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Abstract The elusive relationship between underlying

pathology and clinical disease hampers diagnosis of Alz-

heimer’s disease (AD) and preventative intervention

development. We seek to understand the relationship

between two classical AD biomarkers, amyloid-b1-42

(Ab1-42) and total-tau (t-tau), and define their trajectories

across disease development, as defined by disease onset at

diagnosis of mild cognitive impairment (MCI). Using

longitudinal data from the Alzheimer’s Disease Neu-

roimaging Initiative (ADNI), we performed a correlation

analysis of biomarkers CSF Ab1-42 and t-tau, and longi-

tudinal quantile analysis. Using a mixed effects model,

with MCI onset as an anchor, we develop linear trajectories

to describe the rate of change across disease development.

These trajectories were extended through the incorporation

of data from cognitively normal, healthy adults (aged

20–62 years) from the literature, to fit sigmoid curves by

means of non-linear least squares estimators, to create

curves encompassing the 50 years prior to MCI onset. A

strong right-angled relationship between the biomarkers

Ab1-42 and t-tau is detected, implying a highly non-linear

relationship. The rate of change of Ab1-42 is correlated with

the baseline concentration per quantile, reflecting a

reduction in the rate of loss across disease within subjects.

Regression models reveal significant amyloid loss relative

to MCI onset (- 2.35 pg/mL/year), compared to minimal

loss relative to AD onset (- 0.97 pg/mL/year). Tau accu-

mulates consistently relative to MCI and AD onset,

(2.05 pg/mL/year) and (2.46 pg/mL/year), respectively.

The fitted amyloid curve shows peak loss of amyloid

8.06 years prior to MCI diagnosis, while t-tau exhibits peak

accumulation 14.17 years following MCI diagnosis, with

the upper limit not yet reached 30 years post diagnosis.

Biomarker trajectories aid unbiased, objective assessment

of disease progression. Quantitative trajectories are likely

to be of use in clinical trial design, as they allow for a more

detailed insight into the effectiveness of treatments

designed to delay development of biological disease.

Keywords Biomarkers � Alzheimer’s disease � Incubation

period

Introduction

In 2015, the World Alzheimer Report estimated there to be

46.8 million people globally living with dementia, with

projections suggesting that this figure will increase to 131.5

Data used in preparation of this article were obtained from the

Alzheimer’s Disease Neuroimaging Initiative (ADNI) database
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million by 2050 [1]. Alzheimer’s disease (AD) is the most

common cause of dementia, accounting for roughly two-

thirds of all dementia cases [2–4]. At present, a definitive

diagnosis of AD can only be made post-mortem, through a

combination of clinical and histopathological evidence [5].

Prior to death, a diagnosis of probable or possible AD can

be made. The former meets the criteria for dementia which

specifies a worsening in cognition (amnestic and/or non-

amnestic), in combination with onset over a time period of

months to years [6]. The latter may present with an atypical

course concomitant with disease presentation [6].

A review of clinical trials performed for potential

treatments between 2002 and 2012 recorded 413 trials

conducted, including both symptomatic and disease alter-

ing agents, with a 99.6% failure rate [7]. There are a

number of possible explanations as to why clinical trials

are failing so frequently in this disease therapy area. Late

onset Alzheimer’s disease (LOAD) at present constitutes a

heterogeneous condition where individuals often present

with so called ‘mixed’ dementias [8]. To complicate this

further, in a review of the National Alzheimer’s Coordi-

nating Centre (NACC) database, researchers found that

roughly 15% of subjects diagnosed with probable AD did

not actually have AD-typical neuropathology [9], high-

lighting the need to specify between a biological or clinical

endpoint. Further, it is likely that interventions at this late,

and potentially irreversible, stage of the disease have a low

probability of success if these potential drugs delay but do

not reverse the development of AD pathology, as it is

believed that biochemical and neuropathological changes

occur in the 20 years prior to the onset of cognitive decline

[7, 10–12].

The careful choice of biomarkers of disease progression

can (1) facilitate understanding of the biochemical pro-

cesses triggering or controlling disease development, (2)

generate insight into whether or not treatments are able to

modify the underlying disease pathology [13], and (3)

improve the design of preventative treatment trials and in

particular, the choice of end points, such that there is a

larger portion of individuals enrolled present with pre-

clinical AD-typical markers. Classical AD-biomarkers

such as CSF Ab1-42, total-tau (t-tau), and phosphorylated-

tau (p-tau) are well-documented within the literature as

being able to distinguish between AD and cognitively

normal (CN) individuals [12]. Bateman et al., using the

Dominantly Inherited Alzheimer’s Network (DIAN) data,

suggested a temporal ordering pattern of biomarker, neu-

rophysiological, and cognitive changes in the two and a

half decades prior to expected disease onset [14]. Presently,

there exists little data from which to build a data-based

biomarker trajectory model, due to the long incubation

period of disease, which would require an extremely large,

diverse, cohort study spanning decades of sample

collection. Jack et al. plotted dynamic trajectories in

patients over time, of not only Ab1-42 and tau, but also

other neurophysiological and cognitive markers in the AD

pathophysiological model [10, 15]. Shaw et al. describe the

utility of threshold values for classification of individuals,

with sensitivity of CSF Ab1-42, t-tau, and p-tau found to be

96.4, 69.6, and 67.9%, respectively, and specificity 76.9,

92.3, and 73.1%, respectively [12]. The work presented

here utilises these thresholds to describe four distinct bio-

logical phenotypes of disease, and builds upon the unique

correlation of CSF Ab1-42 and CSF t-tau observed by

Shaw et al. to assess the continuity of the correlation lon-

gitudinally, in relation to disease progression.

We analyse the change in levels of CSF Ab1-42 and

t-tau across disease states, and over time, and applicability

of biological profiles to diagnosis using the ADNI dataset.

Utilising longitudinal biomarker trajectories anchored to

MCI diagnosis, we develop two sets of novel, quantitative

biological disease trajectories.

Methods

Dataset used

For our analysis we used the Alzheimer’s Disease Neu-

roimaging Initiative (ADNI) database (adni.loni.usc.edu).

The ADNI was launched in 2003 as a public–private

partnership, led by Principal Investigator Michael W.

Weiner, MD. The primary goal of ADNI has been to test

whether serial MRI, PET, other biological markers, and

clinical and neuropsychological assessment can be com-

bined to measure the progression of mild cognitive

impairment (MCI) and early Alzheimer’s disease (AD).

For up-to-date information, see www.adni-info.org. The

dataset used was downloaded on October 31st, 2016.

Our baseline analysis is based on measurements from

1118 individuals for whom both markers, CSF Ab1-42 and

t-tau, were available at the baseline visit and did not have a

baseline clinical diagnosis of ‘subjective memory concern’

(SMC), constituting a study population of 273 cognitively

normal (CN), 272 early mild cognitive impairment

(EMCI), 347 late mild cognitive impairment (LMCI), and

226 AD individuals, Online Resource 1, Table A.1. Pre-

cisely 95 individuals with a SMC diagnosis at baseline

were excluded from the analyses. Within our analyses, CN

and MCI (both EMCI and LMCI) individuals are divided

into two classes: those with ‘progressive’ diagnostics (i.e.

CN individuals who progress to MCI during follow-up,

CN-P, and MCI individuals who progress to AD, MCI-P),

and those who remain within the same clinical class across

follow-up as at baseline. For simplicity, these individuals

will be referred to as ‘non-progressors’ (NP) from this
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point onwards, and denoted by CN-NP and MCI-NP for

CN and MCI individuals, respectively. During the longi-

tudinal study, 431 individuals moved either from CN to

MCI, or from MCI to AD, or progressed from CN to AD

through MCI, while a date of MCI/AD diagnosis is known

for a further 420 subjects who entered ADNI under

a(n) MCI/AD diagnosis.

All analyses involving CSF data was performed using

the UPENN CSF data and the adjusted concentration val-

ues in the database. Baseline CSF data for individuals

originally enrolled under ADNI 1 was obtained from the

UPENNBIOMK dataset, whereas the first observation in

dataset UPENNBIOMK 5–8 was used for those whose

original protocol was ADNI-GO or ADNI-2.

Longitudinal analyses are based on CSF samples from

185 individuals with two or more CSF samples, of both

Ab1-42 and t-tau. To minimise bias through batch effects

and allow good longitudinal comparability of CSF con-

centrations, data from the UPENNBIOMK 6 dataset was

used in combination with UPENNBIOMK 4 when data for

that subject and/or visit was not present, as specified in ‘An

Overview of the first 8 ADNI CSF Batch Analyses’ [16].

Baseline correlation between CSF Ab1242 and t-tau:

the biological phenotype classification

To assign a biological phenotype to each individual at

baseline, previously defined thresholds were applied;

greater than 192 pg/mL for CSF Ab1-42 reflects typically

CN individuals and greater than 93 pg/mL for CSF total-

tau reflects concentrations of typically AD subjects [12].

Threshold values were described by Shaw et al. (2009),

through evaluating the concentration of each biomarker in

CSF in the period preceding death, and confirming AD

pathology post-mortem [12].

Statistical considerations for longitudinal analyses

All statistical analyses were performed in R (version 3.3.2).

For the longitudinal quantile analysis, the thresholds for

each of the ten quantiles were defined using the baseline

visit data in isolation, before allocating all samples for an

individual to the appropriate quantile group. Individual

linear mixed effects models were fitted to each quantile

group, without adjusting for either clinical diagnosis at the

baseline visit or knowledge of progression across follow-

up. Longitudinal trends of CSF Ab1-42 and t-tau anchored

to diagnosis of MCI or AD are quantified through mixed

effect models. While we hypothesize that the trajectory of

the above CSF markers from healthy adulthood across

through disease development follows a sigmoid shaped

curve [10, 14, 15], over the shorter time interval of the

ADNI data, and in the context of high variance in

measures, a linear model is determined to be a good

description of the changes in these biomarkers over time.

To ensure that the importance of biological phenotype on

progression to MCI and AD is not overestimated due to

censored follow-up, we performed two cox-proportional

hazards analyses. In each model, we include the factor of

biological phenotype (1—high Ab, low t-tau; 2—low Ab,

low t-tau; 3—low Ab, high t-tau; 4—high Ab, high t-tau),

age, and gender, with an extra variable included in the

model for AD diagnosis, diagnosis at baseline (i.e. CN or

MCI).

Extrapolation of the sigmoid curve: dynamics

of Ab1-42 and t-tau

There are 235 individuals with Ab1-42 measurements and

230 with t-tau measurements in addition to a known

diagnosis date. In total, there are 157 CSF Ab1-42 mea-

surements and 157 CSF t-tau measurements at distinct time

points from individuals that during the study moved to/

from the MCI state. 83 CN individuals with CSF Ab1-42

measurements have not moved to the MCI state during the

study, and 99 individuals with CSF Ab1-42 measurements

have developed AD but the time since MCI is unknown.

Similarly, 81 CN individuals with t-tau measurements have

not moved to MCI during the study, and for 94 AD indi-

viduals with CSF t-tau measurements the time since MCI is

unknown. Based on the available information in ADNI, we

estimated the expected time required for a CN individual to

move to the MCI state, �tCN;MCI, and the expected time

required for an MCI individual to develop AD, �tMCI;AD,

within the duration of the study, i.e. within 10 years. CN

individuals that have not moved to the MCI state were then

normally distributed before MCI (t = 0) with mean �tCN;MCI

and standard deviation SDCN;MCI. Similarly, AD individu-

als with the time since MCI unknown were normally dis-

tributed after t = 0 with mean �tMCI;AD and standard

deviation SDMCI;AD. Due to the short duration of the ADNI

study and the old age of the participants, as well as the

nature of the study, it is difficult to predict the dynamic

behaviour of CSF Ab1-42 and CSF t-tau during the whole

course of the disease based only on this dataset. In order to

shed light into the dynamics of these biomarkers across

disease development, we also used available CSF Ab1-42

and CSF t-tau data from Sjogren et al., a detailed cross-

sectional study of healthy adults between the ages of 21

and 93 years of age [17]. The concentrations presented by

Sjogren et al. were transformed from ELISA quantification

values to MIA quantification values, using the general

relationship presented by Toledo et al. (2015), see Sup-

plemental Figure 1 [18]. We defined healthy individuals to

be those that are at least 10 years before MCI as it is
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defined in ADNI. From the existing information in ADNI,

we calculated the average age at the point of transition to

the MCI state (t = 0) to be 72 years old. Hence, all the

individuals in Sjogren et al. (2001) data that were younger

than 62 years have been used in this analysis. We assumed

that both CSF Ab1-42 and CSF t-tau have a sigmoidal

behaviour across the course of the disease. For this reason,

we fitted to data a sigmoid function of the form B tð Þ ¼ aBþ
bB � aBð Þ= 1 þ exp cB t � dBð Þð Þð Þ, where B 2 fAb1�42;

t - taug and t is the time from MCI state. aB is the mini-

mum value of B, bB is the maximum value, cB is the

growth/decay rate of the exponential function, and dB is the

inflection point of the function. This function was fitted to

the above data using non-linear least squares. For fitting the

function to CSF t-tau data, bt�tau was fixed to 300 pg/mL,

which is around the maximum value that has been observed

in AD individuals in ADNI. For the estimation of the

prediction bound in Fig. 4a, b we used a Combined Error

Model. The prediction interval indicates that there is a 95%

chance that a new observation will lie within this interval

given a single predictor value. For Fig. 4d, we generated

data for CSF Ab1-42 and CSF t-tau using the predictions

(best fits, f) of the models and adding a measurement error/

noise level given by (a ? b|f|)e (combined error model),

where e is a standard mean-zero and unit-variance (Gaus-

sian) normal variable and a and b are parameters that have

been obtained by fitting the models to data.

Results

Correlation between CSF Ab1-42 and t-tau

We observe a strong, right-angled, inverse correlation

between CSF Ab1-42 and CSF t-tau with individuals at the

same diagnostic state clustered together, which suggests a

non-linear relationship between the two variables and a

mixture of sub-populations within the sample (Fig. 1).

Through segmentation of CSF Ab1-42 and CSF t-tau cor-

relation plot into four compartments, utilising threshold

values developed by Shaw et al. [12], four ‘stereotypical’

biological profiles of spanning AD development are con-

structed, enabling subjects to be described based on their

clinical diagnoses as well as their biological (biomarker)

profiles. Fair concordance between the clinical diagnostic

group and that of the biological biomarker profile is shown

in Online Resource 1, Table A.2. In particular, 50% of

cognitively normal subjects present with a CN typical

biological phenotype, while 64% of AD-diagnosed subjects

fit the ‘AD-typical’ phenotype. The presence of CN-diag-

nosed individuals with an AD-typical or intermediate bio-

logical phenotype supports previous findings, which

suggest that between 10 and 30% of cognitively normal

elderly have evidence of amyloid deposition in their brains

[19].

We hypothesize that across disease development, there

is movement around the correlation. At a cross-sectional

level, through a retrospective analysis, movement across

disease development is inferred by the distribution of

individuals in each quadrant by diagnostic progression

group. The use of these five distinct groups, provides

insight into the differing concordance between their bio-

logical phenotype and their diagnosed clinical class.

As expected, CN-NP are clustered in the CN-typical

quadrant (53%), however, 10.8% of those who are diag-

nosed as clinically normal at baseline and do not progress

to MCI and/or dementia, present with an AD-typical bio-

logical phenotype, as recorded in Table 1. Interestingly, the

percentage of CN individuals (31.7%) who do progress

during follow-up (CN-P), displaying this ‘cognitively

normal’ biological phenotype at baseline, was lower

compared to the 53% in those who remained cognitively

normal. Unsurprisingly, the majority of subjects with pro-

gressive MCI (MCI-P) or diagnoses AD at baseline fit an

AD-typical biological phenotype, 56.9 and 63.7% respec-

tively. We observe a small percentage of individuals with

this ‘unclassified’ biological phenotype—high levels of

CSF Ab1-42 (normal levels) with high levels of CSF t-tau

Fig. 1 Correlation of CSF Ab1-42 and CSF t-tau. Compartment A:

high CSF Ab1-42, low CSF t-tau (CN typical); Compartment B: low

CSF Ab1-42, low CSF t-tau (intermediate stage); Compartment C:

low CSF Ab1-42, high CSF t-tau (AD typical); Compartment D: high

CSF Ab1-42, high CSF t-tau (Unclassified). Colour and shape coding

reflects diagnostic status at baseline (screening visit) with cognitively

normal (CN) subjects in green circles, early MCI (EMCI) in blue

triangles, late MCI (LMCI) in purple crosses, and Alzheimer’s disease

(AD) in red squares
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(abnormal levels). 92% of clinically diagnosed AD indi-

viduals are presenting with CSF Ab1-42 levels below the

192 pg/mL threshold. We hypothesize that the 8% of

individuals presenting with high Ab1-42 levels may be

presenting with a non-AD dementia (e.g. suspected non-

amyloid pathology (SNAP)), as they do not have low

concentrations of amyloid. It is important to note that CN-P

subjects are followed up for longer than their CN-NP

counterparts, a mean 82.5 compared to 50.5 months, and

median of 95.6 compared to 47.7 months. MCI-P subjects

are followed up for a mean of 55.1 compared to

42.4 months. Nonetheless, biological phenotypes ‘Inter-

mediate’ and ‘AD-typical’ are found to reflect statistically

significant increased risk of progression to MCI and AD,

when compared to a ‘CN typical’ phenotype, as assessed

by a Cox-proportional hazards model, Online Resource 1,

Table A.6 (MCI) and Table A.7 (AD).

‘Dynamics’ of Ab1242 and t-tau

In the case that biological changes reflect disease pro-

gression, regardless of cognitive status, individuals with

similar biochemical marker concentrations should, theo-

retically, reflect similar biological disease status. From this

perspective, biomarker curves can be created through a

quantile analysis. When serial measurements of both

Ab1-42 and t-tau are visually depicted by quantile at

baseline, there exists a rough, sigmoid shape of decline for

Ab1-42, and steady increase in t-tau as plotted in Fig. 2a, b,

respectively. It is clear that AD individuals who present

with characteristically low Ab1-42 at baseline have

reached, or reach across follow-up, a steady state of Ab
concentration. Conversely, loss of Ab1-42 appears in CN

and MCI individuals, who fall into the bottom 5 quantiles

at baseline. Individual linear regression models reveal the

greatest loss of Ab1-42, unsurprisingly, within the first six

quantiles, Online Resource 1, Table A.3. Whereas, in the

case of t-tau, the slope across each individual linear

regression model ranges from 0.004 to 0.323, without

exhibiting a specific trend across the ten quantiles, Online

Resource 1, Table A.4. The great variation in the concen-

tration and trajectories of t-tau in the tenth quantile at

baseline is due to the log-normal distribution of t-tau. In

relation to the threshold values for AD identification, the

Ab1-42 threshold is crossed at quantile 5, such that all but

one individual within quantile 5 has a concentration of

Ab1-42 less than 192 pg/mL at baseline. For t-tau, we

observe this threshold being crossed at a higher quantile,

quantile 7, which could be interpreted as later in the disease

time-course. We observe a similar pattern when the com-

plementary biomarker quantile grouping is used (e.g. t-tau

quantile for Ab1-42 concentrations), however as one would

expect there is greater within quantile variation, Online

Resource 1, Figures A.1 and Table A.3 (Ab1-42 and t-tau

by amyloid quantile), and Figure A.2 and Table A.4

(Ab1-42 and t-tau by tau quantile).

CSF trajectories in relation to MCI and AD

diagnoses

In Fig. 3, Ab1-42 and t-tau concentrations are plotted in

years relative to disease onset, for both MCI diagnosis and

AD diagnosis separately. Across the study population,

longitudinal CSF data is available 10 years before MCI and

AD diagnosis, and 10–20 years after diagnosis. For Ab1-42

two distinct groups of individuals appear, those whose

Ab1-42 concentrations fall below the 192 pg/mL threshold

at any point in follow-up, as typically observed in AD, and

those for which this is never observed. The slope of the

mixed effects model fit to ‘typical’ MCI individuals reflects

a loss of Ab1-42 (- 2.35 pg/mL/year) in the 10 years

before and after MCI diagnosis, whereas when anchored to

AD diagnosis, there is little loss (- 0.97 pg/mL/year) over

the same period of 20 years, and relative stability across

the population, Online Resource 1, Table A.5. Interest-

ingly, the biomarker trajectory between these typical and

atypical groups of individuals differs between a reference

point anchored to AD diagnosis, compared to a reference

point anchored to MCI diagnosis. Relative to MCI onset,

those with above threshold levels of Ab (atypical) show an

Table 1 Percentage

concordance between biological

phenotype and diagnostic

progression group, as

determined by their last known

diagnosis across follow-up

N A

AD typical (%)

B

Intermediate (%)

C

CN typical (%)

D

Unclassified (%)

CN-NP 232 10.8 30.2 53.0 6.0

CN-P 41 22.0 29.3 31.7 17.1

MCI-NP 475 26.3 30.9 40.0 2.7

MCI-P 144 56.9 33.3 9.7 0.0

AD 226 63.7 27.9 5.8 2.7

Diagnostic progression groups include: cognitively normal non-progressors (CN-NP), cognitively normal

progressors (CN-P), non-progressive MCI (MCI-NP), progressive MCI (MCI-P), and Alzheimer’s disease

(AD)
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increasing trajectory, whereas relative to AD diagnosis,

there exists a very strong downward trend, with a much

greater slope (approximately - 4.0 pg/mL/year) than what

is observed for AD-typical levels across the same time-

frame. For t-tau, similar groupings have been developed,

however these do not reflect the strong grouping seen for

Ab1-42. As one would expect, in biologically typical

individuals, the accumulation in CSF t-tau relative to MCI

onset is less than that relative to AD onset, 2.05 pg/mL/

year compared to 2.46 pg/mL/year. Individuals presenting

with t-tau concentrations consistently below the 93 pg/mL

threshold across follow-up, present with slopes approach-

ing zero, 0.36 and - 0.06 pg/mL/y, for MCI-anchored and

AD-anchored, respectively.

To expand upon the linear biomarker fits, data from

healthy individuals, aged 20–62, was incorporated with the

ADNI data relative to MCI diagnosis, such that there is

data which can be used to inform a sigmoid curve from

50 years prior to diagnosis of MCI and 20 years following

diagnosis. After fitting the models to data, we observe

levels of Ab1-42 in young, healthy individuals of 372 pg/

mL (Fig. 4a) and 32.87 pg/mL for t-tau (Fig. 4b). For CSF

Ab1-42, Fig. 4a, we obtained the following parameter

estimates for the sigmoid function: aAb1�42
¼ 114:07, with

95% confidence interval CI ¼ 98:92; 129:22ð Þ, bAb1�42
¼

372:79 with CI ¼ 345:46; 400:11ð Þ, cAb1�42
¼ 0:18 with

CI ¼ 0:13; 0:22ð Þ and dAb1�42
¼ �8:06 with

CI ¼ �9:60;�6:51ð Þ. For CSF t-tau, Fig. 4b, we obtained:

at�tau ¼ 32:87 with CI ¼ 27:13; 38:61ð Þ, ct�tau ¼ �0:084

with CI ¼ �0:10;�0:067ð Þ and dt�tau ¼ 14:17 with

CI ¼ 11:83; 16:51ð Þ. The two fitted sigmoid curves are

shown together, Fig. 4c, with the point of inflection of

Ab1-42 at 8.06 years prior to MCI, and that of t-tau

14.17 years after MCI diagnosis. CSF Ab1-42 loss

Fig. 2 Serial measurements of a CSF Ab1-42 and b CSF t-tau across

follow-up, in months, stratified by quantile at baseline. Green solid

line: cognitively normal diagnosis at final follow-up visit. Blue dash-

dot line: MCI diagnosis at final follow-up visit. Red dashed line: an

AD diagnosis at final follow-up visit. Linear mixed effect models are

fit to each quantile individually, with model fits found in Online

Resource 1, Table A.3 and Table A.4 for Ab1-42 and t-tau

respectively
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stabilises to a steady state of 114.07 pg/mL in the decade

following MCI diagnosis, while the steady state of t-tau has

not yet been reached 30 years following diagnosis. The

estimates of the expected times have been produced using

Monte Carlo simulations: �tCN;MCI ¼ 4:64 years with stan-

dard deviation SDCN;MCI ¼ 2:87, and �tMCI;AD ¼ 4:13 years

with SDMCI;AD ¼ 2:81. When data is simulated, an inverse

correlation between Ab1-42 and t-tau is demonstrated,

similar to that observed in the ADNI data at baseline

(Fig. 1), see Fig. 4d. Although we observe a temporal lag

between the loss of CSF Ab1-42 and consequent accumu-

lation of t-tau, in the presence of a tight correlation, it is

important to note that correlation does not necessarily

reflect causation, with regards to biomarker deregulation

and consequent pathological impacts.

Discussion

Using the ADNI dataset we considered correlations

between the key biochemical markers CSF Ab1-42 and

t-tau. We observed two patterns of biomarker trajectories.

The first representing Ab1-42 depletion in the CSF through

the onset of preclinical dementia, which occurs prior to a

second trajectory reflecting an accumulation in t-tau. The

shape of the inverse and highly non-linear correlation

between these two biomarkers suggests that amyloid may

reach a critical concentration, which triggers tau accumu-

lation. A second determinant may be necessary in combi-

nation with the presence of amyloid plaques to trigger tau

conversion, a hypothesis which is supported by the

molecular work of Li et al. [20] in mice, which

Fig. 3 CSF longitudinal trends

in relation to onset of MCI and

onset of AD, in years. Subjects

in black (circles) are those

whose CSF concentrations

reach the threshold for ‘AD

typical’, as defined by Shaw

et al. [12], at any point in

follow-up, while those in grey

(squares) remain above the

threshold (Ab1-42) or below the

threshold (t-tau). Black lines are

the fit for each group, as defined

by a linear mixed effects model,

with a fixed effect interaction

for biomarker grouping and

time, and random intercept for

subject reference identification

(RID). Biomarker specific

threshold values are represented

by red dashed lines, at 192 pg/

mL and 93 pg/mL, for Ab1-42

and t-tau respectively
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demonstrates that amyloid is necessary, but not sufficient,

for pathological conversion of tau.

The rate of change in Ab1-42 and t-tau across ADNI

follow-up supports the temporal ordering of biomarker

trajectory curves previously described by Jack et al.

[10, 15]. The longitudinal quantile analysis suggests that

AD individuals in the ADNI population have already

reached their plateau in amyloid-accumulation, whereas

cognitively normal individuals, particularly those for

whom we do not see progression to MCI across follow-up,

appear to be at an early stage on the disease progression

spectrum, in terms of Ab1-42 loss in CSF. However, these

curves of biomarker concentrations across disease devel-

opment do not encompass the entire disease time-course,

nor do they use continuous time. Additionally, subjects

within a disease class (e.g. MCI) are likely to present with

differing MCI severities at baseline, such that one MCI

subject will be more diseased than another within the same

class. Previous studies in the literature have performed

extensive statistical analyses using time (t) relative to study

baseline (t = 0) to describe biomarker trajectories [21], or

attempted to circumvent the issues listed above by devel-

oping a pseudo-time scale based on cognitive decline and

disease status [22, 23]. Taking together these limitations,

another, and likely more instructive method to analyse

change across disease, is to anchor to time of diagnosis, be

that MCI or AD, and build the curves in either direction.

This approach has been used by Bateman et al. [14]. and

Thordardottir et al. [24] in populations with autosomal

dominant familial AD mutations. Developing trajectories

based on a real timescale, relative to a cognitively based

diagnosis such as MCI onset, as opposed to a relative or

pseudo scale, (1) allows for greater ease of use and inter-

pretation by clinicians who are conveying biomarkers

Fig. 4 Best fit of the sigmoid function to ADNI (blue circles) and

Sjogren et al. [20] data (cyan squares) of a CSF Ab1-42 and b CSF

t-tau, levels before and after MCI onset (t = 0) The prediction

interval indicates that there is a 95% chance that a new observation

will lie within this interval. c Best fits for CSF Ab1-42 and t-tau.

d Correlation of t-tau and Ab1-42 based on data that has been

simulated using the predictions in a and b. The threshold values are

those defined by Shaw et al. [12]
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results to the patient or family members, and (2) accounts

for the common discrepancy between AD-specific pathol-

ogy (low CSF Ab and high t-tau) and impaired cognition.

Building upon the trajectories of Ab1-42 and t-tau rel-

ative to MCI onset from individuals in ADNI, Figs. 3, we

extrapolated back using data from the literature related to

both estimated incubation times and ‘normal’ biomarkers

levels from healthy adults across adulthood, Fig. 4. With

regards to incubation period, previous work by Bateman

et al., in the DIAN study show that trajectories for amyloid

and tau in CSF begin to deviate from stable levels in the

20–25 years prior to diagnosis [14], similar to the 25 years

observed in our findings. The fitted sigmoid function to

both ADNI and Sjogren et al. data depicts a defined sig-

moid behaviour for both Ab1-42 (Fig. 4a) and t-tau

(Fig. 4b), with the upper threshold of the t-tau curve not yet

reached after 30 years post-MCI onset. Quantitative func-

tions such as these, which include confidence bounds,

allow for the potential to interpolate diagnosis times and

make educated predictions about future progression to

MCI. Similar results are presented by Maia et al. [25] in an

animal model of disease progression, who observed com-

parable temporal ordering in alterations in biomarker

concentrations in mice. As hypothesized, and previously

shown in the literature, the alterations in CSF Ab1-42 occur

prior to that of t-tau. The increase in t-tau is thought to be

due to leakage from damaged neurons into the CSF, upon

neurofibrillary tangle formation and neuronal degradation

[26, 27], while it is believed that the decreased concen-

trations of Ab1-42 in CSF may be due to the accumulation

of Ab1-42 in amyloid plaques [28, 29]. There is also reason

to believe that there is an age, as well as a disease com-

ponent, to tau concentrations. An increase in CSF t-tau

with age has been described in the literature [17, 30], with

Sjogren et al. [17] observing the levels of t-tau increasing

across age in healthy aging adults; levels of t-tau appear

relatively stable up to the age of 50, before increasing in an

exponential manner.

It is important to note the limitations of this approach

and the data that we have used. Foremost, particularly in

the case of t-tau, there are multiple non-linear functions

that could be fitted to this data. We believe that, due to the

body of literature encompassing sigmoid behaviour of

biomarkers in AD, together with the aspect of death as an

endpoint, a sigmoid function was most appropriate. The

‘right angled’ nature of the phase plot of the two variables

also provides strong support for a sigmoidal non-linear

relationship with a steep inflection after a period of sta-

bility. It is important to note that the functions shown in

Fig. 4 encompass 50 years prior to MCI onset and 30 years

following. Considering an average life expectancy of

80 years and a hypothetical age of onset of 70 years, it is

unlikely that individuals reach this outer boundary. Within

both the data from ADNI subjects and Sjogren et al., there

exists a great degree of variation in the concentration of

both Ab1-42 and t-tau for any given age grouping. We must

also recognise that the data comes from two different

sources, in two different countries (ADNI: USA; Sjogren:

Sweden) and were quantified using different methods.

While parsing together data from two studies is not ideal,

there is currently a lack of longitudinal studies that span the

course of young adulthood into old age where the disease

course can be observed within subjects. This is under-

standable given such studies would be extremely costly and

be a great burden on subjects, in terms of their time and the

invasive procedures they must undergo. To best observe

and compare biological trajectories across the course of

disease in cohorts worldwide, both healthy and diseased,

there is a need for standardised quantification methods.

Biomarkers may provide an unbiased, objective picture

of underlying disease pathology, provided more attention is

given to the standardisation of measurement procedures

and the precise recording of measurement errors. The

development of disease-specific marker trajectories are of

particular interest in terms of clinical applicability, as they

have the potential shed light on the state of AD pathology

in relation to expected onset of clinical disease. As the field

has a particular aim at developing preventative treatments

markers of disease, and the temporal relationship of these

markers to disease onset, are crucial to knowing who to

treat and when to treat.

While classical biomarkers such as CSF Ab1-42 and

t-tau are able to distinguish between cognitively normal

and AD individuals with fair sensitivity, there remains

significant discrepancies between clinical diagnosis and

biological phenotype. We presented hypothetical trajecto-

ries of CSF Ab1-42 and t-tau across disease course,

anchoring to the onset of MCI, utilising longitudinal data

from either diseased individuals who develop or present

with MCI in ADNI, and cross-sectional data from healthy

young adults. The curves developed provide the potential

for estimation of MCI onset within a cognitively normal,

aging population, facilitating the detection of preclinical

AD, and enabling a better choice of subjects that should

participate in a clinical trial, maximising the chances of

success of potential treatments.
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