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SUMMARY

This paper revisits the real variable fundamental solution approach to the Boundary Integral Equation (BIE)
method in two-dimensional orthotropic elasticity. The numerical implementation was carried out using
quadratic isoparametric elements. The strong and weakly singular integrals were directly evaluated using
Euler’s transformation technique. The limiting process was done in intrinsic coordinates and no separate
numerical treatment for strong and weak singular integrals was necessary. For strongly singular integrals
a priori interpretation of the Cauchy principal value is not necessary. Two problems from plane stress and
strain are presented to demonstrate the numerical efficiency of the approach. Excellent agreement between
BEM results and exact solutions was obtained even with relatively coarse mesh discretizations. Copyright ©
2000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Boundary Integral Equation (BIE) techniques are well established in solving boundary value prob-
lems. An important feature of the BIE method is that instead of attempting to find an approximate
solution for the governing differential equation throughout the relevant solution domain, the govern-
ing equation is converted into an integral form, often involving only integrals over the boundary of
the solution domain. Consequently, only the boundary has to be discretized in order to carry out the
integrations. The dimensionality of the problem is effectively reduced by one: a three-dimensional
volume problem becomes a two-dimensional surface problem, and so on. Also, because the interior
of a solution domain is not discretized, there is less approximation involved in representing the
solution variables. :

The literature available on BIE implementation for isotropic elasticity is extensive [1-3]. Com-
paratively recently, various approaches to the numerical implementation of BIE in anisotropic
elasticity have been reported. Broadly they can be grouped into two categories. In the first, the
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Figure 1. Exclusion of the singular point P by a vanishing neighbourhood S..

isotropic fundamental solution (Kelvin’s solution) is still used, resulting in a volume integral term
associated with the anisotropy of the material, which is numerically treated by discretizing the
domain into internal cells [4]. In the second category, anisotropic fundamental solutions similar to
Kelvin’s solution for isotropic elasticity are used. These can be based on functions of either the
real or the complex variable.

Rizzo and Shippy [5] first used the two-dimensional anisotropic fundamental solution presented
by Green [6] in a real variable formulation. Constant elements were used to model the geometry
and approximate the field variables. Mahajerin and Sikarskie [7] used BIE based on real variables,
with constant elements, for calculating stress concentration factors in double-lap joints. Vable ez al.
[8] and Benjumea et al. [9] reported further applications of the real variable approaches. Snyder and
Cruse [10] were the first to use the complex variable anisotropic fundamental solution. This spurred
further work based on the complex variable fundamental solutions [4, 11—13]. From the literature
review it is clear that, the few papers which have reported on the numerical implementation of
BIE based on real variables have, at best, used line elements.

As far as the evaluation of singular integrals in BEM is concerned, the earliest approach for
calculating the strongly singular integrals has been the use of the rigid-body motion technique [14]
that indirectly gives the sum of these integrals and the free term coefficients. Another approach has
been to regularize the singular integral equations in which the strength of the highest singularity
is reduced by order one. The literature available on regularization techniques is too extensive
to discuss here. For weakly singular integrals, numerical techniques, including special weighted
quadratures and mapping methods have been reported in the literature. Tanaka e al. [15] have
summarized the regularization procedures for both singular and hypersingular integral equations that
have appeared in literature and therefore no attempt is made here to discuss these techniques. It is
evident that mathematical similarity often exists in these techniques. In a series of papers, Guiggiani
et al. [16-19] have tried to evaluate the strongly singular and hypersingular integrals directly. In
these papers the original boundary is recast with an exclusion zone e, and a spherical boundary
bump S, (Figure 1). Integration over S, is performed analytically, independent of discretization.
For calculating the limit of the integral over I'—e,, the exclusion zone is mapped on to the intrinsic
co-ordinate space and the singular integrands are expanded into Laurent series about the singular
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point. The singular integrals in the series expansion are evaluated analytically with canceling of
the divergent terms, and the limit is taken.

The purpose of this paper is to report on an application of the BIE implementation for orthotropic
elasticity with potential application for complex problems in laminated plates and structures. This
has been achieved by: (a) computation of weak and strong singular integrals using a unified
integration module based on Euler’s transformation technique; (b) applying this approach to typical
plane stress and strain problems; (c) assessing the numerical efficiency of the new approach using
constant, linear and quadratic elements.

2. THE BIE METHOD FOR PLANE ORTHOTROPIC ELASTICITY

The development of the boundary element method for orthotropic materials under plane stress
follows the same steps as in isotropic elasticity [1-3]. It is based on unit load solutions in an
infinite body, known as the fundamental solutions. Use of these with the Betti-Rayleigh reciprocal
work theorem and carrying out the appropriate mathematical limiting operations results in the BIE
for the displacements at an interior point p due to tractions and displacements on the surface at
a boundary point Q. In the absence of body forces it can be written as

uk(P)+/FTkz(p,Q)uk(Q)dF(Q)=/FUu(p,Q)tk(Q)dF(Q) (1)

where u(p) are the displacements in the x; directions at the interior point p, ux(Q) and #(Q) are
the displacements and tractions respectively at the boundary point Q. The kernel functions Uy and
Tw are unit load solutions in an infinite domain. For 2-D orthotropic elasticity, explicit expressions
for the kernel functions, based purely on real variables can be found in Rizzo and Shippy [5],
following earlier work by Green [6]. It is well known that the first integral in Equation (1) has
1/r singularity and the second integral has log 1/r singularity when p approaches the boundary of
the domain.

Because of the singular nature of the fundamental solutions, Equation (1) has to be set up in
a limiting form to obtain the boundary integral equation suitable for numerical implementation.
Assuming the body can be represented as shown in Figure 1 with the point P (which is really
a boundary point) as an internal point surrounded by part of a spherical surface S, of radius e,
Equation (1) can be written as

ur(P) + / Tu(P, Q)ur(Q) dI(Q) = / Un(P, Q)1(Q)dI(Q) (2)
T'—e,+S, I'—e;+S;

As discussed in References [16, 17], the surrounding zone S, need not be a spherical surface.
To arrive at the boundary integral equation, the limit of Equation (2) has to be found as ¢ — 0.
If the integrals in Equation (2) are broken into summation of integrals over the regions I' — ¢,
and S; and their limits as lim,_,, are studied, it can be shown that the limit quantity which often
needs special treatment is

I=lim | Tu(P,Qu(Q)dr(Q) 3)

I'—e;

As usual if a boundary element discretization procedure is adopted, both the integrand and the
limiting process have to be translated from the Euclidean space into the intrinsic co-ordinate (&)
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space. This translation procedure can be found in Guiggiani’s works [16, 17]. In the case of the
singular point P belonging to two quadratic boundary elements, the corresponding exclusion zones
for them can be denoted as e! and e2. These zones can be mapped onto the intrinsic co-ordinate
space. Denoting their lengths in the intrinsic co-ordinate space as a;(¢) and ay(e), the final form
of Equation (3) in the intrinsic co-ordinate space can be written as

1 1—oi(e)
I=tim / Ty(=1, ONUEV(E) dE + / Ty(1, ENAE(E) dé @)
—1402(¢)

e—0 —1

where J(&) is the Jacobian. The quantities o,,(¢) can be expanded in a Taylor series in terms of
€ as

om(&) = eBn(n) + 0(¢>) (5)

where m=1,2, and B,(n)=1/J"(n) and n=1 for m=1, = — 1 for m=2.

As shown by Guiggiani [16, 17], since the singularities are of order 1/r, only one term is
required in the Taylor series expansion.

Returning back to Equation (2), it can be easily observed that the other limit integral with a
singular kernel is

I=lim | Uu(P.OW(Q)N(Q) ©)
—e,

Since the fundamental solution Uy has logarithmic (weak) singularity when the source point P
approaches the field point, the integral exists in the ordinary Riemann sense even though the
integrand is not defined at the singular point. However because of the singular nature, numerical
evaluation of these integrals often needs special treatment. In this work these integrals have been
treated similarly to the strongly singular integrals from a computational point of view. Hence, the
integral in Equation (6) can be written in the intrinsic co-ordinate space as

1—oq(e)

1
1=1im{ / Uy(— L, ENLE)T(E) dE + / mj(l,@Nc(f)J(«:)df} )

e—0 —14a(e) -1

3. DIRECT NUMERICAL EVALUATION OF THE LIMIT

The approach for evaluating the limit is the same for Equations (4) and (7). The procedure for
evaluating the limit in the strongly singular case, Equation (4), is outlined below. The limiting
integral is evaluated using Euler’s transformation technique as follows. Even though the individual
integrands on the right-hand side of Equation (4) are not defined at ¢ =0, the integral quantity /
exists and can be evaluated without evaluating the integrands at the singular point.

A sequence of values of ¢ decreasing in magnitude and approaching but not equal to zero are
chosen. These values can be represented as &,¢;,¢,...,8, and the corresponding finite integral
values can be represented as Iy, I;, b,...,I,. The limit of this sequence, lim, . I, is the desired
quantity, and is calculated as follows. If a new sequence is formed as

L —In,hL -4, . L, -1 (8)
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then
lim IL=L+ lim(, -Lhy+L—-0L+---+1,—1,_) 9)
n—00 n—00

The second part of the right-hand side can be approximated from 7 difference quantities using
Euler’s transformation technique (see the appendix) which gives an infinite sum through finite
sampling as

lim (11 —h+L—-L+---+1, —1_1)=EulerSum (]1 —hh+L—-5L+---+4+1, "In—l) (10)

Once the approximated infinite sum is calculated, it is back substituted into Equation (9) and
the limiting value of the integral is found.

4. COMPUTER IMPLEMENTATION

The above algorithm for obtaining the limit of a function has been implemented in the sym-
bolic computer program Mathematica 3.0 [20] as a standard AddOn Package. The corresponding
function is NLimit. All the limit integrals are evaluated directly using the Euler’s transformation
technique. No unbounded terms arise when the singular point P is taken to the boundary, since the
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Figure 2. Normalized tangential stress at the hole boundary (infinite plate with a circular hole
subjected to hydrostatic pressure).
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Figure 3. Deformed shape of one-quarter of the inner boundary with unit radius (infinite plate with a circular
hole) subjected to hydrostatic pressure).

unbounded divergent terms cancel each other out. The implementation of Euler’s transformation
technique for finding an infinite sum makes no assumptions regarding the strength of singularity
or dimensionality of the problem. Therefore, it can be extended to more complicated 3-D and
hyper-singular formulations. The number of finite terms to choose in the Euler’s transformation
technique depends on rate of convergence of the function for which the limit is to be evaluated.
In the present analysis, five terms were satisfactory.

The computing work was done on a Silicon Graphics Work Station running under Irix 6.0
operating system with an 195 MHz IP28 Iris processor with 128 Mbytes of main memory.

5. ILLUSTRATIONS

Two examples are presented for illustration purposes. In each case three different element types,
constant, linear and quadratic, have been studied for comparison purposes. In each problem, the
number of nodes was kept constant for the three element types, to give a realistic comparison
of numerical efficiencies. No units have been chosen but any consistent set could be used. The
stresses tangential to the boundary have been determined by differentiation of the shape functions
and use of the constitutive equations.

Example 1 deals with an infinite plate with a circular hole, at the boundary of which uniform
hydrostatic pressure is applied (Figure 2). The material properties are: E,=12; E,=0.6;
Gy =0.7; v, =0.071.
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Figure 4. Normalized maximum deflection vs length/span ratio (infinitely long plate under
sinusoidally distributed load).

The problem was solved using 12 quadratic boundary elements along the hole boundary. Fol-
lowing usual boundary element discretization, since the domain is infinite, the node numbering
was done in reverse (clockwise) direction. To compare the numerical efficiency of the present
approach with the results presented in the literature, the same problem was solved with 24 linear
and 24 constant elements.

Figure 2 compares the numerical results for hoop stress (ggy) with analytical results due to
Lekhntiskii [21]. The error was less than 0.5 per cent using quadratic elements, about 3 per
cent with linear elements and more than 10 per cent with constant elements. It may be noted
that although accurate results were obtained by Rizzo and Shippy [5], considerably more nodes
were used (24 nodes for one quarter of the hole). Figure 3 compares the deformed shape of
one quarter of the hole boundary (of unit radius) obtained using quadratic, linear and constant
elements with the exact elliptical one [21]. A’ and B’ represent the deformed positions of the
corresponding points A and B on the hole boundary. The average errors are 0.5, 3 and 10 per cent
respectively.

Example 2 considers an infinitely long (in the z direction) orthotropic plate simply supported
along the long edges (x =0, x = L) and subjected to sinusoidally distributed load at the top surface
of the form ¢(x) =g sin(nx/L). It was assumed to be under plane strain condition.

The material parameters for this problem were: E,=25 x 105, E,=E. = 10°; Gyy =
Gy, =0.5 x 10%; Gy, = 106; Vey = Vxz = V), = 0.25.
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Figure 5. Normalized transverse shear stress distribution at L/A =4 (infinitely long plate under
sinusoidally distributed load).

To compare the present results with Pagano’s 3-D elasticity solution [22] the stresses and dis-
placements were normalized in the form

100E,/°w(L/2,0)  _
2o S

where w is the maximum central deflection, 4 is the plate thickness and go is the maximum
amplitude of the sinusoidally distributed load at the top surface. This problem was solved using
eight quadratic elements for aspect ratio L/h =4, although more elements were added for higher
aspect ratios.

Figure 4 compares the normalized maximum deflection obtained by the present approach using
quadratic, linear and constant elements with the results given by the 3-D elasticity solution [22]
for different L/ ratios. The present BEM results with quadratic elements closely followed the
elasticity solution, less than 0.5 per cent error, while linear and constant elements gave errors 3
and 10 per cent, respectively.

and fxy:TxY(O’y) (11)

q90

w=

N
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Figure 5 presents the normalized shear stress across the depth of the plate, numerical solution
had an error of less than 0.5 per cent with quadratic elements. The constant elements were more
accurate (error 10 per cent) than the linear ones (error 25 per cent).

6. CLOSURE

In this paper Euler’s transformation technique has been successfully used to calculate the limits
of various integrals occurring when the general BIE method in orthotropic elasticity based purely
on real variables is numerically implemented using quadratic boundary elements. Two problems
from plane stress and strain were solved to demonstrate the numerical efficiency of the present
approach. A comparative study has been made of the BIE procedure using constant, linear and
quadratic elements in the discretization. For problems involving bending, in which a rapidly varying
traction field is prescribed as the boundary condition, it was found that both constant and linear
elements gave highly inaccurate results, while the error with quadratic elements was less than
1 per cent.

APPENDIX: SUMMATION OF AN INFINITE SERIES VIA FINITE SAMPLING
USING EULER’S TRANSFORMATION TECHNIQUE

Given any series
S=ay+a1+ay+az+---+a,_1+a,+ - (Al)
define x = a,/a,_1, so that the series can be re-written as
ap a az _10n—1 a
S=a0+x;+x2;+x3;3—+---+x” lx—::+x"x—;’+--- (A2)

where 7 is the number of finite terms used to give an approximation to the infinite sum. The series
can be re-written as

S=uy+ ux + x> + - - (A3)

where ug=ap, u;=ai/x, up=ay/x* and so on. Using the relationships Eug=u;, EZuo=u,,
E3ug=us..., then symbolically

S=(1+Ex+E%* 4+ uy= up (A4)

1—Ex

where E is a shift operator such that E f(x)= f(x+h) and 4 is the interval length. Using £ = A+1,
Equation (A4) can be re-written as

B U 1 Uy
S~1—x—xA~l—x ((1—(x/(l—x))A)) (A)

where A is the difference operator such that A f(x) = f(x-+h)— f(x), or Aug=uy—ug, Nug=uy—
2uy + uy, etc.
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The summation formula in Equation (A5) can now be re-written as

§= : ><§(

vl—x s=0

) Asuo (A6)

1—x

Using the difference quantities in the terms of the original sequence, Equation (A6) can be
re-written as

1 x Yy A

§= X ‘a A7

I —x sgo (1 —x) 0 (A7)

This is Euler’s transformation of the original series which is found to converge faster than

the original series. It is not necessary to sum to infinity in Equation (A6); it will be sufficiently

accurate to use a finite number of terms (say, p), thus requiring the first p differences obtained
from the terms starting at .
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