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Previously published sets of classification and old-new recognition memory data are reanalyzed
within the framework of an exemplar-based generalization model. The key assumption in the
model is that, whereas classification decisions are based on the similarity of a probe to exemplars
of a target category relative to exemplars of contrast categories, recognition decisions are based
on overall summed similarity of a probe to all exemplars. The summed-similarity decision rule
is shown to be consistent with a wide variety of recognition memory data obtained in classification
learning situations and may provide a unified approach to understanding relations between
categorization and recognition.

Recently, there has been an upsurge of interest among
categorization researchers in exploring relations between clas-
sification learning and old-new recognition memory. This
interest has been fueled by the exemplar view of category
representation, which holds that people base classification
decisions on similarity comparisons with stored exemplars
(Hintzman, 1986b; Medin & Schaffer, 1978; Nosofsky, 1986).
Recognition data provide a source of converging evidence
bearing on the nature of people's category representations.
Presumably, if individual exemplars are being stored in mem-
ory, the fact ought to be revealed by postacquisition recogni-
tion tests.

Indeed, a number of researchers have taken exemplar
models to task on grounds of certain dissociations between
classification learning and recognition memory, or patterns
of recognition data deemed to be inconsistent with the pre-
dictions of exemplar-only memory models. In virtually all
cases, however, there has been a failure to specify and test an
explicit decision rule by which exemplar memories are used
to make recognition judgments.

A natural decision rule is the one embodied in the memory
models of Gillund and Shiffrm (1984) and Hintzman (1986a),
namely, that recognition judgments are based on the summed
similarity (or activation) of a probe to all stored items. This
summed similarity gives a measure of overall familiarity, with
higher familiarity values leading to higher recognition proba-
bilities. Medin (1986) recently considered the implications of
a summed-similarity decision rule and suggested that it was
at least roughly consistent with a set of classification/recog-
nition data collected by Estes (1986b). The purpose of the
present article is to follow up on Medin's suggestion and to
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illustrate more formally, by way of application to other ex-
amples in the literature, that a summed-similarity decision
rule within the framework of an exemplar storage model may
account well for recognition data obtained in classification
learning situations and may help explain relations between
classification learning and recognition memory. The use of a
summed-similarity rule for interpreting typicality judgments
is also explored.

General Modeling Approach

The analyses of the categorization and recognition data are
conducted within the framework of the context model of
classification proposed by Medin and Schaffer (1978) and
generalized for application to continuous integral- and sepa-
rable-dimension stimuli by Nosofsky (1986, 1987). According
to the context model, the probability that Stimulus i is clas-
sified in Category J, P(RjlSi), is found by summing the
similarity of Stimulus i to all Exemplars j belonging to Cate-
gory J and then dividing by the summed similarity of Stimulus
i to all exemplars of all categories,
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where Nf represents the relative frequency with which Exem-
plar j was presented during training and where s^ represents
the similarity between Exemplars i and j (Estes, 1986a; No-
sofsky, 1988). Recognition judgments are assumed to be based
on the overall familiarity of a stimulus, F» measured by
summing the similarity of the stimulus to all exemplars of all
categories,

Fi = (2)

(Presumably, the subject sets some criterion c such that values
ofFi greater than c lead to old responses.) Note that, whereas
classification is assumed to be related to relative degree of
target-category to contrast-category similarity (Equation 1),
recognition is assumed to be related to overall summed sim-
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ilarity, independent of category assignment (Equation 2).
To apply these decision rules, a method is needed for

computing the s^ similarity values in Equations 1 and 2. The
method used throughout this article is based on the multidi-
mensional scaling approach, which assumes that similarity is
some decreasing function of distance in a psychological space.
Specifically, each exemplar is represented as a point in an n-
dimensional space, and the distance between Exemplars i and
j is computed using the (Minkowski) power model formula,

(3)" i j 2a '•*im

where xiin is the psychological value of Exemplar i on Dimen-
sion m. In accordance with most previous work (e.g., Garner,
1974; Shepard, 1964), a "city-block" metric (r = 1 in Equation
3) is used for computing distances among highly analyzable,
separable-dimension stimuli, and a Euclidean metric (r = 2)
for computing distances among integral-dimension stimuli.

The distances d$ are transformed to similarity measures
using an exponential decay function, namely,

which appears to describe accurately the relation between
similarity and psychological distance in classification learning
situations (Shepard, 1958, 1986, 1987). As noted by Nosofsky
(1984), the combination of a city-block metric and an expo-
nential transformation yields an interdimensional multiplic-
ative-similarity rule of the form proposed by Medin and
Schaffer (1978) in their original formulation of the context
model. The multiplicative rule has the property that interitem
similarity will be high only if the items are similar on all
component dimensions. Among other things, this aspect of
the exemplar model enables it to be context sensitive. The
idea is that a probe will tend to strongly activate only those
items in memory for which there is a high degree of match
between individual cues as well as contextual information
stored in the memory representation (see Medin & Reynolds,
1985, and Medin & Schaffer, 1978, for more extended dis-
cussions).

Plan of the Article

The main goal in this article is to illustrate that certain
qualitative patterns of recognition/classification data, which
previous investigators have interpreted as providing evidence
against exemplar-based models, are in fact consistent with the
present approach. To maintain focus on the main issues, I
apply only baseline versions of the model requiring a mini-
mum of parameter estimation. Limitations in the ability of
the baseline models to account for quantitative details of the
data sets are noted, and possible extensions are considered.
The quantitative tests should be interpreted with caution for
two reasons. First, the model is applied to averaged data, and
the parameters for individual subjects may be expected to
vary. Second, the psychological dimensions along which the
stimuli are organized may correspond only roughly to the
physical specifications provided by the experimenters.

Undoubtedly, people can avail themselves of a number of
alternative strategies in making recognition judgments, and
the intent in this article is not to argue that the summed-
similarity decision rule is the only one used. Tndeed, Gillund
and Shiffrin (1984) left open the possibility that, in addition
to using overall familiarity as a basis for recognition, one may
use search and retrieval strategies (e.g., Atkinson & Juola,
1974; Mandler, 1980; Tulving & Thomson, 1971). However,
the global-familiarity rule may be prevalent in classification
learning situations, where it is presumably difficult to gain
unique access to individual memory representations of similar
stimuli.

Application to Examples

Hayes-Roth and Hayes-Roth (1977): Correlations
Between Classification and Recognition

Hayes-Roth and Hayes-Roth (1977) collected classification
and recognition confidence ratings in a concept learning study
that used rule-described categories. Subjects learned to classify
descriptions of people into two clubs. The descriptions varied
along three relevant dimensions (age, education, and marital
status). There were four values per dimension (e.g., married,
single, widowed, and divorced for marital status), which
Hayes-Roth and Hayes-Roth labeled with the numbers 1-4.
The rules governing category membership were summarized
by Hayes-Roth and Hayes-Roth (1977) as follows:

If the number of Is (2s) exceeds the number of 2s (Is) in an
exemplar and there are no 4s, the exemplar is in Club 1 (2); if
the number of Is equals the number of 2s and there are no 4s,
the exemplar can be in either club, each with probability .5; if a
4 is present, the individual is in neither club. (The presence of
one or more 3s had no implication; i.e., those feature values
were irrelevant to Club 1-Club 2 discrimination.) (p. 326)

Hayes-Roth and Hayes-Roth varied the frequency with which
individual exemplars were presented during classification
training. The actual exemplars, their club assignments, and
their frequencies of presentation are summarized in Hayes-
Roth and Hayes-Roth (1977, Table 1).

Postacquisition classification and recognition confidence
ratings collected by Hayes-Roth and Hayes-Roth (1977) are
shown in Table 1. The higher the recognition rating, the more
confident a subject was that the stimulus was old; the higher
the classification rating, the more confident a subject was that
the stimulus belonged to Club 2. A main result of interest was
that the category prototypes (111 and 222), which were never
presented during training, received the highest classification
ratings, whereas certain high-frequency exemplars (e.g., 112)
received the highest recognition ratings. In an analysis of
Hayes-Roth and Hayes-Roth's data, Anderson, Kline, and
Beasley (1979) commented:

A difficulty for the Medin and Schaffer version of the store-
instances-only model was the low correlation found by Hayes-
Roth and Hayes-Roth between recognition and classification.
They found that the prototypes received the highest classification
ratings but the frequently presented nonprototypes received the
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Table 1
Mean Z-Transformed Recognition and Classification Ratings for Individual Exemplars, With Context Model Predictions

Test
exemplar

112C

1211'
211 '
113
131
311
133
313
331
22 l f

212C

122"
223
232
322
233
323
332
132C

32 P
213 '
231
123
312
111
222
333
444

Recognition*
rating

3.27
3.85
3.09

-0.06
0.88
0.18

-3 .45
-2.29
-2.10

1.73
1.07
2.17

-0.91
0.01
0.10

-1.69
-2.22
-1.74

1.13
1.58
1.30

-0.61
-1.23
-0.95

0.49
1.50

-4.19
-0.92

Summed
similarity

14.891
14.891
14.891
5.032
5.032
5.032
3.723
3.723
3.723

14.891
14.891
14.891
5.032
5.032
5.032
3.723
3.723
3.723

13.860
13.860
13,860
4.258
4.258
4.258
5.474
5.474
1.546
1.242

Classificationb

rating

-2.43
-2.46
-2.46
-2.57
-2.44
-2.44
-2.09
-2.09
-2.22

2.12
2.32
2.22
2.08
1.97
2.11
1.94
1.78
1.95
0.00
0.02

-0.09
0.03

-0.09
0.10

-2.82
2.39
1.78
1.32

Predicted category 2
response probability

.220

.220

.220

.231

.231

.231

.315

.315

.315

.780

.780

.780

.769

.769

.769

.685

.685

.685

.500

.500

.500

.500

.500

.500

.135

.865

.500

.500
Note. Adapted from "Concept Learning and the Recognition and Classification of Exemplars" by B. Hayes-Roth and F Hayes-Roth Journal
of Verbal Learning and Verbal Behavior, 1977,16, Table 2, p. 329. Copyright 1977 by Academic Press. Adapted by permission.
a Original scale: -5 = new/most confident,..., +5 = old/most confident. b Original scale: - 5 = Club I/most confident,..., +5 = Club 2/most
confident. c High-frequency exemplars.

highest recognition ratings. This suggests that information is
acquired both about the instances and about their more abstract
characteristics, (p. 314)

Context model analysis. Contrary to Anderson et al.'s
(1979) assertion, however, a single-parameter version of the
context model can account simultaneously for the classifica-
tion and recognition data reported by Hayes-Roth and Hayes-
Roth (1977). I assume for simplicity that the distance between
Exemplars i and j mismatching on m dimensions is given by
d\s = m£>. A computer search was conducted to find a single
value of D that yielded good ordinal predictions for both the
classification and recognition ratings. With D = 2.12, the
Spearman rank-order correlation between the Category 2
response probabilities predicted by the context model and the
observed Category 2 confidence ratings is .95 and the Spear-
man rank-order correlation between summed-similarity val-
ues (Fi in Equation 2) and observed recognition ratings is .94.
The predicted values are shown with the observed values in
Table 1. The model predicts correctly that the prototypes have
the most extreme classification ratings and that the high-
frequency exemplars have the highest recognition ratings.
Although the overall summed similarity for the prototypes is
not as large as for the high-frequency exemplars, the similarity
of the prototypes to members of their own category relative
to members of the contrast category is larger than for the
high-frequency exemplars. Thus, the exemplar model ac-

counts for the dissociation between classification and recog-
nition ratings observed in Hayes-Roth and Hayes-Roth's
study.

Limitations and extensions. The analyses of Hayes-Roth
and Hayes-Roth's (1977) data assumed only an ordinal rela-
tion between predicted classification probabilities and ob-
served ratings and between summed-similarity and recogni-
tion ratings. More quantitative analyses would require, for
example, the specification of precise functional relations be-
tween classification probabilities and ratings, an issue outside
the focus of the present article. An evident shortcoming of
the single-parameter model, however, is that Exemplar 444
received a much higher recognition rating than predicted. In
the category structure used by Hayes-Roth and Hayes-Roth,
Feature 4 on any dimension was a sufficient feature in the
sense that it signaled membership in neither club regardless
of the values on the other dimensions. Possibly, a value-
specific form of selective attention may have arisen in which
subjects stored in memory only partial representations of
exemplars containing Feature 4. One way to describe such a
process in terms of the model would be to relax the assump-
tion of the constant mismatch-parameter D. The role of
selective attention in modifying similarity relations among
exemplars has been discussed extensively in previous work
(Medin & Edelson, 1988; Medin & Schaffer, 1978; Nosofsky,
1986).
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Omohundro (1981): Recognition, Classification, and
Category Size.

Omohundro (1981, Experiment 1) conducted a classifica-
tion learning study using dot patterns (with connecting lines)
that were constructed by distorting prototypes. Subjects
learned to classify the distortions into three categories of size
4, 8, and 12. Following training, subjects were given a series
of forced-choice recognition memory tests. On each trial
subjects were presented with an old exemplar and two foils.
The foils were equidistant from the old exemplar, but one
was a low distortion of the category prototype and the other
was a high distortion. Omohundro hypothesized that if a
category prototype had been stored in memory during learn-
ing, subjects should tend to err on the low-distortion foils
rather than on the high-distortion foils. Furthermore, if sub-
jects become increasingly likely to store a prototype as cate-
gory size increases (Homa, Sterling, & Trepel, 1981), ability
to discriminate between the old exemplars and low-distortion
foils should decrease with category size. Both predictions were
confirmed.

However, these patterns are also predicted by exemplar-
only memory models that assume that recognition judgments
are based on overall summed similarity. A rough geometric
analogy to Omohundro's (1981) conditions is shown in Figure
1. There are four exemplars positioned on the solid circle that
have been generated from a central prototype. For each
exemplar, there is an equidistant low-distortion foil and high-
distortion foil. The low-distortion foils lie on the inner circle
and the high-distortion foils on the outer circle. Although the
foils are equidistant from their parent exemplar, it can be seen
that the low-distortion foils are more similar overall to the
remaining exemplars of the category than are the high-distor-
tion foils. Thus, summed similarity would be greater for the
low-distortion foils, which may explain Omohundro's main
result.

Context model analysis. I conducted computer simula-
tions to corroborate this interpretation. Three category pro-
totypes were generated by selecting random numbers in the
interval (0, b) for each of 10 dimensions. Exemplars were
generated by adding a random number in the interval (—w,
w) to each dimension of each prototype vector. (Note that
whereas b primarily determines between-category dissimilar-
ity, w primarily determines within-category dissimilarity.)
There were 4, 8, and 12 exemplars generated for Categories

P » Prototype

• * Old Training Exemplars

L • Low-Distortion Foils

H • High-Distortion Foils

Figure 1. Geometric analogy to Omohundro's (1981) experimental
conditions.

A, B, and C, respectively. A low-distortion foil of each ex-
emplar was generated by adjusting each dimension value a
magnitude adj in the direction of the prototype value. A high-
distortion foil was generated by adjusting each dimension
value a magnitude adj in the opposite direction. Similarity
between exemplars was computed using a Euclidean metric
and exponential decay similarity function. The following
decision rule was used to predict the probability that probe i
would be selected from among probes i, j , and k as the old
exemplar:

j , k,) =
F, + Fi + Fk

(5)

where Fi is computed using the summed-similarity rule (Equa-
tion 2).

Computer simulations were conducted to find the values
of b, w, and adj that minimized the chi-square fit between
predicted and observed recognition responses. To introduce
additional constraints, the model was also used to simulta-
neously predict correct classification responses for the old
exemplars as a function of category size. The predicted and
observed recognition and classification probabilities are re-
ported in Table 2. The best fitting parameters were h = 2.8,
w = 1.2, and adj = A. The resulting chi-square of 3.65 (df=
6, N - 864) is remarkably small and not sufficient to reject
even the present baseline model (p > .50).

The exemplar model predicts correctly that low-distortion
foils will be called "old" substantially more than high-distor-
tion foils and also that old-new discrimination will decrease
as category size increases. Apparently, low-distortion foils tend
to be at least as similar to other exemplars as individual
exemplars are to one another (e.g., see Figure 1). With in-
creases in category size, the relative contribution that an
exemplar's self-similarity makes to overall summed similarity
tends to be diluted, so old-new discrimination falters. The
exemplar model also predicts the commonly reported finding
of increased classification accuracy with increases in category
size (as noted previously by Busemeyer, Dewey, & Medin,
1984, and Hintzman, 1986b). Most impressive, the model
predicts the effects for classification and recognition simulta-
neously in quantitative detail.

Limitations and extensions. The model fits shown in Ta-
ble 2 are for the delayed condition reported by Omohundro
(1981), in which there was a 1-week interval between initial
classification learning and subsequent testing. Omohundro
also reported data from an immediate testing condition. The
pattern of data was the same as in the delayed condition, but
the magnitude of the category size effect for recognition was
more extreme. Subjects recognized old exemplars from the
Size 4 category, with probability approximately .7, and from
the Size 8 and Size 12 categories, with probability approxi-
mately .4. To begin to predict an effect of this magnitude in
terms of the summed-similarity decision rule required boost-
ing the value of the between-category dissimilarity parameter
b. The large value of by however, then led to predictions of
nearly perfect classification, which was not observed by Omo-
hundro. Possibly, subjects were able to make use of a search
and retrieval strategy in recognizing exemplars from the Size
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Table 2
Predicted and Observed Recognition and Classification
Probabilities as a Function of Category Size in Omohundro's
(1981) Experiment 1 (Delayed Condition)

Probe

Old
Observed
Predicted

Low foil
Observed
Predicted

High foil
Observed
Predicted

Old
Observed
Predicted

4
(N=72)

Category size

8
(N= 144)

12
(TV =216)

Old recognition probability

.58

.51

.28

.32

.14

.17

.46

.47

.36

.36

.18

.17

.43

.45

.39

.38

.18

.16

Correct classification probability

.85

.81
.87
.86

.90

.90
Note. N = number of observations on which each probability is based
(number of probes per category [4,8, or 12] times number of subjects
[ 18]). Observed values in each cell were estimated from Omohundro's
(1981) Figure 2. Predicted values were based on 1,000 simulated
experiments.

4 category in the immediate condition. With the addition of
a single retrieval parameter, the exemplar model is able to
achieve accurate quantitative predictions of recognition and
classification in Omohundro's immediate condition.

Metcalfe and Fisher (1986): Classification and
Recognition Contingencies

Metcalfe and Fisher (1986) conducted classification learn-
ing and recognition memory experiments using dot patterns
constructed from prototypes. The central hypothesis ad-
vanced in their study was that classification and recognition
judgments may be mediated by separate memory systems, an
implicit or semantic system for classification, and an explicit
or episodic system for recognition. They reported experimen-
tal and statistical dissociations between classification and
recognition that they argued were problematic for single-
system exemplar memory models.

In an initial study phase (Experiment 2), subjects were
presented with three lists of dot patterns (A, B, and C), with
each list containing six patterns that were small distortions of
a category prototype. Following study, subjects were tested in
a transfer phase that included presentation of the category
prototype, old small distortions, new small distortions, and
large distortions. The main experimental manipulation was
that one group of subjects was given classification learning
instructions prior to study, whereas a second group was given
recognition memory instructions. Subjects given classification
instructions performed better on classification transfer tests
than subjects given recognition instructions; however, prior
instructions had no effect on recognition performance. These

results seem consistent with exemplar memory models. For
subjects given recognition instructions, there is no reason to
store associated category labels with the presented exemplars,
so it is not surprising that subjects performed relatively poorly
on the subsequent classification test. By contrast, if subjects
store individual exemplars in memory during classification
learning, then it is not surprising that recognition performance
was just as good for the group that was given classification
instructions as for the group that was given recognition in-
structions.

The main focus of Metcalfe and Fisher's (1986) research
was to study contingency relations between classification and
recognition. They argued:

Models that propose that classification is based on memory for
specific instances suggest that there should be a relation between
recognition of items as old and classification of the items, since
both judgments presumably use the same information.... Sub-
jects should be better at classifying items they think are old than
those they think are new, because on average the "believe old"
items are more likely to be in or like items in memory than the
"believe new" items. (Metcalfe & Fisher, 1986, p. 164)

To test this idea, Metcalfe and Fisher (1986, Experiment 2)
calculated difference scores between the probability of correct
classifications given old recognition responses and probability
of correct classifications given new recognition responses,
Pfcorrect I respond old) - /^(correct I respond new), separately
for old and new exemplars. Although these difference scores
turned out to be slightly positive, they generally did not reach
statistical significance, so Metcalfe and Fisher argued that the
results were problematic for single-system exemplar memory
models.

Medin (1986) recently questioned Metcalfe and Fisher's
(1986) claim about the predictions of exemplar models and
suggested that any of a wide variety of contingency relations
may be observed, depending on experimental conditions. For
example, consider a probe that is highly similar to exemplars
from two categories. Because its overall summed similarity
would be large, there would be a high probability of calling
the probe "old"; however, because both categories would be
competing for the probe, classification accuracy would be
relatively low. Likewise, consider a probe that is located in an
isolated portion of the stimulus space but is still far more
similar (in a relative sense) to the exemplars of the target
category than to the exemplars of the contrast category. In
this case, classification accuracy would be high, but recogni-
tion probability would be low.

Context model analysis. Although conditions can be ar-
ranged to reverse the classification/recognition contingency
hypothesized by Metcalfe and Fisher (1986), the question
remains as to whether or not such a contingency would be
expected under their particular experimental conditions. To
explore this issue, I conducted computer simulations intended
to mimic their experiment. Three category prototypes were
generated by selecting random numbers in the interval (0, b)
for each of 10 dimensions. Small distortions were generated
by adding random numbers in the interval (—w, w) to each
individual dimension of each prototype vector. Large distor-
tions were generated by adding random numbers in the
interval (-L, L) to each dimension of each prototype vector.
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Similarity between exemplars was computed using a Euclid-
ean distance metric and exponential decay similarity function.
For simplicity, it was assumed that recognition probability for
a probe was linearly related to its familiarity, P(Ri) = aF-, + c.

As a preliminary step, simulations were conducted to find
values of the model parameters that yielded good quantitative
fits to the overall levels of recognition and classification
performance observed in Metcalfe and Fisher's (1986) study.
Next, 10,000 simulated experiments were conducted. On each
simulation, theoretical classification and recognition proba-
bilities were computed separately for an old probe and a new
probe, and classification and recognition responses were sim-
ulated in accordance with these probabilities. In particular,
two random numbers (ri and r2) in the interval (0, 1) were
selected. Let P(C) and P(R) denote the theoretical predictions
of correct classification and of old recognition responses,
respectively. A correct classification response was selected if
r! < P(C), and an old recognition response was selected if r2

Table 3
Predicted and Observed Recognition and Classification
Probabilities for Metcalfe and Fisher's (1986) Experiment 2
(Classification Instructions Condition)

The resulting contingency matrixes revealed no relation
between correct classification and old recognition responses.
The values of P{correct I respond old) - i^correctl respond
new) were -.004 for old probes and -.013 for new probes.
Apparently, exemplar memory models do not necessarily
predict strong positive contingencies between classification
and recognition in the usual prototype-distortion paradigms.

Limitations and extensions. The overall levels of pre-
dicted and observed classification and recognition probabili-
ties are shown in Table 3. The best fitting parameters were b
= 1.45, w = 0.50, L = 1.05, a = .16, and c = 0, with a
resulting chi-square of 13.8 (df= 3, N = 4,116, p < .01). The
predictions are in the ballpark of the observed data, but the
model is rejected quantitatively. Its main shortcoming is that
it fails to predict the magnitude of the prototype enhancement
effect. (Note, however, that the exemplar model predicts
correctly that the nonpresented prototypes have the highest
recognition probabilities among the four types of probes.)
One possible line of extension is to introduce assumptions
about memory distortion into the modeling (e.g., Hintzman,
1986b). Presumably, people's memory representations of the
exemplars are not veridical, but subject to effects of random
noise. Although any given exemplar is highly similar to itself,
the prototype tends to be at least fairly similar to many items.
With increases in memory noise, the redundancy afforded the
prototype should give it an advantage. Another problem that
needs investigation is to explain why Metcalfe and Fisher
(1986) actually observed a statistically significant positive
contingency between correct classification and correct recog-
nition for old probes in their recognition instructions condi-
tion. A number of hidden variables could produce such a
contingency (e.g., subject and trial selection effects), but why
is it observed in some experimental conditions and not in
others?

Bourne (1982); Classification and Typicality

The final reanalysis in this article considers relations be-
tween classification and typicality judgments rather than old-
new recognition. However, the theme parallels the one estab-

Probe
Prototype

Observed
Predicted

Old distortion
Observed
Predicted

New small distortion
Observed
Predicted

New large distortion
Observed
Predicted

"Old"
recognition

.73

.66

.63

.62

.49

.51

.28

.27

Correct
classification

.65

.60

.62

.64

.57

.56

.39

.49

TV

147

882

882

147

Note. N = number of observations on which each probability is based
(number of subjects [49] times number of probes per category [1 or
6] times number of categories [3]). Observed values in each cell were
estimated from Metcalfe and Fisher's (1986) Figure 2. Predicted
values were based on 1,000 simulated experiments.

lished previously for recognition. I reanalyze an illustrative
data set published by Bourne (1982) and suggest that under
his experimental conditions, the degree to which a probe was
judged as being typical of a target category may have been
based on the summed similarity of the probe to all exemplars
of the target category. Classification, on the other hand, was
based on relative degree of target-category to contrast-category
similarity.

In Bourne's (1982) study, subjects learned to classify stimuli
as either positive or negative instances of a logically defined
concept. The stimuli were geometric forms varying along four
dimensions (shape, color, size, and number) with three values
per dimension. The concept was defined in terms of single
values on two relevant dimensions, and subjects were in-
formed which dimensions were relevant. With x denoting the
critical value on Dimension 1 and y the critical value on
Dimension 2, then xy and xy (stimuli with exactly one critical
value) were always positive instances of the concept, xy (stim-
uli with neither critical value) were always negative instances
of the concept, and xy (stimuli with both critical values) were
sometimes positive and sometimes negative. Across five con-
ditions, the probabilities with which xys were assigned as
positive instances were .0, .25, .50, .75, and 1.00. Given some
additional experimental constraints described by Bourne
(1982, p. 5), the basic category structures across the five
conditions can be schematized as shown in Table 4. In the
table, a value of 1 on either dimension is a critical value,
whereas values of 2 or 3 denote the other values on the
relevant dimensions.

Following concept-identification training, subjects were
given various postacquisition tests. The tests I consider here
are the pairwise typicality comparisons and the speeded clas-
sifications. In the typicality comparisons, subjects were given
pairs of stimuli and were asked to choose the better example
of the concept in each pair. The data obtained by Bourne
(1982) in this test are reported in Table 5. Each row of the
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Table 4
Relative Presentation Frequencies for Exemplars Used in
Bourne's (1982) Concept-Learning Experiment in Each
Condition (p)

Exemplar

12
13
21
31
22
23
32
33
11

Positive concept

2
2
2
2
0
0
0
0
4p

Negative concept

0
0
0
0
1
1
1
1
4-4/7

Note. Conditions are denoted by p, the probability with which "11"
exemplars were assigned as members of the positive concept. Across
five conditions, the values of p were .00, .25, .50, .75, and 1.00. So,
for example, in the;? = .25 condition, "11" exemplars occurred with
relative frequency equal to 1 in the positive concept and with relative
frequency equal to 3 in the negative concept.

table gives the probability with which the first member in
each pair was chosen as a better example than the second
member. For example, xy was chosen as a better example
than xy (or xy) with probability .27 in the p = .0 condition,
.41 in the p = ,25 condition, and so forth. There is an
important crossover effect in row 1 of the typicality pair-
comparison matrix. For values ofp < .5, xy and xy are judged
more typical than xy, but the reverse is observed for values of
p > .5. Bourne reported that in the final two blocks of concept
acquisition, xy and xy were classified as members of the
positive concept with nearly 100% accuracy in all conditions,
whereas in the p = .50 and p = .75 conditions, xy were
classified as members of the positive concept with probabili-
ties of .59 and .79, respectively. Note, therefore, that there
were conditions in which xy were judged as more typical of
the positive concept than were xy and xy yet were classified
by subjects into the positive concept with lower probability

Table 5
Predicted and Observed Probabilities With Which the First
Member of Each Pair Was Chosen as the Better Example of
the Concept in Bourne's (1982) Experiment

Pair p

xy - xy(xy)
Observed
Predicted

xy- xy
Observed
Predicted

xy- xy
Observed
Predicted

xpixy) - xy
Observed
Predicted

= .00

.27

.21

.74

.65

.51

.50

.93

.87

p=25

.41

.38

.87

.84

.55

.50

.95

.90

Condition

/> = .50 p

.53

.58

.97

.94

.51

.50

.99

.92

= .75

.71

.77

1.00
.98

.46

.50

.96

.93

p=\.00

.89

.88

1.00
.99

.48

.50

.89

.94

Ar

192

96

96

192

than were xy and xy. The actual probabilities with which xy
were classified as members of the positive concept in a post-
acquisition speeded classification test are shown in Table 6.

Context model analysis. I interpret the typicality and clas-
sification data in terms of the context model as follows. The
typicality strength for a given probe is found by summing the
similarity of the probe to all exemplars of the target category.
Taking 11, 12, and 22 as representative instances of xy, xy,
and xy, respectively, then the typicality strength for each
probe in each p condition is given by

(6)

(7)

(8)

These equations assume that mismatches between exemplars
on critical features (i.e., 1-2 and 1-3) contribute distance D,
and mismatches on noncritical features (i.e., 2-3) contribute
distance D'. The probability that probe a is chosen as a better
example of the concept than probe b in each p condition is
then given by the logistic transformation,

PP(a, b) =
1

exp\-c[Tp(a) ~
(9)

Note. N = number of observations on which each probability is based
(number of subjects per condition [24] times number of probe-pair
tests per subject [4 or 8]).

where c is a freely estimated scale parameter. The minimum
chi-square parameters were D = 1.344, Dr - 0.702, and c -
1.14. The predicted probabilities are shown with the observed
probabilities in Table 5. Although the model is rejected quan-
titatively, x2(17, N= 2,880) = 60.6, p < .01, by conventional
criteria it performs remarkably well. The exemplar model
accounts for 96.1% of the variance in the pair-comparison
matrix and captures some important qualitative trends, most
notably, the crossover effect in row 1. The fit of the exemplar
model (Equation I) to Bourne's (1982) classification data is
shown in Table 6, and it is impressive, x2(3, N - 480) = 1.27,
p > .50. (The chi-square fit was calculated using the data from
only the p = .00 to p = .75 conditions, because expected and
observed frequencies for incorrect responses in the p — 1.0
condition were less than five. There is a corresponding loss of
one degree of freedom from the data.) The fit to the classifi-
cation data required estimation of only a single distance
parameter (D — 2.868). In summary, the typicality and clas-
sification data reported by Bourne are well characterized by
assuming that typicality judgments are governed by summed
similarity of a probe to all exemplars of the target category
and that classification judgments are governed by relative
degree of target-category to contrast-category similarity.

Limitations and extensions. The main quantitative short-
coming of the model as applied to the typicality data is that
it underestimates preference for xy versus xy in the p = .50
condition. I offer no speculation about the basis of subjects'
extreme preference for xy in this condition. Perhaps more
significant, estimates of the distance parameter D are discrep-
ant across the typicality and classification conditions. On the
other hand, stimulus conditions were not invariant, so param-
eter invariance might not be expected.
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Table 6
Predicted and Observed Probabilities With Which xy
Instances Were Called Positive in Bourne's (1982) Speeded
Classification Test

Classification
probability p

Observed
Predicted

- .00 i

.10

.10

? = .25

.31

.33

Condition

p = .50 p

.57

.55

= .75

.81

.77

p= 1.00

.97
1.00

TV

120

Note, N = number of observations on which each probability is based
(number of subjects per condition [24] times number of xy tests [5]).

Summary and Discussion

The main purpose of this article was to illustrate an exem-
plar-based approach to interpreting old-new recognition
memory data obtained in classification learning situations.
The key assumption of the approach is that, whereas classifi-
cation is determined by relative degree of target-category to
contrast-category similarity, recognition may be determined
by overall summed similarity of a probe to all exemplars
stored in memory. Thus, classification and recognition may
often be based on common representational substrates, but
different decision rules may underlie performance in each
task. The model was shown to be consistent with the following
qualitative patterns reported in the literature: (a) low correla-
tions between recognition and classification, (b) lack of posi-
tive contingencies between correct classification and old rec-
ognition responses, (c) high false-alarm rates for nonpresented
prototypes and foils that are low distortions of a prototype,
(d) faltering old-new discrimination with increases in category
size, and (e) dissociations between classification and typicality
judgments. These demonstrations are important because pre-
vious investigators have interpreted the patterns as providing
evidence against exemplar-only memory models. Quantita-
tive tests reported in this article revealed some striking success
in using the model to account for detailed relations between
classification and recognition but also some limitations that
point out directions for future work and extensions.

A question that may arise concerns the utility of the
summed-similarity exemplar approach vis-a-vis central-tend-
ency prototype models (as formalized, e.g., by Reed, 1972).
In the prototype model, classification of a probe is based on
its similarity to the central tendency of the category exemplars.
The central tendency is computed, of course, by summing
information over the category exemplars. However, the
summed-similarity exemplar model is not simply a disguised
prototype model. For example, when exemplar information
is summed to form a prototype, information is lost concerning
correlated values along individual component dimensions
(e.g., Ashby & Gott, 1988; Medin & Schaffer, 1978; Nosofsky,
1986). This point is clearly illustrated in the Hayes-Roth and
Hayes-Roth (1977) data set considered earlier in this article.
People had higher recognition confidence for high-frequency
exemplars such as 112, 121, and 211 than for the nonpre-
sented prototype (111), a trend that was correctly predicted
by the exemplar model. But had subjects stored only a pro-
totype, recognition confidence should have been highest for

the prototype. Because the relation between similarity and
psychological distance is highly nonlinear (Medin & Schaffer,
1978; Nosofsky, 1984; Shepard, 1958, 1987), computing the
summed similarity of a probe to individual exemplars can
lead to dramatically different predictions of classification and
recognition than computing the similarity between a probe
and the category central tendency.
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