
J. Fluid Mech. (2016), vol. 790, pp. 523–552. c© Cambridge University Press 2016
This is an Open Access article, distributed under the terms of the Creative Commons Attribution
licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and
reproduction in any medium, provided the original work is properly cited.
doi:10.1017/jfm.2016.18

523

Mode selection in trailing vortices: harmonic
response of the non-parallel Batchelor vortex

Francesco Viola1, Cristobal Arratia1,2 and François Gallaire1,†
1Laboratory of Fluid Mechanics and Instabilities, École Polytechnique Fédérale de Lausanne,

Lausanne, CH-1015, Switzerland
2Departamento de Física, FCFM, Universidad de Chile, Casilla 487-3, Santiago, Chile

(Received 3 March 2015; revised 22 October 2015; accepted 6 January 2016;
first published online 9 February 2016)

In the present study, the response of model trailing vortices subjected to a harmonic
forcing is studied. To this purpose, a globally stable non-parallel Batchelor vortex is
considered as the baseflow. Direct numerical simulations (DNS) show that a large
variety of helical responses can be excited and amplified through the domain when a
harmonic inlet forcing is imposed. The spatial shape of the responses strongly depends
on the forcing frequency, with the appearance of modes with progressively higher
azimuthal wavenumber m as the frequency increases. The mode-selection mechanism
is shown to be directly connected to the local stability properties of the flow, and is
simultaneously investigated by a WKB (Wentzel, Kramers, Brillouin) approximation in
the framework of weakly non-parallel flows and by the global resolvent approach. In
addition to the excellent agreement between the two (local and global) approaches for
the computation of the linear response to harmonic forcing at the inlet, the usual WKB
analysis is extended to a suitably chosen type of harmonic body forcing, showing
also good agreement with the corresponding global results. As expected, the gain of
the nonlinear response is significantly lower than that of the linear response, but the
mode selection observed in the DNS as a function of the forcing frequency can be
predicted fairly accurately by the linear analysis. Finally, by comparing the linear and
nonlinear results in terms of energy content for different m, we suggest that the origin
of the meandering observed in trailing-vortex experiments could be due to a nonlinear
excitation stemming consistently at m= 1 from the competition between the leading
linear modes.

Key words: absolute/convective instability, vortex dynamics, vortex instability

1. Introduction
In aeronautics, trailing vortices occur behind the wing of an aircraft due to the

variation of the lift along the wing span. These vortices are characterized by strong
axial velocity and relatively small wake deficit, which is recovered downstream due
to the positive axial pressure gradient induced by the slowing down of the tangential
motion caused by viscous effects. The analysis of their stability with respect to

† Email address for correspondence: francois.gallaire@epfl.ch
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infinitesimal disturbances is important to better understand their lifetime as well as
contrail formation. The tip vortices must be accounted for in the proper evaluation of
aerodynamic loads and the induced drag, which represents approximately one third
of the total drag of a civil aircraft. Its reduction, even by a small percentage, would
correspond to a significant decrease in fuel consumption. Furthermore, the persistence
of the trailing wake shed by an aircraft represents a source of risk for aircraft that
follow in its wake, especially in takeoff and landing operations. For this reason, the
minimum separation between aircraft in different operating conditions is prescribed
by the International Civil Aviation Organization (ICAO).

Batchelor (1964) derived an asymptotic solution for trailing vortices by adopting
boundary layer assumptions in incompressible axisymmetric Navier–Stokes equations,
which rely on slow variation of the flow in the streamwise direction. This solution is
commonly referred to as a Batchelor vortex, which in dimensional variables (r∗, x∗)
reads

U∗x (r
∗, x∗)∼U∞ + (Uc(x∗)−U∞)e−(r

∗/R(x∗))2,

U∗θ (r
∗, x∗)∼C0

1− e−(r∗/R(x∗))2

r∗
,

 (1.1)

where U∗x and U∗θ are the axial and azimuthal velocity components, and U∞ is
the free-stream velocity; Uc(x∗) and C0 are respectively the axial velocity at the
centreline and the circulation divided by 2π, and R(x∗) is the vortex radius at the
streamwise position x∗. For large Reynolds number, Re = U∞R(0)/ν, the radial
velocity U∗r (r

∗, x∗) ∼ U∞/Re, which is negligible at leading order and results in a
slow evolution of the flow in the streamwise direction. This allowed Batchelor (1964)
to determine analytically the asymptotic streamwise evolution of R(x∗) and Uc(x∗).

At a given downstream location, (1.1) can be made non-dimensional by choosing
as length scale the radius core of the vortex, R(x∗), and as velocity scale the
velocity defect, 1Ux(x∗) = Uc(x∗) − U∞, see Delbende, Chomaz & Huerre (1998).
Consequently, the so-called a–q formulation is obtained:

Ux(r, x)∼ a(x)+ e−r2
, Uθ(r, x)∼ q(x)

1− e−r2

r
, (1.2a,b)

where a≡U∞/1U is the external flow parameter, q≡C0/(R1U) is the swirl number
and the local Reynolds number is defined as ReD(x) = |1U(x)|R(x)/ν. In contrast,
if the free-stream velocity, U∞, and the initial vortex radius, R(0), are chosen as
reference velocity and reference length, the following expressions are obtained, as in
Heaton, Nichols & Schmid (2009), which we will refer to as the α–δ formulation:

Ux(r, x)∼ 1− α(x)er2/δ2(x), Uθ(r, x)∼ k
1− e−r2/δ2(x)

r
, (1.3a,b)

where α is the non-dimensional wake defect −1U/U∞, k is the non-dimensional
circulation k ≡ C0/(R(0)U∞) and δ(x) is the non-dimensional vortex radius δ(x) ≡
R(x)/R(0). Consequently, the local Reynolds number is defined as ReH = U∞R(0)/ν.
The relations among the quantities introduced in the two non-dimensionalizations are

q=− k
αδ
, a=− 1

α
, ReD = αReH. (1.4a−c)

The parameters a–q and α–δ vary along the streamwise direction and mimic the vortex
core spreading and the recovery of the wake deficit in the trailing-vortex evolution. By
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keeping these parameters constant the parallel Batchelor vortex is obtained, which is
a family of columnar vortices identified by swirl number, wake deficit and Reynolds
number.

The linear stability of the parallel Batchelor vortex has been widely studied in the
literature. Taken in isolation, the tangential velocity profile is stable, since it does not
satisfy Rayleigh’s criterion, while the axial velocity profile is only unstable to mode
m = 1 (Batchelor & Gill 1962) as a consequence of a shear instability. However,
the addition of both velocity components leads to a massive destabilization for
virtually any azimuthal mode when the swirl number is less than q≈ 1.5 (Leibovich
& Stewartson 1983; Mayer & Powell 1992; Delbende et al. 1998), the only cutoff
mechanism being viscous damping. The mechanism underlying this destabilization
is a generalized centrifugal instability unravelled by Ludwieg (1962), Leibovich &
Stewartson (1983) and Eckhoff (1984). This general picture does not hold close to
the stability bound q=√2/2 where weakly amplified modes have been detected. In
addition, viscous core modes could also be identified numerically and asymptotically
(Khorrami 1991b; Fabre & Jacquin 2004; Fabre, Sipp & Jacquin 2006; Heaton 2007).

Besides these temporal stability analyses, Delbende et al. (1998), Olendraru et al.
(1999) and Olendraru & Sellier (2002) carried out a spatio-temporal analysis as a
function of swirl and wake parameters, showing that for relatively large wake deficits
the flow can be absolutely unstable, as seen in figure 2 of the present work. For
coflowing wakes, the wake defect needed to trigger an absolute instability depends on
the swirl number, and the lower bound is approximately a=−1.25, corresponding of a
wake deficit of 80 % of the external flow. Conversely, in the case of strong advection
and moderate wake deficit, the flow is convectively unstable, with perturbations
growing in space as they are simultaneously amplified and advected away. While
Delbende et al. (1998) used the linear impulse response method, Olendraru et al.
(1999) and Olendraru & Sellier (2002) used the pinch-point diagnostic for the
transition from convective to absolute instability and carried out a spatial stability
analysis computing the spatial growth rate as a function of the forcing frequency
and the azimuthal wavenumber. In convectively unstable situations, they found that
the helical symmetry of the most amplified mode changed drastically when spanning
the forcing frequency, ωf . This suggests that the mode selection in convectively
unstable swirling flows strongly depends on the frequency spectrum of the incoming
perturbations.

Delbende & Rossi (2005) more recently also investigated the nonlinear response to
the harmonic forcing of modes on an artificially maintained parallel swirling jet flow.
They found that for low swirl (q60.6), the flow saturates as an array of dipoles which
cause an increase of the vortex core size. At intermediate values, q∼ 0.8, the vortex
breaks into an array of equal sign vortices, and for high swirl, q > 1, the increase of
the instantaneous swirl induced by the accelerated diffusion of the axial core velocity
favours flow relaminarization.

Although these results strictly apply for the parallel Batchelor vortex, they are
of fundamental importance for real non-parallel flows, because it is known that
the global stability features are related to the local stability properties, see Huerre
& Monkewitz (1990) and Chomaz (2005) for a comprehensive discussion. In the
non-parallel framework, Heaton et al. (2009) carried out a global analysis, considering
the baseflow resulting from the imposition of a 90 % wake deficit at the inlet, i.e.
α(0)= 0.9. As the wake deficit is progressively recovered downstream, the flow turns
convectively unstable, but for the chosen inlet parameters and Reynolds number, the
flow exhibits a sufficiently extended absolutely unstable region to become globally
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unstable. The frequency of the most unstable global mode is indeed observed to match
the absolute frequency prevailing at the inlet, as long as the domain is short enough
for an accurate resolution of the resulting eigenvalue problem. However, typical
trailing vortices have a rather strong axial velocity component, as experimentally
measured by Devenport et al. (1996) and more recently by del Pino et al. (2011),
with wake deficits typically less than 80 %. These flows are locally convectively
unstable everywhere and behave as noise amplifiers. In this work the mode selection
in a harmonically forced non-parallel Batchelor vortex is considered, and the capability
to predict the amplitude and spatial shape of the response by linear analyses is
investigated.

The objective of this work is to analyse the mode selection in a non-parallel
spatially evolving Batchelor vortex subjected to harmonic in time but random in
space perturbations. After the introduction of the prototype trailing vortex used
throughout the work in § 2, the observation of the nonlinear response to a harmonic
inlet forcing computed by three-dimensional (3D) direct numerical simulation (DNS)
is briefly reported in § 3. In § 4, the linear flow response to boundary forcing is
investigated using the WKB (Wentzel, Kramers, Brillouin) asymptotic analysis in the
framework of weakly non-parallel flow. The asymptotic results are then compared
with the results of a global analysis, which relaxes the weakly non-parallel assumption.
The optimal inlet forcing, which maximizes the linear energy amplification of the
response, is thus determined through a global resolvent. In § 5 the flow response
to a volume forcing is computed using both the global resolvent approach and a
generalized WKB analysis. The effect of nonlinearity on the response is investigated
in § 6 in the case of inlet forcing. The nonlinear gains are computed through DNS
as a function of the forcing frequency and for increasing forcing amplitudes. The
mode selection observed in the DNS is compared with the one of the linear optimal
response. Finally, conclusions are outlined.

Several sets of equations, all derived from Navier–Stokes equations, are used in
this study to conduct the different steps of the analysis, which all require adequate
numerical methods. We have chosen to describe these methods briefly when the
corresponding equations are progressively introduced.

2. Trailing-vortex prototype
In the present work a typical trailing vortex is considered and used as the test case.

This prototype flow with velocity Ub and pressure Pb satisfies the steady axisymmetric
Navier–Stokes equations

Ub · ∇Ub =−∇Pb + 1
Re
1Ub,

∇ ·Ub = 0,
Ub =U0 on Γi.

 (2.1)

A parallel Batchelor profile, U0, in the α, δ formulation is imposed at the inlet, Γi,
as a Dirichlet boundary condition with α = 0.667, κ = 0.333. A free-stress boundary
condition is imposed at the outlet, Γo, and lateral boundary, Γl, while symmetry
conditions are imposed on the axis. The Reynolds number is defined using as
reference length the size of the vortex core at the inlet and is equal to ReH = 1000
(ReD= 667). Taking advantage of the local stability of Batchelor vortices with respect
to m= 0 axisymmetric perturbations, this steady solution is obtained by time-marching
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FIGURE 1. (Colour online) (a,b) Streamwise, (c,d) azimuthal and (e, f ) radial velocity
components of the axisymmetric Navier–Stokes steady solution obtained by setting at the
inlet a parallel Batchelor profile with α(0) = 0.667, κ(0) = 0.333, which is depicted in
(a,c,e).

an axisymmetric simulation with the spectral element code Nek5000 (Fischer, James &
Kerkemeier 2008). The flow is considered steady when the L2-norm of the difference
between two consecutive solutions is less than 10−12. The computational domain is
06 x6 40 and 06 r6 10 (see appendix C for discussion of the influence of the radial
extension of the domain). The resulting steady flow, Ub, is reported in figure 1 as
(a,b) axial, (c,d) azimuthal and (e, f ) radial velocity components, showing the gradual
recovery of the wake deficit, as one proceeds downstream, and the diffusion of the
vortical core. The radial velocity is significantly smaller than the other two velocity
components, thus validating the boundary layer assumptions adopted by Batchelor.
This is due to the fact that the streamwise evolution of a trailing vortex is governed
by viscous effects, which operate at a slower time scale with respect to advection.
The present flow can be qualified as weakly non-parallel, meaning that at first order
the flow field U(x, r) can be seen as a sequence of parallel Batchelor vortices. Hence,
the streamwise evolution of the trailing vortex can be represented as a path in the
(a, q) plane, starting at a=−1.5 and q=−0.5, see figure 2.

The present choice of prototype trailing vortex has been motivated by the fact that
for higher or lower swirl numbers the flow is close to neutral stability conditions and
perturbations are less amplified. With this choice of negative but large-amplitude
advection parameter at the inlet, the locus of the local baseflow characteristic
parameters in the (a, q) plane does not penetrate into the absolutely unstable
region. This flow is therefore globally stable and behaves as a noise amplifier. The
stability of the baseflow has been checked numerically using the discretization method
discussed in § 4, and the least stable eigenvalue is found to be ω = 0.5609− 0.202i,
corresponding to the azimuthal wavenumber m= 1. As a comparison, the dotted path
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FIGURE 2. Figure adapted from Delbende et al. (1998). The regions of absolute (AI) and
convective (CI) instability are reported in the (a, q) parameter space for the Reynolds
number ReD = 667. The path shown by the solid line depicts the local properties of the
non-parallel trailing vortex studied in this work. The dashed line identifies the globally
unstable non-parallel Batchelor vortex investigated in Heaton et al. (2009).

intersecting the region of absolute instability in figure 2 corresponds to the globally
unstable non-parallel swirling flow considered by Heaton et al. (2009).

3. Observation of the nonlinear response to harmonic inlet forcing

In this section the nonlinear response of a trailing vortex to a harmonic forcing is
investigated by full 3D DNS. Specifically, a harmonic inlet forcing acting on the three
velocity components has been considered. The forcing adopted is chosen random in
space in order to better enlighten the role of the forcing frequency on the change of
the structure of the response.

The unsteady Navier–Stokes equations

∂U
∂t
+U · ∇U=−∇P+ 1

Re
1U,

∇ ·U= 0

}
(3.1)

are solved in a cylindrical domain of radius rmax = 10 and length xmax = 40,
complemented with free-stress boundary conditions on all domain boundaries except
at the inlet Γi, where an unsteady Dirichlet boundary condition fluctuating around the
baseflow inlet profile is imposed,

U=U0 + aζζ cos(ωf t) on Γi. (3.2)

A random inlet field concentrated in the region r 6 5 is generated offline before the
first time step and saved in memory invoking the MATLAB function rand which
returns pseudorandom numbers uniformly distributed between 0 and 1. These fields
are then loaded in Nek5000 and projected in the space of continuous functions,
obtaining the fields ζ = (ζx(y, z), ζy(y, z), ζz(y, z)). Three forcing amplitudes have
been considered, aζ = 0.01, 0.05 and 0.1. The Navier–Stokes equations are solved
in Cartesian coordinates using the Nek5000 spectral elements solver, while the time
discretization is ensured using a Crank–Nicolson scheme. Convergence is attained
with 2.2 million degrees of freedom and the code is parallelized. The integration time
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FIGURE 3. (Colour online) Isocontours of the axial vorticity at the streamwise section
x = 30 for different forcing frequencies. The amplitude of the forcing was set equal to
aζ = 0.01.

was equal is 400 time units, sufficiently large to capture the flow dynamics of the
permanent regime. The time evolution of the energy of the flow was used to assess
that a periodic permanent regime was indeed reached.

The forcing frequency ωf ranges from 0.1 to 5 and the spatial structure of the
response is monitored by observing its azimuthal symmetries. Figure 3 reports
isosurfaces of axial vorticity at the streamwise section x= 30 for different values of
the forcing frequency. At low frequency, low azimuthal wavenumbers are the most
amplified, while at higher frequency, higher wavenumbers are excited by the forcing.
For instance, at frequency ωf = 0.50, a single spiral mode is excited, while for
ωf = 1.00 the response is dominated by a double-helical structure. On increasing the
forcing frequency further, triple (ωf = 1.80), quadruple (ωf = 2.40) or higher helical
structures appear. In this swirling flow, the spatial shape of the response is found to
be very sensitive to the forcing frequency, calling for a detailed understanding of the
mode-selection mechanism.

4. Linear response to harmonic inlet forcing

In a parallel convectively unstable flow, the spatial stability branches fully describe
the response to a harmonic forcing at any point of the domain, see Huerre &
Rossi (1998). The spatial analysis provides the amplification in space, −ki, and
the axial wavenumber, kr, of a downstream propagating perturbation with frequency
ωf . In this framework k is the complex eigenvalue of the polynomial eigenvalue
problem obtained from the linearized stability equations after the introduction of a
normal mode expansion exp(i(kx + mθ − ωf t)). Following Iungo et al. (2013), the
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corresponding stability equations in primitive variables around a parallel baseflow
Uθ(r),Ux(r) are

−iωf ur + Γm,kur − 2Ωuθ =−∂p
∂r
+ 1

Re

[(
∆m,k − 1

r2

)
ur − 2imuθ

r2

]
,

−iωf uθ + Γm,kuθ + ur
∂Uθ

∂r
+Ωur =− imp

r
+ 1

Re

[(
∆m,k − 1

r2

)
uθ + 2imur

r2

]
,

−iωf ux + Γm,kux + ur
∂Ux

∂r
=−ikp+ 1

Re
∆m,kux,

1
r
∂(rur)

∂r
+ imuθ

r
+ ikux = 0,


(4.1)

where Ω =Uθ/r, Γm,k = imΩ + ikUx and ∆m,k = (1/r)(∂/∂r)(r(∂/∂r))− (m2/r2)− k2.
Homogeneous Neumann conditions are imposed at rmax, as well as regularity
conditions on the axis, see Batchelor & Gill (1962):

ur = uθ = ∂ux

∂r
= 0 for m= 0,

∂ur

∂r
= ∂uθ
∂r
= ux = 0 for |m| = 1,

ur = uθ = ux = 0 for |m|> 1,

 (4.2)

where m = 1 is the only positive azimuthal mode to admit a displacement from the
centreline, and is called the displacement mode. The discretization is ensured through
a Chebyshev spectral collocation technique including an algebraic mapping of the
domain, as detailed in Viola et al. (2014), where the influence of rmax is discussed in
appendix C. To capture the amplified k+ spatial branches, the Gaster transformation of
the temporal stability analysis is used to obtain a target for the complex wavenumber
k, as explained in detail in Iungo et al. (2013).

Figure 4 reports the spatial growth rates as a function of the frequency ωf , and
each branch corresponds to a different azimuthal wavenumber, m. Figure 4(a) pertains
to the flow prevailing at the inlet section, while (b) considers the flow at the section
x = 30. It can be observed that, in both cases, a large number of helical modes
have positive spatial growth rates, as a consequence of the generalized centrifugal
instability (Ludwieg 1962; Leibovich & Stewartson 1983), which selects only the
angular pitch of the unstable modes, m/k. However, a detailed inspection shows that
the local stability properties differ at the two streamwise locations. While at the inlet
section the most amplified mode is the single-helical mode, m= 1, further downstream
in the wake the double helix, m= 2, becomes the most amplified mode. In addition,
the frequency corresponding to the maximum amplification for a given mode is seen
to be slightly shifted as one proceeds downstream.

4.1. WKB analysis
In order to take into account the weak non-parallelism of the baseflow, the WKB
formalism introduced by Gaster, Kit & Wygnanski (1985) and Huerre & Rossi (1998)
for a spatial mixing layer has been extended here to the case of swirling flows with
axial velocity. A fast, x, and a slow, X = εx, streamwise scale are introduced, where
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FIGURE 4. Spatial growth rate, −ki, versus frequency, ωf , of the locally unstable helical
perturbations. The results of the local spatial analysis at the inlet (a) and at the streamwise
section x= 30 (b).

the baseflow depends only on X, and ε is a measure of the weak non-parallelism. The
global response to a boundary forcing then takes the following modulated wave form:

q(r, θ, X; t)∼ A(X)q̂(r, X) exp
[

i
(

1
ε

∫ X

0
k(X′, ωf ) dX′ +mθ −ωf t

)]
, (4.3)

where q̂ = (û, p̂) is a column vector, k(X′, ωf ) is the local complex wavenumber at
section X′ and frequency ωf , and A(X) is the envelope function, which smoothly
connects the slices of parallel spatial analyses. The local eigenfunction q̂(r, X) is
normalized by imposing

∫∞
0 q̂H

· q̂r dr= 1, where (·)H is the transconjugate, and
the phase angle is set to zero at a given radial position. A systematic asymptotic
expansion, including a compatibility condition, detailed in appendix A, shows that
the local spatial analysis (4.1) is recovered at zero order in ε while an amplitude
equation (4.4) is obtained at order ε:

M(X)
dA(X)

dX
+N(X)A(X)= 0, (4.4)

where the operators M(X) and N(X) are defined in appendix A. The solution is A(X)=
A0 exp(−∫ X

0 (N(X
′)/M(X′)) dX′). Setting the amplitude at the inlet to 1, A(0)= 1, this

yields the response associated with forcing at the inlet with the local normalized direct
mode, i.e.

f (r, 0)= û(r, 0) exp(i(mθ −ωf t)). (4.5)
The spatial branches, k(X, ωf ), and the corresponding eigenfunctions, q̂, are obtained
by solving the local spatial analysis problem.

The kinetic energy gain of the response with respect to the forcing is defined as

G2
bnd(m, ω)=

‖q̂‖2
E

‖ f̂‖2
f

=

∫ x

0
AH(x′)A(x′)

(∫ ∞
0

ûH
(r, x′)û(r, x′)r dr

)
(e

∫ x′
0 −2ki(x′′) dx′′) dx′∫ ∞

0
ûH
(r, 0)û(r, 0)r dr

.

(4.6)
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FIGURE 5. Global gains of the responses excited by forcing at the inlet with the local
direct mode. The solid black lines depict the results of WKB analysis; conversely the
dashed lines correspond to the gains obtained by a zero-order analysis, i.e. imposing the
amplitude unitary. The results obtained through a global resolvent are reported with circles.

The global gains of the responses excited by forcing at the inlet at each frequency
and azimuthal wavenumber with the local eigenmode are reported in figure 5. The
full lines correspond to the gains obtained at first order (4.6), i.e. by solving both
the weakly non-parallel linear spatial stability analysis and the amplitude equation. In
contrast, the dashed lines report the results obtained by setting the amplitude A(X)= 1.
These zero-order solutions are seen to differ significantly with respect to the first-order
results at low frequency.

In order to verify the accuracy of the WKB analysis and the ability of the amplitude
equation to properly take into account the non-parallelism of the flow, the same
problem can be tackled in a global framework using the resolvent operator, i.e.
dealing with the flow as fully non-parallel.

4.2. Global resolvent
Let us consider the linearized Navier–Stokes equations on the axisymmetric steady
baseflow, Ub, subjected to a harmonic forcing with frequency ωf imposed at the inlet
through a non-homogeneous Dirichlet boundary condition. The linear response, u, is
thus governed by

∂u
∂t
+Ub · ∇u+ u · ∇Ub =−∇p+ 1

Re
∇2u,

∇ · u= 0,
u= f on Γi,

∂u
∂x
= ikou on Γo.


(4.7)

Free-stress boundary conditions are imposed on the lateral boundary, Γl. In order to
mimic an infinite vortex flow, a non-homogeneous Neumann condition is imposed
at the outlet as in (4.7), where ko is the local axial wavenumber according to local
spatial analysis. This boundary condition is similar to the one adopted by Ehrenstein
& Gallaire (2005) in the global analysis of a boundary layer flow. In situations like
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the present one where the flow is still convectively unstable at the outlet section, the
imposition of a free-stress boundary condition at the outlet is not appropriate.

As is usual in the case of steady and axisymmetric baseflows, an expansion of the
perturbation in azimuthal modes is considered:

f (x, r, θ, t)= f̂ (0, r)ei(mθ−ωt),

(u, p)(x, r, θ, t)= (û, p̂)(x, r)ei(mθ−ωt),

}
(4.8)

where m ∈Z is the azimuthal wavenumber and ω ∈R is the frequency.
Equations (4.7) together with the modal expansion (4.8) are discretized using

a staggered pseudospectral Chebyshev–Chebyshev collocation method. The three
velocity components are defined at the Gauss–Lobatto–Chebyshev (GLC) nodes,
whereas the pressure is staggered on a different grid, which is generated with
Gauss–Chebyshev nodes (GC). Specifically, the momentum equation is collocated
at the GLC nodes, and the pressure is interpolated from GC points to GLC points.
Conversely, the continuity equation is enforced on the GC grid and the velocity
components are interpolated from the GLC grid. Consequently the two grids are
mapped in the physical domain 0 6 r 6 rmax = 10 and 0 6 x 6 xmax = 30, where the
equality holds only for the velocity grid, since the GC grid is not defined on the
boundaries. In the radial direction the algebraic mapping with domain truncation
is used, r = L(1 + s)/(smax − s), where s are GLC and GC nodes, L is a mapping
parameter to cluster the points close to the origin and set equal to 3, and smax is
defined as (2L + Rmax)/Rmax (see Canuto et al. 2007). In the axial direction the
physical space is mapped with a linear mapping x = (1 + s)xmax/2. A Pn − Pn−2
formulation has been used in order to avoid spurious pressure modes by simply
setting NGC = NGLC − 2, see Canuto et al. (2007) for a comprehensive discussion.
The code used is a two-dimensional generalization of the one-dimensional code
documented in Malik, Zang & Hussaini (1985) and Khorrami (1991a) used for local
stability analysis in cylindrical coordinates. In the present work Nx = 80 and Nr = 40
points are used in the axial and radial directions respectively, having been shown to
provide the desired convergence of the amplification factors.

Introducing the state vector q̂ = (û, p̂), the linearized system of equations with
embedded boundary conditions reads:

−iωf Bq̂= Lq̂+ Bf f̂ , (4.9)

where B is the mass matrix, L is the linearized Navier–Stokes operator and Bf is a
so-called prolongation operator (Garnaud et al. 2013; Boujo & Gallaire 2014) that
maps the boundary forcing onto the interior degrees of freedom. The response to a
given forcing f̂ (x=0, r) pushing at the inlet harmonically with frequency ωf is directly
obtained by solving the linear system in (4.9). It should be noted that in principle
the matrix (−iωf B − L) can be inverted as long as ωf is not an eigenvalue of the
non-forced system.

As for the WKB, we define the energy gain, Gbnd(m, ωf ), as the measure of the
amplification of the perturbation due to an externally applied boundary forcing:

G2
bnd(m, ωf )=

∫
Ω

|û|2r dr dx∫
Γi

| f̂ |2r dr
= ‖(L+ iωf B)−1Bf f̂‖2

E

‖ f̂‖2
f

, (4.10)
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where (L + iωf B)−1 is known as the resolvent. The calculation of the energy gains
requires one-dimensional and two-dimensional numerical integrals, here computed
with the Clenshaw–Curtis quadrature formula. In order to achieve a better accuracy,
the quadrature weights are computed for the particular integration weight, which
depends on the mappings used, following the method presented in Sommariva (2013).
For a comprehensive discussion on the accuracy of Clenshaw–Curtis quadrature
compared with Gaussian quadrature we refer to Trefethen (2008).

The global energy gains, as computed from the global resolvent analysis, for
harmonic forcing at the inlet with the local direct modes, are superimposed on the
results of the WKB analysis with circles in figure 5. The agreement is stunning,
confirming the excellent accuracy of WKB analysis to study weakly non-parallel
flows. In contrast, the zero-order approximation overestimates the global gains, since
the amplitude A(x) is in general less than unity, as a consequence of the streamwise
evolution of the local eigenmode. This agreement also represents a convincing
validation of the local and global numerical tools. Moreover, the axial wavelength
of the response is very well captured by WKB analysis, as shown in figure 6,
where isosurfaces of the axial vorticity of the responses calculated with WKB and
global analysis are reported in (b,c,e, f,h,i), while the corresponding inlet forcings are
depicted in (a,d,g). In figure 6(a–c) the forcing frequency ωf = 0.65 strongly excites a
single-helical mode. The double-helical mode reported in (d–f ) emerges at frequency
ωf = 1.15. In the case of higher forcing frequency, higher wavenumber modes arise,
such as the triple-helical structure resulting for ωf = 1.6. In a very similar way to
the first DNS observations of § 3, different azimuthal wavenumbers, m, yield large
responses when spanning ωf . Figure 6 also clearly shows that the helical structures are
counterwinding. Considering their time dependence, one can deduce their co-rotation.
These results perfectly match the literature of parallel swirling wakes (Delbende et al.
1998; Gallaire & Chomaz 2003).

It is interesting to observe that, due to the azimuthal symmetry, the displacement
mode m = 1 is the only one to have a non-zero forcing at the centreline, see
figure 6(a). This indicates that the displacement mode is the most sensitive one to
perturbations forcing the flow at the vortex centre.

4.3. Optimal forcing
In principle, by forcing randomly in space in the numerical experiment presented in
§ 3, all of the competing modes are excited. Thus, the dominant helical mode that
resonates at a given frequency, see figure 3, is expected to correspond to the most
amplified one. When the amplitude of the perturbation is small, the mode having the
highest energy amplification can be determined via the analysis of the linear optimal
response to a harmonic forcing.

Given the forcing frequency, ωf , and the azimuthal wavenumber, m, the optimal
forcing corresponding to the maximum energy amplification is defined in discrete form
as

G2
opt(ωf ,m)=max

f̂

‖q̂‖2
E

‖ f̂‖2
f

=max
f̂

‖(L+ iωf B)−1Bf f̂‖2
E

‖ f̂‖2
f

. (4.11)

As explained in detail in Marquet & Sipp (2010) and Garnaud et al. (2013), the
optimization defined in (4.11) is equivalent to the following eigenvalue problem, where
G2

opt(ωf ) corresponds to the eigenvalue λ:

Q−1
f BH

f (L+ iωf B)
−HQH(L+ iωf B)

−1Bf f̂ = λf̂ , (4.12)
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FIGURE 6. (Colour online) Three components of the direct mode forcing at the inlet (a),
and the associated response computed with WKB analysis (b) and a global resolvent (c)
at forcing frequency ωf = 0.65. In (d–f ) and (g–i) the same quantities are reported for the
frequencies ωf = 1.15 and ωf = 1.6 respectively.

where Q and Qf are the weight matrices of the discretized energy norm and the
norm of the forcing respectively. The previous eigenvalue problem is solved using the
UMFPACK library available in MATLAB.
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FIGURE 7. Optimal gains for boundary forcing as a function of the forcing frequency ωf .
Each branch corresponds to a different azimuthal wavenumber.

In figure 7 the optimal gains, Gopt(m, ωf ), are shown as a function of the forcing
frequency, where each branch corresponds to a different azimuthal wavenumber. The
results are presented optimizing the amplification of the perturbation in the domain
0 6 x 6 30. The high energy response observed is related to the strong non-normality
of the damped operator L. In fact, when the global modes are not self-adjoint the flow
is usually extremely sensitive to forcing, and the energy gain is inversely proportional
to the smallest value for which the pseudospectrum crosses the neutral axis (Trefethen
et al. 1993; Chomaz 2005). Here, the optimal inlet forcing is seen to yield less than
20 % more amplification for some frequencies than using the eigenfunction at the
inlet. This relatively weak net increase shows that in these instabilities there is little
potential for intense local non-normality effects (such as lift-up or Orr mechanisms).
The dominant non-normality of the global operator L is the convective non-normality,
which is the global counterpart of the local convective instability (Cossu & Chomaz
1997; Chomaz 2005; Marquet et al. 2009). In fact, the spatial mode used as inlet
forcing in figure 5 excites the most convectively unstable spatial branch, which is the
main contribution to the optimal response since the other spatial branches are either
damped or less unstable.

Spanning the forcing frequency, the spatial shape of the most amplified mode
drastically changes. The largest energy gain occurs at a forcing frequency ωf ≈ 1.15
and the associated mode is a double helix. However, when varying ωf , the most
amplified azimuthal mode increases from m = 1 to m = 9. Specifically, at lower
ωf , lower m are more amplified (see figure 13(a) for isocontours of the optimal
responses at x = 30). Since the helical perturbations are convectively unstable in all
the flow domain, they are continuously amplified while propagating. For this reason
the maximum amplification of the perturbation is encountered at the outlet, after a
continuous amplification throughout the domain.

5. Linear response to harmonic body forcing
Rather than the response to a forcing acting at the inlet, the effect of a body forcing

is now considered. As in the previous section the problem is assessed in both the
global and the local framework.
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5.1. Global resolvent
The linear response, u, due to a harmonic body forcing, f , acting on the axisymmetric
baseflow, Ub, is given by

∂u
∂t
+Ub · ∇u+ u · ∇Ub =−∇p+ 1

Re
∇2u+ f ,

∇ · u= 0,
u= 0 on Γi,

∂u
∂x
= ik0u on Γo.

 (5.1)

As in the case of inlet forcing, the local spatial growth rate is imposed as inhomogene-
ous Neumann conditions in order to better mimic the amplification of the perturbation
at the outlet. A normal mode expansion is used similar to (4.8). However, the energy
gain is now defined as the ratio among the kinetic energy of the response and of the
forcing integrated in the domain:

G2
vol(m, ωf )=

∫
Ω

|û|2r dr dx∫
Ω

| f̂ |2r dr
. (5.2)

In a similar fashion to inlet forcing, the optimization of the body forcing yields to the
eigenvalue problem (4.12), where now Qf is the weight matrix of the energy norm of
the forcing in the volume, and the prolongation operator is non-null in correspondence
with all of the internal nodes. Moreover, the eigenmode f̂ associated with the largest
eigenvalue corresponds to the optimal volume forcing.

Figure 8 shows the energy gain when forcing at each ωf with the optimal body
forcing. The domain length is equal to xmax= 30, and each branch refers to a different
azimuthal wavenumber. As in the case of inlet forcing, the variation of the forcing
frequency results in a different azimuthal wavenumber mode selection. Due to the
non-normality of the system, the response is strongly amplified, where the maximum
gain corresponds to the double-helical mode at ωf = 1.20. However, it should be
remembered that these very high values of the amplification factors pertain to a linear
stability analysis where nonlinear saturation mechanisms are not at play.

Isosurfaces of the axial vorticity of typical optimal forcings are reported in figure 9,
together with the corresponding responses. In (a) at a forcing frequency ωf = 0.65,
the most amplified mode is m = 1, while at (b) ωf = 1.25 and (c) ωf = 2.20 the
most amplified modes are m= 2 and m= 4 respectively. The forcing is located close
to the inlet, in order to excite the mode, which propagates and amplifies inside the
domain, reaching the maximum amplification at the outlet. In the single-helix mode
the optimal forcing is located at the vortex centre. For this reason, similarly to the
case of inlet forcing, the displacement mode is more sensitive to disturbances forcing
at the centreline.

5.2. WKB analysis for volume forcing
The global resolvent with a generic body forcing, f , can be approximated by a
generalized WKB analysis, through the technique presented in Arratia & Gallaire
(2013) and here outlined in appendix B. The response to a body forcing of the
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FIGURE 8. Optimal gains for volume forcing versus forcing frequency ωf . Each branch
corresponds to a different azimuthal wavenumber.

following type is considered:

f (r, x)∼ εF(x)û(r, x) exp
[

i
(∫ x

0
k(x′) dx′ +mθ −ωf t

)]
, (5.3)

where F(x) is the slowly varying amplitude of the forcing. In this formulation the
forcing term enters only at order ε, thus at order ε0 the local spatial problem persists.
As before the response is asymptotic to

u(r, x)∼ A(x)û(r, x) exp
[

i
(∫ x

0
k(x′) dx′ +mθ −ωf t

)]
. (5.4)

Consequently, at first order a modified amplitude equation is retrieved:

M(X)
dA(X)

dX
+N(X)A(X)=H(X)F(X), (5.5)

where M(X) and N(X) are the same operators as in the case of inlet forcing and
H(X) is given by the scalar products among direct and adjoint modes, see appendix A.
Equation (5.5) is discretized in the streamwise direction using spectral methods and
A(X) is obtained by solving the subsequent linear system. For each given forcing
frequency and azimuthal wavenumber, (ωf , m), the volume forcing is fixed once
F(x) is set. It should be noted that the response to a generic forcing term F(X)
can be computed online, if the outcomes of the local spatial analysis were computed
previously offline, since only linear systems with the size of the number of streamwise
sections considered have to be solved. In other words, the response can be calculated
with a cheap and fast computation if the spatial growth rates, the direct modes
together with the operators M(X) and N(X) are available.

As a test case, figure 10 reports the gains corresponding to forcing in the
volume with the global mode weighted with an arbitrary weight function F(x) =
[−(x/5− 1)2 + 1]∏((x− 5)/10), where

∏
(x) is the rectangular function. The results

are compared with the ones of the global resolvent, where the expression (5.3) has
been set as the volume forcing: the WKB analysis correctly predicts the linear kinetic
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FIGURE 9. (Colour online) Isosurfaces of the axial vorticity of the optimal volume
forcings (green) and the associated responses (blue and red) for different values of ωf :
0.65 (a), 1.25 (b) and 2.20 (c).

energy amplification in all of the frequency band. The agreement is good also in
terms of the axial wavenumbers of the responses, which are not reported for the sake
of brevity.

6. Nonlinear response
The linear investigation carried out in the previous sections describes the flow

response in the hypothesis of small-amplitude forcing and response. However, the
helical perturbations propagating in the trailing vortex grow exponentially in space
according to their spatial growth rate, −ki(x). Hence, after a finite distance from the
inlet, which depends on the frequency, the response is no longer small and nonlinearity
starts to play a role. Thus, after having described the effect of non-parallelism in the
response to forcing of a trailing vortex, we explore here the effect of nonlinearity,
focusing on the case of inlet forcing.

6.1. Nonlinear gains
The 3D DNS presented in § 3 yields the nonlinear response, ũ, which is here defined
as the difference between the velocity and the baseflow, ũ(t) = U(t) − Ub. Similarly
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FIGURE 10. Global gains of the responses excited by a given volume forcing versus
forcing frequency. The solid black lines depict the result of WKB analysis, conversely
the circles correspond to the gains obtained by the global resolvent.

to the previous section we define the energy gain, GDNS(ωf ; aζ ), as the ratio between
the time-averaged energy of the perturbation and the one of the boundary forcing:

G2
DNS(ωf ; aζ )=

∫
Ω

ũ2r dr dx

a2
ζ

∫
Γi

ζ 2r dr
, (6.1)

where the overline denotes time averaging. In this case, the energy gain does not
depend explicitly on the azimuthal wavenumber since no modal expansion is carried
out in the DNS. In figure 11, the values of GDNS, connected by a spline interpolation,
are reported as a function of ωf for the three forcing amplitudes aζ = 0.01, 0.05
and 0.1. In order to explore the nonlinear gain sensitivity to the inlet spatial random
forcing, two additional DNS have been carried out at aζ = 0.1 using two other
independently drawn random inlet forcing fields. The effects on GDNS are seen in the
inset of figure 11, where the mean value of GDNS is reported, together with error
bars representing the standard deviation. The deviations remain very small among the
three realizations, except in the medium-frequency range, ωf ≈ 1.2, where we will
see in § 6.2 that a strong competition between the helical modes sets in.

When compared with figure 7, the values of GDNS are two orders of magnitude
smaller than the linear gains. This might result from two possible effects. First,
part of the forcing energy is lost as the random noise is projected on the optimal
forcing. Second, nonlinearities become important and lead to saturation, in contrast
to the linear prediction where the baseflow distortion and mode interactions are
neglected. The low-frequency peak is robustly observed in the forcing amplitude
range considered: the energy of the response is seen to saturate, and the gain
therefore strongly depends on the forcing amplitude, decreasing with increasing
aζ . In the low-amplitude forcing case, aζ = 0.01, the nonlinear gain exhibits two
additional peaks in the energy gain (ωf ≈ 1.1 and 1.8), which are associated with
higher azimuthal wavenumbers (namely m = 2 and 3) in a similar fashion to the
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FIGURE 11. Nonlinear energy gains of the responses excited by the random inlet forcing
computed with DNS. Three values of the forcing amplitude have been considered, aζ =
0.01, 0.05 and 0.1. The inset reports in detail the GDNS at aζ = 0.1 averaged for
three different realizations of inlet random forcing. The error bars represent the standard
deviation.

linear case, where higher wavenumbers are excited at higher frequencies. These
peaks are no longer present when the forcing amplitude and, consequently, nonlinear
effects, are increased. In the high-frequency region, GDNS finally does not depend
significantly on the forcing amplitude, because the amplification is not strong enough
to trigger significant nonlinear saturation processes. In summary, when aζ increases,
the nonlinear saturation is more pronounced in the frequency band that is the most
amplified according to linear analysis. The same phenomenon has been observed
by Mantic-Lugo & Gallaire (2015). It can be observed that the most nonlinearly
amplified frequency is ωf ≈ 0.50, which corresponds to a single-helix perturbation, as
will be discussed in figure 13.

6.2. Nonlinear mode selection
Mode selection in swirling flows denotes the dominant helical symmetry of the
response that resonates at a given forcing frequency. By forcing randomly in space
in our numerical experiment, a competition is set up between the modes that are
convected and amplified in the wake until nonlinear saturation occurs. In order to
assess whether the linear mode selection holds in the nonlinear case, the dominant
azimuthal mode appearing in the full nonlinear response has been computed as
a function of the forcing frequency. Specifically, the axial vorticity at a certain
downstream section, Ωx(r, θ, x= 30, t; ωf ), has been decomposed into Fourier series.
The obtained Fourier components have been integrated in the radial direction and
time averaged, according to

C(ωf ,m)= 1
2π

∫ Rc

0

∫ π

−π

Ωx(r, θ, t;ωf )eimθ dθ dr, (6.2)
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where Rc is an arbitrary radial distance set here equal to 2, and the overline
denotes time averaging. The modulus of C(ωf , m) is a measure of the energy of
the corresponding Fourier mode and E(ωf ,m)= |C(ωf ,m)|/∑m |C(ωf ,m)| represents
the normalized energies. Figure 12(a) depicts E(ωf , m) in the case of linear optimal
response, where the horizontal bars show the intensity of the various azimuthal
components as a function of ωf . The stair-like graph reflects that a change in forcing
frequency induces a change in the most energetic mode, as already shown in figure 7.

In order to investigate the role of nonlinearity on the mode selection, the normalized
energies, E(ωf , m), are reported in figure 12 for three forcing amplitudes, aζ = 0.01
in (b), 0.05 in (c) and 0.1 in (d). It results that the dominant azimuthal Fourier mode
resonating at frequency ωf is maintained when the amplitude forcing increases and
generally corresponds to the one of the linear stability mode selection. As is typical
in nonlinear systems, higher harmonics are excited, for instance at ωf ≈ 1.15, where
m= 2 is the most energetic component and m= 4 is also present. In the same way,
for ωf ≈ 2 the second harmonic m = 6 is superimposed on the fundamental m = 3.
However, on increasing the amplitude forcing the mode selection is less sharp and
the energy is more distributed among the different harmonics.

In particular, the strong competition between neighbouring helical modes, m and
m + 1, generally leads to a forcing on the component m = 1 through the quadratic
nonlinear term. Thus, the staircase structure of the optimal gains shown in figure 12(a),
through the competition of consecutive modes, yields an intense m = 1 response at
various frequencies, as is particularly visible in figure 12(b,c). As a consequence, due
to the symmetry properties of the displacement mode, m= 1, the response meanders
around the centreline in a frequency band that is much broader than the one of linear
amplification of m= 1.

In figure 13 isocontours of the axial vorticity of the response are reported as a
function of the forcing frequency, ωf , and amplitude, aζ , for forcing frequencies
ωf = 0.50, 1.20, 2.20, 3.60, 4.60 and 5.00. In (a) the axial vorticity of the linear
optimal response is shown, while in (b–d) the nonlinear responses with respect to
the mean flow U(t) − U are considered, namely aζ = 0.01 in (b), 0.05 in (c) and
0.1 in (d). Although the nonlinear response is given by the cooperation of several
Fourier components, as depicted in figure 12, the dominant helical shape corresponds
to the one predicted by linear analysis. Interestingly, in the case of very intense
amplitude of the forcing, strong nonlinear interactions are seen in the frequency
region ωf ≈ 1.20, with competition among double- and triple-helical responses, as
shown in figures 12(d) and 13.

7. Conclusions

In this work the response to forcing of a trailing vortex has been investigated
by nonlinear and linear analyses. First, the nonlinear three-dimensional response of
a prototype spatially developing Batchelor vortex has been determined by directly
simulating the effect of an inlet forcing harmonic in time and random in space. We
observed that several helical modes respond to the forcing, with the most resonating
azimuthal wavenumber increasing with frequency. Three forcing amplitudes in the
DNS were considered, equal to 1 %, 5 % and 10 % of the free-stream velocity, which
correspond roughly to 5 %, 25 % and 50 % of the maximum azimuthal velocity at the
inlet section. The corresponding flow perturbations, starting from the inlet, grow in
amplitude proceeding downstream until they undergo nonlinear saturation, manifesting
a helical symmetry.
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FIGURE 12. Linear (a) and nonlinear (b–d) mode selection. The horizontal bars depict in
grey scale the normalized energies, E(ωf ,m), of the azimuthal Fourier components of the
response. In (a) the E(ωf ,m) of the linear optimal response is shown. In the same fashion
(b), (c) and (d) represent the normalized energies of the nonlinear responses computed
through DNS for aζ = 0.01 in (b), 0.05 in (c) and 0.1 in (d).
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FIGURE 13. (Colour online) (a) Isocontours of the axial vorticity of the linear optimal
response at the streamwise position x = 30 are shown as a function of the forcing
frequency, ωf . (b–d) Isocontours of the nonlinear responses obtained through DNS with
aζ = 0.01 (b), 0.05 (c) and 0.1 (d).

It has been shown that the appearance of these helical shapes is related to the local
stability properties of the baseflow, which is everywhere locally convectively unstable.
Moreover, since the local stability properties of the flow vary along the streamwise
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direction, a WKB analysis has been used for the first time for the case of swirling
flows. Specifically, an amplitude equation was obtained in order to take into account
the non-parallelism of the flow. The response to forcing was also computed by a
global resolvent, finding excellent agreement with the WKB results.

Consequently, to further investigate whether the linear analysis is able to predict
the mode selection observed in the DNS, the optimal response to forcing has been
performed, which is more suitable to detect the most amplified mode by a random
forcing. It results that the helical symmetry of the most amplified mode, excited by
the associated optimal forcing, in general fits well with the geometrical structure of
the response computed with DNS. This shows that the linear resolvent analysis is
applicable in this flow, and allows us to explain the mode selection experienced in
the nonlinear flow.

On the other hand, the energy gains provided by the linear analysis significantly
overestimate the ones computed by DNS in all of the frequency range. It results
that the nonlinear gains strongly depend on the forcing amplitudes in the frequency
band that is the most amplified according to linear analysis. In contrast, at higher
frequency, where the linear amplification is smaller, the nonlinear gains do not depend
significantly on the forcing amplitude.

The preferred nonlinear frequency is ωf ≈ 0.50, which is significantly lower than
the one predicted through a global resolvent analysis, ωf ≈ 1.20. Accordingly, the
associated most nonlinearly amplified perturbation to a spatially random inlet forcing
is the single helix. Due to its peculiar azimuthal symmetry, the single-helix mode
is the most sensitive to disturbances forcing the flow at the centreline and resonates
in a broader frequency range due to a nonlinear interaction mechanism between
neighbouring modes, as discussed in §§ 4.2 and 6.2. These conclusions could give
a possible interpretation of the vortex meandering phenomenon which consists in
random-like precession of the vortex core observed in trailing-vortex experiments, see
Devenport et al. (1996), Jacquin et al. (2001). In particular, Roy & Leweke (2008)
carried out particle image velocimetry measurements of a trailing vortex generated by
a half-wing in a water channel in nine configurations involving different free-stream
velocities and angles of attack. By carrying out a proper orthogonal decomposition
of the vorticity at a given downstream section, they observed that the most energetic
helical perturbation was the single-helix displacement mode. These authors related
their observations to the theoretical result of transient growth in a parallel Gaussian
vortex without axial flow, which was triggered by the background noise in the flow
or by turbulence in the wake of the wing. Here, we may only speculate that the
precession of the vortex core could be the result of the convective amplification of
the perturbations present in the incoming turbulent flow. In a first approximation, the
turbulent fluctuations can be viewed as broadband perturbations that are amplified by
the flow in accordance with the mechanisms explained in the present work, where
the single-helix mode is the nonlinear preferred mode.
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Appendix A. The WKB formulation for swirling flows

The linearized Navier–Stokes equations on a 3D axisymmetric baseflow, (Ur,Uθ ,Ux),
in cylindrical coordinates read

∂ur

∂t
+ Γ ur + ur

∂Ur

∂r
+ ux

∂Ur

∂x
− 2Ωuθ =−∂p

∂r
+ 1

Re

[(
∆− 1

r2

)
ur − 2

r2

∂uθ
∂θ

]
,

∂uθ
∂t
+ Γ uθ + ur

∂Uθ

∂r
+ ux

∂Uθ

∂x
+Ωur +Ur

uθ
r
=−1

r
∂p
∂θ
+ 1

Re

[(
∆− 1

r2

)
uθ + 2

r2

∂ur

∂θ

]
,

∂ux

∂t
+ Γ ux + ur

∂Ux

∂r
+ ux

∂Ux

∂x
=−∂p

∂x
+ 1

Re
1ux,

1
r
∂rur

∂r
+ 1

r
∂uθ
∂θ
+ ∂ux

∂x
= 0,


(A 1)

where (ur, uθ , ux) are the velocity components of the perturbation, Ω is the angular
velocity of the baseflow and the convective and Laplacian operators are defined as

Γ =Ur
∂

∂r
+Ω ∂

∂θ
+Ux

∂

∂x
,

∆= 1
r
∂

∂r

(
r
∂

∂r

)
+ 1

r2

∂2

∂θ 2
+ ∂2

∂x2
.

 (A 2)

As is usual in multiple scales, two spatial scales are introduced, a fast one, x,
and a slow one, X = εx. The baseflow depends only on X, and from the continuity
equation

1
r
∂rUr

∂r
+ ∂Ux

∂x
= 0⇒ 1

r
∂rUr

∂r
+ ε ∂Ux

∂X
= 0⇒Ur = εU′r⇒

1
r
∂rU′r
∂r
+ ∂Ux

∂X
= 0. (A 3)

Let us consider the following normal mode expansion for the perturbation:

u(r, θ, X; t)= û(r, X) exp
[

i
(

1
ε

∫ X

0
k(X′, ωf ) dX′ +mθ −ωf t

)]
. (A 4)

By injecting the transformations (A 5a−d) into (A 1), the linearized Navier–Stokes
on a 3D axisymmetric weakly non-parallel baseflow equations (A 6) are obtained:

∂

∂t
→−iωf ,

∂

∂θ
→ im,

∂

∂x
→ ik+ ε ∂

∂X
,

∂2

∂x2
→−k2+ εi

(
k
∂

∂X
+ ∂k
∂X

)
+ ε2 ∂

2

∂X2
,

(A 5a−d)
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−iωf ur + Γm,kur − 2Ωuθ + ε
(

Ux
∂

∂X
+U′r

∂

∂r

)
ur + ε ∂U′r

∂r
ur

=−∂p
∂r
+ 1

Re

[(
∆m,k − 1

r2

)
ur − 2im

r2
uθ + εi

(
k
∂

∂X
+ ∂k
∂X

)
ur + ε2 ∂

2ur

∂X2

]
,

−iωf uθ + Γm,kuθ +
(

2Ω + ∂Ω
∂r

r
)

ur + ε
(

Ux
∂

∂X
+U′r

∂

∂r

)
uθ + ε ∂Uθ

∂X
ux + εU′r

r
uθ

=− im
r

p+ 1
Re

[(
∆m,k − 1

r2

)
uθ + 2im

r2
ur + εi

(
k
∂

∂X
+ ∂k
∂X

)
uθ + ε2 ∂

2uθ
∂X2

]
,

−iωf ux + Γm,kux + ∂Ux

∂r
ur + ε

(
Ux

∂

∂X
+U′r

∂

∂r

)
ux + ε ∂Ux

∂X
ux

=−ikp− ε ∂p
∂X
+ 1

Re

[
∆m,kux + εi

(
k
∂

∂X
+ ∂k
∂X

)
ux + ε2 ∂

2ux

∂X2

]
,

1
r
∂rur

∂r
+ im

r
uθ + ikux + ε ∂ux

∂X
= 0,


(A 6)

where Γm,k and ∆m,k are the convective and Laplacian operators for a parallel flow,

Γm,k = imΩ + ikUx,

∆m,k = 1
r
∂

∂r

(
r
∂

∂r

)
− m2

r2
− k2.

 (A 7)

We consider now the asymptotic expansion:

û(r, X)∼ A(X)û(1)(r, X)+ εû(2)(r, X)+ · · · . (A 8)

At zero order in ε the local stability problem is retrieved:

ε0 L[û(1)] = 0, (A 9)

where the operator L contains the linearized Navier–Stokes equation on a parallel
baseflow Uθ(r), Ux(r):

−iωf ur + Γm,kur − 2Ωuθ =−∂p
∂r
+ 1

Re

[(
∆m,k − 1

r2

)
ur − 2imuθ

r2

]
,

−iωf uθ + Γm,kuθ + ur
∂Uθ

∂r
+Ωur =− imp

r
+ 1

Re

[(
∆m,k − 1

r2

)
uθ + 2imur

r2

]
,

−iωf ux + Γm,kux + ur
∂Ux

∂r
=−ikp+ 1

Re
∆m,kux,

1
r
∂rur

∂r
+ imuθ

r
+ ikux = 0.


(A 10)

At a given ωf the spatial branches q(k, X′) are the solutions of equation (A 10).
At first order in ε we get

ε1 L[û(2)] =Q[Aû(1)]. (A 11)
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Hence, the operator Q can be split into two parts:

Q[Aû(1)] = R[û(1)]dA
dX
+ S[û(1)]A, (A 12)

where R and S are defined as

R[û(1)] =


−Ux + ik

Re
0 0 0

0 −Ux + ik
Re

0 0

0 0 −Ux + ik
Re
−I

0 0 −I 0




û(1)r

û(1)θ
û(1)x

p̂(1)

 , (A 13)

S[û(1)] =



C(Ux,U′r, k)− ∂U′r
∂r

0 0 0

0 C(Ux,U′r, k)− U′r
r

−∂Uθ

∂X
0

0 0 C(Ux,U′r, k)− ∂Ux

∂X
− ∂

∂X
0 0 − ∂

∂X
0



×


û(1)r

û(1)θ
û(1)x

p̂(1)

 , (A 14)

with

C(Ux,U′r, k)=−Ux
∂

∂X
−U′r

∂

∂r
+ 1

Re

(
ik
∂

∂X
+ i

∂k
∂X

)
. (A 15)

In order to have solutions of the inhomogeneous equation L[û(2)] = Q[Aû(1)], the
forcing term Q should be in the image of the operator L. This means that Q should
be orthogonal to the corresponding adjoint eigenfunction ũ of the adjoint operator L̃w
with respect to the defined inner product, see Huerre & Rossi (1998):∫ ∞

0
R[û(1)]ũw(r) dr︸ ︷︷ ︸

M(X)

dA
dX
+
∫ ∞

0
S[û(1)]ũw(r) dr︸ ︷︷ ︸

N(X)

A

=
∫ ∞

0
L[û(2)]ũw(r) dr=

∫ ∞
0

û(2)L̃w[ũ]w(r) dr= 0, (A 16)

where w(r) is the weight of the scalar product, yielding to the amplitude equation,

M(X)
dA
dX
+N(X)A= 0. (A 17)

Thus, at first order the response is given by

u(r, x)∼A(x)û(r, x) exp
(∫ x

0
−ki(x′) dx′

)
exp

[
i
(∫ x

0
kr(x′) dx′ +mθ −ωt

)]
, (A 18)

where A(x) is the solution of (A 17).
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FIGURE 14. (Colour online) (a) Streamwise and (b) azimuthal velocity components of
the baseflow at x= 30 computed with rmax = 10 (black line) and rmax = 20 (red line). The
corresponding spatial growth rates, within the same streamwise position, are shown in (c).

Appendix B. The WKB formulation for volume forcing
In the case of volume forcing the following first-order term is included in the

linearized Navier–Stokes equation (A 1):

f (r, x)∼ εF(x)û(r, x) exp
(∫ x

0
−ki(x′) dx′

)
exp

[
i
(∫ x

0
kr(x′) dx′ +mθ −ωt

)]
. (B 1)

As for the signalling problem the response is expressed as in (A 18). Consequently at
zero order the local spatial problem of (A 9) is retrieved. The forcing term appears
only at first order in (B 2):

L[û(2)] + F(X)û(1) = R[û(1)]dA(X)
dX
+ S[û(1)]A(X). (B 2)

By projecting on the adjoint mode a non-homogeneous amplitude equation is now
obtained:∫ ∞

0
R[û(1)]ũw(r) dr︸ ︷︷ ︸

M(X)

dA
dX
+
∫ ∞

0
S[û(1)]ũw(r) dr︸ ︷︷ ︸

N(X)

A=
∫ ∞

0
û(1)ũw(r) dr︸ ︷︷ ︸

H(X)

F, (B 3)

where H(X) is defined as H(xi)=〈ũ(xi), û
(1)
(xi)〉. Of course the results are not affected

by the choice of the normalization of the adjoint field.

Appendix C. Sensitivity to radial extension of the domain
The very good agreement between WKB and global resolvent analysis discussed

in § 4.2 represents a significant convergence test since the theoretical approach, the
numerical method and the grids are different.

We show here the independence of the results from the radial extension of the
domain. The results for rmax = 10 and rmax = 20 are depicted in this section by
black and red lines respectively. In figure 14 the (a) axial and (b) azimuthal velocity
profiles of the baseflow at x = 30 reveal the null influence of the radial extension
of the domain and of the free-stress constraint at the boundary. The corresponding
spatial gains, −ki(x = 30), are reported in (c) for the two domain sizes. Similar
results are found for the other streamwise positions. As a consequence, the global
gains carried out with the WKB approach also result to be insensitive to the radial
domain extension, see figure 15(a). In addition, the optimal gains for inlet forcing are
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FIGURE 15. (Colour online) In (a) the global gains of the first five helical responses
excited by forcing at the inlet with the local direct mode computed by WKB analysis are
shown. Similarly, the optimal gains for inlet forcing computed through a global resolvent
are reported in (b).

reported in figure 15(b). Similar independence of the radial extension of the domain
is found for the case of volume forcing. Since in both WKB and global resolvent
analyses the baseflow is used, figure 15 represents a further validation test for the
baseflow.
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