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SUMMARY

Single-ended double-strand breaks (DSBs) are a
common form of spontaneous DNA break, generated
when the replisome encounters a discontinuity in the
DNA template. Given their prevalence, understand-
ing the mechanisms governing the fate(s) of single-
ended DSBs is important. We describe the influence
of the Ku heterodimer andMre11 nuclease activity on
processing of single-ended DSBs. Separation-of-
function alleles of yku70 were derived that pheno-
copy Ku deficiency with respect to single-ended
DSBs but remain proficient for NHEJ. TheKumutants
fail to regulate Exo1 activity, and bypass the require-
ment for Mre11 nuclease activity in the repair
of camptothecin-induced single-ended DSBs. Ku
mutants exhibited reduced affinity for DNA ends,
manifest as both reduced end engagement and
enhanced probability of diffusing inward on linear
DNA. This study reveals an interplay between Ku
and Mre11 in the metabolism of single-ended
DSBs that is distinct from repair pathway choice at
double-ended DSBs.

INTRODUCTION

DNA double-strand breaks (DSBs) can be caused by exposure

to ionizing radiation or genotoxic chemicals. DSBs spontane-

ously arise most commonly during DNA replication when DNA

replication forks encounter a discontinuity in the template, a

circumstance that leads to the formation of single-ended DSBs

(Ryan et al., 1991; Shao et al., 1999; Strumberg et al., 2000). In

contrast, double-ended DSBs are most likely to arise from HO

endonuclease cleavage during mating-type switching, or by

Spo11 at the onset of meiotic recombination (Pâques andHaber,

1999). Nonhomologous end joining (NHEJ) and homologous

recombination (HR) are the two modes by which DSBs are

repaired. NHEJ consists of the religation of DNA ends, with little

or no DNA homology required. In Saccharomyces cerevisiae, the

core components of NHEJ are the yKu heterodimer (yKu70-

yKu80), Dnl4-Lif1, Lif2, and the Mre11 complex (which consists

of Mre11, Rad50, and Xrs2) (Boulton and Jackson, 1996, 1998;
C

Daley et al., 2005; Frank-Vaillant and Marcand, 2001; Moore

and Haber, 1996; Schär et al., 1997; Teo and Jackson, 1997).

HR is initiated by resection of the 50 strand of the DSB end to

generate a 30 single-stranded DNA (ssDNA) tail that subse-

quently invades homologous duplex DNA (usually a sister chro-

matid) and copies information from that template to restore the

site of the break (Heyer et al., 2010). Recent in vivo data suggest

a two-stepmechanism for DSB resection. In the first step, a short

(�50 base) 30 ssDNA overhang is generated by the Mre11

complex and Sae2. In the second step, long-range resection is

effected by two pathways, one dependent on Exo1 and the other

dependent on Sgs1 and Dna2 (Gravel et al., 2008; Mimitou and

Symington, 2008; Zhu et al., 2008).

The choice between NHEJ and HR depends on the phase of

the cell cycle. 50-to-30 resection of DSB ends is inhibited in G1,

when cyclin-dependent kinase (CDK) activity is low, and is

favored in G2/M phase, when CDK activity is high (Aylon et al.,

2004; Barlow et al., 2008; Ira et al., 2004). Consequently, HR

occurs primarily in S and G2 phases of the cell cycle when a

sister chromatid is available as a repair template, whereas

NHEJ is generally restricted to G1 phase.

With regard to single-ended DSBs, the issue of pathway

choice is less relevant because these breaks are unlikely to be

substrates for NHEJ, and are primarily repaired by invasion of

the intact sister chromatid to initiate leading and lagging strand

DNA synthesis from the point of invasion (Lydeard et al., 2007,

2010). The possible fate(s) of the end thus extended includes

copying to the end of the chromosome and dissociation and

reinvasion of the same or alternative templates downstream of

the initial break site (Llorente et al., 2008; Smith et al., 2007). In

mammalian cells, it also appears that the extended DSB

end may dissociate and be resolved by NHEJ (Richardson and

Jasin, 2000), although such events have not been noted in

S. cerevisiae.

The Ku heterodimer is an abundant nuclear protein that binds

with high affinity to duplex DNA ends, hairpin loops, and single-

strand nicks in a sequence-independent manner (Blier et al.,

1993; Foster et al., 2011; Griffith et al., 1992; Mimori and Hardin,

1986). Structural analysis of the human Ku heterodimer revealed

a ring-like conformation formed by the interaction of Ku70 and

Ku80 subunits, which provides the structural basis for Ku to

bind to DNA ends, as well as the ability of Ku to slide along

duplex DNA (de Vries et al., 1989; Walker et al., 2001; Yaneva

et al., 1997).
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Several lines of evidence suggest that Ku and the Mre11 com-

plex antagonize each other at DNA ends to influence the choice

between NHEJ and HR; however, the significance of this inter-

play relative to the cell-cycle phase as the primary determinant

of pathway choice is not clear (Clerici et al., 2008; Wu et al.,

2008; Zhang et al., 2001). Also unclear is the relevance of

Mre11 nuclease activity and Sae2 protein in pathway choice.

Previous studies that examined this relationship predominantly

used mre11D mutants, in which Ku binding to DNA ends pre-

vents long-range resection at an HO-induced double-ended

DSB. Mre11 nuclease activity and Sae2 appear to be dispens-

able for resection of enzymatically induced double-ended

DSBs, whereas nuclease activity may be required for chemically

complex ‘‘dirty’’ ends, such as those produced by ionizing

radiation (Mimitou and Symington, 2010; Shim et al., 2010).

The Ku heterodimer is also required for telomere maintenance

(Wellinger and Zakian, 2012). The telomeric functions of Ku are

genetically separable from its role in NHEJ (Bertuch and Lund-

blad, 2003; Driller et al., 2000; Roy et al., 2004; Stellwagen

et al., 2003; Taddei et al., 2004). These findings suggest a

‘‘two-face’’ model in which the Ku70 surface is oriented toward

the DNA terminus and influences NHEJ, whereas the Ku80

surface is oriented inward and promotes interactions with

telomeric heterochromatin (Ribes-Zamora et al., 2007).

Having previously demonstrated that yKu deficiency sup-

pressed the IR sensitivity of mre11D mutants in S. cerevisiae

(Bressan et al., 1999), we recently found that yKu70 deficiency

suppressed the sensitivity of a nuclease-dead mre11 mutant

(mre11-3) to CPT (Foster et al., 2011). The CPT sensitivity of

mre11-3 was unaffected by Dnl4 deficiency, indicating that the

genetic interaction observed between yku70D and mre11-3 is

independent of NHEJ. Exo1 activity was required for suppres-

sion in mre11-3 yku70D mutants, suggesting that Ku inhibition

of Exo1 contributes to mre11-3 sensitivity. Moreover, because

CPT-induced damage requires DNA replication (Pommier

et al., 2006), this genetic interaction reveals an S-phase-specific,

NHEJ-independent role of the Ku heterodimer (Foster et al.,

2011).

In this study, we performed a genetic screen to isolate yKU70

alleles that phenocopied yku70Dwith respect to the suppression

of mre11-3 CPT sensitivity while leaving NHEJ functions intact.

The yKU70 gene products exhibited reduced affinity for DNA

ends and an increased probability to slide inward once bound.

Accordingly, the ability of mutant gene products to inhibit Exo1

activity in vitro was reduced. These results suggest a model in
Figure 1. yku70* Mutants Are Deficient for Ku-Specific S Phase Functi

(A) Schematic illustration of the genetic screen used to identify yKu70* separatio

mre11-3 yeast strain carrying GAL-HO hmlD hmrD in a W303+ background.

(B) Centromeric plasmids carrying yku70* alleles were transformed in JPY5025 str

indicated genotypes were 1:5 serially diluted and spotted on DO-TRP lactate in

(C) The same yeast strains were plated onto solidmedia containing either glucose

(D) Integrity of the yKu70-yKu80 complex in yeast strain JPY5097 transformed w

mutants (yku70�). FLAG-tagged (+) or untagged (�) yKu80 was immunoprecip

western blot (WB) with anti-yKu70-yKu80 antibody. Input yKu80-FLAG and yKu7

(E) Position of human Ku70 residues that correspond to the residues mutated in

hKu70 and hKu80 are shown in gray and green, respectively, and the DNA is in red

(blue spheres map inside or adjacent to the protein loops, and magenta spheres

See also Figures S1 and S3 and Tables 1 and S1.

C

which the Mre11 complex and Ku regulate the metabolism of

single-ended DSBs in S phase, a process with the potential to

influence DNA repair outcomes as well as checkpoint activities.

RESULTS

Screen for yku70 Separation-of-Function Mutations
The goal of this study was to examine the NHEJ-independent

function(s) of the yeast Ku heterodimer at single-ended DSBs

in S phase cells (Foster et al., 2011). The first step toward this

goal was to construct alleles of yKU70 that separated its func-

tions in S phase from those involved in NHEJ. We mutagenized

yKU70 and screened for CPT resistance in an mre11-3 yku70D

strain, followed by a secondary screen for NHEJ proficiency (Fig-

ure 1A). This strategy excludes silent mutants in the first step

because they will complement the yku70Dmutation and thereby

cause CPT sensitivity. Null mutations will be excluded in the

secondary screen because the transformants will remain NHEJ

deficient. A library of yku70 mutants (hereafter yku70*) was

created by PCR amplification of the yKU70 open reading frame

(ORF) followed by gap repair into a centromeric plasmid upon

transformation of mre11-3 yku70D cells. The resulting yku70*

mre11-3 transformants were plated on solid media containing

12 mM CPT. From �30,000 primary transformants, 2,300 CPT-

resistant colonies (�7%) were obtained.

CPT-resistant transformants were subsequently screened for

NHEJ proficiency. In the yku70D mre11-3 strain used, the HML

and HMR elements are deleted so that the DSB created by HO

must be repaired by NHEJ in order for the cells to retain viability

(Lee et al., 1998). This two-step screening led to the identification

of 89 mutants that conferred CPT resistance and NHEJ profi-

ciency to mre11-3 yku70D cells. yku70* alleles with more than

one amino acid change were excluded from further analysis,

and 11 yKU70 mutations, six of which also appeared among

the multiply mutated alleles (yku70-1 to yku70-11; Tables 1 and

S1) were retained for further analysis (Figures 1B and 1C).

yKu70 and yKu80 coimmunoprecipitated in all of the 11 retained

mutants (Figure 1D). Conversely, mutations that drastically

affected the expression level of yku70* gene products were defi-

cient in NHEJ (Figures S1A and S1B). Finally, as expected from

previous analyses (Foster et al., 2011), yku70* mutants also

conferred CPT resistance upon yku70D sae2D cells (Figures

S1C and S1D).

The S. cerevisiae Ku heterodimer is moderately conserved

relative to its human counterpart, for which the crystal structure
on but Proficient for NHEJ

n-of-function mutants. The screen was performed using JPY5025, a yku70D

ain (see Extended Experimental Procedures). Exponentially growing cells of the

the presence or absence of CPT (12 mM).

or galactose to repress (�HO) or induce (+HO) expression of HO endonuclease.

ith empty vector (vector) or vector expressing yKu70 wild-type (WT) or yKu70*

itated with anti-FLAG antibody and yKu70, yKu80 proteins were analyzed by

0 were analyzed by WB (* indicates nonspecific band).

yku70* alleles mapped on the Ku-DNA crystal structure (Walker et al., 2001).

. The predicted positions of the yKu70mutations are shown by colored spheres

map to b sheets).
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Table 1. Residues of yku70* Alleles that Are Conserved in

Human, Related to Figure 1

yku70* Mutantsa
Mutated Amino

Acids in yKu70b
Corresponding Sites

in hKu70c Domaind

yku70-2 R369C K351 b-barrel

yku70-3 L100S L105 a/b

yku70-5 Y494N Y473 C-terminal

yku70-6 F34S F40 a/b

yku70-10 S384R S365 b-barrel

yku70-11 V70D I75 a/b
aThe yku70* alleles carrying a single point mutation, in residues

conserved from yeast to human, are ordered by crescent number.
b,cIdentical amino acids are in bold and similar amino acids are in regular

font. Similar amino acids were grouped as follows: [isoleucine (I), leucine

(L), valine (V)]; [aspartic acid (D), glutamic acid (E), asparagine (N),

glutamine (Q)]; [alanine (A), glycine (G)]; [serine (S), threonine (T)]; [phenyl-

alanine (F), tyrosine (Y), tryptophan (W)]; [cysteine (C), methionine (M)];

[arginine (R), lysine (K), histidine (H)]; [proline (P)].
dDomains in yeast and human Ku70 that each mutated amino acid is

part of.
has been obtained (Walker et al., 2001). Among the 11 yku70*

mutants that were retained, six fell within residues that were

conserved in the human Ku70 protein (Table 1) and were sub-

jected to further characterization. The mutations did not cluster

to a particular domain (Figure 1E), although two mutations (Fig-

ure 1E, magenta spheres) localized to b sheets A and B that lie

within the N-terminal a/b domains of yKu70.

yku70* Mutants Are Defective in Telomere End
Protection
We have suggested that yku70* mutations affect the activity of

the Ku heterodimer at single-ended DSBs that arise when the

replisome encounters discontinuity in the template (see Figure 6).

In this context, we reasoned that telomeres might analogize

single-ended DSBs, and that yku70* alleles may also affect

telomere maintenance. The telomere length of yku70* mutants

was measured by southern blotting of DNA extracted from

freshly dissected spores. In all six conserved mutants, telomere

length was reduced (Figure 2A), indicating that the activity of

yku70* mutants at telomeric ends, as well as single-ended

DSBs in S phase, was affected. Telomere shortening in yku70*

was dependent on Exo1, as telomere length was partially

restored in yku70* exo1D doublemutants (Figure 2A). In addition,

quantitation of telomeric ssDNA overhangs revealed a 3- to

7-fold increase in ssDNA signal in yku70* (Figures 2B and 2C).

Thus, telomere overhang length and to a lesser extent telomere

length in yku70* mutants exhibited a similar dependence on

Exo1 compared with their ability to suppress mre11-3 CPT

sensitivity (Figure S2A).

Previous studies have identified separation-of-function yku70

and yku80 alleles inwhichNHEJ functions are intact but telomere

protection is compromised (Bertuch and Lundblad, 2003; Lopez

et al., 2011; Ribes-Zamora et al., 2007). Given that the yku70*

alleles also separate NHEJ and telomeric functions, we tested

two of the previously identified alleles for their ability to suppress

mre11-3CPT sensitivity. In each case, thesemutants phenocop-
2036 Cell Reports 3, 2033–2045, June 27, 2013 ª2013 The Authors
ied yku70*mutants (Figures 2D and S2C). Conversely, mutations

affecting yKu80 interaction interface with telomeric heterochro-

matin or the yKu70 interface required for NHEJ did not suppress

mre11-3 CPT sensitivity (Figure S2B). These data suggest that

Ku’s functions at single-ended DSBs are similar to its role in pro-

tecting telomeric DNA ends, and that in both contexts, its func-

tions are separable from NHEJ.

Biochemical Analysis of yku70* Gene Products
To understand the mechanistic basis of the yku70* phenotype,

we analyzed the behavior of the mutant gene products in vitro.

yku70-5 and yku70-10 were coexpressed in bacteria with

yKU80 and purified to near homogeneity (Figure 3A). The

yKu70-5 and yKu70-10 proteins contain mutations in the loops

adjacent to the C-terminal and b-barrel domains, respectively

(Figure 1E; Walker et al., 2001; Zhang et al., 2001).

The DNA-binding behavior of the yku70* gene products was

assessed in two contexts: filter binding assays and electropho-

retic mobility shift assays (EMSAs; for in vitro assays, yKu70,

yKu70-5, and yKu70-10 refer to a heterodimer of yKu70-

yKu80, yKu70-5-yKu80, and yKu70-10-yKu80, respectively).

For the filter binding assay, increasing concentrations of the

yKu complex were incubated with a dsDNA fragment of 25 bp

representing a single Ku-binding site (de Vries et al., 1989;

Kysela et al., 2003; Ma and Lieber, 2001) as well as a 465 bp

fragment to which multiple Ku proteins could bind (Figures 3B

and 3C). The DNA-binding affinity of yKu70-5 and yKu70-10 for

the single-site substrate was reduced (for the short substrate,

KD = 1.4 nM and KD = 0.8 nM, respectively) relative to the wild-

type protein (KD = 0.2 nM). The apparent KD on the longer DNA

substrate was reduced to 1.6 nM (yKu70-5) and 0.5 nM

(yKu70-10) nM, whereas it remained unaltered in the wild-type

protein (KD = 0.2 nM; Figure 3C).

Although it exhibits a strong preference for blunt DNA ends,

the Ku heterodimer is capable of sliding inward from the end to

bind internal sites (Blier et al., 1993). EMSAs were carried out

to determine whether the stoichiometry of DNA binding was

altered in yKu70-5 or yKu70-10. Increasing concentrations of

yKu were added to a radiolabeled dsDNA substrate, and com-

plex formation was analyzed by EMSA (Figures 3D and 3E).

The radiolabeled substrate was an 80 bp blunt DNA molecule

that is capable of binding three Ku molecules (Blier et al., 1993;

Ma and Lieber, 2001). Accordingly, with wild-type protein we

observed three shifted bands, likely representing DNA bound

to one, two, or three Ku molecules. At a ratio of two yKu com-

plexes per substrate molecule, (Figure 3D, lane 3), the predom-

inant product was the doubly bound species, whereas the singly

bound substrate was �8-fold less abundant. At a 5-fold ratio of

yKu to DNA, the singly bound species was absent, and the triply

and doubly bound forms were 40% and 35% of the total sub-

strate (Figure 3D, lane 5). In contrast, triply bound yKu70-10 or

yKu70-5 complexes were not detected at any concentration.

The relative fraction of doubly bound forms was greatest at

5-fold excess, but was reduced by 11% and 30% relative to

wild-type (compare lane 5, 9, and 13). Hence, the suppression

of mre11-3 CPT sensitivity by yku70* mutants is correlated

with reduced DNA binding of the yKu heterodimer. Given that

suppression requires Exo1, this observation further suggests



A D

B

C

Figure 2. Rescue of mre11-3 CPT Sensitivity and Telomere Shortening in yku70* Alleles Require EXO1

(A) Telomere length analysis of the indicated yku70*mutants. Plasmids bearing yku70* alleles or control vectors were transformed into yku70D or yku70D exo1D

strains. After 60 generations, telomeric sequences were detected by southern blot analysis of XhoI-digested genomic DNA.

(B) Telomeric G-overhang assay. Genomic DNA isolated from yku70D or yku70D exo1D strains transformed with CEN plasmids containing the indicated yku70*

alleles were digested with XhoI restriction enzyme and separated on a 0.7% agarose gel. The gel on the left was treated as a nondenaturing gel and hybridized to

(legend continued on next page)

Cell Reports 3, 2033–2045, June 27, 2013 ª2013 The Authors 2037



that reduced affinity of yKu interferes with its inhibition of Exo1

activity.

Given the decrement in DNA binding exhibited by the yku70*

gene products, a quantitative analysis of NHEJ proficiency was

undertaken. A direct view of the DSB repair kinetics of an HO-

induced DSB was obtained by quantitative PCR (qPCR)

following transient expression of HO (Hohl et al., 2011). Cells ex-

pressing the integrated yku70* alleles yku70-5 and yku70-10

were placed in galactose-containing media for 15 min. HO

expression was then suppressed by the addition of glucose.

qPCR with primers spanning the DSB site 4 and 6 hr after HO

suppression was carried out to quantify DSB rejoining (Fig-

ure 3F). At 6 hr in glucose, 14% of wild-type cells, 8% of

yku70-10 cells, and 9% of yku70-5 cells had repaired HO DSB,

whereas DSBs persisted in yku70D cells and apparently were

degraded, as qPCR signals decreased over the course of the

experiment (�6%). These data demonstrate that yku70-5 and

yku70-10 are proficient in NHEJ, and indicate that the process

of NHEJ is not strongly affected by the reduced affinity of the

Ku heterodimer for DNA ends. Further supporting this interpreta-

tion, we found that the NHEJ junctions in yku70-5 and yku70-10

were indistinguishable from those of wild-type cells following

chronic exposure to galactose (Figure S3A), whereas the pre-

dominant outcome in yku70D colonies was extensive deletions

(>500 bp) or inactivation of HO expression (data not shown).

We have proposed that these mutants reveal an NHEJ-

independent function of Ku that is specific to single-end DSBs

and is the predominant role for Ku in S phase cells. This hypoth-

esis predicts that whereas the yku70* mutants phenocopy

yku70D in S phase, they will not do so in G1 cells. In Ku-deficient

cells, induction of the HO endonuclease leads to Exo1-depen-

dent DSB resection and activation of Rad53 within 1 hr of DSB

formation (Clerici et al., 2008). Wild-type, yku70D, yku70-5, and

yku70-10 strains were arrested in G1 and the HO endonuclease

was induced. Rad53 phosphorylation was monitored for up to

4 hr after HO induction (Figures S3B and S3C). As expected,

Rad53 phosphorylation appeared 60 min after HO induction in

the yku70D strain, but was detectable at low levels in similarly

treated wild-type cells beginning at 2 hr postinduction (Fig-

ure S3C). In both yku70-10 and yku70-5 strains, modest Rad53

activation occurred by 2 hr postinduction, as in the wild-type

strain. Hence, the phenotype of yku70-5 and yku70-10 alleles

is similar to wild-type in G1 cells, but phenocopies yku70D with

respect to its effect on mre11-3 in S phase.

yKu70* Mutants and Exo1 Activity In Vitro
The requirement for Exo1 in the suppression of mre11-3 CPT

sensitivity is likely attributable to Ku-mediated inhibition of

Exo1at DSB ends. To test that interpretation, we employed a
the end-labeled CA-oligo. The amount of telomeric ssDNA was quantitated before

total amount of telomeric DNA (right).

(C) Ratio of telomeric ssDNA to total telomeric DNA, normalized to WT. Error bar

(D) CPT sensitivity of mre11-3 yku70 DNA end-binding-defective mutants and y

indicated yku70 or yku80 alleles on a CEN plasmid were spotted onto DO-TRP lac

Figure 1C. yku70 and yku80 alleles nomenclature: yku70-EBD (DNA end-binding

P437L spores a and b; Bertuch and Lundblad, 2003).

See also Figure S2.
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blunt-ended dsDNA 80-mer, biotinylated at the 50 end of one

strand (Figure S4A). The complementary strand is radiolabeled

50 bases in from the end, so a 50-to-30 resection of that strand

will produce labeled intermediates from 79 to 30 bases long,

culminating in the release of the labeled mononucleotide (Fig-

ure 4A). Streptavidin binding blocks resection of the biotinylated

strand, restricting access of Exo1 to the internally labeled strand.

Thus prepared, the labeled 80-mer was incubated with yKu for

60 min prior to the addition of Exo1, and the reaction was inacti-

vated at certain time points after Exo1 addition. Reaction prod-

ucts were resolved on a denaturing gel, and the appearance of

labeled AMP was monitored. In the presence of wild-type yKu

heterodimer, 6% of the substrate was degraded to produce

AMP within 30 s, rising slightly to 9% upon further incubation

to 60 min. However, in the absence of yKu, 36% of the substrate

was converted by 30 s, increasing to 72% at 15 min and to 77%

at 60 min when the curve reached a plateau (Figures 4B, 4C,

S4B, and S4C). These data demonstrate that yKu inhibits

Exo1-dependent resection in this setting, as was previously

shown with the corresponding human proteins (Sun et al., 2012).

The extent of Exo1 inhibition by complexes containing yKu70-

5 and yKu70-10 mutants correlated roughly with the severity of

their DNA-binding defect, with yKu70-10 inhibited to a greater

extent than yKu70-5. Nevertheless, AMP release was 3- to

4-fold higher than observed in the wild-type at 30 s, and approx-

imated the levels observed in the control reaction lacking yKu

altogether by 15 min (Figures 4B and 4C). As expected, the

detected increase in AMP correlated quantitatively with the

decrease in signal of the initial DNA substrate (Figure S4D).

Similar trends in inhibition of lambda exonuclease were

observed with wild-type and mutant yKu complexes, indicating

that yKu-mediated inhibition of resection is not species specific

(Figure S4E).

SFM Analysis of DNA Binding by Mutant Ku Complexes
Taken together with previously described genetic interactions

among Ku, Exo1, and mre11-3 (Foster et al., 2011), the failure

of yku70* gene products to inhibit Exo1 as described above sup-

ports a model in which Ku binds single-ended DSBs and regu-

lates the action of Exo1 in a manner antagonized by Mre11

nuclease activity. To gain further insight into the DNA-binding

properties underlying the behavior of the mutant proteins, we

carried out scanning force microscopy (SFM) to examine the

binding of yKu heterodimers to a 1.8 kb DNA substrate (Figures

5A, 5B, and S5). DNA was incubated for 30 min with 8-fold molar

excess of yKu (1 nM versus 8 nM) prior to deposition and

analysis.

Approximately 800 DNA molecules were examined in each

experiment (Table S2); 85% of the substrate was bound by
the gel was denatured and probed with the same telomere probe to reveal the

s indicate SDs of three independent quantifications.

ku80 telomere mutants. Top: serial dilutions of JPY5025 strain containing the

tate in the presence or absence of CPT. Bottom: NHEJ assays as described in

deficient: yku70-R456E spores a and b; Lopez et al., 2011); yku80-tel (yku80-
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Figure 3. Mutations in yKu70 Loops Reduce the Affinity of the yKu Heterodimer for DNA Ends

(A) yKu70 wild-type and �5 and �10 mutants were purified to homogeneity in complex with yKu80. The purified complexes were resolved by SDS-PAGE gel,

analyzed by WB, and stained with Coomassie blue.

(B and C) Analysis of DNA-yKu interaction by filter binding assay. Increasing amounts of the indicated recombinant yKu complexes were incubated overnight

with 0.1 nM of 25 bp (B) and 465 bp (C) 50-labeled dsDNA. Radiolabeled DNA bound to protein was retained on nitrocellulose filter and quantified by scintillation

counter. Denatured boiled yKu70 was used as control. Error bars represent the SD of three independent experiments and are smaller than the symbols when not

evident. R2 is the coefficient of determination.

(D) Gel mobility shift assay of yKu binding to 80 bp dsDNA blunt ends (dsBE). The DNA concentration was 2.5 nM in all binding reactions, whereas Ku con-

centrations are represented by the Ku to DNAmolar ratios. Bands representing free DNA or one, two, and three yKumolecules in complex with DNA are indicated.

(E) Quantification of the gel in (D). Error bars represent the SD of three independent experiments and are smaller than the symbols when not evident.

(F) NHEJ repair kinetics after acute (15 min) HO induction were determined by qPCR in yKU70 (JPY5726), yku70-5 (JPY5730), and yku70-10 (JPY5728) integrated

in the endogenous yKU70 locus in a GAL-HO hmlD hmrD strain W303+ background. yku70D (JPY5735) was used as negative control. Cells were cultivated for

another 4 or 6 hr in glucose medium after HO induction, and repair was monitored with primer flanking the HO site.

See also Figure S3.
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Figure 4. yKu70* Mutants Fail to Block Exo1-Dependent Resection

In Vitro

(A) Representation of the DNA substrate used in the resection assay in (B). 50

biotinylated 80-mer oligonucleotide was annealed to an equally long internally

labeled oligonucleotide that would release free AMP upon Exo1 resection

(* indicates the position of 32P on DNA). B, biotin; SV, streptavidin.

(B) Biotinylated DNA substrate (1 nM) was preincubated with streptavidin,

followed by the presence or absence (control) of the indicated yKu complexes

(5 nM). The kinetics of resection by Exo1 (3 nM) was determined at the times

indicated by separation of DNA on denaturing gel, and the resection products

were visualized with the PhosphorImager system. An 80 bp oligo 50 labeled on

the first adenine was digested with Phosphodiesterase I (PI) and the AMP

generated was used as the control for Exo1 resection.

(C) The percentage of generated AMP from the experiment shown in (B) is

plotted as a function of time. A magnification of the graph in the first 0.5 min is

represented to show the curve slope, and the full graph is reported in small

scale. Error bars represent the SD from three independent experiments and

are smaller than the symbols when not evident.

See also Figure S4.
wild-type yKu, 94% of which was at DNA ends. The majority of

wild-type yKu-DNA complexes had yKu and both ends of the

substrate (Figures 5A and 5B). These DNA-binding properties

are similar to those of human Ku70-Ku80 (Mimori and Hardin,

1986; Paillard and Strauss, 1991; Yaneva et al., 1997). In

contrast, yKu70-5- and yKu70-10-containing heterodimeric

complexes exhibited a propensity for sliding inward once they

were bound to the substrate. Whereas the mutant complexes

were each bound to one or both ends 57% of the time, 39%
2040 Cell Reports 3, 2033–2045, June 27, 2013 ª2013 The Authors
and 23% of protein-bound DNA molecules also contained inter-

nally bound Ku complexes of yKu70-5 and yKu70-10, respec-

tively (Figures 5B and S5). The fraction of substrate molecules

that were devoid of yKu complexes was the same for wild-type

and yKu70-10 (14%), whereas 68% of the substrate molecules

were devoid of yKu70-5-containing complexes (Table S2). These

data indicate that reduced affinity in yKu70-5 and yKu70-10 is

also associated with diffusion inward from the DNA end. This

raises the possibility that failure to inhibit Exo1 in vivo is attri-

butable to Ku sliding inward on single-end DSBs in addition to

a reduced probability of end binding.

DISCUSSION

We previously established evidence for an NHEJ-independent

role of the Ku heterodimer at single-ended DSBs (Foster et al.,

2011). This interpretation was based on the observation that

the CPT sensitivity of nuclease-deficient mre11-3 mutants is

suppressed by Ku, but not by DNA ligase IV deficiency. That

suppression was dependent on Exo1, suggesting a role for Ku

in modulating the processing of single-ended DSBs. In this

study, we provide mechanistic insight into the function of the

Ku heterodimer in that setting. We identified yku70 separation-

of-function mutants (yku70* mutants) that have intact NHEJ but

phenocopy yku70D with respect to suppression of mre11-3

CPT sensitivity. Biochemical analysis revealed that the yKu

heterodimer inhibited Exo1-mediated degradation of DSB

ends, and that inhibition by yku70* gene products was reduced.

The effect on Exo1 inhibition was correlated with reduced affinity

of the yKu heterodimer for DSB ends. The reduced affinity was

manifest as both a reduction in end binding of, and a propensity

of themutant heterodimer to diffuse inward on linear DNA. These

data suggest a model wherein the interplay between Mre11 and

yKu at single-ended DSBs influences the activity of Exo1 during

DNA replication (Figure 6).

In vegetatively growing cells, spontaneous DSBs most

frequently arise during DNA replication when the replisome

encounters a discontinuity in the template. In this scenario, the

resulting lesion is a single-ended DSB (Figure 6), indicating that

the mechanisms by which cells mitigate this lesion are likely

relevant to maintaining the genome integrity of replicating cells.

The mechanisms of single-ended DSB repair differ fundamen-

tally from those of double-ended DSB. First, single-ended DSBs

cannot be readily repaired by NHEJ due to the lack of a second

DNA end to which the single-ended DSB can be joined (Cromie

et al., 2001). Second, in the course of HR-based repair of double-

ended DSBs, capture of the second end is temporally coupled to

the initial strand invasion event (Allers and Lichten, 2001;

Bzymek et al., 2010; Hunter and Kleckner, 2001). Temporal

coupling of this nature is not possible with a single-ended

DSB. In the course of repair by break-induced replication (BIR),

the extended DSB end can reinvade the acceptor chromatid

(Llorente et al., 2008; Smith et al., 2007), but such an event would

by definition be uncoupled from the initial invasion. A ‘‘second

end’’ could also be created by the arrival of the replisome from

an adjacent origin of replication, again uncoupled from the initial

invasion event. Recent data suggest that DSB formation may

induce the activation of local dormant origins (Doksani et al.,
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Figure 5. Interaction of yKu70-yKu80 Heterodimers with Linear Duplex DNA Molecules

Nucleoprotein complexes formed between blunt-ended linear DNA (1,821 bp) and the indicated yKu70-yKu80 heterodimers were visualized by SFMas described

in Experimental Procedures.

(A) Representative SFM images. Left panel: DNA-yKu70; central panel: DNA-yKu70-5; right panel: DNA-yKu70-10. The percentages of the total yKu complexes

bound to DNA at either internal sites or DNA ends are reported in Table S2.

(B) Graph representing the percentages of the total yKu complexes bound to DNA at either internal sites or DNA ends. Fisher’s exact test was performed on the

number of yKu molecules bound to DNA, at DNA ends and internal sites, between yKu70 and yKu70-5, and yKu70 and yKu70-10. In all cases, the p value for a

two-sided test is <0.0001 (***). Percentages of the total yKu complexes bound to DNA at either internal sites or DNA ends are shown in the graph.

See also Figure S5.
2009), perhaps enhancing the effectiveness of this mechanism.

Nevertheless, it is unlikely that this scenario could lead to tempo-

ral coupling of the two single-ended DSBs formed. Hence, even

though the molecular bases of the antagonism between Ku and

the Mre11 complex at double- and single-ended DSBs may

share some similarities, the potential repair mechanisms and

outcomes are distinct.

In this study, we present evidence that the interplay between

the Ku heterodimer and Mre11 at single-ended DSBs influences

the action of Exo1 at the break, thereby affecting its repair. Ku

and Mre11 appear to govern the choice between HR and

NHEJ at double-ended DSBs, such as those induced by the

HO endonuclease (Shim et al., 2010), but the significance of their

interplay at single-ended DSBs is likely confined to regulating the

extent of resection. Previous analyses support the idea that end
C

resection influences BIR. Whereas extensive resection has an

inhibitory effect, mutations in EXO1 and SGS1, which strongly

impair resection, increase the frequency of BIR events (Marrero

and Symington, 2010). These observations resonate well with

the phenotype of mre11-3, as well as its genetic interaction

with yku70D. In mre11-3, resection is impaired, and CPT treat-

ment induces mitotic recombination at doses that have no effect

on wild-type cells. Deletion of yKU70 in mre11-3 reduces the

induction to essentially wild-type levels. The data presented

here support the interpretation that the induction of mitotic

recombination is reduced in mre11-3 yku70D double mutants

because resection is restored in that setting. Conversely, CPT

does not induce mitotic recombination in yku70D, suggesting

that the increase in resection resulting from yKu deficiency sup-

presses BIR (Foster et al., 2011).
ell Reports 3, 2033–2045, June 27, 2013 ª2013 The Authors 2041



Figure 6. Model Depicting the Effect of Mre11/Sae2 and the yKuComplex in Coordinating Exo1-Dependent Processing and Repair of Single-

Ended DSBs

We propose that in the presence of replication-induced single-ended DSBs, Mre11 and Sae2 repress Ku binding at DNA ends, thereby promoting Exo1

recruitment and resection. To explain the molecular basis of yKu70 suppression of single-ended DSB resection, we postulate two nonexclusive scenarios

responsible for a reduction of Ku affinity to DNA ends. In ourmodel, a stable binding of thewild-type yKu heterodimer (dark-and light-blue oval structure) to single-

ended DSB ends occurs as consequence of an equilibrium maintained between two Ku-DNA binding modes (K1 and K2). On this basis, reduced yKu affinity for

DNA ends may take place as a consequence of mutations that increase the yKu off-rate and/or the ability of Ku to diffuse inward on the DNA molecule (Ku*: pink

and purple oval structure). The reduction in Ku-DNA end-binding stability can be explained by a structural analysis of the Ku mutants. The use of a software

(Rosetta Common) to predict the effect(s) of single-point mutations on a protein structure highlighted a shift in the overall backbone conformation (data not

shown) of the Ku heterodimer caused by mutation in Ku70. A consequent reduction in the persistency of Ku at DNA ends translates to a failure to protect DNA

ends from Exo1 exonuclease activity. We cannot test Sgs1’s role in this model because of the synthetic interaction withmre11-3 (Foster et al., 2011). K1 and K2

represent the equilibrium constant of Ku-DNA binding modes.
We propose a model for Ku’s action at single-ended DSBs

(Figure 6). At the single-ended DSB, the probability of Ku

engagement is reduced by the initial Mre11- or Sae2-mediated
2042 Cell Reports 3, 2033–2045, June 27, 2013 ª2013 The Authors
incision event, which produces a 50- to 100-base overhang

(Ku binding to an ssDNA overhang is significantly less avid

than that to a blunt end; Foster et al., 2011). Exo1 next carries



out bulk resection of the DNA end to promote BIR (Figure 6). In

cells expressing mre11-3 and sae2D, the first incision step is

impaired and Ku binding is not inhibited, which in turn limits

Exo1 resection, resulting in sensitivity to CPT. As with the induc-

tion of mitotic recombination by CPT,mre11-3 CPT sensitivity is

abolished by yKu70 deletion (Foster et al., 2011).

Collectively, the data obtained here indicate that the mecha-

nistic basis for the suppression of mre11-3 CPT sensitivity in

yku70* mre11-3 double mutants is the reduction in the end-

binding affinity of yku70*-containing complexes. As in yku70D,

the lower affinity of these complexes effectively bypasses the

requirement for the Mre11 incision step and permits Exo1 to

resect DNA. In addition, the data clearly support the interpreta-

tion that Ku’s effect on Exo1 at single-ended DSBs is analogous

to its effect at telomeric DNA ends (Vodenicharov et al., 2010).

In addition to the reduced probability of end engagement, the

propensity of yKu70*-containing heterodimers to slide inward

from the DSB end may also account for the failure to inhibit

Exo1-mediated resection. This possibility suggests that some

fraction of yKu may be threaded onto DNA during chromosome

DNA replication. It is conceivable that trapped complexes could

pose a physical impediment to replication forks or the transcrip-

tional machinery. Previous data obtained in human cells and

Xenopus laevis egg extracts showed that Ku80 becomes polyu-

biquitinated when bound to a DSB, promoting its removal from

DNA (Feng and Chen, 2012; Postow et al., 2008). Whether a

similar mechanism is operative in S. cerevisiae has not been

established.

The data presented here clearly show that theMre11 complex,

the Ku heterodimer, and Exo1 act interdependently to coordi-

nate the repair of single-ended DSBs. Because it ultimately

regulates the formation of ssDNA, this interplay has the potential

to also modulate checkpoint activation. Hence, this NHEJ-

independent function of Ku is likely to exert a diverse impact

on the metabolism of single-ended DSBs and the response to

DNA replication-associated DSBs. Given that the Ku complex

is present in organisms such as S. cerevisiae in which NHEJ is

relatively insignificant for survival, we suggest that the selection

for this function of the Ku heterodimer described here may

account for its broad phylogenetic conservation.

EXPERIMENTAL PROCEDURES

The yku70* alleles are listed in Table S1. The yeast strains, plasmids, and

antibodies used in this work are listed in Table S3, Table S4, and the Extended

Experimental Procedures, respectively. Protein purification, immunoprecipita-

tion of protein complexes, and biochemical and genetic assays were con-

ducted as described in the Extended Experimental Procedures.

Identification of yku70* Alleles

JPY5025 strain was cotransformed with PCR randomly mutagenized yKU70

fragments and pRS314 vector digested with SmaI and PflMI. JPY5025 strain

transformed with digested vector was used as a negative control. Transform-

ants were replica plated on media containing 12 mM CPT. The yku70* mutants

were screened for their ability to rescue the CPT sensitivity of mre11-3 cells.

Positive clones that confer resistance ofmre11-3 to CPT contain both vectors

that carry mutated yKU70 and empty vectors that behave as yku70 null. A total

of 2,300 candidates resistant to CPT were individually streaked on DO-TRP

lactate plates containing galactose or glucose for expression or repression,

respectively, of HO endonuclease. Clones growing on galactose were recov-
C

ered after 4 days of incubation at 30�C. Positive cloneswere retested on galac-

tose media after loss of TRP1 plasmid by 5-fluoroanthranilic acid (FAA). This

would eliminate positive clones that confer both resistance of mre11-3 to

CPT and NHEJ proficiency due to selection of suppressor mutations in the

genome. Clones that reacquired sensitivity to HO expression in the absence

of TRP1 centromeric-yku70* vectors were isolated and the plasmids recov-

ered. Plasmid purification from yeast cells was performed with the use of a

Miniprep kit (QIAGEN). Yeast O/N culture (3 ml) was resuspended in 250 ml

of P1 buffer in the presence of 250 ml of glass beads (425–600 mm). Cells

were mechanically lysed by vortexing at max rpm for 5 min at room tempera-

ture, and subsequent purification was performed according to the manufac-

turer’s instructions. Vectors were eluted from spin columns with 50 ml H2O,

and 2 ml of the eluted vectors were transformed in chemically competent

DH5a bacterial strain. Amplified vectors purified by the Miniprep kit were

sequenced for mutations in yKU70. A total of 89 yku70mutants were isolated.

Combinations of single- and multiple-point mutations were identified. Among

11 single-point mutation alleles (yku70-1 to yku70-11), six whose mutated res-

idues were conserved in mouse and human (yku70-2, yku70-3, yku70-5,

yku70-6, yku70-10, and yku70-11) were further characterized.
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