,measured_distance, measured_rssi,PLM, bias )

H = [1 0 ; −10*PLM(2)/(X(1)*log(10)) 0];

z = [measured_distance ; measured_rssi];

K = S*H'*pinv(H*S*H' + Q);

X = X + K*(z − hd_r(X,bias,PLM(1),PLM(2)));

S = (eye(2) − K*H)*S;

end

function [ X,S ] = KF_measure_RSSI( X,S,Q, measured_rssi,PLM, bias )

H = [−10*PLM(2)/(X(1)*log(10)) 0];

z = [measured_rssi];

K = S*H'*pinv(H*S*H' + Q);

X = X + K*(z − hr(X,bias,PLM(1),PLM(2)));

S = (eye(2) − K*H)*S;

end
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function [hs] = hd_r(s,b,ro0,alpha)

hs = [s(1) − b(1) ; ro0 − b(2) − 10*alpha*log10(s(1))];

end

function [hs] = hr(s,b,ro0,alpha)

hs = [ ro0 − b(2) − 10*alpha*log10(s(1))];

end

B.2.2 UKF implementation

function [x,P]=ukf(fstate,x,P,hmeas,z,Q,R)

% UKF Unscented Kalman Filter for nonlinear dynamic systems

% [x, P] = ukf(f,x,P,h,z,Q,R) returns state estimate, x and state covariance, P

% for nonlinear dynamic system (for simplicity, noises are assumed as additive):

% x_k+1 = f(x_k) + w_k

% z_k = h(x_k) + v_k

% where w ~ N(0,Q) meaning w is gaussian noise with covariance Q

% v ~ N(0,R) meaning v is gaussian noise with covariance R

% Inputs: f: function handle for f(x)

% x: "a priori" state estimate

% P: "a priori" estimated state covariance

% h: fanction handle for h(x)

% z: current measurement

% Q: process noise covariance

% R: measurement noise covariance

% Output: x: "a posteriori" state estimate

% P: "a posteriori" state covariance

%

L=numel(x); %numer of states

m=numel(z); %numer of measurements

alpha=1e−3; %default, tunable

ki=0; %default, tunable

beta=2; %default, tunable

lambda=alpha^2*(L+ki)−L; %scaling factor

c=L+lambda; %scaling factor

Wm=[lambda/c 0.5/c+zeros(1,2*L)]; %weights for means

Wc=Wm;

Wc(1)=Wc(1)+(1−alpha^2+beta); %weights for covariance

c=sqrt(c);

X=sigmas(x,P,c); %sigma points around x
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[x1,X1,P1,X2]=ut(fstate,X,Wm,Wc,L,Q); %unscented transformation of process

if(x1(1)<0)

x1(2)=−x1(2);
x1(1)=−x1(1);

end

for ii=1:length(X1)

if(X1(1,ii)<0)

X1(2,ii)=−X1(2,ii);
X1(1,ii)=−X1(1,ii);

end

end

[z1,Z1,P2,Z2]=ut(hmeas,X1,Wm,Wc,m,R); %unscented transformation of measurments

P12=X2*diag(Wc)*Z2'; %transformed cross−covariance
K=P12*pinv(P2);

x=x1+K*(z−z1); %state update

P=P1−K*P12'; %covariance update

function [y,Y,P,Y1]=ut(f,X,Wm,Wc,n,R)

%Unscented Transformation

%Input:

% f: nonlinear map

% X: sigma points

% Wm: weights for mean

% Wc: weights for covraiance

% n: numer of outputs of f

% R: additive covariance

%Output:

% y: transformed mean

% Y: transformed smapling points

% P: transformed covariance

% Y1: transformed deviations

L=size(X,2);

y=zeros(n,1);

Y=zeros(n,L);

for k=1:L

Y(:,k)=f(X(:,k));

y=y+Wm(k)*Y(:,k);

end

Y1=Y−y(:,ones(1,L));
P=Y1*diag(Wc)*Y1'+R;
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function X=sigmas(x,P,c)

%Sigma points around reference point

%Inputs:

% x: reference point

% P: covariance

% c: coefficient

%Output:

% X: Sigma points

A = c*chol(P)';

Y = x(:,ones(1,numel(x)));

X = [x Y+A Y−A];

B.2.3 Window Median Filter implementation

function [window]=window_push(window,sample,size)

window = [sample;window];

window = window(1: size);

function [ val ] = window_pop( window,ignore,type )

f=find(window~=ignore);

if(isempty(f))

val=0;

return

end

switch(type)

case 'mean'

val=mean(window(f));

case 'medi'

val=median(window(f));

end

end
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List of acronyms

RF Radio-Frequency :

Although radio frequency is a rate of oscillation, the term "radio

frequency" are also used as a synonym for radio,i.e., to describe the

use of wireless communication

ToF Time-of-Flight :

describes a variety of methods that measure the time that it takes

for an object, particle or acoustic, electromagnetic or other wave to

travel a distance through a medium.

RSSI Received Signal Strength Indicator :

In telecommunications, Received Signal Strength Indicator is a

measurement of the power present in a received radio signal.

UWB Ultra Wide Band :

is a radio technology which may be used at a very low energy level

for short-range, high-bandwidth communications using a large

portion of the radio spectrum.

ToA Time-of-arrival :

is the travel time of a radio signal from a single transmitter to a

remote single receiver. ToA uses the absolute time of arrival at a

certain base station

TDoA Time-Di�erence-of-Arrival :

uses measured time di�erence between departing from one and

arriving at the other station.

U.S. ultrasound :

Ultrasound is an oscillating sound pressure wave with a frequency

greater than the upper limit of the human hearing range.
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RIPS Radio Interferometric Positioning System :

The Radio Interferometric Positioning System (RIPS) utilizes

standard MICA2 motes for self localization. The technique relies

on a pair of nodes emitting radio waves simultaneously at slightly

di�erent frequencies.

AoA Angle of arrival :

Angle of arrival measurement is a method for determining the

direction of propagation of a radio-frequency wave incident on an

antenna array.

MLE Maximum-Likelihood Estimator :

is a method of estimating the parameters of a statistical model.

When applied to a data set and given a statistical model,

maximum-likelihood estimation provides estimates for the model's

parameters.

LSE Least Squares Estimator :

The method of least squares is a standard approach to the

approximate solution of overdetermined systems, i.e., sets of

equations in which there are more equations than unknowns.

"Least squares" means that the overall solution minimizes the sum

of the squares of the errors made in the results of every single

equation.

Std. Standard Deviation :

In statistics and probability theory, the standard deviation

(represented by the Greek letter sigma, σ) shows how much

variation or dispersion from the average (mean, also called

expected value) exists

KF Kalman Filter :

is an algorithm that uses a series of measurements observed over

time, containing noise (random variations) and other inaccuracies,

and produces estimates of unknown variables that tend to be more

precise than those based on a single measurement alone.

EKF Extended Kalman Filter :

is the nonlinear version of the Kalman �lter which linearizes about

an estimate of the current mean and covariance.
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UKF Unscented Kalman Filter :

A nonlinear Kalman �lter which shows promise as an improvement

over the EKF.

GRV Gaussian random variable :

A random variable with a Gaussian distribution

UT Unscented Transformation :

The Unscented Transform (or UT) is a mathematical function used

to estimate the result of applying a given nonlinear transformation

to a probability distribution that is characterized only in terms of a

�nite set of statistics.

MDS Multi-Dimensional Scaling :

is a modern technique for visualizing data in a multi-dimensional

space. It is a means of visualizing the level of similarity of

individual cases of a dataset. Used also in localization

101



Bibliography

[1] Traian E Abrudan, Azadeh Haghparast, and Visa Koivunen. Time

synchronization and ranging in ofdm systems using time-reversal.

[2] Hongbin Li, Luis Almeida, Zhi Wang, and Youxian Sun. Relative posi-

tions within small teams of mobile units. In Mobile Ad-Hoc and Sensor

Networks, pages 657�671. Springer, 2007.

[3] Luis Oliveira, Hongbin Li, Luis Almeida, and Traian E Abrudan. Rssi-

based relative localisation for mobile robots. Ad Hoc Networks, 2013.

[4] Traian E Abrudan, Lu�s M Paula, Joao Barros, Joao Paulo Silva Cunha,

and NB Carvalho. Indoor location estimation and tracking in wireless

sensor networks using a dual frequency approach. In IEEE International

Conference on Indoor Positioning and Indoor Navigation (IPIN), 2011.

[5] Paolo Barsocchi, Stefano Lenzi, Stefano Chessa, and Francesco Furfari.

Automatic virtual calibration of range-based indoor localization sys-

tems. Wireless Communications and Mobile Computing, 12(17):1546�

1557, 2012.

[6] Mohamed Laaraiedh, Lei Yu, Stephane Avrillon, and Bernard Uguen.

Comparison of hybrid localization schemes using rssi, toa, and tdoa. In

Wireless Conference 2011-Sustainable Wireless Technologies (European

Wireless), 11th European, pages 1�5. VDE, 2011.

[7] David Macii, Alessio Colombo, Paolo Pivato, and Daniele Fontanelli.

A data fusion technique for wireless ranging performance improvement.

2013.

[8] Marco Avvenuti. Localization in wsn. Pervasive and Sensor Network

Systems, 2012.

102



[9] In Jae Myung. Tutorial on maximum likelihood estimation. Journal of

Mathematical Psychology, 47(1):90�100, 2003.

[10] Sebastian Thrun, Wolfram Burgard, Dieter Fox, et al. Probabilistic

robotics, volume 1. MIT press Cambridge, 2005.

[11] James V Candy. Bayesian signal processing: Classical, modern and

particle �ltering methods, volume 54. John Wiley & Sons, 2011.

[12] Irene Markelic and William Paley. Kalman �lter tutorial.

[13] Eric A Wan and Rudolph Van Der Merwe. The unscented kalman �lter

for nonlinear estimation. In Adaptive Systems for Signal Processing,

Communications, and Control Symposium 2000. AS-SPCC. The IEEE

2000, pages 153�158. IEEE, 2000.

[14] Ingwer Borg. Modern multidimensional scaling: Theory and applica-

tions. Springer, 2005.

[15] Duke Lee. Localization using multidimensional scaling (LMDS). PhD

thesis, UNIVERSITY OF CALIFORNIA, 2005.

[16] Luis Oliveira, Luis Almeida, and Frederico Santos. A loose synchroni-

sation protocol for managing rf ranging in mobile ad-hoc networks. In

RoboCup 2011: Robot Soccer World Cup XV, pages 574�585. Springer,

2012.

[17] Frederico Santos, Luís Almeida, and Luís Seabra Lopes. Self-

con�guration of an adaptive tdma wireless communication protocol for

teams of mobile robots. In Emerging Technologies and Factory Au-

tomation, 2008. ETFA 2008. IEEE International Conference on, pages

1197�1204. IEEE, 2008.

[18] Frederico Santos, Lu�s Almeida, Paulo Pedreiras, and Lu�s Seabra

Lopes. A real-time distributed software infrastructure for cooperating

mobile autonomous robots. In Advanced Robotics, 2009. ICAR 2009.

International Conference on, pages 1�6. IEEE, 2009.

[19] Luis Oliveira, Carmelo Di Franco, Traian E. Abrudan, and Luis

Almeida. Rf-based ranging for mobile robots: Using time-of-�ight and

rssi for channel estimation. 2nd PhD. Studends conference in electrical

and computer engineering (StudECE 2013), 2013.

103



[20] Luis Oliveira, Carmelo Di Franco, Traian E. Abrudan, and Luis

Almeida. Fusing time-of-�ight and received signal strength for adap-

tive radio-frequency rangin. In ICAR 2013. to appear. IEEE, 2003.

[21] Nanotron. nanoloc development kit. http://www.nanotron.com/EN/

PR_nl_dev_kit.php, 2010.

[22] Frederico Santos, Luís Almeida, Paulo Pedreiras, L Seabra Lopes, and

Tullio Facchinetti. An adaptive tdma protocol for soft real-time wireless

communication among mobile autonomous agents. In Proc. of the Int.

Workshop on Architecture for Cooperative Embedded Real-Time Sys-

tems, WACERTS, volume 2004, pages 657�665, 2004.

104


