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Abstract

This paper concerns the modelling of stochastic processes by means

of dynamic factor models. In such models the observed process is decom-

posed into a structured part called the latent process, and a remainder

that is called noise. The observed variables are treated in a symmetric

way, so that no distinction between inputs and outputs is required. This

motivates the condition that also the prior assumptions on the noise are

symmetric in nature. One of the central questions in this paper is how

uncertainty about the noise structure translates into non-uniqueness of

the possible underlying latent processes. We investigate several possible

noise speci�cations and analyse properties of the resulting class of ob-

servationally equivalent factor models. This concerns in particular the

characterization of optimal models and properties of continuity and con-

sistency.
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1 Introduction

In this paper we are concerned with the identi�cation of linear systems. The

most commonly used models in system identi�cation are ARMA and ARMAX

models, we refer to [17], [4] and [13]. An ARMA model is symmetric and non-

open, in the sense that all observed variables are treated in a symmetric way and

that they are completely described by the model. On the other side, ARMAX

models are non-symmetric and open, as a distiction is made between inputs and

outputs and the noise is added to the outputs, and the inputs are not modelled.

We will consider linear factor models where the noise model is symmetric

and where we have a deterministic, symmetric and open system model. In a

sense these models combine the symmetry which is inherent in, for example,

ARMA models, with the 
exibility of models that leave certain process aspects

unexplained, as for example in input-output models.

Of course, the classical ARMA and ARMAX models are appropriate in a

great number of cases. For instance, if we are interested in predicting the outputs

from the inputs then the ARMAX setting is appropriate. On the other hand,

there are also situations where this approach can not be justi�ed and may lead

to prejudiced results.

� A prediction based error model is not appropriate, for example, if we are

interested in the `true' underlying system and there is noise on the inputs

and the outputs.

� There may be uncertainty about the number of system equations or about

the classi�cation of the system variables into inputs and outputs. In this

case we have to perform a more symmetric way of modelling, which in

turn demands a symmetric noise model.

� In multivariate time series analysis one is confronted with the so-called

curse of dimensionality. One method of reducing the dimension of the

parameter space is dynamic factor analysis, which is an essential aspect

of the approach described here.

Factor models have been used in statistics, psychometrics and econometrics for

a long time, see [9], [1], [10]. The theory is most well-developed for the case

of static models. Most applications are also reported within this framework,

although there are also contributions on the identi�cation of dynamic factor

models, see [11], [8], [5]. Within the area of systems and control there is recently

an increasing interest in symmetric modelling. We mention the introduction

of the behavioural approach in systems theory in [24], [26], the attention for

the Frisch problem, see [18], [23], [2], and low-noise modelling as proposed

in [15]. Most contributions on factor models in this area deal either with the

mathematical structure of dynamic models or with data modelling by means of

static models. In an, in a certain sense, nonparametric framework results on the
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identi�cation of dynamic factor models within the setting of stochastic errors

in variables models have been presented in [6], [7]. Procedures for symmetric

time series modelling within a deterministic behavioural framework have been

proposed in [25], [14], and [21].

In this paper we try to integrate the above two frameworks, i.e., stochastic

factor models and deterministic behavioural modelling. The model class consists

of stochastic dynamic factor models where the latent process satis�es determin-

istic behavioural laws. This means that stochastic structure is added to the

deterministic behavioural framework, which provides additional tools of analy-

sis. On the other hand, our approach allows for an analysis of dynamic factor

models in terms of �nite dimensional systems, as opposed to the nonparametric

results that were previously obtained.

We consider a situation which is idealized in so far as we commence from the

population second moments of the data. In other words, we analyse the relation

between the spectral density of the observed process and the corresponding

factor models. Nevertheless, this is done from the point of view of requirements

connected with the identi�cation from observed data, and we will indicate how

the results of this paper can be used for this purpose. A detailed analysis of

procedures for the identi�cation of dynamic factor models from observed time

series falls beyond the scope of this paper and will be investigated elsewhere.

One of the issues studied in this paper is the non-uniqueness of the behaviour

for given second order moments. This means that uncertainty about the precise

noise structure leads to a corresponding non-uniqueness of the possible factor

models that are compatible with the observed process. As is well known, in

the main stream approach of modelling with exogenous inputs the population

second moments of the observations determine, under very general conditions,

the transfer function of the underlying system uniquely. This is due to the as-

sumption that the noise is uncorrelated with the inputs. Uniqueness in general

does not hold true in case all the variables may be corrupted by noise. This

means that the set of observationally equivalent models, that is, the set of all

models compatible with the population second moments, will in general not be

a singleton. Of course, by imposing su�ciently strong conditions uniqueness

can be achieved, but in many cases it may be hard to justify such assumptions.

The question then becomes how the lack of knowledge about the error structure

translates into non-uniqueness of the resulting model. This is a kind of uncer-

tainty about the underlying system that can not be removed, even in an in�nite

sample.

We now give an outline of the topics treated in this paper. A dynamic factor

model is of the form

w = ŵ+ ~w (1)

where w is the observed process, ŵ is an (in general unobserved) latent process

satisfying exact linear dynamic equations, and ~w is the noise process. These

restrictions can be expressed in terms of deterministic system behaviours as
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introduced in [24], [26]. The processes (w; ŵ; ~w) are assumed to be jointly sta-

tionary, and in this case the latent process has a singular spectrum. The noise

process represents the error resulting from the approximation of the observations

w by the latent process ŵ.

The central question considered in this paper is how to obtain the restrictions

satis�ed by the latent process from the observations. Without imposing further

conditions, no solutions can be excluded from the knowledge of the observed

process alone. This means that we have to impose additional assumptions on

the noise structure in order to make meaningful statements about the underlying

system. The main topics of this paper can be summarized as follows.

(i) The formulation of noise assumptions and an analysis of their e�ect on the

class of observationally equivalent models. We consider in particular the

assumptions of orthogonality (the latent process and the noise process are

mutually uncorrelated), observability (the latent process can be expressed

as a linear function of the observed process), and bounded noise (the noise

process satis�es an a priori speci�ed bound).

(ii) An analysis of the structural properties of identi�cation procedures cor-

responding to di�erent noise assumptions. This involves an analysis of

the mapping relating an observed process to the class of observationally

equivalent models. Continuity of this mapping is related to consistency in

case of modelling from observed time series.

(iii) An analysis of the complexity and goodness of �t of factor models, with

special attention for optimal models of restricted complexity.

This paper has the following structure. In Section 2 we de�ne the dynamic factor

model. For this purpose we review the behavioural approach in linear system

theory. Factor models are characterized on the behavioural level and also in

terms of spectral properties, and we de�ne the complexity and goodness of �t of

factor models. The general framework is illustrated by the special case of a white

noise process and non-dynamic system equations, and it is shown that in this

case our set-up coincides with the classical formulation of static factor models.

Section 3 is concerned with optimal models, in the sense of minimizing the noise

under restrictions on the compexity of the latent process. Section 4 investigates

structural properties of the corresponding identi�cation problem, with special

attention for continuity and consistency. Section 5 contains concluding remarks.

Some technical proofs are collected in the appendix.
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2 Dynamic Factor Models

2.1 Linear Systems

For the formulation of dynamic factor models it is convenient to use the be-

havioural approach as developed by Willems in [24], [26]. Since this approach

may be not well-known to the reader, we discuss in this section those aspects

that are relevant for our purposes. Readers with an interest for further details

and proofs are referred to [24], [26].

In this subsection ŵ : Z ! R
q denotes a trajectory rather than a process,

that is, it is a q-variate time series observed in discrete time. The behaviour of

a deterministic system is de�ned as the set of all trajectories ŵ that may arise

within the restrictions imposed by the system. So a behaviour is a subset B of

(Rq)Z. Of special interest are behaviours that are linear, time invariant, and

complete. This means that B � (Rq)Z is a linear subspace that is invariant

under the shift operator �, de�ned by (� ŵ)(t) := ŵ(t + 1), and that the be-

haviour is in addition closed in the topology of pointwise convergence. The last

condition means that for a sequence ŵn 2 B which converges pointwise (in Rq)

to ŵ0 2 (Rq)Z there holds that also ŵ0 2 B. These conditions imply that the

behaviour corresponds to a linear, time invariant, �nite dimensional system. In

the sequel we will simply use the term linear system to refer to a linear, time

invariant, complete behaviour B � (Rq)Z.

Linear systems can be represented in several ways. Here we discuss repre-

sentations in terms of polynomial equations, state space models with driving

variables, and corresponding transfer functions.

Every linear system can be represented in polynomial form, as the solution

set of the polynomial equations

R(�; ��1) ŵ = 0 (2)

Here R is a polynomial matrix in the forward and backward shifts. The rep-

resentation of a given system by a polynomial matrix is highly non-unique.

Without loss of generality we could have restricted ourselves to polynomials in

either � or in ��1 alone, but (2) is in accordance with [24], [26]. The set of

behavioural laws of a linear system B is de�ned as the set of all polynomial

equations satis�ed by the system, that is, it is the module of 1� q polynomials

L = fr; r(�; ��1) ŵ = 0 for all ŵ 2 Bg. Every polynomial representation of a

given system has the same (polynomial) rank p, which is equal to the dimension

of the module L. Full row rank representations are unique up to left multiplica-

tion by a unimodular matrix, i.e., a polynomial matrix which has a polynomial

inverse. These representations can also be interpreted as input-output systems

in polynomial form, where p is the number of outputs and m := q � p is the

number of inputs. We denote by n the minimal number of initial conditions

required to express future outputs in terms of future inputs, which is equal to

the sum of the Kronecker observability indices of the system.
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An alternative representation is in terms of state models with driving vari-

ables. Every linear system can be represented as

�x = Ax +Bv; ŵ = Cx+Dv (3)

Here v is an auxiliary vector of unrestricted driving variables and x is a vector

of state variables. In contrast with the usual input-state-output model, here

all the external variables are described as outputs of a system driven by forces

which need not have any external meaning. For a given system this kind of

representation is highly non-unique. Minimal representations have n states and

m driving variables, and the class of all minimal representations is described by

the feedback group (S(A+BF )S�1; SBR; (C +DF )S�1; DR).

Until now no assumptions were made concerning the controllability of sys-

tems. For example, if A is a q � q invertible matrix then the set fŵ : Z !
R
q; ŵ(t + 1) = A ŵ(t); t 2 Zg de�nes a linear system with autonomous evolu-

tion which is clearly not controllable. A system B is called controllable if every

future in B is attainable from every past in B, that is, if for every ŵ1; ŵ2 2 B
there exist ŵ 2 B and h � 0 such that ŵ(t) = ŵ1(t) for t < 0 and ŵ(t) = ŵ2(t)

for t � h. In terms of the kernel representations (2) this means that R(z; z�1)

has constant rank over z 2 C n f0g. In this case the system can also be rep-

resented as the image of a polynomial operator, that is, ŵ 2 B is represented

as

ŵ =M(�; ��1)f (4)

where f has the interpretation of the underlying generating factors. There is a

close connection between the notion of controllability as de�ned before and the

usual notion in terms of state space models, because minimal state models (3)

of controllable systems B are characterized by the property that (A;B) is a

controllable pair and (A;C) an observable pair. In this case we can obtain

isometric state models, see [21], that is, representations with the property that�
A B

C D

�0 �
A B

C D

�
=

�
In O

O Im

�
(5)

where Id denotes the d-dimensional identity matrix and Q0 denotes the trans-

posed of a matrix Q. If (A;B;C;D) is a minimal isometric state representation

of a controllable system, then all such representations are given by (UAU 0,

UBV , CU 0, DV ) with U and V orthogonal matrices.

The model (4) gives a �nite impulse response representation of controllable

systems. This gives a clear description how to generate all time series belonging

to a given system. Alternative descriptions are in terms of transfer functions.

For controllable systems we can always choose A to be asymptotically stable,

and in this case the square summable time series in the system can be generated

as ŵ = G(��1)v, where v is square summable and G is the causal transfer
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function de�ned by G(z) = D +
P1

k=1 CA
k�1Bzk. The rank of the transfer

function G is m, and its McMillan degree is n. For an isometric state model this

transfer function becomes an isometry, sometimes also called an all-pass transfer

function. The driving variables needed to generate a given square summable

time series are then obtained by v = G�(��1) ŵ, where G� is the adjoint de�ned

by G�(��1) := G0(�).

In our analysis we will often make use of isometric representations of lin-

ear systems. A state space method for obtaining these models is described

in [21]. They can also be obtained from polynomial representations, as fol-

lows. Let B be a controllable linear system with kernel representation B =

ker(R) = fŵ;R(�; ��1) ŵ = 0g and image representation B = im(M) = fŵ; ŵ =

M(�; ��1)fg. If m is the number of inputs of the system, then R can be chosen

with q�m rows and M with m columns. Controllability implies that R(z; z�1)

has constant rank over C nf0g, and M can also be chosen of constant rank. In

this case the projections P =M(M�M)�1M� and Q = R�(RR�)�1R are well-

de�ned rational functions with constant rank over the domain C nf0g. So there
exist causal, miniphase spectral factorizations P = Ĝ Ĝ

�
and Q = ~G ~G

�
, see

[22, theorem I.10.1]. These spectral factors are isometric, that is, Ĝ
�
Ĝ = Im

and ~G
� ~G = Iq�m. Then the spectral factor Ĝ is an isometric transfer function

for B, and all square summable time series in B are obtained as the image of

Ĝ. Therefore we call this an isometric image representation. Further, all square

summable time series in B are annihilated by ~G
�
and therefore we call ~G an

isometric kernel representation. As R and M describe the same system, it fol-

lows that RM = 0 so that ~G
�
Ĝ = 0. This shows that the q� q rational matrix

[Ĝ; ~G] is inner, that is, it is stable and unitary. Conversely, every rational inner

matrix [Ĝ; ~G] describes a linear system with isometric image representation Ĝ

and isometric kernel representation ~G.

2.2 Factor Models and Spectra

Let (
;A;P) denote an underlying probability space and let L2 be the corre-

sponding Hilbert space of square integrable real-valued random variables. We

assume that the observed process w consists of q-dimensional random vectors, so

that w 2 (L
q

2)
Z. A dynamic factor model is a process decomposition of the form

w = ŵ+ ~w, where ~w 2 (L
q

2)
Z is the noise process and ŵ 2 (L

q

2)
Z is the latent

process that is essentially restricted to a linear system. The behaviour B of ŵ is

de�ned as the smallest linear, time invariant, complete system which contains

almost all process realizations, that is, Pfŵ(!) 2 Bg = 1. The following result

states that this de�nition makes sense.

Proposition 1 For every stochastic process the behaviour is well-de�ned.

Proof. We call a behaviour B compatible with a process ŵ if B contains almost

all process realizations. Of course (Rq)Z is always compatible, and countable
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intersections of compatible behaviours are compatible.

Now let B be a compatible behaviour. If it contains a strictly smaller com-

patible behaviour B0 � B, B0 6= B, then we proceed with B0. This system has

either less inputs than B, or it has equal number of inputs and less states. Con-

tinuing in this way, we end up after a �nite number of steps with a compatible

behaviour B� that contains no strictly smaller compatible behaviour. This im-

plies that for every compatible B there holds B\B� = B�, and thus B� � B.
This proves that B� is the smallest compatible behaviour. 2

We call a behaviour nontrivial if B 6= (Rq)Z. Dynamic factor models are de�ned

as follows.

De�nition 1 A dynamic factor model of a process w is a decomposition w =

ŵ+ ~w where the latent process ŵ has nontrivial behaviour B, which is called the

behaviour of the factor model.

In this paper we will be mainly concerned with the behaviour of factor models,

as in many cases this is the main point of interest in system identi�cation. In

order to simplify our analysis of dynamic factor models we make some additional

assumptions on the processes. Some of these assumptions could be relaxed, but

they are imposed to prevent technical complications that could obscure the

underlying modelling ideas. To formulate the assumptions we use the following

terminology. Let St denote the subspace of L2 spanned by the zero mean random

variables fwi(t); i = 1; � � � ; qg. Let the Hilbert spaces H(w) and Ht(w) be

generated by respectively fSt; t 2 Zg and fSs; s � tg, so that H(w) is generated

by the process and Ht(w) by the past of this process. The process is said to

have full rank if the space Ht(w) \ fHt�1(w)g? has dimension q, that is, if

no nontrivial linear combination of the variables w(t) can be predicted without

error from the past. It is called purely nondeterministic if
T1
�1Ht(w) = f0g,

that is, if the prediction of w(t + h) from Ht(w) converges to zero for h ! 1.

As is well known, every purely nondeterministic process can be written as

w = T (��1)" (6)

that is, w(t) =
P1

k=0 Tk"(t�k) where " is a white noise process with Ef"(t)"0(t)g =
Iq and "(t) 2 Ht(w) and where

P1
k=0 kTkk22 <1. This is called a Wold repre-

sentation of the process. If
P1

k=0 kTkk2 < 1 then this representation is called

absolutely summable. In this paper we will always make the following assump-

tions.

Assumptions

� A1 The processes w, ŵ and ~w are jointly weakly stationary, with zero

mean and �nite second order moments.

� A2 The observed process w is purely nondeterministic and has full rank.
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� A3 The latent process ŵ and the noise process ~w are purely nondetermin-

istic.

� A4 The Wold representations of w, ŵ and ~w are absolutely summable.

The assumption A1 is imposed for convenience, as this means that the usual

tools of time series analysis and linear systems theory become relevant. The

full rank assumption in A2 implies that the behaviour of the observed process

is unrestricted, so that it can not be modelled by a factor model without noise.

Concerning assumption A3, note that a latent process with nontrivial behaviour

can not be of full rank. We assume that it is purely nondeterministic, and that

the same holds true for the noise. This seems a reasonable requirement in view

of assumption A2. Finally, assumption A4 is imposed for technical reasons. It

implies that the spectral densities of the processes are continuous functions on

the unit circle.

Stated in terms of behaviours, assumption A3 for the latent process means

the following.

Proposition 2 The behaviour of a purely nondeterministic process is control-

lable.

Proof. Let ŵ be a purely nondeterministic process. Further let B be a non-

controllable system with full row rank polynomial representation R, with the

property that R(�; ��1) ŵ = 0 almost surely. Let R = UDV be the Smith form,

with U and V unimodular matrices and with D = (�; 0) where � is a diagonal

matrix with one-dimensional polynomials unequal to zero on the diagonal.

De�ne w� = V ŵ and let w� = (w�1 ; w
�
2) be a partitioning corresponding to

that of D = (�; 0). Then there holds �w�1 = 0 almost surely. So this process

evolves according to an autonomous di�erence equation and can be predicted

without error, that is, w�1 belongs to Ht(ŵ) for all t, the space spanned by the

past of ŵ. As ŵ is purely nondeterministic this means that w�1 = 0. This shows

that also R�(�; ��1) ŵ = 0 almost surely, where R� = (I; 0)V . As R�(z; z�1)

has constant rank it follows that this de�nes a controllable system, and of course

it de�nes a system that is strictly smaller than B. So the behaviour of ŵ is also

controllable. 2

We mention that the converse of this result does not hold true, that is, a latent

process with controllable behaviour need not be purely nondeterministic. In

terms of the representations of controllable systems discussed in Section 2.1,

the above result means that a factor model can be described as follows.

w =M(�; ��1)f + ~w (7)

w = Cx+Dv + ~w; �x = Ax+Bv (8)
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Here M is a polynomial matrix and (A;B;C;D) are real-valued matrices. The

�rst representation is a generalization of the static model of classical factor

analysis and explains the observed variables in terms of a number of unobserved

underlying factors. The second representation gives a more explicit description

of the dynamical evolution of the latent process ŵ = Cx +Dv in terms of un-

restricted factors v and additional factors x that exhibit the memory structure.

Factor models can also be described by means of spectra. In terms of the

Wold representation (6), where " is white noise with unit covariance and where

T is an (in general nonrational) causal transfer function with causal inverse,

the spectrum of w is given by � = TT �. The spectra of ŵ and ~w are denoted

respectively by �̂ and ~�, and the cross spectrum between ŵ and ~w is denoted

by �c. Under Assumptions A1-A4, all these spectra are bounded functions on

the unit circle. A factor model corresponds to a decomposition

� = �̂+ ~�+�c+�c
0 (9)

By assumption, the behaviour of the latent process is nontrivial so that �̂ is

singular. The rank of this spectrum corresponds to the number of unrestricted

factor components. This is made precise in the following result. Here we denote

by ker(�̂) the set of 1 � q polynomials r(s; s�1) for which r(z; z�1) �̂(z) = 0

on the unit circle. The polynomial rank of �̂ is de�ned as q � p, where p is

the dimension of the module ker(�̂). Further, by im(�̂) we denote the smallest

linear system that contains all time series of the form �̂(�)v, where v is a q� 1

time series with �nite support.

Theorem 3

(i) A latent process ŵ with spectrum �̂ has behaviour B = im(�̂), and the

behavioural laws are given by L = ker(�̂).

(ii) The number of inputs of the behaviour is equal to the polynomial rank of

�̂.

(iii) A latent process has behaviour B if and only if it can be generated as

ŵ = Ĝ v, where Ĝ is an isometric image representation of B and v is a

weakly stationary process with zero mean and �nite second order moments

that has trivial behaviour.

Proof. (i) Let B be the behaviour of ŵ and L the corresponding set of laws.

Then a 1� q polynomial belongs to L if and only if r ŵ = 0 holds almost surely,

and this is equivalent to the condition r �̂ = 0, that is, L = ker(�̂).

Now let B� = im(�̂) be the smallest linear system that contains all time

series of the form �̂(�)v, where v is a q � 1 time series with �nite support. Let

L� denote the set of laws of the system B�. The system B� consists of pointwise
limits of time series �̂(�)vn, n = 1; 2; : : : where vn are time series with �nite

support. If r 2 L then r �̂ = 0 implies r(�) �̂(�)vn = 0, and the same holds
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true for the pointwise limit of �̂(�)vn. This shows that L � L�. Now let r be a

1� q polynomial with r �̂ 6= 0 and let w 2 B� be de�ned by w = �̂(�)v where

v has Z-transform r0. As r �̂ r0 6= 0 it follows that r(�) �̂(�)v 6= 0, so that r

does not belong to L�. This implies that L� � L, so that L� = L. As B and B�
satisfy the same relations it follows that B = B�.

(ii) The number of inputs of B is given bym = q�p, where p is the dimension
of the module L = ker(�̂). This was also de�ned as the polynomial rank of �̂.

(iii) First assume that ŵ has behaviour B with m inputs. Let R be a (q �
m) � q polynomial matrix with full rank so that B = ker(R), and let Ĝ be an

isometric image representation of B as de�ned in Section 3.1, so that R Ĝ = 0.

As Ĝ is rational it can be written as p�1Q, with p a scalar polynomial and

Q a q � m matrix polynomial with full column rank. As Ĝ is stable, so that

it has no poles on the unit circle, it follows that v̂ = Ĝ
�
ŵ is a well-de�ned

stationary process with zero mean and �nite second order moments. As Ĝ Ĝ
�

is the projection onto B and realizations of the factor process belong almost

surely to B, it follows that Ĝ v̂ = Ĝ Ĝ
�
ŵ = ŵ. It remains to show that v̂ has

trivial behaviour (Rm)Z. Suppose that this was not the case, then there is a

1�m polynomial r 6= 0 such that r v̂ = 0. As Q has rank m there exists a 1� q

polynomial � so that �Q = r, and � ŵ = p�1�Q v̂ = 0 so that � is a law of the

process ŵ. It then follows that (R0; �0)0 Ĝ = (0; r0)0 where r 6= 0. This implies

that (R0; �0)0 is a polynomial matrix of rank q �m+ 1 with the property that

(R0; �0)0 ŵ = 0. This means that the behaviour of ŵ has less than m inputs, but

this contradicts (ii).

Second, suppose that ŵ = Ĝ v̂. As v̂ has trivial behaviour it follows that r is

a behavioural law of ŵ if and only if r Ĝ = 0, or equivalently r Ĝ Ĝ
�
= rP = 0

with P the projection operator onto B. This shows that the behaviour of ŵ is

given by B. 2

Concerning (ii), note that the polynomial rank of �̂ is q � p, where p is the

number of independent polynomial relations satis�ed by the latent process ŵ. In

general, the polynomial rank may be larger than the dimension of the innovation

spaceHt(ŵ)\fHt�1(ŵ)g?. This dimension is the usual de�nition of the rank of
the process ŵ, and this is equal to the maximum of rank(�̂(z)) on the unit circle.

This implies that for all jzj = 1 the rank of �̂(z) is smaller than or equal to the

polynomial rank of �̂, and if ŵ satis�es additional linear relations that are not

polynomial then the rank of �̂(z) is strictly smaller than the polynomial rank of

�̂. As nonpolynomial relations correspond to in�nite dimensional systems they

fall outside the behavioural setting discussed in Section 2.1.

2.3 Factor Schemes

The basic question considered in this paper concerns the relationship between

the spectrum of the observed process and the class of observationally equivalent
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factor models. Under Assumption A2 there exists for every linear system B a

factor model with behaviour B, because we can simply de�ne the noise as ~w =

w�ŵ for every latent process ŵ. In the words of Kalman [15], within this setting

we can obtain no models without prejudice. So we have to impose additional

restrictions on the noise process in order to make meaningful statements about

the underlying system. These restrictions should be motivated in each practical

situation. Here we consider the following possible speci�cations, which we call

factor schemes.

� The factor model is called orthogonal if the latent process and the noise

process are mutually uncorrelated, that is, if Efŵ(t) ~w(s)0g = 0 for all t; s.

Stated otherwise, there holds H(ŵ) ? H( ~w) and �c = 0.

� The factor model is called observable if ŵ is a linear function of w, that

is, if H(ŵ) � H(w). Stated otherwise, there holds �̂ = F �F 0, ~� =

(I � F ) �(I � F )0 and �c = F �(I � F )0 for some, possibly noncausal,

transfer function F .

� The factor model is said to have bounded noise if it satis�es an a priori

speci�ed bound in terms of the noise spectrum ~�.

The quality of factor models is expressed in terms of the complexity and the

goodness of �t of the model.

De�nition 2 The complexity of a dynamic factor model is de�ned as the pair

(m;n), where m is the number of driving variables and n the number of states

of the behaviour of the factor model.

The complexity measures the dimension of the latent process, in the sense that

the set of possible realizations fŵ(!);! 2 
g on a time interval of length L � n

is (almost surely) contained in an (mL + n)-dimensional subspace of RqL. In

parametric terms, the complexity can also be expressed as follows.

Proposition 4

(i) In terms of a kernel representation R(�; ��1) ŵ = 0, the complexity is

given by m = q � rank(R) and n =
Pq�m

k=1 �k, where f�1; � � � ; �q�mg are

the Kronecker observability indices.

(ii) In terms of an isometric image representation Ĝ of the factor behaviour,

the complexity is given by the rank m and McMillan degree n of Ĝ.

Proof. (i) This follows from Theorem 6 in [24].

(ii) This follows from Theorem 4.9 and Lemma 4.10 in chapter 4 of [14]. 2

In the sequel we will sometimes consider another measure of complexity in

case the factor model is observable and the spectrum � is rational, that is,

12



w = T (��1)" in (6) where T is now a rational transfer function. Then a

special class of latent processes is obtained by pre�ltering the noise, that is,

ŵ = T (��1)F (��1)" where F is a rational, rank de�cient transfer function. We

de�ne the e�ective noise space by N =im(F ), that is, the behaviour of the �l-

tered noise process F (��1)". In this case the behaviour of the latent process is

given by B =im(TF ). As TF is rational and rank de�cient, it follows that B is

a nontrivial linear system. An alternative characterization of complexity is the

pair (m0; n0), the number of inputs and states of the e�ective noise behaviour

N . This measures the complexity of the noise process underlying the latent

process.

De�nition 3 Let be given a process with rational Wold representation w =

T (��1)" and a latent process ŵ = (TF )(��1)". Then the noise complexity of

the corresponding factor model is de�ned as (m0; n0), the number of inputs and

states of the e�ective noise space N = im(F ).

The two foregoing notions of complexity are not equivalent. If N is the e�ective

noise space of a factor model with behaviour B and if (m;n) and (m0; n0) are

the complexities of B and N respectively, then m = m0 but in general n 6= n0.

The goodness of �t of factor models is measured in terms of the second

moments of the noise process ~w. As is well known, the choice of norms may have

an essential e�ect on the obtained models. Here we will restrict the attention

to the mean squares norm and the uniform norm. In the following we use

the notation ~�1=2 for a spectral factor of the noise spectrum ~� so that ~� =
~�1=2(~�1=2)�. We de�ne the norm of a 1 � q polynomial r(�; ��1) =

P
rk�

k

by krk22 :=
P kr0kk2 where k � k denotes the Euclidean norm on Rq . Further

we de�ne the following norms for spectral factors, where �max(Q) denotes the

spectral radius, that is, the maximum of the absolute values of the eigenvalues

of a matrix Q.

k ~�1=2 k22 =
1

2�

Z �

��

tracef~�(e�i�)gd� (10)

k ~�1=2 k21 = sup
�2[��;�]

�maxf~�(e�i�)g (11)

De�nition 4 For a factor model with noise process ~w with spectrum ~�, the

mean squares and uniform �t are respectively de�ned by

k ~w k2 := [Ef ~w(t)0 ~w(t)g]1=2 = k ~�1=2 k2 (12)

k ~w k1 := supf[Ef(r(�; ��1) ~w)(t)g2]1=2; krk2 = 1g = k ~�1=2 k1 (13)

Because of Assumption A3, the noise process is purely nondeterministic so that

the coe�cients of ~�1=2 are square summable so that k � k2 is well-de�ned, and
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because of Assumption A4 the spectrum is bounded on the unit circle so that

k �k1 is also well-de�ned. The mean squares and uniform norms are monotonic,

as they become larger if the spectrum becomes larger in the sense of positive

semide�nite matrix functions on the unit circle. Sometimes, when results hold

true for both norms, we make no distinction in notation and write k ~w k and

k ~�1=2 k.

2.4 Illustrations

2.4.1 Static Factor Models

As a simple illustration we show that the framework as introduced before is an

extension to the dynamic case of the well-known class of static factor models

that have been analysed, among others, in [18] and [23]. In later sections we

will use the static case for further illustration.

Suppose that the observations are uncorrelated over time, so that w is a

white noise process. In this section we restrict the attention to factor models

w = ŵ+ ~w where ŵ and ~w are also white noise processes. We further impose

the condition that the behaviour of the factor model is static in the sense that

the state dimension is n = 0. The corresponding linear systems are described

by linear nondynamic equations of the form R ŵ = 0, where R is a full row rank

p � q real matrix. Let M be a q � (q � p) matrix with im(M) = ker(R), then

the factor model can be written as

w(t) =Mf(t) + ~w(t):

This corresponds to the classical static factor model with factors f . If the

covariance matrix of f has full rank, then the complexity of this factor model

is (m; 0), where m = q � p is the number of factors.

In the literature several possible factor schemes have been proposed. For

example, in the principal component analysis of multivariate statistics the aim

is to keep the noise process ~w as small as possible, under a restriction on the

number of independent factors m. In the so-called Frisch-scheme the aim is to

minimize the complexity of the model under the restrictions that the processes

ŵ and ~w are orthogonal and that in addition the q components of the noise

process ~w are mutually orthogonal.

Our approach resembles principal component analysis, as in the next section

we will consider minimization of the noise under a restriction of the complexity

of the behaviour of the latent process.

2.4.2 Dynamic System Example

Here we give a simple example of a dynamic factor model. Suppose that the

data generating process consists of a single input, single output system where

both the input u and the output y are observed under additive noise. That is,
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we assume that the data w = (u; y) are generated as w = ŵ+ ~w, with ~w the

noise and (û; ŷ) the latent process with ŷ = g û where g denotes the underlying

rational transfer function. For simplicity we assume that the latent input û is

white noise and that the noise process ~w is also white noise, all uncorrelated

and with unit variance. In this case the spectrum of the data generating process

is given by

� =

�
2 g�

g gg� + 1

�

An obvious factor model for this process is the above decomposition in the latent

process ŵ and the white noise process ~w. If g(�; ��1) = r1(�; �
�1)=r2(�; �

�1)

then this factor model has a behaviour described by the equation R(�; ��1) ŵ =

0 where R = (�r1; r2). The complexity is (m;n) = (1; d), where d is the

maximum of the degrees of the polynomials r1 and r2. The mean squares �t

is k ~w k2 =
p
2 and uniform �t k ~w k1 = 1. Because of our assumptions, this

factor model is orthogonal but not observable.

Of course, the real question is whether we can identify the underlying transfer

function g from the spectrum �. This will be investigated in Section 3.3.2.
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3 Pareto Optimal Models

The quality of a factor model for an observed process w is measured by its

complexity and goodness of �t. In general, the �t can become better if the model

is allowed to be more complex. We use a lexicographic ordering of complexities,

so that (m1; n1) is less complex than (m2; n2) if m1 < m2 or m1 = m2; n1 < n2.

A factor model is called Pareto optimal if it satis�es the following two conditions:

every less complex model has a strictly worse �t, and no equally complex model

has strictly better �t. This means that the �t can not be improved without

increasing the complexity, and that the complexity can not be reduced without

detoriating the �t.

We characterize Pareto optimal models by optimizing the �t for a given

bound on the complexity. This problem is analysed in three steps. In Section

4.1 we investigate two cases, that is, modelling with a speci�ed behaviour and

modelling with a restricted number of inputs where the number of states is left

free. In Section 4.2 we derive Pareto optimal models of restricted complexity,

where both the number of inputs and the number of states is limited. The

optimality of models depends of course on the speci�cation of the factor scheme,

that is, on the choice of norms for the noise and on possible conditions of

orthogonality and observability.

3.1 Optimal Models of Restricted Rank

First assume that the behaviour of the factor model has been speci�ed a priori,

so that the factor equations are given. The aim is to �nd a model with minimal

error that satis�es these equations. Let B denote the given controllable linear

system with polynomial representation R(�; ��1) ŵ = 0. The isometric image

and kernel representations of the system are denoted respectively by Ĝ and ~G, so

that PB := Ĝ Ĝ
�
= I�R�(RR�)�1R is the projection operator onto the system

and ~G ~G
�
= I �PB is the projection onto the set of behavioural equations. The

following results hold true both for the mean squares and for the uniform norm.

Theorem 5 Let w be a process with spectrum � and let B be the required be-

haviour of a factor model.

(i) A latent process with optimal �t is given by ŵ0 := PBw, with noise spec-

trum ~�0 = (I � PB) �(I � PB) = ~G ~G
�
� ~G ~G

�
. The corresponding factor

model is observable, but in general not orthogonal.

(ii) Among orthogonal models, a latent process with optimal �t is given by

ŵ0 := [I � �R�(R�R�)�1R]w, with corresponding noise spectrum ~�0 =

�R�(R�R�)�1R� = � ~G( ~G
�
� ~G)�1 ~G

�
�.

Proof.
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(i) The relation ~G
�
ŵ = 0 implies for the mean squares norm

k ~�1=2 k22 =
H
jzj=1

trace(Ĝ
� ~� Ĝ)(z)dz +

H
jzj=1

trace( ~G
� ~� ~G)(z)dz

�
H
jzj=1

trace( ~G
�
� ~G)(z)dz:

Therefore the mis�t is minimal if and only if Ĝ
�
~w = 0 holds so that ŵ =

(Ĝ Ĝ
�
+ ~G ~G

�
) ŵ = Ĝ Ĝ

�
(w � ~w) = PBw. This model is also optimal for the

uniform norm, since

�max(~�(z)) � �max(( ~G ~G
� ~� ~G ~G

�
)(z)) = �max(( ~G ~G

�
� ~G ~G

�
)(z))

holds for all points z of the unit circle. This optimal model is, in general, not

orthogonal since PB �(I � PB) is not zero in general.

(ii) We show that ~�(z) � ~�0(z) holds for all points z of the unit circle. For

simplicity of notation we omit the argument z in the following. Let G = [Ĝ; ~G],

then because of ~G
�
�̂ = 0 it follows that ~G

�
� = ~G

� ~� and hence

G� ~�G =

 
Ĝ
� ~� Ĝ Ĝ

�
� ~G

~G
�
� Ĝ ~G

�
� ~G

!

�
 

(Ĝ
�
� ~G)( ~G

�
� ~G)�1( ~G

�
� Ĝ) Ĝ

�
� ~G

~G
�
� Ĝ ~G

�
� ~G

!

= G�� ~G( ~G
�
� ~G)�1 ~G

�
�G

The above inequality is a consequence of the fact that G� ~�G � 0. So all orthog-

onal factor models with behaviour B must satisfy ~� � � ~G( ~G
�
� ~G)�1 ~G

�
� =

~�0. This shows the second expression for ~�0. The �rst expression follows

from the fact that ~G = R�Q where Q is a spectral factor of (RR�)�1, that is

QQ� = (RR�)�1. 2

The optimal factor model is unique in case of the mean squares norm but in

general not in case of the uniform norm. If we are interested in factor be-

haviours only, then the above results show that we may restrict the attention to

observable models. This leaves four factor schemes of interest, that is, for the

mean squares and the uniform norm and according to whether orthogonality

is imposed or not. We de�ne the distance between a behaviour and a spectral

density as the �t of the optimal factor model with this behaviour. That is, the

mis�t function is given by

d(�;B) = k ~�1=2
0 k (14)

where ~�0 is the noise spectrum of the optimal factor models for B given in

Theorem 5 and where ~�
1=2
0 denotes a spectral factor of ~�0. We use the same

notation for the four di�erent factor schemes.
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Next we describe optimal models of restricted rank, so that only the number

of inputs of the latent process is restricted but not the number of state variables.

Under the assumptions A1-A4 of Section 2.2, the observed spectrum � is a well-

de�ned matrix function on the unit circle that can be pointwise decomposed in

terms of its eigenvalues and eigenvectors as � = U�U�. Here U is a q � q

unitary matrix function, i.e., UU� = U�U = Iq , and � is a diagonal matrix

of ordered eigenfunctions. For simplicity we assume that the eigenvalues are

distinct everywhere on the unit circle, so that � = diag(�1; � � � ; �q) with �1(z) >
�2(z) > � � � > �q(z) > 0 on the unit circle. Let U = [U1; U2], where U1 consists

of the �rst m columns of U and U2 of the remaining columns, and let � =

diag(�1;�2) be a corresponding partitioning. The principal component model

of rank m is de�ned by the factor ŵ = U1U
�
1w and noise ~w = U2U

�
2w. In terms

of the spectra this gives

�̂m = U1�1U
�
1 ;

~�m = U2�2U
�
2 ; �c = 0 (15)

Under the above assumptions, this model is well-de�ned and unique, see [3,

theorems 9.3.1, 9.3.2 and 9.3.3], and it is clearly observable and orthogonal. The

latent process spectrum has rank m, but the factor behaviour will in general

be trivial, that is, it will be (Rq)Z. This is because in general there exist no

nontrivial polynomial equations such that R(z; z�1) �̂m(z) = 0.

The following result states that the principal component model has optimal

�t, and that it can be approximated arbitrarily closely by factor models with

complexity (m;n) if the number of state variables n is chosen su�ciently large.

The results hold true for all factor schemes, that is, for mean squares and uniform

�t and irrespective whether orthogonality and observability are imposed or not.

Theorem 6

(i) No factor model of complexity (m;n) has better �t than the �t k ~�1=2
m k of

the principal component model of rank m.

(ii) For every " > 0 there is a factor model of complexity (m;n), for some

�nite n, with better �t than k ~�1=2
m k+ ".

Proof. Under the assumption �1(z) > �2(z) > � � � > �q(z) > 0 for all jzj = 1, the

eigenvector matrix U(z) has an absolutely summable Laurent series expansion,

see [3, theorems 9.3.1, 9.3.2 and 9.3.3]. This implies that ~wm = U2U
�
2w and

ŵm = w � ~wm = U1U
�
1w are well-de�ned processes.

(i) As �(z) is continuous on the unit circle it follows that also the eigenval-

ues �i(z) are continuous functions, see Lemma 20 in the appendix, and thus

k ~�1=2
m k22 =

H
jzj=1

f�m+1(z) + � � � + �q(z)gdz and k ~�1=2
m k21 = supjzj=1 �m+1(z)

are well-de�ned. If ~G is the isometric kernel representation of a behaviour B,
then the optimal noise covariance corresponding to B is according to Theo-

rem 5 given by ~� = ~G ~G
�
� ~G ~G

�
. As ~G

�
(z) ~G(z) = I , Lemma 20 implies the

optimality of the principal component model.
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(ii) Since U2(�) is an absolutely summable �lter, we can �nd a positive integerN

and a �nite �lter ~GN (�) =
P

jkj�N
~Gk �

k such that kU2 � ~GN k1 is arbitrarily

small. Thus we can choose N such that kI � ~G
�

N
~GN k1 and also kU2U

�
2 �

~GN ( ~G
�

N
~GN )

�1 ~G
�

N k1 become arbitarily small. The transferfunction PN =
~GN ( ~G

�

N
~GN )

�1 ~G
�

N is a rational projection matrix of rank m, so that (I � PN )

is the isometric image representation of a behaviour BN with m inputs and a

�nite number of states. Then analogous to the proof of Proposition 22 in the

appendix it follows that k ~�N � ~�m k1 ! 0 and thus k ~�1=2
N k ! k ~�1=2

m k by

Lemma 21. Here U2 corresponds to ~G0 in the proof of Proposition 22 and this

proof can easily be extended to the case where ~G0 = U2 is not rational but only

absolutely summable. 2

So the principal component model gives an optimal reduced rank approximation

of the spectrum. Further this gives a �rst idea of achievable combinations of

complexity and �t. A su�cient condition for the existence of a factor model

with �t � and complexity (m;n), for some �nite n, is that k ~�1=2
m k < �, and a

necessary condition is that k ~�1=2
m k � �.

We conclude this section by considering the e�ect of using weighted norms,

or stated otherwise, the e�ect of pre�ltering the observed process. Let Q be a

q�q positive de�nite matrix function which is bounded on the unit circle. Then

the Q-weighted norm is de�ned as k ~w kQ = kT � ~w k for a spectral factorization
Q = TT �. This norm is well-de�ned, as it does not depend on the choice of the

spectral factor.

Proposition 7 Let B be a controllable linear system of complexity (m;n). Then

there is a choice of Q-weights such that B is the behaviour of a factor model that

minimizes the Q-weighted norm over the set of all factor models with m inputs.

Proof. Let R(�; ��1) be a full row rank polynomial matrix with rows that form a

basis for the set of laws of the behaviour B. As k ~w kQ = kT � ~w k we can use the

result of Theorem 6 on the transformed data �w := T �w, with spectrum T ��T .

The transformed latent process �̂w = T � ŵ satis�es the relation R(T �)�1 �̂w = 0.

Thus by Theorem 6, B is optimal with respect to the weighted norm k ~w kQ
if R(T �)�1 is a basis of the left eigenspace of T ��T corresponding to q �m

smallest eigenvalues, pointwise on the unit circle. In this case �w = �̂w+ ~�w is the

princial component model for the transformed data.

Now let �S(�; ��1) be a full column rank polynomial matrix with columns

that form a basis of the right kernel of R, i.e. R �S = 0, and let S = ��1 �S and

Q = ��1+SS�. If �Q = ��=2Q�1=2, then it follows that R�1=2 �Q = R�1=2

and S��1=2 �Q = (I + S��S)S��1=2. Thus the q �m smallest eigenvalues of
�Q(z) are equal to 1 and R(z; z�1) �1=2(z) is a basis of the corresponding left

eigenspace. Let Q = TT � and �� = T ��T , then there holds x�1=2 �Q = �x�1=2

if and only if x(T �)�1 �� = �x(T �)�1. So the q � m smallest eigenvalues of
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�� = T ��T are equal to one and U2 = R(T �)�1 is a basis of the corresponding

eigenspace. This shows that T is the appropriate transformation and Q the

appropriate norm. 2

This shows that the choice of norms is decisive for the obtained behaviours. So

in practical applications it is imperative to take care of appropriate weighting

of the data. In our opinion the norms should not be chosen on mathematical

grounds alone but have to be related to the information and objectives of each

speci�c application. Here we will further restrict attention to the unweighted

norms, which may be relevant in applications if the observed variables have been

transformed appropriately.

3.2 Optimal Models of Restricted Complexity

A straightforward method for determining Pareto optimal models is to �x the

complexity and to optimize the �t under this constraint. A model of optimal �t

is then Pareto optimal if there are no less complex models of at least equal �t.

For complexity (m;n) this can be checked by comparing, �rst, with the optimal

�t of models of complexity (m;n � 1) and, second, with the �t achievable by

models having less than m inputs. The second comparison is simpli�ed by the

result of Theorem 6 for the principal component model of rankm�1. Because of
these considerations, we restrict our attention to the determination of optimally

�tting models of given complexity.

The main complication of the corresponding optimization problem is that

the set of systems of given complexity (m;n) is not convex and also not compact.

We restrict the attention to the mean squares norm and consider both the factor

schemes with and without orthogonality. We will not investigate several other

questions that are of interest in this context, such as the existence and unicity

of optimal models and the case of the uniform norm.

The solution for the mean squares norm is given in terms of the so-called

global total least squares algorithm presented in [21]. LetW = (W1; � � � ;Wr) be

a square summable q�r matrix sequence, that is, with kWk22 :=
P1

t=�1 kW (t)k22
< 1 where kW (t)k2 denotes the Frobenius norm of the matrix W (t). Further

let the l2-distance between this sequence and a linear system B be de�ned as

d(W;B) := minfkW �V k2;V = (V1; � � � ; Vr) with Vi 2 B; i = 1; � � � ; rg. The ob-
jective in global total least squares is to determine an optimal model of restricted

complexity, that is, which minimizes the l2-distance over the set of controllable

systems with m inputs and n states. In general the optimal model exists and

is unique, but existence and uniqueness may fail to hold true in exceptional

cases. For algorithmic details we refer to [21] and [20] where a Gauss-Newton

algorithm for the involved projections is described. If B is the optimal system,

then PBW is called the optimal l2-approximation of W .
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Theorem 8 Let w = T" be a given process with spectrum � = TT �. For

given complexity (m;n), a factor models with optimal mean squares �t is given

by w = ŵ+ ~w, where ŵ = T̂ " and ~w = (T � T̂ )". Here T̂ is the optimal

l2-approximation of complexity (m;n) for the spectral factor T . This model is

observable, but in general not orthogonal.

Proof. According to Theorem 5, it is no restriction of generality if we consider

only observable models. So let ŵ(t) = [Gt(�; �
�1)"](t), then assumption A1 of

joint stationarity of w and ŵ implies that Gt is time invariant, say Gt = G. This

means that we can write ŵ = F (�)w = G(�)" for some transfer function G(�) =

F (�)T (�). As " has full rank, it follows that the latent process has complexity

(m;n), that is, R ŵ = 0 for a polynomial matrix R representing a system B
with complexity (m;n), if and only if RG = 0, that is, all columns of G should

belong to the system B. The noise ~w = (T �G)" has spectrum (T �G)(T �G)�

and mean squares norm k ~w k22 = 1
2�

R �
��

tracef(T �G)(T �G)�(e�i�)gd�. But
this is precisely equal to kT � Gk22, the l2-distance between T and G. So this

minimization problem is the l2- approximation problem for T where each of the

q columns of G should belong to the same system of complexity (m;n). The

optimal choice over this class is by de�nition given by T̂ .

It can be shown that the factor �lter T̂ and the noise �lter ~T := T�T̂ satisfy

T̂
� ~T = 0, but in general �c = T̂ ~T

� 6= 0 so that the processes ŵ and ~w are not

orthogonal. 2

Next we characterize optimal models under the condition of orthogonality. In

order to simplify the analysis we restrict the attention to observed processes

with rational spectrum � and use the alternative de�nition of complexity in

terms of the e�ective noise space, see De�nition 3.

Theorem 9 Let w = T" be a given process with spectrum � = TT �. For given

noise complexity (m;n), an orthogonal factor model with optimal mean squares

�t is given by w = ŵ+ ~w, where ŵ = S" and ~w = (T � S)". Here S� is the

optimal l2-approximation of complexity (m;n) for the adjoint T � of the spectral

factor T .

Proof. Within this setting a latent process is given by ŵ = TF" where the

factor noise space N = im(F ) has complexity (m;n). The noise is then given

by ~w = T (I � F )", and the orthogonality condition is equivalent to requiring

TF (I�F )�T � = 0. As T has full rank everywhere, it follows that F = F � = F 2

is a projection, namely the orthogonal projection onto the system N . The noise

has norm k ~w k22 = 1
2�

R �
��

tracefT (I � F )T �(e�i�)gd�. This is equal to k(I �
F )T �k22 = kT ��S�k22, where each column of S� is the optimal l2-approximation
within the system N of the corresponding column of T �, as F is the projection

onto this system. The optimal choice of the model, that is, of F or equivalently

of N of complexity (m;n), is precisely the optimal l2-approximation problem of

T �. 2
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3.3 Illustrations

3.3.1 The Static Case

The foregoing results can easily be applied for the case of static factor models.

Let w be a white noise process, so that the spectrum � is a constant function,

the covariance matrix of the process. The principal component model is then

obtained by the eigenvalue decomposition of the matrix �. The optimal latent

process with m factors is given by the projection of the observations onto the

space spanned by the eigenvectors corresponding to the m leading eigenvalues

of �. Therefore, in the optimal factor model both the latent process and the

noise are white noise processes. It follows from Theorem 6(i) that the principal

component model is Pareto optimal among all models of complexity (m;n) for

all n � 0. That is, no gain of �t is possible by allowing for dynamic equations.

For the static case, the result in Proposition 7 has also been pointed out

in [15] and [16]. In the ordinary least squares scheme the indeterminateness of

optimal models is resolved by the assumption that certain variables are noise

free, i.e., that a principal submatrix of the noise covariance ~� is zero. In terms of

the weighting matrix Q this means that certain noise directions are assigned an

in�nite weight. In our approach, however, we treat all variables in a symmetric

way.

3.3.2 Dynamic System Example

Next we consider the dynamic errors in variables system described in Section

2.4.2, and we use the notation introduced there. So let the spectrum � be

given, and assume that the complexity (m;n) has been speci�ed with m = 1

and n � d. The principal component decomposition for �xed frequency is

easily obtained, with eigenvalues �1 = 2 + gg� and �2 = 1 and the eigenvector

corresponding to �2 given by (�g; 1)�. We denote the corresponding latent

process by ŵ� = (û�; ŷ�) and the noise process by ~w�. This shows that the

principal component model has a behaviour that is �nite dimensional, and this

model is Pareto optimal among all models of complexity (1; n) with n � d. The

underlying transfer function g has been identi�ed, because ŷ� = g û�.

Although the underlying behaviour has been identi�ed, this is not the case

for the true latent process and noise process. This can be seen from the spectral

properties of the noise processes. The noise that a�ects the data has spectrum

I2 of rank 2, whereas the noise ~w� has a spectrum of only rank 1. Further the

factor model w = ŵ+ ~w has a mean squares error k ~w k2 =
p
2 whereas the

principal component model has error k ~w� k2 = 1. We remark that both models

are in fact optimal for the uniform norm.

This shows that in this case the Pareto optimal model indeed identi�es the

latent transfer function g from the observed spectrum �, at least when the

complexity is not chosen too small. We should remark that this result depends

in a crucial way on our assumptions on the way the data are generated. For
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example, if the observation noise ~w would not be white then Pareto optimal

models will in general not have transfer function g. In terms of Proposition 7

this would require an appropriate pre�ltering of the data. In our example, the

required �lter Q is the identity, that is, our data generating process is such that

the unweighted norm is appropriate to identify the underlying transfer function.

For practical applications this means that, in order to �nd good approximations

of the underlying system, one should incorporate available information on the

noise properties.

23



4 Consistency

4.1 System Topology

We introduce the topologies on linear systems and spectra that we will use in

our analysis of continuity properties of factor models. For linear systems the

gap metric is de�ned in terms of the projections described at the end of Section

2.1.

De�nition 5 Let B1;B2 be linear systems with isometric image representations

Ĝ1 and Ĝ2 respectively, then the gap between these systems is de�ned by

d(B1;B2) = k Ĝ1 Ĝ
�

1� Ĝ2 Ĝ
�

2 k1 (16)

This corresponds to the usual de�nition of the gap between two closed linear

subspaces of a Hilbert space as kP1 � P2k, where P1 and P2 are the orthog-

onal projection operators onto the two spaces. Here Ĝi Ĝ
�

i is the orthogonal

projection onto the set of square summable time series in the behaviour Bi,
i = 1; 2.

Proposition 10

(i) The gap d is a metric on the class of controllable linear systems.

(ii) In terms of system restrictions, if ~Gi denotes an isometric kernel repre-

sentation of Bi, i = 1; 2, then d(B1;B2) = k ~G1
~G
�

1� ~G2
~G
�

2 k1.

(iii) If two systems have a di�erent number of inputs, then their gap equals

one.

Proof. (i) This holds true for so-called l2 systems, and this implies the same

result for controllable systems as these are in one-to-one correspondence with

l2 systems. See corollaries 3-4 and 5-3 of chapter 4 in [14].

(ii) This follows from the fact that [Ĝ; ~G] is inner, so that Ĝ Ĝ
�
+ ~G ~G

�
= I .

(iii) See Proposition 5-5 of chapter 4 in [14]. 2

In the following we denote by B(m;n) the set of all controllable linear sys-

tems with m inputs and n states, by B(m;n) :=
Sn

k=1B(m; k) the set of

all controllable linear systems with m inputs and at most n states, and by

B :=
Sq

m=0

S1
n=0B(m;n) the set of all controllable linear systems.

Proposition 11

(i) For n > 0 the set B(m;n) is neither open nor closed in B.

(ii) The set B(m;n) is the closure of B(m;n) in B.
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(iii) The sets B and B(m;n), for n > 0, are not compact.

Proof. (i) For n = 0 the only controllable systems are described by the isometric

state parameters (A;B;C;D) = (�;�;�; D) with corresponding static projec-

tion operator DD0. It follows that B(m; 0) is a compact set, and this will be

described in more detail in Section 4.4. We will now consider the case n > 0.

In order to show that B(m;n) is not open it su�ces to construct a sequence

of systems Bk 2 B(m;n + 1) with d(Bk;B0) ! 0 where B0 2 B(m;n). Let

(A0; B0; C0; D0) be a minimal isometric state representation of B0 and let a 2
R; b 2 R1�m and c 2 Rq�1 be such that A =

�
A0 0

0 a

�
, B =

�
B0

b

�
, Ck =

(C0; "kc) is an observable and contollable quadruple for all "k > 0. The system

B0 has transfer function Ĝ0 = D0+C0(zI�A0)
�1B0, and let the system Bk be

de�ned by the transfer function Ĝk = D0+Ck(zI�A)�1B = Ĝ0+"k(z�a)�1cb
with "k ! 0 for k !1. Then Bk 2 B(m;n+ 1) and clearly kGk �G0k1 ! 0

and also d(Bk;B0) = k Ĝk(Ĝ
�

k Ĝk)
�1 Ĝ

�

k � Ĝ0 Ĝ
�

0 k1 ! 0 for k !1.

That B(m;n) is not closed follows in a similar way by constructing a se-

quence in B(m;n) that converges to a system in B(m;n� 1).

(ii) Let clB(m;n) denote the closure of B(m;n). Systems with m0 6= m

do not belong to this closure, as such systems have gap one with respect to all

systems in B(m;n), see Proposition 10(iii). Systems with m inputs and less

than n states can be obtained as the limit of sequences of systems in B(m;n),

by similar constructions as in the proof of (i). It remains to prove that systems

in B(m;n0) with n0 > n do not belong to clB(m;n). Let B 2 B(m;n0) with

n0 > n have isometric image representation Ĝ, then the projection operator

P = Ĝ Ĝ
�
is a rational function with rank m and McMillan degree 2n0. As

projection operators corresponding to systems in B(m;n) have rank m and

McMillan degree 2n, it follows that such operators can not converge to P , so

that B does not belong to clB(m;n).

(iii) As B is a metric space, it su�ces to prove that there exists a sequence

of systems Bk 2 B(m;n) which has no convergent subsequence in the set B of

all controllable linear systems. Consider the case q = 2;m = 1; n = 1 and the

systems described by the isometric state parameters

�
a ��C 0D


C �D

�
, where

0 < a < 1 is a real number, C and D are 2�1 vectors of unit length, and �; 
; �

are real numbers to obtain an isometric matrix, that is, 
 =
p
1� a2, � = �
=a

and � = f1 + �2(C 0D)2g�1=2. To guarantee minimality it is further assumed

that C 0D 6= 0. The corresponding isometric image representations are given by

Ĝ(z) = �D+ �
�(C 0D)C(z � a)�1, and the projection operators by P = Ĝ Ĝ
�
.

If a " 1 then 
 ! 0; � ! 0 and � ! 1, so that the pointwise limit of Ĝ(z) is D

for z 6= 1 and Ĝ(1) converges to D � 2(C 0D)C. If the corresponding sequence

of systems would have a limiting point, say with projection operator P0, then it

should hold that kP0 � Pk1 ! 0 for a " 1. As P0(z) is continuous on the unit

circle the only candidate for P0 is given by DD0, but as P (z) is also continuous
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and P (1) 6! DD0 for a " 1 it follows that no subsequence can converge to a

system in B. 2

In our analysis not only the distance between two systems, but also the distance

between two sets of systems is of relevance. If B1 and B2 are two compact

subsets of B, then the Hausdor� distance between these sets is de�ned as

dH(B1;B2) := maxf�(B1;B2); �(B2;B1)g: (17)

where �(B1;B2) := supB12B1
infB22B2

d(B1;B2).
In order to investigate continuity properties we also need a topology on the

set of spectral densities. We use the metric de�ned by

d(�1;�2) = k�1��2 k1 := sup
�2[��;�]

�maxf�1(e
�i�)��2(e

�i�)g (18)

Under Assumption A4 the spectra are bounded on the unit circle, so that this

is a well-de�ned metric.

4.2 Continuity

We consider the relation between observed spectra and identi�ed factor be-

haviours. For given spectrum �, complexity (m;n) and noise bound �, we

denote by B(�; �;m; n) � B(m;n) the set of all behaviours of factor models

w = ŵ+ ~w satisfying the conditions that the factor behaviour has m inputs and

n states and that the noise process has norm k ~w k � �. So this corresponds to

the factor scheme with bounded noise. The set B(�; �;m; n) depends of course

on the measure of �t and on the possible condition of orthogonality. As the

results in this section hold true for all the four corresponding factor schemes,

we will make no explicit distinction between them. Systems in B(�; �;m; n) are

called feasible for the data � and the speci�ed complexity and �t. The feasibility

of a given behaviour can be checked by means of the results in Theorem 5.

Proposition 12

(i) The set of feasible systems B(�; �;m; n) depends on whether orthogonal-

ity is imposed or not, but it does not depend on whether observability is

imposed or not.

(ii) The set B(�; �;m; n) is closed in B(m;n), but in general not in B.

(iii) If B 2 B(�; �;m; n) has �t strictly better than �, then it is an inner point

of B(�; �;m; n).

Proof. (i) This follows from Theorem 5.

(ii) The set B(�; �;m; n) is closed in B(m;n) by Proposition 22 in the ap-

pendix, but not in B as follows from Proposition 11(i).
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(iii) This is immediate from Proposition 22. 2

In order to use the Hausdor� metric (17) we next formulate a su�cient condition

for compactness. We call a state dimension n minimal for given (�; �;m) if there

exists a feasible model of complexity (m;n) but not one of complexity (m;n0)

with n0 < n, that is, if B(�; �;m; n) 6= ; and B(�; �;m; n0) = ; for all n0 < n. If

we are only interested in Pareto optimal models, then this minimality condition

can be imposed without loss of generality.

Proposition 13 If n is minimal for (�; �;m) then the set of feasible systems

B(�; �;m; n) is compact.

Proof. We prove this in terms of isometric state space representations. For

this purpose we �rst describe this parametrization in some more detail. By

de�nition, systems in B(m;n) are controllable and so can be represented by an

isometric state model that satis�es (5). Let �(m;n) � R(n+q)�(n+m) be the set

of all such minimal isometric system matrices and let � =
Sq

m=0

S1
n=1�(m;n).

On this set we de�ne the metric d(�1; �2) = k�1 � �2k1 if (m1; n1) = (m2; n2)

and d(�1; �2) = 3 otherwise. It is easily veri�ed that this is a metric on � and

that �(m;n) is open in �. That the parametrization of B by � is continuous

can be seen as follows. Let �k ! �0, then for k su�ciently large there holds

(mk; nk) = (m0; n0). As �0 is a minimal isometric representation it follows that

A0A
0
0 + C0C

0
0 = I with (A0; C0) observable, so that A0 has all its eigenvalues

strictly within the unit circle. Then the mapping from (A;B;C;D) to the

isometric image representation Ĝ = D+C(zI�A)�1B is continuous in �0, and

so d(Bk;B0) = k Ĝk Ĝ
�

k � Ĝ0 Ĝ
�

0 k ! 0 for k !1.

Because the parametrization is continuous, in order to prove thatB(�; �;m; n)

is a compact subset of B it su�ces to prove that the corresponding set of pa-

rameters denoted by �0 � � is compact. As �(m;n) � � is open it su�ces

to prove that �0 is a compact subset of �(m;n), or also that it is a closed and

bounded subset of the Euclidean space R(n+q)�(n+m). Because of the isometry

condition boundedness is evident, so that it remains to prove the closedness of

�0. We prove this by contradiction.

So suppose that there is a sequence of systems Bk 2 B(�; �;m; n) with

minimal isometric represenations (Ak; Bk; Ck; Dk) ! (A0; B0; C0; D0) so that

the system B0 corresponding to these limit parameters does not belong to

B(�; �;m; n). Then A0 has eigenvalues on the unit circle. Indeed, if this were

not the case then the parametrization would be continuous in (A0; B0; C0; D0)

and hence, by Proposition 22, it would follow that d(�;B0) = limd(�;Bk) � �.

As B0 has m inputs and n is assumed to be minimal for (�; �;m) it would

follow that B0 2 B(�; �;m; n), contradicting our assumption. Now state direc-

tions corresponding to eigenvectors of unit eigenvalues of A0 are not observable,

because of the isometry condition A00A0 + C 00C0 = I . So the state space for B0
can be reduced by deleting such unobservable directions. Let (A;B;C;D0) be
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the restriction of (A0; B0; C0; D0) to the observable subspace, so that A has all

its eigenvalues strictly within the unit circle. Because the two representations

describe the same system B0 with the same driving variables, it follows that

G0(z) := D0 + C(zI � A)�1B = D0 + C0(zI � A0)
�1B0 pointwise on the unit

circle, with the exception of the eigenvalues fe�i�j ; j = 1; � � � ; rg of A0. More-

over, as G0 is the pointwise limit of Gk = Dk+Ck(zI�Ak)
�1Bk it follows that

G0 is an isometric image representation of B0, with m inputs and at most n� r

states.

We consider �rst the factor scheme without orthogonality and with the

uniform norm. Using the notation (14), we obtain from Theorem 5(i) that

the �t of the system in this case is given by d(�;B0) = k ~�1=2
0 k1 where

~�0 = (I � G0G
�
0) �(I � G0G

�
0). As n is minimal for (�; �;m) and B0 has

less than n states, it follows that sup�2[��;�] �maxf~�0(e
�i�)g > �2. Because

of the continuity of G0(z) and �(z) on the unit circle there exists an " > 0

so that also sup�2� �maxf~�0(e
�i�)g > �2 where � = f� 2 [��; �]; j� � �j j �

" for all j = 1; � � � ; rg. As Gk converges pointwise to G0 on the compact set

� this implies that for k su�ciently large fd(�;Bk)g2 � sup�2� �maxf(I �
GkG

�
k) �(I �GkG

�
k)(e

�i�)g > �2, but this contradicts that Bk 2 B(�; �;m; n).

This proves compactness for the factor scheme without orthogonality and with

the uniform norm.

The result for the orthogonal factor scheme with uniform norm follows in a

similar way by using Theorem 5(ii). For the mean squares norm the reasoning

is similar. Under the assumptions as before there would exist an " > 0 such

that 1
2�

R
�
tracef~�0(e

�i�)gd� > �2, and as Gk converges uniformly to G0 on the

compact set � this gives a contradiction as before. 2

The set of feasible systems does in general not depend in a fully continuous

way on the observed spectrum. Therefore we use the weaker concept of upper

semicontinuity. We call the set of feasible systems B(�; �;m; n) upper semi-

continuous in (�; �) if for all (�k; �k) ! (�; �) and for Bk 2 B(�k; �k;m; n)

with Bk ! B0 there holds that B0 2 B(�; �;m; n). As the sets of feasible

systems are in general not compact, upper semicontinuity is not equivalent

to the condition that �(Bk;B0) = supBk2Bk
infB02B0

d(Bk;B0) ! 0, where

Bk := B(�k; �k;m; n) and B0 := B(�; �;m; n). The following continuity re-

sults for feasible systems are valid for all factor schemes, that is, for the mean

squares and uniform �t and for the cases with and without orthogonality con-

straint. We use the notation B(�; �;m; n) for the set of all feasible systems for

(�; �) with m inputs and at most n states.

Proposition 14

(i) The set B(�; �;m; n) is upper semicontinuous in (�; �).

(ii) If n is minimal for (�; �;m) then B(�; �;m; n) is upper semicontinuous

in (�; �).
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(iii) Let n be minimal for (�; �+�;m; n) for some � > 0 and let B(�; �;m; n)

be non-empty, then �(B(�k; �k;m; n);B(�; �;m; n)) ! 0 if (�k; �k) !
(�; �).

(iv) Under the conditions in (iii), B(�; �;m; n) is continuous from the right in

�.

Proof. (i) Let (�k; �k) ! (�; �) and Bk 2 B(�k; �k;m; n) with Bk ! B, then
we have to prove that B 2 B(�; �;m; n). That B has m inputs and at most

n states follows from the fact that B(m;n) is closed, see Proposition 11(ii).

Further, Proposition 22 in the appendix implies that d(�k;Bk)! d(�;B), and
this implies that d(�;B) � � so that B 2 B(�; �;m; n).

(ii) This corresponds to the situation in (i), where now Bk all have complexity
(m;n). If Bk ! B then B 2 B(m;n) and d(�;B) � �. As n is minimal for

(�; �;m) it follows that B 2 B(m;n), so that B 2 B(�; �;m; n).

(iii) In a �rst step we prove that n is minimal for (�k; �+�;m) for all k

large enough. If this were not true then there exist n0 < n and in�nitely many

indices k so that B(�k; �+�;m; n0) is not empty. For such indices let Bk 2
B(�k; �+�;m; n0) have minimal isometric representation (Ak; Bk; Ck; Dk), then

the isometry condition implies that this sequence has a limit point, denoted by

(A0; B0; C0; D0). Let B0 be the behaviour corresponding to these parameters,

then B0 2 B(m;n00) with n00 � n0. As in the proof of Proposition 13, the

isometric kernel representations ~Gk converge pointwise on the unit circle to the

kernel representation ~G0 of B0, except for a �nite number of points. This implies
that d(�0;B0) � �+�, which contradicts the minimality of n for (�; �+�;m).

So n is minimal for (�k; �+�;m) and therefore B(�k; �k;m; n) is compact for

k su�ciently large.

Now suppose that there exists an " > 0 and a sequence of systems Bk 2
B(�k; �k;m; n) so that d(Bk;B) � " for all B 2 B(�; �;m; n). As d(�k;Bk) � �k
and (�k; �k)! (�; �) it follows from Proposition 22 in the appendix that for k

su�ciently large Bk 2 B(�; �+�;m; n). As n is minimal for (�; �+�;m) this is

according to Proposition 13 a compact set, so the sequence Bk contains a limit

point, say B0 2 B(�; �+�;m; n). It follows from Proposition 22 that d(�;B0) �
� and thus B0 2 B(�; �;m; n). From the assumption that d(Bk;B) � " for all

B 2 B(�; �;m; n) this implies that d(Bk;B0) � ", but this contradicts the fact

that B0 is a limit point of the sequence Bk.
(iv) Let �k # �, then according to Proposition 13 the sets B(�; �k;m; n) are

compact for k su�ciently large. It follows from the result in (iii) that there holds

�(B(�; �k;m; n);B(�; �;m; n)) ! 0, and as B(�; �;m; n) � B(�; �k;m; n) it is

trivial that �(B(�; �;m; n);B(�; �k;m; n)) = 0. This proves convergence in the

Hausdor� metric. 2

It is also of interest to consider the continuity of Pareto optimal models. Conti-

nuity in this respect is connected with robustness, in the sense that small per-

turbations in the data should lead to a small perturbation of optimal models.
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We analyse this for models that optimize the �t under a complexity constraint.

For given spectrum � we denote by B�(�;m;n) the set of behaviours of opti-

mally �tting factor models with m inputs and n states, and by B
�
(�;m;n) the

set of optimally �tting behaviours with m inputs and at most n states.

Proposition 15

(i) The set B
�
(�;m;n) is upper semicontinuous in the spectrum �.

(ii) Let �� be the optimal �t in B(m;n) and let n be minimal for (�; ��+�;m)

for some � > 0, then �(B�(�k;m;n);B�(�;m;n))! 0 for �k ! �.

Proof. (i) Let �k ! � and let Bk be an optimal behaviour in B(m;n) for �k

with Bk ! B for k ! 1, then we have to prove that B is optimal for �. As

B(m;n) is closed it follows that B 2 B(m;n), and if this limit system is not

optimal then there exists a system B0 2 B(m;n) so that d(�;B0) < d(�;B).
It then follows from Proposition 22 in the appendix that for k su�ciently large

also d(�k;B0) < d(�k;Bk), but this contradicts the optimality of Bk.
(ii) If this were not true then there exists an " > 0 and a sequence of systems

Bk 2 B�(�k;m;n) so that for all B 2 B�(�;m;n) there holds d(Bk;B) � ". Now

let B 2 B�(�;m;n), so that d(�;B) = �� and d(�k;B) � ��+�k with �k # 0 for
k ! 1. It then follows that d(�k;Bk) � ��+�k and hence d(�;Bk) � ��+�

for k su�ciently large. Because n is minimal for (�; ��+�;m) it follows that

B(�; ��+�;m; n) is compact, so that the sequence Bk has a limit point, say

B0 2 B(m;n). As d(Bk;B) � " for all B 2 B�(�;m;n) the same holds true

for B0, but this contradicts the fact that d(�;B0) = lim d(�k;Bk) = �� so that

B0 2 B�(�;m;n). 2

4.3 Consistency

Next we investigate the consistency of dynamic factor models when the spectrum

is estimated from observed data. In applications the spectrum of the observed

process will in general be unknown. Suppose that, apart from assumptions A1-

A4, the available information on the process consists of an observed time series of

length T . Let �T denote an estimator of the process spectrum � that is based on

this time series. In order to simplify the analysis we assume that the estimator is

strongly consistent, so that d(�;�T )! 0 almost surely for T !1. A strongly

consistent estimator can be obtained, for example, as follows. Let the observed

process have spectrum �(z) =
P1

k=�1R(k)z�k whereR(k) := Efw(t)w0(t�k)g
are the process covariances, and let R̂T (k) =

1
T

PT

t=k+1 w(t)w
0(t � k) be the

sample covariances.

Proposition 16 Under weak conditions on the data generating process, a strongly

consistent estimator of � is given by �T (z) =
P

jkj�kT
R̂T (k)z

�k, where kT =

log(T ).
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Proof. The estimation error is bounded by

k�(z)��T (z)k1 � (2kT + 1) sup
jkj�kT

kR(k)� R̂T (k)k+
X

jkj>kT

kR(k)k:

The second term converges to zero by Assumption A4, and the �rst term con-

verges to zero almost surely under weak conditions. A su�cient condition is

that the spectrum � is rational, but the result holds also true for a broad class

of nonrational spectra. For these results we refer to [13, Theorems 5.3.2 and

7.4.3]. 2

In the following let B0 := B(�; �;m; n) be the class of feasible models and

B
�
0 � B(m;n) the set of optimal models of complexity (m;n), that is, with

optimal �t in this class. By B0 and B
�

0 we denote the sets of feasible and

optimal models respectively with m inputs and at most n states. Further let

BT := B(�T ; �;m; n) be the set of feasible models and B�
T the set of optimal

models of complexity (m;n) for the estimated spectrum �T , and let BT and B
�

T

be the sets of feasible and optimal models respectively withm inputs and at most

n states. These are random sets as they depend on the observed time series.

The next two theorems state consistency properties for feasible and optimal

models, where it is assumed that the estimator �T is strongly consistent.

Theorem 17

(i) Behaviours with better �t than the noise bound are estimated consistently,

that is, if a factor model has behaviour B of complexity (m;n) and �t �

then for �0 > � there holds almost surely that B 2 B(�T ; �
0;m; n) for

T !1.

(ii) The sample estimator of the set of feasible behaviours in B(m;n) is upper

semiconsistent, in the sense that fBT 2 BT ;BT ! B0g ) fB0 2 B0g
holds almost surely, that is, the set of data with this convergence property

has probability one.

(iii) If n is minimal for (�; �+�;m) for some � > 0, then the set of fea-

sible sample behaviours in B(m;n) converges to a subset of the feasible

behaviours for the process, in the sense that �(BT ;B0)! 0 almost surely

for T !1.

Proof. (i) This evident as �T ! � almost surely and d(�;B) is continuous, see
Proposition 22 in the appendix.

(ii) This follows from Proposition 14(i).

(iii) This follows from Proposition 14(iii). 2

Theorem 18
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(i) The sample estimator of the set of optimal behaviours in B(m;n) is upper

semiconsistent, in the sense that fBT 2 B
�

T ;BT ! B0g ) fB0 2 B
�

0g
almost surely.

(ii) If the process spectrum has a unique optimal factor behaviour B�0 of com-

plexity (m;n) and if the in�mum of the �ts of models in B(m;n � 1) is

strictly larger than the �t of B�0, then this behaviour is estimated consis-

tently in the sense that dH(B
�
T ; fB�0g)! 0 almost surely for T !1.

Proof. (i) This follows from Proposition 15(i).

(ii) As it is given that B�
0 = fB�0g is a singleton it follows that �(fB�0g;B�T ) =

infB2B�

T
d(B�0;B) � supB2B�

T
d(B�0;B) = �(B�

T ; fB�0g), so it su�ces to prove

that the last expression converges to zero. Let the optimal �t for �T among

models of complexity (m;n) be given by ��T and let ��0 = d(�;B�0), then it

follows from d(�T ;B�0) ! ��0 that ��T ! ��0 almost surely. Further, because of

the assumption that inffd(�;B);B 2 B(m;n � 1)g > ��0, it follows that n is

minimal for all (�; ��0+�;m) with � � 0 su�ciently small, and the same holds

then true almost surely for (�T ; �
�
T +�;m) if T ! 1. Then for T su�ciently

large B�
T is a closed subset of the compact set B(�T ; �

�
T +�;m; n), so that B�

T

is compact. This means that the Hausdor� distance is well-de�ned. Further, as

(�T ; �
�
T )! (�; ��0) almost surely it follows from Proposition 14(iii) that

�(B�
T ; fB�0g) = �(B(�T ; �

�
T ;m; n);B(�; ��0;m; n))! 0 almost surely.

2

This means that, under the above conditions, the feasible and optimal �nite

sample models are in the limit also feasible and optimal for the data generating

process. However, possibly not all feasible and optimal models are identi�ed in

this way.

4.4 Low Noise Consistency

We conclude our analysis by considering another kind of consistency, inspired

by the concept of low noise as de�ned in [15]. This is based on the idea that an

identi�cation method which aspires to deal with noisy data must, as a minimal

requirement, function well when dealing with data having low noise content.

Let the observed process be given by w = ŵ0+ ~w0, where the latent process

ŵ0 is �xed and has behaviour B0 of complexity (m0; n0) and where the noise

process ~w0 has norm �0. Low noise consistency corresponds to the condition

that the factor behaviour B0 is identi�ed uniquely if the noise vanishes in the

limit. The following result shows that this holds true, provided that the factor

scheme is speci�ed correctly.

Proposition 19
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(i) If the factor scheme, noise bound and complexity have been speci�ed cor-

rectly then the factor behaviour is identi�ed, that is, if � � �0, m = m0

and n = n0 then B0 2 B(�; �;m; n). If orthogonality is imposed but the

data generating process does not satisfy this property, then the system need

not be identi�ed.

(ii) Correctly speci�ed factor schemes are low noise consistent, that is, if �0 �
� # 0 then the set of feasible behaviours B(�; �;m; n)! fB0g (in the sense

of the Hausdor� metric) for (m;n) = (m0; n0), and B(�; �;m; n) ! ; if

m < m0 or m = m0; n < n0. Consistency is in general lost if orthogonality

is imposed but the data generating process does not satisfy this property.

Proof. (i) This is evident from the de�nition of B(�; �;m; n).

(ii) The process decomposition w = ŵ0+ ~w0 induces a corresponding spec-

tral decomposition � = �̂0+ ~�0+�c+�c
0 where �̂0 is the spectrum of the

latent process ŵ0, ~�0 of the noise ~w0, and �c is the cross spectrum between ŵ0

and ~w0. As the latent process ŵ0 is �xed and the noise converges to zero, it

follows that k�� �̂0 k1 = k ~�0+�c+�c
0 k1 ! 0.

First we consider the factor scheme without orthogonality constraint. Then

the mis�t function d(�̂0;B) is also well-de�ned for the singular spectral density

�̂0, i.e., if P is the projection onto B and ~� = (I�P ) �̂0(I�P ) then d(�̂0;B) =
k ~�1=2 k and B(�̂0; �;m; n) = fB 2 B(m;n)j d(�̂0;B) � �g. It can easily be

shown, along the lines of the proof of Proposition 22 in the appendix, that

d(�;B)! d(�̂0;B�) if �! �̂0 and B ! B�. In addition there holds��d2(�;B)� d2(�̂0;B)
�� � ck�� �̂0 k1

where c = 2 for the uniform norm and c = 2�q for the mean squares norm.

The above result follows from the proof of Lemma 21 in the appendix and the

inequality k(I � P )(�� �̂0)(I � P )k1 � k�� �̂0 k1.
We now �rst show that for m < m0 or m = m0, n < n0, the in�mum of

the mis�ts d(�̂0;B) over the set of behaviours B(m;n) is strictly larger than

zero. If this were not true, then there would exist a sequence of behaviours

Bk 2 B(m;n), with corresponding projections Pk, such that d(�̂0;Bk)! 0. As

in the proof of Proposition 13, it follows that there exists a subsequence k(l)

and a behaviour B� 2 B(m;n0); n0 � n, with a corresponding projection P�,

such that Pk(l)(z)! P�(z) for l !1, pointwise on the unit circle except for a

�nite number of points. Then d(�̂0;Bk) ! 0 implies that d(�̂0;B�) = 0, and

this means that B0 � B�. This contradicts the assumption that the complexity

(m;n) is smaller than the complexity (m0; n0) of B0. We conclude that the

in�mum of mis�ts of models of complexity m < m0 or m = m0, n < n0 is given

by a strictly positive number ��. Since k�� �̂0 k1 converges to zero for � # 0,
there exists a �+ > 0 such that ck�� �̂0 k1 < �2� for � � �+. By the above

considerations and inequalities, there holds for � � �+ that

d2(�;B) � d2(�̂0;B)� ck�� �̂0 k1 > �2�� �2� = 0:
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This shows that B(�; �;m; n) is empty for m < m0 and for m = m0, n < n0 if

� � �+.

Now suppose that the complexity has been speci�ed correctly. In this case

B0 2 B(�; �;m0; n0) so that �(fB0g;B(�; �;m0; n0)) = 0. Further, from the

foregoing it follows that n0 is minimal for (�̂0; �+;m0), as B(�̂0; �+;m0; n) = ;
for n < n0 andB(�̂0; �+;m0; n0) is not empty, and alsoB(�̂0; 0;m0; n0) = fB0g.
It follows from Proposition 14(iii) that �(B(�; �;m0; n0); fB0g)! 0.

Next we consider the factor scheme with orthogonality. By imposing the

orthogonality constraint the sets B(�; �;m; n) in general become smaller. Since

B0 2 B(�; �;m0; n0) for �0 � �, the above results imply thatB(�; �;m; n)! ; if
the complexity (m;n) is smaller than (m0; n0) and that B(�; �;m0; n0)! fB0g.

That consistency is lost if orthogonality is imposed but the data generating

process is not orthogonal is evident from Theorem 5(i), as this shows that in

this case the mis�t �0 can in general not be obtained in the class of orthogonal

models in B(m;n). 2

4.5 Illustration

We will illustrate the foregoing results for static factor models, as in this case

more explicit characterizations can be obtained. We will not further discuss the

dynamic system example of Sections 2.4 and 3.3, as the consistency analysis for

dynamic factor models will be the topic of another paper.

So assume that the observed proces w is white noise, and let � denote the

covariance matrix of w. As we have seen in Section 3.3.1, we can without loss

of �t restrict ourselves to static relations. The set of all static systems B(m; 0)

is isomorphic to the set of all m-dimensional linear subspaces of Rq . Isometric

kernel representations of static systems are isometric matrices ~G 2 Rq�m.

It can easily be seen that B 2 B(�; �;m; 0) if and only if the isometry
~G satis�es the following inequalities: for the non-orthogonal factor scheme,

trace( ~G
0
� ~G) � �2 for the mean squares norm and ~G

0
(���2I) ~G � 0 for the uni-

form norm, and for the orthogonal factor scheme trace(� ~G( ~G
0
� ~G)�1 ~G

0
�) �

�2 and ~G
0
(�2��2�) ~G � 0 respectively. From this characterization it follows

that the sets B(�; �;m; 0) of static systems are always compact.

Let �1 > �2 > : : : > �q > 0 denote the eigenvalues of �, and let � =

�̂m+ ~�m be the principal component decomposition of � with m factors as

in (15). The set B(�; �;m; 0) is nonempty if and only if k ~�m k � �, that is,

�
1=2
m+1 � � for the uniform norm and (�m+1 + : : : + �q)

1=2 � � for the mean

squares norm. Furthermore one can show that the sets B(�; �;m; 0) depend

continuously on (�; �) with the exception of points where k ~�m k = �.

Let �T denote a strongly consistent estimator of �. If k ~�m k < � then

B(�T ; �;m; 0) is a strongly consistent estimator of B(�; �;m; 0). The princi-

pal component model of �T is a strongly consistent estimator of the principal
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component model of �, so that the Pareto optimal models are estimated con-

sistently.
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5 Conclusion

Dynamic factor models decompose an observed process in terms of an under-

lying latent component and additional noise. The variables are treated in a

completely symmetric way, and no assumptions on inputs and outputs are re-

quired. The latent process has a singular spectrum as it satis�es deterministic

dynamic relationships. This means that the factor behaviour consists of a lin-

ear dynamical system. In particular, the latent process has less free variables

than the observed process. Depending on the chosen factor scheme, several

interpretations of the noise process are possible. If the noise can be assumed

to be uncorrelated with the factor process this is called the orthogonal factor

scheme. This is the usual assumption in the classical models of factor analysis.

In other situations it is more natural to consider the latent process as an approx-

imation of the observed process and to assume that the factor components are

constructed from the observations. This is called the observable factor scheme.

Within this framework we investigated the representation of dynamic factor

models and de�ned notions of complexity and goodness of �t. Concerning the

identi�cation of factor models we presented characterizations of Pareto optimal

models and we derived results on consistency, both in case of observed data and

in case of low noise.

An advantage of our approach is that it deals explicitly with the symmet-

ric modelling of observed data by means of dynamic stochastic models. Other

contributions in symmetric system modelling have been developed in the be-

havioural identi�cation of systems and in the structural analysis of factor mod-

els. In a sense, our approach can be seen as an extension of these two frame-

works. It enriches the deterministic behavioural framework with a stochastic

analysis, and it extends the traditionally structure oriented analysis of factor

models to a more empirical modelling setting.

Several questions deserve further investigation. Of special interest is the

analysis of identi�cation procedures within this framework. Another issue is

the incorporation of prior knowledge, for example concerning the input-output

structure of the model. A further analysis of the probabilistic structure of factor

models is needed in order to develop statistical test procedures, for example to

estimate the complexity of factor models from observed data.

36



6 Appendix

Lemma 20 Let A;B 2 C
q�q be two positive semide�nite matrices and let

�1(A) � � � � � �q(A) � 0 and �1(B) � � � � � �q(B) � 0 be the eigenvalues

of A and B respectively. Then

(i) j�i(A)� �i(B)j � kA�Bk1
(ii) For every unitary matrix U 2 Cq�m, U�U = I, there holds

trace(UU�AUU�) = trace(UAU�) � �m+1(A) + � � ��q(A)
�max(UU

�AUU�) = �max(UAU
�) � �m+1(A)

The lower bound is reached if the columns of U form a basis for the

eigenspace of A corresponding to the q �m smallest eigenvalues.

Proof. See [12, Corollary 8.1.3 and Theorem 8.1.2]. 2

Lemma 21 Let �k be a sequence of spectral densities that converges to �0 in

the sense that k�k��0 k1 ! 0. Then

(i) k�1=2
k

k ! k�1=2
0 k.

(ii) If �0 is positive de�nite, then �k is positive de�nite for all k su�ciently

large and k��1k ���10 k1 ! 0.

Proof. (i) By Lemma 20 j�i(�k(z)) � �i(�0(z))j � k�k ��0 k1 pointwise on

the unit circle, so that

jk�1=2
k

k22 � k�
1=2
0 k22j = j

H
jzj=1

trace(�k(z)��0(z))dzj
� 2�qk�k ��0 k1

jk�1=2
k

k21 � k�1=2
0 k21j = j supjzj=1 �max(�k(z))� supjzj=1 �max(�0(z))j

� 2k�k��0 k1

(ii) By the assumption �0 > 0 and the result in Lemma 20 for the eigenvalues

of �k, it follows that k��10 k1 = 1=finfjzj=1 �min(�0(z))g and k��1
k
k1 are

bounded. The result then follows from

k��1k ���10 k1 = k��1k (�0��k) �
�1
0 k1 � k��1k k1k(�0��k)k1k��10 k1

2

Proposition 22 The mis�t function d(�;B) is continuous in (�;B) for all

positive de�nite spectral densities �.
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Proof. Let �k ! �0 > 0 and Bk ! B0 be convergent sequences of spectral

densities and behaviours respectively. The corresponding isometric kernel rep-

resentations of Bk, B0 are denoted by ~Gk and ~G0 respectively. The optimal noise

spectra, given in Theorem 5, corresponding to the spectral densities �k, �0 and

the behaviours Bk, B0 are denoted by ~�k and ~�0 respectively. By Lemma 21 it

su�ces to show that k ~�k� ~�0 k1 ! 0.

For the case without orthogonality the noise spectra are given by ~�k =
~Gk

~G
�

k �k
~Gk

~G
�

k and ~�0 = ~G0
~G
�

0 �0
~G0

~G0, in which case k ~�k� ~�0 k1 ! 0 is

evident.

For the case with orthogonality, let �Gk = ~Gk
~G
�

k
~G0, then k �Gk � ~G0 k1 �

k ~Gk
~G
�

k� ~G0
~G
�

0 k1k ~G0 k1 ! 0. The noise spectra for this factor scheme are

given by ~�0 = �0
~G0( ~G

�

0 �0
~G0)

�1 ~G
�

0 �0 and ~�k = �k
~Gk( ~G

�

k �k
~Gk)

�1 ~G
�

k �k =

�k
�Gk( �G

�
k �k

�Gk)
�1 �G�k �k, where the last equality follows form the fact that

~G
�

k
~G0 ! I so that this is invertible for k su�ciently large. The result now

follows from Lemma 21. 2
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