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Abstract. Varying from multi-core CPU processors to many-core GPUs, the present sce-
nario of HPC architectures is extremely heterogeneous. In this context, code portability
is increasingly important for easy maintainability of applications; this is relevant in sci-
entific computing where code changes are numerous and frequent. In this talk we present
the design and optimization of a state-of-the-art production level LQCD Monte Carlo
application, using the OpenACC directives model. OpenACC aims to abstract parallel
programming to a descriptive level, where programmers do not need to specify the map-
ping of the code on the target machine. We describe the OpenACC implementation and
show that the same code is able to target different architectures, including state-of-the-art
CPUs and GPUs.

1 Introduction

The use of processors based on multi- and many-core architectures is common practice in High Per-
formance Computing (HPC). Many variants of these processors exist, differing mainly in the number
and architecture of the cores.

Conventional CPUs accommodate tens of fat cores sharing a large on-chip cache. These cores
include several levels of caches and complex control structures, able to perform hardware optimization
techniques (branch-speculation, instruction scheduling, register renaming, etc). Vector instructions
are also supported by these cores, with a moderate level of data parallelism: 2 to 4 vector elements are
processed by one vector instruction. This architecture is reasonably efficient for many type of regular
and non-regular applications and convey a level of performance of the order of hundreds of GigaFlops
per processor. On the other side of the spectrum we have Graphics Processor Units (GPU), available
as accelerator boards attached to conventional CPUs. GPUs incorporate thousands of slim cores able
to efficiently support regular streams of computation, and reach performances of the order of many
TeraFlops. GPUs are extremely aggressive in terms of data-parallelism, implementing vector units
with large vector sizes (16 and 32 words are presently available options).

Halfway between these two architectures, we find the Intel Many Integrated Cores (MIC) archi-
tecture based on several tens of slim cores. In this case, cores are similar to their fat counterparts, but
their design has been simplified removing many hardware control structures (instruction scheduler,
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register renaming, etc) and adopting wider vector units, able to process up to 4 or 8 vector elements
in parallel.

Today computing centers have not reached a common consensus on the “best” processor option for
HPC systems. Architecture choices are not driven only by performances but also by cost of ownership
and energy aspects which are becoming increasingly critical parameters[1].

In this scheme, the development of applications would greatly benefit from the availability of an
individual code version, written in an appropriate programming framework, able to offer portability
in terms of code and performance across several architectures. A single code version is of great
convenience notably for scientific applications, where code changes and development iterations are
not rare, so keeping several architecture-specific code versions up-to-date is a laborious and error
prone effort[2].

In this work we describe the implementation of a Lattice QCD (LQCD) Monte Carlo code with
tree-level improved gauge action and stout-smeared action for staggered fermions designed to be
efficient and portable across several processor architectures.

Lattice QCD simulations is a typical and well known HPC grand challenge, where physics results
are strongly limited by available computational resources[3, 4]; over the years, several generations of
parallel machines, optimized for LQCD, have been developed[5, 6], while the development of LQCD
codes running on many core architectures, in particular GPUs, has seen large efforts in the last decade
[7–9]. Our target is to have a single code able to run on several processors without any major code
change while looking for an acceptable trade-off between portability and efficiency[10]. OpenACC
has been chosen as programming model, as it currently has a larger compiler support, in particular
targeting NVIDIA GPUs, which are widely used in HPC clusters and for scientific computations. The
migration of our code to OpenMP4, if needed, as soon as compiler support becomes more mature, is
expected to be a simple effort.

2 Numerical challenges

The fundamental problem of LQCD is the evaluation of expectation values of given functions of the
fields, O[U], that is integrals of the form

∫
DUDφDHO[U] exp

(
−1

2
H2 − S g[U] − φ†M[U]−1/4φ

)
(1)

where the exponent S g is the discretization of the action of the gauge fields (usually written as a sum
of traces of products of Uµ(n) along closed loops) and det(M) describes the gluon-quark interaction.
Here, M[U] is a large and sparse structured matrix (i.e. containing both color and space-time in-
dexes).The momenta term is a shorthand to indicate the sum of −Tr(Hµ(n)2)/2 over the whole lattice.

The most time-consuming single step of the whole algorithm is the solution of a linear system

M[U]ϕ = b (2)

This calculation is needed to compute the forces appearing in the equations of motion and also to eval-
uate ∆S , and one usually employ Krylov solvers. In the case of staggered fermions, corresponding to
(1), it is customary to use the so-called Rational HMC (RHMC) algorithm[11], in which the algebraic
matrix function appearing in (1) is approximated by a rational function. In this case one replaces (2)
by r equations (r is the order of the adopted approximation)

(M[U] + σi)ϕi = b , i ∈ {1, . . . , r} , (3)

2

EPJ Web of Conferences 175, 09008 (2018) https://doi.org/10.1051/epjconf/201817509008
Lattice 2017



register renaming, etc) and adopting wider vector units, able to process up to 4 or 8 vector elements
in parallel.

Today computing centers have not reached a common consensus on the “best” processor option for
HPC systems. Architecture choices are not driven only by performances but also by cost of ownership
and energy aspects which are becoming increasingly critical parameters[1].

In this scheme, the development of applications would greatly benefit from the availability of an
individual code version, written in an appropriate programming framework, able to offer portability
in terms of code and performance across several architectures. A single code version is of great
convenience notably for scientific applications, where code changes and development iterations are
not rare, so keeping several architecture-specific code versions up-to-date is a laborious and error
prone effort[2].

In this work we describe the implementation of a Lattice QCD (LQCD) Monte Carlo code with
tree-level improved gauge action and stout-smeared action for staggered fermions designed to be
efficient and portable across several processor architectures.

Lattice QCD simulations is a typical and well known HPC grand challenge, where physics results
are strongly limited by available computational resources[3, 4]; over the years, several generations of
parallel machines, optimized for LQCD, have been developed[5, 6], while the development of LQCD
codes running on many core architectures, in particular GPUs, has seen large efforts in the last decade
[7–9]. Our target is to have a single code able to run on several processors without any major code
change while looking for an acceptable trade-off between portability and efficiency[10]. OpenACC
has been chosen as programming model, as it currently has a larger compiler support, in particular
targeting NVIDIA GPUs, which are widely used in HPC clusters and for scientific computations. The
migration of our code to OpenMP4, if needed, as soon as compiler support becomes more mature, is
expected to be a simple effort.

2 Numerical challenges

The fundamental problem of LQCD is the evaluation of expectation values of given functions of the
fields, O[U], that is integrals of the form

∫
DUDφDHO[U] exp

(
−1

2
H2 − S g[U] − φ†M[U]−1/4φ

)
(1)

where the exponent S g is the discretization of the action of the gauge fields (usually written as a sum
of traces of products of Uµ(n) along closed loops) and det(M) describes the gluon-quark interaction.
Here, M[U] is a large and sparse structured matrix (i.e. containing both color and space-time in-
dexes).The momenta term is a shorthand to indicate the sum of −Tr(Hµ(n)2)/2 over the whole lattice.

The most time-consuming single step of the whole algorithm is the solution of a linear system

M[U]ϕ = b (2)

This calculation is needed to compute the forces appearing in the equations of motion and also to eval-
uate ∆S , and one usually employ Krylov solvers. In the case of staggered fermions, corresponding to
(1), it is customary to use the so-called Rational HMC (RHMC) algorithm[11], in which the algebraic
matrix function appearing in (1) is approximated by a rational function. In this case one replaces (2)
by r equations (r is the order of the adopted approximation)

(M[U] + σi)ϕi = b , i ∈ {1, . . . , r} , (3)

Xeon E5-2630 v3 Xeon E5-2697 v4 K80-GK210 P100

Year 2014 2016 2014 2016
Architetcure Haswell Broadwell Kepler Pascal
#physical-cores / SMs 8 18 13 × 2 56
#logical-cores / CUDA-cores 16 36 2496 × 2 3584
Nominal Clock (GHz) 2.4 2.3 562 1328
Nominal DP performance (Gflops) ≈ 300 ≈ 650 935 × 2 4759

LL cache (MB) 20 45 1.68 4
Total memory supported (GB) 768 1540 12 × 2 16
Peak mem. BW (ECC-off) (GB/s) 69 76.8 240 × 2 732

Table 1. Selected hardware features of some of the processors used in this work: the Xeon-E5 systems are two
recent multi-core CPUs based on the Haswell and Broadwell architecture, the K80 GPU is based on the Kepler

architecture while the P100 GPU adopts the Pascal architecture.

where the real numbers σi are the poles of the rational approximations. These equations can again
be solved by Krylov methods: by exploiting the shift-invariance of the Krylov subspace it is possible
then to write efficient algorithms that solve all the equations appearing in (3) at the same time, using,
at each iteration, only one matrix-vector product[12].

For most of the discretizations adopted in QCD (and in particular for the one we use, the so-called
"staggered fermions), the matrix M[U] can be written in block form

M = m I +
(

0 Doe

Deo 0

)
, D†oe = −Deo ; (4)

matrices Doe and Deo connect only even and odd sites. It is thus convenient to use even/odd
preconditioning[13]; in this case, (2) is replaced by:

(m2 I − DeoDoe)ϕe = be; (5)

ϕe is defined only on even sites and the matrix is positive definite (because of (4)), so we can use the
simplest of the Krylov solvers: the conjugate gradient.

Over the years, many improvements of this basic scheme have been developed; these are in-
strumental in reducing the high computational cost of actual simulations but their implementation is
straightforward, once the basic steps of the “naive” code are ready.

2.1 Implementation

Intel multi-core CPUs and NVIDIA GPUs considered in this work are listed in Table 1 together with
details of the systems.

We have developed a mini-application benchmark of the Dirac operator[14] to initially assess
the performance level achievable with OpenACC. This operator is the fundamental building block of
the Krylov solver, commonly accounting for at least 40% of the running time, and reaching up to
80% in low temperature configurations. The Dirac operator make use of three functions: deo, doe
(corresponding respectively to the application of functions Deo and Doe defined in (4)) and a zaxpy-like
function which is quite negligible in terms of execution time. From this early tests the performance of
the OpenACC versions of the double precision deo and doe functions were found to be comparable
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Figure 1. Percentage of the execution time of a selection of computationally heavy steps of our OpenACC code
on two different architectures for low and finite temperature simulations.

with the CUDA ones[14]. This promising start was a strong indication that also for LQCD the higher
portability of the OpenACC implementation is not associated with a severe loss of performance, and
propel us to proceed to an OpenACC implementation of the full RHMC code. As a side benefit,
the use of the OpenACC programming model greatly simplified the implementation of algorithmic
improvements.

Implementation of these new features started with the coding and testing of the improvements
on a single threaded version. Subsequently to the validation of the algorithm, the acceleration is
switched on by annotating the code with #pragma directives. Finally a further correctness check was
performed to check for errors in the OpenACC directives. In order to have a more readable code, the
most complex kernels have been divide in several functions. Small functions can be used in kernels if
declared as static inline, but for larger ones we had to use the routine seq OpenACC directive.

We have followed two different approaches to parallelize kernels. Those using data belonging to
nearest (and/or next-to-nearest) neighbors have been parallelized via the #pragma acc loop direc-
tive on 4 nested loops, one for each dimension. This allows to use 3D thread blocks, which should
improve data reuse between threads thus reducing bandwidth requirements, which is the major perfor-
mance bottleneck. The other kernels, i.e. the ones performing only single-site operations, have been
parallelized using a single cycle running on the lattice sites.

After the implementation of a first full working OpenACC simulation, we implemented various
optimization iterations, in particular for the performance critical steps. These include not only the
Dirac operator, but also the gauge part of the molecular dynamics steps, since their relative impact
on the overall execution time is not neglegible. This is shown in Fig.1 in particular for the high
temperature case.

3 Performance analysis

We test the performance of our code on different architectures using two different benchmarks taking
into account the most computational expensive parts of the code. The first benchmark evaluates the
performance of the Dirac operator and the second evaluates the performance of the gauge part of the
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Figure 2. Measured execution time per lattice site [ns] for the Dirac operator for several architectures and several
typical lattice sizes in double precision.

molecular dynamics step. The execution time per site of the Dirac operator for different lattice sizes
in shown in Fig. 2. Exactly the same code version has been run on all platforms without requiring
any change; it has been just re-compiled with different flags instructing the PGI 16.10 compiler which
architecture to target and which tile dimensions would best fit for each of them.

We tested two different NVIDIA GPUs: the K80 based on the Kepler architecture and the P100
board based on the Pascal architecture. For the K80 the single precision version takes ≈ 4ns per lattice
site, while the double precision version requires ≈ 8.5ns. We measure on the P100 ≈ 1.5ns for single
and ≈ 2.5ns for double precision, improving approximately by a factor 3× over the K80. This results
perfectly scales with architecture performance of P100 that has ≈ 4.3× more cores and ≈ 3× more
memory bandwidth, see Table 1.

For the Intel CPUs, we have compared two different processors, the 8-core E5-2630v3 CPU based
on Haswell architecture, and the 18-core E5-2697v4 CPU based on Broadwell. Due to computing
resources of the CPUs being 3× lower than on GPUs, see Table 1, a performance drop is expected.
However, the actual performance drop measured on both CPUs is much larger than the expected
theoretical figure; indeed time per site is approximately 10× or larger on the Haswell than on one
K80 GPU. The Broadwell performs approximately a factor 2× better compared to Haswell, at least
for some lattice sizes. We have identified two main reasons for this non-optimal behavior, and both of
them point to some still immature features of the PGI compiler when targeting x86 architectures, that
– we expect – should be soon resolved:

• Parallelization - the compiler is only able to split outer-loops across different threads, while inner-
loops are executed serially or vectorized within each thread. This explains why on the Broadwell
CPU running on a lattice 322 × 8 × 32 we have a performance 2× better than for a 323 × 8 lattice,
which has the same volume but allows the latter to split the outer loop only on 8 threads.

• Vectorization - as reported by the compilation logs, the compiler fails to vectorize the deo and doe
functions computing the Dirac operator. It states to be unable to vectorize due to the use of “mixed
data-types”. To verify if this is related to the way we have coded these functions, we have translated
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the OpenACC pragmas into the corresponding OpenMP ones – without changing the C code – and
compiled using the Intel compiler (version 17.0.1). In this case the compiler succeeds in vectorizing
the two functions, running a factor 2× faster compared to the OpenACC version compiled by PGI
compiler.
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Figure 3. Measured execution time per lattice site [ns] for the pure gauge part of Molecular Dynamics evolution
for several processors and lattice sizes in double precision.

Fig.3 shows the execution time of the gauge part of the molecular dynamics step. As already
remarked this is one of the two most time-consuming steps. It is possible to notice that the update
time per site is quite stable for the different lattice sizes tried. Going from the NVIDIA K80 to the
P100 the time improves by a factor ≈ 3×, while between Haswell and Broadwell we have roughly a
factor ≈ 1.5× / 2.0×.

Further we mention that we have also been able to compile and run our code on an AMD FirePro
W9100 GPU and on the latest version of the Intel Xeon Phi, the Knights Landing (KNL). However,
for this architecture, results are still preliminary. In more details, the compiler itself crashes when
compiling the code for the AMD GPU for some specific lattice sizes; for the KNL, specific compiler
support is still not present. This processor is still able to run the code compiled for the Haswell
architecture, although not using the 512-bit vectorization. These problems forbid us to perform a
systematic comparison of performance for these architectures. Once again, we believe that this is due
to some immaturity of the compiler, for which we expect will be resolved in future versions.

Fig.4 addresses the question of the efficiency costs (if any) of our architecture-portable code; it
compares the execution time for a full Monte Carlo step (in double precision) of the OpenACC code
and a previously developed CUDA implementation[9], optimized for NVIDIA GPUs. Although the
two codes are not exactly in a one to one correspondence, the implementations are similar enough
to make the test quantitatively meaningful. One immediately sees that the performances of the two
implementations are comparable and the use of OpenACC is not associated to a dramatic performance
loss, the differences between the execution times of the two versions being of the order of 10 ÷ 20%.

The worst case is the one of the 323 × 8 lattice, in which OpenACC is about 25% slower than
CUDA. Since we are comparing an high-level version of the code with one specifically developed for
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Figure 4. Execution time [sec] of a full trajectory of a complete Monte Carlo simulation for several typical
physical parameters, running on one GPU of a NVIDIA K80 system. We compare the OpenACC code developed
in this paper and and earlier GPU-optimized CUDA code [9]. Here we use the standard Wilson action and
unimproved staggered fermions as the CUDA code does not support the action improvements available in the
OpenACC version.

NVIDIA GPUs, this would not be a dramatic loss, however in this case the comparison is also not
completely fair. Indeed for high temperature simulations the gauge part of the Molecular Dynamic
step starts to be the computationally heaviest task and, in the CUDA implementation, part of it had
been explicitly hard coded in single precision.

For the low-temperature test cases the differences between the CUDA and the OpenACC imple-
mentation are much smaller; furthermore, in one case the OpenACC version is the fastest one. A
possible explanation of this behavior is the following: in the CUDA version unidimensional blocks
are used to parallelize the Dirac operator, while in the OpenACC implementation three-dimensional
block structures are adopted, that fit more the larger cache of recent GPUs and, especially on larger
lattices, improves data reusage.

4 Concluding Remarks

In this work we have developed a full state-of-the-art production-grade code for Lattice QCD simu-
lations with staggered fermions, using the OpenACC directive-based programming model. Our im-
plementation does include all steps of a complete simulation, and most of them run on accelerators,
minimizing the transfer of data to and from the host. It has been used the PGI compiler, which sup-
ports the OpenACC standard and is able to target almost all current architectures relevant for HPC
computing, although with widely different levels of maturity and reliability. Exactly the same code
runs successfully on NVIDIA many-core GPUs and Intel multi-core CPUs, and for both architectures
we have measured roughly comparable levels of efficiency. Also, the performance of the complete
code is roughly the same as that of an equivalent code, specifically optimized for NVIDIA GPUs and
written in the CUDA language. Our code also runs on AMD GPUs and on the KNL Intel Phi pro-
cessor, even if the compilation and run-time environment for these processors is still unable to deliver
production-grade codes; in these cases there are strong indications that these problems come from a
residual immaturity of the compilation chain expected to be resolved soon.
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Some further comments are in order: i) using a directive-based programming model, we are able
to target different computing platforms presently used for HPC, avoiding to rewrite the code when
moving from one platform to another; ii) the OpenACC standard provides a good level of hardware
abstraction requiring the programmer to only specify the function to be parallelized and executed on
the accelerator; the compiler is then able to exploit the parallelism according to the target processor,
hiding from the programmer hardware optimization details; iii) the OpenACC code has roughly the
same level of performance of that implemented using a native language such as CUDA for NVIDIA
GPUs, allowing to efficiently exploit the computing resources of the target platform.
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