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ABSTRACT. Calving mechanisms are still poorly understood and stress states in the vicinity of ice-shelf
fronts are insufficiently known for the development of physically motivated calving laws that match
observations. A calving model requires the knowledge of maximum tensile stresses. These stresses
depend on different simulation approaches and material models. Therefore, this study compares
results of a two-dimensional (2-D) continuum approach using finite elements with results of a one-
dimensional (1-D) beammodel elaborated in Reeh (1968). A purely viscous model, as well as a viscoelas-
tic Maxwell model, is applied for the 2-D case. The maximum tensile stress usually appears at the top
surface of an ice shelf. Its location and magnitude are predominantly influenced by the thickness of
the ice shelf and the height of the freeboard, the traction-free part at the ice front. More precisely, doub-
ling the thickness leads to twice the stress maximum, while doubling the freeboard, based on changes of
the ice density, results in an increase of the stress maximum by 61%. Poisson’s ratio controls the evolu-
tion of the maximum stress with time. The viscosity and Young’s modulus define the characteristic time
of the Maxwell model and thus the time to reach the maximum principal stress.
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INTRODUCTION
The calving of icebergs along ice-shelf fronts is an on-
going topic of research that is still not well understood.
Consequently, physically motivated calving laws are estab-
lished neither for calving of small icebergs with sizes smaller
than 1 km2, nor for giant icebergs. Potential calving laws
might use stress criteria for the determination of the position
where an iceberg breaks off. Thus, it is of major importance
to have a proper understanding of stress states in the vicinity
of the calving front. The knowledge of the temporal evolu-
tion of the stress state is essential to assess the time
between two calving events. This time is needed to establish
models for calving processes. A remarkable study in this
field was presented by Reeh (1968), who transferred
common methods of elastic beam theory to a linear
viscous material and utilized this to determine the stress
states at the surface of ice shelves. However, Reeh’s
approach uses major simplifications. First of all, the 1-D
theory can only calculate the normal stress in the flow
direction and the vertical shear stress. Therefore, the
normal stress in the vertical direction has to be approxi-
mated independent of the beam theory by a linearly de-
creasing stress based on the hydrostatic pressure and
surface conditions. Furthermore, the spreading in flow direc-
tion, as well as the stress-free part of the boundary condition
acting on the ice front, is not realizable by the assumptions
of the beam theory. Additionally, Reeh (1968) modeled the
ice rheology as an incompressible and purely linear viscous
material, neglecting elastic deformations. A similar ap-
proach was pursued by Fastook and Schmidt (1982), who
computed the stress at the top surface by a 2-D finite
element simulation using an incompressible linear viscous
material. However, the simulation time was restricted by

the numerical capabilities at their time and hence not suffi-
cient to detect time-dependent changes in the stress distribu-
tion. Iken (1977) and Fastook and Schmidt (1982) argued
that the most likely position for the next calving event in
grounded tidewater glaciers and floating ice shelves corre-
sponds to the location of the maximum tensile stress.

Some of the ice shelves in Antarctica exhibit a homo-
geneous, crevasse-free surface structure in the vicinity of
the calving front. Calving events also occur at these ice
shelves, although no surface crevasses and basal crevasses
exist. Those are the types of ice shelves for which we aim
to investigate the stress situation. Other situations lead to
the formation of medium-size or giant tabular icebergs,
where cracks turn into rifts, which propagate episodically
and detach an iceberg after years to decades. In order to
understand the different types of calving, we start with a
very basic situation and analyze calving due to bending
stresses as proposed by Reeh (1968) to obtain a general
knowledge of the stress situation in the vicinity of the
calving front.

Observations of calving are sparse and often only large
calving events on Antarctic ice shelves are monitored.
Therefore, no time series of calving events of the bending
type are available. However, Wesche and others (2013) pro-
vided a classification of the surface types of calving fronts in
Antarctica. They found that 7.4% of the ice-shelf fronts have
no surface structures as for example, crevasses. For these ice
shelves, calving presumably happens due to bending stresses
based on the boundary disturbances or the formation of giant
tabular icebergs. Larour and others (2004) discussed calving
events near Hemmen Ice Rise on the Ronne Ice Shelf,
Antarctica. Some of these events could also be explained
by bending due to the boundary disturbance at the ice
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front. This bending leads to longitudinal surface stresses and
results in the fracture of ice and the calving of icebergs.

At sufficiently long timescales, ice is commonly assumed
to behave like a viscous material. This is based on a con-
siderable number of investigations comprising laboratory
tests as well as field studies on ice shelves, ice sheets and
glaciers. Nevertheless, recent observations indicate an
elastic response of ice on shorter timescales. For example,
Gudmundsson (2011) showed that the phase shift between
the load and reaction of ice streams due to tidal forces
cannot be represented by a purely viscous material.
Therefore, a more complex viscoelastic material is needed
to satisfy the short-term elastic as well as the long-term
viscous ice behavior.

The investigation of stress states in ice shelves is a pre-
requisite for obtaining physically based calving laws and
computing calving rates. The aim of this work is to study
the influence of different material models on the maximum
tensile stress at the top surface. Therefore, the geometry
introduced by Reeh (1968) is used. In a first step, the com-
parison of the stresses after 1 d reveals the importance of
the choice of boundary conditions along the vertical cliff
face. Then, the temporal evolution of the stresses resulting
from the 2-D finite element model with linear viscous mater-
ial behavior is compared with the results derived by Reeh
(1968). The viscous study is concluded by an analysis of
the surface strains. In a next step, the time-dependent finite
element model is extended to a viscoelastic material. Also
a linear elastic simulation is considered to complete the
study. The surface stresses of the three rheological models
are compared for incompressible (ν ≈ 0.5) as well as com-
pressible materials to point out important differences. The
viscoelastic model is used to analyze the influence of the
ice-shelf thickness and the material parameters (Young’s
modulus, Poisson’s ratio, viscosity and ice density) on the
position and the magnitude of the maximum surface stress.
A comprehensive discussion reveals the consequences
using the different modeling approaches presented in this
study. All finite element models considered in this investiga-
tion discard the past history of the ice, which can also affect
the formation of cracks. Hence, the results are applicable for
ice shelves with rather homogeneous surfaces (e.g. the
Ekstroem Ice Shelf studied by Lohse, 2012). However, the
following results illustrate strong dependencies of the stress
states on quantities influencing the ice-shelf geometry. In
the case of uneven surfaces (see Humbert and others
(2015) concerning a viscoelastic model of the Jelbart Ice
Shelf), it is important to investigate the differences between
the application of a measured geometry instead of an idea-
lized geometry.

ICE-SHELF MODELS
Reeh (1968) analyzed the stress state and the vertical deform-
ation of an ice shelf near the ice front. He suggested a viscous
material law assuming that stress variations appear very
slowly in the analyzed case and thus, elastic responses of
the ice are negligibly small. Therefore, the well-known
elastic beam model is adapted to the viscous case. Hooke’s
law implies the stress–strain relationship for the 1-D linear
elastic case and reads σ= Eε with the Young’s modulus E.
The corresponding viscous equation σ ¼ 4η _ε, with the vis-
cosity η, leads to the stress–strain rate relation for a 1-D
linear viscous material. It is derived according to considera-
tions similar to the linear elastic case. The differential equa-
tion of an infinitely wide viscous beam on an elastic
foundation is given by

4ηI _wIV þ ρswgw ¼ 0; ð1Þ

with the moment of inertia per unit width I=H3/12, the ice
thickness H, the sea water density ρsw and the
deflectionw. The superposed dot indicates the first derivative
with respect to time, while ( · )IV is the fourth differentiation
with respect to space. In order to transfer the results to differ-
ent glaciers, Reeh (1968) considered all variables dimension-
less, which results in the dimensionless differential equation
for a viscous beam, see Eqn (17) of Reeh (1968). The viscous
beam equation is solved for the vertical deflection w for an
idealized rectangular ice shelf, as shown in Figure 1, and
suitable boundary conditions (see Eqns (18), (19), (21) and
(22) of Reeh, 1968). The stress resultants, normal force N,
shear force V and bending momentM (see Fig. 1b), are com-
puted from the deflection w. The normal stress σxx and the
shear stress σxz (Reeh, Eqns (26) and (28)) directly result
according to well-known formulas from beam theory. The
normal stress σzz (Reeh, Eqn (27)) has to be approximated in-
dependent of beam theory by the application of a linear de-
creasing stress from zero at the top surface to the negative
water pressure at the bottom surface. Further details on the
implementation of the viscous beam theory and the resulting
deflections and stresses can be found in Reeh’s original work.

In this work, we are mainly interested in the stresses near
the ice front. The stress distribution in this part of the ice
shelf is predominantly influenced by the boundary con-
ditions at the front, which cannot be fully captured by the
beam model. To detect differences, the conclusions of the
viscous beam theory are compared with results using a 2-D
finite element model. To establish a direct comparison, the
same geometrical configuration of an idealized ice shelf as
presented in Reeh (1968) is analyzed, see Figure 1a. The dis-
placements and hence the strain and stress states are

Fig. 1. (a) Vertical cross section of the idealized geometry according to Reeh (1968). (b) Stress resultants.

11Christmann and others: Viscous and viscoelastic stress states at the calving front of Antarctic ice shelves



computed by solving the quasi-static momentum balance

divσ þ f ¼ 0; ð2Þ

where σ denotes the Cauchy stress tensor and f represents
volume forces, such as gravity. In order to describe the pro-
cesses in an infinitely wide ice shelf it is sufficient to consider
a 2-D problem in the xz-plane under the assumption of plane
strain conditions in y-direction. Thus, the non-trivial equa-
tions of the momentum balance reduce to

∂σxx

∂x
þ ∂σxz

∂z
¼ 0;

∂σxz

∂x
þ ∂σzz

∂z
� ρice g ¼ 0

; ð3Þ

with the volume force of the ice weight fz ¼ �ρiceg, the ice
density ρice and the acceleration g due to gravity. Assuming
small strains, the kinematic relation is linearized and the
three-dimensional strain tensor ε is given by

ε ¼ 1
2
ð∇uþ∇TuÞ; ð4Þ

with the vector of the unknown displacements u= (ux, uy, uz)
T.

A suitable material law completes the system of differential
equations. The stress and strain tensors are split into volumet-
ric and deviatoric parts

σ ¼ 1
3
trðσÞI þ σD and ε ¼ 1

3
trðεÞI þ εD; ð5Þ

where I is the second order identity tensor and ( · )D denotes
the deviator. The trace of an arbitrary second order tensor A is
given by tr(A)=Axx + Ayy + Azz. In the considered case, the
trace of the strain tensor tr(ε) only consists of the sum of εxx
and εzz, as εyy is zero due to the plane strain assumption.
In order to implement an incompressible, viscous 2-D con-
tinuum, the fluid pressure is often solved for as an additional
unknown instead of using a constitutive relation. In this work
an approximation using an elastic isometric stress instead of
the thermodynamic pressure is introduced, see Altenbach
(2012). To achieve incompressibility a Poisson’s ratio of
ν≈ 0.5 is used. This allows for a comparison with the incom-
pressible, viscous beam. The corresponding material law
reads

σ ¼ λþ 2
3
μ

� �
trðεÞI þ σD with σD ¼ 2η _εD: ð6Þ

Herein, the elastic parameters λ= Eν/[(1 + ν)(1− 2ν)] and
μ= E/[2(1 + ν)] denote the Lamé constants for an isotropic,
homogeneous material. The viscous and the later discussed
viscoelastic material are only characterized by the stress de-
viator. At first, the Lamé constants are calculated using a

Young’s modulus of E ¼ 1 GPa, a common lower bound
given for ice in literature (see Rist and others, 2002).

For the viscoelastic Maxwell material introduced in the
following equation, the short-term material behavior is
linear elastic while the long-term behavior resembles a
viscous fluid. Consequently, this material provides a more
accurate description of the ice behavior. Therefore, the con-
stitutive relation is modified to

σD ¼ 2η _εDv ¼ 2μεDel with εD ¼ εDel þ εDv ; ð7Þ

for the deviatoric stress tensor in Eqn (6). In this case, the
deviatoric stresses in the elastic and viscous elements are
equal to the total deviatoric stress, and the elastic (εDel) and
viscous (εDv ) deviatoric strains combine to result in the total
deviatoric strain. For more details on continuum mechanics
and rheological models characterizing the material behavior,
see for example, Altenbach (2012) or any other textbook on
continuum mechanics.

The system of coupled differential equations consists of
the balance of linear momentum, the kinematic relation
and the material equations. It is solved for discrete nodal
displacements using the commercial finite element soft-
ware COMSOL (http://www.comsol.com). The idealized
ice-shelf domain has a length of L ¼ 5000 m and is discre-
tized using triangular elements with Lagrange shape func-
tions of quadratic polynomial order. The maximum
element edge length is 10 m. Additionally, the mesh is
refined to a maximum element size of 1 m at the ice
front and at the ice-shelf surface within the first 1000 m
from the front. This results in 215 942 degrees of
freedom. The independence of computed results from the
mesh has been verified. A coarsening of 5 m instead of
1 m leads to a maximum difference during the simulation
time of 0.9 % of the maximum stress value at the upper
surface. Furthermore, it was examined that the boundary
condition at the inflow has no effect on the stress distribu-
tion near the ice front, if the length L is larger than 3500 m.
Time stepping is auto-controlled by the time-dependent
solver of COMSOL. The following section points out the
boundary conditions, which are different from the beam
theory. Especially, the crucial influence of the traction-
free part at the ice front is considered.

BOUNDARY CONDITIONS AT GROUNDING LINE
AND FREEBOARD
In order to obtain a unique solution, boundary conditions are
necessary. For the 1-D beam theory in Reeh (1968) the
boundary conditions are illustrated in Figure 2a, where the
deflection w and the slope of the deflection ∂w/∂x are set to
zero at the left boundary (grounding line, see also Fig. 1a).
The remaining boundary conditions at the ice front consist
of a vanishing shear force V(L) and a bending moment

Fig. 2. (a) Boundary conditions for the beam theory used in Reeh (1968). (b) Boundary conditions for the 2-D continuum approach using finite
element simulation.
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M(L), which is computed using the off-centre resultant force
R(L) due to the depth dependent water pressure. As a conse-
quence, the corresponding normal stress σxx is linearly
varying along the vertical ice front and the shear stress σxz
is zero. The springs at the bottom of the beam illustrate an
elastic foundation (Winkler foundation) modeling the buoy-
ancy forces of the water. The purple line in Figure 3d
depicts the dimensionless tensile stress at the upper surface
for these boundary conditions. This result is obtained by as-
suming a constant thickness of H ¼ 100 m, see Figure 1a,
a gravity acceleration of g ¼ 9:81 m s�2, and a density of
sea water of ρsw= 1028 kg m−3. The axes are chosen accord-
ing to Reeh (1968): the horizontal axis depicts (x− L)/H, the
dimensionless distance to the ice front while the vertical axis
reports (σxx− σzz)/ρswgH, the dimensionless stress difference
after 1 d. The time of 1 d is arbitrarily chosen, but is identical
for all methods and boundary conditions. The stress compo-
nent σzz is negligibly small at the upper surface. However,
Reeh (1968) included this quantity since he also considered
the stress difference at the bottom of the ice shelf, where the
component σzz corresponds to the water pressure.

The boundary conditions for the 2-D finite element model
are illustrated in Figure 2b. In order to represent the beam
boundary conditions at the grounding line, the displacement
u in the flow direction is set to zero at the inflow boundary.
However, the subsequently shown stress distributions are in-
dependent of other constant values of u applied along the
inflow boundary. The upper surface of the ice shelf is trac-
tion-free. The traction σn that balances the weight of the ice
acts in the normal direction at the bottom of the ice shelf

and is given by a Robin-type boundary condition

σn ¼ ρswgðdiH�wÞ;

with the density ratio di= ρice/ρsw (see Reeh, 1968) such that
diH represents the depth below sea level. Thus, as the only
volume force, gravity is compensated by buoyancy forces.
Figures 3b, c illustrate the different boundary conditions at
the ice front for the 2-D finite element simulations. The result-
ing stress states at the upper surface are depicted in the
respective colors in Figure 3d. Significant differences arise
from this traction-free part, the freeboard. The boundary con-
dition in Figure 3b accurately models the stress state at the
ice front of an ice shelf, where water pressure increases
with depth and the upper vertical surface (highlighted by
the red circle) is traction-free. The accurate modeling of the
freeboard forces the stress to be zero at x= L due to the
boundary condition at the ice front (see green curve in
Fig. 3d). The boundary condition in Figure 3c is a 2-D
representation of the boundary condition of Reeh (1968)
and has the same stress resultant R(L) as the other two
boundary conditions. As a result, the traction-free point is
no longer located at sea level but is shifted upwards by
Δh= ((1− di)

2/2) H. This can be derived by the comparison
of stress resultants. Consequently, the water pressure at the
bottom of the ice front for the condition in Figure 3c is
given by po= ρswgH(di + (1− di)

2/2) for the initial geometry,
while the pressure for the case in Figure 3b is pg= ρswgHdi.
Traction boundary conditions yielding identical stress
resultants R(L) at the ice front are considered for the
following reason: the stresses, computed in the 2-D finite
element simulation, are in good agreement with the value
N=ðρswgH2Þ ¼ d2

i =2 obtained by the beam theory some dis-
tance away from the ice front boundary. For the following
analysis of the stress distribution in a viscous and viscoelas-
tic material, the freeboard boundary condition Figure 3b is
applied, as this boundary condition is suitable for accurately
describing the conditions at the calving front.

VISCOUS BEAM THEORY VERSUS VISCOUS PLANE
STRAIN MODEL
Independent of the applied modeling approach and material
law, the tensile stresses are located in the upper part of the ice
shelf. This is caused by the boundary disturbance of the free-
board and the increasing water pressure with depth that
induce a bending moment. Specifically, the largest tensile
stress is located on the upper surface. In this section the
deformations and the corresponding stresses and strains are
computed using an incompressible (ν≈ 0.5) viscous material
model. Figure 4 depicts the surface stresses at different

Fig. 3. (a–c) Separate illustration of different boundary conditions at
the ice front for (a) Reeh (1968); (b and c) the finite element
simulation. (d) Viscous stress states at the upper surface for the
different boundary conditions after the simulation time of 1 d.

Fig. 4. Comparison of stress differences at the upper surface; solid lines indicate the results of the 2-D viscous material model and dashed lines
indicate the results of the 1-D viscous beam.
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simulation times t for a density ratio of di= 0.9. The con-
sidered points in time are identical to the ones analyzed
in Reeh (1968) to illustrate similarities and differences. The
corresponding timescales are depending on the time factor
f= η/(ρswgH) to obtain results independent of the viscosity η.
For these computations, the viscosity is set to η¼ 1014 Pa s
(see Greve and Blatter, 2009). Thus, assuming H ¼ 100 m,
g ¼ 9:81 m s�2 and ρsw= 1028 kg m−3, corresponding to
the values given in the previous section, the final time step
12.5 f corresponds to ∼39 a. The dashed lines in Figure 4
depict the dimensionless stresses at the surface of a viscous
beam according to the results shown in Figure 9 in Reeh
(1968). The effect of using a 2-D model instead of the beam
theory is significant, as illustrated by solid and dashed lines
in Figure 4. In contrast to the results by Reeh (1968), the
solid curves continuously decrease with time, and the location
of the maximum tensile stress shifts towards the ice front.
Normalized stresses similar to the results of the beam theory
only appear for the first time step (t= 0) and in a certain
distance from the front. Closer to the front, considerable
differences due to the implemented boundary conditions
can be seen for all time steps.

The solid lines in Figure 5 depict the stress states for earlier
points in time (t � 0:31 f) while the red dashed line repeats
the result of the beam theory for the final time t ¼ 12:5 f
from Figure 4. It is found that the stress evolution of the
2-D model for early points in time is well described by the
almost time-independent beam results: 10 d correspond
to t ¼ 8:5 � 10�3 f (brown line), 30 d to t ¼ 2:5 � 10�2 f (gray
line), and 1 a to t ¼ 0:31 f (black line). Figure 6 provides a
possible explanation for this behavior. The strain component
in the flow direction εxx monotonically increases with time
and develops a maximum in the vicinity of the ice front.
This strain component is related to the elongation of the
geometry in the flow direction, which is not considered in
the beam theory. Since the maximum value of εxx increases
with time, the discrepancies become larger.

VISCOELASTIC PLANE STRAIN MODEL
In the following, the same geometrical setup, with the free-
board boundary condition (Fig. 3b), is used to analyze the
temporal evolution of the stress difference for the viscoelastic
Maxwell material. The evolution of the stress difference at the
upper surface is shown in Figure 7 for an incompressible ma-
terial (ν≈ 0.5), concentrating on three different instances in
time during 1 a. As for the viscous material, the stress
decreases with time. This behavior is illustrated in Figure 8,
where the maximum of the dimensionless stress difference
is plotted versus time. For comparability, two additional
curves are added in this figure: the maximum stress differ-
ences of the purely viscous material from the previous
section and of a purely elastic material. The stress state at
the beginning of the viscoelastic simulation corresponds to
the purely elastic response with σD= 2μεD (see Eqn (6)),
which is rate independent and therefore constant. The
viscous and viscoelastic curves monotonically decrease
with time and virtually coincide after a certain time period.

Figures 9, 10 illustrate the stress states for the same setup
as in Figures 7, 8 but for a lower Poisson’s ratio of
ν= 0.325, a common value given for elastic compressibility
of ice in literature (Greve and Blatter, 2009). An initial in-
crease with a subsequent monotonic decrease of the stress re-
sponse is observed for the viscoelastic material, as indicated
by the direction of the arrow in Figure 9. This behavior is also
confirmed by the temporal evolution of the maximum stres-
ses in Figure 10 for purely viscous and viscoelastic materials.
The short-term behavior for the viscoelastic material is close
to the elastic response. For longer time periods, the viscoelas-
tic response converges towards the viscous response. For
both materials, incompressible and compressible, the dimen-
sionless distance of the stress maximum to the ice front is
almost the same.

Bassis and others (2008) argued that the calving of ice
shelves is controlled by the first (most tensile) principal
stress. A final study therefore analyzes the influence of the
most important geometric and material parameters on the
maximum first principal stress in space and time σ

maxx;t
1 .

Reasonable limits of the parameter values for typical
Antarctic ice shelves are listed in Table 1. As the stress σzz
in the vertical direction and the shear stress σxz are negligibly
small at the top surface, the first principal stress

σ1 ¼ σxx þ σzz

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σxx � σzz

2

� �2
þ σ2

xz

r
; ð8Þ

is equal to the stress σxx in the flow direction. A graphical re-
presentation of σmaxx;t

1 is already given in Figure 10. Results in
Table 1 indicate that σmaxx;t

1 increases with growing elastic
material properties, Young’s modulus E and Poisson’s
ratio ν. Furthermore, the maximum principal stress depends
linearly on the geometric parameter H. The density ratio di,
which controls the extent of the freeboard, influences
σ
maxx;t
1 such that the maximum principal stress becomes

larger if di decreases (increasing freeboard). The distance of
the maximum principal stress to the ice front increases linear-
ly with the elastic parameters and is inversely correlated toH
and di. Increasing di due to the assumption of surrounding
freshwater hence leads to a decreasing of both, the
maximum stress and the distance of the respective location
from the calving front. This especially applies to calving
from floating glacier tongues into freshwater lakes (Trüssel

Fig. 6. Time evolution of the strain component εxx at the upper
surface for a 2-D viscous material model.

Fig. 5. Comparison of stress differences at the upper surface; solid
lines indicate the 2-D viscous material model and red dashed line
indicate the 1-D viscous beam for t ¼ 12:5 f .
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and others, 2013). The value and the position of σmaxx;t
1 , are

independent of the viscosity, which is the only material par-
ameter that affects the viscous flow. However, the viscosity
has an influence on the time period that is needed to reach
the maximum stress. This time period is also influenced by
the elastic properties (Young’s modulus E, Poisson’s ratio ν)
while the impact of the geometric quantities is negligible.

In order to show that differences in the stress distribution
obtained by the beam theory or the 2-D continuum ap-
proach, are independent of the uncertainty related to mater-
ial parameters, Figures 11a, b illustrate the changes due to
the variation of reasonable elastic material parameters for
ice. For a better comparison, the geometric parameters, the
thickness H ¼ 100 m, and the density ratio di= 0.9, are
identical to the reference parameters used before. At later
points in time, there is virtually no difference between the
viscous and viscoelastic response in Figures 8, 10.
Therefore, the solid and dashed lines in Figure 11 correspond
to those with the respective colors in Figure 4; in fact, the
blue ones fit t ¼ 1:25 f and the orange ones fit t ¼ 4:5 f . In
Figures 11a, b, the shaded domain is limited by the upper
bound with E ¼ 10 GPa and ν= 0.4, and the lower bound
with E ¼ 0:1 GPa and ν= 0.1. All other stress distributions,
related to reasonable variations of the elastic material para-
meters according to Table 1, are located within the shaded
area.

DISCUSSION
It is repeatedly suggested in literature to assume ice as incom-
pressible and to use a stress criterion for crack formation or
calving of small icebergs due to bending. The applicability
of such a criterion is checked by calculating the stress distri-
bution at the upper surface and its temporal evolution with a

2-D finite element model. The stresses are then evaluated for
a variety of different material parameters.

One assumption in this investigation is that temperature
and viscosity in the ice shelf are constant. A mean annual
surface temperature of− 5 to− 20°C indicates an ice viscos-
ity between 1014 and 1015 Pa s (Cuffey and Paterson, 2010).
Within this viscosity interval, Table 1 demonstrates the van-
ishing influence of the viscosity on the value of the maximum
tensile stress and its distance to the ice front. The viscosity
primarily influences the time interval needed to yield the
maximum stress. Further parameter studies, not shown
here, indicate that a nonlinear Glen-type viscosity also
results in decreasing stresses. The amount and the spatial dis-
tribution of the stresses are independent of changes in viscos-
ity. Therefore it is sufficient to assume a constant viscosity in
the presented context. This is also described by Vaughan and
others (2012), who stated that the temperature variation influ-
encing the ice viscosity appears to have little impact on the
magnitude of stresses at the top surface near the calving
front of an ice shelf.

The largest tensile stress is located on the upper surface for
all applied modeling approaches and material laws. The
range of the computed maximum stress values overlaps
with suggested stresses for crack nucleation (90–320 kPa),
see Vaughan (1993). Resulting stresses of the beam theory
approach show only small changes with respect to time
(Fig. 4) and the maximum stress values only differ from the
initial maximum by at most 9%. Starting with the same
initial stress value and considering the same time period,
the stresses monotonically decrease with time by more
than 56% for the incompressible viscous or viscoelastic ma-
terial computed by the 2-D continuum approach using finite
elements. A closer comparison of surface stresses in Figure 5
indicates that the beam theory is only able to sufficiently re-
present the stresses at early points in time. Statements about
stresses at later times require an approach including the

Fig. 7. Viscoelastic stress states for an incompressible material for
different times. The direction of the arrow indicates an increase in
time.

Fig. 9. Viscoelastic stress states for ν= 0.325 for different times. The
direction of the arrow indicates an increase in time.

Fig. 8. Maximum stress differences at the surface for incompressible
linear elastic, viscous and viscoelastic material versus time.

Fig. 10. Comparison of the maximum stress differences at the
surface for compressible linear elastic, viscous and viscoelastic
material versus time for ν= 0.325.
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spreading in flow direction. Figure 6 provides a possible
explanation for the stress decrease using a 2-D simulation.
Since the curves of the strain component εxx converges
within some distance to the ice front (Fig. 6), the strain
rates, as well as the stresses in the flow direction, decrease
as a result of the viscous material law. If εxx reaches more
than 1%, the stress response of the 2-D continuum model
increasingly differs from the one computed with the beam
theory. This is caused by the longitudinal flow, which
cannot be modeled using beam theory assumptions. The
stress relaxation for longer time periods was not noticed
in the first 2-D finite element analysis of ice shelves by
Fastook and Schmidt (1982). Their computational restric-
tions only allowed for limited time spans (26 d at most),
simple shape functions (Q1P0 elements), and a relatively
coarse grid. Hence, for this short-time interval the results
presented in Figure 5 confirm the misleading observation
of only small changes in the stress distribution, which
led Fastook and Schmidt (1982) to the assumption that
the time evolution does not need to be considered to
study crack formation and propagation. At later times,
either an other criterion must be applied or mechanisms
must be included that lead to an increasing stress. An
example of such a mechanism may be changes in the
geometry at the ice front, as suggested by O’Leary and
Christoffersen (2013).

In the following, the values that influence the stress
maximum and its position are discussed. The focus is on
the quantities, which lead to increasing stresses and thus
provide an explanation for calving. The freeboard is the
crucial parameter that considerably influences the formation

of a stress maximum at the surface due to the boundary dis-
turbance. This maximum is located within the range of 0.5–
1.0 times the thickness upstream of the ice front, an interval
commonly given in literature (for example, see Fastook and
Schmidt, 1982). Thereby, the stress maximum directly
depends on the size of the freeboard and increases linearly
with the thickness of the ice shelf. Twice the thickness
leads to a doubling of the maximum stress value, while the
distance of the associated position to the ice front is influ-
enced by circa 7%. As shown in Table 1, the ratio of the
densities di, which also controls the extent of the freeboard,
has the second largest influence on this stress.
Consequently, the study with the thickness H ¼ 200 m and
di= 0.9 as well as the study with H ¼ 100 m and di= 0.8
leads to similar stress values, as the freeboard is 20 m in
both cases. The stress value for di= 0.8 increases by 61%
in comparison with di= 0.9, given in the first line of
Table 1 and its position to the ice front increases by 25%.
The viscous beam theory accounts for the influence of free-
board through the magnitude of the applied bending
moment, but it cannot realistically reproduce the stress-free
boundary condition, particularly in the upper corner of the
ice front.

Many of the parameters of the 2-D viscoelastic model are
poorly constrained, and we therefore explore the sensitivity
of our results to variations in material properties. Young’s
modulus has a limited impact of <13% on the magnitude
of the maximum principal stress, as a softening only
implies a slight decrease of the stresses. A more significant in-
fluence of Young’s modulus is observed regarding the pos-
ition of the maximum stress by up to 27%, see Table 1.

Table 1. Magnitude, position and evaluation time of the maximal principal stress dependent on relevant parameter for a viscoelastic material

H[m] E[GPa] η½Pas� di= ρice/ρsw ν σ
maxx;t
1 ½Pa� ðx� L=HÞðσmaxx;t

1 Þ t[d]

100 1 1014 0.9 0.325 7.32 · 104 −0.67 20
100 0.1 1014 0.9 0.325 6.36 · 104 −0.49 177
100 10 1014 0.9 0.325 7.70 · 104 −0.83 2
100 1 5·1014 0.9 0.325 7.32 · 104 −0.67 100
100 1 1015 0.9 0.325 7.32 · 104 −0.67 213
100 1 1014 0.9 0.1 7.10 · 104 −0.62 40
100 1 1014 0.9 0.2 7.19 · 104 −0.64 30
100 1 1014 0.9 0.4 7.43 · 104 −0.71 12
200 1 1014 0.9 0.325 1.42 · 105 −0.62 20
300 1 1014 0.9 0.325 2.09 · 105 −0.59 20
100 1 1014 0.8 0.325 1.18 · 105 −0.84 20
100 1 1014 0.85 0.325 9.90 · 104 −0.77 20

Bold numbers mark deviations in the material parameters from the standard values used in this study.

Fig. 11. Shading indicates the stress variation due to elastic material parameter variations comparable with Table 1 for (a) t ¼ 1:25 f and
(b) t ¼ 4:5 f of the viscoelastic 2-D approach; solid and dashed lines correspond to the lines in Figure 4 (dashed: beam theory, solid:
viscoelastic 2-D continuum model).
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This indicates that Young’s modulus affects the size of a pos-
sible iceberg. In comparison with other parameters varied in
this study, Poisson’s ratio has only little influence on the mag-
nitude of the maximum tensile surface stress (<4%) and the
position to the ice front (<7%). However, the impact on
the temporal evolution of σmaxx;t

1 is remarkable. A Poisson’s
ratio of ν≈ 0.5 (incompressible) leads to monotonically de-
creasing surface stresses with time, which means that the
maximum stress is reached immediately at the beginning of
the simulation (see Fig. 8). A calving law based on in com-
pressible ice would therefore lead to essentially continuous
calving. Only compressible ice leads to stress evolutions
that result in maximum stresses after some finite period of
time. The time needed to reach the maximum first principal
stress in space and time is mostly influenced by the viscosity
and Young’s modulus, the two parameters defining the char-
acteristic time of a Maxwell model. More precisely, increas-
ing the viscosity leads to a longer evolution time of the
maximum stress while the correlation between Young’s
modulus and the evolution time is inversely proportional.
In the specific case of ν= 0.325, the maximum tensile
stress is reached after ∼20 d, a relatively short period of
time. Ice-shelf calving based on a critical stress criterion
seems unlikely during decreasing maximum principal stres-
ses. Therefore, the result tσmax ¼ 20 d can be seen as an indi-
cator for the most probable timespan of new crack initiation
at the surface. During this time period only small deforma-
tions occur in the flow direction. The beam theory, which
neglects horizontal spreading, leads to a similar maximum
stress for a very long period of time compared with the
overall stress maximum of the finite element simulation
with compressible viscous or viscoelastic material behavior
(see Figs 6, 10).

Figure 11 illustrates the effect of uncertainties in elastic
parameters on the stress distribution. Thereby, the shaded
areas for t ¼ 1:25 f (Fig. 11a) and t ¼ 4:5 f (Fig. 11b) are at
smaller stress values than the stress curves for the beam
theory. The decrease of the stresses for longer time periods
is thus not influenced by the uncertainties, since the decrease
appears for all applied material parameters. The stress curves
differ only slightly for different Poisson’s ratios in the case of
E ¼ 10 GPa. For smaller Young’s moduli at early times, the in-
fluence of Poisson’s ratio increases. Further simulations show
that the stresses for smaller density ratios or thicker ice shelves
are shifted to larger values (compare Table 1). However, the
stress decrease with time is also recognizable for changes in
thicknesses and density ratios. Moreover, for these results,
the viscosity has no influence on the stress states at the top
surface for the same considered points in time.

In conclusion, the application of a stress criterion under the
assumption of incompressibility implies that the nucleus for
the next calving process forms directly during the previous
calving event. Then, an ice shelf without surface cracks
should not be possible. However, if observations show that
some time passes between a calving event and the next
crack nucleation, the following cases are likely. The short-
term behavior is assumed to be compressible for ice consid-
ered as a brittle material during crack formation and propaga-
tion, see for example, discussions of Rist and others (1999) or
Schulson and Duval (2009). If ice is assumed to be incom-
pressible, only a time-dependent change in geometry or
boundary conditions at the ice front will lead to increasing
stresses and therefore to crack nucleation.

CONCLUSIONS

In a fundamental work on ice-shelf calving Reeh (1968)
expanded the linear elastic beam theory to a viscous material
setting. However, the beam theory can neither consider
the extension in flow direction nor accurately model the free-
board at the ice front. Therefore, the extension of the ice-shelf
model to a 2-D continuum is necessary to model the spread-
ing in flow direction and the consequent stress decrease with
time. The influence of different boundary conditions indi-
cates that the formation of the maximum tensile stress
within a certain distance to the ice front only appears in
the case of a stress-free upper part for the 2-D approach
using finite elements. The application of boundary condi-
tions associated with the beam theory approach leads to a
maximum stress directly at the ice front of the 2-D continuum
model. The boundary disturbance at the ice front hence dom-
inates the stress state at the surface in the vicinity of the ice
front. Thus, the thickness and the density ratio are especially
important for the maximum principal stress and its position.
This leads to the presumption that larger stress values can
be observed, if the thickness or freeboard changes due to
melting or freezing, which was not part of this study but
should be investigated in future works and has already
been studied for tidewater glaciers, see, for example,
O’Leary and Christoffersen (2013).

Viscoelasticity is important to model crack formation or
calving happening on short timescales. The instantaneous
elastic response is crucial to decide whether a crack is
stable or instable. On the other hand if a crack is stable
and therefore does not expand due to the instantaneously
existing elastic strain, the viscous stresses might lead to
crack propagation at later points in time. The development
of the maximum stress is regulated by Poisson’s ratio while
the time evolution of the stress is influenced by the viscosity
and Young’s modulus controlling the characteristic time of
the Maxwell model. In case of longer time periods than
in the presented work, the total strain may exceed 10%
and thus violates the assumption of small deformations and
a large deformation model must be considered. However,
in the present context, it is sufficient to analyze the stresses
for small strains, as the maximum stress response occurs in
a rather short time. Therefore, a restriction of the maximum
time tmax ¼ 12:5 f was reasonable.

The application of stress criteria is not only for crack ini-
tiation but rather for calving implies several problems. On
the one hand the stresses increase with the thickness, i.e.
thicker ice shelves are more prone to calving by bending
than thinner ice shelves. On the other hand the time evolu-
tion of the stress in an incompressible viscous or viscoelas-
tic fluid does not yield a stress maximum, as the tensile
stresses monotonically decrease over time. Hence, if a crit-
ical stress criterion was applied, the next calving event
would occur directly at the beginning of the considered
timespan (here t= 0). This might result in the collapse of
the whole ice shelf. We therefore conclude that a stress cri-
terion for discrete small calving is only applicable for a
compressible ice behavior or additional, uninvestigated,
time-dependent geometric evolution. Possibly the best cri-
terion is a self similarity criterion, which we are still
working on. If it is known that some stress distribution
was critical in the past and is reached again, the next
calving event will take place.
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