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Abstract

This paper describes a Savings Based algorithm for the Extended Vehicle Routing
Problem. This algorithm is compared with a Sequential Insertion algorithm on real-
life data. Besides the traditional quality measures such as total distance traveled and
total workload, we compare the routing plans of both algorithms according to non-
standard quality measures that help to evaluate the "visual attractiveness" of the plan.
Computational results show that, in general, the Savings Based algorithm not only
performs better with respect to these non-standard quality measures, but also with
respect to the traditional measures.
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1. Introduction

Ever since Dantzig and Ramser [4] first studied the vehicle routing problem (VRP) in
1959, researchers have spent a lot of time and effort on developing methods to tackle
this problem. This is due to the fact that the VRP plays a central role in distribution
management. In its most simple form, the problem is concerned with the construction
of a plan that consists of trips, starting from a central depot, for vehicles servicing
customers with known demand. The objective is to minimize total cost without
exceeding vehicle capacity.

Fisher [6] describes the history of the development of solution approaches to the basic
VRP. The first generation, roughly developed in the 60’s and early 70’, consisted of
simple heuristics such as savings and insertion methods. In the mid 70, the second
generation started to emerge. Although still approximation methods, these approaches
were based on solving one or more related problems to optimality. The third (current)
generation has two main streams: artificial intelligence based heuristics and exact
optimization.

Many extensions of the basic VRP have been studied in the last decades (see Bodin et
al. [2] for a survey). These extensions include complications such as time constraints,
multiple capacity constraints, a heterogeneous fleet and multiple depots. Some of the
solution approaches for the basic problem can be adapted to deal with additional
constraints, but this is typically much easier for relatively simple heuristics, than for
more sophisticated approximation and optimization methods. In this sense, the simple
heuristics are much more flexible. Flexibility is especially important when the
algorithm is going to be applied to many different types of VRP’s. Obviously, this is
the case for commercial vehicle routing systems that are to be installed at many
different clients.

In this paper we describe a method to solve real-life vehicle routing problems,
developed at ORTEC Consultants BV, a Dutch consultancy firm specialized in
applied operations research. The method has been implemented in SHORTREC
Distriplanner® (SDP), a commercial vehicle routing system, which ORTEC has been
selling, mainly to European, Asian and American clients, since the mid 80's. Well-
known clients include Nedlloyd and BP Amoco. The latter company uses SDP to
route its fuel trucks worldwide. Through interaction with its many different clients,
ORTEC has obtained expertise on real-life vehicle routing problems, which differs
significantly from the expertise of those researchers who mainly study vehicle routing
problems in an academic environment and who deal only occasionally (or never) with
practical problems. Although we recognize the value of such academic research, we
believe that, because of our different point of view, we can make valuable
contributions to the literature on vehicle routing.

As mentioned above, many extensions of the basic VRP have been studied in the
literature. However, from our experience at ORTEC, we found that real-life problems
often involve several non-standard constraints, some of which are never mentioned in
the literature, while others are only analyzed isolated, i.e., not in combination with
other non-standard constraints. In this paper, we explain how we have adapted the



Savings algorithm, usually contributed to Clarke and Wright [3], to deal with the non-
standard constraints. This algorithm has been implemented in recent versions of SDP,
where it is available as an alternative to an adaptation of another well-known simple
heuristic, the Sequential Insertion algorithm (see Solomon [11]). The reason why the
Savings Based method has been added is that the insertion method, SDP’s original
algorithm, performs satisfactorily overall, but for some clients it produces poor
results. It is important to mention that in this context "poor" does not only refer to
traditional quality measures such as total costs, total number of vehicles used or total
distance traveled, that are usually used to evaluate the quality of a vehicle routing
plan. In practice these measures are important, but we have noticed that our clients
often use additional measures to decide whether a plan is acceptable or not. In
particular, a plan must be "visually attractive". For example, clients tend to dislike
plans in which many trips cross each other. They prefer visually attractive plans,
because to them such plans are logical and therefore they trust these plans (even if
such plans perform worse than other plans with respect to the traditional measures).
Since the insertion method sometimes produces visually unattractive plans, we have
developed the Savings Based method as an alternative.

This paper contributes to research on VRP on three levels: we have developed a
Savings Based algorithm (1) that was compared with a Sequential Insertion Algorithm
(2) using non-standard quality measures (3) on real-life data. It turns out that, in
general, the Savings Based algorithm not only performs better with respect to the
visual attractiveness of the plans but also with respect to the traditional quality
measures.

The remainder of this paper is organized as follows. In Section 2 we describe the
extended VRP and we will focus on the extensions to the VRP’s mentioned in the
literature. In Section 3, we describe the non-standard measures to evaluate the visual
attractiveness of a plan. In Section 4, we briefly describe the Sequential Insertion
algorithm followed by the Savings Based algorithm in Section 5. In Section 6, we
describe the data that we use to compare the algorithms. In Section 7 we present the
computational results followed by the conclusions in Section 8.

2. Description of the extended VRP

The standard constraints, such as vehicle capacity and maximum trip duration, have
received a lot of attention in the literature. Besides these constraints, we deal in
practice with several non-standard constraints, some of which are never mentioned in
the literature, while others are only analyzed isolated. In this section, we first discuss
the typical non-standard constraints, which are explicitly considered in this paper.
Secondly, we mention some additional constraints that we also encounter regularly,
but less often, in practice. These constraints will not be considered in the remainder of
the paper.

2.1 Typical non-standard constraints

The vehicle fleet is assumed to be fixed and may be heterogeneous. This means that
the vehicles may differ with respect to capacity, maximum workload, maximum
number of customers per trip, cost per kilometer and fixed cost. Apart from the



difference in vehicle capacity, we also deal with multiple capacity constraints. So in
general, each customer has a demand that is expressed in multiple sizes (for example
weight, volume and number of pallets).

Furthermore, there may be vehicle type constraints, i.e., some customers can only be
served by certain vehicles. Sometimes a customer needs special treatment, which
means that only vehicles of a given type can serve this customer. For example, special
equipment may be needed to unload the order of the customer. For each customer it is
given which vehicle types can serve the customer, and each vehicle has a given
vehicle type.

Another constraint between vehicles and customers is the so-called region constraint.
Some drivers are familiar with a specific customer or region, so it is preferred that
these drivers (vehicles) serve the customers in the given region. This information is
usually dealt with by assigning certain customers and vehicles a region number. A
customer with a region number should preferably be served by a vehicle with the same
region number, but it can also be served by a vehicle without a region number. A
customer without such a number can be served by any vehicle. A vehicle with a region
number can only serve customers with the same region number or customers without a
region number.

It is also possible that a group of customers should be served first (or last) in a trip.
This means that all customers that are served before (after) a customer belonging to
this group, are themselves also a member of this group.

There may be backhaul customers, i.e., customers who do not have a demand, but a
supply of a given good. These supplies are typically much larger than the demands.

Finally, each customer can have one or two time windows (service intervals). In the
literature, it is very exceptional that customers have more than one time window.

2.2 Other non-standard constraints

Other non-standard constraints that we often encounter in practice are

e limited availability of the good(s) at the depot(s)

e forbidden product combinations (some products can not be transported
simultaneously in the same vehicle)

e vehicles compartments (each customer or product has to be assigned to one or
more compartments)

These constraints will not be considered in the remainder of this paper. Furthermore,
we will restrict ourselves to problems with a single depot in which each vehicle is
allowed to leave the depot only once a day. In practice, we sometimes encounter
problems with multiple depots and vehicles may be allowed to leave a depot more
than once. However, in our current implementation of the Savings Based method this
is not possible (our Sequential Insertion algorithm does allow for these features).



3. Non-standard quality measures

As mentioned before, a planner (client) does not only use the traditional quality
measures such as total cost, the number of vehicles used, the total distance and the
total workload, to evaluate a vehicle routing plan. Therefore, we discuss in this section
several non-standard quality measures that will be used, together with the traditional
measures, to analyze plans and to compare different algorithms.

3.1  Measures for visual attractiveness

The visual attractiveness of a vehicle routing plan plays an important role in the
decision whether or not to accept the plan. As a tool the planner may use a drawing of
the trips onto a (virtual) map. For instance, SDP has a graphical user interface that
enables the planner to make such a drawing. In this paper, we use several measures to
capture the visual attractiveness of a plan, which can be divided into the following
four groups:

1. Center of gravity (Av. not closest center)

2. Convex hull (Av. in convex hull)

3. Average distances (Av. dist. to center, Av. dist. between)

4. Crossings (Tot. cross. between trips, Av. cross. within trip)

The measure Av. not closest center gives the average number of customers in a trip
that are closer to the center of gravity of another trip than to the center of gravity of
the trip itself. Here, the center of gravity of a trip is the center of gravity calculated
from the coordinates (in the plane) of the locations of the customers in the trip. Note
that the location of the depot does not influence the center of gravity. The idea is that
a plan is visually more attractive when Av. not closest center is relatively small.

The measure Av. in convex hull quantifies the average number of customers per trip
that are contained in the convex hull of another trip. Here, the convex hull of a trip is
the convex hull formed by the locations of all customers served in the trip. The idea is
that it is visually more attractive to have very few customers contained in the convex
hull of another trip.

The measures Av. dist. to center and Av. dist. between use the distance between the
locations of the customers to evaluate the plan. The former is the average distance of
the customers to the center of gravity of the trip. The latter is the average distance
between any two customers in a trip (not necessarily served after each other). The idea
is that a planner will prefer vehicle routing plans in which customers served in the
same trip are relatively close to each other or to some central point.

To evaluate the number of crossings we have developed two measures, one at the
global level and one at the trip level. The first, Tot. cross. between trips, is the total
number of crossings of different trips, where we may count more than one crossing
per pair of trips. The second, Av. cross. within trip, is the average number of crossings
within a trip, where crossings that occur on the stretch from the depot to the first
customer in the trip or on the stretch from the last customer to the depot, are not taken
into account. Since we use the coordinates of the locations of the customers to
determine the crossings, and not a real network of roads, crossings that we count this



way are only an approximation of the actual number of crossings that occur. However,
this measure is much easier to calculate (using an algorithm from computational
geometry) while the approximation turns out to be reasonable. Both Tot. cross.
between trips and Av. cross. within trip should preferably have low values.

3.2 A measure for region constraint violation

In addition to the measures discussed in the preceding subsection, we propose a
measure to evaluate the extent to which the region constraints are violated. Strictly
speaking, region constraints can not be violated. However, assigning a customer with
a region number to a vehicle without such a number is allowed but not preferred. The
total number of such assignments as a percentage of the total number of customers
with a region number is a measure for the (weak) region constraint violation. This
measure should be corrected for situations where there are no vehicles of a given
region number available or when there are too many customers in one region.

4. The Sequential Insertion algorithm

The Sequential Insertion algorithm forms the basis of all insertion algorithms.
Solomon [11] describes various variants of this algorithm, while Potvin and Rousseau
[9] describe the parallel version. The main idea behind the algorithm is to add non-
served customers to the current plan by inserting them at the "best" position. In
contrast to the parallel version, the sequential version constructs one trip at the time.
Once it is not possible anymore to insert a customer into the current trip, the algorithm
starts with a new trip. In this section we briefly describe the version of the Sequential
Insertion algorithm as it is implemented in SDP. In this description, terms such as "a
largest vehicle" and "smaller vehicles" are used. This refers to the vehicle capacity
constraint(s). In case of multiple capacities, some ordering of the capacity types is
given and "larger" and "smaller" is defined with respect to a lexicographical ranking
of the vehicles based on this ordering.

Not found

Step 1:
Select a vehicle Quit
—> <«
¢ Found Not found

Step 2:
Select a seed customer

¢ Found

Step 3:
Add customers to the new

trip < |

Found
Not found ¢
Step 4:

Move the trip to a smaller
vehicle

Figure 1: Steps of Sequential Insertion algorithm



SDP’s Sequential Insertion algorithm (SI) consists of the following four steps
(illustrated in Figure 1):

Step 1: Select a vehicle
We select a largest vehicle that does not perform a trip and which has not been
tried before.

Step 2: Select a first customer for this vehicle (seed customer)

We select the customer that is most difficult (for example farthest away from
the depot or smallest service interval) and which is feasible in the vehicle. If
we fail to select a customer we go to Step 1, otherwise assign this customer to
the current vehicle.

Step 3: Add customers to the new trip

First we build a list of candidates to insert into the trip. A candidate is a non-
served customer who is feasible according to vehicle type, capacity and region
constraints and that is not located "too far" from the current seed customer. We
calculate for each candidate its insertion cost, i.e., the extra distance needed to
serve the customer. We sort the items in the list in non-decreasing order of
insertion cost. Each time we try to insert the next candidate at its "best"
feasible insertion position in the trip. If we can not find a customer to insert for
a fixed number of times, then we go to Step 4.

Step 4: Move the trip to a smaller vehicle

Here we try to move the trip to a smaller vehicle of the same vehicle type and
region number, to save vehicle capacity, without violating any constraint. If we
have moved the trip to another vehicle, then we go back to Step 3, else we go
back to Step 1.

We emphasize that we leave out a lot of details that are important for the practical
performance of the algorithm. For example, we have implemented several fast tests to
determine the feasibility of a customer in early stages of the algorithm. The algorithm
also allows the user to influence its behavior by giving priority to individual vehicles
and customers. It is also possible to change the criteria on which the choice of a seed
customer is based, or to change the definition of the insertion costs.

One of the main advantages of the above algorithm is that it is very flexible and
robust. For example, it is usually easy to deal with client specific constraints within
the general framework.

Although the results that we obtain with the Sequential Insertion algorithm are good
in general, we have noticed that in some cases it performs quite poor. In particular, it
sometimes produces vehicle routing plans that are visually very unattractive.
Therefore, we have experimented with a Parallel Insertion algorithm described in
Potvin and Rousseau [9]. It turned out, however, that the improvements over
Sequential Insertion were only marginal. Apparently, instead of sticking to the
insertion approach, a significantly different method should be used. Therefore, we



decided to develop an algorithm based on the old savings idea, which will be
described in the next section.

5. The Savings Based algorithm

5.1 Introduction

To overcome the main disadvantage of the Sequential Insertion algorithm we have
developed a Savings Based algorithm that constructs trips simultaneously and still
generates a plan within a reasonable amount of time.

As mentioned before, the original Savings algorithm itself is usually attributed to
Clark and Wright [3]. The main idea behind the algorithm is to start with each
customer in a separate trip and then try to find improvements on this solution
("savings") by combining the customers of two trips into one trip without changing
the order in which the customers are visited. Contrary to the Sequential Insertion
algorithm, the Savings algorithm constructs the trips simultaneously.

The saving can simply be the actual saving in distance or workload. Golden et al. [7]
used adjusted savings in case of a heterogeneous vehicle fleet. In contrast to real-life
situations, however, they assumed unlimited availability of each vehicle type. Their
adjustment consisted of the incorporation of savings in fixed vehicle cost and the
incorporation of opportunity savings for unused capacity. Altinkemer and Gavish [1]
introduced the Parallel Savings Algorithm. Instead of selecting only the highest saving
in each iteration, they solve a maximum weighted matching problem to determine a
set of savings with maximum total value. Desrochers and Verhoog [5] use this idea in
their Matching Based Savings Algorithm. The difference is that they do not
implement all savings corresponding to combinations in the maximum matching, but
only the one with the highest value. Besides the original savings, they also used the
adjusted savings suggested by Golden et al.

5.2  Adjustments to the original Savings algorithm

The main idea behind our Savings Based algorithm is still to combine two trips with
the highest saving, but we have made several adjustments necessary to be able to cope
with all constraints mentioned in Section 2.

First of all, we deal with a fixed and heterogeneous vehicle fleet. So, each time we
combine two trips, we have to select a vehicle that is best suitable for the trip. We
distinguish between dummy and real vehicles. A real vehicle actually exists, while a
dummy vehicle is a copy of a real vehicle that is used in the first step of the algorithm
to initialize the trips. Any customer that is still assigned to a dummy vehicle at
termination of the algorithm will not be served. During the execution of the algorithm,
when two trips are combined, the combined trip is always assigned to a real vehicle.
Hence, once a real vehicle serves customers, these customers will remain to be served
by a real vehicle until the algorithm terminates. In each iteration, we select the best
possible combination of two trips. With a heterogeneous fleet, however, it is often too
time consuming to check the feasibility of each combination exactly, because this
depends on the vehicle to which the combination is assigned. Therefore, at early
stages in each iteration, we perform fast tests with the purpose to eliminate



combinations from further consideration. Only at a later stage, we perform exact,
more elaborate feasibility tests for relatively few combinations.

Our second adjustment consists of a preprocessing step that we have added to reduce
the size of the problem instance (the initial number of trips). In this step we partition
the set of customers into groups and in each group we try to combine as many
customers as possible. Two customers are in the same group if and only if the
following conditions hold:

their postal codes match

their service intervals overlap
their region numbers match

their feasible vehicle types match

bl

Since the customers have service intervals, we have to avoid unnecessary waiting
time. Waiting time will normally not decrease in the next iteration of the algorithm
(most customers will keep the same predecessor and successor). Therefore, as our
third adjustment, we have added a maximum waiting time constraint. We only allow
combinations of trips for which the total waiting time of the combined trip is less than
a given value.

Fourth, we try to remove unnecessary waiting time in the combined trip by applying a
local search improvement method.

As a last adjustment, we have incorporated a region factor and a group bonus in the
function that calculates the savings. In this way the algorithm is more likely to assign
customers with a region numbers to a vehicle with the same region number and
customers in the same group are more likely to be scheduled after one another.

5.3 Outline of the Savings Based algorithm

We are now going to describe the main steps (illustrated in Figure 2) of the Savings
Based algorithm in more detail. In this description the initial schedule is assumed to
be empty, but this is not essential. The Savings Based algorithm (SB) consists of the
following nine steps:

Stepl: Creation of dummy vehicles

For each customer, create a dummy vehicle and assign the customer to a new
trip in this vehicle. A dummy vehicle is always a copy of a real vehicle and
there may be multiple copies of the same real vehicle. The choice of which
real vehicle is copied will affect only the next step of the algorithm, because
that is the only step combined trips are allowed to be assigned to a dummy
vehicle, instead of a real one. For each customer, select the vehicle with
smallest (but feasible) capacity with the same region number.

Step 2: Preprocessing: Combinations of customers in the same group

Try to decrease the size of the problem by combining trips that contain
customers that belong to the same group. However, do not combine trips if the
total number of customers exceeds a given upper bound. (If there are several
trips with many customers, it may be impossible to find a feasible assignment




to vehicles later on.) A combined trip is assigned to one of the dummy
vehicles of the separate trips.
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Figure 2: Steps of Savings Based algorithm

Step 3: Initialization of the savings

For every combination, test if it satisfies all of the following requirements:

1. The maximum load of the combined trip does not exceed the capacity of
the largest real vehicle.

2. There exists at least one vehicle that is feasible for all orders with respect

to vehicle type constraints.

The fixed positions (first or last in the trip) of the orders are not violated.

4. The total time of the combined trip does not exceed the maximum
workload of the vehicles.

5. An estimate of the total waiting time does not exceed a given value (to
avoid excess waiting time).

et
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If a combination passes the test, we determine the saving using a function that
we discuss later in this section. Combinations that fail the test are marked
"infeasible". (Note that this fast test is not strict: there may be combinations
that are not yet marked "infeasible", but that will turn out to be infeasible later
on.)

Step 4: Selection of the best combination (Main loop)

Select the feasible combination with the highest positive saving. Since this
combination should be assigned to a real vehicle, it has to be checked whether
at least one feasible real vehicle is available (the vehicle is empty or it contains
one of the two separate trips). Perform, in a similar manner as in the previous
step, a quick test. (As before, the test does not guarantee feasibility, but it is
stronger than the test in the previous step, because we can use the
characteristics of a specific real vehicle.)

If the test fails for every available real vehicle, mark the combination

"infeasible" and repeat this step. If all combinations are infeasible, go to Step
9.

Step 5: Select a vehicle

Select a real vehicle that is feasible with respect to all constraints. If it turns
out that there is no feasible real vehicle available mark the combination
"infeasible" and go to Step 4.

Step 6: Improvement of the new trip
Try to improve the trip by moving strings (of variable length) of consecutive
customers to different positions in the trip.

Step 7: Adjustment of the savings of the new trip

Calculate the savings of all combinations involving the new trip. (Note that it
is not necessary to calculate all savings from scratch if the combined trip has
the same first or last customer as one of the separate trips.) Also perform the
fast feasibility test described in Step 3.

Step 8: Reassignment of definite trips to smaller vehicles
To save vehicle capacity, try to assign trips to a smaller vehicle if it is clear
that they can not be combined with any other trip. Go to Step 4.

Step 9: Postprocessing and termination
Remove all customers that are assigned to trips in dummy vehicles. These
customers remain unserved. The algorithm terminates.

Calculation of the savings

In Step 3 and Step 7 we determine the saving for a combination of two trips. Recall
that the saving of combining trip j after trip i, as used in the original savings algorithm
of Clark and Wright [3], is defined as follows:

CWij:di0+d0j_dij (1)
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where d;; is the distance of the last customer of trip i to the first customer of trip j, djp
is the distance from the last customer of trip i to the depot, and dy, is the distance from
the depot to the first customer in trip j.

We calculate the saving of combining trip j after trip i with the following formula:

SAV ;= region,* (C W(a),+ groupij) (2)
where
regionij =1+0(i, j) *REGION_FACTOR 3)
CW(a),=di+do—or*d; (4)
group ;= p(i, j)* GROUP_BONUS 3)
and
ALj) = 0, if some customers in trips 7 and j have different region
numbers

= number of customers with same region number in trip i en trip
Jj / total number of customers in trip i and trip j
L) = 1, if the last customer in trip i and the first customer of trip j
have the same group number
0, otherwise
a scaling parameter for the extra distance
REGION_FACTOR extra bonus for customers with the same region number
GROUP_BONUS = extra bonus for customers with the same group number

Poot [8] investigated the influence of each parameter. In his experiments he
considered four randomly generated basic data sets, each containing 400 customers
and an infinite number of identical vehicles. In our experiments we use the standard
saving value, i.e., REGION_FACTOR and GROUP_BONUS both equal to 0 and &
equal to 1.

6. Description of the real-life data

To perform a fair comparison of the Savings Based algorithm (SB) and the Sequential
Insertion algorithm (SI) we use real-life data of four different companies that currently
use SDP. Each company has specific characteristics. Table 1 in Appendix A presents
an overview of the data.

The first company (A) delivers goods from a depot that is located central to the
locations of the customers. Only 7 or 8 % of all customers (around 400-500) supplies
goods, but the average supply is much bigger than the average demand. Company A is
the only company that has customers who have to be served first or last in a trip (1%
of all customers). The service intervals are very wide; on average around 8 hours. On
average only 2% of all customers can not be served by all vehicle types. On the other
hand, in data set A; 40% of the customers has a region number, in A; 25% and in Az
20%. The number of vehicles varies from 22 to 30, because based on the number of
customers for a given day, the company decides which vehicles may be used to

11



service the customers. There is a large variety in capacity of the vehicles, opposite to
the maximum workload of the vehicles. In data set A; over 66% of the vehicles has a
region number, for the other two data sets almost 50% has a region number.

The second company (B) has less customers to serve than company A. The major
difference is that we do not have region- or vehicle-type constraints. Each customer
has only one service interval with an average length of 8 hours. Company B has a
fixed vehicle fleet that is the same for all three data sets.

All customers of the third company (C) demand goods. The major difference between
this company and the other three is that both the numbers of vehicles and customers
are much less than for the other companies. Similarly to company B we do not have
region and vehicle-type constraints. All customers have the same service interval
(from 8:00 until 16:00). The vehicle fleet is the same for both data sets, and the
vehicles only differ in their capacity.

The last company (D) has much more customers to serve than the other three
companies. The average distance from a customer to the depot is very small compared
with all other companies. A relatively large part (10%) of these customers supplies
goods. The average size (weight in kg and colli) of the supply, in contrast to company
A, is less than the average demand of the customers. Although the average length of
the service interval is around 7 hours, there are several customers that have a service
interval with a length of only 2 hours. For this company the vehicle fleet also differs
for the two data sets. The capacity among the vehicles, in contrast to the maximum
workload, is very different. The region constraints are very tight: for every region
there is only one vehicle available. Besides the region constraints we also have to deal
with vehicle-type constraints. There exist four vehicle types and of all customers only
a very small percentage can be served by all four types.

Since companies A and D have vehicle-type and region restrictions (in contrast to
companies B and C), the general results for these two companies may be different.

7. Computational results on real-life data

The heuristics SI and SB described in the previous sections have been coded in C, and
all tests were performed on a 150° MHz personal computer with 64Mb internal
memory. For each data set we report the results after the construction phase (SI and
SB). We also show the results after applying standard improvement methods as
described in Savelsbergh [10] (SI + IMP and SB + IMP). These methods try to
improve the plan (by means of total distance traveled, total cost etc.) by exchanging or
moving strings of customers within and between trips.

7.1  Results according to traditional quality measures

First of all we use the results obtained by the algorithms according to the traditional
measures. These results are reported in Table 2 in Appendix B. We give the number
of planned customers, the number of trips, the number of vehicles used, the average
number of customers per trip, the total cost, the total distance, the total distance per
planned customer, the total workload and the computing.

12



The results show that for companies B and C the number of served customers is more
or less the same for algorithms SI and SB. Companies A and D show a different
picture. SB uses less vehicles to serve more customers for company A, but for
company D the opposite holds. After the improvement phase the gap becomes
smaller. Quite remarkable is the difference in the number of trips and vehicles needed
for SI and SB for all data sets of company B: SB performs much better. This number
has an enormous impact on the total cost.

The differences in the total distance traveled are enormous. If we focus on the results
after the construction phase, then we can conclude that the SB performs much better.
For all data sets the total distance is much smaller. This is still true when we compute
the average distance per served customer. Although the difference has become smaller
after the improvement phase, this result still holds, except for data set M.

Overall we can conclude for companies B and C that, for the traditional quality
measures, the SB algorithm constructs routing plans that serve more customers with
less or an equal number of vehicles, but with much less distance traveled and less or
comparable total cost.

Unfortunately such strong results do not hold for all data sets of the other two
companies (A and D). Since the presence of region constraints and vehicle-type
constraints is the major difference between these companies and companies B and C,
this is probably the cause of the different results.

7.2 Results according to non-standard quality measures

Secondly we analyze the results of the two algorithms using the non-standard quality
measures described in Section 3.1. Table 3 reports the results for these quality
measures.

Observation of the quality measure Av. not closest center and Av. in convex hull tells
us that, except for data sets B, and B;, they behave in the same way. The results show
that, except for company C, both measures are smaller for the SB algorithm.

If we focus on the quality measures Av. dist. between customers and Av. dist to center,
we, again, can conclude that company C yields different results than the other ones.
For almost all data sets, even after the improvement phase, the quality measures are
smaller for the SB algorithm.

From these results we may conclude that the SB algorithm constructs plans in which
the customers served by the same vehicle are more clustered.

If we compare the plans using the measures Tot. cross. between trips and Av. cross
within trip, it is clear that the SB performs much better than the SI algorithm. Except
for company C, the difference in the number of crossings between trips is enormous.
Although this number decreases during the improvement phase, the SI algorithm still
does not perform as well as the SB algorithm for these quality measures.
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8. Concluding remarks

In this paper we have introduced a Savings Based heuristic for real-life vehicle routing
problems. The idea is based on the Savings algorithm of Clark and Wright [3], but
several adjustments were presented to cope with real-life constraints. We have
integrated this heuristic in a commercial vehicle routing system, called SHORTREC
Distriplanner® (SDP). Besides the traditional quality measures we have also
introduced some non-standard quality measures to evaluate the "visually
attractiveness" of a plan.

We have compared the results of this heuristic with the results of the Sequential
Insertion heuristic currently used in SDP. Instead of using well-known test sets, we
used ten real-life data sets of four different companies. Since this is real-life data we
also dealt with non-standard constraints such as vehicle type constraints, a fixed
heterogeneous vehicle fleet and region constraints.

Besides the traditional quality measures such as total distance traveled, total number
of customers used, we also considered different non-standard quality measures to
evaluate the "visually attractiveness" of the plans.

The results presented in this paper show that the SB algorithm outperforms the SI
algorithm for almost all data sets, especially if we look at the non-standard quality
measures, such as number of crossings between and within trips.

In this paper we have only used the non-standard quality measures to evaluate the
"visual attractiveness" of the plans. It is interesting to investigate whether it is possible
to incorporate this idea in the optimization function itself together with the traditional
measures such as total cost. It is also interesting to investigate whether the general
results on the data sets that contain vehicle-type and region restrictions can be
improved by introducing a region factor or a vehicle-type factor into the savings
function. We also did not test with different functions to determine the savings.
Applying the ideas of Golden et al. [7] seems a straightforward extension. Another
interesting extension is to adjust the Savings Based algorithm in such a way that it
constructs routing plans that contain more than one trip per vehicle.
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Appendix A: Description of the real-life data

Table 1: Characteristics of the real-life data sets

Data set Aq Ay A3 B: B: B3 C C, D, D,
No. customers 412 436 539 279 222 278 187 188 947 1106
Perc. Supply customers (%) 7 7 8 3 2 1 0 0 10 8
Av. Demand (Pallet) 206 337 237 312 413 420 549 1185 43 37
Av. Demand (Pallet) 83 97 71 4 4 0.08 0.09
Av. Demand (Colli) 2 4 3 4 4 345 325
Av. Supply (Kg) 433 976 1693 1893 1325 3079 11 10
Av. Supply (Pallet) 115 182 389 0.3 0.4
Av. Supply (Colli) 14 2 26 89 84
Perc. First in trip (%) 1 1 0

Perc. Last in trip (%) 0 1 2

Av. Length service interval (hh:mm) 7:53 8:23 8:22 8:16 8:02 8:10 8:00 8:00 7:11 7:11
St. dev. Length service interval (hh:mm) 1:52 2:30 2:04 2:05 2:23 2:13 0:00 0:00 2:07 2:04
Av. Distance to the depot (km) 58 62 58 98 99 92 106 107 37 37
St. dev. Distance to the depot (km) 31 35 33 70 68 66 58 60 16 15
No. vehicles 22 29 30 29 29 29 17 17 23 28
Av. Capacity (weight in Kg) 10218 9718 10252 10602 10590 10625f 20941 20941 4539 6414
Av. Capacity (Pallet) 1827 1969 1863 33 33 5 6
Av. Capacity (Colli) 69012 69011 69011 81 81| 22826 22929
Av. Max. workload (hh:mm) 11:42  10:14 9:58] 16:14 16:14 16:14) 17:00 17:00f§ 12:00  12:00
St. dev. Max. workload (hh:mm) 1:21 1:06 1:24 3:05 3:05 3:05 0:00 0:00 0:00 0:00
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Appendix B: Results on real-life data

Table 2: Results according to traditional quality measures

No. No. trips No. used No. Total Total Distance Total Computing
planned vehicles customers cost distance per workload time
customers per trip (gld) (km) customer (hh:mm) (mm:ss)
(km)

data set A
SI 355 22 22 16.1 18085 7438 21 233:44 0:07
SB 365 22 22 16.6 17633 7042 19 232:09 0:33
SI+ IMP 362 21 21 17.2 15599 6180 17 206:54 1:34
SB + IMP 371 21 21 17.7 17038 6917 19 226:38 1:27
data set A;
SI 383 32 29 12.0 28536 11309 30 289:30 0:07
SB 432 28 28 154 25801 8880 21 260:07 0:26
SI+ IMP 434 31 29 14.0 25937 10130 23 277:55 1:01
SB + IMP 435 28 27 15.5 23436 8942 21 258:55 2:07
data set A;
SI 398 30 30 133 22849 10230 26 282:01 0:06
SB 472 30 30 15.7 23036 9373 20 286:36 0:34
SI+ IMP 461 30 30 154 22685 9683 21 284:58 2:01
SB + IMP 488 30 30 16.3 22580 9255 19 287:31 2:18
data set B
SI 279 26 19 10.7 49089 10312 37 237:34 0:05
SB 277 17 17 16.3 28327 5328 19 155:27 0:23
SI+ IMP 279 21 18 13.3 29009 6629 24 173:56 0:37
SB + IMP 279 17 17 16.4 24904 5334 19 154:06 0:45
data set B,
SI 222 29 18 7.7 47451 9883 45 221:36 0:06
SB 222 14 14 159 21985 4148 19 124:59 0:17
SI+ IMP 222 25 17 8.9 25108 5829 26 150:40 0:43
SB + IMP 222 14 14 15.9 20392 4143 19 123:38 0:34
data set B3
SI 278 32 20 8.7 48887 9961 36 234:10 0:06
SB 276 16 16 17.3 27873 5217 19 151:29 0:22
SI+ IMP 278 29 19 9.6 31773 7303 26 185:05 0:46
SB + IMP 276 16 15 17.3 25531 5217 19 151:02 0:45
data set C;
SI 155 24 17 6.5 21354 7541 49 194:31 0:05
SB 160 17 17 9.4 19344 6667 42 177:11 0:12
SI+ IMP 157 24 17 6.5 21105 7404 47 193:19 0:21
SB + IMP 169 23 17 7.3 21231 7296 43 196:11 0:38
data set C,
SI 154 23 17 6.7 21269 7547 49 193:13 0:04
SB 156 17 17 9.2 19876 7019 45 180:09 0:11
SI+ IMP 157 24 17 6.5 21208 7439 47 193:57 0:19
SB + IMP 170 23 17 7.4 21216 7328 43 195:24 0:33
data set D;
SI 935 22 22 42.5 54623 5715 6 205:08 0:17
SB 769 23 23 334 49252 3800 5 163:23 2:00
SI+ IMP 947 22 22 43.0 42109 4123 4 172:43 4:18
SB + IMP 947 22 22 43.0 42508 3889 4 177:09 7:29
data set D;
SI 1106 34 26 325 63987 6102 6 227:25 0:20
SB 952 28 28 34.0 56524 4195 4 184:34 2:42
SI+ IMP 1106 24 23 46.1 45575 4440 4 189:36 5:25
SB + IMP 1082 25 24 43.3 50260 4290 4 190:35 9:53
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Table 3: Results according to non-standard quality measures

Av. not Av. in Av. dist Av. dist. to  Tot. cross.  Av. cross.

closest convex between center between within trip

center hull customers (km) trips

(km)

data set A
SI 6.1 7.9 20 15 67 3.9
SB 5.0 5.9 20 14 25 1.1
SI + IMP 6.4 6.8 20 15 39 1.9
SB + IMP 6.7 6.8 22 17 30 1.5
data set A;
SI 5.4 9.3 19 16 87 2.4
SB 3.9 3.8 17 13 41 1.7
SI+ IMP 6.7 10.1 23 17 68 1.1
SB + IMP 4.8 6.0 19 15 49 1.4
data set A;
SI 4.0 34 16 12 39 24
SB 5.9 6.4 18 13 25 1.4
SI + IMP 6.5 10.8 21 16 68 1.3
SB + IMP 6.2 5.7 20 14 30 1.6
data set B,
SI 6.6 13.1 33 22 185 1.6
SB 5.0 1.0 26 18 3 0.9
SI+ IMP 6.5 9.2 35 23 51 1.0
SB + IMP 5.7 1.8 26 18 3 1.2
data set B,
SI 5.2 12.3 40 28 186 0.9
SB 5.6 3.2 31 20 6 1.2
SI + IMP 4.0 4.4 33 21 37 0.7
SB + IMP 5.6 3.2 31 20 6 1.1
data set B3
SI 5.8 11.2 35 22 183 1.0
SB 6.6 4.8 28 20 10 1.1
SI+ IMP 5.1 7.1 31 20 43 0.4
SB + IMP 6.6 4.8 28 20 10 1.1
data set C;
SI 2.4 1.6 25 16 25 0.1
SB 4.6 4.2 34 25 22 0.8
SI+ IMP 2.5 1.6 25 17 24 0.1
SB + IMP 4.4 3.1 34 24 26 0.6
data set C,
SI 2.9 2.0 26 17 16 0.3
SB 32 3.3 33 24 26 0.5
SI + IMP 2.9 2.0 27 18 17 0.3
SB + IMP 3.6 2.5 28 20 18 0.4
data set D;
SI 22.7 100.1 12 10 727 8.1
SB 12.3 35.6 5 5 205 4.2
SI + IMP 14.8 48.5 8 6 216 6.6
SB + IMP 18.6 57.5 7 5 266 5.1
data set D;
SI 16.4 70.1 7 5 573 5.5
SB 13.9 26.9 6 4 145 3.8
SI+ IMP 20.3 65.3 7 6 244 5.0
SB + IMP 18.4 41.0 7 5 203 5.0
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