The phase between the three gluon and one photon amplitudes in quarkonium decays

Ping Wang*

Abstract

The phase between three-gluon and one-photon amplitudes in $\psi(2 S)$ and $\psi(3770)$ decays is analyzed.

1 Motivations

It has been known that in J / ψ decays, the three gluon amplitude $a_{3 g}$ and one-photon amplitude a_{γ} are orthogonal for the decay modes $1^{+} 0^{-}\left(90^{\circ}\right)$ [1], $1^{-} 0^{-}(106 \pm 10)^{\circ}\left[2,0^{-} 0^{-}(89.6 \pm 9.9)^{\circ}\right.$ 3], $1^{-} 1^{-}$ $(138 \pm 37)^{\circ}$ [4] and $N \bar{N}(89 \pm 15)^{\circ}$ [5].
J. M. Gérard and J. Weyers [6] augued that this large phase follows from the orthogonality of threegluon and one-photon virtual processes. The question arises: is this phase universal for quarkonium decays? How about $\psi(2 S), \psi(3770)$ and $\Upsilon(n S)$ decays?

2 Quarkonium produced in electron-positron colliding experiments

Recently, more $\psi(2 S)$ data has been available. Most of the branching ratios are measured in $e^{+} e^{-}$colliding experiments. For these experiments, there are three diagrams [7, 8], as shown in Fig. [1 which contribute to the processes. Although such formulas were written in the early years after J / ψ was discovered, but

(a) three-gluon annihilation

(b) one-photon annihilation

(c) one-photon continuum

Figure 1: The Feynman diagrams of $e^{+} e^{-} \rightarrow$ light hadrons at charmonium resonance.
the diagram in Fig. $\mathbf{1}$ (c) is usually neglected. This reflects a big gap between theory and the actual experiments.

How important is this ampitude? For $\psi(2 S)$, at first glance, $\sigma_{B o r n}=7887 \mathrm{nb}$; while $\sigma_{c} \approx 14 \mathrm{nb}$. But for $e^{+} e^{-}$processes, initial state radiation modifies the Breit-Wigner cross section. With radiative correction, $\sigma_{r . c .}=4046 \mathrm{nb}$; more important, the $e^{+} e^{-}$colliders have finite beam energy resolution, with Δ at the order of magnitude of MeV ; while the width of $\psi(2 S)$ is only 300 KeV . Here Δ is the standard deviation of the guassian function which describes the C.M. energy distribution of the electron-positron. This reduces the observed cross section by an order of magnitude. For example, with $\Delta=1.3 \mathrm{MeV}$

[^0](parameter of BES/BEPC at the energy of $\psi(2 S)$ mass), $\sigma_{o b s}=640 \mathrm{nb}$. If $\Delta=2.0 \mathrm{MeV}$ (paramters of DM2/DCI experiment at the same energy), $\sigma_{o b s}=442 \mathrm{nb}$.

The contribution from direct one-photon annihilation is most important for pure electromagnetic process, like $\mu^{+} \mu^{-}$, where the continuum cross section is as large as the resonance itself and the interference is apparent. This is seen in the $\mu^{+} \mu^{-}$cross section curve in the experimental scan of $\psi(2 S)$ resonance, as shown in Fig. 2

The observed cross section depends on experimental details: s_{m}, Δ, etc. [8]. The resonance cross section depends on the beam energy resolution of the $e^{+} e^{-}$ collider; on the other hand, the continuum cross section depends on the invariant mass cut s_{m} in the selection criteria. This is seen from the treatment of the radiative correction (9):
$\sigma_{r . c .}(s)=\int_{0}^{1-\frac{s_{m}}{s}} d x F(x, s) \frac{\sigma_{0}(s(1-x))}{|1-\Pi(s(1-x))|^{2}}$.
Figure 2: $\mu^{+} \mu^{-}$curve at $\psi(2 S)$ resonance scaned by BES

3 Pure electromagnetic decay

BES reports $\mathcal{B}\left(\psi(2 S) \rightarrow \omega \pi^{0}\right)=(3.8 \pm 1.7 \pm 1.1) \times 10^{-5}$. What it means is the cross section of $e^{+} e^{-} \rightarrow \omega \pi^{0}$ at $\psi(2 S)$ mass is measured to be $(2.4 \pm 1.3) \times 10^{-2} \mathrm{nb}$. About 60% of this cross section is due to continuum [10]. This gives the form factor $\mathcal{F}_{\omega \pi^{0}}\left(M_{\psi(2 S)}^{2}\right) / \mathcal{F}_{\omega \pi^{0}}(0)=(1.6 \pm 0.4) \times 10^{-2}$. It agrees well with the calculation by J.-M. Gérard and G.López Castro [11] which predicts it to be $\left(2 \pi f_{\pi}\right)^{2} / 3 \mathrm{~s}=1.66 \times 10^{-2}$ with f_{π} the pion decay constant. Similarly π form factor at $\psi(2 S)$ is revised [10].

$4 \quad \psi(2 S) \rightarrow 1^{-} 0^{-}$and $0^{-} 0^{-}$decays

The $\psi(2 S) \rightarrow 1^{-} 0^{-}$decays are due to three-gluon amplitude $a_{3 g}$ and one-photon amplitude a_{γ}. With these two amplitudes, a previous analysis [12] yielded $a_{3 g} \approx-a_{\gamma}$, i.e. the phase ϕ between $a_{3 g}$ and a_{γ} is 180° and $\phi=90^{\circ}$ is ruled out. Here the $\mathrm{SU}(3)$ breaking amplitude ϵ is small compared with $a_{3 g}$. But these branching ratios so far are all measured by $e^{+} e^{-}$experiments. So actually we have three diagrams and three amplitudes. The analysis should be based on Table 1

modes	amplitude	B.R.(in $\left.10^{-4}\right)$
$\rho^{+} \pi^{-}$	$a_{3 g}+a_{\gamma}+a_{c}$	<0.09
$\left(\rho^{0} \pi^{0}\right)$		
$K^{*+} K^{-}$	$a_{3 g}+\epsilon+a_{\gamma}+a_{c}$	<0.15
$K^{* 0} K^{0}$	$a_{3 g}+\epsilon-2\left(a_{\gamma}+a_{c}\right)$	$0.41 \pm 0.12 \pm 0.08$
$\omega \pi^{0}$	$3\left(a_{\gamma}+a_{c}\right)$	$0.38 \pm 0.17 \pm 0.11$

Table 1: $e^{+} e^{-} \rightarrow \psi(2 S) \rightarrow 1^{-} 0^{-}$process

In Table $11 a_{3 g}$ interferes with $a_{\gamma}+a_{c}$, destructively for $\rho \pi$ and $K^{*+} K^{-}$, but constructively for $K^{* 0} \overline{K^{0}}$ (ϵ is a fraction of $a_{3 g}$). Fitting measured $K^{*+} K^{-}$and $\rho \pi$ modes with different ϕ 's are listed in Table 2

It shows that a -90° phase between $a_{3 g}$ and a_{γ} is still consistant with the data within one standard deviation of the experimental errors 13.

ϕ	$\mathcal{C}=\left\lvert\, \frac{a_{3 g}}{a_{\gamma}}\right.$	$\sigma_{\text {pre }}\left(K^{*+} K^{-}\right)(\mathrm{pb})$	$\mathcal{B}_{K^{*+} K^{-}}^{0}\left(\times 10^{-5}\right)^{1}$	$\sigma_{\text {pre }}\left(\rho^{0} \pi^{0}\right)(\mathrm{pb})$	$\mathcal{B}_{\rho^{0} \pi^{0}}^{0}\left(\times 10^{-5}\right)$
$+76.8^{\circ}$	$7.0_{-2.2}^{+3.1}$	37_{-23}^{+24}	$5.0_{-3.1}^{+3.2}$	64_{-41}^{+43}	$9.0_{-6.0}^{+6.1}$
-72.0°	$5.3_{-2.6}^{+3.1}$	19_{-14}^{+14}	$3.1{ }_{-2.3}^{+2.3}$	33_{-24}^{+25}	$5.5{ }_{-4.0}^{+4.1}$
-90°	$4.5{ }_{-2.6}^{+3.1}$	12_{-9}^{+9}	$2.0_{-1.5}^{+1.5}$	22_{-17}^{+17}	$3.7_{-2.9}^{+2.9}$
180°	$3.4{ }_{-2.2}^{+3.0}$	$4.0_{-3.2}^{+4.3}$	$0.39_{-0.31}^{+0.42}$	$7.8_{-6.7}^{+8.6}$	$1.0_{-0.8}^{+1.1}$
BES observed		<9.6		< 5.8	

Table 2: Calculated results for $\psi(2 S) \rightarrow K^{*+} K^{-}$and $\rho^{0} \pi^{0}$ with different ϕ.

The newly measured $\psi(2 S) \rightarrow K_{S} K_{L}$ from BES-II [15], together with previous results on $\pi^{+} \pi^{-}$and $K^{+} K^{-}$, is also consistant with a -90° phase between $a_{3 g}$ and a_{γ} [14]. This is discussed in more detail by X.H. Mo in this conference.

$5 \quad \psi(3770) \rightarrow \rho \pi$

J.L.Rosner 16 proposed that the $\rho \pi$ puzzle is due to the the mixing of $\psi(2 S)$ and $\psi(1 D)$ states, with the mixing angle $\theta=12^{\circ}$. In this scenario, the missing $\rho \pi$ decay mode of $\psi(2 S)$ shows up instead as decay mode of $\psi(3770)$, enhanced by the factor $1 / \sin ^{2} \theta$. He predicts $\mathcal{B}_{\psi(3770) \rightarrow \rho \pi}=(4.1 \pm 1.4) \times 10^{-4}$. With the total cross section of $\psi(3770)$ at Born order to be (11.6 $\pm 1.8) \mathrm{nb}, \sigma_{e^{+} e^{-} \rightarrow \psi(3770) \rightarrow \rho \pi}^{B o r n}=(4.8 \pm 1.9) \mathrm{pb}$.

But one should be reminded that for $\psi(3770)$, the resonance cross section, with radiative correction is only 8.17 nb , while the continuum is 13 nb . So to measure it in $e^{+} e^{-}$experiments, we must know the cross section $e^{+} e^{-} \rightarrow \gamma^{*} \rightarrow \rho \pi$. The cross section $\sigma_{e^{+} e^{-} \rightarrow \gamma^{*} \rightarrow \rho \pi}(s)$ can be estimated by the electromagnetic form factor of $\omega \pi^{0}$, since from $\operatorname{SU}(3)$ symmetry, the coupling of $\omega \pi^{0}$ to γ^{*} is three times of $\rho \pi$ [17. The $\omega \pi^{0}$ form factor measured at $\psi(2 S)$ is extrapolated to $\sqrt{s}=M_{\psi}(3770)$ by $\left|\mathcal{F}_{\omega \pi^{0}}(s)\right|=0.531 \mathrm{GeV} / \mathrm{s}$. With this, the continuum cross section of $\rho \pi$ production at $\psi(3770) \sigma_{e^{+} e^{-} \rightarrow \gamma^{*} \rightarrow \rho \pi}^{B o r}=4.4 \mathrm{pb}$. Compare the two cross sections, the problem arises : how do these two interfere with each other?

Figure 3: (a) $e^{+} e^{-} \rightarrow \rho \pi$ cross section as a function of $\mathcal{B}_{\psi(3770) \rightarrow \rho \pi}$ for different phases, and (b) $\left.e^{+} e^{-} \rightarrow K^{* 0} \overline{K^{0}}+c . c ., K^{*+} K^{-}+c . c ., \quad M_{\psi(3770)}\right)$. and $\rho \pi$ cross sections as functions of $\mathcal{B}_{\psi(3770) \rightarrow \rho \pi}$.

Fig. 4(a) shows the $e^{+} e^{-} \rightarrow \rho \pi$ cross section vs C.M. energy for different ϕ 's. Fig. 4(b) shows the $e^{+} e^{-} \rightarrow K^{* 0} \overline{K^{0}}$ cross section with $\phi=-90^{\circ}$.

MARK-III gives $\sigma_{e^{+} e^{-} \rightarrow \rho \pi}\left(\sqrt{s}=M_{\psi(3770)}\right)<6.3 \mathrm{pb}$, at 90% C.L. 19. It favors -90°.

Figure 4: (a) $e^{+} e^{-} \rightarrow \rho \pi$ cross section vs C.M. energy for different phases: $\phi=-90^{\circ},+90^{\circ}, 0^{\circ}$, and 180° respectively. (b) $e^{+} e^{-} \rightarrow K^{* 0} \overline{K^{0}}$ cross section vs C.M. energy with $\phi=-90^{\circ}$.
$\psi(3770) \rightarrow 1^{-} 0^{-}$modes test the universal orthogonal phase between $a_{3 g}$ and a_{γ} in quarkonium decays as well as Rosner's scenario. A small cross section of $e^{+} e^{-} \rightarrow \rho \pi$ at $\psi(3770)$ peak means $\mathcal{B}(\psi(3770) \rightarrow$ $\rho \pi) \approx 4 \times 10^{-4}$. (With radiative correction, the cancellation between $a_{3 g}$ and a_{c} cannot be complete. With a practical cut on the $\rho \pi$ invariant mass, the cross section is a fraction of 1 pb .) It also implies the phase of the three gluon amplitude relative to one-photon decay amplitude is around -90°. These will be tested by the $20 p b^{-1}$ of $\psi(3770)$ data by BES-II, or $5 p b^{-1}$ of $\psi(3770)$ data by CLEO-c.

6 Summary

- The universal orthogonality between $a_{3 g}$ and a_{γ} found in various decay modes of J / ψ can be generalized to $\psi(2 S)$ and $\psi(3770)$ decays. A -90° phase between $a_{3 g}$ and a_{γ} is consistant with the data on $\psi(2 S) \rightarrow 1^{-} 0^{-}$and $0^{-} 0^{-}$modes.
- The $\psi(3770) \rightarrow \rho \pi, K^{*+} K^{-}, K^{* 0} \overline{K^{0}}$ test the universal -90° phase, as well as Rosner's scenario on $\rho \pi$ puzzle. This should be pursued by BES-II and CLEO-c.
- The exisiting $\Upsilon(n S)$ data should be used to test the phase in bottomonium states.

References

[1] M. Suzuki, Phys. Rev. D63, 054021 (2001).
[2] J. Jousset et al., Phys. Rev. D41, 1389 (1990); D. Coffman et al., Phys. Rev. D38, 2695 (1988); N.N.Achasov, Talk at Hadron2001.
[3] M. Suzuki, Phys. Rev. D60, 051501(1999).
[4] L. Köpke and N. Wermes, Phys. Rep. 74, 67 (1989).
[5] R. Baldini, et al. Phys. Lett. B444, 111 (1998).
[6] J. M. Gérard and J. Weyers, Phys. Lett. B462, 324 (1999).
[7] S.Rudaz, Phys. Rev. D14, 298 (1976).
[8] P. Wang, C. Z. Yuan, X. H. Mo and D. H. Zhang, Phys. Lett. B593, 89 (2004).
[9] E. A. Kuraev and V. S. Fadin, Sov. J. Nucl. Phys. 41, 466 (1985); G. Altarelli and G. Martinelli, CERN 86-02, 47 (1986); O. Nicrosini and L. Trentadue, Phys. Lett. B196, 551 (1987); F. A. Berends, G. Burgers and W. L. Neerven, Nucl. Phys. B297, 429 (1988); ibid. 304, 921 (1988).
[10] P. Wang, X. H. Mo and C. Z. Yuan, Phys. Lett. B557, 192 (2003).
[11] J.-M. Gérard and G.López Castro, Phys. Lett. B425, 365 (1998).
[12] M. Suzuki, Phys. Rev. D63, 054021 (2001).
[13] P. Wang, C. Z. Yuan and X. H. Mo, Phys. Rev. D69, 057502 (2004).
[14] C. Z. Yuan, P. Wang and X. H. Mo, Phys. Lett. B567, 73 (2003).
[15] X. H. Mo's talk in this proceeding.
[16] J. L. Rosner, Phys. Rev. D64, 094002 (2001).
[17] H. E. Haber and J. Perrier, Phys. Rev. D32, 2961 (1985).
[18] P. Wang, C. Z. Yuan and X. H. Mo, Phys. Lett. B574, 41 (2003).
[19] Yanong Zhu, Ph. D. thesis California Institute of Technology, 1988, Caltech Report No. CALT-681513; W. A. Majid, Ph. D. thesis) University of Illinois, 1993, UMI-94-11071-mc.

[^0]: *Institute of High Energy Physics, CAS, Beijing 100039, China

