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Abstract 

Control of flowering time is critical for reproductive success. In Arabidopsis thaliana, the 

gene FLOWERING LOCUS T (FT)  encodes part of florigen, which moves from leaves to the 

shoot apex to induce the floral transition. Under inductive long days (LD), transcription 

activation is mainly mediated by CONSTANS (CO). The epigenetic repressor LHP1, which 

associates with H3K27me3, antagonizes CO activity in vascular tissues at FT. 

The 5.7 kb sequence upstream of the FT translation start codon contains sufficient regulatory 

elements to mediate spatial and temporal expression of FT. On this full length FT promoter, 

phylogenetic analysis identified three conserved blocks, each around 300 bp, called Block A, 

B and C. The aim of my study was to identify and characterize functional cis-elements within 

the conserved blocks and elucidate the molecular mechanisms of FT trancription regulation. 

My results indicate that Block C (5.2 to 5.6 kb upstream of the transcriptional start site) is 

necessary for FT expression in LD conditions, and that CCAAT boxes in Block C and close to 

Block A at the proximal promoter impair the efficiency of a full length FT promoter. 

Mutagenesis of either one of four conserved sub-blocks in Block C dramatically reduces 

promoter activity. Although Block C acts as distal enhancer, it requires specific sequences 

contained in Block A to convey phloem-specific expression of FT in leaves. Through 

Chromosome Conformation Capture (3C) assays, a weak long-distance physical interaction 

between Block C and A could be detected. 

The distance between Block C and A displays natural variation among different A. thaliana 

accessions. Shortening the distance between the blocks by deleting 3.5 kb intersecting region 

or directly connecting Block C and A, generated shorter versions of the FT promoter that 

mimic the full-length promoter funtion in response to LDs. 

How the repressive histone mark H3K27me3 and LHP1 contribute to FT regulation is still 

unlcear. To study differential enrichment of H3K27me3 at the FT promoter, nuclei were 

isolated by INTACT (isolation of nuclei tagged in specific cell types) from the leaf phloem of 

plants grown in LD or SD conditions. Chromatin immunoprecipitation (ChIP) revealed that 

the abudance of H3K27me3 at Block C and A regions negatively correlated with FT 

expression levels in the phloem. 

Taken together, the distal enhancer Block C and Block A in the proximal promoter are 

accessible in leaf phloem cells and required and sufficent for FT expression in LD conditions. 
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Zusammenfassung 

Für eine erfolgreiche pflanzliche Vermehrung ist es unumgänglich den Blühzeitpunkt zu 

kontrollieren. In Arabidopsis thaliana  kodiert das Gen FLOWERING LOCUS T (FT) einen 

Teil des „florigen“, welches sich von den Blättern zum Apex der Pflanze bewegt, um dort das 

Blühen einzuleiten. In induzierenden Langtagbedingungen (LD), wird die Aktivierung der FT 

Transkription hauptsächlich über CONSTANS (CO) gesteuert. Das epigenetische 

Repressionsprotein LHP1, welches mit H3K27me3 assoziiert, fungiert antagonistisch zu der 

CO Aktivität in Bezug auf FT im vaskulären Gewebe. 

Die 5,7 kb Promotersequenz vor dem Startcodon von FT enthält regulatorische Elemente, die 

ausreichen, um eine örtlich und zeitlich begrenzte Expression von FT zu gewährleisten. Auf 

diesem funktionalen FT Promoter wurden drei konservierte Blöcke durch phylogenetische 

Analysen identifiziert. Jeder der Blöcke (Block A, B und C) ist etwa 300 bp lang. Meine 

Arbeit hatte die Identifikation und Charakterisierung funktionaler cis-Elemente innerhalb der 

konservierten Promoterblocks zum Ziel. Somit sollte zum Verständnis der molekularen 

Mechanismen beigetragen werden, welche die FT Transkription regulieren. 

Meine Ergebnisse deuten an, dass Block C (5.2 – 5.6 kb vor dem FT Transkriptionsstart) 

essentiell für die FT Expression in LD Bedingungen ist. Zusätzlich scheinen die CCAAT 

Elemente in Block C und nahe Block A im proximalen Promoter die Effizienz des 

Gesamtpromoters von FT direkt zu beeinflussen. Wenn man vier konservierte Unterblöcke in 

Block C durch Mutagenese verändert, führt dies zu stark verminderter Aktivität des 

Promoters. Obwohl Block C die Aktivität von FT aus der Distanz beeinflusst, sind zusätzlich 

spezifische Sequenzen in Block A nötig, um eine phloemspezifische Expression von FT in 

Blättern zu gewährleisten. Durch Chromosome Confirmation Capture (3C) konnte eine 

schwache physikalische Interaktion zwischen Block C und Block A nachgewiesen werden. 

Die Distanz zwischen Block C und A weist natürliche Variation zwischen verschiedenen A. 

thaliana Akzessionen auf. Die Verkürzung der Distanz zwischen den Blöcken, durch die 

Beseitigung des 3,5 kb umfassenden Zwischenregion oder die direkte Verbindung zwischen 

Block C und A, generierten kürzere Versionen des FT Promoters, die die Funktion des 

kompletten FT Promoters in LD Bedingungen imitierten. 

Es bleibt weiterhin unklar, wie die repressive Histonmarkierung H3K27me3 und LHP1 zur 

FT Regulation beitragen. Um differenzierte Anreicherung von H3K27me3 am FT Promoter 

zu untersuchen, wurden Zellkerne durch INTACT (Isolation von in bestimmten Geweben 
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markierten Zellkernen) aus dem Blattphloem von Pflanzen, die in LD oder SD Bedingungen 

gewachsen waren, isoliert. Mit Hilfe von Chromatin Immunopräzipitation (ChIP) konnte 

gezeigt werden, dass die Häufigkeitsverteilung von H3K27me3 an Block C und A im Phloem 

negativ mit der der Expression von FT korrelierte. 

Zusammen genommen sind der entfernte Expressionsverstärker Block C und Block A im 

proximalen Promoter in Blattphloemzellen verfügbar und sowohl nötig als auch ausreichend 

für die Expression von FT in LD Berdingungen. 
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1. Introduction 

1.1 Photoperiodic flowering pathway 

In higher plants, two basic growth phases are known. They result in vegetative and 

reproductive developmental stages of plant growth. In Arabidopsis thaliana (Arabidopsis or 

At), during the process of floral transition changing the vegetative growth to the reproductive 

phase, the shoot apical meristem (SAM) is phenotypically modified into an inflorescence 

meristem (Huijser and Schmid, 2011). In the annual Arabidopsis genus, floral transition 

cannot be reverted under normal growth conditions. Flowering time is stringently controlled 

by an internal gene network and external environment cues such as plant age, day length, 

light quality and temperature (Jack, 2004). Genetic studies have been identified several 

flowering time pathways, for examples photoperiod (day length), GA (gibberellin acid), 

vernalization (a period of cold), thermo-sensory, autonomous and aging pathways (Andres 

and Coupland, 2012; Kumar et al., 2012; Putterill et al., 2004; Wang et al., 2009). The 

photoperiod pathway was introduced in this part. 

Photoperiodism is the physiological reaction of plants to the length of day and night periods, 

and the controlling factor is the length of darkness (Hamner, 1940). Depending on the 

flowering stimulus from day-length, plants are categorized as long-day, short-day and day-

neutral plants (Allard and Garner, 1940). In 1936, physiologist Mikhail Chailakhyan reported 

that only leaves were receiving a photoperiodic stimulus whereas the stem buds were 

acceptors of this signal in Chrysanthemum (reviewed by Chailakhyan, 1975). One year later, 

in 1937, combining grafting experiments from sunflower and other species, the “florigen” 

concept was mentioned for the first time. In this concept, a hormone-like molecule which is 

produced in leaves and moves up to the SAM to trigger flowering was described (reviewed 

by Chailakhyan, 1975). However, it took more than seven decades to identify the molecular 

nature behind the florigen concept. 

 

1.1.1 FT: part of florigen 

Arabidopsis as a facultative long-day plant is early flowering under inductive LD, but late 

flowering in SD conditions (Hisamatsu and King, 2008; King et al., 2008). Late flowering 

mutants such as gi (gigantea), co (constans) and ft (flowering locus t) mutants were isolated 

by Maarten Koornneef and colleagues (Koornneef et al., 1991). FT is an early downstream 

http://www.plantcell.org/content/18/8/1783.full#ref-9
http://www.plantcell.org/content/18/8/1783.full#ref-9
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target of CO (Samach et al., 2000). Transgenic plants carrying 35S::CO (the promoter of 35S 

is a strong and constitutive 35S RNA promoter from Cauliflower Mosaic Virus (CaMV)) 

flower early independent of day length (Simon et al., 1996). Mis-expression of CO by 

phloem-specific expression promoter SUC2 rescues late flowering of co mutants, but CO 

expressing in the meristem driven by KNAT1 promoter fails to complement co mutants. 

Overexpression of FT in the phloem or meristem rescues both co and coft. It suggests that CO 

controls the synthesis of systemic flowering signal probably through FT (An et al., 2004). A 

bZIP transcription factor FD is preferentially expressed in the meristem and as a partner 

required for FT action of triggering flowering (Abe et al., 2005). 

In 2005, FT mRNA as florigen was reported to move from leaves to apex. These results, 

however, were later retracted (Bohlenius et al., 2007; Huang et al., 2005). In tomato, SFT 

(SINGLE FLOWER TRUSS) is the ortholog of Arabidopsis FT. SFT mRNA was not detected 

in the SAM of sft shoots that had been grafted onto 35S::SFT donors (Lifschitz et al., 2006). 

In 2007, in Arabidopsis, GFP signal was detected in the SAM of ft-7 plants carrying 

SUC2::FT:GFP, and the GFP signal was also observed in the apex of plants with ft-7 mutant 

shoots grafted onto SUC2::FT:GFP;ft-7 roots (Corbesier et al., 2007). In rice, an ortholog of 

FT, Hd3a tagged GFP driven by phloem-specific-promoters such as rolC or RPP16 showed 

florescence signals in the apexes. As control, the photoactivatable fluorescent protein Kaede 

driven by the same promoters only showed florescence signals that were restricted to phloem 

tissue beneath the SAM (Tamaki et al., 2007). 

Evidence provided by different research groups supported the hypothesis that FT protein 

movement was necessary for the floral induction. Under the control of the SUC2 promoter, 

FT tagged with 5x Myc at the N- terminal moved out of companion cells into the SAM, but 

Myc:FT with nuclear localization signal (NLS) was trapped in the nucleus, which resulted in 

plants in which FT could not travel nor trigger flowering. As control, the fusion protein 

Myc:FT with NLS expressed in the apex promoted flowering (Jaeger and Wigge, 2007). 

Furthermore, FT tagged by TEV-3×YFP carrying a cleavage site by TEV (tobacco etch virus) 

protease was too big to move out of phloem cells. While FT released from the big fusion 

protein was sufficient to induce floral transition (Mathieu et al., 2007). From hetero-grafting 

experiments in Cucurbits, mass spectrometry analysis of phloem sap proteins revealed the 

presence of FT protein, but no FT transcripts were detected according to RT-PCR 

measurements (Lin et al., 2007). In sum, FT protein can be viewed as a long-distance mobile 

signal, which is translocated from leaves to the SAM to promote floral transition. Thus, FT 
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protein fits well with the definition of florigen. 

 

1.1.2 GI-CO-FT module in photoperiod pathway 

Based on two decades of genetic studies on flowering time, components GI-CO-FT became 

established as central module in photoperiod pathway (Turck et al., 2008). 

GI encoding a nuclear protein is identified as a component of the circadian clock network. 

There, it regulates the central loop factors LHY (LATE ELONGATED HYPOCOTYL) and 

CCA1 (CIRCADIAN CLOCK-ASSOCIATED 1) (Park et al., 1999). Additionally, GI could 

also repress TOC1 (TIMING OF CAB EXPRESSION 1) expression in a feedback loop in the 

evening (Pruneda-Paz and Kay, 2010). Genetic experiments demonstrates that through 

circadian clock GI positively upregulates expression levels of CO and FT (Mizoguchi et al., 

2005). 

CO encodes a nuclear protein containing a CCT (CONSTANS, CO-like, and TOC1) domain 

and two zinc binding B-boxes. CO is found to act downstream of GI as well as the circadian 

clock. The signals of GUS reporter gene driven by CO promoter are restricted to phloem cells 

in LD conditions (An et al., 2004; Takada and Goto, 2003). CO mRNA accumulates with a 

diurnal rhythm and displays a biphasic pattern in one cycle. On the transcriptional level, the 

increment of CO transcripts in the late afternoon of LD is mainly controlled by GI (Putterill 

et al., 1995; Turck et al., 2008). DOF transcription factor CYCLING DOF FACTOR 1 

(CDF1) is redundancy with CDF2, CDF3 and CDF5. When expressed each CDF in phloem 

under SUC2 promoter, plants delay flowering coupling with downregulating CO mRNA. 

CDFs inhibit the increment of CO transcripts in the late afternoon. The cdf1;2;3;5 quintuple 

mutants flower early independent on the photoperiod, and they restore late flowering of gi 

plants (Fornara et al., 2009). In addition, CDF1 has been suggested to directly associate with 

CO promoter. The abundance of CDFs is dependent on GI as well as FKF1 (FLAVIN-

BINDING, KELCH REPEAT, F-BOX 1). GI and FKF1 can form a complex which removes 

the CDFs through the 26S proteome degradation pathway (Fornara et al., 2009; Imaizumi et 

al., 2005; Sawa et al., 2007). 

Even though CO mRNA has a high expression level in the night when plants grow in SD 

conditions, C protein does not accumulate in the dark. That the CO protein is unstable was 

first observed when GPF signal could not be detected in the nucleus of guard cells in 

darkness although a GFP:CO fusion gene was expressed under the control 35S promoter. In 
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addition, CO protein is ubiquitinated and stabilized by a proteasome inhibitor indicating that 

posttranslational regulation of CO participates in determining photoperiodic flowering 

(Valverde et al., 2004). Light quality also regulates CO protein stability. In LD, the red light 

photoreceptor Phytochrome B (PHYB) participates in the degradation of CO in the early 

morning. However, PHYA, another photoreceptor for far-red light, as well as the blue light 

receptors Cryptochrome 1 and 2 (CRY1 and CRY2) stabilize CO at the end of long days 

(Valverde et al., 2004). SPA1 (SUPPRESSOR OF PHYA-105), redundantly with SPA2, 

SPA3 and SPA4, belongs to a family of WD-repeat proteins which suppress 

photomorphogenesis in darkness (Laubinger et al., 2004). SPA1-CO interaction requires the 

CCT domain of CO, and CO abundance increases in spa1;3;4 mutants. SPAs mediate the 

destabilization of CO protein in the evening (Laubinger et al., 2006). 

FT was cloned in 1999. Genetically FT is the main downstream target of CO, and CO is the 

main activator of FT in photoperiod pathway (Kardailsky et al., 1999; Kobayashi et al., 

1999). CO likely activates FT transcription requiring its proximal promoter, especially some 

conserved sequences (Adrian et al., 2010). 

Unlike CO and FT which are specifically expressed in the phloem, GI also displays 

expression in other tissue types (Winter et al., 2007). Independent of CO, GI indirectly 

regulates FT through the miRNA (miR) 172 pathway (see below) (Mathieu et al., 2009). 

Surprisingly, GI itself seems to activate FT directly in mesophyll cells by binding to FT 

repressors and associating with the FT proximal promoter (Sawa and Kay, 2011) and also 

other upstream regulators of CO such as FKF1 and CDFs have been reported to directly 

regulate FT based on ChIP results (Song et al., 2012). More evidence is needed to understand 

how the transcriptional components involved in CO regulation are also involved in FT 

transcription control. 

In sum, the GI-CO-FT module contains the central factors in the flowering response to day 

length in Arabidopsis. Interestingly, in the SD plant rice, OsGI-Heading date 1(Hd1)-Hd3a 

are homologs of GI-CO-FT in Arabidopsis. The rice module activates flowering in SDs. 

Under LD conditions, Hd1 represses Hd3a. However, which type of Hd1 protein participates 

in upregulating Hd3a in SD and which one repressed Hd3a in LD remained unclear (Hayama 

et al., 2003; Tsuji et al., 2011). 
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1.1.3 FT action in the SAM 

In inductive conditions, FT is transcribed in the companion cells of the minor veins in leaves, 

and FT is translocated with the assistance of FTIP1 (FT-INTERACTING PROTEIN 1) to 

sieve elements (Adrian et al., 2010; Liu et al., 2012; Takada and Goto, 2003). After long 

distance movement along the stem phloem, FT is unloaded to the SAM (Corbesier et al., 

2007; Jaeger and Wigge, 2007; Mathieu et al., 2007; Tamaki et al., 2007). 

A recent study in rice demonstrated that once entering the meristem cell cytoplasm, Hd3a 

interacts with a 14-3-3 protein to form a complex that moves into the nucleus. After 

interacting with FD in the nucleus, a ternary complex Hd3a/14-3-3/OsFD, also called 

“florigen activation complex” (FAC) is formed. There is no direct interaction between Hd3a 

and OsFD based on the results of crystal structure. The FAC directly induces transcription of 

OsMADS15, an Ortholog of AtAP1 in the SAM (Taoka et al., 2011). In Arabidopsis, FT 

protein could also migrate into the nuclei to form a complex with the bZIP transcription 

factor FD. Even though interaction between FT and FD happened in yeast-one-hybrid assay 

that yeast 14-3-3 proteins may provide a scaffold (Abe et al., 2005). FT-FD protein complex is 

suggested to directly activate AP1 in Arabidopsis (Wigge et al., 2005). This process may also 

require a 14-3-3 protein to form the AtFAC. 

In the SAM, SOC1 (SUPPRESSOR OF OVEREXPRESSOR OF CONSTANS 1), a floral 

identity gene operates downstream of FT and FD (Abe et al., 2005; Kardailsky et al., 1999; 

Yoo et al., 2005). Upregulation of SOC1 detected by in situ hybridization is supposed to be 

the earliest event during the LD-induced floral transition (Borner et al., 2000; Samach et al., 

2000; Searle et al., 2006). 

 

1.1.4 Homologs of FT 

FT belongs to the phosphatidyl ethanolamine-binding protein (PEBP) gene family which is 

present in all eukaryote kingdoms. PEBPs function on controlling growth and differentiation 

through various signaling pathways (Chautard et al., 2004). In Arabidopsis, all six PEBP 

genes have been shown to affect flowering time, and they are classified into three clades. The 

FT-like clade includes FT and TWIN SISTER OF FT (TSF), the TFL1-like clade includes 

TERMINAL FLOWER1 (TFL1), BROTHER OF FT AND TFL1 (BFT) and ARABIDOPSIS 

THALIANA CENTRORADIALIS (ATC) and the MFT-like clade includes MOTHER OF FT 

AND TFL1 (MFT) (Karlgren et al., 2011). 
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TSF, which encodes the most closely related protein to FT based on the amino acid level 

comparison, plays a role as flowering pathway integrator gene and has largely overlapping 

function with FT. In seedlings, TSF is mainly expressed in the vascular tissue of leaves, 

petioles and hypocotyl. Although tsf single mutants do not show obvious later flowering 

phenotypes in LD or SD, a loss of tsf function enhances the ft flowering phenotype under 

both conditions (Jang et al., 2009; Yamaguchi et al., 2005). 

In the TFL1-like clade, TFL1 is specifically expressed in the SAM where it acts as a 

repressor of flowering. In the inflorescence meristem, presence of TFL1 inhibits the 

formation of a floral meristem. Mutants of tfl1 flower early with a terminal flower phenotype, 

which is similar to the phenotype of 35S::FT plants (Kardailsky et al., 1999; Kobayashi et al., 

1999). Likely, a single amino acid change on FT (Tyr 85 changed to His) and TFL1 (His 88 

changed to Tyr) could re-program either protein function as the other one (Hanzawa et al., 

2005). Based on the results of crystal structure, a divergent external three-dimensional loop 

of segment B on exon four may characterize the antagonistic activity of FT and TFL1 (Ahn et 

al., 2006). In sugar beet, two paralogs of FT, BvFT1 and BvFT2, are both expressed in leaves 

and have antagonistic functions in determining flowering and growth. BvFT1 transcription is 

promoted in SD conditions in autumn and inhibited during winter, whereas BvFT2 is induced 

in LD conditions in spring. Three different amino acids in the segment B which forms a loop 

containing a 14 amino acid stretch determine the reversed function of BvFT1 and BvFT2. 

BvFT2 was found to act as a FT-like gene and BvFT1 was a TFL1-like gene although overall 

proteins belong to the FT-like clade (Pin and Nilsson, 2012; Pin et al., 2010). 

The TFL1-like gene BFT has a redundant function with TFL1, because in tfl1 background bft 

mutant plants enhance the termination phenotype of the primary inflorescence (Yoo et al., 

2010). MFT is a single copy gene of the MFT-like clade in Arabidopsis. Constitutive 

expression of MFT slightly accelerates flowering in LD, but ft or tfl1 mutant phenotypes do 

not change when combined with a reduced activity of MFT (Yoo et al., 2004). 

 

1.2 Transcriptional regulation of FT 

Expression of FT is highly regulated on the transcriptional level by several independent or 

interdependent inputs (Figure 1). The complex integration of many regulatory networks at FT 

ensures that plants flower at the optimal moment by adapting to the environmental conditions 

and internal cues. 



  1. Introduction 

7 
 

1.2.1 General background on the transcription machinery 

In eukaryotes, the transcription machinery contains three multi-component parts: i) 

transcription pre-initiation complex (PIC), ii) cofactors and iii) activators. The PIC is 

assembled by RNA Polymerase II (RNAPII), general transcription factors (GTFs) and a core 

promoter (Thomas and Chiang, 2006). 

RNAPII, as the crucial catalytic enzyme of the PIC, is responsible for the transcription of 

protein-coding genes in eukaryotes. Yeast and human RNAPII both contain 12 subunits 

(Young, 1991). In yeast and human, TFIIA, TFIIB, TFIID, TFIIE, TFIIF, TFIIH have been 

isolated as GTFs (Hahn, 2004; Thomas and Chiang, 2006). 

TATA box binding protein (TBP), a constituent of TFIID, binds to TATA(A/T)A(A/T)(A/G) 

sequences -25nt to -30nt upstream of the transcription start site (TSS as +1nt). The initiation 

sequence surrounding the TSS (-2nt to +5nt) and downstream promoter sequence (DPS) 

around +7nt to +30nt downstream of the TSS are associated with TAFs (TBP Associated 

Factors) which also belong to TFIIDs. Because all those proteins bind to DNA elements at 

core promoter, there is a basal level of transcription at core promoter (Thomas and Chiang, 

2006). Transcriptional activation acts by increasing the efficiency of PIC assembly and 

transcription initiation (Roeder, 2005). 

Cofactors serve as a bridge, linking the PIC and transcriptional activators. One class of 

cofactors assemble a complex called “Mediator”. This complex was first characterized in 

yeast and found to comprise 20 subunits (Kim et al., 1994). Accumulating evidence suggests 

that RNAPII, GTFs and other regulatory factors are not recruited to individual gene 

promoters, but form “transcription factories”, physically distributed as sub-nuclear foci and 

that genes associate with these factories for transcription (Edelman and Fraser, 2012). The 

concept of transcription factories may easily explain co-expression of two distant genes 

localized on the same or different chromosomes. 

 

1.2.2 Characterization of the FT promoter 

Limitations in detecting FT transcript by in situ hybridization, require the application of β-

glucuronidase (GUS) gene, driven by 8.9 kb FT promoter, to elucidate the spatial and 

temporal mRNA signal of FT (Takada and Goto, 2003). Promoter truncation results 

demonstrate that the 5.7 kb sequence upstream of the FT translation start codon contains 

sufficient regulatory elements to mediate spatial and temporal expression of FT in LD 

http://microscopy.tamu.edu/lab-protocols/GUS_Localization_in_plants.pdf
http://microscopy.tamu.edu/lab-protocols/GUS_Localization_in_plants.pdf
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conditions. In addition, 4 kb FT promoter sequence or shorter failed to drive GUS in the 

phloem of leaves in wild type (WT) and 35S::CO plants. Furthermore, these promoter 

constructs combined with a cDNA of FT could not rescue the late flowering phenotype of ft 

mutants (Adrian et al., 2010). In sum, a 1.7 kb (from 4 kb to 5.7 kb) promoter region is 

necessary for FT transcription in leaves. Three phylogenetically conserved blocks named 

Block C, B and A are identified on the distal, middle and proximal FT promoter region 

respectively (Figure 1). In the background of 5.7 kb FT promoter, mutagenesis of conserved 

sub-blocks of 6 nt to 16 nt, such as P1/P2 and S2, in Block A strongly reduce FT transcription 

(Adrian et al., 2010). Block A (~ 300bp) contains the FT 5´ UTR and conserved sequences 

corresponding to the minimal promoter and consensus binding sites for several known 

transcription factors (Adrian et al., 2010; Castillejo and Pelaz, 2008; Kumar et al., 2012; 

Tiwari et al., 2010). The functions of Block B and Block C are largely unknown.  In addition, 

it is still unknown how these three conserved blocks communicate with each other. 

The FT promoter provides a platform of natural variation for flowering time in Arabidopsis. 

Based on the two Arabidopsis accessions, Est-1 and Col-0, one flowering time Quantitative 

Trait Locus (QTL) maps region up to 6.7kb upstream of the FT TSS (Schwartz et al., 2009). 

Another independent group analyzed Ull2-5 and Col-0 to find one QTL localized at a 9 kb 

intergenic region between FT and its neighboring gene, FAS1 (Strange et al., 2011). Taken 

together, a total of seven independent experiments with nine different A. thaliana accessions 

have been described, where flowering time QTLs map to FT locus (Schwartz et al., 2009). 

 

 

Figure 1. Schematic network of transcription regulation of FT. 
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Transcription of FT is regulated by different flowering time pathways and their core components. In 
the photoperiod pathway, the main activator CO may directly bind to the proximal promoter FT. CO 
interacts with members of the NF-YB and NF-YC families to form a trimetric complex that participates 
in the photoperiod-dependent regulation of FT. In the low ambient temperature and autonomous 
pathway, SVP represses FT through association with CArG-boxes in the upstream promoter. In the 
vernalization pathway, FLC binds preferentially to the first intron of FT, which contains a CArG-box. 
FT repression by FLC partially depends on SVP. In the aging pathway, SMZ as direct target of 
miR172 represses FT. SMZ binds to a region downstream of the 3´ UTR. TEM1 represses FT and 
associates with sequences found at the 5´ UTR. PIF4 activated FT expression and binds to the 
5´UTR region.in the high ambient temperature. The epigenetic repressor LHP1 binds to a large 
regions spanning the promoter and gene body of FT (Dashed line represents the low abundance of 
LHP1 binding to FT). 
 

1.2.3 Activators and repressors of FT 

Several key components of flowering time pathways have been described as upstream 

activators or repressors of FT (Figure 1). 

CO and NF-Y factors: In LD conditions, diurnal rhythmic patterns of FT transcript 

accumulation fit well with the temporal abundance of CO protein. Therefore, FT mRNA has 

a major peak appearing before darkness, and it also shows a minor peak in the morning 

(Corbesier et al., 2007; Turck et al., 2008). 

In LD, CO-mediated activation of FT requires the 5.7 kb FT promoter and it has been shown 

that CO directly associates with the FT proximal promoter. In vitro, CO binds to TGTG(N2-

3)AT(G) motifs present within Block A (Adrian et al., 2010; Tiwari et al., 2010). Furthermore, 

in a recent ChIP experiment with lines expression a CO tagged HA under the control of the 

CaMV 35S promoter, enrichment of FT proximal promoter was shown, although the relative 

enrichment signals were comparatively low (Song et al., 2012). Further studies are required 

to fully characterize the binding signals of CO on FT and the structural impact of binding in 

vivo. 

In transient expression assays, reporter gene signals driven by 1kb and 5.7kb FT promoter 

sequence show similar promoter activity in response to presence of CO (Adrian et al., 2010; 

Tiwari et al., 2010). However, in planta, CO completely fails to drive FT when fused to only 

1 kb or 4 kb FT promoter sequence which suggests that FT transcription is influenced by 

chromatin background (Adrian et al., 2010). 

CO interacts with Nuclear Factor YB and YC (NF-YB and NF-YC; also called HEME 

ACTIVATOR PROTEIN 3 (HAP3) and HAP5) to assemble a trimetric complex in vitro and 

in planta. NF-YAs contain a domain with sequences homology to CCT domain proteins, such 

as CO, CO-Like protein and TOC1 (Wenkel et al., 2006). In general, the NF-YB and NF-YC 

form a dimer followed by interacting with NF-YA to produce a trimetric complex. The 
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resulting NF-YA/-YB/-YC trimer is capable of binding to CCAAT-motifs with high affinity 

and participates in transcription activation (Bi et al., 1997; Mantovani, 1999). In yeast, a 

DNA-binding trimer of HAP2/HAP3/HAP5 requires association of subunit HAP4 to provide 

the activation function to the whole complex (McNabb and Pinto, 2005). In Arabidopsis, 

overexpression of NF-YA delays flowering, so CO may replaces of NF-YA position to form 

a complex with NF-YB and NF-YC (Wenkel et al., 2006). 

NF-YB and -YC, both contain histone-fold domains (HFDs) form a dimer which mimics the 

H2A/H2B core histone dimer. In addition, the trimetric NF-Y complex binds to a 25 nt 

stretch including one CCAAT motif from the HSP70 promoter. Interestingly, during 

transcription initiation NF-YB is ubiquitinated at Lys138, similar to H2B, which is mono-

ubiquitinated on Lys120 (Nardini et al., 2013). These observations indicate that NF-Y 

complexes could replace nucleosomes at some loci containing CCAAT-motifs. 

In contrast to the single copies for NF-YA, -YB, -YC in yeast and mammals, there are 10 NF-

YAs, 13 NF-YBs, and 13 NF-YCs homologs in Arabidopsis. Moreover, all NF-Ys show 

variable expression in root, cotyledons, young seedling and flowers. GUS driven by 

promoters of NF-YA2, -YA6 and -YB2, -YB3, -YB12 shows phloem-specific expression in 

leaves. Furthermore, NF-YC3, -YC4 or -YC9 promoters fused to GUS appear strong signals in 

the phloem and other cell-types of leaves (Kumimoto et al., 2010; Siefers et al., 2009). In LD, 

nf-yc3;4;9 triple mutants delay flowering, and overexpression of CO cannot fully accelerate 

flowering in nf-yc3;4;9 triple mutants. All three subunits of NF-YC interact with NF-YB2 

and NF-YB3 in vitro. The results suggest that CO requires NF-YC to activate FT. 

CIB1 and PIF4: CRYPTOCHROME-INTERACTING BASIC-HELIX-LOOP-HELIX 1 

(CIB1) interacts with CRY2 in a blue light-dependent manner. CIB1 associates with the FT 

TSS region and the second intron in ChIP assay, and promotes CRY2-dependent floral 

transition (Liu et al., 2008). In high red light environment, active PHYB directly interacts 

with a bHLH domain transcription factor PHYTOCHROME-INTERACTING FACTOR 4 

(PIF4), which leads to the ubiquitin-proteasome degradation of PIF4. When PHYB is 

inactive, accumulation of PIF4 allows shade-avoidance genes expression (Stamm and Kumar, 

2010). In response to high ambient temperature in SD, PIF4 directly activates flowering 

dependent on the sequences found in the 5´ UTR of FT (Kumar et al., 2012). 

FLC and SVP: The MADS-domain transcription factor FLOWERING LOCUS C (FLC), 

whose levels decrease gradually during vernalization (Sheldon et al., 2000), represses FT 
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presumably by binding to a CArG-box in the first intron in leaves (Lee et al., 2007). In low 

ambient temperature, another MADS-domain factor, SHORT VEGETATIVE PHASE (SVP), 

represses FT by binding to a 2 kb region upstream of the FT promoter. FLC and SVP might 

form a complex and it seems that they can collectively but also individually repress FT (Li et 

al., 2008) In addition, SVP and FLC also directly repress another floral integrator, SOC1 in 

the SAM (Li et al., 2008; Searle et al., 2006). 

TEM1 and SMZ: TEMPRANILLO1 (TEM1), is a RAV-family AP2-like protein that 

counteracts the CO-mediated activation of FT. It directly binds to the FT 5´ UTR in vivo. 

TEM1 promoter driving GUS expression illustrates that the expression levels of TEM1 

decrease gradually when the plant ages. Further, TEM1 expression domains are limited to the 

distal part of the leaf in older plants (Castillejo and Pelaz, 2008). It has been speculated, that 

FT expression domains expanding to the major veins during aging could partially be due to 

the reduction of TEM1. 

In the aging pathway, miR156 targets SQUAMOSA BINDING PROTEIN LIKE 9 (SPL9) and 

SPL10, which are positive regulators of miR172 (Wang et al., 2009; Wu et al., 2009). AP2-

like transcription factors such as SCHLAFMUETZE (SMZ), SCHNARCHZAPFEN (SNZ), 

TARGET OF EAT 1 (TOE1), TOE2 and TOE3 are downstream targets of miR172. By 

genetic interaction, SMZ and SNZ are shown to repress FT and ChIP-chip data of SMZ show 

binding occurring approximately 1.5 kb downstream of the FT coding region. Interestingly, 

TEM1 is also in the binding target list of SMZ, potentially connecting the two independent 

age-related repressors of FT (Mathieu et al., 2009). Accumulation of miR156 is gradually 

reduced with aging and results in increment of miR172 (Wang et al., 2009; Wu et al., 2009). 

 

1.2.4 Polycomb repressive complexes 

A nucleosome consists of 147 bp DNA and a histone (H) octamer including two copies each 

of core Histone 2A (H2A), H2B, H3 and H4. Two nucleosomes are connected by linker DNA 

and may be further compacted by the binding of Histone 1 (H1) to two adjacent nucleosomes 

(Bhasin et al., 2006). In eukaryotic nuclei, nucleosomes form the fundamental repeating units 

of chromatin. Eukaryotic gene transcription requires an open chromatin structure. Therefore, 

histone modification presents an important layer for controlling transcription. Compared to 

“naked” DNA in prokaryotes, eukaryotic gene expression is definitely determined by the 
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chromatin modifications. Dynamic of nucleosome appears to affect all steps of transcription 

from PIC formation, activators recruitment to elongation (Li et al., 2007). 

Tri-methylated lysine of the amino-terminal tail of H3 at position 27 (H3K37me3) is a 

repressive histone modification mark, and a large number of Arabidopsis genes (~15%) are 

marked by H3K27me3 (Turck et al., 2007; Zhang et al., 2007a). Several key floral transition 

genes, such as FLC, FT and AG are enriched with H3K27me3 (Farrona et al., 2008). In 

Drosophila melanogaster, H3K27me3 is deposited by Polycomb Repressive Complex 2 

(PRC2). The PRC2 includes four core components: the SET-domain histone 

methyltransferase Enhancer of Zeste (E(Z)) in association with Suppressor of Zeste 

(SU(Z)12) and the WD40-domain proteins Extra sex combs (ESC) and Multicopy suppressor 

of Ira (MSI) (Schwartz and Pirrotta, 2007). In Arabidopsis, each subunit with the exception 

of ESC has a small clade of homologue genes. MEDEA (MEA), CURLY LEAF (CLF) and 

SWINGER (SWN) are homologs of E(Z) methyltransferase gene (Farrona et al., 2008). 

Mutants of clf exhibit curled rosette leaves, earlier flowering and pleiotropic morphology 

phenotypes (Goodrich et al., 1997). H3K27me3 abundance is dramatically reduced on the FT 

gene body and its promoter in clf mutants. GUS expression driven by the FT promoter is 

enhanced in the phloem cells of leaves in clf grown in LD and SD, but not detected in other 

cell types. The GUS signal is also restricted to veins in cotyledons of clf;swn double mutants. 

With aging, these double mutants develops to a callus that lack differentiated phloem. It 

suggests that PRC2 can regulate the transcription levels of FT but not alter or control its 

tissue-specific expression (Farrona et al., 2011). 

In Arabidopsis, the distribution of LIKE HETEROCHROMATIN PROTEIN1 (LHP1) shows 

a high overlap with the distribution of H3K27me3 (Turck et al., 2007; Zhang et al., 2007b). 

Mutants of lhp1, also called terminal flower 2 (tfl2), flower early and exhibit a terminal 

flower phenotype in LD and SD (Kotake et al., 2003). GUS expression data suggests that 

expression of CO and FT are restricted to the phloem of leaves. A translational fusion 

between the genomic LHP1 region and GUS (gLHP1:GUS) expresses strongly in the major 

veins of the proximal leaf, which is opposite to the minor veins of the distal leaf. In addition, 

expression of LHP1 is not in a phloem-specific manner. Thus, LHP1 acts antagonistically to 

CO on FT transcription (Takada and Goto, 2003). As mentioned above, 4 kb FT promoter 

sequence is not able to drive GUS expression in WT or 35S::CO background, however, GUS 

signal are observed in the major veins of lhp1 mutants. Chromatin structure changes mediated 

by H3K27me3 and LHP1 negatively regulate FT transcription. However, when induction of 
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CO by treating 35S::CO:GR plants by Dex, H3K27me3 and LHP1 abundance do not 

significantly change  (Adrian et al., 2010). How to explain that the FT expression levels 

increased without removing the repressors? It could reason that the change of H3K27me3 or 

LHP1 occurs in the phloem nuclei but not the whole plants with activation of FT. 

Chromatin plays important role for gene expression. On FT locus, how could the conserved 

blocks especially the distal Block C and Block A in the proximal promoter communicate with 

each other? We need the tools to measure their positions in chromatin background. 

 

1.3 Chromosome conformation capture and cell sorting 

Chromatin loop occurs when two genome loci physically interact with each other and they 

are closer than the intervening sequences. Chromatin confirmation capture (3C) and its 

further developments are powerful methods to detect chromatin loop structure in vivo. 

 

1.3.1 3C to measure chromatin interaction 

In eukaryotes, chromatin is non-randomly organized and compacted into the nucleus by many 

folds. This condensation provides a big challenge for transcription of chromosomal DNA 

(Gondor et al., 2008). Transcriptional activation and repression involve interactions with 

long-range regulatory elements, such as enhancers or insulators. The model of looping 

structures to explore such interactions between remote cis-elements and promoters has been 

raised since more than twenty years (Tolhuis et al., 2002). Notably, in 2002, Dekker and 

colleagues invented the 3C technology. Based on 3C method, a chromosomal looping 

structure is discovered experimentally in yeast (Dekker et al., 2002). 3C is a powerful method 

to directly study the chromatin interaction structure between two genomic loci, for example 

enhancer-promoter looping. In the past ten years, 3C has been widely applied in yeast, animal 

cells, and a few cases have been reported in plants. 

In yeast, a gene loop persisting on the GAL10 locus is associated with a “transcriptional 

memory” defined as gene‟s rapid reactivation kinetics following a cycle of activation and 

repression (Laine et al., 2009). In mammals, the Kit gene is one example during early 

erythropoiesis. There is a loop formed between a 114 kb-upstream-enhancer and its proximal 

promoter region to induce Kit gene expression. However, Kit gene is silenced in mature cells, 

while the positive enhancer-promoter loop is replaced by another loop formed by a 58 kb-
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downstream-GATA element and promoter. That means different conformations of chromatin 

structure determine Kit gene‟s transcription (Jing et al., 2008). Another representative 

example of looping structure is provided by the beta-globin genes, which contain a cluster of 

DNase I hypersensitive sites. One hypersensitive region localized ~100 kb upstream of gene, 

mediates long-range interactions with the proximal promoter as well as several other cis-

elements on different chromosomes to regulate beta-globin gene transcription (Xu et al., 

2010). In addition, looping conformation of promoter-terminator suggests a core-helix model 

for the topology of active ribosomal RNA (rRNA) genes viewed as “Christmas tree” 

(Denissov et al., 2011). 

In the plant field, the first case of long-range looping has been reported in maize. The b1 gene 

has two epialleles B-I and B'. A hepta-repeat region localized ~100 kb upstream of promoter 

could physically interact with the transcription initiation region, and the loops are shown to 

be tissue specific (Louwers et al., 2009). In Arabidopsis, at the FLC locus, 5' and 3' flanking 

regions are involved in a loop formation. This loop structure is disrupted in the early stage of 

vernalization treatment, but independent of FLC expression levels (Crevillen et al., 2013). 

Compared Arabidopsis to yeast, the ratio of their genome size is 10 times, and the ratio of 

gene number is 6 times. But human‟s genome is 30 times of that in Arabidopsis with a similar 

number of genes (http://users.rcn.com/jkimball.ma.ultranet/BiologyPages/G/GenomeSizes). 

Therefore, chromatin organization in Yeast may help studying and understanding the 

chromatin looping structure in Arabidopsis. In Yeast, 3C followed by ligation product 

enrichment globally mapped long-range interactions, which revealed that genome 

organization significantly links to transcriptional regulation and co-expression of genes 

during the cell cycle (Tanizawa et al., 2010). 

 

1.3.2 Chromosome organization in the nucleus  

3C is used to measure chromosome interactions between the interest region and any other 

genome loci on a limited locus (one-versus-some). Its derived technology 4C (circular 

chromosome conformation capture) has been adopted to identify the interacting regions to the 

H19 imprinting control region during maturation of embryonic stem cells (one-versus-all) 

(Zhao et al., 2006). Hi-C as an extension version of 3C is capable of detecting long range 

interactions in an unbiased, genome-wide fashion (all-versus-all). Hi-C has been widely used 

http://users.rcn.com/jkimball.ma.ultranet/BiologyPages/G/GenomeSizes
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in yeast and mammalian cells for modelling the organization of chromosomes (van Berkum 

et al., 2010). 

To investigate the complexity of human chromosomes based on Hi-C method at a resolution 

of 1 Megabase, a new model called “fractal globule” is established and distinct from the 

commonly used “globular equilibrium” model. The new 3D model indicates the function of 

maximally dense packing to prevent easy folding and unfolding at any genomic locus 

(Lieberman-Aiden et al., 2009). Based on high resolution Hi-C map, local chromatin 

interaction domains termed “topological domains” (TD) have been characterized on 

Megabase scale. These domains correlate with regions that constrain the spread of 

heterochromatin, and are stable across different cell types and conserved across species 

(Dixon et al., 2012). Recently, Hi-C was carried out in atmorc1 and atmorc6 mutants, the 

whole genomic interaction map revealed that pericentromeric heterochromatin de-condensed 

as well as the interaction of pericentromeric regions increase. Mutants of atmorc1/6 cause de-

repression of DNA-methylated genes and transposable elements but no losses of DNA 

methylations or histone methylations (Moissiard et al., 2012). Due to the low resolution of 

Hi-C map in Arabidopsis, it could be difficult to see the TD structure identified in 

mammalian cells or small-distance interactions. 

In yeast and animal studies of 3C and Hi-C, researchers commonly sample single cell types. 

However, plant tissue consists of different cell-types and it is not easy to separate single types 

of cells. Thus, it is a challenge to get pure and enough cells of interest for chromatin structure 

study in plants. 

 

1.3.3 Cell/nuclei sorting methods 

Several methods for purifying cells of one tissue/the same type have been developed such as 

fluorescence-activated cell sorting (FACS), laser capture microdissection (LCM) and the 

methods of cultured cell lines. FACS and LCM are widely used for mRNA expression and 

histone modification profiles in vivo (Deal and Henikoff, 2010). In maize, LCM-mediated 

isolation of epidermal cells or vascular tissues from 6-μm-thick sections of coleoptiles were 

used for differential gene expression by microarray (Nakazono et al., 2003). By FACS, 

transgenic plants with cell-specific-promoters fused to GFP were created to isolate five 

individual types of cells from roots for mRNA expression analysis (Birnbaum et al., 2003). 

However, both LCM and FACS techniques require expensive sorting machinery and careful 
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operation, but their yields of isolated specific cells are limited. Recently, a new method called 

INTACT (isolation of nuclei tagged in specific cell types) was applied in Arabidopsis and 

Caenorhabditis. elegans (Deal and Henikoff, 2010; Steiner et al., 2012). 

The INTACT system needs a cell/tissue-specific promoter to drive an engineered “nuclear 

targeting fusion” (NTF) protein. NTF protein is composed of three parts: the WPP domain of 

Arabidopsis RAN GTPase ACTIVATING PROTEIN 1 which targets the fusion protein to 

the nuclear envelope, GFP for visualization and the biotin ligase recognition peptide which 

serves as a substrate for the Escherichia coli biotin ligase BirA. BirA is constitutively driven 

by the ACT2 promoter, and biotinylates NTF in every cell type of interest. Biotin-labeled 

nuclei are purified with magnetic streptavidin-coated beads (Deal and Henikoff, 2010; Deal 

and Henikoff, 2011). In plants and animals, INTACT methods are used to isolate pure cell 

types of interest for gene expression, ChIP and other studies. 
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2. Aim of this study 

Previous studies demonstrated that it is critical to control FT transcription in response to 

environmental changes and endogenous cues. At the FT promoter, a 1.7 kb sequence region 

between 4 kb and 5.7 kb upstream of the transcription start site is necessary for FT expression 

in response to day length. Conserved Block C is localized at that 1.7 kb region. 

The aim of my study was to unravel the function of conserved Block C by identifying novel 

cis-regulatory elements required for the response to inductive long day conditions. A central 

question of this work was how Block C interacts with the proximal promoter to drive FT 

expression. To characterize the communication between the regions and demonstrate a 

physical interaction between the regulatory regions, genetic experiments as well as new tool 

3C were carried out. In addition, to discriminate the chromatin states such as the repressive 

mark H3K27me3 at the FT promoter in phloem compared to the other tissues, the new sorting 

method INATCT was used in this study. 
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3 Materials and Methods 

Plants growth and flowering time measurement 

Seeds were sterilized by 75% ethanol for 5 min followed by 100% ethanol for 5 minutes 

(min). Sow the seeds on GM media supplemented by 1% sucrose. After stratification at 4°C 

for 3 days, plants were grown in climate chambers at 22°C in LDs (16 hours light/8 hours 

dark, 70% light), or SDs (16 hours light/8 hours dark, 70% light). The starting time of growth 

is regarded as 0-day-old. During collecting samples, ZEITGEBER TIME (ZT) 16 was in the 

light before switching to darkness and ZT 24 was in the dark before switching back to light 

condition. For measuring flowering time or collecting plant samples grown on soil, seeds 

were sowed on soil and treated in 4°C room for 3 days. After that, move the soil pots to the 

climate chambers or normal greenhouses. Under LDs or SDs, total rosette leaves and cauline 

leaves were counted to estimate the flowering time. 

Bacterial transformation 

Competent cells of DH5a or DB3.1 were taken out from -80°C freezer and kept on ice for 5 

min until they thawed. Add plasmids, ligation products or BP/LR products into the competent 

cells, mix a bit and leave the tube on ice for 15 min. Next, the mixture was treated at 37°C for 

100 seconds (sec) followed by on ice for 2 min. After adding 800ul LB culture liquid, shake 

at 200rpm in 37°C chamber for 1 hour. Finally, spread the transformed cells on the LB media 

with antibiotics, and leave the plate up-down in 37°C chamber overnight. For electronic 

transformation of agrobacteria, mix the plasmid DNA and competent cells well in the 

transformation tube and carry out the electronic shock using the transformation apparatus 

(Bio-Rad). After adding 800ul YEB culture liquid, shake at 200 rpm at 28°C chamber for 2 

hours. Finally, spread the transformed cells on the YEB media with antibiotics, and leave the 

plate up-down in 28°C chamber overnight.  

Floral dip and transgenic plant selection 

For Arabidopsis, agrobacterium-mediated transformation was carried out according to the 

floral dip method. After collecting the T1 seeds, they were sowed on the Basta soil tray and 

selected by spraying with 250 mg/L glufosinate (BASTA
®
) 2-3 times. T2 seeds were sowed 

on GM plate with PPT antibiotic to test the 3:1 segregation. T3 seeds can be confirmed as the 

homozygous or heterozygous genotype according the segregation. T2 or T3 plants are used 

for flowering time measurement. 
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Genomic DNA isolation 

Isolation methods of plant genomic DNA was according to CTAB method and DNeasy
®

 

Plant Kit (Qiagen). DNA was dissolved with dH2O. 

Total RNA isolation 

Plant total RNA was isolated by using RNeasy Plant Mini Kit (Qiagen). All the stuffs in the 

whole procedure should be avoided of RNease contamination. 

cDNA synthesis and reverse transcription PCR (RT-PCR) 

Total RNAs were treated by DNase I (Ambion) for 2 hours following by inactivating the 

DNase I. in order to get liner RNA, 5 µg RNAs was heated up to 75°C for 5 min. During 

reverse transcription reaction, mix the RNAs with reaction buffer, dNTPs, oligo dT18 and 

transcriptase. Then the reaction was happened at 42°C for 3 hours, and the transcriptase 

activity was quenched by 65°C 10 min. The synthesized cDNA can be diluted in 1:3. 2 µl 

cDNA was used for qPCR. qPCR reaction includes 2 µl cDNA, 1 µl primers (10 mM), 5 µl 

SYBR Green Master Mix (ABI) and 2 µl dH2O. 

Alternatively, while using EVA Green dye reagent (Biotium) in 20 µl PCR reaction, it 

included 2 µl cDNA, 1µl primer A and B (10 mM each), 0.2 µl Brown Taq (homemade), 1 µl 

20× Eva green, 0.4 µl dNTPs (10 mM), 1 µl 20× basic buffer (200× basic buffer stock 

contained 0.8 M KCl, 0.2 M Tris and 0.05 M MgCl2) and 14.4 µl dH2O. 10 µl or 20 µl qPCR 

was performed by Bio-Rad or Roche real-time apparatus respectively. 

Plasmid and cloning procedure 

To conduct the bombardment assays, Block C and 1.7kb region were amplified with TaKaRa 

Ex
TM

 Tag DNA polymerase by primers FT5.7kbFW350/FTpblockC_RE and 

FT5.7kbFW350/FT1.7kb_RE respectively and 8.1kbFTp::FTcDNA-pGREEN (from Turck 

group) was used as the PCR template. To generate entry clones of that promoter, PCR 

products were introduced into pDONR207 vector (Invitrogen) through BP reactions of 

GATEWAY method. LR reactions were carried out using the GW_NOSmin::GreenLUC 

(provided by Samson Simon, MPIPZ) as destination vector. pCR
®

2.1-TOPO
®

 (Invitrogen) 

was used to do T-A cloning according to the kit protocols. BAC clone F5I14 was amplified in 

SW102 cells is 109.590 kb long and contains the full FT locus including intergenic 

sequences. 
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GUS histochemical staining 

Young seedlings were incubated in 90% Acetone on ice for 30 min, rinsed with 50mM 

sodium phosphate buffer and incubated at 37°C in GUS staining solution (0.5 mg/ml X-Gluc, 

50mM sodium phosphate buffer, 0.5 mM potassium ferrocyanide, 0.5 mM potassium 

ferricyanide, 0.1% Triton X-100). After overnight incubation, samples were washed with 

50mM sodium phosphate buffer for 30 min and 70% ethanol several times until leaves turned 

white. The GUS staining was visualized and photographed under a stereomicroscope (Leica). 

Bombardment 

30 µg gold particles were prepared for every 10 bombardments. Firstly, 70% ethanol was 

used to wash the gold particles.  Then gold-ethanol was spun down and washed three times 

with sterile water. Finally the gold particles were suspended in 500 µl of 50% sterile glycerol. 

In each bombardment, 15 µg DNA in total was used including 5 µg 35S::RedLUC-pJAN, 5 

µg Block C or 1.7 kb FTp::GreenLUC-pGREEN and 5 µg 35S::gCO-pBKS or pBKS empty 

vector. The DNA was mixed with 50 µl prepared gold beads, 50 µl 2.5M CaCl2 and 20 µl 

0.1M spermidine. After two washes with ethanol, the DNA-gold mix was suspended in 50 µl 

100% ethanol which can be used for two independent bombardments. 5-10 mm Arabidopsis 

leaves were transformed by the Biolistic
TM

 Particle Delivery System (BIO-RAD, PDS-

1000/HE). After 12-24 hours incubation of the samples, 1 mM luciferin was sprayed on the 

leaves and after one minute the emitted light was immediately measured with the help of a 

cooled CCD-camera adapted with optical filters to detect Red-LUC and Green-LUC 

independently. The ratios of GreenLUC/RedLUC signals were calculated with the help of the 

excel macro Chroma-LUC
TM

 Calculator version 1.0 (Promega). 

Western blot 

Collect ~100 mg plant sample, and grind it to fine powder. Add 100 μl hot Laemmli buffer, 

mix immediately and heat it for 15 min at 95-100ºC. After centrifuging at 13,000 rpm for 5 

min, load 10-20 µl protein per lane onto SDS-PAGE gel (4% stacking upper gel and 12% 

lower gel). After electrophoresis for 90 min at 200V, protein was electro-transferred from gel 

to PVDF membrane for 60 min at 100V in 4ºC room. Incubate membrane in the blocking 

buffer TBS-T with 5% milk for 1 hour at room temperature. Wash three times for 5 min with 

15 ml of TBS-T. Incubate membrane and primary antibodies (at the appropriate dilution) in 

10 ml TBS-T with gentle agitation overnight at 4°C. Remove the primary antibodies and 

wash three times for 20 min with 15 ml of TBS-T. Incubate membrane with appropriate 
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HRP-conjugated secondary antibodies with gentle agitation for 1 hour at room temperature. 

Wash three times for 20 min with 15 ml of TBS-T. After wash once for 20 min with 15 ml of 

TBS, detect protein signal with ECL kit. 

Chromatin Inmunoprecipitation (ChIP) 

Seedlings from soil or GM plates were harvested in 1× PBS buffer with 1% formaldehyde. 

After twice of vacuum 5 min and release 5 min in a vacuum hood, 0.1 M glycine was used 

for quenching FA. Then grind samples to fine powder in liquid N2, extract nuclei and get rid 

of debris through 70 µm and 40 µm nylon mesh. Sonication of the chromatin was carried in a 

Bioruptor filled with H2O and a few floating ice. Spin 15 min at full speed at 4°C and transfer 

the supernatant to a new tube. For inmunoprecipitation of protein-DNA complex, add the 

specific antibody and incubate in soft agitation in a rotator overnight in the cold room. Then, 

add protein A or G beads to each sample and continue incubating on rotator for 1-2 hours in 

the cold room. Next, use magnet to attract the beads and discard the supernatant. Wash the 

beads with High salt buffer, low salt buffer, LiCl buffer and TE buffer in sequence. Finally, 

elute the inmunoprecipitated chromatin from beads and add proteinase K to digest protein at 

65°C following by extract free DNA by ethanol precipitation. 

Chromosome Conformation Capture (3C) 

3C procedure in Arabidopsis was carried out as shown in Figure 2. 10-day-seedlings were 

collected from GM plates or soil and the total weight is around 3 g. Cross-link the seedlings 

in 1× PBS with 1% formaldehyde. The vacuum procedure was as same as ChIP method. 

After isolating intact nuclei in Nuclei isolation (NIB) buffer, nuclei were filtered through two 

layers of nylon meshes (70 µm and 40 µm) following by twice of spinning down and washing 

in 1 ml NIB buffer. The purified nuclei were re-suspended in 500 µl 1.2× NEB-buffer 4 with 

a final concentration of 0.15% SDS which functions as destroying the nuclei membrane and 

loosening the compacted nuclei. Shake at 900 rpm for 60 min at 37°C. In order to sequester 

SDS, add 125 µl 10% Triton-X100 to a final concentration of 2% in a final 625 µl volume. 

Shake at 900 rpm for 60 min at 37°C. Next, 50 µl of 500 U restriction endonuclease NlaIII 

(10 U/µl) and 10 µl 10× NEB-buffer 4 were used for digesting the chromatin DNA in a final 

volume of ~700 µl for 18 h at 200 rpm at 37°C. To inactivate NlaIII enzyme, 70 µl 10% SDS 

in a final concentration of 1% was used and incubate for 10 min at 65°C. To establish ligation 

reaction, 700 µl 10× T4 DNA ligation buffer, 700 µl 10% Triton X-100 and 4.8 ml dH2O 

were added to the ~800 µl digested nuclei and the final whole volume was up to 7ml. SDS 
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was diluted into 0.1%. Incubate at 37°C for 1hour to sequester SDS. Ligation reaction was 

carried out by adding 400 U T4 DNA ligase (100 U/µl) for 5 h at 16°C following by 45 min 

at room temperature. De-crosslink was treated with 40 µl 5 mg/ml Proteinase K (PK) over 

night at 65°C. At last, after purifying 3C ligation products by phenol: chloroform: isoamyl-

alcohol (25:24:1), DNA was precipitated ethanol method and the interaction frequency was 

measured by qPCR. 

 

 

Figure 2. 3C procedure. 

Crosslink plant materials and isolate nuclei. Chromatin DNA is digested by restriction enzyme 
followed by intramolecular ligation. De-crosslink protein and purify DNA. Set 3C primers in one 
direction and measure interaction frequencies between fixed and any other fragments by qPCR. 
Digestion and ligation efficiencies are the critical quality controls after digestion and ligation steps 
respectively. Treatment with 37°C or 65°C before digestion is used to loosen chromatin. 

 

Isolation of Nuclei Tagged in Specific Cell Types (INTACT) 

Collect 3-5 g fresh seedlings. Cross-link the seedlings in 1× NPB with 1% formaldehyde and 

vacuum as shown in ChIP. (Note: when the isolated nuclei will be used for gene expression 

analysis, skip the formaldehyde crosslink step). Grid seedlings to fine powder and filter the 

suspension nuclei through the 70 μM and 40 μM cell strainer. Spin down the nuclei and 

gently resuspend the pellet in 1 ml ice-cold NPBd. Wash M-280 streptavidin-coated 

Dynabeads with NPB and add it to each sample with 2×10
7
 beads. Rotate the 1.5 ml tubes for 
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30-60 min at 4°C room. Transfer 1 ml nuclei mixed with Dynabeads to 15 ml tube, and add 9 

ml ice-cold NPBt buffer. Nuclei sorting column was set up in cold room. The 10 ml nuclei 

before sorting were called “Whole” nuclei, and the nuclei bonded with beads which were 

attracted by the magnet were called “beads” nuclei or sorted nuclei and the nuclei which 

flowed through the column were named as “flow-through” nuclei. Release the beads nuclei in 

1 ml NPBt. Spin down the beads nuclei and resuspend the pellet in 20 μl ice-cold NPB. The 

sorted nuclei can be used for qRT-PCR or ChIP assays. 

Experimental instruments and regents  

DNA purification kit: Qiagen 

RNA purification kit: Qiagen 

cDNA synthesis kit: Fermentas  

iQ™ SYBR
®
 Green Supermix: BIO-RAD 

Sub-Micron gold particles: BIO-RAD 

Eva green dying (20×): Biotium  

Luciferin: 50mM in stock 

Proteinase K (PK): 5mg/ml in stock 

RNase A: 10 mg/mL in stock 

MG-132 proteasome inhibitor: Calbiochem 

Complete protease cocktail tablets: Roche 

Protease inhibitor cocktails: Sigma 

70 µm and 40 µm Cell strainer filter: BD Falcon™ 

MACS Magnet: Miltenyi biotec 

IQ5 Real-time cycler: Bio-RAD 

384-well Real-time cycler: Roche 

PDS-1000/HE Biolistic
TM

 Particle Delivery System: Bio-RAD 

Stereo-microscope: Lica  

Confocal microscopy: Lica 

https://www.bio-rad.com/webroot/web/pdf/lsr/literature/Bulletin_2015.pdf
http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CDMQFjAA&url=http%3A%2F%2Fwww.bdbiosciences.com%2FptProduct.jsp%3FprodId%3D364195&ei=EbDkUPfwB4LNtAb5hIHoAQ&usg=AFQjCNEZndmeyMPfTjNj8ZvoWMZVIBVCUw&sig2=vfLVkV3ZIwEqL1qd7zSc-A&bvm=bv.1355534169,d.Yms
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Enzymes 

DNase I: Ambion  

Gateway cloning enzymes for BP and LR reaction: Invitrogen 

T4 DNA ligase: NEB 

Tag DNA ligase: NEB 

Tag DNA polymerase: NEB 

NlaIII restriction endonuclease: NEB 

Vectors 

pCR
®

2.1-TOPO
®

: Invitrogen, for cloning. 

pGEM-T: Promega, for T-A cloning. 

pDONR201, pDONR207: Invitrogen, for Gateway BP reaction to create entry clone. 

35S::REdLUC-pJAN: for Bombardment. 

pBKS: for cloning and Bombardment. 

GW_GreenLUC-pGREEN: inserting promoter with Gateway for Bombardment. 

GW_FTcDNA-pGREEN and GW_GUS-pGREEN: for Gateway LR reaction to insert the 

promoter ahead of FT or GUS gene. 

GW_NOSmin::FTcDNA-pGREEN and GW_NOSmin::GUS-pGREEN: for Gateway LR 

reaction to insert promoter fused to NOS minimal promoter 

GW_NTF-pBlue: after LR reaction, with Kanamycin resistance in bacterial and plant. This 

vector was replaced of Basta gene with NPTII on the vector of GW_NTF-pGREEN. 

Antibiotics 

Antibioticname Abbreviation Final concentration (ug/L) 

Ampicillin Amp 100 

Carbenicillin Carb 100 

Gentamycin Gent 10 

Tetracyline Tet 10 

mailto:pCR@2.1-TOPO@
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Rifampicin Rif 100 

Spectinomycin Spec 100 

Kanamycin Kan 50 

Phosphinothricin PPT 12 

 

Bacteria and yeast 

The Escherichia coli (E. coli) strain for cloning and amplification of plasmid DNA are: 

DH5а: home-made component cells 

DB3.1: home-made component cells for Gateway plasmid carrying attB gene. 

GV3101: Ago-bacterium with helper plasmid pSOUP for amplifying pGREEN destination 

vector. 

 

Transgenic Plants 

Plant name Description Background 

ft-10 T-DNAinsertion Col-0 

5.7kbFTp::FTcDNA T-DNAinsertion ft-10 

4.0kbFTp::FTcDNA T-DNAinsertion ft-10 

5.2kbFTp::FTcDNA T-DNAinsertion ft-10 

5.7kbFTpS1mut::FTcDNA T-DNAinsertion ft-10 

5.7kbFTpS2mut::FTcDNA T-DNAinsertion ft-10 

5.7kbFTpS3mut::FTcDNA T-DNAinsertion ft-10 

5.7kbFTpS4mut::FTcDNA T-DNAinsertion ft-10 

5.7kbFTpCCAATbox1m::FTcDNA T-DNAinsertion ft-10 

5.7kbFTpCCAATbox2m::FTcDNA T-DNAinsertion ft-10 

5.7kbFTpCCAATbox8m::FTcDNA T-DNAinsertion ft-10 

5.7kbFTpCCAATbox1+8m::FTcDNA T-DNAinsertion ft-10 
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dMp::FTcDNA T-DNAinsertion ft-10 

C+A::FTcDNA T-DNAinsertion ft-10 

C+1kb::FTcDNA T-DNAinsertion ft-10 

C+NOSmin::FTcDNA T-DNAinsertion ft-10 

5.7kbFTp::GUS T-DNAinsertion Col-0 

4.0kbFTp::GUS T-DNAinsertion Col-0 

5.2kbFTp::GUS T-DNAinsertion Col-0 

dMp::GUS T-DNAinsertion Col-0 

C+A::GUS T-DNAinsertion Col-0 

C+1kb::GUS T-DNAinsertion Col-0 

C+NOSmin::GUS T-DNAinsertion Col-0 

35S::CO T-DNAinsertion Col-0 

co-sail T-DNAinsertion Col-0 

ACT2::BirA T-DNAinsertion Col-0 

35S::NTF/ACT2::BirA T-DNAinsertion Col-0 

CmGAS1::NTF/ACT2::BirA T-DNAinsertion Col-0 

SUC2::NTF/ACT2::BirA T-DNAinsertion Col-0 

GL2::NTF/ACT2::BirA T-DNAinsertion Col-0 

 

Oligonucleotides 

FT5.7kb_fw_350 GGGGACAAGTTTGTACAAAAAAGCAGGCT 

CATTTGCTGAACAAAAATCT 

FTproblockC_RE GGGGACCACTTTGTACAAGAAAGCTGGGT 

AAACGTTTGGAAATAGGAAGTATG 

TOPO_Kan_FW TGAATGAACTGCAGGACGAG 

TOPO_Kan_RE ATACTTTCTCGGCAGGAGCA 
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3C_Pri1 CGCCACTCAAGTTTTGGAGA 

3C_Pri2 TCCCAAAAAGGGTGATAAGA 

3C_Pri3 GATAGCTTCATACTAAATAATGCGTTT 

3C_Pri4 AAAGGATTGGATGAGTGCAAA 

3C_Pri5 TACGGTTTTCTCAGGGCAAT 

3C_Pri6 CAACGAGATTTGGGGTTAAGG 

3C_Pri7 CATATTATTTGAGAAGTCGCAATTTT 

3C_Pri8 CCTCATCCACTTGCCAATCT 

3C_Pri9 CGGGGAAACCTTCTCAAAG 

3C_Pri10 GTGGCGGACAATCCATCTAT 

3C_Pri11 CATAATATGGCCGCTTGTTT 

3C_Pri12 GGTGGAGAAGACCTCAGGAA 

3C_Prifix CGACCCGAGTTAATGCAAAT 

PCR3_FW CAAAAACGTGAGACGCAAAA 

PCR3_RE TCTGCAACTTAGATTCGCAAAA 

PCR5_FW CTGCGACTGCGACCTATTTT 

PCR5_RE GCCACTGTTCTACACGTCCA 

PCR6_FW TTCCTTTATTTTCCAGTTTGGACAG 

PCR6_RE TTGCACGACCAGGATAATTG 

PCR14_FW AACTTCGTCCATCGCAAAAA 

PCR14_RE GGGAAAATCAACGACCCTT 

AT1g13320Mid_FW GCAACCATATAACGCACACG 

AT1g13320Mid_RE GCTCTTGGGAAATTGTTGGA 

AT1g13320End_FW GGGAGAGCATACCATCTTGC 

AT1g13320End_RE CGGAGCCAACTAGGTAAGCA 

PCR3_FW CAAAAACGTGAGACGCAAAA 
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PCR3_RE TCTGCAACTTAGATTCGCAAAA 

PCR5_FW CTGCGACTGCGACCTATTTT 

PCR5_RE GCCACTGTTCTACACGTCCA 

PCR6_FW TTCCTTTATTTTCCAGTTTGGACAG 

PCR6_RE TTGCACGACCAGGATAATTG 

PCR14_FW AACTTCGTCCATCGCAAAAA 

PCR14_RE GGGAAAATCAACGACCCTT 

BlockC_overlapA_RE1 GTACCGCCAAAAACGTTTGGAAATAGGAAGTATG 

BlockA_overlapC_FW TTCCAAACGTTTTTGGCGGTACCCTACTTTTT 

BlockC_overlap1kbRE2 CAAATACGCAAAACGTTTGGAAATAGGAAGTATG 

1kbp_overlpC_FW TTCCAAACGTTTTGCGTATTTGAGTTCGGACA 

1kbFTp-GW-RE GGGGACCACTTTGTACAAGAAAGCTGGGTCTTTGATCTT

GAACAAACAGGT 

FT_cDNA_RT_FW GGTGGAGAAGACCTCAGGAA 

FT_cDNA_RT_RE ACCCTGGTGCATACACTGTT 

5.7kb_blockCS1mut_ FW AATGCTCGAGGGCTTGTTGTTAAAGATAATGAGATC 

5.7kb_blockCS1mut_RE AAGCCCTCGAGCATTATTCTTGATAAACTTCA 

5.7kb_blockCS2mut_ FW CTCGCACGCATGTGATGATAGTGAAGTGAGAC 

5.7kb_blockCS2mut_RE TCACATGCGTGCGAGTCATACTCTCTCAATAATGTG 

5.7kb_blockCS3mut_FW GTCGCGTTCCTGTCGACATCTTGGCCAACATTAGA 

5.7kb_blockCS3mut_RE CGACAGGAACGCGACTCAACGTATCTATCTTCATAC 

5.7kb_blockCS4mut_FW TAACCACTGCTCCTCATCGGAACTAAAGGATTGGATGAG

TGCA 

5.7kb_blockCS4mut_RE GTTCCGATGAGGAGCAGTGGTTACAAGATGTCTCACTTC

ACTAT 

5.7kb_CCAATbox1m_FW CATAAAGGCGGTTATGAGTGCAAAGTATCGAGACG 
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5.7kb_CCAATbox1m_RE GCACTCATACCGCCTTTATGGAATCTTCTTC 

5.7kb_CCAATbox2m_FW ACAAAACGGTTATTGACACATATCTCTTAT 

5.7kb_CCAATbox2m_RE TCAATAACCGTTTTGTCAATTGATATTTAGTTG 

5.7kb_CCAATbox8m_FW CGGACCGGTTTAGGTATGGACGATGAAAAT 

5.7kb_CCAATbox8m_RE ACCTAAACCGGTCCGAACTCAAATACGCAA 

pHISi_gain3.5kfw_NcoI CCCCCCATGGTATATGAGTAAACTTGGTCTGACAG 

pHIS_gain3.5kre_NotI CCCCGCGGCCGCTCACAGTTCTCCGCAAGAATTGATT 

5.7k_gain3.5kbfw_NcoI CCCCCCATGGATGTGTGTTAAGTCTTATAAAGTTA 

5,7k_gain3.5kbre_NotI CCCCGCGGCCGCATCTGCAATTAAATAATATAAACCA 

oligo_dT18 TTTTTTTTTTTTTTTTTT 

T-DNA_LB_RE ACCGGCATGCAAGCTGATAA 

T-DNA_RB_FW GCTTCCTCGCTCACTGACTC 

 

Recipes  

50× TAE buffer 1 L 

242 g Tris base 

57.1 mL glacial acetic acid 

100 mL 500 mM EDTA (pH 8.0) 

Add H2O up to the final volume 1 liter 

 

10× PBS 1 L 

80 g NaCl 

2 g KCl 

14.4 g Na2HPO4 

2.4 g KH2PO4 

Dissolve into 800 ml ddH2O, Adjust pH to 7.4 
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Add ddH2O up to 1000 ml and autoclave 

 

10× TBS (concentrated Tris-Buffered Saline) 1 L 

24 g Tris base  

88 g NaCl  

Dissolve in 900 ml distilled water, pH to 7.6 with HCl 

Add distilled water to a final volume of 1 liter 

 

1× TBS-T 

50 mM Tris 

150 mM NaCl 

0.05% Tween 20 

Adjust pH with HCl to pH 7.6 

 

2× Laemmli Buffer 10ml  

1.2 ml 1 M Tris (pH 6.8) 

2.0 ml Glycerol 

4.0 ml 10% SDS 

0.2 ml 1% Bromophenol Blue 

2.6 ml dH2O 

 

12% Gel 10 ml  

3 ml 40% Acrylamide/Bis (29:1)   

2.5 ml 1.5 M Tris (pH 8.8)  

4.3 ml ddH2O  

100 µl 10% SDS  

http://en.wikipedia.org/wiki/Tris
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100 µl 10% APS  

10 µl TEMED  

 

4% Stacking Gel 5 ml  

0.5 ml 40% Acrylamide/Bis (29:1)  

1.25 ml 0.5 M Tris (pH 6.8)  

3.2 ml ddH2O  

50 µl 10% SDS  

50 µl 10% APS  

5 µl TEMED  

 

1× NPB 

20 mM MOPS (pH 7) 

40 mM NaCl  

90 mM KCl  

2 mM EDTA  

0.5 mM EGTA  

Sterilize NPB by filtering and stock the buffer at 4°C 

Before use add 

0.5 mM spermidine  

0.2 mM spermine  

1× complete protease inhibitors 

 

NPBd and NPBt 

NPB containing 2 μg/ml DAPI and  

NPB containing 0.1% Triton X-100 respectively 
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4. Results 

4.1 An evolutionary conserved distal enhancer is required for FT 

expression in leaves 

4.1.1 FT driven by 5.2kb promoter fails to compliment late flowering of ft mutant 

Regulation of FT transcription level is the result of convergence of several critical 

components such as CO, FLC and SVP (Figure 1). Because FT mRNA level is too low to be 

detected efficiently by RNA in situ hybridization, an 8.9kb FT promoter (8.9kbFTp) fused to 

GUS was cloned in a previous study to mimic FT expression (Takada and Goto, 2003). 

 

Figure 3. Block C as a distal enhancer is necessary for FT expression. 
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(A). Schematic representation of FT promoter with full length 5.7 kb, 5.2 kb missing Block C and 
C+NOSmin (Block C fused to NOS minimal promoter). The position of nucleotide A of the translation 
start codon was termed -1. The 5.7 kb upstream promoter sequence was marked -5kb. 

(B). Block C fused to NOSmin drives reporter gene GreenLUC expression in transient leaf 
bombardment assays. 35S::RedLUC co-bombarded with promoter::GreenLUC was used as the 
internal control. Values represent mean relative signal ± SE. The asterisk (*) indicates statistically 
significant differences relative to the control NOSmin::GreenLUC. Statistical significance was 
determined using the Student’s t-test (p<0.01). 
(C). Histochemical localization of GUS activity in the first true leaves of 5.7kbFTp::GUS, 
4.0kbFTp::GUS and two independent 5.2kbFTp::GUS transgenic lines. Transgenic plants in Col-0 
background were collected at ZT 16 after growth for 10 LDs on GM media in a climate chamber. Bar 
represents 1 mm for all samples. 

(D). In LD conditions, flowering time of ft-10 plants carrying stable T-DNA insertions of a 
5.2kbFTp::FTcDNA. Two independent transgenic lines were shown as line #120 and #144. Col-0 and 
ft-10 were tested as controls. Number of rosette and cauline leaves of a representative experiment 
are shown as mean ± SE. Statistical significance was determined using the Student’s t-test (p<0.01). 
Significant differences are indicated by different letters above the bars. 

(E). Quantitative PCR of FT transcripts in ft-10 seedlings carrying the 5.2kbFTp::FTcDNA construct. 
Seedlings were harvested from ZT 0 to ZT 24 on day 10 in LD conditions, and plants were grown on 
GM media in the climate chamber. Values represent relative fold of FT to PP2A mRNA levels. 

 

Recently, based on promoter truncation analysis, it was shown that a 5.7 kb FT promoter 

(5.7kbFTp) named as the full length promoter of FT contains a sufficient amount of cis-

regulatory elements to initiate FT expression in LD. In addition, the study indicated that the 

region located 4.0-5.7 kb upstream of the translation start codon (TSC) could harbor critical 

regulatory sequences. A phylogenetic shadowing approach identified a conserved region 5.2-

5.6 kb upstream of the FT promoter, which was designated as Block C (Adrian et al., 2010). 

To test the possibility that Block C may act as a distal enhancer for FT expression, Block C 

was cloned and fused to the minimal promoter of the Nopaline Synthase (NOS) gene 

(NOSmin) (Figure 3A). NOSmin has a length of 105nt (-101 to +4, TSS as -1) and includes a 

TATA box and a CAAT box. NOSmin has no capability of activating reporter gene expression 

by itself, but can be used to monitor the effect of positive cis-regulatory elements on 

transcription (Puente et al., 1996). In transient bombardment assays, NOSmin fused to the 

reporter gene GreenLUC showed very low background levels of expression compared to a 

co-bombarded RedLUC reference expressed under the control of the CaMV 35S promoter 

(<1%). When Block C was fused upstream of NOSmin, the relative signal reached up to 3% 

(Figure 3B).The results suggest that Block C has an enhancing effect on the expression of the 

reporter gene at least in transient assays. 

To answer the question whether Block C also functions as an enhancer in stably transformed 

plants, a 5.2 kb FT promoter (5.2kbFTp) which lacks of Block C was fused to a GUS reporter 

gene (5.2kbFTp::GUS) or an FT cDNA (5.2kbFTp::FTcDNA) and transferred into Col-0 and 
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ft-10 mutant plants respectively. Histochemical GUS assays showed that no signal was 

observed in the first true leaf of two independent transgenic lines of 5.2kbFTp::GUS/Col. As 

shown in a previous study, a 4.0kbFTp::GUS/Col line showed no signal, but 

5.7kbFTp::GUS/Col plants showed GUS signal in the minor veins of the distal part of leaf 

(Figure 3C) (Adrian et al., 2010). In the complementation assay, ft-10 plants grown in LD did 

not significantly change flowering time when transformed with the 5.2kbFTp::FTcDNA 

construct (Figure 3D). To check whether FT mRNA levels match the phenotype of 

5.2kbFTp::FTcDNA/ft-10 transgenic plants, FT mRNA was measured from two independent 

lines every four hours from ZT 0 to ZT 24 on day 10 after germination. At ZT 12 and ZT16, 

when FT expression was highest in Col-0 controls, FT mRNA levels were not detectable in 

line #120 and #144, which fits well with their flowering time similar to that of ft-10 plants 

(Figure 3E). 

Taken together, in LD, the distal sequences of Block C are necessary to complement late 

flowering phenotype of ft-10 mutant plants. Block C not only promotes reporter gene 

expression in transient assays, but also functions as a distal enhancer required for FT 

expression in response to long days in planta. 

 

4.1.2 Conserved sequences in Block C are essential for promoter function 

Block C is around 380bp long and largely conserved across the genera Arabidopsis, Arabis, 

Capsella and Brassica in the Brassicaceae family (personal communication with George 

Coupland for the FT sequence in A. Alpina) Until now, no functional cis-elements have been 

characterized in this conserved region and none of the known trans-factors of FT regulation 

have been reported to associate with sequences in Block C. Several putative motives that have 

been characterized as transcription factor binding-sites in different context are present in 

Block C. (Adrian et al., 2010). Phylogenetic analysis identified several hyper-conserved 

sequences called sub-blocks. To access the cis regulatory function of the candidate elements 

in Block C, mutagenesis of sub-blocks in the context of the full length promoter was carried 

out. 

Among the conserved sub-blocks, four varying between 8-23 bp in length were chosen. 

Mutagenesis exchanged all G with T and A with C residues and vice versa. Each sub-block 

was independently mutagenized in the background of the 5.7kbFTp (Figure 4A). Next, 
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5.7kbFTpS1-4mut::FTcDNA constructs were transferred into ft-10 plants to test the 

complementation. 

 

Figure 4. Conserved sub-blocks in Block C are required for FT expression. 

(A). Sequence alignment of Block C. Schematic representation of FT promoter shows position of 
Blocks C and A. The sub-blocks S1, S2, S3 and S4 are marked in the alignment of related sequences 
from five Brassicaceae species. Two accessions of Col-0 and Ler are chosen from A. thaliana. Their 
original and mutagenized sequences are shown in capital and minor letters respectively. 
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(B). Flowering time of ft-10 plants carrying constructs to drive FTcDNA by 5.7kbFTp containing 
mutagenized sub-blocks S1mut, S2mut, S3mut or S4mut. Four independent transgenic lines are 
shown for each mutagenized construct Flowering time was measured in T2 plants in this experiment, 
and the presence of the transgene was confirmed by PCR. Col-0, ft-10 and two independent 
5.7kbpFTp::FTcDNA/ft-10 lines were tested as controls. Number of rosette and cauline leaves are 
shown as the mean ± SE. Statistical significance was determined using the Student’s t-test (p<0.01). 
Significant differences are indicated by different letters above the bars. 

 

Unexpectedly, all four sub-blocks had strong effects on the full length promoter function. In 

detail, sub-block S3 seemed to have the strongest effect, since three of four independent 

transgenic 5.7kbFTpS3mut::FTcDNA/ft-10 lines flowered as late as ft-10. According to their 

complementation efficiency, mutations in S1 and S4 also dramatically influenced full length 

promoter function. Four independent 5.7kbFTpS2mut::FTcDNA/ft-10 lines flowered 

intermediately between Col-0 and ft-10 controls, indicating that the effect of S2 was not as 

strong as that of the other three sub-blocks (Figure 4B). 

Taken together, conserved sub-blocks in Block C play important roles in controlling the distal 

enhancer function to drive FT expression under LD conditions. 

 

4.2 Impact of CCAAT boxes on FT expression 

Block C contains motives such as an I-box, a REalpha element and a CCAAT box but their 

role in transcription regulation has not yet been characterized (Adrian et al., 2010). The 

CCAAT box is conserved and located close to sub-block S4 in Block C (Figure 4A and 5A). 

CCAAT boxes are confirmed binding sites for NF-Y complexes in yeast and animals 

(Mantovani, 1999). In Arabidopsis, trimeric NF-Y complexes were shown to bind to CCAAT 

boxes in in vitro EMSA assays (Calvenzani et al., 2012). Binding of NF-Y complex to 

CCAAT boxes in planta has not yet been demonstrated in plants. 

Eight CCAAT boxes were found within 5.7kbFTp and numbered sequentially according to 

their positions (Figure 5A). Among these CCAAT boxes, box 1 is 5295 bp and box 8 is 868 

bp upstream of the TSS. Box 1 localizes at Block C and box 8 is close to the proximal 

promoter, but outside of Block A. Box 2-7 distribute in the 1-4 kb region from the TSS and 

the closest distance between two boxes is 191 bp between box 6 and box 7 (Figure 5A). 

To access the roles of CCAAT box1 in Block C as well as other boxes playing on full length 

promoter, mutagenesis of CCAAT boxes 1, 2 and 8 in the background of 5.7kbFTp was 
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carried out. Box2 is positioned 3855 bp upstream of the TSS. In this study, CCAAT is 

mutagenized to AACCG, and ATTGG is mutagenized to CGGTT. 

 

 

Figure 5. Mutagenesis of CCAAT boxes at the full length FT promoter. 

(A). Schematic representation of the position of CCAAT boxes on the FT promoter. Eight CCAAT 
boxes were identified on 5.7kbFTp. They were named as CCAATbox1-8 from the most upstream to 
the most proximal to the TSS (left to right). 

(B) and (C). Flowering time of ft-10 plants expressing 5.7kbFTp::FTcDNA constructs with 
mutagenesis of CCAATmbox1, CCAATmbox2, CCAATmbox8, or CCAATmbox1+8. Col-0, ft-10 and 
5.7kbFTp::FTcDNA/ft-10 were tested as control. Number of rosette and cauline leaves of a 
representative experiment are shown as the mean ± SE. Statistical significance was determined using 
the Student’s t-test (p<0.01 in B and p<0.0001 in C). Significant differences are indicated by different 
letters above the bars. B and C are two independent experiments in the greenhouse. 

(D). qRT-PCR analysis of FT expression in two independent lines of ft-10 seedlings carrying 
5.7kbFTpCCAATmbox1::FTcDNA constructs (#107 and #117). Seedlings were harvested at ZT 16 on 
day 8, 10 and 12 after germination in LD, and plants were grown on GM media in the climate 
chamber. Values represent relative quantitative mean ± SD of FT mRNA normalized by PP2A mRNA.  
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(E). qRT-PCR analysis of FT expression in ft-10 seedlings carrying 5.7kbFTpCCAATmbox1::FTcDNA 
construct (line #107) and Col-0. Seedlings were collected from ZT 0 to ZT 24 on day 10 of growth in 
LD. Values represent relative quantitative mean ± SD of FT mRNA normalized by PP2A mRNA. 

(F). Histochemical localization of GUS activity in the first true leaves of 5.7kbFTpCCAATmbox1::GUS 
and 5.7kbFTpro::GUS transgenic plants in Col-0 background. Material was collected at ZT16 from 
plants grown 10LD on GM plates in a climate chamber. Bar represents 1 mm for both leaves. 

 

Four independent transgenic lines of 5.7kbFTpCCAATmbox2::FTcDNA/ft-10 plants flowered 

as Col-0 and 5.7kbFTp::FTcDNA/ft-10 controls indicating that point mutation of CCAATbox2 

did not compromise full length promoter function (Figure 5C). However, when CCAATbox1 

was mutated, flowering time of two independent lines of #107 and #117, showed an 

intermediate flowering time phenotype between Col-0 and ft-10. A similar intermediate 

flowering time phenotype could also be observed by mutating CCAATbox8 in 5.7kbFTp 

(Figure 5B and 5C). The effect of mutating CCAATbox8 and 1 were additive since six 

independent transgenic lines expressing 5.7kbFTpCCAATmbox1+8::FTcDNA/ft-10 showed 

no difference in flowering time compared to ft-10 (Student‟s T-test; p<0.0001) (Figure 5C). 

At ZT16 on day 8, 10 and 12, the relative amount of FT mRNA was much lower in line #107 

and #117 of 5.7kbFTpCCAATmbox1::FTcDNA/ft-10 compared to Col-0 control plants 

(Figure 5D). FT mRNA level matched well with the flowering time phenotype of Col-0 and 

two independent transgenic lines of 5.7kbFTpCCAATmbox1::FTcDNA/ft-10 (Figure 5B and 

5D). FT mRNA levels from ft-10 carrying FT cDNA driven by 5.7kbFTpCCAATmbox8 or 

5.7kbFTpCCAATmbox1+8 promoters will be analyzed in the future. 

Time course experiments to compare the diurnal expression pattern showed that FT mRNA 

was obviously down regulated in 5.7kbFTpCCAATmbox1::FTcDNA/ft-10 line #107 

compared to Col-0 at any time point from ZT 0-ZT 24 on day 10 of growth in LD (Figure 

5E). The results confirmed that mutagenesis of CCAATbox1 efficiently impaired the full 

length FT promoter function. Histochemical GUS assays performed with 

5.7kbFTpCCAATmbox1::GUS/Col plants further supported this conclusion (Figure 5F). 

In sum, several CCAAT boxes seem to play critical roles in determining FT expression, which 

was shown for the nearest and farthest box at the full length promoter. 

 

4.3 Distance variation between Block C and A 

4.3.1 Natural variation of distance between Block C and A in Arabidopsis 
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Variation in distance between Block C and A between Col-0 and Ler has been reported 

previously, but without an analysis of functional implication (Turck et al., 2007). Considering 

several studies that mapped flowering time QTL to FT promoter in Arabidopsis (Schwartz et 

al., 2009; Strange et al., 2011), it could be interesting to test the natural variation of distance 

between C and A among Arabidopsis accessions and within the Brassicaceae. 

To access the distance variation between conserved Block C and A in Brassicaceae family, 

phylogenetic analysis was carried out. In A. thaliana, the distance was 5 kb in Col-0, 7 kb in 

A. lyrata and in Arabis alpina it reached up to 11 kb (Figure 6A).The results demonstrated 

that there is variation in the distance between these two conserved blocks across species. The 

distance variation between Block C to A was detected based on the database from “1001 

Genomes Project” (http://www.1001genomes.org/projects/MPICao2010) in Arabidopsis. 

Interestingly, among these 80 Arabidopsis accessions, 57 are annotated to contain large 

deletion regions localized 3 kb upstream of FT promoter (Figure 6B). This 1 kb deletion 

region comprises two DNA fragments, one sharing high similarity to sequence on 

chromosome 5 (data not shown). The major deletions from these 57 accessions correspond to 

the Ler accession, so these 57 accessions are named as short promoter “Ler-like” accessions. 

Thus the other 23 accessions likely belong to long promoter “Col-like” accessions. 

Comparing Col-like and Ler-like groups, the most likely explanation is that the Col-type 

originated by one or several insertion events occurring 3 kb upstream of the TSS in Ler-like 

accessions. 

80 Arabidopsis accessions are sampled from eight different regions in Europe and Asia (Cao 

et al., 2011) (Figure 7). I analyzed whether FT promoter length correlates with the geographic 

distribution. A border line, which separates eight regions into “West” and “East” group, could 

be defined as a line passing two cities of Berlin and Athens (Table 1 and Figure 7). 

In the “West” group, each region comprises an equal number of Ler- or Col-like accessions. 

However, in the “East” group, 34 accessions belong to Ler-like type and only one is a Col-

like accession (Table 1). This suggests that FT promoter lengths may act as a molecular 

marker that correlates with the geographic distribution of Arabidopsis accessions. This 

observation could be the result of the immigration among Arabidopsis accessions. 

Single Nucleotide Polymorphisms (SNPs) and structural variants have been annotated for the 

80 accessions (Cao et al., 2011). Notably, the diverged regions appear at Block C, B and A 

with comparably lower frequencies than that at the neighboring regions (Figure 6B). Very 

http://www.1001genomes.org/projects/MPICao2010
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low SNP frequencies were observed in Block A. The SNP frequencies in Block C, especially 

the half part closer to the TSS (5.2-5.5 kb) was low. SNP frequencies in Block B were 

relatively higher than in Block C and A (Figure 6C). These observations revealed that Block C 

and A are conserved in 80 Arabidopsis accessions. 

 

Figure 6. Distance variation between Block C and A. 
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(A). Schematic representation of different FT promoters in the species of A. thaliana (Ler and Col-0), 
A. lyrata and Arabis alpina. The distances between conserved Block C to Block A are shown. 

(B). Analysis of the deletion regions at FT promoter among 80 A. thaliana accessions (“1001 
Genomes Project”). 

(C). Analysis of the SNPs frequencies and highly diverged regions at FT promoter among 80 A. 
thaliana accessions (“1001 Genomes Project”). 

Table 1. Geographic distribution of Ler- and Col- type promoters 

in 80 A. thaliana accessions. 

Region 

no. 
Group 

Region  

name 

Accession 

no. 

Short promoter 

Ler-like 

Accession no. 

Long promoter 

Col-like 

Accession no. 

1 West Spain and North Africa 12 7 5 

2 West Swabia, Southwest of Germany 10 5 5 

3 West South Tyrol, North of Italy 10 5 5 

4 West Southern Italy 13 6 7 

5 East Eastern Europe 10 10 0 

6 East Caucasus 10 10 0 

7 East Southern Russia 7 6 1 

8 East Central Asia. 8 8 0 

Region name and the numbers of accessions in each region are according to the “1001 Genomes 
Project”. The “West” and “East” border is defined as the line passing two cities of Berlin and Athens. 

 

 

Figure 7. Geographic distribution of 80 A. thaliana accessions. 
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The distribution map of 80 A. thaliana accessions was created on by Jun Cao from MPI for 
Developmental Biology on Nov 8, 2010. The number of regions from 1-8 were described in table 1. 
The “West” and “East” border is defined as the red line passing two cities of Berlin and Athens. 

 

4.3.2 Effect of changes in distance between Block C and A at FT promoter 

To access the biological meaning of distance variation at the FT promoter, all necessary and 

sufficient regulatory sequences on 5.7kbFTp need to be mapped. A previous study has shown 

that T-DNA insertions in different positions between Block C and A slightly delay flowering 

time compared to WT (PhD thesis of Jessica Adrian). This indicates that Block C still 

functions as an enhancer even if it is located about 9 kb away from the proximal promoter. 

In order to define the minimal distance between Block C and A and observe the effect of 

shortening the distance, a promoter  which missed a 3.5 kb middle part (dMp) was fused  to 

FT cDNA and GUS and transformed to ft-10 and Col-0 plants respectively. The 2.2 kb long 

dMp was found to mimic the full length 5.7kbFTp function. Even though one line of 

dMp::FTcDNA/ft-10 showed a slightly later flowering time than Col-0, the average flowering 

time of five independent transgenic lines was similar to Col-0 in LD (Figure 8B). Further, 

constructs directly fused Block C to A (C+A) to drive GUS and FT cDNA expression in 

transgenic plants. FT cDNA driven by 1.1 kb C+A also effectively accelerated ft-10 mutants 

to flower as early as Col-0 in LD (Figure 8B). Conversely, the flowering time of ft-10 

mutants carrying the construct of C+NOSmin::FTcDNA was not accelerated to Col-0 levels 

(Figure 8B). 

In dMp::GUS/Col transgenic lines, signal appeared in the minor and major veins of distal half 

of the leaf, which enlarged the expression domain of 5.7kbFTp::GUS/Col exhibiting signals 

in the minor veins (Figure 3C and 8C). C+A::GUS signal was observed in the minor and 

major veins of the whole leaf (Figure 8C). This suggests that the middle region between C 

and A could contain sequences involved in repressing FT. The middle region has been shown 

to associate with repressive trans-factors such as LHP1 and SVP (Farrona et al., 2011; Li et 

al., 2008).  

In addition, GUS signal in true leaves of C+NOSmin::GUS/Col was difficult to detected, and 

very weak signals only were obtained in the major vein of middle leaf (Figure 8C). In the 

cotyledon of that line, like other promoter GUS lines such as dMp, C+A and 5.7kbFTp, GUS 

signal was obviously detected in the vascular tissues (Figure 3C and 8C). In addition, The 

NOSmin alone failed to drive detectable GUS expression in cotyledons (personal 

communication with Samson Simon in MPIPZ). 
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Figure 8. Shortening the distance between Block C and A. 

(A). Schematic representation of different FT promoters with full length 5.7kbFTp, C+NOSmin, dMp 
deleting 3.5kb middle region of full length promoter and C+A keeping the Block C and A. The length of 
each promoter is shown on the right. 

(B). Flowering time of ft-10 plants carrying the transgenic constructs FT cDNA driven by dMp, C+A or 
C+NOSmin in LD. Five independent transgenic lines are shown for each construct. Col-0, ft-10 and 
5.7kbFTp::FTcDNA/ft-10 were tested as controls. Number of rosette and cauline leaves of a 
representative experiment are shown as the mean ± SE. Statistical significance was determined using 
the Student’s t-test (p<0.01). Significant differences are indicated by different letters above the bars. 
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(C). GUS staining of C+A::GUS, dMp::GUS and C+NOSmin::GUS in the Col-0 background. The 
cotyledons and true leaves are shown. Samples were collected at ZT 16 on day 12 in LD. Bar 
represents 2mm for all samples. 

(D). qRT-PCR of FT expression in ft-10 seedlings carrying 5.7kbFTp::FTcDNA and dMp::FTcDNA 
construct and Col-0. Seedlings were collected from ZT 0 to ZT 24 on day 10 in LD. Values represent 
relative quantitative mean of FT mRNA normalized by PP2A mRNA. 

 

In complementation assays, dMp mimics 5.7kbFTp function in LD. Furthermore, the rhythm 

expression pattern of FT was similarly if these two promoters in their respective transgenic 

plants were compared (Figure 8D).Taken together, in LD, Block C and A are not only 

required, but also sufficient for FT expression. 

 

4.3.3 Altered versions of the FT promoter in response to environmental cues  

The question of a function of the 3.5 kb middle region between Block C and A in response to 

the environmental cues was addressed. When removing the middle region, the flowering time 

of ft-10 plants carrying FT cDNA driven by different FT promoters were measured to test the 

possibility that FT may express differentially under non-inductive conditions or in extreme 

temperature conditions. 

The average flowering time of independent lines containing promoter C+A or dMp compared 

to 5.7kbFTp was slightly earlier in SD conditions than in LD conditions. Although the middle 

part of the promoter contains putative repressing domains, C+A or dMp were presumably not 

sufficient to drive FT strong expression in SD (Figure 8B and 9A). 

Under LD conditions combined with high temperature of 30°C, flowering time of four lines 

of dMp were similar to that of 5.7kbFTp, whereas two lines of C+A flowered earlier 

compared to 5.7kbFTp lines (Figure 9B). Under the same LD conditions, even though 

flowering accelerated under higher temperature, the flowering time tendency of transgenic 

plants with different FT promoters was similar at 30°C and 22°C (Figure 8B and 9B). 

Under MD conditions combined with low temperatures of 16°C, similar as in SD conditions, 

transgenic dMp lines flowered earlier with on average 5 leaves less than the 5.7kbFTp lines 

(Figure 9A and 9C). Taken together, these observations suggest that FT driven under short 

promoters could make the difference of flowering time more visible when the promoting 

factors of FT are limited. 
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Figure 9. Different length of FT promoters in response to day length and 
temperature. 
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(A). Under SD conditions at 22°C in a climate chamber, flowering time of ft-10 plants carrying 
transgenic constructs driving FT cDNA by promoters C+NOSmin, C+A, dMp, 4kbFTp or 
5.7kbFTpS2m were measured. At least three independent transgenic lines are shown for each 
construct. Col-0, ft-10 and two independent lines of 5.7kbFTp::FTcDNA/ft-10 were tested as controls. 
Number of rosette and cauline leaves of a representative experiment are shown as the mean ± SE. 
Statistical significance was determined using the Student’s t-test (p<0.01) between any line to Col-0. 
The asterisk (*) indicates significant difference. 

(B). Under LD conditions in a 30°C climate chamber, flowering time determined by different versions 
of the FT promoter (5.7kbFTp, dMp, C+A, C+NOSmin, 5.2kbFTp and 4kbFTp) driving FTcDNA in ft-
10 mutant background was determined. Number of rosette and cauline leaves of a representative 
experiment are shown as the mean ± SE. Statistical significance was determined using the Student’s 
t-test (p<0.01) between any line to Col-0. The asterisk (*) indicates significant difference. 

(C). Under 12h light /12h darkness day (MD) conditions in a 16°C climate chamber, same transgenic 
lines as in (B) were tested. Number of rosette and cauline leaves of a representative experiment are 
shown as the mean ± SE. Statistical significance was determined using the Student’s t-test (p<0.01) 
between any line to Col-0. The asterisk (*) indicates significant difference. Additionally, another 
statistical significance was determined using the Student’s t-test (p<0.05) between four lines of 
dMp::FTcDNA/ft-10 to line #150 of 5.7kbFTp::FTcDNA/ft-10. Significant differences are indicated by 
different letters above the bars. 

 

 

4.4 GUS reporter driven by 4 kb FT promoter shows expression in siliques 

that is independent of photoperiod  

To assess the possible function of the middle region of FT promoter in different tissues and 

organs, GUS reporter expression patterns driven by 1kbFTp, 4kbFTp, 5.7kbFTp or 8.1kbFTp 

were tested in cauline leaves, inflorescence, young siliques and old siliques (Figure 10A-

10X). Similar to the GUS pattern in true rosette leaves, 5.7kbFTp or 8.1kbFTp could also 

drive GUS in the veins of cauline leaves (Figure 10M and 10S). No signal was observed in 

the transgenic plants with 4kbFTp or 1kbFTp in cauline leaves (Figure 10A and 10G). 

However, 4kbFTp could drive GUS in the young and old siliques in LD (Figure 10J and 10I) 

as well as in SD (Figure 10L and 10K). The signals were restricted to the veins in siliques. 

Similar GUS signals were also observed in 5.7kbFTp and 8.1kbFTp, but not 1kbFTp lines 

(Figure 10). 

In sum, Block C is not required for FT expression in the veins of siliques and this expression 

is not dependent on photoperiod. 
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Figure 10. GUS driven by different FT promoters in cauline leaves and siliques. 

(A)-(X) Histochemical GUS assay of (A)-(F) 1kbFTp::GUS, (G)-(L) 4kbFTp::GUS/Col, (M)-(R) 
5.7kbFTp::GUS/Col and (S)-(X) 8.1kbFTp::GUS/Col plants in Col-0 background harvested after 
bolting. Samples were cauline leaves with cutting margins (A,G,M,S), without cutting (B,H,N,T), 
mature siliques (C,I,O,U) and inflorescence (D,J,P,V) from plants grown in LD. Mature (E,K,Q,W) and 
young (F,L,R,X) siliques in SD conditions were also sampled. Bar in (B) representing 5 mm was the 
same bar shared with other cauline leaves in (A), (G), (H). (M), (N), (S) and (T). GUS staining buffer 
diffuses into the vascular tissue easily by cutting cauline leaf. 

 

4.5 Looping model and 3C method in Arabidopsis 

4.5.1 Looping model 

Promoter truncation and mutagenesis established that Block C and A are required and 

sufficient to drive FT expression in inductive LD. CO could associate with the proximal 

promoter, and a CO/NF-Y complex could act as a bridge to form a chromatin loop structure 
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linking the distal enhancer Block C and the proximal promoter (Figure 11). To test this 

hypothesis, chromosome conformation capture (3C) was established, which allows to detect 

three-dimensional chromatin structures. 

 

 

Figure 11. Looping model at FT promoter. 

Block C acts as a distal enhancer for FT expression. At the proximal promoter, Block A containing the 
putative CO binding motifs is also required to initiate FT expression. CO interacts with NF-YB and NF-
YC to form a trimetric complex. Trimeric NF-Y complexes composed of NF-YA, NF-YB and NF-YC are 
known to associate with CCAAT boxes. A CCAAT box localized at Block C is critical for full length 
promoter function. The distance between Blocks C and A only weakly influenced flowering time in LD. 
To enable interaction between the two conserved blocks, a chromatin loop may form at the FT 
promoter, which could be mediated by a CO/NF-Y complex in response to long days. 

 

4.5.2 Design of 3C primers 

In order to get a high resolution digestion map on the FT locus, restriction enzyme NlaIII, 

which recognizes CATG motifs, was chosen after screening most commercially available 

restriction enzymes. Thirteen NlaIII-digestion-fragments ranging from 169 bp to 1102 bp 

were selected, a fragment “fix” (739 bp) contained Block A and fragment IV (1102 bp) 

contained Block C. Seven fragments were selected for the intergenic region between Block C 

and A, while three fragments were selected upstream of Block C. The fragment XII, 

downstream of Block A, is located in the gene body (Figure 12A). In theory, any interactions 

among these thirteen fragments can be measured. However, to test the looping model 

between Block C and A, the fragment “fix” was tested against all other fragments. 

To test whether 3C primers were functional, BAC clone F5I14 was digested by NlaIII and 

randomly ligated. Ligation product sizes of LI (fix + I) to LXII were in the range of 158-256 

bp. Most products only showed a single band (Figure 12B), except for fragments LV, LVI 

and LXI, where a second, smaller band which may be the self-ligation product by the 
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fragment was detected. Notably, the smaller fragments of LVI and LXI were harder to detect 

than the target bands (Figure 12B). Because of variation among different primers in PCR, the 

BAC ligation library and the specific LI-LXII products were used to normalize plant 3C data. 

 

 

Figure 12. 3C primers and ligation products. 

(A). On the FT locus, phylogenetically conserved blocks Block A, B and C are marked by red, gray 
and blue boxes respectively. NlaIII digestion sites are indicated by long gray lines. Thirteen restriction 
fragments were selected, fragments I to XII as well as the fragment “fix”, which encompassed Block 
A. On each fragment, a primer (arrows) was designed at a distance of about 100-200 bp to the right 
restriction site. All 13 primers were oriented in the direction of FT transcription. 

(B). BAC clone F5I14 containing the FT gene was digested by NlaIII and ligated. PCR was carried out 
using the fixed primer in combination with the other 12 primers to amplify ligation products LI (fix; I) to 
LXII. The PCR products were analyzed using a 1% agarose gel. Theoretically there are three 
products per PCR (take fragment fix and I for an example: fix; I, fix; fix and I; I). The size of target 
product (between fragment fix and I-XII) is indicated below the gel picture 

 

4.5.3 Optimization of SDS concentration in the digestion and ligation 

In the 3C procedure, high and appropriate digestion/ligation efficiency is a critical factor. 

Before digestion, SDS is used to break the nuclear membranes and loosen the chromatin 

structure. After digestion, SDS functions as an inactivator of NlaIII before the ligation step. 

Thus, it is critical to find the appropriate SDS concentrations to be added before and after 

digestion. To determine SDS concentrations, sensitivity experiments of NlaIII and T4 DNA 

ligase to SDS were carried out in cell free reactions (Figure 13). 

Here, we used the 3C ligation product LXII which was amplified by primers annealing to the 

fragments fix and XII (Figure 11B). LXII only had one NlaIII digestion site and two 

digestion products were easy to separate by agarose gel electrophoresis. Based on that, we 

tested the effect of a series of SDS concentrations on digestion and ligation. 
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Figure 13. Sensitivity of enzymes NlaIII and T4 DNA ligase to SDS. 

(A). BAC-digestion-ligation product LXII was amplified by PCR and loaded on a 1% agarose gel. 

(B). Analysis of LXII digestions products by agarose gel electrophoresis. Different concentrations of 
SDS were added to LXII and the mixture was incubated at 65°C for 10 min following incubation at 
37°C for 5 min. Then Triton-X100 was added to a final concentration 2% followed by incubating at 
37°C for 15 min. Next, 20U NlaIII were added and digestion was carried out at 37°C overnight. 
Digestion products were loaded on a 1% agarose gel. LXII size is 211 bp, which can be digested by 
NlaIII resulting in two bands with the size of 157 bp and 54 bp. 

(C). Fully digested products from (B) were purified and called digestion-fragments-LXII (D_FXII). SDS 
was added in different amounts ranging from 0.15 to 0.55% and 0.7% Triton-X100 following by 
incubation at 37°C for 1 hour. Next, 100U T4 DNA ligase was added and ligation was carried out at 
16°C overnight. Ligation products were loaded on a 1% agarose gel. LXII was used as control. 

 

In the digestion test, NlaIII could not cut DNA when SDS concentration was 0.5%. If SDS 

concentration was lower than 0.3% DNA could be fully digested (Figure 13B). Subsequently, 

re-ligation of digestion products was used to check the T4 DNA ligase‟s sensitivity to SDS. 

Results indicated that re-ligation was carried out with SDS concentration of 0.15%. However, 

when the SDS concentration was 0.2%, only weak re-legation could be observed and at 

higher concentrations, ligation was completely inhibited. The strong signals detected at the 

top of the agarose gel were probably due to high concentrations of SDS (Figure 13C). 

According to these results, 0.15% SDS treatment before digestion and 0.1% SDS treatment 

during ligation were chosen for 3C experiments. 

 

4.5.4 Digestion and ligation controls in 3C 

Two protocols for 3C differ in the temperature protocol for an incubation of cross-linked 

chromatin before the digestion step (Hagege et al., 2007; Hovel et al., 2012). Protocol 1 uses 

37°C for 1 hour (“37°C”) and protocol 2 uses 65°C for 40 min followed by at 37°C for 20 

min (“65°C”). For our 3C experiments, we evaluated both treatments by measuring 

subsequent digestion and ligation efficiencies. Chromatin prepared from formaldehyde fixed 

Col-0 and 35S::CO seedlings were used in these tests. 
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Digestion efficiency was estimated by the ratio of PCR products amplified from samples 

incubated in absence and presence of NlaIII cutting and non-cutting PCR products. Results 

showed that under the same treatment of 37°C or 65°C, Col-0 and 35S::CO chromatin had 

similar digestion efficiency efficiencies as measured by the ratio of two PCR products 

(PCR5/14 or PCR3/6) (Figure 14A). 

 

Figure 14. Digestion and ligation efficiency control. 

(A). 25 μl aliquots of chromatin from pre-digestion and after-digestion were collected and DNA was 
purified from the samples. On Locus 1, not containing any NlaIII cutting site, PCR products were 
amplified using primers PCR14 or PCR6. On Locus 2, containing one NlaIII cutting site, the DNA was 
amplified by primers PCR5 or PCR3 across the cutting site. The ratios of PCR 5/14 or PCR 3/6 
products were used to estimate digestion efficiencies. “37°C” and “65°C” stands for the temperature 
used for chromatin treatment after adding SDS before the digestion step. “37°C”: 37°C for 1 hour. 
“65°C”: 65°C for 40 min followed by at 37°C for 20 min. 

(B). 25 μl aliquots of extract post-digestion and post-ligation were collected and DNA was purified. 
The At1g13320 locus, a DNA region ~500 bp between two NlaIII sites was tested for ligation. One pair 
of primers was used to amplify the total DNA and the other pair positioned outwards at the end 
amplifies circular ligation products. The ratio of PCR products of At1g13320 Middle/End was 
calculated to estimate the ligation efficiency. “37°C” and “65°C” treatment are same as in (A). 

 

In addition, qPCR efficiency of these four primers was comparable (data not shown). 

However, for both Col-0 and 35S::CO, the digestion efficiency was above 95% under 

treatment at 65°C, which was 15% higher than efficiencies reached under treatment at 37°C 

(Figure 14A). This suggested that high digestion efficiency was coupled with high 
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temperature treatment. However, at 65°C, 3C ligation products were obvious less than that at 

37°C on FT promoter (Figure 16). Since the digestion was carried out in the cross-linked 

chromatin background, high digestion efficiency is not simply equal with high 3C ligation 

efficiency because high temperatures can reverse the chemical crosslinking by FA. Based on 

these results, we selected 37°C instead of 65°C treatment before ligation in our 3C assay. 

 

4.5.5 Measurement of primer efficiency 

Small variation of primer efficiency is not critical to quantify abundant product that show 

clear differences in quantity. However, 3C ligation products are at very low abundance. 

Therefore, primer efficiencies need to be precisely quantified for 3C. 

 

Figure 15. Quantification of 3C primer efficiency based on Topo-L plasmids. 

(A). Plasmid of Topo-L (Topo vector with insertion of 3C ligation product) was cloned by inserting 3C 
ligation products LI-LXII into pCR

®
2.1-TOPO. Twelve clones were named Topo-LI to Topo-LXII. 

(B). Primer Kan+ was used to amplify the shared region of Topo-L localized at pCR
®
2.1-Topo with 

arrows shown in (A). Topo-LXII was used as a positive control and dH2O was the negative control. 

(C). Primer Kan+ was used to quantify the twelve plasmids of Topo-LI to LXII by qPCR. 1 µg/µl Topo-
L was defined as E-0 (10

0
), and 0.0001µg/µl as E-4 (10

-4
). Topo-L plasmids concentrated at E-4; E-5; 

E-6 and E-7 were used to normalize primer efficiency. Average value from E-4 to E-7 is shown and 
the relative concentrations of Topo-LI to Top0-LXI varied 4-fold. 

 

First, we used a primer quantification method using plasmids controls. Twelve plasmids 

(Topo-LI to Topo-LXII) were cloned and their concentration was measured by optical 

density. Second, relative quantification of the twelve plasmids was carried out based on 

qPCR using primers annealing to the shared kanamycin resistance gene (Figure 15A, 15B and 
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15C). Finally, dilution series from twelve Topo-L plasmids were used as standard curve to 

quantify primer efficiency during qPCR (Figure 15C). 

 

4.6 3C assays applied at FT promoter 

4.6.1 3C result based on plasmid control normalization 

The expression peak of FT mRNA is reached at ZT 16 in LD. In general, FT levels are higher 

in 35S::CO plants but still peak at ZT 12-16 (Suarez-Lopez et al., 2001). Even in the 

background of 35S::CO, GUS signals driven under the control of the full length FT promoter 

is restricted to the vasculature. However, compared to Col-0, the expression domain expands 

from the minor veins to the major veins in the phloem in the 35S::CO background (Adrian et 

al., 2010). Thus, samples were harvested at ZT 16 to carry out 3C. 

 

 

Figure 16. 3C result quantified by plasmids. 

10-day-old Col-0 and 35S::CO plants grown in LD were sampled at ZT 16. After cross-linking, 
isolation of chromatin, digestion and ligation, 3C interaction efficiencies were calculated after 
normalization to their corresponding Topo-L plasmids. The effects of treatments with “37°C” and 



  4. Results 

54 
 

“65°C” on digestion and ligation efficiencies were shown in Figure 14. For the values at position III, IV 
and V a statistical analysis within the same treatment of “37°C” or “65°C” was carried out to compare 
the effect of different genotypes. The asterisk (*) indicates statistically differences. Statistical 
significance was determined using the Student’s t-test (p<0.01) based on the technical errors in one 
experiment. 

 

Once digestion and ligation efficiencies were optimized, 3C ligation products were quantified 

by each individual Topo-L plasmids using qPCR. Interaction efficiencies were plotted from 

the proximal FT promoter to the 5‟ upstream region to compare chromatin incubated at 

different temperatures that was prepared from 35S::CO and Col-0 plants. All four curves 

showed tendencies to slope downwardly, with increasing distance from the fixed fragment. 

This is expected for 3C experiments, which indicated that the technique worked on the FT 

locus (Figure 16). 

At all positions of the FT promoter, interaction values were higher when samples were 

ligated after pre-incubation at 37°C than at 65°C, indicating that the 65°C treatment 

decreased the interaction frequency. In the 37°C treated samples, the interaction frequency 

between fragments fix and IV was about two times higher in 35S::CO plants (0.0011 in 

35S::CO compared to 0.0006 in Col-0). Differences were statistically significant between 

35S::CO and Col-0 at position IV, but not at neighbor positions III and V. The interaction 

frequencies of III and V with fix were comparable between 35S::CO and Col-0 (Figure 16). 

The interaction difference at position IV was not detected in samples pretreated at 65°C. The 

results indicate that at least when applying 37°C treatment, a small peak at position IV, where 

enhancer Block C is localized, can be observed. 

 

4.6.2 3C result based on BAC clone control normalization 

3C data interpretation relies on precise quantification of different primer efficiencies. The 

plasmid Topo-L was used as control to quantify most primers efficiencies. However, since 

twelve plasmid controls from Topo-LI to XII had to be set independently, it produces errors 

and further takes time to dilute and load controls. Thus, we used another 3C data 

normalization method based on digestion and ligation of a BAC clone, which covers the 

whole sequence of interest. 

BAC clone F5I14 contains the FT gene and all upstream and downstream regions. After a 

random ligation of NlaIII digestion fragments from the BAC clone, it was assumed that all the 

ligation products were present at similar amounts or that small variation among ligation 



  4. Results 

55 
 

products could be similar to variation detected for 3C products. We used a serial dilution of 

BAC-digestion-ligation products to produce a standard curve to quantify primer efficiency for 

each qPCR. 

 

Figure 17. 3C result quantified by the BAC clone ligation products. 

At ZT 16 in LD conditions, 10-day-old Col-0 and 35S::CO plants were cross-linked by formaldehyde, 
and after chromatin isolation, digestion and ligation, qPCR was carried to amplify ligation products. A 
serial dilution of BAC-digestion-ligation products was used as standard to quantify products. Each E-4 
diluted BAC ligation product of LI to LXII was set as interaction frequency 1. The data from a 37°C 
pretreatment is shown. 35S::CO and Col-0 plants are different samples compared to that in Figure 16. 

 

In the 3C assay, a downwardly-sloped interaction frequency curve from FT proximal to distal 

promoter fragments was observed (Figure 17). As in figure 16, a slightly higher interaction 

efficiency was measured at position IV comparing 35S::CO to Col-0 (Figure 16 and 17). In 

addition, the frequencies of nearby fragments III and V with fix were a bit lower in 35S::CO 

(Figure 17). Combining two biological 3C experiments (Figure 16 and 17), a peak at position 

IV could be measured.  
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4.7 INTACT method used for isolation of phloem nuclei 

4.7.1 Transgenic INTACT lines  

A small peak was observed from two independent 3C experiments at position IV that was 

enriched in 35S::CO compared to Col-0, the low signal to background variation made it 

difficult to conclude that the peak was due to a three-dimensional loop chromatin structure 

(Figure 16 and 17). 

The low amplitude of the peak at position IV could be due to unstable CO protein or because 

of a transiently established and destabilized loop. Even in 35S::CO background FT is only 

expressed in phloem companion cells although high levels extend the expression of FT to 

major veins (Adrian et al., 2010). If the chromatin loop is tissue-specific and correlated with 

expression, it will be difficult to detect in chromatin prepared from whole seedlings, since the 

percentage of phloem companion cells within the whole leaf cells is low (Table 2). 

In mammalian and yeast 3C studies, pure nuclei populations are generated from cell lines. 

Therefore, isolation of the companion cell or phloem-specific nuclei from the whole 

seedlings was thought to be beneficial for 3C experiments at FT. 

In plants, two isolation methods FACS and LCM have been adopted to test the gene 

expression in tissue-specific manner (Birnbaum et al., 2003; Nakazono et al., 2003). Both of 

them need expensive sorting machinery and careful operation, but their yields of isolated 

specific cells were limited. 

 

Table 2. Isolation phloem nuclei by FACS. 

In LD conditions, 14-day-old seedlings of SUC2::H2B:YFP in Col-0 background (provided by Markus 
Berns, MPIPZ) were cross-linked by formaldehyde. 10-15 plants were chopped completely and 
collected for each run of FACS. During sorting, nuclei marked by the yellow fluorescent protein (YFP) 
were selected through a positive “+” channel, and the majority of the remaining nuclei were selected 
through a negative “-” channel. Some nuclei were escaped and not collected by both channels. Here, 
the total nuclei from the positive and negative channels occupied 91.8% of the total nuclei. 

 

Plant material 
Sorting 

channels 

Sorting 

Volume(µl) 
Nuclei no. Percentage(%) 

SUC2::H2B:YFP 

+ 200 4.1×10
4
 3.4 

- 1000 8.0×10
5
 88.4 
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Recently, a new nuclei sorting method named INTACT has been used in Arabidopsis and 

later been applied to Drosophila (Deal and Henikoff, 2010; Steiner et al., 2012). This system 

needs a cell/tissue-specific promoter to drive an engineered fusion gene named NTF. 

Firstly, we explored a FACS method to isolate phloem nuclei from transgenic plants carrying 

a transgene to express a translational fusion of H2B and YFP under the control of the 

SUCROSE-PROTON SYMPORTER 2 promoter (SUC2::H2B:YFP). After more than 2 hours 

of sorting, 4.1×10
4
 nuclei with YPF signal were obtained. This number made up a proportion 

of 3% of the whole nuclei (Table 2). However, interaction signals could not be detected via 

qPCR, when 2×10
4
 nuclei were used in 3C assay (data not shown). The number of nuclei 

needed for a successful 3C was more than 1×10
7
 (Hagege et al., 2007). In conclusion, 

applying FACS proved to be difficult to enrich enough nuclei for 3C. 

In the background of ACT2::BirA plants, we transformed NTF gene constructs fused to 

tissue-specific promoters such as the CmGAS1 (GALACTINOL SYNTHASE 1 in Cucumis 

melo) promoter specific for the companion cells of the minor veins and the SUC2,which 

drives expression in phloem companion cells of the minor and major veins (Haritatos et al., 

2000; Truernit and Sauer, 1995). In 35S::NTF/ACT2::BirA plants, GPF signal was observed 

in the nuclei of epidermal cells but also on the plasma membrane (Figure 18A and 18E). In 

addition, GFP signal in the cell of veins was observed in 35S::NTF/ACT2::BirA plants 

(Figure 18B). GFP could only be observed in the nuclei of minor vein cells in 

CmGAS1::NTF/ACT2::BirA plants (Figure 18C and 18F). When using the SUC2 promoter, 

the GPF signal expanded to the minor and major vein cells of leaves (Figure 18D). In 

summary, the phloem specific CmGAS1 and SUC2 promoters were able to drive NTF in their 

expected cells or tissues, and the NTF protein was mainly localized in the nucleus. 
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Figure 18. GFP signals in INTACT transgenic plants. 

Pictures were taken with a fluorescent confocal microscope of 10-day-old plants of 35S::NTF 
epidermal cells (A) and leaf veins (B), GAS1::NTF minor veins (C) and SUC2::NTF veins (D). 
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Subcellular localization of GFP signals of 25-day-old plants of 35S::NTF epidermal cells (E) and 
GAS1::NTF minor veins (F). The background of all transgenic plants is ACT2::BirA/Col-0. In (E) and 
(F),”GFP”, GFP fluorescence; “CHL”, chlorophyll auto fluorescence; “BF”, bright field image; and 
“Merge”, merge of GFP, CHL, and BF. 

 

4.7.2 INTACT assay test on RT-PCR and western blot 

After producing stable transgenic plants containing CmGAS1::NTF/ACT2::BirA, the 

purification technique was tested coupled by measuring mRNA levels of marker genes. In 

addition, GFP and H3 protein levels were measured to confirm whether INTACT was 

successful. 

 

Figure 19. INTACT qRT-PCR and Western blot. 

10-day-old plants of CmGAS1::NTF/ACT2::BirA grown in LD were sampled at ZT 16. qRT-PCR 
analysis of FT (A) and ACT2 (B) transcript levels in the sorted nuclei “beads”, flow-through nuclei 
“flow” and non-sorted nuclei “whole”. Relative fold of values were normalized by PP2A transcripts. (C) 
The GFP fusion protein levels from the nuclei of “beads”, “flow”, “whole” and non-INTACT treated 
samples of CmGAS1::NTF/ACT2 and Col-0 were tested in a western blot using anti-GFP antibodies 
and H3 from rabbit was used as internal control. 

 

For each sorting procedure, I collected aliquots of nuclei before sorting as “whole”, the nuclei 

attached by beads as “beads” and the flow-through nuclei as “flow”. After INTACT sorting 

of nuclei from CmGAS1::NTF/ACT2::BirA followed by qRT-PCR, transcript levels of FT, 

ACTIN2 and PP2A were measured from nuclei within „whole‟, „flow‟ and „beads‟. FT 

transcript levels were around eight times enriched in the sorted phloem nuclei compared to 

non-sorted nuclei (Figure 19A). However, ACTIN2 mRNA showed an opposite enrichment, 

with half the amount of transcripts in the sorted nuclei compared to all nuclei (Figure 19B). 

When using GFP antibodies to test the enrichment of NTF fusion protein in the sorted nuclei, 
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the band of NTF protein detected by GFP was significantly stronger than in non-sorted nuclei 

(Figure 19C). The qRT-PCR and western blot analysis suggested that the INTACT technique 

worked properly with the samples used. 

 

4.8 Tissue specific H3K27me3 enrichment of FT  

The FT locus is enriched for the repressive H3K27me3 chromatin modification on the gene 

body and the promoter region (Farrona et al., 2011). Based on the ChIP-seq or ChIP-chip 

experiments performed with the whole Arabidopsis seedlings, H3K27me3 enrichment does 

not significantly change if FT is induced (Adrian et al., 2010). 

 

Figure 20. INTACT ChIP of H3K27me3 on Block A and C of FT. 
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(A). 11-day-old CmGAS1::NTF/ACT2::BirA plants were grown in LD conditions, SD conditions and 
7LD+4SD conditions. H3K27me3 ChIP assay was carried on FT, UBQ5 and TA3 loci. The regions 
amplified by primers FTA or FTL2 overlap with Block A, and PCR 16 with Block C. 

(B). 11-day-old CmGAS1::NTF/ACT2::BirA and 35S::NTF/ACT2::BirA plants were grown in LD 
conditions and SD conditions. Using the sorted nuclei after the INTACT procedure, the enrichment of 
H3K27me3 on FT, UBQ5, TA3 and STM genes were measured. Values were given as the relative 
fold of histone H3K27me3 after normalized to H3 gained from CmGAS1::NTF/ACT2::BirA sorted 
nuclei to 35S::NTF/ACT2::BirA control. This was the preliminary result from one experiment. 

 

Nuclei sorting by INTACT make it possible to answer the question whether the abundance of 

H3K27me3 at the same gene locus is different across cell types. The amount of nuclei (~10
4
) 

is enough for one ChIP assay (Deal and Henikoff, 2011). In my study, 10
5
 phloem nuclei 

were isolated from CmGAS1::NTF/ACT2::BirA plants per INTACT. Thus, before 3C assay, 

it was easier to test the correlation between H3K27me3 enrichment and FT transcript levels 

in phloem by INTACT-ChIP. 

On the FT locus, whole seedlings were used as ChIP sample from different culturing 

conditions such as LD, SD and a shift from SD to LD. FT transcripts of Col-0 at ZT 16 are 

observed in LD and in shifting conditions, but not in SD (Corbesier et al., 2007). As 

expected, ChIP with H3K27me3 on the FT promoter (Block A and C) showed no difference 

among these three conditions (Figure 20A). 

After purification of nuclei from 35S::NTF and GAS1::NTF expressing plants by the 

INTACT method, I carried out ChIP with H3K27me3. Material was collected from both lines 

from plants grown under LD and SD conditions. In lines of GAS1 and 35S under LD and SD, 

their relative enrichment of H3K27me3 was normalized to H3 control. Next, relative fold is 

normalized by the H3K27me3 signal in phloem cells compared to that in all cells. If the 

relative fold is one, it suggests that H3K27me enrichment did not change in all cells. 

The results suggested that H3K27me3 was relatively enriched at Block A and C of the FT 

promoter in sorted phloem nuclei from plants grown under SD compared to LD. In addition, 

H3K27me3 on the control loci such as UBQ5, TA3 and STM was not significantly changed 

between LD and SD (Figure 20B). In sum, compared SD to LD, the higher amount of the 

repressive mark H3K27me3 in SD could be one of the important features of transcription 

repression of FT in the phloem. In the future, isolated nuclei from phloem companion cells 

will be used for 3C. 
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5. Discussion 

5.1 A distal enhancer is required for FT transcription in the leaf 

A 5.7 kb FT promoter contains sufficient regulatory sequences for FT transcription under 

inductive long days, but shorter promoters such as 4kb or 1 kb cannot drive FT in Col-0 or 

CO overexpressor background. In A.thaliana, the 380bp long Block C, localized at a distal FT 

promoter region, is conserved across species of the Brassicaceae family (Adrian et al., 2010). 

Furthermore, a 5.2 kb FT promoter with deletion of Block C fails to drive GUS expression 

and cannot produce enough FT transcripts to complement the late flowering phenotype of the 

ft mutant under LD conditions (Figure 3). Taken together, these results indicate that Block C, 

5.2 kb upstream of the FT translation start site, acts as an enhancer. This distal enhancer is 

essential for FT transcription in phloem cells of leaves before the floral transition. 

In transient bombardment assays, Block C fused to the NOS minimal promoter (C+NOSmin) 

slightly increased LUC reporter gene expression (Figure 3B). In stably transformed plants, a 

weak GUS signal was also observed driven by promoter C+NOSmin in the phloem cells of 

the cotyledon, but the GUS signal almost disappeared in the true leaves (Figure 8C).These 

results suggest that Block C could be a weaker enhancer in transient assays as well as in 

phloem of cotyledons in planta. In true leaves, there could be an induced expression of a 

Block C specific repressor later in development that counteracts enhancing effect of Block C. 

But the proximal promoter seems to overcome that repression effect on Block C in phloem of 

true leaves (Figure 8C). 

Strong enhancers are enriched in positive histone marks such as H3K4me1, H3K9ac and 

H3K27ac, and depleted with repressive marks such as H3K27me3 and H3K36me3 in human 

cells (Bulger and Groudine, 2011). Enhancers are very often cell type specific, with only few 

ones showing activity in more than two cell types and a majority being specific to a single 

cell type (Ernst et al., 2011; Heintzman et al., 2009). A 4 kb FT promoter without Block C 

still drives GUS reporter gene in siliques independent of photoperiod, but not in rosette and 

cauline leaves (Figure 10). This demonstrates that Block C seems to be a leaf-specific 

enhancer. On the FT promoter, Block C as well as the proximal promoter show comparably 

low H3K27me3 occupancy, whereas the middle intergenic region and gene body have high 

enrichment by H3K27me3 (Adrian et al., 2010). Genome-wide mapping of DNase I 

hypersensitive (DH) sites has been widely used to identify cis-regulatory elements in human 

cells (Boyle et al., 2008). In Arabidopsis, a genome-wide high resolution mapping of DH 
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sites reveal that a significant DH signal peak overlaps with Block C. Interestingly, the DH site 

signal is much stronger in two week old leaves compared to flowers (Zhang et al., 2012). The 

features of H3K27me3 mark and DH site provides more evidences to the point that Block C 

could serve as an enhancer that is accessible and active in a leaf-specific manner. And this 

enhancer could be recognized by phloem-specific trans-factors. 

Neither functional cis-elements nor trans-factors binding sites have been identified in Block 

C. Several conserved sub-blocks localized at 5.3-5.5 kb upstream of the FT TSS were 

required for full length promoter function (Figure 4B). Among them, sub-block S1 

(AGATCTTT) contains a putative motif AGATCT which has been identified as DNA-binding 

site for yeast GATA-class proteins (Badis et al., 2008). The GATA-class proteins are 

conserved in plants, but so far, no relationship of this family to photoperiod control of 

flowering has been reported. In the future, S1 or sequences stretches including S1-S4 should 

be used as baits to screen Arabidopsis transcription factors in yeast-one-hybrid assays. 

Astonishingly, ~100bp region including S1-S4 plays important role for FT transcription. 

qRT-PCR did not detect any long RNA with poly A tail generated from Blcok C (data not 

shown), and no experimental evidence has reported possibly non-coding RNA or small RNAs 

in that region. It is possible that a complex formed by many interacting transcription factors 

has many cis binding sites in Block C. Block C may mediate a local, inter- or intra-

chromosome looping structure. And that three dimensional interactions could be required for 

the formation of FT transcription machinery or guiding FT to the transcription factory. 

Additionally, it is also possible that Block C affects chromatin remodeling on FT locus. 

In 5.2kbFTp::FTcDNA/ft-10 plants, FT mRNA levels at ZT 16 were very low compared to 

Col-0, which was also observed in different developmental stages (Figure 3E and data not 

shown). However, at ZT 8 or ZT 12, FT accumulated a low amount of transcripts. Flowering 

time data suggest that FT mRNA transcribed at non-peaking time such as ZT 8 or ZT 12 

could not trigger flowering efficiently, possibly because FT cannot be effectively transported 

to the SAM at all times during the day (Figure 3C and 3D). FTIP1, as a transporter of FT 

protein, interacts with FT and probably this complex moves out of companion cells to sieve 

elements. Transcript levels of FTIP1 are stable across the whole day and not regulated by 

photoperiod, GA, and vernalization pathways (Liu et al., 2012). This suggests that FT protein 

movement form companion cells to sieve elements could be independent of day time. 

However, further steps in the transport may still be dependent on multiple factors. Thus, 

whether FT transcripts with a morning peak contribute to floral transition is still an 
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interesting question. To address this, time-point specific as well as phloem specific promoters 

to drive FT in complementation assay could be of great interest. 

In sum, a distal conserved enhancer named Block C was identified. Block C, which is 

composed of several independent functionally important sub-blocks, is required for FT 

expression specifically in phloem of leaves mediated by the long day pathway. 

 

5.2 CCAAT boxes are required for FT expression 

CCAAT boxes are ubiquitous elements in more than 30% of all eukaryotic promoters. They 

usually localize 60-100 bp upstream of transcription start sites in the forward or reverse 

orientation (Bucher, 1990; Mantovani, 1999). The CCAAT box is the putative binding 

cassette of the NF-Y trimeric complex. This complex can bind to CCAAT in yeast and 

humans and probably plants, although binding to CCAAT has not yet demonstrated in vivo. 

On the FT promoter, two CCAAT boxes seem to be functional for FT expression, and one is 

not (Figure 5B and 5C). The remaining five others will have to be tested in future studies. 

Recent results from crystal structure suggest that the dimer of NF-YB and NF-YC, which is 

mediated by their histone-fold domains, behaves in a similar way as a dimer of core histones 

H2A/H2B (Nardini et al., 2013). This suggests that the trimeric NF-Y complex could interact 

with CCAAT in nucleosome free regions to form a nucleosome-like protein-DNA complex. In 

the distal enhancer Block C, a CCAAT box was important for FT transcription (Figure 5B). In 

the leaf, a NF-Y complex could bind to this CCAAT in Block C region, where it has low 

nucleosome density is suggested by a detection of a DH site (Zhang et al., 2012).  

In Arabidopsis, CO, with homology to NF-YA, interacts with NF-YB and NF-YC to form a 

trimeric complex in vivo, and CO may replace of NF-YA in the NF-Y complex (Wenkel et 

al., 2006). Recent ChIP experiment confirmed that CO probably activates FT through directly 

binding to its proximal promoter (Adrian et al., 2010; Song et al., 2012; Tiwari et al., 2010). 

Based on these observations, CO/NF-YB/NF-YC trimeric complex could function as a bridge 

with one end binding to CCAAT in Block C and the other end to the proximal promoter. 

This relatively simple model is confounded by the result that another CCAAT box, 868bp 

upstream of FT TSS at a distance of 4.4 kb from the one in Block C also plays a role in 

activating the full length FT promoter. Both boxes have an additive effect for the full length 

promoter function (Figure 5). They could communicate with each other over a long distance 
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by more than one NF-Y complex. NF-Y complexes as a bridge may bring the enhancer Block 

C close enough to the proximal promoter. This action may recruit activator or produce a 

permissive chromatin station for transcription. Based on the results from FT promoter 

truncation, C+A can mimic full length promoter function (Figure 8B).The results indicate 

that the CCAAT box near the proximal promoter could be not necessary for FT expression in 

LD conditions when the distance between Block C and A is reduced. 

Taken together, at the FT locus, NF-Y complexes and CO as trans-factors may associate with 

a CCAAT in Block C for transcription regulation of FT. To elucidate how two CCAAT boxes 

communicate with each other, data from ChIP experiments of NF-YB, NF-YC and CO are 

required. 

 

5.3 Distance variation between conserved blocks of FT promoter 

In the A. thaliana Col-0 reference accession, the distance from enhancer Block C to Block A 

is 5.2kb, whereas in Ler it is 4.2 kb (Turck et al., 2007). In the Brassicaceae species 

Arabidopsis lyrata and Arabis alpina the distances between C and A increase up to 7 kb and 

11 kb respectively (Figure 6A). In Brassica rapa and napus, Block C is 7.5 kb far away from 

A at FT-A2 promoter (Wang et al., 2012). Compared A. thaliana, A.lyrata and B. rapa, the 

distance between Block C and A may correlate with their evolutionary relationship and 

genome size (Johnston et al., 2005). 

Among 80 accessions available from the “1001 Genomes Project”, less diverged regions are 

observed for FT coding sequences, compared to the promoter region. This indicates that the 

deletions, insertions or SNPs accumulating on regulatory sequences produce frequent natural 

variation that could have an impact on transcription rates of FT and result in differentiated 

response to environmental variables. The conserved Block C, B or A has low SNPs 

frequencies and lowly diverged regions (Figure 6C). These observations indicate that 

mutations occurring in the conserved blocks may produce stronger effect than that in their 

neighboring regions on FT transcription. The main difference between the Col-0 and Ler 

promoters is a middle region insertion of two DNA fragments in Col. After alignment of all 

80 accessions available to Col-0 at FT promoter, 23 accessions display long FT promoters 

similar to Col-0 (Table 1). Interestingly, 22 Col-like accessions geographically distribute in 

the “West” group and only one strain exists in southern Russia (Which may be wrongly 

annotated due to sequencing error, personal communication with Korbininan Schneeberger). 
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Do environmental factors or evolutionary mechanisms make most Col-like accessions with 

long FT promoter habit in the west of Europe but not in Asia? Biogeography studies reveal 

that the postglacial Arabidopsis accessions in Europe might have emigrated from two parts: 

from the West Asia and the Iberian Peninsula. Accessions in North America could have been 

transferred from Europe during the new world discovery (Cao et al., 2011; Nordborg et al., 

2005; Sharbel et al., 2000). Based on this hypothesis, I assume that Ler-like accessions could 

have ancestry in Asia, and later moved to Europe. Col-like strains may firstly have existed in 

the Iberian Peninsula and later expanded to middle Europe and North America. Ler-like and 

Col-like accessions co-colonized the main land of Europe (eg. Germany). Alpine mountain 

systems could be the natural border for spreading of Col-like accessions from Iberian 

Peninsula to East Europe and Asia. In consequence, FT promoter length could provide 

information for Arabidopsis population structure and geographic distribution. More 

accessions are expected to be available for analysis, which will complete the picture. 

To test for selective effects, SNPs frequencies of DNA surrounding the long and short FT 

promoters should be carried out according to the linkage disequilibrium theory which has 

been applied on the STM locus in Arabidopsis (Piazza et al., 2010). In Arabidopsis, flowering 

time QTL frequently maps to the FT promoter (Schwartz et al., 2009; Strange et al., 2011), so 

the correlation between the flowering time of 80 accessions and FT promoter length is worth 

being investigated. 

 

5.4 Middle region of FT promoter contains repressive regulatory elements 

How does the promoter length influence FT transcription? In LD conditions, accession Ler 

flowers earlier than Col-0 (Balasubramanian et al., 2006). Because flowering is determined 

by multiple factors, we cannot simply reason that Ler accession flower early because they 

harbor a short FT promoter. The dMp lacking 3.5 kb middle part of the FT promoter mimics 

the full length promoter in driving GUS in phloem cells, but may extend the expression 

domain to the major veins (Figure 8C). But, ft-10 mutants carrying dMp::FTcDNA did not 

show accelerated flowering compared to 5.7kbFTp::FTcDNA expressing lines in LD (Figure 

8B). However, ft-10 is Col-0 background, and Col-0 is an early flowering accession which 

requires low threshold of FT protein amount for floral transition under inductive long days. 

5.7kbFTp and dMp promoters efficiently drove FT cDNA expression to reach the threshold of 

florigen quantity in the SAM at the same time. This is also true for both promoters under LDs 



  5. Discussion 

67 
 

combined with high temperature, which are thought to accelerate flowering by an additive 

effect of thermal induction on FT expression that is independent of photoperiod (Figure 9B) 

(Balasubramanian et al., 2006). However, in non-inductive SD conditions, ft-10 plants 

carrying dMp::FTcDNA were slightly earlier flowering than 5.7kbFTp:FTcDNA/ft-10 plants 

(Figure 9A). A similar tendency was observed in MD conditions, which were combined with 

cool ambient temperature (Figure 9C). 

One possible explanation for the last observation is that the deleted middle region contains a 

CArG box, which is thought to recruit the transcriptional repressor SVP (Lee et al., 2007). 

SVP represses flowering in low ambient temperatures. SVP and FLC can form a complex 

that binds to the first intron and the promoter of FT in vivo (Lee et al., 2007; Li et al., 2008; 

Searle et al., 2006). In our complementation assays, 5.7kbFTp::FTcDNA over-complements ft 

mutants in SD and LD conditions (Figure 8B and 9A). Missing the repressive sequences in 

the first intron could also reduce the effect of a SVP/FLC repressive complex. When fused to 

FT genomic DNA, the flowering time difference between dMp and full length promoters was 

much more significant (personal communication with Tingting Ning from Turck group). In 

the future, comparisons should be carried out between constructs that carry variations of the 

full genomic FT locus. 

The region between C and A is highly enriched with the repressive chromatin mark 

H3K27me3 and the associated protein LHP1. GUS signal driven by full length FT promoter 

in lhp1 background spreads to the major veins of true leaves (Adrian et al., 2010; Farrona et 

al., 2011). Similarly, promoter C+A, which removes the binding sequences of LHP1, can 

drive GUS in the major veins in Col-0 (Figure 8C). In the future, the enrichment of 

H3K27me3 on the proximal promoter and Block C region should be tested for the constructs 

of C+A, dMp and 5.7kbFTp in transgenic plants. Previous results demonstrate that PRC2 

components repress FT transcription, but are not the reason that expression of FT is restricted 

to phloem cells (Farrona et al., 2011). In addition, some unknown activators of FT with 

phloem-specific expression manner could also be of importance for understanding 

transcriptional regulation of FT. 

 

5.5 3C technique normalization in Arabidopsis 

In vivo, Chromosome conformation capture (3C) is a powerful tool to detect chromatin 

looping structure (Dekker et al., 2002; Hagege et al., 2007). 



  5. Discussion 

68 
 

3C has been generally applied in yeast and human cells which have single cell type (Hagege 

et al., 2007; Singh et al., 2009). In Maize, husk tissue where B-I has extremely strong 

expression was sampled (Louwers et al., 2009a). In Arabidopsis no 3C protocol is available 

before the start of this study. Thus, 3C protocol was optimized in Arabidopsis integrating 

previous studies from human, yeast and Maize (Hagege et al., 2007; Louwers et al., 2009b; 

Singh et al., 2009).  

3C detects looping between two long-range loci usually in hundred or thousand kb distance. 

There are very few examples involving the scale of less than 10 kb. In our study, the 

proposed loop would only cover 5 kb. Therefore, NlaIII, a four-base-cutter, was used to 

obtain a high resolution of restriction sites. If the region has several close restriction sites, 

PCR products may not be unique after incomplete digest. So, I designed 3C primers being 

close to unique cutting site.3C primer specificity is critical because biased amplification will 

produce a high risk to increase or decrease the actual difference. If the primer‟s PCR 

efficiency is too high or too low, they should be discarded. 

SDS plays an important role in 3C assays. SDS is used to break the nuclear membrane, 

loosen chromatin and inactivate restriction enzyme, but at the same time interferes with 

restriction enzyme and ligase activity. Thus, SDS must be carefully titrated by TritonX-100 

not to influence NlaIII and T4 ligase activity. 

It is also important to balance the efficiency of digestion and ligation at the control locus. In 

this study, “65°C” or “37°C” pre-treatments of chromatin were tested before digestion. High 

temperature produces very high digestion around 98% and 40% ligation efficiency at a 

control gene. But final 3C products are less with “65°C” than “37°C” treatment. In my 

experiments, higher enrichment of 3C products relies on relatively high digestion efficiency 

(~85%) and appropriate ligation efficiency (5%) (Figure13). This reasonable digestion 

efficiency matches well with other studied suggesting that 80-90% digestion efficiency is 

critical for successful 3C (Simonis et al., 2007). 3C product amount depends on protein and 

DNA interaction complex fixation due to crosslinking. High temperature reverses the 

chemical crosslinks, explaining why lower 3C products were measured. In maize apparently 

65°C treatment was needed to get rid of endogenous nuclease activity (maize nature 

protocol), but it apparently not a problem in Arabidopsis. 

A perfect control template to quantify 3C primer efficiency should contain all ligation 

products of interest in equal amounts. In 3C, control templates are usually made by BAC 

clones that cover the DNA region of interest (Dekker, 2006). We adopted this BAC method to 

normalize primer efficiency (BAC control). In parallel, a second method based on cloning all 
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possible 3C products was also carried out (plasmid control). Both methods worked 

comparably well in our study, but quantification from the BAC clone was much easier, 

because making the plasmid controls is very time consuming. 

In summary, 3C as a new technology was applied in Arabidopsis. After normalization, at FT 

locus, 3C works technically as an expected decrease of interaction with distance to the fixed 

fragment was detected. 

 

5.6 Physical Interaction of Block C with the proximal promoter 

Block C fused to Block A mimic full length promoter which are required and sufficient for FT 

expression. By which molecular mechanism does Block C communicate with Block A to 

regulate FT transcription? 

Two models for transcription regulation by a distal enhancer are described. In the looping 

model, a physical enhancer-promoter interaction is mediated by activators or mediator 

complex. In the tracking model, an enhancer-activator complex scans along the upstream 

promoter until it encounters the core promoter-RNAPII complex (Bulger and Groudine, 

2011). Transgenic lines with T-DNA inserting into the region between C and A display a 

flowering time similar to wild type plants under inductive LD conditions (PhD thesis of 

Jessica Adrian). If the enhancer works in a tracking model, the T-DNA insertion should be 

deleterious in the scanning scenario. 

I favor the looping hypothesis that Block C and A interacts through a protein complex 

comprising of CO or CO/NF-YB/NF-YC complex. Enlarging or reducing the distance 

between Block C and A did not change flowering time dramatically Additionally, the 

presence of the CCAAT box in Block C and the CO-biding sequences in Block A may provide 

the anchoring sites for CO/NF-YB/NF-YC complex. 

To test the looping model, 3C was carried out on FT locus. A weak interaction between C 

and A was detected by 3C in at least two biological replicates (Figure 16 and 17). In 35S::CO 

plants within “37°C”treatment, a higher interaction frequency was observed at position IV, 

which was not observed in 35S::CO plants within “65°C” treatment (Figure 16). One may 

argue that CO or CO complex is unstable after high temperature treatment. In vivo, CO 

protein is degraded through the 26S proteasome degradation pathway mediated by SPA1 or 

PHYB (Laubinger et al., 2006; Valverde et al., 2004). Even in vitro, CO protein is also 

unstable in EMSA assay (Tiwari et al., 2010). The weak interaction between Block C and A 
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could due to the instability of CO, thus the looping structure mediated by CO could be 

difficult to capture. 

Another possibility could be due to the problem that interaction correlates with tissue 

specificity of FT expression in a low number of cells. In yeast and human pure cell types are 

used in 3C. In Maize, at b1 epialleles a hepta-repeat sequence, 100 kb far from TSS, 

physically interacts with the proximal promoter in a tissue- and expression level-specific 

manner (Louwers et al., 2009a). Recently, the formation of a loop by 5' and 3' gene flanking 

regions has been reported on the FLC locus. In this study, samples of 10-day-seedlings were 

used when FLC is expressed in a non-tissue-specific manner. The FLC loop did not correlate 

with expression level (Bastow et al., 2004; Crevillen et al., 2013). For the FT expression 

domain, the total companion cells in the phloem occupy 3% of all leaf cells (Table 2), and I 

assume that the number of cells expressing FT in the proximal major veins even in 35S::CO 

plants is very small. Thus, the weak interaction signal could be the result of a dilution effect. 

Using the sorting method of INTACT, the phloem nuclei express high FT mRNA, as well as 

GFP signal was enriched suggesting that the sorting system using minor vein-specific-

promoter CmGAS1 works well in INTACT (Figure 19). More than 10
7
nuclei are required for 

a 3C assay. Parallel isolation of phloem nuclei by INTACT will be carried out and used for 

3C assays in the future. 

Last, weak interaction could also be due to multi-loops formation, which interferes with 

enhancer-promoter loop at the FT locus. MADS-domain proteins SVP and FLC could form a 

complex binding to the first intron and 2kb upstream region of the FT promoter (Lee et al., 

2007; Li et al., 2008; Searle et al., 2006). At 6 kb region, it could be an impossible challenge 

to measure multi-loops in 3C. 

 

5.7 H3K27me3 differentially enriches at FT promoter in phloem under LD 

and SD 

H3K27me3 is the repressive histone mark that determines FT expression levels and 

photoperiod dependency (Adrian et al., 2010; Farrona et al., 2011; Takada and Goto, 2003). 

Under LD conditions, FT expresses at a peaking level at ZT 16, but FT is repressed under SD 

conditions (Corbesier et al., 2007). Based on ChIP results from the whole seedlings, the 

abundance of H3K27me3 mark is not correlated with the FT expression level (Adrian et al., 

2010) When isolating phloem nuclei for ChIP, H3K27me3 levels at FT promoter were 

significantly enriched in SD than in LD conditions at Block C (Figure 20B). Under non-
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inductive SD, absence of FT expression is partially due to instability of CO, but enrichment 

of Block C and proximal Block A with repressing histone mark may add another mechanistic 

explanation. In LD conditions, presence of CO and reduced H3K27me3 at Block C and A 

correlate but it is so far impossible to speculate on causal relationships between this two 

(Figure 21). Using the INTACT method, it will be interesting to further elucidate the 

correlation between CO and H3K27me3 in and out of phloem nuclei. 

 

 

Figure 21. Hypothesis of cell- and tissue- specific expression manner of FT. 

In LD conditions, in phloem tissue, the enhancer Block C and proximal Block A are depleted of 
repressive H3K27me3, as well stable CO could associate with C and A mediated activation of FT 
transcription. In non-phloem cells of leaves, CO cannot express meanwhile the Block C and A are not 
in a permissive chromatin state which make FT silent. Under non-inductive SD conditions, CO is 
degraded, and FT locus chromatin is condensed because of enrichment of H3K27me3 at Block C and 
A where LHP1 probably binds to. FT was repressed. In the phloem of siliques, FT expression is 
independent of photoperiod, and does not require Block C. In siliques, 4kbFTp is sufficient to drive 
FT, but 1kbFTp fails like in leaves. Blue regions represent the phloem tissue where FT expresses. 
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5.8 FT expression in life cycle 

FT specifically expresses in companion cells of the phloem in cotyledons, rosette leaves, 

cauline leaves, sepals and siliques (Figure 21). Apart from the young and old siliques, where 

a 4 kb promoter without Block C drives GUS reporter gene expression, all other tissues 

require Block C as a distal enhancer. This suggests that a different transcriptional regulation 

of FT occurring in siliques, which is also independent of the photoperiod pathway as 

expression is similar in SD and LD. It could be interesting to test the abundance of 

H3K27me3 at FT in the phloem of siliques because an absence of this mark could explain the 

loss of photoperiod dependency (Adrian et al., 2010). 

FT as part of florigen is famous for triggering the floral transition in plants (Corbesier et al., 

2007; Jaeger and Wigge, 2007; Mathieu et al., 2007; Tamaki et al., 2007). However, after 

flowering what could be the function of FT expression in cauline leaves and siliques? Our 

recent observation revealed a possible novel function of FT in preventing floral reversion 

under SD conditions (Turck group, personal communication). 

SFT, the ortholog of AtFT in tomato, influences heterosis in yield as heterozygous sft/+ 

genotype by affecting the inflorescence architecture (Krieger et al., 2010). In potato, floral 

and tuberization transitions are controlled by two different FT-like paralogs StSP3D and 

StSP6A (Navarro et al., 2011).  

In conclusion, it will be interesting to understand the working model of FT transcription 

during the whole life cycle in plants because the results may be relevant for aspects of 

development beyond the induction of flowering by photoperiod. 
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7. Abbreviations 

General abbreviations 

: fused to (in the context of gene fusion constructs) 

:: under the control of (in the context of promoter-gene constructs) 

- minus, not present 

% percentage 

°C degrees Celsius 

3‟ three prime end of DNA fragment 

3C Chromosome Conformation Capture 

35S promoter of the Cauliflower Mosaic virus 

5‟ five prime end of DNA fragment 

5C Chromosome Conformation Capture Carbon Copy 

μ  micro 

A  Adenine 

Arabidopsis Arabidopsis thaliana 

BAC Bacterial artificial chromosome 

bHLH basic helix loop helix 

Bp base pair 

CCT CONSTANS, CO-like, and TOC1 domain 

CC companion cells 

cDNA complementary DNA 

Col-0 Arabidopsis thaliana ecotype Columbia-0 

ChIP Chromatin Inmunoprecipitation 

DNA desoxyribonucleic acid 

dNTP deoxyribonucleic triphosphate 

http://en.wikipedia.org/wiki/Bacterial_artificial_chromosome
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Drosohila Drosophila melanogaster 

E. coli Escherichia coli 

FA formaldehyde  

FACS fluorescence-activated cell sorting 

FAC florigen activation complex 

g gram 

GA gibberellic acid 

GTFs general transcription factors  

GM ½ strength Murashige and Skoog medium 

h hour 

H3 histone 3 

H3K4me1 mono-methylated lysine 4 at histone 3 

H3K4me3 tri-methylated lysine 4 at histone 3 

H3K27me3 tri-methylated lysine 27 at histone 3 

H3K27ac acetylated lysine 27 at histone 3 

H3K36ac acetylated lysine 36 at histone 3 

HFDs histone-fold domains 

HS DNase I hypersensitive sites 

INTACT Isolation of Nuclei Tagged in Specific Cell Types 

k kilo 

kb kilobase pair 

INTACT Isolation of Nuclei Tagged in Specific Cell Types 

l liter 

LCM laser capture microdissection 

LD Long day 

Ler Landsberg erecta 
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IM inflorescence meristem 

M molar (mol/l) 

m milli 

min minute 

mol mole 

mRNA messenger RNA 

n nano 

nt nucleotide 

N-  amino-terminal 

NIB Nuclei isolation buffer 

NOSmin   minimal promoter of the NOS gene 

NTF nuclear targeting fusion protein 

p pico 

PIC pre-initiation complex  

PCR polymerase chain reaction 

PEBP phosphatidyl ethanolamine binding domain protein 

pH negative logarithm of proton concentration 

PPT Phosphinotricin 

PRC Polycomb repressive complex 

rRNA ribosomal RNA   

RNA ribonucleic acid 

RNase ribonuclease 

RT-PCR reverse transcription PCR 

SAM shoot apical meristem 

SD short day 

SE standard error for statistical analysis 
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SE sieve elements in phloem 

SUC2p promoter of the plasma-membrane sucrose-H+ symporter gene 

TBP TATA box binding protein 

TD topological domains 

TSS transcription start site 

TSC translation start codon 

T-DNA transferred DNA 

UTR untranslated region 

WT wild type 

ZT zeitgeber time 

 

 

Abbreviations of gene and protein names 

ACT2 ACTIN2 

ATC ARABIDOPSIS THALIANA CENTRORADIALIS 

AP1     APETALA 1 

BFT   BROTHER OF FT AND TFL1 

C+A Block C + Block A 

CCA1 CIRCADIAN CLOCK-ASSOCIATED 1 

CDF1 CYCLING DOF FACTOR 1 

CmGAS1 GAS1 (GALACTINOL SYNTHASE 1) from Cucumis melo 

CIB1 Cryptochrome-interacting bHLH 1 

CLF CURLY LEAF 

CO CONSTANS 

COL CO-LIKE 

COP1 CONSTITUTIVE PHOTOMORPHOGENESIS 1 
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CRY1 Cryptochrome 1 

CRY2 Cryptochrome 2 

dMp deletion of middle part region of FT promoter 

E(Z) Enhancer of Zeste (Drosophila melanogaster) 

ESC Extra sex combs (Drosophila melanogaster) 

FKF1 FLAVIN-BINDING, KELCH REPEAT, F-BOX 1 

FLC FLOWERING LOCUS C 

FRI FRIGIDA 

FT FLOWERING LOCUS T 

GFP Green Fluorescent Protein 

GI GIGANTEA 

GUS β-glucuronidase 

HAP HEME ACTIVITOR PROTEIN 

Hd1 Heading date 1 

LFY LEAFY 

LHP1 LIKE HETEROCHOMATON PROTEIN1 (also known as TFL2) 

LUC Luciferase 

MEA MEDEA 

MFT  MOTHER OF FT AND TFL1 

MSI Multicopy suppressor of Ira (Drosophila melanogaster) 

NF-Y NUCLEAR FACTOR-Y 

NOS Nopaline Syntheses 

PcG Polycomb group genes 

PHYA Phytochrome A 

PHYB Phytochrome B 

PIF4 PHYTOCHROME-INTERACTING FACTOR 4 

http://www.conncoll.edu/ccacad/zimmer/GFP-ww/GFP-1.htm
http://millar.bio.ed.ac.uk/lucifer.html
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Sce Sex combs extra (Drosophila melanogaster) 

SFT SINGLE FLOWER TRUSS 

SOC1 SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 

SPA1 SUPPRESSOR OF PHYA-105 

STM SHOOT MERISTEMLESS 

SVP SHORT VEGETATIVE PHASE 

SWN SWINGER 

TEM1 TEMPPANILLO 1 

TFL1 TERMINAL FLOWER 1 

TFL2 TERMINAL FLOWER 2 (also known as LHP1) 

TOC1 TIMING OF CAB EXPRESSION 1 

TSF TWIN SISTER OF FT 

YFP Yellow Fluorescent Protein 
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