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2 Primal{Dual Decomposition for Stochastic Programming1 IntroductionStochastic programming plays an increasingly important role in many applications of math-ematical optimization, especially in �nancial optimization models such as asset-liability andbond-portfolio management (the interested reader is referred to the recent book on Asset Liabil-ity Management by Mulvey and Ziemba [13]). However, e�ciently solving large-scale stochasticprogramming problems still remains a major challenge (see [2] for an introduction to stochasticprogramming). A successful solution method for stochastic programming should exploit the spe-cial structure of the problem in order to cut down computational times. For this purpose, mostof the solution methods in the area are based on specialized decomposition; we refer to [8] andthe references therein for a survey along this direction. For multi-stage stochastic programming,the so-called L-shaped method and its variants, based on the simplex method, are very popu-lar. With the rapid growth and development in interior point methods in recent years (cf. [16]for various survey articles on interior point methods), this traditional approach to stochasticprogramming needs to be reconsidered. In [4] Birge and Qi showed how decomposition can beachieved based on Karmarkar's original interior point method for two-stage stochastic linearprogramming. A few other interior point based approaches have been suggested so far in theliterature; see e.g. [3, 5, 12]. Zhao [20] proposed a method in which a log barrier is used for eachrecourse subproblem.In this paper we consider a new decomposition method for two-stage stochastic programmingbased on the homogeneous self-dual interior point method. The homogeneous self-dual method(HSD) for linear programming was proposed by Xu, Hung and Ye [18] as a simpli�cation ofthe self-dual embedding technique of Ye, Todd and Mizuno [19]. This technique proves tobe very e�cient in solving linear programs (a re�ned version of the HSD method is actuallyimplemented by Andersen and Andersen [1] in an optimization package called MOSEK). Oneof the advantages of the HSD method is that it requires no feasibility phase, allowing one tofreely select any interior starting point (possibly infeasible). Moreover, the method is capable ofdetecting infeasibility which can be of great importance for stochastic programs. As a generalmerit of interior point methods, the number of iterations required to solve a linear program istypically low and insensitive to the dimension of the problem. This is an important propertyfor solving large-scale stochastic programs. The main concern is how to implement each stepof an interior point method e�ciently. A great deal of attention is to be paid to this issue inthe current paper. We observe that it is possible to completely decompose the direction-�ndingproblem into subproblems, therefore enabling a decomposition-based implementation of the HSDtechnique. We report numerical results which unambiguously show the speed-up attained whenapplying our decomposition algorithm compared to solving the deterministic equivalent directlyby the HSD method.As an application we consider a portfolio optimization problem. In this problem an investorwants to buy options on a given stock index, in such a way that the value of his portfolio isguaranteed to be higher than a certain level, and the probability of reaching another given levelis guaranteed as well. Moreover, the expected return at the end of the investment horizon is tobe maximized. We assume that there is an intermediate date at which the investor may revisehis portfolio. This problem is modeled by two-stage stochastic linear programming. We solvethe model using the decomposition algorithm proposed in this paper.



Berkelaar, Dert, Oldenkamp and Zhang 3This paper is organized as follows. In Section 2 we discuss the generic two-stage stochastic linearprogram. Section 3 is dedicated to the homogeneous self-dual technique and provides a genericdescription of a predictor-corrector algorithm based on this HSD technique. In Section 4 we showthat it is possible to completely decompose the direction-�nding problem into subproblems whichinvolve only low dimensional matrix operations. In Section 5 we report numerical results forsome random test-problems. Section 6 discusses an real-world application. We solve a two-stageportfolio optimization model using options on a stock index. We conclude the paper with asummary in Section 7.2 Two-stage stochastic programmingIn this section we introduce the so-called two-stage stochastic linear programming. Interestedreaders are referred to two recent books on stochastic programming [2] and [9] for more details.Consider the following situation. There are two phases in a decision-making process. At thebeginning of the �rst phase, one has to make a decision, e.g. decide the level of the inventory,or the location of a warehouse etc., without precise knowledge about the state of the world inthe second stage. However, the uncertain future possibilities should be taken into account inour decision. Thus, as the reality unfolds we make a recourse decision at the second stage inorder to cope with the reality being revealed so far. As an example, when the true demand ofcustomers becomes known, the inventory and production level need to be adjusted accordingly.In mathematical terms our problem is to �nd x under the constraints Ax = b and x � 0. Afterhaving made this decision, one of K possible scenarios might occur. Suppose that scenario kwill occur with probability �k (�k > 0 and PKk=1 �k = 1). In scenario k, our recourse problem,with decision variable yk, is as follows:min qTk yks.t. Wkyk = hk �Bkxyk � 0:For technical reasons we assume that the matrices A and Wk have full row ranks. The optimalvalue of the above problem is a function of x. Let us denote it by Qk(x). Hence, takinginto account every scenario, the expected costs under the decision x are cTx +PKk=1 pkQk(x).Putting the �rst and second stage decision variables all together, the optimization problem canbe formulated as: min cTx + PKk=1 �kqTk yks.t. Ax = bx � 0 Wkyk = hk �Bkx;yk � 0; k = 1; :::;K:In general, this can be a large size linear program. For practical purposes we may assume thateach of the matrices A, Bk, and Wk (k = 1; :::;K) are reasonably sized. However, the numberof scenarios, K, might be very large.



4 Primal{Dual Decomposition for Stochastic ProgrammingMost of the known methods for solving the problem are based on exploiting the stair-case typestructure of the constraints. For example, the so-called L-shaped method of Van Slyke andWets [17] is a variant of Benders decomposition (dual version of the Dantzig-Wolfe decomposi-tion). A severe restriction, however, of most such simplex-based methods is that the recoursematrices Wk are assumed to be constant for all k (i.e. �xed recourse). This is too restrictive inmany applications. The decomposition algorithm we propose in this paper does not su�er fromthis restriction.3 The homogeneous self-dual techniqueIn this section we introduce the so-called homogeneous self-dual path-following method for linearprogramming, to put our approach in perspective. Most of the material covered in this sectioncan be found in [18]. To make our discussion self-contained the method is reproduced here. Westart by considering the following standard linear programming problem:(P ) min cTxs.t. Ax = bx � 0:The above problem has a dual: (D) max bT ys.t. AT y + s = cs � 0:For most optimization methods solving either (P) or (D), it is important to have an initial feasiblesolution to start with. This can be achieved by considering an arti�cial feasibility problem.Methods of this type include the two-phase method, and, in disguise, the big M -method.In recent years, interior point methods have received intensive research in the area of optimiza-tion. It turns out that an e�cient implementation of interior point methods should properlycombine the primal and the dual information. The issue of initialization has led to the so-called homogeneous self-dual embedding technique, which was �rst proposed by Ye, Todd andMizuno [19]. Using this technique a linear program can completely and e�ciently be solvedwithout resorting to any type of phase-one procedure. Later, this technique was generalizedto more general classes of convex optimization; see [10] and the references therein. The homo-geneous self-dual embedding technique of Ye, Todd and Mizuno was later simpli�ed (and alsogeneralized in a sense) by Xu, Hung and Ye [18], in which no optimization problem is explicitlysolved; instead a system of homogeneous linear equations and inequalities are approximated.This method proves to be very e�cient indeed: theoretically, it retains the best known O(pnL)iteration bound, and in practice Andersen and Andersen [1] implemented this idea in MOSEK,which is a very e�cient code.The idea of dealing with homogeneous self-dual systems can be traced back to Goldman and



Berkelaar, Dert, Oldenkamp and Zhang 5Tucker [7]. In [7] the following system is considered:Ax �b� = 0�AT y +c� � 0bT y �cTx � 0x � 0; � � 0:Clearly, this system is homogeneous and has a skew-symmetric constraint matrix leading tothe notion of self-duality. For convenience, additional variables are introduced to replace theinequality constraints, yielding(H)8>>>><>>>>: Ax �b� = 0�AT y �s +c� = 0bT y �cTx �� = 0x � 0; s � 0; � � 0; � � 0:If system (H) has a solution (y�; x�; s�; ��; ��) such that �� > 0 and �� = 0, then an optimalsolution to (P) is simply x�=�� and an optimal solution to (D) is (y�=��; s�=��).However, (H) also contains trivial solutions such as (y; x; s; �; �) = (0; 0; 0; 0; 0), from which noinformation concerning solutions for (P) and (D) can be deduced. To avoid trivial solutions, wenote the following fundamental result concerning (H) due to Goldman and Tucker [7].Theorem 1 There exists a solution (y�; x�; s�; ��; ��) for (H) such thatx� + s� > 0 and �� + �� > 0:It is elementary to check that any solution (y; x; s; �; �) to (H) necessarily satis�esxT s+ �� = 0:That is why the Goldman-Tucker type solution is called a strictly complementary solution, sinceit implies that either x�i or s�i is zero for all i (and not both), and either �� or �� is zero (andnot both). Based on a strictly complementary solution for (H), solutions for the original linearprogramming problems (P) and (D) can easily be found, as the next lemma demonstrates.Lemma 1 If �� > 0, then x�=�� is an optimal solution to (P) and (y�=��; s�=��) is an optimalsolution to (D). If �� = 0, then �� > 0, i.e. bT y�� cTx� > 0. In this case, if bT y� > 0, then (P)is infeasible, if cTx� < 0, then (D) is infeasible.The proof is an application of the duality theorems and Farkas' lemma. We omit the detailshere. Having established Theorem 1 and Lemma 1 we now concentrate on �nding a strictlycomplementary solution for (H).



6 Primal{Dual Decomposition for Stochastic ProgrammingConsider an arbitrary vector (�y; �x; �s; �� ; ��) with �x > 0, �s > 0, �� > 0 and �� > 0. The homogeneousself-dual algorithm ([18]) applies a modi�ed Newton step based on that solution. To be precise,we try to �nd a displacement, (dy ; dx; ds; d� ; d�), from the following system of linear equations:(S)8>>>>>><>>>>>>: Adx �bd� = �rp�ATdy �ds +cd� = ��rdbTdy �cTdx �d� = �rg�Sdx + �Xds = 
�e� �X�s��d� +��d� = 
�� �� ��where rp = ��b�A�x; rd = ��c�AT �y � �s and rg = cT �x� bT �y + ��are the feasibility residuals, � and 
 are two parameters, and � = (�xT �s + �� ��)=(n + 1). Inthis expression we used e to indicate the all-one vector, and �X and �S to indicate the diagonalmatrices with �x and �s respectively on their diagonals.Observe that when � = 1 and 
 = 0, (S) is the Newton system yielding a complementary solutionof (H) (y0; x0; s0; � 0; �0) := (�y + dy; �x+ dx; �s+ ds; �� + d� ; ��+ d�):This solution satis�es all the equality constraints of (H), but may fail to satisfy the non-negativityconstraints and the complementarity constraints. Observe that this search direction is similar tothe primal-dual a�ne-scaling direction. By choosing di�erent parameters however, a proceduresimilar to the primal-dual path following algorithm can be constructed.The generic homogeneous self-dual algorithm of Xu, Hung and Ye works as follows. Supposethat we have an iterate (yk; xk; sk; �k; �k) with xk > 0, sk > 0, �k > 0 and �k > 0. Let(�y; �x; �s; �� ; ��) := (yk; xk; sk; �k; �k)and let � 2 [0; 1] and 
 2 [0; 1]. Solve the system (S) to get search directions (dy; dx; ds; d� ; d�).Choose a step-length � > 0 such thaty0 = �y + �dyx0 = �x+ �dx > 0s0 = �s+ �ds > 0� 0 = �� + �d� > 0�0 = ��+ �d� > 0:Let (yk+1; xk+1; sk+1; �k+1; �k+1) := (y0; x0; s0; � 0; �0)and k := k + 1. Repeat the procedure until a given precision is reached.The following lemma is proven in [18].



Berkelaar, Dert, Oldenkamp and Zhang 7Lemma 2 At each iteration of a generic homogeneous self-dual algorithm it holds that(dx)T ds + d�d� = �(n+ 1)(1 � 
 � �)��0 = (1� ��)[1 � �(1� 
 � �)]�and r0p = (1� ��)rpr0d = (1� ��)rdr0g = (1� ��)rg:Based on Lemma 2, it can be shown that a predictor-corrector type implementation of thealgorithm solves the problem in O(pnL) iterations. In particular, we call a step predictor if
 = 0 and � = 1; a step is called corrector if 
 = 1 and � = 0. In order to control the step-length� the following �-neighborhood is introduced:N (�) = f(y; x; s; �; �) j k Xs�� !� �ek � ��gwhere the norm can be either Euclidean or l1, corresponding to the narrow or wide neighbor-hood algorithms respectively. Most O(pnL) iteration algorithms use a narrow neighborhood,except for the wide region algorithm of Sturm and Zhang [15]. In this paper we only use anarrow neighborhood in the implementation. In implementing the predictor-corrector schemewe essentially follow Lustig, Marsten, and Shanno [11]. We �rst compute the predictor directiondP (with � = 1 and 
 = 0). Based on this predictor direction we compute a centering parameter� and a centered corrector direction dC (with 
 = � and � = 1� �). The centering parameteris computed as in Lustig, Marsten, and Shanno [11].� If primal or dual feasibility has not been attained andkrk1�(n+ 1) > 103;where r = (rp; rd; rg). Then � = ~�� (we choose ~� = 0:1 in our implementation).� If �(n+1) < 1 and primal and dual feasibility have been attained, then � = �(n+1)=�(n),where �(n) is de�ned as (see [11]):�(n) = ( n2 if n � 5000;n3=2 if n > 5000:� Otherwise compute � as follows: compute the step-length � based on the predictor direc-tions: � = � �min( �X�1dx; d�=�� ; �S�1ds; d�=��;��)



8 Primal{Dual Decomposition for Stochastic Programming(in our implementation we choose � = 0:99995). The duality gap resulting from a predictor-step is given by (using Lemma 3.2):ĝ = (�x+ �dx)T (�s+ �ds) + (�� + �d� )(��+ �d�) = (1� �)�(n+ 1):Finally, we compute the centering parameter � as:� = � ĝ�(n+ 1)�2 ĝn = (1� �)3�n+ 1n :4 Decomposing the direction-�nding problemIn this section we shall investigate whether a direct implementation of the homogeneous self-dual algorithm can be applied to solve a two-stage stochastic linear program. The key is todecompose the direction �nding subproblem (S).The system (S) can be explicitly written as follows, when the constraint matrix of a two-stagestochastic program is used:
(L)

8>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>:

Adx �bd� = �rpBkdx +Wkdyk �hkd� = �rpk ;k = 1; :::;K�ATdu �PKk=1BTk dvk +cd� �ds = ��rd�W Tk dvk +�kckd� �dzk = ��rdk ;k = 1; :::;KSdx +Xds = 
�e�XsZkdyk +Ykdzk = 
�e� Zkyk;k = 1; :::;K�d� +�d� = 
�� ��bTdu �cTdx �PKk=1 �kcTk dyk +PKk=1 hTk dvk �d� = �rgFrom the fourth and the sixth equations of (L) we obtainM�1k W Tk dyk � �kM�1k ckd� � dxk = �M�1k rdk + Z�1k (Zkxk � 
�e)where Mk = Y �1k Zk. Multiplying this equation by Wk on both sides we further obtain(WkM�1k W Tk )dyk �Wkdxk � �kWkM�1k ckd� = �WkM�1k rdk +WkZ�1k (Xkzk � 
�e):Using this equation and the second equation of (L) we getdyk = (WkM�1k W Tk )�1[�Bkdx + (hk + �kWkM�1k ck)d� + �rpk)+�WkM�1k rdk +WkZ�1k (Xkzk � 
�e)]: (4.1)



Berkelaar, Dert, Oldenkamp and Zhang 9To simplify the notation we de�neM0 = X�1S + KXk=1BTk (WkM�1k W Tk )�1Bk (4.2)�c = c� KXk=1BTk (WkM�1k W Tk )�1[hk + �kWkM�1k ck] (4.3)and t0 = X�1(
�e�Xs) + KXk=1BTk (WkM�1k W Tk )�1[�rpk +WkM�1k �tk]� �rd0 ; (4.4)where �tk = �rdk �X�1k (
�e�Xkzk). Substituting (4.1) into the third equation in (L) yields�ATdu +M0dx + �cd� = t0: (4.5)Now we substitute (4.5) into the �rst equation in (L). This gives�AM�10 ATdu + �rp0 + (b+AM�10 �c)d� = AM�10 tand so du = qd� + v; (4.6)q = (AM�10 AT )�1(b+AM�10 �c);v = (AM�10 AT )�1(�rp0 �AM�10 t)Eliminating du from (4.5) and (4.6) we getdx = pd� + u; (4.7)where p =M�10 (AT q � �c)u =M�10 (AT v + t)Now, we may express dyk in terms of d� , based on (4.1) and (4.7), as follows:dyk = (WkM�1k W Tk )�1[(hk + �kWkM�1k ck) + �rpk �Bku�Bkpd�+�WkM�1k rdk +WkZ�1k (Xkzk � 
�e)]:and so dyk = qkd� + vk: (4.8)qk = (WkM�1k W Tk )�1(hk + �kWkM�1k ck �Bkp)vk = (WkM�1k W Tk )�1[�rpk �WkM�1k �tk �Bku]:Consequently, we have, dxk = pkd� + uk (4.9)



10 Primal{Dual Decomposition for Stochastic Programmingpk =M�1k (W Tk qk � �kck)uk =M�1k (W Tk vk + �tk)Finally, from seventh equation of (L) we obtain:d� = 
�� ��� � �� d� :Having established the relationship between d� and all other variables, we now substitute (4.6),(4.7), (4.8) and (4.9) into the following identity which is obtained from the last two equationsof (L): bTdu � cTdx � KXk=1 pkqTk dxk + KXk=1 hTk dyk + (�=�)d� � (
�� ��)=� = �rg: (4.10)This �nally yields d� = (F1 + F2)=(E1 +E2) (4.11)where E1 = bT q � cT p+ �=�F1 = cTu� bT v + r�;�=� + �rgE2 = KXk=1 hTk qk � KXk=1 �kcTk pkF2 = KXk=1 �kcTk uk � KXk=1 hTk vkr�;� = ���+ 
�For convenience, we state our main result in a proposition.Proposition 1 The �rst-stage primal and dual directions can be decomposed as follows:dx0 = p0d� + u0; dy0 = q0d� + v0;p0 =M�10 (AT q0 � �c0); q0 = (AM�10 AT )�1(b+AM�10 �c0);u0 =M�10 (AT v0 + t0); v0 = (AM�10 AT )�1(�rp0 �AM�10 t0):The second-stage primal and dual directions are decomposed as follows: for each scenario k =1; : : : ;K we havedxk = pkd� + uk; dyk = qkd� + vk;pk =M�1k (W Tk qk � �kck); qk = (WkM�1k W Tk )�1(hk + �kWkM�1k ck �Bkp0);uk =M�1k (W Tk vk + �tk); vk = (WkM�1k W Tk )�1[�rpk �WkM�1k �tk �Bku0]:Using the expression (4.11) for d� , all the other variables can easily be solved by formulae (4.6),(4.7), (4.8) and (4.9). Therefore, to solve the search directions we only need to compute matricesM and Q, vectors t and tk for all k = 1; :::;K and �nally the quantities E1, E2, F1 and F2. Ineach of these computations, however, only low dimensional matrix operations are involved. Thisdecomposition technique enables us to e�ciently compute the search direction at each iterationof the homogeneous self-dual algorithm.



Berkelaar, Dert, Oldenkamp and Zhang 11Table 1: Speed-up of decomposition approach over direct approachProblem Size D.E. Decompositionsprand25 80 210 14 13 (0.33)sprand50 155 410 16 15 (0.90)sprand75 230 610 18 15 (3.3)sprand100 305 810 18 17 (4.1)sprand125 380 1010 20 18 (9.3)sprand150 455 1210 18 16 (11.5)sprand175 530 1410 21 20 (15.1)sprand200 605 1610 24 19 (25.3)The table shows the number of iterations and speed-ups of the decomposition algorithm and solving thedeterministic equivalant directly using the homogeneous self-dual method with predictor-corrector scheme.The test-problems are randomly generated such that a feasible solution exists.
5 Numerical Results for Random Problems
In this section we consider the performance of our decomposition algorithm on a set of randomlygenerated feasible test-problems. We compare the increase of solution times as the number ofscenarios increases for both our decomposition approach and a similar implementation of ouralgorithm, but without decomposition. In Table 1 we show the number of iterations and thespeed-ups of the decomposition algorithm over solving the deterministic equivalent directly. Onlyfor a small number of scenarios, the direct approach performs better; however as the numberof scenarios increases the decomposition algorithm is clearly superior to the direct solver. InFigure 5 we have plotted the computational times (in CPU seconds) for both the direct solver andthe decomposition algorithm. This �gure clearly illustrates that the decomposition algorithmperforms superior. The computational times for the direct solver appear to increase quadraticallywith the number of scenarios, whereas the computational times for the decomposition algorithmincrease only linearly with the number of scenarios. Note that also the number of iterations di�er(even considerably for larger models). In principle the number of iterations of both approachesshould be comparable. However, for large models the numerical linear algebra operations (e.g.Cholesky decomposition) become more involved for the deterministic equivalent, whereas thesize of the sub-problems in the decomposition scheme remains constant. This accounts for morestability in the decomposition scheme. We also compared the results of our decompositionmethod with an implementation of the predictor-corrector interior-point method (without thehomogeneous self-dual technique). The results for the latter algorithm are signi�cantly worse.We plan to make comparisons with other decomposition algorithms in the future.



12 Primal{Dual Decomposition for Stochastic ProgrammingFigure 1: Number of Scenarios versus Computational Times
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DecompositionThis �gure shows the computational speed-up of our decomposition scheme (see Section 4) over solvingthe deterministic equivalent directly by a predictor-corrector method with the homogeneous self-dual tech-nique. We plot CPU-time versus the number of scenarios for a set of feasible random test problems. Wemade a preliminary implementation of our algorithm in Matlab 5.0, Mathworks Inc. The experiments weredone on PC-Pentium 100 with 64 MB Memory.6 Guaranteed return portfolio selection6.1 Two-stage guaranteed return portfolio modelAlthough the results in the previous section indicate that our decomposition method is verypowerful, we only considered some simple random test-problems. We are interested in seeinghow well our algorithm performs for a real world model. In this section we consider a speci�ctwo-stage stochastic programming problem arising from an application in �nance. A single-stageanalog of this model was discusses in Dert and Oldenkamp [6].We consider the following two-period problem. An investor can invest in a money-market ac-count, a stock index, and European (exchange listed) options on this index with di�erent matu-rities. We denote the stock index by S. Current time is denoted by t0, and the expiration datesof the options by t1 and t2 with t0 < t1 < t2. At t0 the investor forms a portfolio consistingof some amount of money invested in the stock index, an investment in a zero-coupon bond



Berkelaar, Dert, Oldenkamp and Zhang 13maturing at t2 and a set of options on the stock index. At time t1 he may revise his portfolio,depending on the value of the index at t1, i.e. he can change some of the existing positions inthe options and/or buy new options starting from t1 and maturing at t2). The investor's goal isto guarantee that the value of the portfolio is always above a given level depending on the indexat t2, and that the expected value of the portfolio is maximized at the horizon of the investment.Assume that the level of the stock index is S0 at time t0, S1 at time t1, and S2 at time t2.Moreover, there are n European puts and calls struck at Kji with i = 1; 2; :::; n, respectively,where j = 1; 2 denotes the expiration of the options tj. Let Qptitj (S) 2 IRn denote the n-dimensional vector which l-th component represents the price of buying a put option at timeti maturing at tj with strike price Kl, while the stock index at ti is S. Similarly, denoteQctitj (S) 2 IRn to be the n-dimensional vector which l-th component represent the price ofbuying a call option at time ti maturing at tj with strike price Kl while the stock index at ti isS. The risk-free interest rate from t0 to t1 is denoted by r1, the risk-free interest rate from t0to t2 is denoted by r2, and the forward rate from t1 to t2 is denoted by f2. Now, let xptitj 2 IRndenote the amount of put options purchased at time ti maturing at tj , and xctitj 2 IRn be theamount of call options purchased at time ti maturing at tj. Let xs0 be the amount invested in thestock index, and xf0 be the amount invested at t0 in the money-market account. Similarly, let xs1be the amount invested in the stock index and xf1 be the amount invested in the money-marketaccount at t1. The decision variables xpt0tj and xct0tj with j = 1; 2, and xs0 and xf0 denote the �rst-stage variables. The decision variables xpt1t2 and xct1t2 , and xs1 and xf1 denote the second-stagevariables. Suppose that the initial budget for the investment is B.Clearly, the following initial budget equation should hold:B = xs0S0 + xf0 + 2Xj=1hxpt0tj ; Qpt0tj (S0)i+ 2Xj=1hxct0tj ; Qct0tj (S0)i: (6.12)At t1 the value of the portfolio is given by:V (t1; S1;xs; xf ; xp; xc) = xs0S1 + xf0 exp(r1(t1 � t0)) + h(K1 � S1e)+; xpt0t1i++h(S1e�K1)+; xct0t1i+ hQpt1t2(S1); xpt0t2i+ hQct1t2(S1); xct0t2i (6.13)where K1 = (K11 ; :::;K1n)T , and for given y 2 IRn, y+ denotes the vector(maxfy1; 0g; :::;maxfyn; 0g)T :The second-stage recourse problem is as follows. First, there is an intermediate budget con-straint: V (t1; S1;xs; xf ; xp; xc) = xs1S1 + xf1 + hQpt1t2(S1); xpt1t2i+ hQct1t2(S1); xct1t2i: (6.14)Second, the value of the portfolio at the horizon is given by:V (t2; S2;xs; xf ; xp; xc) = xs1S2 + xf1 exp(f2(t2 � t1)) ++h(K2 � S2e)+; xpt1t2i+ h(S2e�K2)+; xct1t2i: (6.15)



14 Primal{Dual Decomposition for Stochastic ProgrammingWe require the value of the portfolio at the horizon never to be less than c0S2 + c1 with c0 � 0and c1 > 0. Using the piecewise linearity of V (t2; S2;xp; xc), this yields:V (t2;K2i ;xs; xf ; xp; xc) � c0K2i + c1 for i = 1; :::; n (6.16)and V (t2; 0;xs; xf ; xp; xc) � c1and V 0S2(t2; S2;xs; xf ; xp; xc) jS2=K2n+� c0:These constraints are all linear in terms of xs, xf , xp and xc.Finally, we require the probability that the portfolio value will be above a given threshold valuec2 > 0 to be at least � (0 < � < 1). This, again by piecewise linearity, can be modeled byselecting a given I (1 � I � n), and adding the following constraint:V (t2;Ki;xs; xf ; xp; xc) � c2 for i = I; I + 1; :::; n: (6.17)Similar constraints can be added to the model at t1.The expected value of the portfolio at t2 is given by:E[V (t2; S2;xs; xf ; xp; xc)] = xs1E[S2] + xf1 exp(r(t2 � t1)) ++hE[(K2 � S2e)+]; xpt1t2i+ hE[(S2e�K2)+]; xct1t2i: (6.18)The optioned portfolio selection problem is now well de�ned as a two-stage stochastic linearprogram: max w1E[V (t1; S1;xs; xf ; xp; xc)] +w2E[V (t2; S2;xs; xf ; xp; xc)]s.t. (6:12); (6:14); (6:16) and (6:17)where w1 and w2 (w2 > w1) are weights for the �rst and second stage expected values. Inthe numerical experiments we perform in the next section we allows for bid-ask spreads in themodel and consider guaranteed constraints at both t1 and t2. In the next section we apply thetechniques developed in Sections 3 and 4 to solve this problem.6.2 Numerical results for two-stage guaranteed portfolio selectionIn this section we present computational results for the model discussed in Section 5 based onmarket prices. We consider options on the Standard & Poor's 500 index. The initial date, i.e.today, is March 17, 1999, the investment horizon is June 18, 1999. The investor initially owns1 share of the S&P500 (amounts to $1302.84 at March 17) and he can revise his portfolio atApril 16, 1999. The investor can buy and short options at March 17 with expiration at April 16and expiration at June 18. Future option prices are based on today's implied volatility function(a more general approach where volatility is allowed to be a function of the value of the indexas well can be found in Oldenkamp [14]). Today's implied volatility functions for expiration inApril and June are plotted in Figure 2. To avoid arbitrage opportunities, due to a mismatch of
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moneynessThis �gure shows the implied volatility for call options on the S&P500 with expiration on April 16,1999 and June 18, 1999 based on bid and ask prices. The �rst plot shows implied volatility for options thatexpire on April 16. The second plot shows implied volatility for options that expire on June 18.Table 2: Parameters and DataDate April 99 June 99Scenarios 50 100Guarantee $1297.36 (-5%) $1285.93 (-5%)Chance Constraint $1307.88 (4.81%) $1318.976 (4.95%)Probability 40% 50%weight 1 1.1riskfree rate 4.70% 4.83%dividend $1.02 $4.14The table shows the parameters, riskfree rate and dividends for April 16, 1999 and June 18, 1999,respectively.put-call parity, we only consider call options in our analysis. The market prices of the optionsare displayed in Table 3. For liquidity reasons we do not use all the call options available in themarket; rather we incorporate those options with moneyness between 0.94 and 1.06 only.We generate scenarios for the �rst period based on a lognormal distribution with mean (annu-alized) 10% and volatility (annualized) 22.38% using a strati�ed sampling approach. Scenariosfor the second period are based on the at-the-money volatility implied by today's options withexpiration in June corresponding to the index level prevailing at the intermediate date. Weincorporate a bid-ask spread on the index of 0.3% for both periods. The parameters of themodel are summarized in Table 2. We refer to this model as the base model. We incorporatea -5% guarantee (annualized) for each period, and impose chance constraints such that withprobability 40% and 50% the investor obtains more than the risk-free investment in the �rstand second period respectively. A closely related model is considered by Oldenkamp [14]. For



16 Primal{Dual Decomposition for Stochastic Programmingmore details and a more extensive analysis we refer to his Ph.D. thesis. The solution to thebase model is presented in Tables 4 and 5. From Table 5 we conclude that in many scenariosthe second stage decisions have a similar structure. This indicates that we might bundle certainscenarios to capture the uncertainty. Pruning and expanding the set of scenarios in order tocapture uncertainty adequately is an interesting and important topic, however we will not treatthis question here.To provide more insight in the driving forces of the guaranteed return model we consider theoptimal pay-o� functions at the �rst expiration for di�erent instances of the model. In Figure6.2 we summarize four di�erent experiments. In the �rst exhibit we plot the pay-o� functionsfor Black-Scholes and market prices. From this exhibit it is clear that the results for Black-Scholes prices and market prices is quite di�erent. One explanation for this di�erence can befound by considering the second exhibit. The second exhibit illustrates the impact of di�erentassumptions about the spread. We compare a �xed proportional spread (as used for the Black-Scholes prices) with a �xed dollar value spread (in market prices). For the model with marketprices there seems to be a higher demand for far in-the-money call options than for the modelwith a �xed proportional spread. Looking at the solution more carefully, the investor purchases1.68 shares of the most in-the-money call option (K = 1225) with shortest maturity and shorts3.64 shares of the most in-the-money call option (K = 1250) with expiration in June 1999. Incase of a �xed proportional spread the investor only purchases out-of-the-money calls. The lasttwo exhibits show the impact of the guarantee level and the chance constraint on the optimalpay-o� function. The impact of changing the probabilities for chance constraint seems to berather limited. Changing the guarantee level itself, however, might alter the solution morenoticeably.Since stochastic programming is concerned with discretizing the underlying random variablesby means of scenarios we consider the convergence of the optimal objective as the number ofscenarios increases. The number of scenarios for the second period is kept �xed (at 100 scenarios).We do not aim to provide a detailed analysis here, we merely illustrate that one should be carefulin picking the number of scenarios, in order to derive stable and reliable results.7 Summary and conclusionsIn this paper we have proposed a new decomposition method for two-stage stochastic linearprogramming. Our algorithm is based on completely decomposing the direction-�nding probleminto small subproblems. We use a predictor-corrector scheme in combination with the homo-geneous self-dual technique to solve the decomposed problem. We reported numerical resultsshowing the impressive speed-up of our decomposition algorithm as compared to solving the de-terministic equivalent directly. The computational times for the direct solver appear to increaseat least quadratically with the number of scenarios, whereas the computational times for thedecomposition method seem to increase only linearly with the number of scenarios. We havealso shown that the decomposition scheme is more stable compared to solving the deterministicequivalent. As a real-world application we studied a portfolio selection problem using options.We believe that the method proposed in this paper is very promising for several reasons. First,
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This �gure shows the optimal pay-o� function at the �rst expiration for di�erent instances of our model.The �rst plot shows the optimal pay-o� functions based on a) Black-Scholes (BS) prices using the estimatedimplied volatility function (see Figure 2), b) Black-Scholes prices with �xed volatility (FV), and c) marketprices. The second plot shows the optimal pay-o� functions with market prices using a �xed absolute spread(MS) and a �xed proportional spread (FS). In the third plot we display the optimal pay-o� functions fordi�erent guarantee levels. The fourth plot shows the pay-o� functions for di�erent probabilities in the chanceconstraint.
our algorithm requires no feasible starting point (which is a big issue in many other solutionmethods). Second, our algorithm is capable of detecting infeasibility and linking this infeasibilitydirectly to a certain set of scenarios (due to the decomposition of the search-directions). Third,our algorithm provides useful information (regarding the decomposed search-directions) to per-form sensitivity analysis. Fourth, our algorithm allows for stochastic recourse matrices (opposedto �xed recourse as for many decomposition algorithms). Fifth, due to the decomposition struc-ture of the method a more e�cient use of memory is possible. Finally, as a general merit ofinterior point methods, the number of iterations required to solve stochastic linear programs istypically low and insensitive to the dimension of the program.
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This �gure shows the convergence of the optimal objective value as the number of scenarios increases;the number of scenarios for the second period is kept �xed at 100 scenarios.References[1] E.D. Andersen and K.D. Andersen, The MOSEK interior point optimizer for linear pro-gramming: an implementation of the homogeneous algorithm, to appear in High Perfor-mance Optimization Techniques, Kluwer Academic Publishers, 1999.[2] J.R. Birge and F. Louveaux, Introduction to Stochastic Programming, Springer, New York,1997.[3] O. Bahn, O. du Merle, J.-L. Go�n and J.P. Vial, A cutting plane method from analyticcenters for stochastic programming, Mathematical Programming 69, 45-73, 1995.[4] J.R. Birge and L. Qi, Computing block-angular Karmarkar projections with applications tostochastic programming, Management Science 34, 1472-1479, 1988.[5] I.C. Choi and D. Goldfarb, Exploiting special structure in a primal-dual path-followingalgorithm, Mathematical Programming 58, 33-52, 1993.
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20 Primal{Dual Decomposition for Stochastic ProgrammingTable 3: Option PricesMoneyness Expiration BS Price Bid Mid Ask Implied0.9402 April 91.33 91.25 92.25 93.25 0.25780.9594 April 71.28 71.125 72.125 73.125 0.2480.9786 April 52.76 52.5 53.5 54.5 0.23530.9978 April 36.76 36.375 37.375 38.375 0.22381.0170 April 23.51 23 24 25 0.21171.0362 April 14.28 14 14.625 15.25 0.2061.0554 April 7.53 7.25 7.75 8.25 0.19660.9594 June 101 103.125 104.125 105.125 0.25490.9786 June 84.38 86.25 87.25 88.25 0.24730.9978 June 68.9 70.5 71.5 72.5 0.23891.0093 June 60.45 61.875 62.875 63.875 0.23441.0132 June 57.63 59 60 61 0.23241.0170 June 54.94 56.25 57.25 58.25 0.23071.0362 June 43.12 44.125 45.125 46.125 0.2246The table shows market prices of S&P500 call options with maturity April 16, 1999 and June 18, 1999,Black-Scholes prices and implied volatilities.
Table 4: First-Stage SolutionAsset Expiration Investmentexp. value 1311.41index 0.13risk-free 1292.36K=1225 April 1.68K=1275 April 0.66K=1300 April 0.21K=1325 April 0.31K=1350 April -0.01K=1375 April 0.41K=1250 June -3.64The table shows the �rst-stage solution.
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Table 5: Second-Stage SolutionScenario Index risk-free 1250 1275 1315 13501 1125.62 1275.25 0 0.83 -0.83 88.672 1133.8 1275.25 0 0.83 -0.83 69.443 1141.98 1275.25 0 0.83 -0.83 54.474 1150.16 1275.25 0 0.83 -0.83 42.625 1158.34 1275.25 0 0.83 -0.83 33.056 1166.52 1275.25 0 0.83 -0.83 25.517 1174.7 1275.25 0 0.83 -0.83 19.518 1182.88 1275.25 0 0.83 -0.83 14.669 1191.06 1275.25 0 0.83 -0.83 10.7510 1199.24 1275.25 0 0.83 -0.83 7.6211 1207.42 1275.25 0 0.83 -0.83 5.0812 1215.6 1275.25 0 0.83 -0.83 3.0413 1223.78 1275.25 0 0.83 -0.83 1.3814 1231.96 1275.25 0 0.83 -0.83 1.0215 1240.14 1275.25 0 0.83 -0.83 0.8316 1248.32 1275.25 0 0.83 -0.83 0.6317 1256.5 1275.25 0.51 0 -0.51 0.3818 1264.68 1275.25 0.51 0 -0.51 0.1819 1272.86 1275.25 0.34 0.28 -0.62 020 1281.04 1275.25 0 0.83 -0.83 021 1289.22 1275.25 0.25 0.42 -0.67 022 1297.4 1275.25 0 0.83 -0.83 023 1305.58 1275.25 0.21 0.48 -0.69 024 1313.76 1275.25 0.4 0.17 -0.58 025 1321.94 1275.25 0 0.83 -0.83 0
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Scenario Index risk-free 1250 1315 135026 1330.12 1275.25 0.51 -0.51 0.0127 1338.3 1275.25 0.51 -0.51 0.0328 1346.48 1275.25 0.51 -0.51 0.0429 1354.66 1275.25 0.51 -0.51 0.0430 1362.84 1275.25 0.51 -0.51 0.0331 1371.02 1275.25 0.51 -0.51 0.0232 1379.2 1275.25 0.51 -0.51 0.0333 1387.38 1275.25 0.51 -0.51 0.0534 1395.56 1275.25 0.51 -0.51 0.0635 1403.74 1275.25 0.51 -0.51 0.0736 1411.92 1275.25 0.51 -0.51 0.0837 1420.1 1275.25 0.51 -0.51 0.0838 1428.28 1275.25 0.51 -0.51 0.0839 1436.46 1275.25 0.51 -0.51 0.0840 1444.64 1275.25 0.51 -0.51 0.0741 1452.82 1275.25 0.51 -0.51 0.0742 1461 1275.25 0.51 -0.51 0.0643 1469.18 1275.25 0.51 -0.51 0.0544 1477.36 1275.25 0.51 -0.51 0.0545 1485.54 1275.25 0.51 -0.51 0.0446 1493.72 1275.25 0.51 -0.51 0.0347 1501.9 1275.25 0.51 -0.51 0.0248 1510.08 1275.25 0.51 -0.51 0.0249 1518.26 1275.25 -0.03 0 050 1526.44 1275.25 0.51 -0.51 0The table shows the second-stage solution.


