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Abstract

Decision making under uncertainty is a challenge faced by many decision makers. Stochas-
tic programming is a major tool developed to deal with optimization with uncertainties that
has found applications in, e.g. finance, such as asset-liability and bond-portfolio manage-
ment. Computationally however, many models in stochastic programming remain unsolvable
because of overwhelming dimensionality. For a model to be well solvable, its special struc-
ture must be explored. Most of the solution methods are based on decomposing the data. In
this paper we propose a new decomposition approach for two-stage stochastic programming,
based on a direct application of the path-following method combined with the homogeneous
self-dual technique. Numerical experiments show that our decomposition algorithm is very
efficient for solving stochastic programs. In particular, we apply our decomposition method
to a two-period portfolio selection problem using options on a stock index. In this model the
investor can invest in a money-market account, a stock index, and European options on this
index with different maturities. We experiment our model with market prices of options on
the S&P500.
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1 Introduction

Stochastic programming plays an increasingly important role in many applications of math-
ematical optimization, especially in financial optimization models such as asset-liability and
bond-portfolio management (the interested reader is referred to the recent book on Asset Liabil-
ity Management by Mulvey and Ziemba [13]). However, efficiently solving large-scale stochastic
programming problems still remains a major challenge (see [2] for an introduction to stochastic
programming). A successful solution method for stochastic programming should exploit the spe-
cial structure of the problem in order to cut down computational times. For this purpose, most
of the solution methods in the area are based on specialized decomposition; we refer to [8] and
the references therein for a survey along this direction. For multi-stage stochastic programming,
the so-called L-shaped method and its variants, based on the simplex method, are very popu-
lar. With the rapid growth and development in interior point methods in recent years (cf. [16]
for various survey articles on interior point methods), this traditional approach to stochastic
programming needs to be reconsidered. In [4] Birge and Qi showed how decomposition can be
achieved based on Karmarkar’s original interior point method for two-stage stochastic linear
programming. A few other interior point based approaches have been suggested so far in the
literature; see e.g. [3, 5, 12]. Zhao [20] proposed a method in which a log barrier is used for each
recourse subproblem.

In this paper we consider a new decomposition method for two-stage stochastic programming
based on the homogeneous self-dual interior point method. The homogeneous self-dual method
(HSD) for linear programming was proposed by Xu, Hung and Ye [18] as a simplification of
the self-dual embedding technique of Ye, Todd and Mizuno [19]. This technique proves to
be very efficient in solving linear programs (a refined version of the HSD method is actually
implemented by Andersen and Andersen [1] in an optimization package called MOSEK). One
of the advantages of the HSD method is that it requires no feasibility phase, allowing one to
freely select any interior starting point (possibly infeasible). Moreover, the method is capable of
detecting infeasibility which can be of great importance for stochastic programs. As a general
merit of interior point methods, the number of iterations required to solve a linear program is
typically low and insensitive to the dimension of the problem. This is an important property
for solving large-scale stochastic programs. The main concern is how to implement each step
of an interior point method efficiently. A great deal of attention is to be paid to this issue in
the current paper. We observe that it is possible to completely decompose the direction-finding
problem into subproblems, therefore enabling a decomposition-based implementation of the HSD
technique. We report numerical results which unambiguously show the speed-up attained when
applying our decomposition algorithm compared to solving the deterministic equivalent directly
by the HSD method.

As an application we consider a portfolio optimization problem. In this problem an investor
wants to buy options on a given stock index, in such a way that the value of his portfolio is
guaranteed to be higher than a certain level, and the probability of reaching another given level
is guaranteed as well. Moreover, the expected return at the end of the investment horizon is to
be maximized. We assume that there is an intermediate date at which the investor may revise
his portfolio. This problem is modeled by two-stage stochastic linear programming. We solve
the model using the decomposition algorithm proposed in this paper.
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This paper is organized as follows. In Section 2 we discuss the generic two-stage stochastic linear
program. Section 3 is dedicated to the homogeneous self-dual technique and provides a generic
description of a predictor-corrector algorithm based on this HSD technique. In Section 4 we show
that it is possible to completely decompose the direction-finding problem into subproblems which
involve only low dimensional matrix operations. In Section 5 we report numerical results for
some random test-problems. Section 6 discusses an real-world application. We solve a two-stage
portfolio optimization model using options on a stock index. We conclude the paper with a
summary in Section 7.

2 Two-stage stochastic programming

In this section we introduce the so-called two-stage stochastic linear programming. Interested
readers are referred to two recent books on stochastic programming [2] and [9] for more details.
Counsider the following situation. There are two phases in a decision-making process. At the
beginning of the first phase, one has to make a decision, e.g. decide the level of the inventory,
or the location of a warehouse etc., without precise knowledge about the state of the world in
the second stage. However, the uncertain future possibilities should be taken into account in
our decision. Thus, as the reality unfolds we make a recourse decision at the second stage in
order to cope with the reality being revealed so far. As an example, when the true demand of
customers becomes known, the inventory and production level need to be adjusted accordingly.

In mathematical terms our problem is to find  under the constraints Az = b and z > 0. After
having made this decision, one of K possible scenarios might occur. Suppose that scenario &
will occur with probability 7 (7 > 0 and Zszl 7 = 1). In scenario k, our recourse problem,
with decision variable y, is as follows:

min q{yk
s.t. kak = hk - ka
Yk > 0.

For technical reasons we assume that the matrices A and W} have full row ranks. The optimal
value of the above problem is a function of z. Let us denote it by Qx(z). Hence, taking
into account every scenario, the expected costs under the decision z are ¢!’z + 21521 PeQr(z).
Putting the first and second stage decision variables all together, the optimization problem can
be formulated as:

. K
min 'z + Zk:1 qugyk
st. Az =0b

x>0

Wiyr = hi, — By,
y >0, k=1,..., K.
In general, this can be a large size linear program. For practical purposes we may assume that

each of the matrices A, By, and Wy, (k = 1,..., K) are reasonably sized. However, the number
of scenarios, K, might be very large.
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Most of the known methods for solving the problem are based on exploiting the stair-case type
structure of the constraints. For example, the so-called L-shaped method of Van Slyke and
Wets [17] is a variant of Benders decomposition (dual version of the Dantzig-Wolfe decomposi-
tion). A severe restriction, however, of most such simplex-based methods is that the recourse
matrices Wy are assumed to be constant for all £ (i.e. fixed recourse). This is too restrictive in
many applications. The decomposition algorithm we propose in this paper does not suffer from
this restriction.

3 The homogeneous self-dual technique

In this section we introduce the so-called homogeneous self-dual path-following method for linear
programming, to put our approach in perspective. Most of the material covered in this section
can be found in [18]. To make our discussion self-contained the method is reproduced here. We
start by considering the following standard linear programming problem:

(P) min c'z

st. Ar=b
z > 0.
The above problem has a dual:
(D) max by
st. Aly+s=c
s> 0.

For most optimization methods solving either (P) or (D), it is important to have an initial feasible
solution to start with. This can be achieved by considering an artificial feasibility problem.
Methods of this type include the two-phase method, and, in disguise, the big M-method.

In recent years, interior point methods have received intensive research in the area of optimiza-
tion. It turns out that an efficient implementation of interior point methods should properly
combine the primal and the dual information. The issue of initialization has led to the so-
called homogeneous self-dual embedding technique, which was first proposed by Ye, Todd and
Mizuno [19]. Using this technique a linear program can completely and efficiently be solved
without resorting to any type of phase-one procedure. Later, this technique was generalized
to more general classes of convex optimization; see [10] and the references therein. The homo-
geneous self-dual embedding technique of Ye, Todd and Mizuno was later simplified (and also
generalized in a sense) by Xu, Hung and Ye [18], in which no optimization problem is explicitly
solved; instead a system of homogeneous linear equations and inequalities are approximated.
This method proves to be very efficient indeed: theoretically, it retains the best known O(y/nL)
iteration bound, and in practice Andersen and Andersen [1] implemented this idea in MOSEK,
which is a very efficient code.

The idea of dealing with homogeneous self-dual systems can be traced back to Goldman and
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Tucker [7]. In [7] the following system is considered:

Ax —br =0

—ATy +cr > 0

vy -z > 0
x>0, 7>0.

Clearly, this system is homogeneous and has a skew-symmetric constraint matrix leading to
the notion of self-duality. For convenience, additional variables are introduced to replace the
inequality constraints, yielding

Azx —br
—ATy —s +cr =0
vy  —c'z —K

x>0, s>0, 7>0, x>0.

(H)

If system (H) has a solution (y*,z*,s*, 7%, k") such that 7* > 0 and «* = 0, then an optimal
solution to (P) is simply z*/7* and an optimal solution to (D) is (y*/7*,s*/7%).

However, (H) also contains trivial solutions such as (y,z, s, ,x) = (0,0,0,0,0), from which no
information concerning solutions for (P) and (D) can be deduced. To avoid trivial solutions, we
note the following fundamental result concerning (H) due to Goldman and Tucker [7].

Theorem 1 There exists a solution (y*,z*,s*, 7%, k*) for (H) such that

¥4+ >0 and T+ >0.

It is elementary to check that any solution (y,z, s, T, k) to (H) necessarily satisfies
el's + 76 =0.

That is why the Goldman-Tucker type solution is called a strictly complementary solution, since
it implies that either ) or s! is zero for all ¢ (and not both), and either 7* or k* is zero (and
not both). Based on a strictly complementary solution for (H), solutions for the original linear
programming problems (P) and (D) can easily be found, as the next lemma demonstrates.

Lemma 1 If 7 > 0, then «* /7" is an optimal solution to (P) and (y*/7*,s*/T*) is an optimal
solution to (D). If T = 0, then k* > 0, i.e. by* —cTx* > 0. In this case, if bTy* > 0, then (P)
is infeasible, if c'z* <0, then (D) is infeasible.

The proof is an application of the duality theorems and Farkas’ lemma. We omit the details
here. Having established Theorem 1 and Lemma 1 we now concentrate on finding a strictly
complementary solution for (H).
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self-dual algorithm ([18]) applies a modified Newton step based on that solution. To be precise,
we try to find a displacement, (dy, ds, ds,dr,d,), from the following system of linear equations:

( Ad, —bd, = nrp
—ATdy —ds  +cd; = —Nrg
(S)q old, —cld, —d, = nry
Sd, +Xds = ype— X5
L kdy +7d, = yu—TRK

where
rp=7b—Az, rg=7c—A"y—5 and rg=c'z-by+i

are the feasibility residuals, n and v are two parameters, and u = (275 + 7%)/(n + 1). In
this expression we used e to indicate the all-one vector, and X and S to indicate the diagonal
matrices with z and 5 respectively on their diagonals.

Observe that when n = 1 and v = 0, (S) is the Newton system yielding a complementary solution
of (H)
(2", 8", 7' w) o= (§+ dy, T+ dy, 5+ dy, T+ dr, B + ).

This solution satisfies all the equality constraints of (H), but may fail to satisfy the non-negativity
constraints and the complementarity constraints. Observe that this search direction is similar to
the primal-dual affine-scaling direction. By choosing different parameters however, a procedure
similar to the primal-dual path following algorithm can be constructed.

The generic homogeneous self-dual algorithm of Xu, Hung and Ye works as follows. Suppose

that we have an iterate (y*,z*, s¥ 7% kF) with 2% > 0, s¥ > 0, 7% > 0 and x* > 0. Let

and let n € [0,1] and v € [0,1]. Solve the system (S) to get search directions (dy,d,,ds, d-,dy).
Choose a step-length o > 0 such that

y = y+oad,
¥ = ZT+ad; >0
s = 54+ads>0
" = T4+ad, >0
K = E+ad, >0.
Let
(ylc—l—l",zls—I—l7 Sk+1, Tk-i—l, nk-i—l) — (yl,xl’ S,,T’, nl)

and k := k + 1. Repeat the procedure until a given precision is reached.

The following lemma is proven in [18].
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Lemma 2 At each iteration of a generic homogeneous self-dual algorithm it holds that
(da:)Tds +drds =n(n+1)(1 —v—n)p

p=0—-an[l —a(l —y—n)u

and
7"1', = (I1—an)r,
rg = (L—an)ry
r; = (1—an)ry.

Based on Lemma 2, it can be shown that a predictor-corrector type implementation of the
algorithm solves the problem in O(y/nL) iterations. In particular, we call a step predictor if
v =0 and n = 1; a step is called corrector if y = 1 and = 0. In order to control the step-length
« the following B-neighborhood is introduced:

N(B) = {575 || ( . ) el < i}

where the norm can be either Euclidean or [, corresponding to the narrow or wide neighbor-
hood algorithms respectively. Most O(y/nL) iteration algorithms use a narrow neighborhood,
except for the wide region algorithm of Sturm and Zhang [15]. In this paper we only use a
narrow neighborhood in the implementation. In implementing the predictor-corrector scheme
we essentially follow Lustig, Marsten, and Shanno [11]. We first compute the predictor direction
dp (with 7 =1 and v = 0). Based on this predictor direction we compute a centering parameter
o and a centered corrector direction d¢ (with v = o and n = 1 — o). The centering parameter
is computed as in Lustig, Marsten, and Shanno [11].

e If primal or dual feasibility has not been attained and

[l

> 102,
p(n +1)

where r = (rp,rq,7¢). Then 0 = o (we choose ¢ = 0.1 in our implementation).

e If u(n+1) < 1 and primal and dual feasibility have been attained, then o = p(n+1)/¢(n),
where ¢(n) is defined as (see [11]):
n? ifn < 5000,
n) =
#ln) { n®? if n > 5000.

e Otherwise compute o as follows: compute the step-length « based on the predictor direc-
tions:

0
" min(X-'d,,d, /7, S Vdy, d,. /i, —0)

o =
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(in our implementation we choose # = 0.99995). The duality gap resulting from a predictor-
step is given by (using Lemma 3.2):

§=(Z+ad,)! (5 + ady) + (7 + ady) (R + ady) = (1 — a)p(n +1).

Finally, we compute the centering parameter o as:

4 Decomposing the direction-finding problem

In this section we shall investigate whether a direct implementation of the homogeneous self-
dual algorithm can be applied to solve a two-stage stochastic linear program. The key is to
decompose the direction finding subproblem (S).

The system (S) can be explicitly written as follows, when the constraint matrix of a two-stage
stochastic program is used:

;

Ad, —bd, = nrp
Byd,  +Wydy, —hd; = Nrp,
k=1,..,.K
—ATd, - Bld,, +cd, —d, = —nry
—ngvk +rpepd;  —d,, = —Nre,,
(L) < k=1,...,.K
Sdy +Xds = yue—Xs
Zipdly, +Yid,, = ype— Zpyk,
k=1,...,.K
kdr +rd;, = Yp—TK
[ b1 dy —cfdy =y Tk dy, gy B do, —dy, = Ny

From the fourth and the sixth equations of (L) we obtain
M, 'Wildy, — meM erd, — dy, = 0M, tra, + Z,H(Zkay — yue)
where M) = kale. Multiplying this equation by Wy on both sides we further obtain
(WM ' Wd,, — Widy, — WM erdy = nWieM  ra, + Wi Z (X2 — ype).
Using this equation and the second equation of (L) we get

dy, = (WM "W, =Brdy + (hi + mWi My, c)dr + 11y, )
WM 'ra, + Wi Z (X gz — ype)). (4.1)
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To simplify the notation we define

K
My=X"'S+> Bl (WM 'W[) B (4.2)
k=1
K
e=c—> Bf(WpM;'W) " hy + mWi M, ex] (4.3)
k=1
and
K
to =X '(ype— Xs)+ > BE (WM "W ey, + WM ] — nr,, (4.4)
k=1

where tj, = nrq, — X, '(ype — Xg2x). Substituting (4.1) into the third equation in (L) yields

—Ald, + Myd, + &d, = 1. (4.5)

Now we substitute (4.5) into the first equation in (L). This gives
—AMy YA dy 4y, + (b+ AMy te)d, = AM 't
and so
dy = qd, + v; (4.6)
g = (AM, ' AT) b+ AMy to),
v =(AM;AT) Y (nrp, — AMy't)
Eliminating d,, from (4.5) and (4.6) we get

dy = pd; + u, (4.7)
where
p=M; ' (ATq—¢)
u= My (ATv +t)

Now, we may express dy, in terms of d,, based on (4.1) and (4.7), as follows:

dy, = (WeM "W [(hy + meWi M, ex) + nry, — Byu — Bypd,
—l-T]VVkM,;le,c + szlzl(szk — ype)].
and so
dy, = qrd; + vy (4.8)
ak = (WM Wi (e + muWi M e — Bgp)
vp = (Wi "W "y, — Wi M, '), — Byl

Consequently, we have,
dy;, = Prdr + ug (4.9)
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pe = M7 (Wil g, — mier)
up = M (Weo + %)
Finally, from seventh equation of (L) we obtain:
d, = JEZTR EdT.
T
Having established the relationship between d, and all other variables, we now substitute (4.6),
(4.7), (4.8) and (4.9) into the following identity which is obtained from the last two equations
of (L):
K K
vl'd, —cl'd, — Zpqudwk + Z h{dyk + (k/T)dr — (yp — TK) /T = nry. (4.10)
k=1 k=1
This finally yields
dr = (F1 + F»)/(E1 + E») (4.11)
where
E =blq—c"p+r/T

Fi=c'u—b"v+r /7 +0r,

K K
By = hiqi— Y mkckps
k=1 k=1

For convenience, we state our main result in a proposition.

Proposition 1 The first-stage primal and dual directions can be decomposed as follows:

dwo = pOdT + o, dyo = (IOdr + o,
po =My (ATqo — &), qo = (AM;'AT)"L(b+ AM; &),
wy = My (AT vy +tg), vo = (AMG AT Y (nry, — AMy o).

The second-stage primal and dual directions are decomposed as follows: for each scenario k =
1,..., K we have

dg, = prdr + ug, dy, = qrd: + vg,
pe = M \(Wilq, — meer),  qu = (We M7 W)~ (hy, + me Wi M e — Bipo),
Up = Mk_l(WkTUk +fk), Vp = (WkMk_IW]gﬂ)fl[ﬂ’f'pk — WkMk_lik — Bk’u,o].

Using the expression (4.11) for d,, all the other variables can easily be solved by formulae (4.6),
(4.7), (4.8) and (4.9). Therefore, to solve the search directions we only need to compute matrices
M and @Q, vectors t and ¢ for all kK = 1,..., K and finally the quantities Fy, Es, F} and F5. In
each of these computations, however, only low dimensional matrix operations are involved. This
decomposition technique enables us to efficiently compute the search direction at each iteration
of the homogeneous self-dual algorithm.
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Table 1: Speed-up of decomposition approach over direct approach

Problem Size D.E. Decomposition
sprand25 80 210 14 3 (0.33)
sprand50 155 410 16 (0 90)
sprand75 230 610 18 5 (3.3)
sprand100 305 810 18 7 (4.1)
sprand125 380 1010 20 8 (9.3)
sprand150 455 1210 18 (11 5)
sprand175 530 1410 21 20 (15.1)
sprand200 605 1610 24 19 (25.3)

The table shows the number of iterations and speed-ups of the decomposition algorithm and solving the
deterministic equivalant directly using the homogeneous self-dual method with predictor-corrector scheme.
The test-problems are randomly generated such that a feasible solution exists.

5 Numerical Results for Random Problems

In this section we consider the performance of our decomposition algorithm on a set of randomly
generated feasible test-problems. We compare the increase of solution times as the number of
scenarios increases for both our decomposition approach and a similar implementation of our
algorithm, but without decomposition. In Table 1 we show the number of iterations and the
speed-ups of the decomposition algorithm over solving the deterministic equivalent directly. Only
for a small number of scenarios, the direct approach performs better; however as the number
of scenarios increases the decomposition algorithm is clearly superior to the direct solver. In
Figure 5 we have plotted the computational times (in CPU seconds) for both the direct solver and
the decomposition algorithm. This figure clearly illustrates that the decomposition algorithm
performs superior. The computational times for the direct solver appear to increase quadratically
with the number of scenarios, whereas the computational times for the decomposition algorithm
increase only linearly with the number of scenarios. Note that also the number of iterations differ
(even considerably for larger models). In principle the number of iterations of both approaches
should be comparable. However, for large models the numerical linear algebra operations (e.g.
Cholesky decomposition) become more involved for the deterministic equivalent, whereas the
size of the sub-problems in the decomposition scheme remains constant. This accounts for more
stability in the decomposition scheme. We also compared the results of our decomposition
method with an implementation of the predictor-corrector interior-point method (without the
homogeneous self-dual technique). The results for the latter algorithm are significantly worse.
We plan to make comparisons with other decomposition algorithms in the future.
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Figure 1: Number of Scenarios versus Computational Times
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This figure shows the computational speed-up of our decomposition scheme (see Section 4) over solving
the deterministic equivalent directly by a predictor-corrector method with the homogeneous self-dual tech-
nique. We plot CPU-time versus the number of scenarios for a set of feasible random test problems. We
made a preliminary implementation of our algorithm in Matlab 5.0, Mathworks Inc. The experiments were
done on PC-Pentium 100 with 64 MB Memory.

6 Guaranteed return portfolio selection

6.1 Two-stage guaranteed return portfolio model

Although the results in the previous section indicate that our decomposition method is very
powerful, we only considered some simple random test-problems. We are interested in seeing
how well our algorithm performs for a real world model. In this section we consider a specific
two-stage stochastic programming problem arising from an application in finance. A single-stage
analog of this model was discusses in Dert and Oldenkamp [6].

We consider the following two-period problem. An investor can invest in a money-market ac-
count, a stock index, and European (exchange listed) options on this index with different matu-
rities. We denote the stock index by S. Current time is denoted by %y, and the expiration dates
of the options by ¢; and ¢y with ¢y < t; < t3. At tp the investor forms a portfolio consisting
of some amount of money invested in the stock index, an investment in a zero-coupon bond
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maturing at 2 and a set of options on the stock index. At time #; he may revise his portfolio,
depending on the value of the index at ¢1, i.e. he can change some of the existing positions in
the options and/or buy new options starting from ¢; and maturing at ¢3). The investor’s goal is
to guarantee that the value of the portfolio is always above a given level depending on the index
at to, and that the expected value of the portfolio is maximized at the horizon of the investment.

Assume that the level of the stock index is Sp at time tp, S7 at time ¢, and Sy at time 5.
Moreover, there are n European puts and calls struck at KZJ with ¢ = 1,2, ...,n, respectively,
where j = 1,2 denotes the expiration of the options t;. Let intj (S) € R" denote the n-
dimensional vector which /-th component represents the price of buying a put option at time
t; maturing at ¢; with strike price K;, while the stock index at ¢; is S. Similarly, denote
Qf.¢,(S) € R" to be the n-dimensional vector which /-th component represent the price of
buying a call option at time ¢; maturing at ¢; with strike price K; while the stock index at ¢; is
S. The risk-free interest rate from ¢y to ¢; is denoted by 71, the risk-free interest rate from %,
to to is denoted by 719, and the forward rate from ¢; to to is denoted by fo. Now, let xfitj e R"
denote the amount of put options purchased at time ¢; maturing at ¢;, and xfitj € IR" be the
amount of call options purchased at time #; maturing at ¢;. Let z be the amount invested in the

stock index, and x[’; be the amount invested at t( in the money-market account. Similarly, let z§
be the amount invested in the stock index and x{ be the amount invested in the money-market
account at ¢1. The decision variables xfotj and xf,. with j = 1,2, and xj and acg denote the first-

stage variables. The decision variables 27, and zf,,, and z§ and x{ denote the second-stage
variables. Suppose that the initial budget for the investment is B.

Clearly, the following initial budget equation should hold:

2

2
B=a3So+azh + > (b, QF . (S0)) + D (e, Qby; (S0))- (6.12)
j=1 i=1

At t; the value of the portfolio is given by:

V(ty, Si;a,af 2P, %) = 2581 + af exp(ri(t1 — to)) + (K1 — Sie) T, 28, )+
where K1 = (K1, ..., K})T, and for given y € R", y* denotes the vector

(max{yy, 0}, ..., max{y,,0})".

The second-stage recourse problem is as follows. First, there is an intermediate budget con-
straint:

V(t17 Sl) ‘/‘CS’ xf’ xp’ xc) = ‘/‘Cisl + ‘/‘C{ + <Q€1t2 (Sl)7 xfﬂfz) + <Q§1t2 (81)7 x;tg)' (614)
Second, the value of the portfolio at the horizon is given by:

V(ty, So; 2%, 2zl 2P, 2¢) = xSy + x{ exp(fa(ta — t1)) +
(G — Sae) ™2t + ((Soe — K)o a6). (6.15)
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We require the value of the portfolio at the horizon never to be less than ¢ySo + ¢; with ¢g > 0
and ¢; > 0. Using the piecewise linearity of V' (t2, So; 2P, %), this yields:

V(tg,KiQ;xs,xf,xp,xc) >cK24c¢ fori=1,..,n (6.16)

and
V(t27 07 xsa xfa xpa $C) >

and
! .8 c
VSZ(t27’S’27x ,xf,xp,x ) |,5'2:K;2L+2 Cp-

These constraints are all linear in terms of z*, =/, 2P and z°.

Finally, we require the probability that the portfolio value will be above a given threshold value
cg > 0 to be at least A (0 < A < 1). This, again by piecewise linearity, can be modeled by
selecting a given I (1 < I <n), and adding the following constraint:

V(to, Kisa® 2l 2P, 2) > ¢y fori=1,1+1,..,n. (6.17)
Similar constraints can be added to the model at ¢;.
The expected value of the portfolio at t9 is given by:

E[V (t, So; 2, zf 2P, 2%)] = ziE[Sy] + x{ exp(r(ty —t1)) +
HE[(K2 — Sae) 7], 27,,) + (E[(S2e — K2)T], 7,,). (6.18)

The optioned portfolio selection problem is now well defined as a two-stage stochastic linear
program:

max wiE[V (ty, S1;2°%, 27, 2P, 1)) + wo B[V (tg, So; 2%, x| 2P, 2°)]

s.t.  (6.12),(6.14),(6.16) and (6.17)

where wy and wy (wy > w;) are weights for the first and second stage expected values. In
the numerical experiments we perform in the next section we allows for bid-ask spreads in the
model and consider guaranteed constraints at both ¢; and t,. In the next section we apply the
techniques developed in Sections 3 and 4 to solve this problem.

6.2 Numerical results for two-stage guaranteed portfolio selection

In this section we present computational results for the model discussed in Section 5 based on
market prices. We consider options on the Standard & Poor’s 500 index. The initial date, i.e.
today, is March 17, 1999, the investment horizon is June 18, 1999. The investor initially owns
1 share of the S&P500 (amounts to $1302.84 at March 17) and he can revise his portfolio at
April 16, 1999. The investor can buy and short options at March 17 with expiration at April 16
and expiration at June 18. Future option prices are based on today’s implied volatility function
(a more general approach where volatility is allowed to be a function of the value of the index
as well can be found in Oldenkamp [14]). Today’s implied volatility functions for expiration in
April and June are plotted in Figure 2. To avoid arbitrage opportunities, due to a mismatch of
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Figure 2: Implied volatility
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This figure shows the implied volatility for call options on the S&P500 with expiration on April 16,
1999 and June 18, 1999 based on bid and ask prices. The first plot shows implied volatility for options that
expire on April 16. The second plot shows implied volatility for options that expire on June 18.

Table 2: Parameters and Data

Date April 99 June 99
Scenarios 50 100
Guarantee $1297.36 (-5%) $1285.93 (-5%)
Chance Constraint $1307.88 (4.81%) $1318.976 (4.95%)
Probability 40% 50%
weight 1 1.1
riskfree rate 4.70% 4.83%
dividend $1.02 $4.14

The table shows the parameters, riskfree rate and dividends for April 16, 1999 and June 18, 1999,
respectively.

put-call parity, we only consider call options in our analysis. The market prices of the options
are displayed in Table 3. For liquidity reasons we do not use all the call options available in the
market; rather we incorporate those options with moneyness between 0.94 and 1.06 only.

We generate scenarios for the first period based on a lognormal distribution with mean (annu-
alized) 10% and volatility (annualized) 22.38% using a stratified sampling approach. Scenarios
for the second period are based on the at-the-money volatility implied by today’s options with
expiration in June corresponding to the index level prevailing at the intermediate date. We
incorporate a bid-ask spread on the index of 0.3% for both periods. The parameters of the
model are summarized in Table 2. We refer to this model as the base model. We incorporate
a -5% guarantee (annualized) for each period, and impose chance constraints such that with
probability 40% and 50% the investor obtains more than the risk-free investment in the first
and second period respectively. A closely related model is considered by Oldenkamp [14]. For
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more details and a more extensive analysis we refer to his Ph.D. thesis. The solution to the
base model is presented in Tables 4 and 5. From Table 5 we conclude that in many scenarios
the second stage decisions have a similar structure. This indicates that we might bundle certain
scenarios to capture the uncertainty. Pruning and expanding the set of scenarios in order to
capture uncertainty adequately is an interesting and important topic, however we will not treat
this question here.

To provide more insight in the driving forces of the guaranteed return model we consider the
optimal pay-off functions at the first expiration for different instances of the model. In Figure
6.2 we summarize four different experiments. In the first exhibit we plot the pay-off functions
for Black-Scholes and market prices. From this exhibit it is clear that the results for Black-
Scholes prices and market prices is quite different. One explanation for this difference can be
found by considering the second exhibit. The second exhibit illustrates the impact of different
assumptions about the spread. We compare a fixed proportional spread (as used for the Black-
Scholes prices) with a fixed dollar value spread (in market prices). For the model with market
prices there seems to be a higher demand for far in-the-money call options than for the model
with a fixed proportional spread. Looking at the solution more carefully, the investor purchases
1.68 shares of the most in-the-money call option (K = 1225) with shortest maturity and shorts
3.64 shares of the most in-the-money call option (K = 1250) with expiration in June 1999. In
case of a fixed proportional spread the investor only purchases out-of-the-money calls. The last
two exhibits show the impact of the guarantee level and the chance constraint on the optimal
pay-off function. The impact of changing the probabilities for chance constraint seems to be
rather limited. Changing the guarantee level itself, however, might alter the solution more
noticeably.

Since stochastic programming is concerned with discretizing the underlying random variables
by means of scenarios we consider the convergence of the optimal objective as the number of
scenarios increases. The number of scenarios for the second period is kept fixed (at 100 scenarios).
We do not aim to provide a detailed analysis here, we merely illustrate that one should be careful
in picking the number of scenarios, in order to derive stable and reliable results.

7 Summary and conclusions

In this paper we have proposed a new decomposition method for two-stage stochastic linear
programming. Our algorithm is based on completely decomposing the direction-finding problem
into small subproblems. We use a predictor-corrector scheme in combination with the homo-
geneous self-dual technique to solve the decomposed problem. We reported numerical results
showing the impressive speed-up of our decomposition algorithm as compared to solving the de-
terministic equivalent directly. The computational times for the direct solver appear to increase
at least quadratically with the number of scenarios, whereas the computational times for the
decomposition method seem to increase only linearly with the number of scenarios. We have
also shown that the decomposition scheme is more stable compared to solving the deterministic
equivalent. As a real-world application we studied a portfolio selection problem using options.

We believe that the method proposed in this paper is very promising for several reasons. First,
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Figure 3: Optimal pay-off functions at first expiration (April ’99)
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This figure shows the optimal pay-off function at the first expiration for different instances of our model.
The first plot shows the optimal pay-off functions based on a) Black-Scholes (BS) prices using the estimated
implied volatility function (see Figure 2), b) Black-Scholes prices with fixed volatility (FV), and ¢) market
prices. The second plot shows the optimal pay-off functions with market prices using a fixed absolute spread
(MS) and a fixed proportional spread (FS). In the third plot we display the optimal pay-off functions for
different guarantee levels. The fourth plot shows the pay-off functions for different probabilities in the chance
constraint.

our algorithm requires no feasible starting point (which is a big issue in many other solution
methods). Second, our algorithm is capable of detecting infeasibility and linking this infeasibility
directly to a certain set of scenarios (due to the decomposition of the search-directions). Third,
our algorithm provides useful information (regarding the decomposed search-directions) to per-
form sensitivity analysis. Fourth, our algorithm allows for stochastic recourse matrices (opposed
to fixed recourse as for many decomposition algorithms). Fifth, due to the decomposition struc-
ture of the method a more efficient use of memory is possible. Finally, as a general merit of
interior point methods, the number of iterations required to solve stochastic linear programs is
typically low and insensitive to the dimension of the program.



frimal—tual DecomposItion 10r Stocnastic rrogramiming

Figure 4: Convergence of the objective value
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This figure shows the convergence of the optimal objective value as the number of scenarios increases;
the number of scenarios for the second period is kept fixed at 100 scenarios.
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Table 3: Option Prices

Moneyness Ezpiration BS Price Bid Mid Ask Implied
0.9402 April 91.33 91.25 92.25 93.25 0.2578
0.9594 April 71.28 71.125 72.125 73.125 0.248
0.9786 April 52.76 52.5 53.5 54.5 0.2353
0.9978 April 36.76 36.375 37.375 38.375 0.2238
1.0170 April 23.51 23 24 25 0.2117
1.0362 April 14.28 14 14.625 15.25 0.206
1.0554 April 7.53 7.25 7.75 8.25 0.1966
0.9594 June 101 103.125 104.125 105.125 0.2549
0.9786 June 84.38 86.25 87.25 88.25 0.2473
0.9978 June 68.9 70.5 71.5 72.5 0.2389
1.0093 June 60.45 61.875 62.875 63.875 0.2344
1.0132 June 57.63 59 60 61 0.2324
1.0170 June 54.94 56.25 57.25 58.25 0.2307
1.0362 June 43.12 44.125 45.125 46.125 0.2246

The table shows market prices of S&P500 call options with maturity April 16, 1999 and June 18, 1999,
Black-Scholes prices and implied volatilities.

Table 4: First-Stage Solution

Asset Ezxpiration Investment
exp. value 1311.41
index 0.13
risk-free 1292.36
K=1225 April 1.68
K=1275 April 0.66
K=1300 April 0.21
K=1325 April 0.31
K=1350 April -0.01
K=1375 April 0.41
K=1250 June -3.64

The table shows the first-stage solution.
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Table 5: Second-Stage Solution

Scenario Index risk-free 1250 1275 1315 1350
1 1125.62 1275.25 0 0.83 -0.83 88.67
2 1133.8 1275.25 0 0.83 -0.83 69.44
3 1141.98 1275.25 0 0.83 -0.83 54.47
4 1150.16 1275.25 0 0.83 -0.83 42.62
5 1158.34 1275.25 0 0.83 -0.83 33.05
6 1166.52 1275.25 0 0.83 -0.83 25.51
7 1174.7 1275.25 0 0.83 -0.83 19.51
8 1182.88 1275.25 0 0.83 -0.83 14.66
9 1191.06 1275.25 0 0.83 -0.83 10.75
10 1199.24 1275.25 0 0.83 -0.83 7.62
11 1207.42 1275.25 0 0.83 -0.83 5.08
12 1215.6 1275.25 0 0.83 -0.83 3.04
13 1223.78 1275.25 0 0.83 -0.83 1.38
14 1231.96 1275.25 0 0.83 -0.83 1.02
15 1240.14 1275.25 0 0.83 -0.83 0.83
16 1248.32 1275.25 0 0.83 -0.83 0.63
17 1256.5 1275.25 0.51 0 -0.51 0.38
18 1264.68 1275.25 0.51 0 -0.51 0.18
19 1272.86 1275.25 0.34 0.28 -0.62 0
20 1281.04 1275.25 0 0.83 -0.83 0
21 1289.22 1275.25 0.25 0.42 -0.67 0
22 1297.4 1275.25 0 0.83 -0.83 0
23 1305.58 1275.25 0.21 0.48 -0.69 0
24 1313.76 1275.25 0.4 0.17 -0.58 0
25 1321.94 1275.25 0 0.83 -0.83 0
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Scenario Index risk-free 1250 1315 1350
26 1330.12 1275.25 0.51 -0.51 0.01
27 1338.3 1275.25 0.51 -0.51 0.03
28 1346.48 1275.25 0.51 -0.51 0.04
29 1354.66 1275.25 0.51 -0.51 0.04
30 1362.84 1275.25 0.51 -0.51 0.03
31 1371.02 1275.25 0.51 -0.51 0.02
32 1379.2 1275.25 0.51 -0.51 0.03
33 1387.38 1275.25 0.51 -0.51 0.05
34 1395.56 1275.25 0.51 -0.51 0.06
35 1403.74 1275.25 0.51 -0.51 0.07
36 1411.92 1275.25 0.51 -0.51 0.08
37 1420.1 1275.25 0.51 -0.51 0.08
38 1428.28 1275.25 0.51 -0.51 0.08
39 1436.46 1275.25 0.51 -0.51 0.08
40 1444.64 1275.25 0.51 -0.51 0.07
41 1452.82 1275.25 0.51 -0.51 0.07
42 1461 1275.25 0.51 -0.51 0.06
43 1469.18 1275.25 0.51 -0.51 0.05
44 1477.36 1275.25 0.51 -0.51 0.05
45 1485.54 1275.25 0.51 -0.51 0.04
46 1493.72 1275.25 0.51 -0.51 0.03
47 1501.9 1275.25 0.51 -0.51 0.02
48 1510.08 1275.25 0.51 -0.51 0.02
49 1518.26 1275.25 -0.03 0 0
50 1526.44 1275.25 0.51 -0.51 0

The table shows the second-stage solution.



