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Adv. Appl. Prob. 14, 870-884 (1982) 
Printed in N. Ireland 

0001-8678/82/040870-15$01.75 

( Applied Probability Trust 1982 

THE BEHAVIOR OF THE RENEWAL SEQUENCE 
IN CASE THE TAIL OF THE WAITING-TIME 
DISTRIBUTION IS REGULARLY VARYING 
WITH INDEX -1 

J. B. G. FRENK,* Erasmus University, Rotterdam 

Abstract 
A second-order asymptotic result for the probability of occurrence of a 

persistent and aperiodic recurrent event is given if the tail of the distribution 
of the waiting time for this event is regularly varying with index -1. 

RENEWAL THEORY; REGULAR VARIATION 

1. Introduction and results 

Suppose e is a persistent and aperiodic recurrent event (for definition see [6], 
p. 308) and define: 

f, Pr {e occurs for the first time at the nth trial}. 

u, A Pr {e occurs at the nth trial}. 

uo0A1 , fo A0. 

({u,}ne is the so-called renewal sequence.) 
Using the probabilistic interpretation this yields u, = 

=I 
fkUn-k for n 1. 

Kolmogorov [10] and independently Erdis, Pollard and Feller [4] proved 

1 lim u,=- for L <oo 
(1.1) -- 

I 
=0 for tL=OO 

with C A LB 
=I 

nf,. Garsia and Lamperti [8] obtained a stronger result when S 
= oo for a certain class of lattice probability distributions F. They proved with 
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The behavior of the renewal sequence 871 

F(n) A =,• 0fm and 
mr(n)4 

A =,o 1 - F(m) (nc= N) 

sin ra 1 (a) lim m(n)u, = for l<a<1 n---oo 'r(l - a) 

(1.2)if 
1 - F(n) E RVS-0; 

(s.2) 
(b) lim inf m(n)u,~ for 

O<a<-? n--+oo 
•T(l-(a) 

2 

if 1 - F(n) e 
RVS_. 

(For the definition of RVS-, the reader is referred to the next section.) 
Erickson [5] considered the case a = 1 and proved 

(1.3) lim m(n)u, = 1 if 1- F(n) E RVS01. 

In this paper we are going to prove among some other results the following 
statement which is stronger then Erickson's. 

Theorem. 

(1.4) 1 - F(n) E RVS'1 @ - u, E H]". 

([t] A integral part of t: for the definition of H" the reader is referred to the 
next section.) 

Both relations imply 

1 

Unm(n) lim =0. 
n-= n(1 - F(n))m-2(n) 

2. Proofs 

Using the theory of Banach algebras we provide a proof of the theorem in 
the case x < oo. This method of proving the theorem for this special case will be 

given because of its brevity. It is not possible to use the same method when x 
is infinite and we therefore give a proof of this case using the Fourier 

representation of Ln. (This proof also applies to the case t <cc.) However, 
before starting we need some definitions and lemmas. 

Definition 1. A sequence of eventually positive numbers {c(n)}n', is called a 

regularly varying sequence of index p if 

c([Xn])p lim =)A" VA >0 (A: c(n)eRVS ). n-= c(n) 
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872 J. B. G. FRENK 

An ultimately positive function R on (0, c) is called regularly varying with 
index p if 

limt, 
(R (At)/R (t)) = A P VA > 0. (4A: R (t) e RVFP). 

The following lemma shows that the theory of regularly varying functions 
also applies to regularly varying sequences. 

Lemma 1. If {c(n)},,N is a regularly varying sequence of index p, the 
function R defined on [0, cc) by R(t) A c([t]) is a regularly varying function of 
index p. 

Proof. See [14]. 

Definition 2. A sequence {c(n)},, belongs to the class IIS" if there exists a 

sequence L(n) e RVSo such that lim,,, (c([nx])- c(n))/L(n) = log x Vx >0 
(4: c(n) IIS'). A function R on (0, oo) belongs to the class HI if there exists a 
function L(t) such that 

limt,,, (R(tx) - R(t))/L(t) = log x Vx >0 (A: R(t) e [H). 
(L(t) is then automatically in RVFo.) The following lemma shows that the 

theory of the class Hn also applies to the class HS".0 

Lemma 2. If {c(n)},,~ eIHS" the function R defined on (0,oo) by R(t) A 

c([t]) is in HI•. 

Proof. Using the definition of HS" we obtain 

l c([[nx]z]) - c(n) 
lim n--+oo L(n) 

S c([[nx]z])-c([nx]) L([nx]) c([nxi-c(n) 
= lim + lim = log z +log x 

n--oo L([nx]) L(n) n-_oo L(n) 
Vx, z> 0. 

This implies (take x =1; z=2; n=2k+l (k eN)) lim,oo[(c(n+ 1)-c(n))/ 
L(n)]=0. Hence for all x >0 

.c([tx]tx])c([t]) c([tx]) -c([[t]x) L([tx]) c ([[t]x]) - c([t]) lim = lim + lim 
,-* L ([t]) ,-- L([tx]) L ([t]) ,-- L ([t]) 

= log x since [tx] - [[t]x] is bounded. 

Case ix < o. Define O(s)A 
•=o 

us" and 
F(s) 

A E=o fs" for Isl <1. Before 

proving the theorem we recall the following result. 

Lemma 3. If 
F(ei'o)= 

1 for some to 0 and F(e") is the characteristic 
function of F, F should be a lattice distribution with the point spectrum 
contained in the set {2ki7r/to; k =0 1, - }. 

Proof. [9], p. 94. 

Proof of the theorem (in the case x <c). We have f(s)= 1/(1-F(s)) 
for 
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The behavior of the renewal sequence 873 

Isl<1 ([6], p. 311). Define 

M^(s)` 

__ 
) 

~ 

(1-F(n))s" for 
Is\l- 

1. 1-s ,=o 

Since 
xEa- 1= 

kfk <cc we obtain using the monotone convergence theorem 
lim , 1 Al(s) = x > 0. Since e is aperiodic we have, by Lemma 3, 1- F(ei"o) 0 
for to f 2ki7r (k e Z). Obviously 1 - F(s) > 0 for Isl < 1. It follows I M(s) > 0 for 

IsI 5 1 and hence using a theorem of Wiener ([13], p. 665) we obtain 1/1\(s)= 
nZ=o As" with =0=o (IA, < o and IsI 

<- 
1. This implies together with 1- F(n) 

RVS'1 ([1], p. 258) 

(2.1) A 2 (1-F(n)) (n1-- oo) 

(take d = 1 - F(n) and A(x)= 1/x). 
Since T(s) = 1/((1- s)f(s)) we get u, = ~=o A, for all n 

-0. 
Consequently 

_n-=o u -(p+ 1)u, =-P-=1 nXA. Using (2.1) and Lemma 1 we get 

p p 

Z un -(p+l)up E nhA, n=O . n=l 1 
lim 

2( 
= - lim 

p-o- p2 - F(p)) p--oo p 2(1 F(p)) 2 

Combining this with 

1 P 1 
u- 

lim p+1n=o m(p) 1 
P-- p(1 - F(p)) --2 

([7], Theorem 3) we get 

1 

lim = 0. 
-00 p(1 - F(p)) 

Clearly this implies -u[t]E Hn since -(1/m([t])) e H. The converse statement 

(- u[t],e = > 1- F(n) e RVSI1) will be proved at the end of this section. 
We remark that the renewal theorem of Kolmogorov (for the case I < 0) can 

be proved easily using Wiener's theorem. Using the same method we can also 

prove a second-order asymptotic result for the case a > 1. 

Lemma 4. 

1 
1 - F(n) e RVS" a(a > 1) '@ u, - 

-- RVSI_. 
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874 J. B. G. FRENK 

Both imply 

u, - (1/4) 1 
lim 
n--* n (1 - F(n)) 2(a1) 

Proof. Since 

1 n 
un -E-= k X ,k=- k; 

I k=0O k=O k=n+l 

A,-(-1/2)(1-F(n)) if 1-F(n)eRVS•, ([1], p. 258) and Lemma 1 we 
obtain the desired result. 

To prove the converse statement we consider the following cases. 
(a) 1<a <2=>0= o up - 

(n/Pt)eRVO- 
and applying [11], Theorem A, 

yields 1 - F(n) e RVSt. 
(b) a = 2 1•=o up - (n/IP) e IIS and applying [7], Theorem 2, yields 1- 

F(n) e RVS72. 
(c) a > 2=> 00, (u, - (1/)) e RVS00 and applying [7], Theorem 1, yields 

1 - F(n) e RVS",. 

The case Ix = oo. Define 4(P) ( J ee"' dF(x) with F some probability distribu- 
tion on (0, oo). Hence in our case 

4(0)='_=1 
e'O"f,. 

Before we start with the proof of the theorem we state the following lemma. 

Lemma 5. If the tail of the distribution F is regularly varying with index -1 
and 0< e < 1 is some chosen number we can find A1, A2, A3 > 0 such that 

Re 4( )- Re () 
Vn - A1 VO E [A2, en] F( A) 3. with y < 1. 

1 - F(n) 

Proof. The definition of 0 yields 

Re - Re = - R - - x/n 
sin z dz dF(x) 

= f0 (F(nz)- F(nz sin z dz. 

Hence 

(2.2) 1(Re 
•( 

-r)-Re =( )) 
Jo F(nw)-F(nw(o 

)))sin Owdw. 
0. 

\ n 0- ) 

Divide f (F(nw) - F(nw(0/(6 - ,r)))) sin Ow dw into two parts, the first part 

I1(0, n, 4) A- F(nw) 
-F nw )) sin Owdw 
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The behavior of the renewal sequence 875 

and the second 

12(6, n, 4) 
_ 

(F(nw) - F nw 
- 

Sin Ow dw 

with rl e (0, 
(•( 

- 1)). 
Consider I(06, n, q). Using Fubini's theorem we get 

I(0, n, ) =0 (F(nw( 1 
+0 

- F(nw)) dw cos Op dp. 

Since 

1-F nw 1+ 
_)dw 

- F(nw) dw 
P0 

p(1+,r./(o-,r)) 
we obtain 

J F nw (1 + -F(nw) dw 

IT 
0-(1+w/(e-,)) p(1+w/(O-1)) 

=0 
Jpj+(- 

(1- F(nw)) dw + (1- F(nw)) dw 

f O-,• (1+'rr/(e-,tr)) 

- J(1 - F(nw)) dw. 

Combining these relations we have 

IJ(O, n, ra) = 
0I• 

11(0, n, ) + 12(, n, r) - 113(, n, rl) 
with 

=Ir((, n,+O-W) (1- F(nw)) dw cos Op dp 
0 p(1+lr/(e-ir)) 

0- p(1(+wr/(O 

-1)) 

112(0, n, r)AJ (1 - F(nw)) dw cos Op dp 

I13(0, n-), A 
)-- 

_I (1- F(nw)) dw cos Op dp. 

Using Lemma 1 we can apply the result stated by Pitman [12], Lemma 2; 

1 - F(nw), A 
Vh, c >0 3A,(c, h) 05:1-A 

1-F(n) =w1-h 

for all n-:Aj(c,h), O<w<c and A some constant if 1-FeRVF'I and 
tl+I(1-F(t)) is bounded in the neighbourhood of 0. (The condition tl+h(1- 
F(t)) is bounded in the neighbourhood of 0 is omitted in Pitman's lemma. One 
can easily construct a counterexample if the condition is not fulfilled.) Using 
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876 J. B. G. FRENK 

this inequality we find for h = r and 0 sufficiently large that for all n ;A1(3, r) 

I/0 

n e- 

- 

(l+?i(ce-wF)) 
C1 (a) _ 1)1 A 

w-1-9l dw dp 
C,12- 

1 - F(n) 

Jp(1+l+/(e-w_)) and C1 some constant. 

(b)1112(0, n,) A w-1-" dw dp 
1 - F(n) - p 

1- 1+--rr r A .iT0 -,IT)P-_7 dp 2-- 2-q 
____ ______ C0 (00- -,IT 

and C2 some constant. 

13 

eO-n(1X +.rr/(e--)) 

e09-n 

(c) 113 
n, 

1)! A W-1-" dw cos Op dp 
1(c -F(n) f 

A. rr 0 - 

02 
o1- 

d (0- 0")cos z dz 

C3 2 

o2 . 

and C3 some constant. 
Hence using these inequalities we get Vn > A1(3, rl). 

(2.3) I(, n, ) C1 . 0",2- ,+ C2. 0,2-,+ C3 
. 21 

. C4 Oq2- (1-F(n) - 

with C4 some constant and 0 sufficiently large. 
Consider 12(0, n, rl). Since 

12(0, n, 7) A 1- F w ( )))-(1- F(nw)) sin Ow dw 

and 1- F a positive non-increasing function we can apply Bonnet's form of the 
second mean-value theorem ([15], p. 17) to get 

112(0, n, 
7-)l1--5 1-F(n 

-" 
)) +-2 (1- F(nO- )). 

Hence using Pitman's lemma we have 

_ 
_(2.4)2 

_ C5 
( 

-1-1 
- C52rl 

1 - F(n) -0 0 
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The behavior of the renewal sequence 877 

Combining (2.2), (2.3), (2.4) we obtain 

Re 4(rr)- Re O() I 
n- 

C4 , 2-1+1 
2---5 

*, 2 
C6. 1 - F(n) 

with yA max (12-_ 71+1, 712+ _) for all n -A1(3, -) and O E[A2, en]. Since 

0 < -! < ?(,/5-1) we have y < 1. 

Proof of the theorem. For u, the following representation is well known ([5], 
p. 266 or [8], p. 226): 

2 
'm 

1 
u =-- W(O) cos nO dO and W(O) 

A 
Re 

(0) 

Hence for all p > 1 

'IT 
fB/n 

B/[np] 
(u, - u[np) =( cos nOW(O) dO 

- J[Pcos ([np]O)W(O) do) 

+(f cos nOW(O) de - cos ([np]O)W(O) do) 
/n /[np] 

+ (cos nO -cos ([np]O))W(O) dO. 

We shall consider these three parts separately and prove 

2 
B/n 

cos nOW(O) d - B/npcos ([np])W() dO) 
(a) lim -_=log p; 

--.71 
n(1 - F(n))m-2(n) 

2' 2 (cos nO -cos ([np]O))W(O) dO 
(b) lim sup ( 0; 

n,--- n(1- F(n))m-2(n) 

- cos nOW(O) dO- cos ([np]0)W(O) deo 
(c) lim sup M- / O(BD(- 

n,-- 
(n(1 - F(n))m-2(n) 

In order to prove (c) and (b) it is sufficient to prove 

2 
E 

n,__o 
n(1 - F(n))m-2(n) 

-- 
cos nO W(O) dOI 

(b') lim sup (= 0. 

,__,o• 
n(1 - F(n))m-2(n) 
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878 J. B. G. FRENK 

We shall first provide the proof of (a) and (b') since the proof of (c') is lengthy 
and rather technical. 

Proof of (a). Using partial integration we obtain for every p -1 and B > 0 
B/[np] 

cos ([np]0) W(O) dO 

=cos B JB/ W(O) dO + [ Bnp] sin ([np]0)J W(z) dz dO. 

Hence 

fB/n B/[np] S 
cos nOW(O) dO - cos ([np]O) W(O) dO 

cos dO +- sin 0 W ds dO. 
t -B/[np] t O/[np] 

Since 1 -F(n) e RVS-1 we also have using Lemma 1 ([15], p. 271) 

W eRVFi and W (n) 
(n2(m2 

Combining the last two results it is easy to deduce 
(JB/n cos nOW() d 

- B/np cos 
([np]O) W(O) dO) 

lim- = log p. 
n--*o Tr n(1 - F(n))m-2(n) 

Proof of (b'). Since cos nO = -cos n(O +, /n) we obtain 

2 cos (nO)W(O) dO 

-= Jcos nO(W()- W( d 
-)) 

dO + 
I+( cos nOW(O -) dO 

-_ 
+(l) cos nOW(O ~-) dO. 

Because W(O) is bounded on [A, B] with 0 < A < B < -r we get 

Ie+(r/n) cos nOW( -) dO 
(d) lim sup 

- 
lim sup C. = 0. 

1-W W n \n( 

Ir+(in) cos nOW(O- do 
(e) lim sup 

- 
'lim sup C,. - = 0. 

"-1)W W 
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The behavior of the renewal sequence 879 

Erickson proved ([5], Lemma 5) 

140(o01)- 4(o2A)-< 
2-o" 

1 
V ~01 =2 02 101-021 mI0 2 

and thus using the definition of W(O) 

-. o 

W(O) - W 0 -- n- C,,,m 
11- (0) 1 1- ( 

for 0 e [e, rT] and 

CS,I = max 
. Se, ( I7(o1 7r) 

(1 1-0(0)11 1-0 0- 

(This is possible since e is not periodic.) Hence 

() limsup jcos 
nO(W(O) - 

W(O 
- r/n) 

dO 
(f) lim sup = 0. 1w( 

n (n) 

Using (d), (e), (f) and 

1 W{1 Trn(1 - F(n)) 

we thus get 

2- j cos nOW(O) dO 
lim sup = 0. 

n(1 - F(n))m-2(n) 

Proof of (c'). We write 

S1 *cr /6 - \1 ""'" 01-i 
2 cos nOW(O) dO =- cosOW dO-- cos OWI dO 

n B n n 

Obviously 

cos OWrA dO 
,,s lim 

, B= - dO 
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880 J. B. G. FRENK 

and hence 

- 
II(n)I1 

lim sup n8 for B sufficiently large and 8 sufficiently small. 
n-soo 1 

n 
W() 

Since W(1/n) -*oo(n - oo) and W((O - r-)/n) bounded on 0 e [en, en + w] we 
find 

SII2(n)l 
lim sup =0. 

n-Wn 

Finally we have to consider 1/n. I3(n). Using the definition of W(O) we get 

Re 4 - 
)- 

Re 4o 
- 

1 (o)12 

+ (1- e 

1 

T_ 
) 

-1--1 
- 1 - 1 

A 
Integrand31 (0, n)+ Integrand32 (0, n). 

Hence 

1 1 "" 
- I3(n) 

=-B 
cos 0. Integrand31 (0, n) dO 

+- cos 0. Integrand32 (0, n) dO. 
n B 

We first consider 1/n J' "cos 0. Integrand31 (0, n) do. Erickson proved ([5], 
Lemma 5) 

Om() 
-5kll1-(0)1 

forall 0 e (0, 2w) and k some constant. 

Using this inequality, Pitman's result and Lemma 5 we find for h = (1- y)/4 > 0 

- cos 0. Integrand31 (0, n) dOE 
n A3 

" O 
' m2(n) dO 

n(1-F(n))m-2(n) 
3 

j 02m2(n10) 

= O 0y+2h-2 dO O(B)-1 
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The behavior of the renewal sequence 881 

Consider the second part of (1/n). I3(n). Since 

11- 4(0)l2 = (1- Re ((0))2+ Im2 ((0) 
and 

1 1 1- 
•() 

1- -(O\r 

1-2n 
1 - 1 1 1- 

n' we get the following relation: 

Integrand32 (0, n)= 

(1-Re (0 )Re )-Re 

(0n•)((1 

-Re +(0 -r 1-Re 

(1-Re 
o0nT))(Im 

7• 

- 
Im 0 0)) (Im ( T)+ Im 

(n) 
+1 

1- 211 2-,T)1 

In a similar way as Erickson provides the proof of [5], Lemma 5, we get 

Im( 
- 

Im (O) 
<:5=n 

m(; 

and 

Re -Re ) m ) for all O e [B, En]. 

Using the above relations and the mentioned inequality for 11- (0)1 we find 

IIntegrand32 (0, n)I 

k4n3m() -(l-Re T))(2-Re 0( 
- Re 

m2 2l )m2(2)02(0 

k4n 3 m((1 - Re Im(0 -r))(lII(O) + Im (0 - )l) 

2m2 )2( 0 
")2 

A Integrand321 (0, n)+ Integrand322 (0, n). 
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882 J. B. G. FRENK 

First we consider Integrand321 (0, n). Since 1- Re 0 (1/n) - 1r(1 - F(n)) (n -9 oo) 
and wlh(1- Re 40(1/w)) is bounded in the neighbourhood of 0 we can apply 
Pitman's lemma ([12], Lemma 2) to the following integral and find for 0 < rl < 
and n sufficiently large 

1 En 
- JB cos 0. Integrand321 (0, n) dO 

n2(1 - F(n))m-3(n) 

Jn C _T (0- )1+,n(o + _ + (0- r)+)0,(0- 
_ 7T)21 dO(B C7 B02(- ot)2 = " 

Hence 

1- cos 0. Integrand32 (0, n)d n - F(n 
n n(1 -F(n)) lim sup F(n)) (n) O(B-(1-6) lim sup 

n--.oo n(1 - F(n))m2(n) m(n) 
= 0. 

Since Im 4(1/n)- m(n)/n and rl sufficiently small we find analogously 

I-Jsu cos 0. Integrand322 (0, n) do0 lim sup 2= O(B-') 
~n-- n(1 -F(n))m-2(n) 

Combination of the above results yields 

lim sup (n) = O(B-)) 
lisup n2 (1- F(n))m-2(n) 

and hence 

- cos nOW(O) do 
lim sup TT= O(Bt•- n-o n (1 - F(n))m -2(n) 

The proof of (c') is now completed and we obtain by combination of (a), (b), (c) 

lim 
u, 

- 
u-,, 

= log p Vp > 0. 
n-lo n(1 - F(n))m-2(n) 

This implies by Lemma 2, [3], Proposition 2, and [2], p. 41, 

l n -nu = 
lim p -0 = 1 

li-r n,(1 
- F(n))m -2(n) 
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On the other hand we proved in [7], Theorem 3, 
n n 

In p=o m(n) 

n--, n2(1 - F(n))m-2(n) 

Combination of both relations yields 

1 
mUn (n) lim =0. 

n-oo n(1 - F(n))m-2(n) 

We now prove the converse statement of the theorem. This statement is 
obvious since -u,lreII" implies -1/[t] E-t' uP e I0I and [7], Theorem 1, then 

yields 1- F(n) e RVS-1. 

As an application of the foregoing we can sharpen the result concerning the 
limit distribution of the residual waiting time. Following Example (b) of [6], p. 
332, and the above results it is easy to prove 

W. 
(r)- 

(1 -F(r - 1)) 
(i) 1 - F(n) E RVS" 

_(a 

> 1) 

:>lim_ 

-= 
r n--- n(1 - F(n)) 2(- 1) 

1 - F(r- 1) 
W, (r)- m(n) 

(ii) 1- F(n) 
ERVS'_I 

> lim =0 
n-, n(1 - F(n))m-2(n) 

with 
W,(r)- 

Pr {first occurrence of e after the nth trial takes place at the 
(n + r)th trial}. 
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