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Abstract
This paper is concerned with the problem of the guaranteedH∞ performance state
estimation for static neural networks with interval time-varying delay. Based on a
modified Lyapunov-Krasovskii functional and the linear matrix inequality technique, a
novel delay-dependent criterion is presented such that the error system is globally
asymptotically stable with guaranteedH∞ performance. In order to obtain less
conservative results, Wirtinger’s integral inequality and reciprocally convex approach
are employed. The estimator gain matrix can be achieved by solving the LMIs.
Numerical examples are provided to demonstrate the effectiveness of the proposed
method.
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1 Introduction
Neural networks can be modeled either as a static neural network model or as a local field
neural network model according to the modeling approaches [, ]. The typical static neu-
ral networks are the recurrent back-propagation networks and the projection networks.
The Hopfield neural network is a typical example of the local field neural networks. The
two types of neural networks have attained broad applications in knowledge acquisition,
combinatorial optimization, pattern recognition, and other areas []. But these two types
of neural networks are not equivalent in general. Static neural networks can be transferred
into local field neural networks only under some preconditions. However, the precondi-
tions are usually not satisfied. Hence, it is necessary to study static neural networks.

In practical implementation of neural networks, time delays are inevitably encountered
and may lead to instability or significantly deteriorated performances []. Therefore, the
dynamics of delayed systems which include delayed neural networks has received con-
siderable attention during the past years and many results have been achieved [–]. As
is well known, the Lyapunov-Krasovskii functional method is the most commonly used
method in the investigation of dynamics of the delayed neural networks. The conservative-
ness of this approach mainly lies in two aspects: the construction of Lyapunov-Krasovskii
functional and the estimation of its time-derivative. In order to get less conservative re-
sults, a variety of methods were proposed. First of all, several types of Lyapunov-Krasovskii
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functional were presented such as an augmented Lyapunov-Krasovskii functional []
and a delay-decomposing Lyapunov-Krasovskii functional []. Second, novel integral in-
equalities were proposed to obtain a tighter upper bound of the integrals occurring in
the time-derivative of the Lyapunov-Krasovskii functional. Wirtinger’s integral inequal-
ity [], the free-matrix-based integral inequality [], the integral inequality including a
double integral [] were typical examples of these integral inequalities.

In a practical situation, it is impossible to completely acquire the state information of
all neurons in neural networks because of their complicated structure. So it is worth to
investigate the state estimation of neural networks. Recently, some results on the state
estimation of neural networks have been obtained [–]. In addition, in analog VLSI
implementations of neural networks, uncertainties, which can be modeled as an energy-
bounded input noise, should be taken into account because of the tolerances of the utilized
electronic elements. Therefore, it is of practical significance to study the H∞ state esti-
mation of the delayed neural networks. Some significant results on this issue have been
reported by some researchers [–]. For instance, in [], the state estimation prob-
lem of the guaranteed H∞ performance of static neural networks was discussed. In [],
based on the reciprocally convex combination technique and a double-integral inequality,
a delay-dependent condition was derived such that the error system was globally expo-
nentially stable and a prescribed H∞ performance was guaranteed. In [], further im-
proved results were proposed by using zero equalities and a reciprocally convex approach
[].

In the above mentioned results [–], the lower bound of time-varying delay was
always assumed to be . However, in the real world, the time-varying delay may be an in-
terval delay, which means that the lower bound of the delay is not restricted to be . In
this case, the criteria in [–] guaranteeing the H∞ performance of the state estimation
cannot be applied because they did not consider the information of the lower bound of the
delay. In [], by constructing an augmented Lyapunov-Krasovskii functional, the guar-
anteed H∞ performance state estimation problem of static neural networks with interval
time-varying delay was discussed. Slack variables were introduced in order to derive less
conservative results, but the computational burden was increased at the same time [].
Thus, there remains room to improve the results reported in [], which is one of the
motivations of this paper.

In this paper, the problem of an H∞ state estimation for static neural networks with
interval time-varying delay is investigated. The activation function is assumed to satisfy
a sector-bounded condition. On one hand, a modified Lyapunov-Krasovskii functional is
constructed which takes information of the lower bound of the time-varying delay into
account. Compared with the Lyapunov-Krasovskii functional in [], the one proposed
in this paper is simple, since some terms such as V(t) in [] are removed. On the other
hand, Wirtinger’s integral inequality, which can provide a tighter upper bound than the
ones derived based on Jensen’s inequality, is employed to deal with the integral appear-
ing in the derivative. Based on the constructed Lyapunov-Krasovskii functional and the
new integral inequality, an improved delay-dependent criterion is derived such that the
resulting error system is globally asymptotically stable with guaranteed H∞ performance.
Compared with existing relevant conclusions, the criterion in this paper has less conser-
vativeness as well as a lower computational burden. In addition, when the lower bound of
the time-varying delay is , a new delay-dependent H∞ state estimation condition is also



Shu and Liu Journal of Inequalities and Applications  (2016) 2016:48 Page 3 of 16

obtained, which can provide a better performance than the existing results. Simulation
results are provided to demonstrate the effectiveness of the presented method.

Notations The notations are quite standard. Throughout this paper, Rn and Rn×m denote
respectively, the n-dimensional Euclidean space and the set of all n × m real matrices.
diag(·) denotes the diagonal matrix. For real symmetric matrices X and Y , the notations
X ≥ Y (respectively, X > Y ) means that the matrix X – Y is a positive semi-definite (re-
spectively, positive definite). The symbol ∗ within a matrix represents the symmetric term
of the matrix.

2 Problem description and preliminaries
In this paper, the following delayed static neural network subject to noise disturbance was
considered:

ẋ(t) = –Ax(t) + f
(
Wx

(
t – h(t)

)
+ J

)
+ Bw(t),

y(t) = Cx(t) + Dx
(
t – h(t)

)
+ Bw(t),

z(t) = Hx(t),

x(t) = ψ(t), t ∈ [–h, ],

()

where x(t) = [x(t), x(t), . . . , xn(t)]T ∈ Rn is the state vector of the neural network asso-
ciated with n neurons, y(t) ∈ Rm is the network output measurement, z(t) ∈ Rp, to be
estimated, is a linear combination of the states, w(t) ∈ Rq is the noise input belong-
ing to L[,∞), A = diag{a, a, . . . , an} >  describes the rate with which the ith neu-
ron will reset its potential to the resting state in isolation when disconnected from the
networks and external inputs, W = [wij]n×n is the delayed connection weight matrix,
B, B, C, D, and H are real known constant matrices with appropriate dimensions.
f (x(t)) = [f(x(t)), f(x(t)), . . . , fn(xn(t))]T denotes the continuous activation function, J =
[J, J, . . . , Jn]T is the exogenous input vector. ψ(t) is the initial condition. h(t) denotes the
time-varying delay satisfying

 ≤ h ≤ h(t) ≤ h, ḣ(t) ≤ μ, ()

where h, h, μ are known constants.
The neuron activation function fi(·) satisfies

k–
i ≤ fi(x) – fi(y)

x – y
≤ k+

i , i = , , . . . , n, x �= y, ()

where k–
i , k+

i are some known constants.

Remark  Compared with [, , ], the activation function considered in this paper
is more general since k–

i , k+
i in () may be positive, zero or negative.
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For the neural network (), we construct a state estimator for estimation of z(t):

˙̂x(t) = –Ax̂(t) + f
(
W x̂

(
t – h(t)

)
+ J

)
+ K

(
y(t) – ŷ(t)

)
,

ŷ(t) = Cx̂(t) + Dx̂
(
t – h(t)

)
,

ẑ(t) = Hx̂(t),

x̂(t) = , t ∈ [–h, ],

()

where x̂(t) ∈ Rn denotes the estimated state, ẑ(t) ∈ Rp denotes the estimated measurement
of z(t), and K is the state estimator gain matrix to be determined.

Define the error by r(t) = x(t) – x̂(t), and z̄(t) = z(t) – ẑ(t). Then, based on () and (), we
can easily obtain the error system of the form

ṙ(t) = –(A + KC)r(t) – KDr
(
t – h(t)

)
+ g

(
Wr

(
t – h(t)

))
+ (B – KB)w(t),

z̄(t) = Hr(t),
()

where g(Wr(t)) = f (Wx(t) + J) – f (W x̂(t) + J).
To proceed, we need the following useful definition and lemmas.

Definition  Given a prescribed level of noise attenuation γ > , find a proper state esti-
mator () such that the equilibrium point of the resulting error system () with w(t) =  is
globally asymptotically stable, and

∥
∥z̄(t)

∥
∥

 < γ
∥
∥w(t)

∥
∥

 ()

under zero-initial conditions for all nonzero w(t) ∈ L[,∞), where ‖x(t)‖ =√∫ ∞
 xT (t)x(t) dt. In this case, the error system () is said to be globally asymptotically

stable with H∞ performance γ .

Lemma  ([]) Let f, f, . . . , fN : Rm → R have positive values in an open subsets D of Rm.
Then the reciprocally convex combination of fi over D satisfies

min
{αi|αi>,

∑
i αi=}

∑

i


αi

fi(t) =
∑

i

fi(t) + max
gij(t)

∑

i�=j

gij(t) ()

subject to

{

gij : Rm → R, gj,i(t) = gi,j(t),

(
fi(t) gi,j(t)

gi,j(t) fj(t)

)

≥ 

}

. ()

Lemma  ([]) For a given matrix R > , the following inequality holds for all continu-
ously differentiable function x in [a, b] → Rn:

–(b – a)
∫ b

a
ẋT (s)Rẋ(s) ds ≤ –

[
x(b) – x(a)

]T R
[
x(b) – x(a)

]
– �T R�, ()

where � = x(b) + x(a) – 
b–a

∫ b
a x(s) ds.
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3 Main results
In this section, we first establish a delay-dependent sufficient condition under which sys-
tem () is asymptotically stable with a prescribed H∞ performance γ .

Theorem  For given scalars  < h < h, μ,γ > , K = diag{k–
 , k–

 , . . . , k–
n }, and K =

diag{k+
 , k+

 , . . . , k+
n }, the error system () is globally asymptotically stable with H∞ perfor-

mance γ if there exist real matrices P > , Q > , Z > , Z > , Z > , Z > , R > ,
T = diag{t, t, . . . , tn} > , T = diag{t, t, . . . , tn} > , and matrices S, S, S, S,
M, G with appropriate dimensions such that the following LMIs are satisfied:

�∗
[h(t)=h] < , �∗

[h(t)=h] < , ()
⎛

⎜⎜
⎜
⎝

Z  S S

∗ Z S S

∗ ∗ Z 
∗ ∗ ∗ Z

⎞

⎟⎟
⎟
⎠

> , ()

where

P =

⎛

⎜
⎝

P P P

∗ P P

∗ ∗ P

⎞

⎟
⎠ , R =

(
R R

∗ R

)

,

�∗
[h(t)] =

(
� Ĥ
∗ –I

)

, � = [�ij]×, Ĥ = [H          ]T ,

� = P + PT
 – Z + Z + μR + R + RT

 + R

– MA – (MA)T – ( – μ)
(
R + RT


)

– ( – μ)R – GC – (GC)T

– W T KTKW ,

� = ( – μ)R + ( – μ)R – GD, � = –P + P – Z – R – R,

� = –P, � = W T (K + K)T, � = M, � = hPT
 + Z,

� =
(
h(t) – h

)
P, � =

(
h – h(t)

)
P, �, = MB – GB,

�, = P +
(
h(t) – h

)
R +

(
h(t) – h

)
R +

(
h(t) – h

)
RT

 +
(
h(t) – h

)
R

– M – (MA)T – (GC)T ,

� = –( – μ)R – Z + S + ST
 + S + ST

 – S – ST
 – S – ST



– W T KTKW ,

� = –Z – ST
 – ST

 – ST
 – ST

,

� = Z – Z – S + S + S – S, � = W T (K + K)T,

� = Z + ST
 + ST

, � = Z – S + S,

�, = –(GD)T , � = –Z + Z – Z – Z + R,

� = S – S + S – S, � = –hPT
 + hPT

 + Z,

� = –
(
h(t) – h

)
P +

(
h(t) – h

)
PT

 + Z,
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� = –
(
h – h(t)

)
P +

(
h – h(t)

)
PT

 + S + S,

� = –Z – Z, � = –hPT
,

� = –
(
h(t) – h

)
PT

 – ST
 + ST

, � = –
(
h – h(t)

)
PT

 + Z,

� = Q – T, � = –( – μ)Q – T, �, = MT ,

� = –Z, �, = hPT
, � = –Z, � = –S,

�, =
(
h(t) – h

)
PT

 –
(
h(t) – h

)
RT

 –
(
h(t) – h

)
R,

� = –Z, �, =
(
h – h(t)

)
PT

, �, = –γ ,

�, = BT
 MT – BT

 GT , �, = h
 Z + (h – h)Z – M – MT .

Moreover, the gain matrix K of the state estimator of () can be designed as K = M–G.

Proof Construct the following Lyapunov-Krasovskii functional:

V (t) = V(t) + V(t) + V(t) + V(t) + V(t), ()

with

V(t) =

⎛

⎜
⎜
⎝

r(t)
∫ t

t–h
r(s) ds

∫ t–h
t–h

r(s) ds

⎞

⎟
⎟
⎠

T ⎛

⎜
⎝

P P P

∗ P P

∗ ∗ P

⎞

⎟
⎠

⎛

⎜
⎜
⎝

r(t)
∫ t

t–h
r(s) ds

∫ t–h
t–h

r(s) ds

⎞

⎟
⎟
⎠ ,

V(t) =
∫ t

t–h(t)
gT(

Wr(s)
)
Qg

(
Wr(s)

)
ds,

V(t) = h

∫ 

–h

∫ t

t+θ

ṙT (s)Zṙ(s) ds dθ + h

∫ –h

–h

∫ t

t+θ

ṙT (s)Zṙ(s) ds dθ ,

V(t) =
∫ t

t–h

rT (s)Zr(s) ds +
∫ t–h

t–h

rT (s)Zr(s) ds,

V(t) =
∫ t–h

t–h(t)

(
r(t)

∫ t
s ṙ(u) du

)T (
R R

∗ R

)(
r(t)

∫ t
s ṙ(u) du

)

ds,

where h = h – h.
The time derivative of V (t) along the trajectory of system () is given by

V̇ (t) = V̇(t) + V̇(t) + V̇(t) + V̇(t) + V̇(t), ()

where

V̇(t) = 

⎛

⎜
⎝

r(t)
hu

((h(t) – h)v + (h – h(t))v)

⎞

⎟
⎠

T ⎛

⎜
⎝

P P P

∗ P P

∗ ∗ P

⎞

⎟
⎠

×
⎛

⎜
⎝

ṙ(t)
r(t) – r(t – h)

r(t – h) – r(t – h)

⎞

⎟
⎠
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= rT (t)Pṙ(t) + rT (t)Pr(t) – rT (t)Pr(t – h)

+ rT (t)Pr(t – h) – rT (t)Pr(t – h) + huT PT
ṙ(t)

+ huT Pr(t) – huT Pr(t – h) + huT Pr(t – h)

– huT Pr(t – h) + 
[
h(t) – h

]
vT

 PT
ṙ(t)

+ 
[
h – h(t)

]
vT

 PT
ṙ(t) + 

[
h – h(t)

]
vT

 PT
r(t)

+ 
[
h(t) – h

]
vT

 PT
r(t) – 

[
h(t) – h

]
vT

 PT
r(t – h)

– 
[
h – h(t)

]
vT

 PT
r(t – h) + 

[
h(t) – h

]
vT

 Pr(t – h)

– 
[
h(t) – h

]
vT

 Pr(t – h) + 
[
h – h(t)

]
vT

 Pr(t – h)

– 
[
h – h(t)

]
vT

 Pr(t – h), ()

where u = 
h

∫ t
t–h

r(s) ds, v = 
h(t)–h

∫ t–h
t–h(t) r(s) ds, v = 

h–h(t)
∫ t–h(t)

t–h
r(s) ds,

V̇(t) ≤ gT(
Wr(t)

)
Qg

(
Wr(t)

)

– ( – μ)gT(
Wr

(
t – h(t)

))
Qg

(
Wr

(
t – h(t)

))
, ()

V̇(t) = h
 ṙT (t)Zṙ(t) + (h – h)ṙT (t)Zṙ(t)

– h

∫ t

t–h

ṙT (s)Zṙ(s) ds – (h – h)
∫ t–h

t–h

ṙT (s)Zṙ(s) ds, ()

based on Lemma , one can have

–h

∫ t

t–h

ṙT (s)Zṙ(s) ds

≤ –
[
r(t) – r(t – h)

]T Z
[
r(t) – r(t – h)

]

–
[
r(t) + r(t – h) – u

]T Z
[
r(t) + r(t – h) – u

]
, ()

by employing Lemma  and Lemma , we can derive

–(h – h)
∫ t–h

t–h

ṙT (s)Zṙ(s) ds

= –(h – h)
∫ t–h

t–h(t)
ṙT (s)Zṙ(s) ds – (h – h)

∫ t–h(t)

t–h

ṙT (s)Zṙ(s) ds

≤ –α
[
r(t – h) – r

(
t – h(t)

)]T Z
[
r(t – h) – r

(
t – h(t)

)]

– α
[
r(t – h) + r

(
t – h(t)

)
– v

]T Z
[
r(t – h) + r

(
t – h(t)

)
– v

]

– α
[
r
(
t – h(t)

)
– r(t – h)

]T Z
[
r
(
t – h(t)

)
– r(t – h)

]

– α
[
r
(
t – h(t)

)
+ r(t – h) – v

]T Z
[
r
(
t – h(t)

)
+ r(t – h) – v

]

≤ –βT (t)

⎛

⎜
⎜⎜
⎝

Z  S S

∗ Z S S

∗ ∗ Z 
∗ ∗ ∗ Z

⎞

⎟
⎟⎟
⎠

β(t), ()
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where

α = (h – h)/
(
h(t) – h

)
,

α = (h – h)/
(
h – h(t)

)
,

βT (t) =
[
rT (t – h) – rT(

t – h(t)
)
, rT (t – h) + rT(

t – h(t)
)

– vT
 ,

rT(
t – h(t)

)
– rT (t – h), rT(

t – h(t)
)

+ rT (t – h) – vT

]
.

Calculating V̇(t), V̇(t) yields

V̇(t) = rT (t)Zr(t) – rT (t – h)Zr(t – h)

+ rT (t – h)Zr(t – h) – rT (t – h)Zr(t – h), ()

V̇(t) ≤
(

r(t)
∫ t

t–h
ṙ(u) du

)T (
R R

∗ R

)(
r(t)

∫ t
t–h

ṙ(u) du

)

– ( – μ)

(
r(t)

∫ t
t–h(t) ṙ(u) du

)T (
R R

∗ R

)(
r(t)

∫ t
t–h(t) ṙ(u) du

)

+ 
∫ t–h

t–h(t)

(
r(t)

∫ t
s ṙ(u) du

)T (
R R

∗ R

)(
ṙ(t)
ṙ(t)

)

ds

= rT (t)Rr(t) + rT (t)Rr(t) – rT (t)Rr(t – h) + rT (t)RT
r(t)

– rT (t – h)RT
r(t) + rT (t)Rr(t) – rT (t)Rr(t – h)

– rT (t – h)Rr(t) + rT (t – h)Rr(t – h)

– ( – μ)rT (t)Rr(t) – ( – μ)rT (t)Rr(t)

+ ( – μ)rT (t)Rr
(
t – h(t)

)
– ( – μ)rT (t)RT

r(t)

+ ( – μ)rT(
t – h(t)

)
RT

r(t) – ( – μ)rT (t)Rr(t)

+ ( – μ)rT (t)Rr
(
t – h(t)

)
+ ( – μ)rT(

t – h(t)
)
Rr(t)

– ( – μ)rT(
t – h(t)

)
Rr

(
t – h(t)

)

+ 
[
h(t) – h

]
rT (t)Rṙ(t) + 

[
h(t) – h

]
rT (t)Rṙ(t)

+ 
∫ t–h

t–h(t)

[
r(t) – r(s)

]T RT
ṙ(t) ds + 

∫ t–h

t–h(t)

[
r(t) – r(s)

]T Rṙ(t) ds

= rT (t)
[
μR + R + RT

 + R – ( – μ)
(
R + RT


)

– ( – μ)R
]
r(t)

+ ( – μ)rT (t)(R + R)r
(
t – h(t)

)
+ ( – μ)rT(

t – h(t)
)(

RT
 + R

)
r(t)

– rT (t)(R + R)r(t – h) – rT (t – h)
(
RT

 + R
)
r(t) + rT (t – h)Rr(t – h)

+ 
[
h(t) – h

]
rT (t)

[
R + R + RT

 + R
]
ṙ(t)

– 
[
h(t) – h

]
vT


[
RT

 + R
]
ṙ(t). ()
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According to (), for any positive definite diagonal matrices T, T, the following in-
equalities hold:

–gT(
Wr(t)

)
Tg

(
Wr(t)

)
+ rT (t)W T (K + K)Tg

(
Wr(t)

)

– rT (t)W T KTKWr(t) ≥ , ()

–gT(
Wr

(
t – h(t)

))
Tg

(
Wr

(
t – h(t)

))
+ rT(

t – h(t)
)
W T (K + K)Tg

(
Wr

(
t – h(t)

))

– rT(
t – h(t)

)
W T KTKWr

(
t – h(t)

) ≥ . ()

Furthermore, for any matrix M with appropriate dimension, the following equation
holds:

(
rT (t) + ṙT (t)

)
M

[
–ṙ(t) – (A + KC)r(t) – KDr

(
t – h(t)

)

+ g
(
Wr

(
t – h(t)

))
+ (B – KB)w(t)

]
= . ()

Under the zero-initial condition, it is obvious that V (r(t))|t= = . For convenience, let

J∞ =
∫ ∞



[
z̄T (t)z̄(t) – γ wT (t)w(t)

]
dt. ()

Then for any nonzero w(t) ∈L[,∞), we obtain

J∞ ≤
∫ ∞



[
z̄T (t)z̄(t) – γ wT (t)w(t)

]
dt + V

(
r(t)

)∣∣
t→∞ – V

(
r(t)

)∣∣
t=

=
∫ ∞



[
z̄T (t)z̄(t) – γ wT (t)w(t) + V̇ (t)

]
dt. ()

From ()-(), one has

z̄T (t)z̄(t) – γ wT (t)w(t) + V̇ (t) ≤ ξT (t)
ξ (t), ()

where

ξT (t) =
[
rT (t), rT(

t – h(t)
)
, rT (t – h), rT (t – h),

gT(
Wr(t)

)
, gT(

Wr
(
t – h(t)

))
, uT , vT

 , vT
 , wT (t), ṙT (t)

]
,

and 
 = [
ij]× with 
 = � + HT H , 
ij = �ij (i ≤ j,  ≤ i ≤ ,  ≤ j ≤ ). By applying
the Schur complement, 
 <  is equivalent to �∗ < . Then, if () holds, we can ensure
the error system () with the guaranteed H∞ performance defined by Definition .

In the sequel, we will show that the equilibrium point of () with w(t) =  is globally
asymptotically stable if () holds. When w(t) = , the error system () becomes

ṙ(t) = –(A + KC)r(t) – KDr
(
t – h(t)

)
+ g

(
Wr

(
t – h(t)

))
. ()

We still consider the Lyapunov-Krasovskii functional candidate () and calculate its time-
derivative along the trajectory of (). We can easily obtain

V̇ (t) ≤ ξ̄T (t)�̄∗ξ̄ (t), ()
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where

ξ̄T (t) =
[
rT (t), rT(

t – h(t)
)
, rT (t – h), rT (t – h),

gT(
Wr(t)

)
, gT(

Wr
(
t – h(t)

))
, uT , vT

 , vT
 , ṙT (t)

]
,

and �̄∗ = [�̄∗
ij]× with

�̄∗
 = P + PT

 – Z + Z + μR + R + RT
 + R

– MA – (MA)T – ( – μ)
(
R + RT


)

– ( – μ)R – GC – (GC)T

– W T KTKW ,

�̄∗
 = ( – μ)R + ( – μ)R – GD, �̄∗

 = –P + P – Z – R – R,

�̄∗
 = –P, �̄∗

 = W T (K + K)T, �̄∗
 = M,

�̄∗
 = hPT

 + Z, �̄∗
 =

(
h(t) – h

)
P, �̄∗

 =
(
h – h(t)

)
P,

�̄∗
, = P +

(
h(t) – h

)
R +

(
h(t) – h

)
R +

(
h(t) – h

)
RT

 +
(
h(t) – h

)
R

– M – (MA)T – (GC)T ,

�̄∗
 = –( – μ)R – Z + S + ST

 + S + ST
 – S – ST

 – S – ST


– W T KTKW ,

�̄∗
 = –Z – ST

 – ST
 – ST

 – ST
,

�̄∗
 = Z – Z – S + S + S – S, �̄∗

 = W T (K + K)T,

�̄∗
 = Z + ST

 + ST
, �̄∗

 = Z – S + S, �̄∗
, = –(GD)T ,

�̄∗
 = –Z + Z – Z – Z + R, �̄∗

 = S – S + S – S,

�̄∗
 = –hPT

 + hPT
 + Z, �̄∗

 = –
(
h(t) – h

)
P +

(
h(t) – h

)
PT

 + Z,

�̄∗
 = –

(
h – h(t)

)
P +

(
h – h(t)

)
PT

 + S + S,

�̄∗
 = –Z – Z, �̄∗

 = –hPT
, �̄∗

 = –
(
h(t) – h

)
PT

 – ST
 + ST

,

�̄∗
 = –

(
h – h(t)

)
PT

 + Z, �̄∗
 = Q – T, �̄∗

 = –( – μ)Q – T,

�̄∗
, = MT , �̄∗

 = –Z, �̄∗
, = hPT

, �̄∗
 = –Z,

�̄∗
 = –S, �̄∗

, =
(
h(t) – h

)
PT

 –
(
h(t) – h

)
RT

 –
(
h(t) – h

)
R,

�̄∗
 = –Z, �̄∗

, =
(
h – h(t)

)
PT

,

�̄∗
, = h

 Z + (h – h)Z – M – MT .

It is obvious that if �∗
[h(t)=h] < , �∗

[h(t)=h] < , then �̄∗
[h(t)=h] < , �̄∗

[h(t)=h] < . So system
() is globally asymptotically stable. Moreover, if () holds, the state estimator () for
the static neural networks () has the guaranteed H∞ performance and guarantees the
globally asymptotically stable of the error system (). This completes the proof. �

Remark  The time-varying delay in [–] was always assumed to satisfy  ≤ h(t) ≤ h,
which is a special case of the condition () in this paper. Therefore, compared with [–],
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the time-varying delay discussed in this paper is less restrictive. In [, ], for the sake of
converting a nonlinear matrix inequality into a linear matrix inequality, some inequalities
such as –PT–P ≤ –P + T , which lack freedom and may lead to some conservativeness
for the derived results, were utilized in the discussion of the guaranteed H∞ performance
state estimation problem. In our paper, the zero equality () is used to avoid this problem,
which can give much flexibility in solving LMIs. In [], Jensen’s integral inequality, which
ignored some terms and may introduce conservativeness to some extent, was employed to
estimate the upper bound of the time derivative of the Lyapunov-Krasovskii functional. In
this paper, Wirtinger’s integral inequality, which takes information not only on the state
and the delayed state of a system, but also on the integral of the state over the period
of the delay into account, is exploited to give an estimation of the time derivative of the
Lyapunov-Krasovskii functional.

Remark  Based on a Lyapunov-Krasovskii functional with triple integrals involving aug-
mented terms, the guaranteed H∞ performance state estimation problem of static neural
networks with interval time-varying delay was investigated in [], and a sufficient crite-
rion guaranteeing the globally asymptotical stability of the error system () for a given H∞
performance index was obtained []. Since the augmented Lyapunov-Krasovskii func-
tional contained more information, the criterion derived in [] had less conservativeness
than most of the previous results [–]. However, the computational burden increased
at the same time because of the augmented Lyapunov-Krasovskii functional. Compared
with the results in [], the advantages of the method used in this paper mainly rely on
two aspects. First, the Lyapunov-Krasovskii functional is simpler than that in [], since
the triple integrals and other augmented terms in [] are not needed, which will reduce
the computational complexity. Second, in the proof of Theorem , Wirtinger’s integral in-
equality, which includes Jensen’s integral inequality, and a reciprocally convex approach
are employed to estimate the upper bound of the derivative of the Lyapunov-Krasovskii
functional, which will yield less conservative results.

When  ≤ h(t) ≤ h, that is, the lower bound of the time-varying delay is , we introduce
the Lyapunov-Krasovskii functional as follows:

V (t) =
∑

i=

Vi(t), ()

with

V(t) =

(
r(t)

∫ t
t–h r(s) ds

)T (
P P

∗ P

)(
r(t)

∫ t
t–h r(s) ds

)

,

V(t) =
∫ t

t–h(t)
gT(

Wr(s)
)
Qg

(
Wr(s)

)
ds,

V(t) = h
∫ 

–h

∫ t

t+θ

ṙT (s)Zṙ(s) ds dθ ,

V(t) =
∫ t

t–h
rT (s)Zr(s) ds,

V(t) =
∫ t

t–h(t)

(
r(t)

∫ t
s ṙ(u) du

)T (
R R

∗ R

)(
r(t)

∫ t
s ṙ(u) du

)

ds.
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By a similar method to that employed in Theorem , we can obtain the following corol-
lary.

Corollary  For given scalars h, μ, and γ > , the error system () is globally asymptotically
stable with the H∞ performance γ if there exist real matrices P > , Q > , Z > , Z > ,
R > , T = diag{t, t, . . . , tn} > , T = diag{t, t, . . . , tn} > , and matrices S, S, S,
S, M, G with appropriate dimensions such that the following LMIs are satisfied:

�∗
[h(t)=] < , �∗

[h(t)=h] < , ()
⎛

⎜⎜
⎜
⎝

Z  S S

∗ Z S S

∗ ∗ Z 
∗ ∗ ∗ Z

⎞

⎟⎟
⎟
⎠

> , ()

where

P =

(
P P

∗ P

)

, R =

(
R R

∗ R

)

,

�∗
[h(t)] =

(
� H̄
∗ –I

)

, � = [�ij]×, H̄ = [H        ]T ,

� = P + PT
 – Z + Z

– MA – (MA)T – GC – (GC)T + μR – ( – μ)
(
R + RT


)

– ( – μ)R

– W T KTKW ,

� = –Z – S – S – S – S – GD + ( – μ)R + ( – μ)R,

� = –P + S – S + S – S, � = W T (K + K)T,

� = M, � = h(t)PT
 + Z, � =

(
h – h(t)

)
PT

 + S + S,

� = MB – GB,

� = P – M – (MA)T – (GC)T + h(t)R + h(t)R + h(t)RT
 + h(t)R,

� = –Z + S + ST
 + S + ST

 – S – ST
 – S – ST

 – ( – μ)R

– W T KTKW ,

� = –Z – S + S + S – S, � = W T (K + K)T,

� = Z + ST
 + ST

, � = Z – S + S,

� = –(GD)T , � = –Z – Z, � = –h(t)PT
 – ST

 + ST
,

� = –
(
h – h(t)

)
PT

 + Z, � = Q – T, � = –( – μ)Q – T,

� = MT , � = –Z, � = –S, � = h(t)PT
 – h(t)RT

 – h(t)R,

� = –Z, � =
(
h – h(t)

)
PT

, � = –γ ,

� = (MB)T – (GB)T , � = hZ – M – MT .

Moreover, the gain matrix K of the state estimator of () can be designed as K = M–G.
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Remark  As an effective approach to establish the delay-dependent stability criteria
for delayed neural networks, the complete delay-decomposing approach was proposed
in [], which significantly reduced the conservativeness of the derived stability criteria.
A novel Lyapunov-Krasovskii functional decomposing the delay in all integral terms was
constructed. Since delay information can be taken fully into account by dividing the delay
interval into several subintervals, less conservative results may be obtained. The com-
putational burden for the complete delay-decomposing approach will increase with the
increasing number of subintervals. In order to get less conservative results as well as less
computational burden, the number of the subintervals should be chosen properly. Jensen’s
inequality was used to estimate the derivative of the Lyapunov-Krasovskii functional in
[]. The conservativeness of the derived result in this paper can be further reduced by
our method with the complete delay-decomposing approach [].

Remark  The integral inequality method and the free-weighting matrix method are two
main techniques to deal with the bounds of the integrals that appear in the derivative of
Lyapunov-Krasovskii functional for stability analysis of delayed neural networks. A free-
matrix-based integral inequality was developed and was applied to a stability analysis
of systems with time-varying delay []. A free-matrix-based integral inequality implied
Wirtinger’s inequality as a special case. The free matrices can provide freedom in reducing
the conservativeness of the inequality. This new inequality was used to derive improved
delay-dependent stability criteria although the computational burden increased because
of the introduction of free-weighting matrices. The free-matrix-based integral inequal-
ity in [] made use of information as regards only a single integral of the system state.
Different from the free-matrix-based integral inequality, a new integral inequality was de-
veloped basing on information as regards a double integral of the system state in []. It
also included the Wirtinger-based integral inequality. By employing a free-matrix-based
integral inequality [] or the novel integral inequality in [], less conservative results
than those obtained in our paper may be further derived.

4 Examples
Example  Consider the system with the following parameters:

A =

(
. 

 .

)

, W =

(
–. –.
–. .

)

,

B =

(
.
.

)

, J =

(



)

, H =

(
 
 –

)

,

C = ( ), D = ( ), B = –.,

K =

(
 
 

)

, K =

(
. 
 .

)

.

Based on Theorem , we can derive the optimal H∞ performance index for different h,
h, and μ. The results are stated in Table . From Table , it is observed that Theorem 
in this paper can provide less conservative results than []. It is worth pointing out that
the criterion in [] does not work when h = ., h = ., μ = ., but Theorem  in our
paper can provide a feasible solution of the optimal H∞ performance index. It should also
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Table 1 The H∞ performance index γ with different (h1, h2,μ)

(h1, h2, μ) (0.2, 0.5, 0.5) (0.3, 0.7, 0.6) (0.4, 0.8, 0.7) (0.5, 0.9, 1.2)

[34] 0.2370 0.3664 0.4906 Infeasible
Theorem 1 0.2080 0.2466 0.2507 0.2555

Figure 1 The response of the error r(t) for given
initial value in Example 1.

be noted that the number of variables involved in [] is , and Theorem  only needs
 variables. Now, let h(t) = . + . sin(t), f (x) = . tanh(x), and w(t) = cos(t)e–t , then
. ≤ h(t) ≤ ., ḣ(t) ≤ .. Consider the design of the guaranteed H∞ performance state
estimator studied above, by employing the MATLAB LMI toolbox to solve the problem,
the gain matrix K can be designed as

K =

(
–.
–.

)

with the optimal H∞ performance index γ = .. Figure  represents the responses of
the error r(t) under the initial condition r() = [– ]T . It confirms the effectiveness of the
presented approach to the design of the state estimator with H∞ guaranteed performance
for delayed static neural networks.

Example  Consider the system with the following parameters:

A =

⎛

⎜
⎝

.  
 . 
  .

⎞

⎟
⎠ , W =

⎛

⎜
⎝

. . –.
. . .

–. . .

⎞

⎟
⎠ ,

H =

⎛

⎜
⎝

  
  –
  

⎞

⎟
⎠ , J =

⎛

⎜
⎝





⎞

⎟
⎠ , B =

⎛

⎜
⎝

.
.
.

⎞

⎟
⎠ ,

C = (  –), D = (.  –), B = –.,

K =

⎛

⎜
⎝

  
  
  

⎞

⎟
⎠ , K =

⎛

⎜
⎝

  
  
  

⎞

⎟
⎠ .

For different h and μ, the optimal H∞ performance index γ can be obtained by Theo-
rem  in [], Theorem . in [], Theorem . in [], and Corollary  in this paper. The
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Table 2 The H∞ performance index γ with different (h,μ)

(h, μ) (0.8, 0.7) (0.9, 0.6) (1, 0.9) (1.1, 0.6) (1.2, 0.3)

[31] 1.2333 1.2568 1.3720 2.1022 Infeasible
[32] 1.2025 1.2255 1.2586 1.2840 1.2991
[34] 1.1965 1.2149 1.2525 1.2685 1.2853
Corollary 1 1.1899 1.2094 1.2361 1.2580 1.2701

Figure 2 The response of the error r(t) for given
initial value in Example 2.

results are summarized in Table . From Table , it is clear that a better performance can be
derived by the approach proposed in our paper. When  ≤ h(t) ≤ , ḣ(t) ≤ ., γ = .,
the state response of the error system under the initial condition r() = [–  –.]T is
shown in Figure .

5 Conclusions
In this paper, the problem of delay-dependent H∞ state estimation of static neural net-
works with interval time-varying delay has been investigated. Based on Lyapunov sta-
bility theory, Wirtinger’s integral inequality, and a reciprocally convex approach, some
improved sufficient conditions which guarantee the globally asymptotical stability of the
error system with the guaranteed H∞ performance have been proposed. The estimator
gain matrix can be determined by solving the LMIs. The effectiveness of the theoretical
results has been illustrated by two numerical examples. In addition, how to utilize more
accurate inequalities such as the integral inequalities in [, ] with less computational
burden will be investigated in our future work.
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