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Abstract

In this paper a general method of constructing control charts for
preliminary analysis of individual observations is presented, which is
based on recursive score residuals. A simulation study shows that cer-
tain implementations of these charts are highly effective in detecting
assignable causes.
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Introduction

When a process is new or just has been modified, one is faced with two
seperate problems. Firstly, it is unknown whether the process is in-control;
secondly, the parameters governing the in-control statistical behavior of
the process are unknown. Stage 1 quality control aims at solving both
problems simultaneously on the basis of historical data. If stage 1 qual-
ity control yields the conclusion that the process is indeed in-control, then
stage 1 is followed by stage 2 quality control. Stage 2 quality control aims
at detecting departures from the in-control state on the basis of the in-
control parameter estimates obtained in stage 1 and prospective data.
Additional information concerning stage 1 and stage 2 quality control
may be found in the introduction in Sullivan and Woodall (1996) and the
introduction in Koning and Does (1999). In Sullivan and Woodall (1996)
the importance of the detection of assignable causes is emphasized. In
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Koning and Does (1999) the relevance of stage 1 quality control for current
manufacturing processes is underlined.

Stage 1 quality control relies heavily on control charts, which often are
constructed following either the likelihood ratio approach or the recursive
residual approach.

In the likelihood ratio approach [cf. Quandt (1960), Hinkley (1971),
Worsley (1986), Sullivan and Woodall (1996)] the full sample of historical
data X,..., X, isdivided into two subsamples X,..., X, and X, ,..., Xy,
and these two subsamples are compared by computing a two-sample like-
lihood ratio test statistic A, under the given model. The procedure is re-
peated for every 1 < k£ < n, and Ay is plotted is versus k. Finally, a hor-
izontal decision line is added to the chart and used to asses whether the
process may be classified as being in-control.

In the recursive residuals approach [Brown, Durbin and Evans (1975),
Hawkins (1987), Quesenberry (1991, 1995), Del Castillo and Montgomery
(1994), Koning and Does (1999), Koning (1999)] the unknown in-control pa-
rameters are eliminated by cleverly transforming the historical data so as
to obtain a number of independent random variables which have distribu-
tions [virtually] not depending on the unknown in-control parameters but
reacting to out-of-control conditions nevertheless. The transformed data
are used to asses whether the original data are in-control. In Koning and
Does (1999) and Koning (1999) the recursive residual approach is combined
with the theory of uniformly most powerful tests [cf. Lehmann (1994)] so as
to obtain control charts which are optimal for detecting a particular form
of trend in normally distributed random variables. The chart proposed in
Koning and Does (1999), which was developed for detecting linear trend
in normally distributed random variables, showed the best properties to
detect linear trends and shifts in the data in a comparison with various
other charts [including the LRT-chart of Sullivan and Woodall (1996) and
the Cusum chart of Brown, Durbin and Evans (1975)].

The “recursive residuals” literature mentioned above concentrates on
the situation where the observations follow a normal distribution. In con-
trast to the likelihood ratio approach there is no obvious extension of the
recursive residual approach to the nonnormal situations. However, in this
paper a possible way of extending the recursive residual approach to non-
normal situations is presented.

The structure of this paper is as follows. First, we introduce the concept
of recursive score residuals, which form the basis of the extension of the
recursive residual approach to nonnormal situations. After describing how
recursive score residual arise naturally in detecting assignable causes in
exponential families, we generalize to distributions which do not necessar-
ily belong to an exponential family, and discuss several ways of implement-
ing the charts. Finally, we focus on the normal distribution to select an
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implementation which is highly effective according to simulation results,
and apply this implementation to the data sets in Sullivan and Woodall
(1996).

Recursive score residuals

In this section we introduce the concept of recursive score residuals, which
will allow us to extend the recursive residual approach to nonnormal situ-
ations.

Let the random variable X have density function f(zx; ), where the pa-
rameter § belongs to some parameter space © C IR*. Define the classical
score function by

0
pla;8) = 55 log f(x;6).

Note that p is a vector-valued function, of the same dimension £ as the
parameter 6.

The individual score p(X;6) is obtained by transforming the random
variable X via the classical score function. It is well-known that the math-
ematical expectation &yp(X;0) is equal to zero; moreover, if the k x k Fisher
information matrix ¥ exists, then

Eop(X;0)p(X;0)" =%

[cf. Section 5.1.2 in Lindsey (1996)]. Recall that the Fisher information
matrix depends on 6.

Now, consider the situation in which we have observed n independent
copies X,..., X, of X. Define

V= {p(Xi;e) —ﬁfp(xj;m}-

— et

One may view Y; as a recursive residual formed from the individual scores.
We shall refer to Y; as the i** recursive score residual. Note that Y; is
degenerate in zero, and hence does not convey any information whatsoever.
Thus, it suffices to only consider Y5, ..., Y.

It is easily seen that &Y; = 0. Moreover, one may show that

Y oifi=j5>1;
0 ifi+#7;
Thus, the recursive score residuals Y, ..., Y, have expectation zero, covari-

ancematrix ¥ and are uncorrelated. Note that being uncorrelated does not
imply independence, except for normal distributions.

59Yz'YjT = {
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Recursive score residuals in exponential fam-
ilies

A random variable X is said to belong to an exponential family if its density
function admits the representation

f(x;0) = c(0)h(x) exp {7(0)"t(x)} 1)

[cf. Lehmann (1994), Section 2.7]. If in addition the dimension of the vector
7(#) coincides with the dimension of ¢, then the random variable X is said
to belong to a full exponential family. In Section 6.2 of Hawkins and Olwell
(1998) the relevance of exponential families for statistical quality control is
discussed, and examples are given.

It is often convenient to reparametrize a full exponential family by tak-
ing 7 = 7(0) as parameter instead of . In this way we obtain the natural
or canonical reparametrization in which X has density function

fH(@;m) = ¢ (r)h(x) exp {7"t(z)} ,
where c¢*(7) satisfies ¢*(7(0)) = ¢(0). Let p*(x; ) denote the classical score

function derived under the natural parametrization. One may show that

' (2:0) = ~-log [*(:7) = () — E:4(X)

[see Equation (3.106) in Lindsey (1996), p. 124]. Hence, it follows that the
i" “natural” recursive score residual is given by

i—1 1 Z
Y=y — {t(Xi) - Zt(Xj)} :
l =10
Note that Y;* does not depend on 6.

The reparametrization above was introduced because of its technical
convenience. However, in stage 1 quality control the original parametriza-
tion may be carefully chosen so as to optimize the detection of assignable
causes, and reparametrization should be avoided. Fortunately, the i** “orig-
inal” recursive score residual Y; are easily derived from the i “natural”
recursive score residual Y;*. Since differentiating via the chain rule yields

p(z;0) = p*(z;7(0)) - 82(99),
it immediately follows that
or(0)
Y, =Y"- :
' ’ 00
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Note that 07(6)/00 is a k x k matrix, possibly depending on 6. Also note
that the Fisher information matrix ¥ in the original parametrization takes

the form .
v _ or(0) >+ ot (0) ,
00 00

where ¥* is the Fisher information matrix in the canonical parametriza-
tion.

Detecting assignable causes: exponential fam-
ilies

In this section we consider independent random variables X, ..., X, with
X, having density f(z;6;) which can be written in the form (1).

Note that the situation considered in the previous section is obtained by
setting all ¢;’s equal to 4, and corresponds to a process which is in-control.
The situation in this section also allows for 6;’s not sharing the same value,
corresponding to a process which is not in-control.

Let us suppose that the 6,’s satisfy

7'(9,) =T, + (5aid, (2)

where ¢ is a scalar representing the magnitude of the deviation between
7(0;) and 7., a; is a scalar representing the type of deviation [sudden shift,
linear trend, etcetera], and d is a k-dimensional vector representing the
direction of the deviation. Observe that the process is in-control if and only
if the 7(0;)'s admit a representation (2) with § equal to zero.

The joint density of X,..., X,, may now be written in the form

c(d,ar,...,an, d)h(z1, ..., 2,)exp {7{ Z t(xj) +0 Z adet(xj)} :

It follows from Corollary 2 in Chapter 3 of Lehmann (1994) that the test
statistic

n

> A(r = 70) + aid} H(X;) 3)
j=1
is most powerful for testing the simple null hypothesis Hy : 7(6;) = --- =
7(0,) = 7 versus the alternative described by (2). Moreover, in the in-
control situation the statistic >7_, t(X;) is sufficient for 7., the common
value of the 7(6;)'s [Lehmann (1994), p.57]. Now note that the null hy-
pothesis covariance between the most powerful test statistic (3) and the



in-control sufficient statistic >°7_, #(X;) is equal to
Z {(T* — 7'()) + ajd}T gt(Xl)Tt(Xl),
7=1

which becomes zero when 7, equals 7, + @,d, where @, denotes n=! i1 0y
One may interpret this particular value of 7, as some sort of a “least favor-
able” null parameter?! in the sense of Hajek and Sidak (1967), p. 30. Note
that substituting 7, + a,d for 7, in (3) yields the test statistic

n

> (aj —@n)d"t(X;).
j=1
Hence, this test statistic [which does not depend on ¢] should be highly effi-
cient in testing the composite null hypothesis that all §;’s are equal versus
the alternative described by (2).
By letting the direction d vary, it follows that plots of the components of
the £-dimensional vector U; defined by

Ui =) (a; — a:)t(X))
j=1
may be highly effective in detecting out-of-control behavior of the type de-

scribed by a4, ..., a,. Note that U is degenerate in zero. Moreover, since we
have

Ui-U_ = Z(aj —a;)t(X;) — Z(aj —@;1)t(X;)

= (a; — a)t(X;) — (a; — @; 1) g:lt(XJ)

= (a;i — @) {t(X,-) - % Zit(Xj)}

1
= i — Qi )4/ = Y
(03— a0y =,

1—1
i

= (a; — G—1) Y/,

we may alternatively express U; in terms of the natural recursive score
residuals Y,...,Y* as

71=2

!According to Hajek and Sidak (1967) the most powerful test statistic and the suffi-
cient statistic should be independent for the least favorable null parameter. Recall that
independence implies zero covariance, but not vice-versa.
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where
i—1
—. (5)
7
We defer the precise description of the chart based on the U;'s to the end
of the next section.

¢ = (a;i — a;—1)

Detecting assignable causes: the general case

In this section we consider independent random variables X;,..., X,, with
X; having density f(x;#6;), not necessarily belonging to an exponential fam-
ily.

In exponential families we were able to exploit the special structure of
the natural classical score function, which may be viewed as the difference
between a term depending only on =z and a term only depending on the
parameter 6. Such a structure is in the general case not available.

However, if we are willing to assume that all 6;'s are relatively close to
the in-control parameter ¢, then locally around 6 the classical score func-
tion approximately has the structure encountered in exponential families,
provided that the approximation

p(z;9) ~ p(a;0) — B0 — 0) (6)

holds for every ¢ in the vicinity of 4. As before, X denotes the in-control
Fisher information. In the stage 2 quality control context, a similar ap-
proximation may be found in Box and Ramirez (1992).

In exponential families we were also able to exploit the theory of most
powerful tests in order to construct test statistics. In the general case we
have to resort to asymptotic efficiency concepts and intuitions gained in the
previous section.

We start with observing that (6) implies the approximation

i—1 "
1

7

F— 1 il
W, = — S p(xis ;) — —— > play30;) ¢
v i—1 j=1

Since &y, p(X;;0;) = 0 for every i = 1,1,...,n, the random variable V; has
mathematical expectation equal to zero, which coincides with the in-control
expectation of Y;. Moreover, for 6; close to § we have

where

E0,p(X450:)p(Xi; 0;)" =~ T
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hence, if 6,,...,0; are all close to ¢, then the random variable W, approxi-
mately has covariance matrix ¥, the in-control covariance matrix of ¥;. In
a similar way we may show that W; and W; are uncorrelated if < # j. Thus,
the behavior of the sequence W, ..., W, approximately is the same as the
in-control behavior of the sequence Ys,...,Y,, as far as first and second
moments are concerned. In combination with (7) this leads us to the con-
clusion that the main effect of the transition from the in-control situation
to the present situation is a shift in the distribution of the Y;'s. We shall
refer to this shift as the slope of the test statistic Y;.
Suppose that the 6;’s in fact satisfy

9,' = 9* + 5aid,

where as before ¢ is a scalar representing the magnitude of the deviation
between 6; and 6., a; is a scalar representing the type of deviation, and
d is a k-dimensional vector representing the direction of the deviation. It
follows from (7) that the slope of Y; is approximately

i—1 1 =! i—
E ; — . _=
- (9, — ;:1: 9]) ) ,

7
and ¢; is given by (5).

In the previous section we found that linear combinations of the Y;’s
were most powerful. This leads us now to concentrate on the performance
of linear combinations 3", w!Y; as test statistics when testing the null
hypothesis H, : 6 = 0 versus a one-sided alternative. Here the w;’'s are
given k-dimensional weight vectors, for which we shall derive an optimal
choice shortly.

Various efficiency concepts suggest that efficiency of a test statistic is
indicated by the ratio between the its squared slope and its null-hypothesis
variance [see Kallenberg and Koning (1995)]. Straightforward calculations
show that the variance of 7, w]Y; is approximately equal to the in-control
variance Y, w!'Yw;. Moreover, the slope of ", w!Y; is approximately
equal to

1

(ai — L_Lz',l) Yd = (SCiEd,

6 ciw! d.

=2
Thus, the eficiency of linear combinations > , w!Y; is indicated by the ra-
tio

n 2
<Z c,-w?Ed)
i—2
S wlYw;

An application of the Inequality of Cauchy-Schwarz yields that this ratio
IS maximized by choosing w; proportional to ¢;d. We thus obtain a statistic

8



d'U;, where .
UZ' = Z CiY}
j=2

[compare with (4)].

Observe that U; approximately has mathematical expectation 52] 9 ]
d"Yd and variance Z] o ¢;d"¥d. Thus, both the expectation and the vari-
ance of U; are approximately linear in Z] ,¢;, which indicates that U;
should be plotted versus 23:2 cj rather than versus i itself. A disturbing
consequence is that [in contrast to traditional cumulative sums] the time
instance ¥7_, ¢; at which the “last” observation in the sample is observed,

does not depend linearly on the sample size anymore. This can be repaired

by introducing
n —1/2
b, = (nl Z c?) , (8)
=2

and plotting the cumulative sum b,U; versus b2 E; 20] Moreover, since a
nonzero value of § approxmately corresponds to a linear trend in the plot
of b,U; versus b2 applying a V-mask procedure to this plot seems
reasonable.

It was shown in Lucas (1982) [cf. Montgomery (1996)] that a V-mask
cumulative sum chart may be represented by means of a pair of so-called
tabular cumulative sums. Following the same line of reasoning, one may
show that the V-mask procedure applied to the plot of b,U; versus b2 i c?
Is equivalent to imposing a control limit ~ on the pair of one-sided cumula-
tive sums Cy; and C,; defined by

J2J’

Cp,i =max (0,Ch,i—1 + bye; (Vi — fbyci)),

)
Cr,; =max (0,Cr ;—1 + bye; (=Yi — fbnci)) ,

where f is the so-called reference value. Observe that both Cy; and Cy,;
are k-dimensional random vectors; the control limit ~ should be imposed
on all components of these random variables simultaneously. That is, an
out-of-control signal is given when at least one of these components exceeds
h.

Implementing the charts

In the previous sections we presented the general ideas behind the pro-
posed charts, ideas that give the charts the ability to detect the assignable
cause efficiently. However, until now we have avoided technical issues that



emerge when implementing the charts. In this section we discuss these
iIssues and offer some solutions.

The first technical issue concerns the dependence between the compo-
nents of U;. Earlier, we suggested to plot components of U; versus an appro-
priate time-scale Z;'-:Z c?. Due to the fact that the covariance matrix of U; is
approximately proportional to the in-control Fisher information X, it may
be that the components of U; are highly correlated, which makes it difficult
to identify the precise nature of the assignable cause when detected.

To avoid this, we should look at the components of ©~/2U; rather than U;
itself; here ¥~'/2 denotes a matrix such that ©-'/2%'/2 is the identity matrix
for some matrix X'/? which satisfies X'/2(X'/2)7 = ¥. In general, several
choices of £~/2 are available. For instance, one may obtain a matrix ¥ 1/2
as a result of inverting the LU-root of X; this would be appropriate if the
components of ¢ could be ranked according to importance. Alternatively,
one may set ©~'/2 equal to RD~'/?R", where D is a diagonal matrix and R
is a rotation matrix satisfying RDR" = ¥; this may be appropriate if the
components of # do not differ in importance.

The second technical issue concerns the computation of the in-control
Fisher information matrix . It may well be that the computation of X
becomes too intricate. An alternative is to estimate ¥ from the data. One
may estimate ¥ by

% Zl (X5 0)p(X;50)". (10)
=
The third technical issue concerns the fact that Y;, ¥ and estimators of
Y, may depend on the unknown in-control parameter §. One may resolve
this issue by replacing occurrences of 6 by occurrences of 6,, where 6 is a
full sample estimator of 6. If §, takes values close to 6, it should be noted
that by virtue of (6) we have

P— A [ il X
— < p(Xi30,) — P > 0(Xj;6n)

~

~ Y+ iflz((en—e)— ! ii(en—e)}zn.

v =13

As remarked earlier, in exponential families the natural recursive score
residual Y;* does not depend on 6.

The fourth technical issue concerns the choice between full-sample and
“running” estimators. Above, we have proposed using full sample estima-
tors to estimate # and ¥, as they are the most obvious estimators under
in-control conditions. Unfortunately, there is a practical drawback: the use
of full sample estimators introduces a masking effect, since out-of-control
conditions may inflate full sample estimators.
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To avoid the drawback of full sample estimation, one may instead use
“running” estimation. Rewrite ¥'/2U; in the form

i
> B,
j=2

and replace every occurence of ¢ in -2y by éj,l, an estimator solely
based on the first j — 1 observations X;,..., X; ;. If desired, one may first
estimate X by (10), with n replaced by i — 1.

Although running estimation does not suffer from the masking effect, it
has a drawback of its own. Especially early in the sequence, the variability
of the running estimators may lead to “estimated” recursive score residuals
with extremely heavy tails. To remedy this, one may consider the use of
transformations along the lines of Hawkins (1987) and Quesenberry (1991,
1995). However, such transformations may in turn depend on the unknown
in-control parameter #; estimating this parameter may produce estimated
recursive score residuals which have correlated components.

The fifth technical issue concerns the method of estimating 6. Since the
classical score function already belongs to the realm of likelihood, it seems
natural to use maximum likelihood estimator. The full sample maximum
likelihood estimator é,')’”— is found by solving the likelihood equations

i Ynp

zn: (X;;6M5) = 0. (11)

When replacing n by : — 1 in (11) one obtains the maximum likehood equa-
tions for the running maximum likelihood estimator #M.;. Observe that
these “running” likelihood equations directly imply that

i—1 1 =! i—1
oottty - 1 Sy - 1

1 ]

which underlines the naturalness of maximum likelihood estimation in the
presence of classical score functions.

The sixth and final technical issue concerns time reversal. Although the
proposed charts were developed to detect a particular assignable cause,
they are typically higly effective in detecting other assignable causes as
well. For instance, the chart for detecting linear trend is also sensitive
to sudden shifts occurring not too early in the sample. Reversing time
yields other charts, with “secundary” properties that may be favourable:
the “reversed time” chart for detecting linear trend is sensitive to sudden
shifts occurring not too late in the sample.
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Detecting linear trend in normal quality char-
acteristics

In this section we exemplify the methods discussed previously by apply-
ing them to the problem of detecting linear trend in quality characteristics
which follow a normal distribution. The in-control parameters ;. and o? are
unknown.

The in-control density of these quality characteristics is given by

1 | (7 —p)?
2mo? P {_E o? ’

which can be written in exponential form as

fla;p,0%) =

Famo?) = e {~ b x o {r(n 0?1}

with

Let 0 denote the vector (u,0?)”, and let X a random variable with density

f(x; u,0?). Since
)= 0 ).

it follows that the natural classical score function is given by

plane = o S )

or@) _( = 0
00\ 4 k)

it follows that the original classical score function is given by

1
L o2) = T = 0 _1 T
o) = (o 0 ) (2 2) =3 (e )

Alternatively, we could have obtained the original classical score function
by directly differentiating

Moreover, since

_ 2
log f(x;p,0°) = —1log2m — logo” — %M
o

with respect to ¢ and o2.
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It is now easily derived that

o2 o2

The in-control Fisher information ¥, the in-control covariance matrix of Y;,
Is given by
L0
L= o )
(v )

Since ¥ happens to be a diagonal matrix, the issue of choosing /2 does
not emerge here. The only available choice is

271/2: g 0
0 o232 )

Thus, we obtain
. 1 1 i—1
271/21/; — ¢ _ 1 ) o {Xl - 1;—_11 ]':-1 ‘IXYJ} ) (12)
’ 23 {(Xz —1)? = g T (X - M)Q}

Note that ¥ -/2Y; depends on the unknown in-control parameters ;. and o2.
Replacing these unknown values by their full sample estimators

_ 127 1 n _
Xn:_ZX] and Sz:—Z(X]—Xn)Z
n i n—1:c
Jj= j=
yields
Flx-gmax)
VT s - X2 - A i - 5)7)

as an approximation to ¥-'/2Y;. Observe that each of the Zn,;'s has the same
distribution.
To derive charts for detecting linear trend, we should set a; equal to 7,
which yields that the tabular Cusum scheme (9) should be applied with
1—1 1—1

(0 = s-) = [ == = i/2) = /(i = 1)i/2

and Y; replaced by Z, ;. Note that considering only the first components of
Cu, and Oy, ; leads to the Cusum chart proposed in Koning and Does (1999).

Replacing the unknown in-control parameters p and o2 their running
estimators X;_; and S? , yields

= ( L (gi;ils)/g;Z -1} )

13

C; = -
)
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as an approximation to ¥~/2Y;. Observe that L3, L34y Ly—1, FEMAain
uncorrelated, but have widely varying in-control behavior: one may con-
sider Z;,_,; to be a function of /(i — 1)/i(X; — X;_1)/S;—1, which has a ¢-
distribution with i — 1 degrees of freedom. It is well-known that the heavy-
tailed Cauchy distribution is a special case of the ¢-distribution, and the
light-tailed normal distribution is a limiting case. To remedy the varying

behavior we could consider replacing /(i — 1)/i(X; — X;_1)/Si_1 by

- i—1
j=1

where ®~! denotes the standard normal inverse cumulative distribution
function, and G,_; the cumulative distribution function belonging to the
t-distribution with + — 1 degrees of freedom. In Quesenberry (1991) it is
shown that s, ..., @, are independent random variables under in-control
conditions. Using the @;’s as replacements leads to

= e
i—1,0 — 1 e Y
v (V@i -1)
as an approximation to ¥~ /2Y;. To derive charts for detecting linear trend,
the tabular Cusum scheme (9) should be applied with Y; replaced by 7}, ,,
and c; set equal to ((i — 1)i/2)"/2.
The in-control variance of Z; | ;

ternatively, one may consider using

( 5@ -1) -

as an approximation to ¥'/2Y;.

depends on i, which is undesirable. Al-

A comparison of the methods

In this section the implementations described in the previous section are
compared to each other, and to the likelihood ratio test chart.

Under three different out-of-control “directions” and six different out-
of-control “types” 10,000 samples of size n = 6,12, 18, 24, 30 were simulated
according to the model

Xi = (0a;dy + ;) exp {ba;dy}, i=1,...,n,

where the ¢;’s are independent standard normal random variables, the a;’s
depend on the condition and satisfy "  (a; — a@,)*> = 1, and § is a quan-
tity indicating the magnitude of the deviance from the in-control condition.
Under the in-control condition ¢ is equal to zero.

14



Although we do not recommend performing preliminary control on only
six observations, we have included » = 6 in our simulations in order to
be able to clearly distinguish unwanted behavior of the charts in small
samples.

The vector (d;,d;)" determines the out-of-control “direction”; we used
the choices (1,0)7 [location], (0,1)T [scale] and (.8,.6)T [combined location-
scale].

Below the structure of the a;’'s in each of the six out-of control types is
described.

Type SS2 The ¢;'s exhibit a sudden shift at relative position 1/2.
Type SS3 The ¢;'s exhibit a sudden shift at relative position 2/3.
Type SS6 The ¢;'s exhibit a sudden shift at relative position 5/6.
Type LTO The q;'s are linearly dependent on s.

Type LT1 The q;'s are constant up to relative position 1/3 within the sam-
ple, and linearly dependent on i from this position onwards.

Type LT3 The q;'s are constant up to relative position 2/3, and linearly
dependent on i from this position onwards.

These out-of-control types also feature in Koning and Does (1999).

We did not consider out-of-control types which reflect a sudden shift oc-
curring relative early in the sample. If one [without looking at the data]
has reason to suspect the presence of an early sudden shift, then one should
reverse time before constructing the charts. The performance of the time-
reversed charts for early sudden shifts can be immediately deduced from
the performance of the “ordinary” chart for sudden shifts occurring rela-
tively late.

Under each of the six out-of-control types we estimated the signalling
probabilities of all the charts. All charts were designed to have an overall
in-control signalling probability equal to 0.05.

The extensiveness of the simulation results does not permit a detailed
discussion. However, in broad outline the following conclusions may be
drawn.

e Charts based on 7/, ;
on z*

i—1,"

perform marginally better than charts based

e Variants of tabular Cusum schemes (9) with ¢; = ((i—1)i/2)'/? perform
clearly better than their counterparts with ¢; = 1.
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Figure 1: Simulation results for sample size 24:

signalling probability versus 4.
conditions are in the location direction. On the
upper row out-of-control types SS2, SS3, SS6, on
the lower row out-of-control types LTO, LT1, LT3.

Out-of-control

e If a tabular Cusum scheme (9) with f = 0 performs well, setting f
equal to a positive value does not lead to a better performance [but
may lead to a worse performance instead].

¢ Running estimation should not be used without subsequent transfor-

mation.

e If the out-of-control conditions are purely of the location type, then

full sample estimation is to be preferred over running estimation [with
If out-of-control conditions
influence scale, then full estimation should not be used, and running
estimation with subsequent transformation is to be preferred.

or without subsequent transformation].

To illustrate these findings we present in Figures 1-3 the simulation re-
sults for n = 24 for four different charts. Three of these charts are variants
of the tabular scheme (9) with ¢; = ((i — 1)i/2)"/?, f = 0 and Y; replaced

by either Z;,, [full sample estimation], Z;;,_; [running estimation] or
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Legend Figure 2: Simulation results for sample size 24:
- = . Variant based on Z; , . . ..

. ' signalling probability versus 6. Out-of-control
=== Variant based on Z; ;_; . . : )

Variant based on 2" conditions are in the scale direction. On the up-
—== variant basecd on Zi,i—1 per row out-of-control types SS2, SS3, SS6, on the
------- Likelihood ratio chart

lower row out-of-control types LTO, LT1, LT3.

[running estimation with subsequent transformation]. The fourth chart is
the likelihood ratio chart of Sullivan and Woodall (1996).

In particular, the simulation results suggest that the third variant con-
sidered in Figures 1-3 [the tabular scheme (9) with ¢; = ((i—1)i/2)'/?, f =0
and Y; replaced by Z;; ] is highly effective in detecting out-of-control con-
ditions which may affect location as well as scale. In the remainder of this
section we investigate the behavior of this tabular scheme under in-control
conditions.

For n sufficiently large, theoretical considerations based on formula
(11.12) in Billingsley (1968) yield that hygo1, ho.005, hoo1 @and hgos May be
approximated by v/14.71n, v/11.70n, v/10.41n and /7.45n, respectively. Plots
of the values in Table 1 versus n suggest the following refinements:

hooo ~ \/14.71n + 26.07y/n,

hogos ~ \/11.70n + 7.28\/m,
hoot ~ /10.41n + 1.61y/,
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Legend Figure 3: Simulation results for sample size 24:
- = Variant based on Z; , signalling probability versus 6. Out-of-control
=== Variant based on Z;;_, conditions are in the combined location-scale di-
=== Variant based on Z; ;_; rection. On the upper row out-of-control types
------- Likelihood ratio chart SS2, SS3, SS6, on the lower row out-of-control

types LTO, LT1, LTS3.

hoos ~ \/7.45n — 5.91/n,
which may be used for n > 50.

An application

In this section the variant of the tabular scheme (9) with ¢; = ((i —1)i/2)"/?,
f=0andY; replaced by Z;; | [see (13)] is applied to the data sets in Exam-
ples 1-3 in Sullivan and Woodall (1996). These data sets were generated
from a normal distribution.

The data set in Example 1 contains a shift in mean after 15 of 30 obser-
vations [in our terminology: sample size 30, type SS2, location direction].
The left plot of Figure 4 shows the “location” components of the tabular
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n Control limits
h0.00l h0.005 h0.0l h0.05
511229 9.04 753 462
10 | 15.71 1195 10.41 7.45
15| 17.67 14.25 13.09 9.49
20| 21.10 16.75 15.05 11.22
2512291 19.19 16.98 12.58
30| 23.79 1951 17.84 13.99
35| 25.96 20.93 1940 15.24
40 | 26.79 22.54 20.61 16.20
45 | 29.51 23.66 21.36 17.37
50 | 31.51 25.63 23.32 18.13
60 | 32.84 27.63 25.24 20.03
70 | 34.94 30.25 27.10 21.45
80 | 38.17 31.94 29.22 23.25
90 | 38.39 32.45 30.72 24.83

Table 1: Simulated control limits h, for tabular Cusums Sz, ; and S ;
with ¢; = ((i — 1)i/2)'/2, f = 0 and Y; replaced by Z;;_,, resulting in

an overall in-control signalling probability « = 0.001,0.005,0.01, 0.05.
Control limits are based on 10,000 simulations.

Cusums S;,; and Sy ;, where

. ~1/2 ;
b,=|n! 2 Y
(n ]2:1 CJ) n(n+1)

[cf. (8)]. Note that the upper tabular Cusum exceeds hgyo; = 13.99, and
hence at the 5 percent level an out-of-control signal should be given. The
right plot shows the “scale” components of S;; and Sy ;; they do not move
beyond hg 5.

The data set in Example 2 contains a shift in variance after 5 of 30 ob-
servations. As Figure 5 shows, both the location and the scale components
of the tabular Cusums Sy, ; and Sy,; do not exceed hg 5, and hence at the 5
percent level no out-of-control signal should be given.

If it is known that a possible shift is likely to emerge relatively early in
the sample, then one may reverse time in order to profit of the sensitivity
of the tabular Cusums to shifts occurring relatively late in the sample. As
Figure 6 shows, reversing time also does not lead to an out-of-control signal
at the 5 percent level.
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Figure 4: Application to Example 1 in Sullivan and Woodall (1996) of
tabular scheme (9) with ¢; = ((i — 1)i/2)/?, f = 0 and Y; replaced by
[running estimation with subsequent transformation].

T*

By0—1

In contrast, the likelihood ratio test chart does give an out-of-control sig-
nal. This is contrary to what is expected: in our terminology we are dealing
here with the SS6 type in reversed time, and our simulations show that in
this case the likelihood ratio test chart is inferior to the chart depicted in
Figure 6 [cf. the upper-right plot of Figure 2].

Finally, the data set in Example 3 exhibits a shift in both mean and
variance after 15 of 30 observations. Figure 7 shows that both the loca-
tion and the scale component of the upper tabular Cusum exceed hg o5, and
hence at the 5 percent level an out-of-control signal should be given.
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