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SUMMARY

Single-ended double-strand breaks (DSBs) are a
common form of spontaneous DNA break, generated
when the replisome encounters a discontinuity in the
DNA template. Given their prevalence, understand-
ing the mechanisms governing the fate(s) of single-
ended DSBs is important. We describe the influence
of the Ku heterodimer and Mre11 nuclease activity on
processing of single-ended DSBs. Separation-of-
function alleles of yku70 were derived that pheno-
copy Ku deficiency with respect to single-ended
DSBs but remain proficient for NHEJ. The Ku mutants
fail to regulate Exo1 activity, and bypass the require-
ment for Mrel1 nuclease activity in the repair
of camptothecin-induced single-ended DSBs. Ku
mutants exhibited reduced affinity for DNA ends,
manifest as both reduced end engagement and
enhanced probability of diffusing inward on linear
DNA. This study reveals an interplay between Ku
and Mre11 in the metabolism of single-ended
DSBs that is distinct from repair pathway choice at
double-ended DSBs.

INTRODUCTION

DNA double-strand breaks (DSBs) can be caused by exposure
to ionizing radiation or genotoxic chemicals. DSBs spontane-
ously arise most commonly during DNA replication when DNA
replication forks encounter a discontinuity in the template, a
circumstance that leads to the formation of single-ended DSBs
(Ryan et al., 1991; Shao et al., 1999; Strumberg et al., 2000). In
contrast, double-ended DSBs are most likely to arise from HO
endonuclease cleavage during mating-type switching, or by
Spo11 at the onset of meiotic recombination (Paques and Haber,
1999). Nonhomologous end joining (NHEJ) and homologous
recombination (HR) are the two modes by which DSBs are
repaired. NHEJ consists of the religation of DNA ends, with little
or no DNA homology required. In Saccharomyces cerevisiae, the
core components of NHEJ are the yKu heterodimer (yKu70-
yKu80), Dnl4-Lif1, Lif2, and the Mre11 complex (which consists
of Mre11, Rad50, and Xrs2) (Boulton and Jackson, 1996, 1998;
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Daley et al., 2005; Frank-Vaillant and Marcand, 2001; Moore
and Haber, 1996; Schar et al., 1997; Teo and Jackson, 1997).

HR is initiated by resection of the 5’ strand of the DSB end to
generate a 3’ single-stranded DNA (ssDNA) tail that subse-
quently invades homologous duplex DNA (usually a sister chro-
matid) and copies information from that template to restore the
site of the break (Heyer et al., 2010). Recent in vivo data suggest
atwo-step mechanism for DSB resection. In the first step, a short
(~50 base) 3 ssDNA overhang is generated by the Mrel1
complex and Sae2. In the second step, long-range resection is
effected by two pathways, one dependent on Exo1 and the other
dependent on Sgs1 and Dna2 (Gravel et al., 2008; Mimitou and
Symington, 2008; Zhu et al., 2008).

The choice between NHEJ and HR depends on the phase of
the cell cycle. 5'-to-3’ resection of DSB ends is inhibited in G1,
when cyclin-dependent kinase (CDK) activity is low, and is
favored in G2/M phase, when CDK activity is high (Aylon et al.,
2004; Barlow et al., 2008; Ira et al., 2004). Consequently, HR
occurs primarily in S and G2 phases of the cell cycle when a
sister chromatid is available as a repair template, whereas
NHEJ is generally restricted to G1 phase.

With regard to single-ended DSBs, the issue of pathway
choice is less relevant because these breaks are unlikely to be
substrates for NHEJ, and are primarily repaired by invasion of
the intact sister chromatid to initiate leading and lagging strand
DNA synthesis from the point of invasion (Lydeard et al., 2007,
2010). The possible fate(s) of the end thus extended includes
copying to the end of the chromosome and dissociation and
reinvasion of the same or alternative templates downstream of
the initial break site (Llorente et al., 2008; Smith et al., 2007). In
mammalian cells, it also appears that the extended DSB
end may dissociate and be resolved by NHEJ (Richardson and
Jasin, 2000), although such events have not been noted in
S. cerevisiae.

The Ku heterodimer is an abundant nuclear protein that binds
with high affinity to duplex DNA ends, hairpin loops, and single-
strand nicks in a sequence-independent manner (Blier et al.,
1993; Foster et al., 2011; Griffith et al., 1992; Mimori and Hardin,
1986). Structural analysis of the human Ku heterodimer revealed
a ring-like conformation formed by the interaction of Ku70 and
Ku80 subunits, which provides the structural basis for Ku to
bind to DNA ends, as well as the ability of Ku to slide along
duplex DNA (de Vries et al., 1989; Walker et al., 2001; Yaneva
et al., 1997).
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Several lines of evidence suggest that Ku and the Mre11 com-
plex antagonize each other at DNA ends to influence the choice
between NHEJ and HR; however, the significance of this inter-
play relative to the cell-cycle phase as the primary determinant
of pathway choice is not clear (Clerici et al., 2008; Wu et al.,
2008; Zhang et al., 2001). Also unclear is the relevance of
Mre11 nuclease activity and Sae2 protein in pathway choice.
Previous studies that examined this relationship predominantly
used mre114 mutants, in which Ku binding to DNA ends pre-
vents long-range resection at an HO-induced double-ended
DSB. Mre11 nuclease activity and Sae2 appear to be dispens-
able for resection of enzymatically induced double-ended
DSBs, whereas nuclease activity may be required for chemically
complex “dirty” ends, such as those produced by ionizing
radiation (Mimitou and Symington, 2010; Shim et al., 2010).

The Ku heterodimer is also required for telomere maintenance
(Wellinger and Zakian, 2012). The telomeric functions of Ku are
genetically separable from its role in NHEJ (Bertuch and Lund-
blad, 2003; Driller et al., 2000; Roy et al., 2004; Stellwagen
et al,, 2003; Taddei et al., 2004). These findings suggest a
“two-face” model in which the Ku70 surface is oriented toward
the DNA terminus and influences NHEJ, whereas the Ku80
surface is oriented inward and promotes interactions with
telomeric heterochromatin (Ribes-Zamora et al., 2007).

Having previously demonstrated that yKu deficiency sup-
pressed the IR sensitivity of mre114 mutants in S. cerevisiae
(Bressan et al., 1999), we recently found that yKu70 deficiency
suppressed the sensitivity of a nuclease-dead mre71 mutant
(mre11-3) to CPT (Foster et al., 2011). The CPT sensitivity of
mre11-3 was unaffected by Dnl4 deficiency, indicating that the
genetic interaction observed between yku704 and mre11-3 is
independent of NHEJ. Exo1 activity was required for suppres-
sion in mre11-3 yku704 mutants, suggesting that Ku inhibition
of Exo1 contributes to mre117-3 sensitivity. Moreover, because
CPT-induced damage requires DNA replication (Pommier
et al., 2006), this genetic interaction reveals an S-phase-specific,
NHEJ-independent role of the Ku heterodimer (Foster et al.,
2011).

In this study, we performed a genetic screen to isolate yKU70
alleles that phenocopied yku70 4 with respect to the suppression
of mre11-3 CPT sensitivity while leaving NHEJ functions intact.
The yKU70 gene products exhibited reduced affinity for DNA
ends and an increased probability to slide inward once bound.
Accordingly, the ability of mutant gene products to inhibit Exo1
activity in vitro was reduced. These results suggest a model in

which the Mre11 complex and Ku regulate the metabolism of
single-ended DSBs in S phase, a process with the potential to
influence DNA repair outcomes as well as checkpoint activities.

RESULTS

Screen for yku70 Separation-of-Function Mutations

The goal of this study was to examine the NHEJ-independent
function(s) of the yeast Ku heterodimer at single-ended DSBs
in S phase cells (Foster et al., 2011). The first step toward this
goal was to construct alleles of yKU70 that separated its func-
tions in S phase from those involved in NHEJ. We mutagenized
yKU70 and screened for CPT resistance in an mre11-3 yku704
strain, followed by a secondary screen for NHEJ proficiency (Fig-
ure 1A). This strategy excludes silent mutants in the first step
because they will complement the yku704 mutation and thereby
cause CPT sensitivity. Null mutations will be excluded in the
secondary screen because the transformants will remain NHEJ
deficient. A library of yku70 mutants (hereafter yku70*) was
created by PCR ampilification of the yKU70 open reading frame
(ORF) followed by gap repair into a centromeric plasmid upon
transformation of mre11-3 yku704 cells. The resulting yku70*
mre11-3 transformants were plated on solid media containing
12 uM CPT. From ~30,000 primary transformants, 2,300 CPT-
resistant colonies (~7%) were obtained.

CPT-resistant transformants were subsequently screened for
NHEJ proficiency. In the yku704 mre11-3 strain used, the HML
and HMR elements are deleted so that the DSB created by HO
must be repaired by NHEJ in order for the cells to retain viability
(Lee et al., 1998). This two-step screening led to the identification
of 89 mutants that conferred CPT resistance and NHEJ profi-
ciency to mre11-3 yku704 cells. yku70* alleles with more than
one amino acid change were excluded from further analysis,
and 11 yKU70 mutations, six of which also appeared among
the multiply mutated alleles (yku70-1 to yku70-11; Tables 1 and
S1) were retained for further analysis (Figures 1B and 1C).
yKu70 and yKu80 coimmunoprecipitated in all of the 11 retained
mutants (Figure 1D). Conversely, mutations that drastically
affected the expression level of yku70* gene products were defi-
cient in NHEJ (Figures S1A and S1B). Finally, as expected from
previous analyses (Foster et al., 2011), yku70* mutants also
conferred CPT resistance upon yku704 sae24 cells (Figures
S1C and S1D).

The S. cerevisiae Ku heterodimer is moderately conserved
relative to its human counterpart, for which the crystal structure

Figure 1. yku70* Mutants Are Deficient for Ku-Specific S Phase Function but Proficient for NHEJ

(A) Schematic illustration of the genetic screen used to identify yKu70* separation-of-function mutants. The screen was performed using JPY5025, a yku704
mre11-3 yeast strain carrying GAL-HO hml4 hmr4 in a W303+ background.

(B) Centromeric plasmids carrying yku70* alleles were transformed in JPY5025 strain (see Extended Experimental Procedures). Exponentially growing cells of the
indicated genotypes were 1:5 serially diluted and spotted on DO-TRP lactate in the presence or absence of CPT (12 uM).

(C) The same yeast strains were plated onto solid media containing either glucose or galactose to repress (—HO) or induce (+HO) expression of HO endonuclease.
(D) Integrity of the yKu70-yKu80 complex in yeast strain JPY5097 transformed with empty vector (vector) or vector expressing yKu70 wild-type (WT) or yKu70*
mutants (yku70—). FLAG-tagged (+) or untagged (—) yKu80 was immunoprecipitated with anti-FLAG antibody and yKu70, yKu80 proteins were analyzed by
western blot (WB) with anti-yKu70-yKu80 antibody. Input yKu80-FLAG and yKu70 were analyzed by WB (* indicates nonspecific band).

(E) Position of human Ku70 residues that correspond to the residues mutated in yku70* alleles mapped on the Ku-DNA crystal structure (Walker et al., 2001).
hKu70 and hKu80 are shown in gray and green, respectively, and the DNAis in red. The predicted positions of the yKu70 mutations are shown by colored spheres
(blue spheres map inside or adjacent to the protein loops, and magenta spheres map to B sheets).

See also Figures S1 and S3 and Tables 1 and S1.
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Table 1. Residues of yku70* Alleles that Are Conserved in
Human, Related to Figure 1

Mutated Amino  Corresponding Sites
yku70* Mutants®  Acids in yKu70P in hKu70° Domain®
yku70-2 R369C K351 B-barrel
yku70-3 L100S L105 ao/P
yku70-5 Y494N Y473 C-terminal
yku70-6 F34S F40 a/P
yku70-10 S384R S365 B-barrel
yku70-11 V70D 175 a/B

3The yku70* alleles carrying a single point mutation, in residues
conserved from yeast to human, are ordered by crescent number.

b |dentical amino acids are in bold and similar amino acids are in regular
font. Similar amino acids were grouped as follows: [isoleucine (l), leucine
(L), valine (V)]; [aspartic acid (D), glutamic acid (E), asparagine (N),
glutamine (Q)]; [alanine (A), glycine (G)]; [serine (S), threonine (T)]; [phenyl-
alanine (F), tyrosine (Y), tryptophan (W)]; [cysteine (C), methionine (M)];
[arginine (R), lysine (K), histidine (H)]; [proline (P)].

9Domains in yeast and human Ku70 that each mutated amino acid is
part of.

has been obtained (Walker et al., 2001). Among the 11 yku70*
mutants that were retained, six fell within residues that were
conserved in the human Ku70 protein (Table 1) and were sub-
jected to further characterization. The mutations did not cluster
to a particular domain (Figure 1E), although two mutations (Fig-
ure 1E, magenta spheres) localized to B sheets A and B that lie
within the N-terminal o/ domains of yKu70.

yku70* Mutants Are Defective in Telomere End
Protection

We have suggested that yku70* mutations affect the activity of
the Ku heterodimer at single-ended DSBs that arise when the
replisome encounters discontinuity in the template (see Figure 6).
In this context, we reasoned that telomeres might analogize
single-ended DSBs, and that yku70* alleles may also affect
telomere maintenance. The telomere length of yku70* mutants
was measured by southern blotting of DNA extracted from
freshly dissected spores. In all six conserved mutants, telomere
length was reduced (Figure 2A), indicating that the activity of
yku70* mutants at telomeric ends, as well as single-ended
DSBs in S phase, was affected. Telomere shortening in yku70*
was dependent on Exol, as telomere length was partially
restored in yku70* exo14 double mutants (Figure 2A). In addition,
quantitation of telomeric ssDNA overhangs revealed a 3- to
7-fold increase in ssDNA signal in yku70* (Figures 2B and 2C).
Thus, telomere overhang length and to a lesser extent telomere
length in yku70* mutants exhibited a similar dependence on
Exo1 compared with their ability to suppress mre11-3 CPT
sensitivity (Figure S2A).

Previous studies have identified separation-of-function yku70
and yku80 alleles in which NHEJ functions are intact but telomere
protection is compromised (Bertuch and Lundblad, 2003; Lopez
et al., 2011; Ribes-Zamora et al., 2007). Given that the yku70*
alleles also separate NHEJ and telomeric functions, we tested
two of the previously identified alleles for their ability to suppress
mre11-3 CPT sensitivity. In each case, these mutants phenocop-
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ied yku70* mutants (Figures 2D and S2C). Conversely, mutations
affecting yKu80 interaction interface with telomeric heterochro-
matin or the yKu70 interface required for NHEJ did not suppress
mre11-3 CPT sensitivity (Figure S2B). These data suggest that
Ku’s functions at single-ended DSBs are similar to its role in pro-
tecting telomeric DNA ends, and that in both contexts, its func-
tions are separable from NHEJ.

Biochemical Analysis of yku70* Gene Products

To understand the mechanistic basis of the yku70* phenotype,
we analyzed the behavior of the mutant gene products in vitro.
yku70-5 and yku70-10 were coexpressed in bacteria with
yKU80 and purified to near homogeneity (Figure 3A). The
yKu70-5 and yKu70-10 proteins contain mutations in the loops
adjacent to the C-terminal and B-barrel domains, respectively
(Figure 1E; Walker et al., 2001; Zhang et al., 2001).

The DNA-binding behavior of the yku70* gene products was
assessed in two contexts: filter binding assays and electropho-
retic mobility shift assays (EMSAs; for in vitro assays, yKu70,
yKu70-5, and yKu70-10 refer to a heterodimer of yKu70-
yKu80, yKu70-5-yKu80, and yKu70-10-yKu80, respectively).
For the filter binding assay, increasing concentrations of the
yKu complex were incubated with a dsDNA fragment of 25 bp
representing a single Ku-binding site (de Vries et al., 1989;
Kysela et al., 2003; Ma and Lieber, 2001) as well as a 465 bp
fragment to which multiple Ku proteins could bind (Figures 3B
and 3C). The DNA-binding affinity of yKu70-5 and yKu70-10 for
the single-site substrate was reduced (for the short substrate,
Kp = 1.4 nM and Kp = 0.8 nM, respectively) relative to the wild-
type protein (Kp = 0.2 nM). The apparent Kp on the longer DNA
substrate was reduced to 1.6 nM (yKu70-5) and 0.5 nM
(yKu70-10) nM, whereas it remained unaltered in the wild-type
protein (Kp = 0.2 nM; Figure 3C).

Although it exhibits a strong preference for blunt DNA ends,
the Ku heterodimer is capable of sliding inward from the end to
bind internal sites (Blier et al., 1993). EMSAs were carried out
to determine whether the stoichiometry of DNA binding was
altered in yKu70-5 or yKu70-10. Increasing concentrations of
yKu were added to a radiolabeled dsDNA substrate, and com-
plex formation was analyzed by EMSA (Figures 3D and 3E).
The radiolabeled substrate was an 80 bp blunt DNA molecule
that is capable of binding three Ku molecules (Blier et al., 1993;
Ma and Lieber, 2001). Accordingly, with wild-type protein we
observed three shifted bands, likely representing DNA bound
to one, two, or three Ku molecules. At a ratio of two yKu com-
plexes per substrate molecule, (Figure 3D, lane 3), the predom-
inant product was the doubly bound species, whereas the singly
bound substrate was ~8-fold less abundant. At a 5-fold ratio of
yKu to DNA, the singly bound species was absent, and the triply
and doubly bound forms were 40% and 35% of the total sub-
strate (Figure 3D, lane 5). In contrast, triply bound yKu70-10 or
yKu70-5 complexes were not detected at any concentration.
The relative fraction of doubly bound forms was greatest at
5-fold excess, but was reduced by 11% and 30% relative to
wild-type (compare lane 5, 9, and 13). Hence, the suppression
of mre11-3 CPT sensitivity by yku70* mutants is correlated
with reduced DNA binding of the yKu heterodimer. Given that
suppression requires Exo1, this observation further suggests
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Figure 2. Rescue of mre11-3 CPT Sensitivity and Telomere Shortening in yku70* Alleles Require EXO1

(A) Telomere length analysis of the indicated yku70* mutants. Plasmids bearing yku70* alleles or control vectors were transformed into yku704 or yku704 exo14
strains. After 60 generations, telomeric sequences were detected by southern blot analysis of Xhol-digested genomic DNA.

(B) Telomeric G-overhang assay. Genomic DNA isolated from yku704 or yku704 exo14 strains transformed with CEN plasmids containing the indicated yku70*
alleles were digested with Xhol restriction enzyme and separated on a 0.7% agarose gel. The gel on the left was treated as a nondenaturing gel and hybridized to

(legend continued on next page)
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that reduced affinity of yKu interferes with its inhibition of Exo1
activity.

Given the decrement in DNA binding exhibited by the yku70*
gene products, a quantitative analysis of NHEJ proficiency was
undertaken. A direct view of the DSB repair kinetics of an HO-
induced DSB was obtained by quantitative PCR (qPCR)
following transient expression of HO (Hohl et al., 2011). Cells ex-
pressing the integrated yku70* alleles yku70-5 and yku70-10
were placed in galactose-containing media for 15 min. HO
expression was then suppressed by the addition of glucose.
gPCR with primers spanning the DSB site 4 and 6 hr after HO
suppression was carried out to quantify DSB rejoining (Fig-
ure 3F). At 6 hr in glucose, 14% of wild-type cells, 8% of
yku70-10 cells, and 9% of yku70-5 cells had repaired HO DSB,
whereas DSBs persisted in yku704 cells and apparently were
degraded, as gqPCR signals decreased over the course of the
experiment (—6%). These data demonstrate that yku70-5 and
yku70-10 are proficient in NHEJ, and indicate that the process
of NHEJ is not strongly affected by the reduced affinity of the
Ku heterodimer for DNA ends. Further supporting this interpreta-
tion, we found that the NHEJ junctions in yku70-5 and yku70-10
were indistinguishable from those of wild-type cells following
chronic exposure to galactose (Figure S3A), whereas the pre-
dominant outcome in yku704 colonies was extensive deletions
(>500 bp) or inactivation of HO expression (data not shown).

We have proposed that these mutants reveal an NHEJ-
independent function of Ku that is specific to single-end DSBs
and is the predominant role for Ku in S phase cells. This hypoth-
esis predicts that whereas the yku70* mutants phenocopy
yku704 in S phase, they will not do so in G1 cells. In Ku-deficient
cells, induction of the HO endonuclease leads to Exo1-depen-
dent DSB resection and activation of Rad53 within 1 hr of DSB
formation (Clerici et al., 2008). Wild-type, yku704, yku70-5, and
yku70-10 strains were arrested in G1 and the HO endonuclease
was induced. Rad53 phosphorylation was monitored for up to
4 hr after HO induction (Figures S3B and S3C). As expected,
Rad53 phosphorylation appeared 60 min after HO induction in
the yku704 strain, but was detectable at low levels in similarly
treated wild-type cells beginning at 2 hr postinduction (Fig-
ure S3C). In both yku70-10 and yku70-5 strains, modest Rad53
activation occurred by 2 hr postinduction, as in the wild-type
strain. Hence, the phenotype of yku70-5 and yku70-10 alleles
is similar to wild-type in G1 cells, but phenocopies yku704 with
respect to its effect on mre11-3 in S phase.

yKu70* Mutants and Exo1 Activity In Vitro

The requirement for Exo1 in the suppression of mre?17-3 CPT
sensitivity is likely attributable to Ku-mediated inhibition of
Exolat DSB ends. To test that interpretation, we employed a

blunt-ended dsDNA 80-mer, biotinylated at the 5’ end of one
strand (Figure S4A). The complementary strand is radiolabeled
50 bases in from the end, so a 5'-to-3' resection of that strand
will produce labeled intermediates from 79 to 30 bases long,
culminating in the release of the labeled mononucleotide (Fig-
ure 4A). Streptavidin binding blocks resection of the biotinylated
strand, restricting access of Exo1 to the internally labeled strand.
Thus prepared, the labeled 80-mer was incubated with yKu for
60 min prior to the addition of Exo1, and the reaction was inacti-
vated at certain time points after Exo1 addition. Reaction prod-
ucts were resolved on a denaturing gel, and the appearance of
labeled AMP was monitored. In the presence of wild-type yKu
heterodimer, 6% of the substrate was degraded to produce
AMP within 30 s, rising slightly to 9% upon further incubation
to 60 min. However, in the absence of yKu, 36% of the substrate
was converted by 30 s, increasing to 72% at 15 min and to 77%
at 60 min when the curve reached a plateau (Figures 4B, 4C,
S4B, and S4C). These data demonstrate that yKu inhibits
Exo1-dependent resection in this setting, as was previously
shown with the corresponding human proteins (Sun et al., 2012).

The extent of Exo1 inhibition by complexes containing yKu70-
5 and yKu70-10 mutants correlated roughly with the severity of
their DNA-binding defect, with yKu70-10 inhibited to a greater
extent than yKu70-5. Nevertheless, AMP release was 3- to
4-fold higher than observed in the wild-type at 30 s, and approx-
imated the levels observed in the control reaction lacking yKu
altogether by 15 min (Figures 4B and 4C). As expected, the
detected increase in AMP correlated quantitatively with the
decrease in signal of the initial DNA substrate (Figure S4D).
Similar trends in inhibition of lambda exonuclease were
observed with wild-type and mutant yKu complexes, indicating
that yKu-mediated inhibition of resection is not species specific
(Figure S4E).

SFM Analysis of DNA Binding by Mutant Ku Complexes
Taken together with previously described genetic interactions
among Ku, Exo1, and mre11-3 (Foster et al., 2011), the failure
of yku70* gene products to inhibit Exo1 as described above sup-
ports a model in which Ku binds single-ended DSBs and regu-
lates the action of Exo1 in a manner antagonized by Mre11
nuclease activity. To gain further insight into the DNA-binding
properties underlying the behavior of the mutant proteins, we
carried out scanning force microscopy (SFM) to examine the
binding of yKu heterodimers to a 1.8 kb DNA substrate (Figures
5A, 5B, and S5). DNA was incubated for 30 min with 8-fold molar
excess of yKu (1 nM versus 8 nM) prior to deposition and
analysis.

Approximately 800 DNA molecules were examined in each
experiment (Table S2); 85% of the substrate was bound by

the end-labeled CA-oligo. The amount of telomeric ssDNA was quantitated before the gel was denatured and probed with the same telomere probe to reveal the

total amount of telomeric DNA (right).

(C) Ratio of telomeric ssDNA to total telomeric DNA, normalized to WT. Error bars indicate SDs of three independent quantifications.

(D) CPT sensitivity of mre11-3 yku70 DNA end-binding-defective mutants and yku80 telomere mutants. Top: serial dilutions of JPY5025 strain containing the
indicated yku70 or yku80 alleles on a CEN plasmid were spotted onto DO-TRP lactate in the presence or absence of CPT. Bottom: NHEJ assays as described in
Figure 1C. yku70 and yku80 alleles nomenclature: yku70-EBD (DNA end-binding deficient: yku70-R456E spores a and b; Lopez et al., 2011); yku80-tel (yku80-

P437L spores a and b; Bertuch and Lundblad, 2003).
See also Figure S2.
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Figure 3. Mutations in yKu70 Loops Reduce the Affinity of the yKu Heterodimer for DNA Ends
(A) yKu70 wild-type and —5 and —10 mutants were purified to homogeneity in complex with yKu80. The purified complexes were resolved by SDS-PAGE gel,

analyzed by WB, and stained with Coomassie blue.

(B and C) Analysis of DNA-yKu interaction by filter binding assay. Increasing amounts of the indicated recombinant yKu complexes were incubated overnight
with 0.1 nM of 25 bp (B) and 465 bp (C) 5'-labeled dsDNA. Radiolabeled DNA bound to protein was retained on nitrocellulose filter and quantified by scintillation
counter. Denatured boiled yKu70 was used as control. Error bars represent the SD of three independent experiments and are smaller than the symbols when not

evident. R? is the coefficient of determination.

(D) Gel mobility shift assay of yKu binding to 80 bp dsDNA blunt ends (dsBE). The DNA concentration was 2.5 nM in all binding reactions, whereas Ku con-
centrations are represented by the Ku to DNA molar ratios. Bands representing free DNA or one, two, and three yKu molecules in complex with DNA are indicated.
(E) Quantification of the gel in (D). Error bars represent the SD of three independent experiments and are smaller than the symbols when not evident.

(F) NHEJ repair kinetics after acute (15 min) HO induction were determined by gPCR in yKU70 (JPY5726), yku70-5 (JPY5730), and yku70-10 (JPY5728) integrated
in the endogenous yKU70 locus in a GAL-HO hmi4 hmr4 strain W303+ background. yku704 (JPY5735) was used as negative control. Cells were cultivated for
another 4 or 6 hr in glucose medium after HO induction, and repair was monitored with primer flanking the HO site.

See also Figure S3.
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Figure 4. yKu70* Mutants Fail to Block Exo1-Dependent Resection
In Vitro

(A) Representation of the DNA substrate used in the resection assay in (B). 5’
biotinylated 80-mer oligonucleotide was annealed to an equally long internally
labeled oligonucleotide that would release free AMP upon Exo1 resection
(* indicates the position of 2P on DNA). B, biotin; SV, streptavidin.

(B) Biotinylated DNA substrate (1 nM) was preincubated with streptavidin,
followed by the presence or absence (control) of the indicated yKu complexes
(5 nM). The kinetics of resection by Exo1 (3 nM) was determined at the times
indicated by separation of DNA on denaturing gel, and the resection products
were visualized with the Phosphorlmager system. An 80 bp oligo 5’ labeled on
the first adenine was digested with Phosphodiesterase | (Pl) and the AMP
generated was used as the control for Exo1 resection.

(C) The percentage of generated AMP from the experiment shown in (B) is
plotted as a function of time. A magnification of the graph in the first 0.5 min is
represented to show the curve slope, and the full graph is reported in small
scale. Error bars represent the SD from three independent experiments and
are smaller than the symbols when not evident.

See also Figure S4.

wild-type yKu, 94% of which was at DNA ends. The majority of
wild-type yKu-DNA complexes had yKu and both ends of the
substrate (Figures 5A and 5B). These DNA-binding properties
are similar to those of human Ku70-Ku80 (Mimori and Hardin,
1986; Paillard and Strauss, 1991; Yaneva et al., 1997). In
contrast, yKu70-5- and yKu70-10-containing heterodimeric
complexes exhibited a propensity for sliding inward once they
were bound to the substrate. Whereas the mutant complexes
were each bound to one or both ends 57% of the time, 39%

2040 Cell Reports 3, 2033-2045, June 27, 2013 ©2013 The Authors

and 23% of protein-bound DNA molecules also contained inter-
nally bound Ku complexes of yKu70-5 and yKu70-10, respec-
tively (Figures 5B and S5). The fraction of substrate molecules
that were devoid of yKu complexes was the same for wild-type
and yKu70-10 (14%), whereas 68% of the substrate molecules
were devoid of yKu70-5-containing complexes (Table S2). These
data indicate that reduced affinity in yKu70-5 and yKu70-10 is
also associated with diffusion inward from the DNA end. This
raises the possibility that failure to inhibit Exo1 in vivo is attri-
butable to Ku sliding inward on single-end DSBs in addition to
a reduced probability of end binding.

DISCUSSION

We previously established evidence for an NHEJ-independent
role of the Ku heterodimer at single-ended DSBs (Foster et al.,
2011). This interpretation was based on the observation that
the CPT sensitivity of nuclease-deficient mre17-3 mutants is
suppressed by Ku, but not by DNA ligase IV deficiency. That
suppression was dependent on Exo1, suggesting a role for Ku
in modulating the processing of single-ended DSBs. In this
study, we provide mechanistic insight into the function of the
Ku heterodimer in that setting. We identified yku70 separation-
of-function mutants (yku70* mutants) that have intact NHEJ but
phenocopy yku704 with respect to suppression of mre11-3
CPT sensitivity. Biochemical analysis revealed that the yKu
heterodimer inhibited Exo1-mediated degradation of DSB
ends, and that inhibition by yku70* gene products was reduced.
The effect on Exo1 inhibition was correlated with reduced affinity
of the yKu heterodimer for DSB ends. The reduced affinity was
manifest as both a reduction in end binding of, and a propensity
of the mutant heterodimer to diffuse inward on linear DNA. These
data suggest a model wherein the interplay between Mre11 and
yKu at single-ended DSBs influences the activity of Exo1 during
DNA replication (Figure 6).

In vegetatively growing cells, spontaneous DSBs most
frequently arise during DNA replication when the replisome
encounters a discontinuity in the template. In this scenario, the
resulting lesion is a single-ended DSB (Figure 6), indicating that
the mechanisms by which cells mitigate this lesion are likely
relevant to maintaining the genome integrity of replicating cells.

The mechanisms of single-ended DSB repair differ fundamen-
tally from those of double-ended DSB. First, single-ended DSBs
cannot be readily repaired by NHEJ due to the lack of a second
DNA end to which the single-ended DSB can be joined (Cromie
etal., 2001). Second, in the course of HR-based repair of double-
ended DSBs, capture of the second end is temporally coupled to
the initial strand invasion event (Allers and Lichten, 2001;
Bzymek et al., 2010; Hunter and Kleckner, 2001). Temporal
coupling of this nature is not possible with a single-ended
DSB. In the course of repair by break-induced replication (BIR),
the extended DSB end can reinvade the acceptor chromatid
(Llorente et al., 2008; Smith et al., 2007), but such an event would
by definition be uncoupled from the initial invasion. A “second
end” could also be created by the arrival of the replisome from
an adjacent origin of replication, again uncoupled from the initial
invasion event. Recent data suggest that DSB formation may
induce the activation of local dormant origins (Doksani et al.,
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Figure 5. Interaction of yKu70-yKu80 Heterodimers with Linear Duplex DNA Molecules
Nucleoprotein complexes formed between blunt-ended linear DNA (1,821 bp) and the indicated yKu70-yKu80 heterodimers were visualized by SFM as described

in Experimental Procedures.

(A) Representative SFM images. Left panel: DNA-yKu70; central panel: DNA-yKu70-5; right panel: DNA-yKu70-10. The percentages of the total yKu complexes

bound to DNA at either internal sites or DNA ends are reported in Table S2.

(B) Graph representing the percentages of the total yKu complexes bound to DNA at either internal sites or DNA ends. Fisher’s exact test was performed on the
number of yKu molecules bound to DNA, at DNA ends and internal sites, between yKu70 and yKu70-5, and yKu70 and yKu70-10. In all cases, the p value for a
two-sided test is <0.0001 (***). Percentages of the total yKu complexes bound to DNA at either internal sites or DNA ends are shown in the graph.

See also Figure S5.

2009), perhaps enhancing the effectiveness of this mechanism.
Nevertheless, it is unlikely that this scenario could lead to tempo-
ral coupling of the two single-ended DSBs formed. Hence, even
though the molecular bases of the antagonism between Ku and
the Mre11 complex at double- and single-ended DSBs may
share some similarities, the potential repair mechanisms and
outcomes are distinct.

In this study, we present evidence that the interplay between
the Ku heterodimer and Mre11 at single-ended DSBs influences
the action of Exo1 at the break, thereby affecting its repair. Ku
and Mre11 appear to govern the choice between HR and
NHEJ at double-ended DSBs, such as those induced by the
HO endonuclease (Shim et al., 2010), but the significance of their
interplay at single-ended DSBs is likely confined to regulating the
extent of resection. Previous analyses support the idea that end

resection influences BIR. Whereas extensive resection has an
inhibitory effect, mutations in EXO7 and SGS7, which strongly
impair resection, increase the frequency of BIR events (Marrero
and Symington, 2010). These observations resonate well with
the phenotype of mre11-3, as well as its genetic interaction
with yku704. In mre11-3, resection is impaired, and CPT treat-
ment induces mitotic recombination at doses that have no effect
on wild-type cells. Deletion of yKU70 in mre11-3 reduces the
induction to essentially wild-type levels. The data presented
here support the interpretation that the induction of mitotic
recombination is reduced in mre11-3 yku704 double mutants
because resection is restored in that setting. Conversely, CPT
does not induce mitotic recombination in yku704, suggesting
that the increase in resection resulting from yKu deficiency sup-
presses BIR (Foster et al., 2011).
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Figure 6. Model Depicting the Effect of Mre11/Sae2 and the yKu Complex in Coordinating Exo1-Dependent Processing and Repair of Single-
Ended DSBs

We propose that in the presence of replication-induced single-ended DSBs, Mre11 and Sae2 repress Ku binding at DNA ends, thereby promoting Exo1
recruitment and resection. To explain the molecular basis of yKu70 suppression of single-ended DSB resection, we postulate two nonexclusive scenarios
responsible for a reduction of Ku affinity to DNA ends. In our model, a stable binding of the wild-type yKu heterodimer (dark-and light-blue oval structure) to single-
ended DSB ends occurs as consequence of an equilibrium maintained between two Ku-DNA binding modes (K; and Kj). On this basis, reduced yKu affinity for
DNA ends may take place as a consequence of mutations that increase the yKu off-rate and/or the ability of Ku to diffuse inward on the DNA molecule (Ku*: pink
and purple oval structure). The reduction in Ku-DNA end-binding stability can be explained by a structural analysis of the Ku mutants. The use of a software
(Rosetta Common) to predict the effect(s) of single-point mutations on a protein structure highlighted a shift in the overall backbone conformation (data not
shown) of the Ku heterodimer caused by mutation in Ku70. A consequent reduction in the persistency of Ku at DNA ends translates to a failure to protect DNA
ends from Exo1 exonuclease activity. We cannot test Sgs1’s role in this model because of the synthetic interaction with mre17-3 (Foster et al., 2011). Ky and K,
represent the equilibrium constant of Ku-DNA binding modes.

We propose a model for Ku’s action at single-ended DSBs incision event, which produces a 50- to 100-base overhang

(Figure 6). At the single-ended DSB, the probability of Ku (Ku binding to an ssDNA overhang is significantly less avid
engagement is reduced by the initial Mre11- or Sae2-mediated than that to a blunt end; Foster et al., 2011). Exo1 next carries
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out bulk resection of the DNA end to promote BIR (Figure 6). In
cells expressing mre11-3 and sae24, the first incision step is
impaired and Ku binding is not inhibited, which in turn limits
Exo1 resection, resulting in sensitivity to CPT. As with the induc-
tion of mitotic recombination by CPT, mre17-3 CPT sensitivity is
abolished by yKu70 deletion (Foster et al., 2011).

Collectively, the data obtained here indicate that the mecha-
nistic basis for the suppression of mre17-3 CPT sensitivity in
yku70* mre11-3 double mutants is the reduction in the end-
binding affinity of yku70*-containing complexes. As in yku704,
the lower affinity of these complexes effectively bypasses the
requirement for the Mre11 incision step and permits Exo1 to
resect DNA. In addition, the data clearly support the interpreta-
tion that Ku’s effect on Exo1 at single-ended DSBs is analogous
to its effect at telomeric DNA ends (Vodenicharov et al., 2010).

In addition to the reduced probability of end engagement, the
propensity of yKu70*-containing heterodimers to slide inward
from the DSB end may also account for the failure to inhibit
Exo1-mediated resection. This possibility suggests that some
fraction of yKu may be threaded onto DNA during chromosome
DNA replication. It is conceivable that trapped complexes could
pose a physical impediment to replication forks or the transcrip-
tional machinery. Previous data obtained in human cells and
Xenopus laevis egg extracts showed that Ku80 becomes polyu-
biquitinated when bound to a DSB, promoting its removal from
DNA (Feng and Chen, 2012; Postow et al., 2008). Whether a
similar mechanism is operative in S. cerevisiae has not been
established.

The data presented here clearly show that the Mre11 complex,
the Ku heterodimer, and Exo1 act interdependently to coordi-
nate the repair of single-ended DSBs. Because it ultimately
regulates the formation of ssDNA, this interplay has the potential
to also modulate checkpoint activation. Hence, this NHEJ-
independent function of Ku is likely to exert a diverse impact
on the metabolism of single-ended DSBs and the response to
DNA replication-associated DSBs. Given that the Ku complex
is present in organisms such as S. cerevisiae in which NHEJ is
relatively insignificant for survival, we suggest that the selection
for this function of the Ku heterodimer described here may
account for its broad phylogenetic conservation.

EXPERIMENTAL PROCEDURES

The yku70* alleles are listed in Table S1. The yeast strains, plasmids, and
antibodies used in this work are listed in Table S3, Table S4, and the Extended
Experimental Procedures, respectively. Protein purification, immunoprecipita-
tion of protein complexes, and biochemical and genetic assays were con-
ducted as described in the Extended Experimental Procedures.

Identification of yku70* Alleles

JPY5025 strain was cotransformed with PCR randomly mutagenized yKU70
fragments and pRS314 vector digested with Smal and PfIMI. JPY5025 strain
transformed with digested vector was used as a negative control. Transform-
ants were replica plated on media containing 12 uM CPT. The yku70* mutants
were screened for their ability to rescue the CPT sensitivity of mre11-3 cells.
Positive clones that confer resistance of mre11-3 to CPT contain both vectors
that carry mutated yKU70 and empty vectors that behave as yku70 null. A total
of 2,300 candidates resistant to CPT were individually streaked on DO-TRP
lactate plates containing galactose or glucose for expression or repression,
respectively, of HO endonuclease. Clones growing on galactose were recov-

ered after 4 days of incubation at 30°C. Positive clones were retested on galac-
tose media after loss of TRP1 plasmid by 5-fluoroanthranilic acid (FAA). This
would eliminate positive clones that confer both resistance of mre11-3 to
CPT and NHEJ proficiency due to selection of suppressor mutations in the
genome. Clones that reacquired sensitivity to HO expression in the absence
of TRP1 centromeric-yku70* vectors were isolated and the plasmids recov-
ered. Plasmid purification from yeast cells was performed with the use of a
Miniprep kit (QIAGEN). Yeast O/N culture (3 ml) was resuspended in 250 pl
of P1 buffer in the presence of 250 pl of glass beads (425-600 pm). Cells
were mechanically lysed by vortexing at max rpm for 5 min at room tempera-
ture, and subsequent purification was performed according to the manufac-
turer’s instructions. Vectors were eluted from spin columns with 50 pl H2O,
and 2 ul of the eluted vectors were transformed in chemically competent
DH50 bacterial strain. Amplified vectors purified by the Miniprep kit were
sequenced for mutations in yKU70. A total of 89 yku70 mutants were isolated.
Combinations of single- and multiple-point mutations were identified. Among
11 single-point mutation alleles (yku70-1 to yku70-11), six whose mutated res-
idues were conserved in mouse and human (vku70-2, yku70-3, yku70-5,
yku70-6, yku70-10, and yku70-11) were further characterized.
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