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Abstract

We study a deterministic linear-quadratic (LQ) control problem over an in�nite horizon, and

develop a general approach to the problem based on semi-de�nite programming (SDP) and

related duality analysis. This approach allows the control cost matrix R to be non-negative

(semi-de�nite), a case that is beyond the scope of the classical approach based on Riccati

equations. We show that the complementary duality condition of the SDP is necessary and

su�cient for the existence of an optimal LQ control. Moreover, when the complementary

duality does hold, an optimal state feedback control is constructed explicitly in terms of the

solution to the semide�nite program. On the other hand, when the complementary duality

fails, the LQ problem has no attainable optimal solution, and we develop an �-approximation

scheme that achieves asymptotic optimality.
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1 Introduction

Consider the following deterministic linear-quadratic (LQ) control problem:

(LQ) min J(x

0

; u(�)) :=

Z

1

0

[x(t)

T

Qx(t) + u(t)

T

Ru(t)]dt (1)

s:t:

(

_x(t) = Ax(t) +Bu(t);

x(0) = x

0

2 <

n

:

(2)

Here and throughout the paper, A;B; and Q;R are constant matrices, and Q and R are both

symmetric matrices; and

T

denotes the transpose of matrices and vectors; the control u(�) is

an element of L

2

(<

m

), the set of all <

m

-valued, measurable functions satisfying

Z

+1

0

ku(t)k

2

dt < +1;

where ku(t)k := [

P

i

u

i

(t)

2

]

1=2

.

The LQ control problem, initiated by Kalman [5], is one of the most important classes of

optimal control problems, in both theory and applications. In the deterministic case, it is well

known that when R � 0 (positive de�nite) and Q � 0 (non-negative de�nite), the problem

(LQ) can be solved elegantly via the (algebraic) Riccati equation:

Q+A

T

P + PA� PBR

�1

B

T

P = 0: (3)

Furthermore, the optimal control can be obtained explicitly in a feedback form:

u

�

(t) = �R

�1

B

T

Px

�

(t):

The Riccati equation has been a primary, if not predominant, tool in studying LQ problems

in the literature. However, an immediate drawback of this approach is the requirement that

R � 0, which may exclude many meaningful problems. Consider the following two examples.

Example 1.1 The Riccati approach provides no information at all on the following simple LQ

problem, in which R � 0:

min

Z

1

0

x

2

(t)dt

s:t:

(

_x(t) = �x(t) + u(t);

x(0) = x

0

2 <

1

:

Example 1.2 Consider the following two-dimensional problem:

min

Z

1

0

[12x

2

1

(t) + 12x

1

(t)x

2

(t) + 3x

2

2

(t) + u

2

1

(t)]dt

s:t:

8

>

<

>

:

_x

1

(t) = x

1

(t) + x

2

(t) + u

1

(t) + u

2

(t);

_x

2

(t) = 4x

1

(t) + x

2

(t) + u

1

(t)� 2u

2

(t);

x(0) = x

0

2 <

2

:
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Here,

Q =

"

12; 6

6; 3

#

� 0; R =

"

1; 0

0; 0

#

� 0;

and both matrices are singular. The Riccati approach again fails.

Another development in recent years is the rise of semide�nite programming (SDP) as a

computational tool to solve Riccati equations; refer to [16]. Speci�cally, based on Schur's

lemma, the Riccati equation in (3) is reformulated as an SDP, which, in turn, can be e�ciently

solved by interior point techniques (e.g., [6, 8, 14, 16]). However, the non-singularity of R is

also a starting point of this treatment.

In this paper, we study the LQ control problem allowing R to be possibly singular. The

central idea of our approach is based on a very simple observation: SDP, in contrast to the

Riccati equation, does not involve any matrix inverse; hence, in particular, it is not restricted

to a non-singular R. Therefore, SDP should apply to a broader class of LQ control problems,

much beyond the scope of the Riccati equation in (3). Indeed, this simple idea calls for solving

(LQ) directly through SDP | a more general approach of LQ without Riccati.

Below, in x2, we present the generalized Riccati equation (i.e., the counterpart of (3) allowing

R � 0), the SDP primal-dual problems that correspond to (LQ), and related preliminary

materials. In x3, we demonstrate that the so-called complementary duality | a condition

between the primal and dual SDP problems | is the key linkage between the SDP and (LQ).

First, when Q � 0, we show that complementary duality is equivalent to the existence of an

optimal control that solves (LQ). In addition, we also establish another equivalent condition,

in terms of the optimal solution to the primal SDP and the generalized Riccati equation. Next,

we show that when Q is possibly singular, these equivalent conditions still hold, provided an

additional stability condition on the feedback control is in force.

Furthermore, when the complementary duality holds and when Q � 0, we show in x4 that

it is possible to \regularize" the (LQ) problem so as to remove the singularity of R through an

orthonormal transformation. In the same section we also propose an �-approximation scheme

that achieves asymptotic optimality when complementary duality fails. In x5, we present a set

of examples to illustrate various aspects of the SDP approach.

We close this section by summarizing some of the regularity conditions concerning the

problem (LQ).

(i) An open-loop control u(�) is called admissible (w.r.t. x

0

), if it is (asymptotically) stabilizing

(w.r.t. x

0

), namely, if the state process under the control, x(�) of (2), with initial state x

0

,

satis�es lim

t!+1

x(t) = 0: The set of all admissible controls w.r.t. x

0

is denoted as U

x

0

.
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(ii) A feedback control u(t) = Kx(t), where K is a constant matrix, is called (asymptotically)

stabilizing, if for every initial state x

0

, we have lim

t!+1

x(t) = 0; where x(�) is the solution

to (2), with u(t) = Kx(t).

(iii) Accordingly, the system in (2) is called (asymptotically) stabilizable, if there exists a

stabilizing feedback control of the form u(t) = Kx(t).

(iv) (LQ) is called well-posed (w.r.t. x

0

), if its cost objective has a �nite in�mum:

�1 < inf

u(�)2U

x

0

J(x

0

; u(�)) < +1:

(v) (LQ) is called attainable (w.r.t. x

0

), if it is well-posed and if there exists a control that

attains the in�mum inf

u(�)2U

x

0

J(x

0

; u(�)), in which case the control is called optimal.

2 Generalized Riccati Equation and SDP

Throughout this paper we assume that

R � 0: (4)

Note that this condition is necessary for the LQ problem (LQ) to be well-posed (cf. [17, Chapter

6, Proposition 2.4]).

Since we allow the matrix R to be singular, the classical Riccati equation is no longer

de�ned. A natural extension is to consider the following generalized Riccati equation:

F (P ) := A

T

P + PA+Q� PBR

+

B

T

P = 0 (5)

where R

+

stands for the pseudo-inverse of R. Note that R

+

satis�es the following properties

(refer to [9], and note the symmetry of R):

R

+

� 0; (R

+

)

T

= R

+

; R

+

R = RR

+

;

RR

+

R = R; R

+

RR

+

= R

+

:

Next, we introduce an a�ne transformation of the matrix P ,

L(P ) :=

"

R; B

T

P

PB; Q+A

T

P + PA

#

: (6)

The following lemma ([1]) shows that F (P ) and L(P ) are closely related.

Lemma 2.1 L(P ) � 0 if and only if F (P ) � 0 and (I �RR

+

)B

T

P = 0.
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Consider the following SDP:

(P) max hI; P i

s.t. L(P ) � 0

P 2 S

n�n

:

Here and below, S

n�n

denotes the set of n� n symmetric matrices, and hX;Y i :=

P

i;j

X

ij

Y

ij

denotes the matrix inner-product. In particular, hI; P i (with I being the identity matrix) is

equal to the trace of the matrix P . Note that Lemma 2.1 implies that any feasible solution of

(P) is necessarily constrained by the equality (I �RR

+

)B

T

P = 0.

In the classical setting when R � 0, it is known that the solution to the Riccati equation

F (P ) = 0 can be obtained by solving the SDP problem (P); refer to [3, 16]. In the more general

setting here (allowing R � 0), the SDP is still a well de�ned problem; in particular, it does not

impose any restrictions on the de�niteness of R. Hence, a viable approach to (LQ) is to solve

the SDP �rst, and then study the relationship between the SDP solution and the solution to

(LQ).

To this end, consider the dual of (P), which is also an SDP. Let

Z :=

"

Z

b

; Z

u

Z

T

u

; Z

n

#

denote the dual variable associated with the primal constraint L(P ) � 0, with Z

b

, Z

u

and

Z

n

being a block partitioning of Z with appropriate dimensions. (Here we borrowed a similar

notion from linear programming: The index set b denotes the \basis" part of the partition, and n

denotes the \non-basis" part of the partition; see e.g. [12]. Note that in linear programming, the

so-called strict complementarity holds, and hence the non-basis part of optimal dual variables

are strictly positive.)

The dual of (P) is

(D) min hR;Z

b

i+ hQ;Z

n

i

s.t. I + Z

T

u

B

T

+BZ

u

+ Z

n

A

T

+AZ

n

= 0

Z � 0:

The semide�nite programs are known to be special forms of conic optimization problems,

for which there exists a well-developed duality theory; see, e.g. [8, 16, 6] and the references

therein. Key points of the theory can be highlighted as follows:
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� The weak duality always holds, i.e. any feasible solution to the primal (maximization)

problem always possesses an objective value that is no greater than the (dual) objective

value of any dual feasible solution (the dual being a minimization problem).

� In contrast, the strong duality | that the optimal values of the primal and dual problems

coincide | needs not always hold (unlike the case of linear programming).

� A su�cient condition for the strong duality is that there exists a pair of complementary

optimal solutions, i.e., both the primal and dual SDP problems have attainable optimal

solutions, and that these solutions are complementary to each other (i.e., no duality gap).

For (P) and (D) above, this means that the primal optimal solution P

�

and the dual

optimal solution Z

�

both exist and satisfy L(P

�

)Z

�

= 0.

� If both (P) and (D) satisfy the strict feasibility (also known as Slater's condition), namely,

there exist primal and dual feasible solutions P

0

and Z

0

such that L(P

0

) � 0 and Z

0

� 0,

then the complementary solutions exist.

A mild regularity condition, which is assumed throughout the paper, is that the system

in (2) is stabilizable as de�ned at the end of x1. In terms of SDP, this is equivalent to (D)

satisfying Slater's condition. Refer to the lemma below.

Lemma 2.2 The following conditions are equivalent.

(i) The system in (2) is stabilizable.

(ii) Problem (D) satis�es Slater's condition.

Proof. First assume that the system in (2) is stabilizable by some feedback control u(t) =

Kx(t). Then all the eigenvalues of the matrix A�BK have negative real parts. Consequently,

the following Lyapunov equation has a positive solution Z

n

� 0:

(A+BK)Z

n

+ Z

n

(A+BK)

T

= �I:

Set Z

u

= KZ

n

. Then the above relation can be rewritten as

I + Z

T

u

B

T

+BZ

u

+ Z

n

A

T

+AZ

n

= 0:

Now choose Z

b

= �I + Z

u

(Z

n

)

�1

Z

T

u

. Then by Schur's lemma, Z =

"

Z

b

; Z

u

Z

T

u

; Z

n

#

is strictly

feasible to (D), namely, Problem (D) satis�es Slater's condition.
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Conversely, if Z is strictly feasible to (D), then Z

n

� 0 by Schur's lemma. Putting K =

Z

u

(Z

n

)

�1

, then Z satisfying the equality constraint of (D) yields

(A+BK)Z

n

+ Z

n

(A+BK)

T

= �I:

By constructing a quadratic Lyapunov function x

T

Z

n

x, it is easily veri�ed that the system in

(2) is stabilizable. 2

The above lemma suggests that, in view of the duality of the semide�nite programming, the

stability can be regarded as a dual concept of the optimality.

As to the primal problem (P), in the classical non-singular setting (i.e., when Q � 0; R � 0),

we have

Lemma 2.3 Suppose Q � 0; R � 0. Then, there exists a maximal solution P

�

� 0 to the

Riccati equation F (P

�

) = 0 (i.e., P

�

� P � 0 for any symmetric P that satis�es F (P ) � 0).

And, P

�

is also the unique optimal solution to the SDP problem (P). In this case, (LQ) has an

optimal feedback control u(t) = �R

�1

B

T

P

�

x(t), with an optimal value x

T

0

P

�

x

0

for any initial

state x

0

.

Proof. It is known that the classical Riccati equation F (P ) = 0 has a maximal solution

P

�

� 0 when Q � 0 and R � 0 (cf. [11]). From Schur's lemma and the maximality of P

�

, it is

clear that P

�

is an optimal solution to (P).

To show that it is the unique optimal solution, let

�

P be any optimal solution to (P). Then

hI; P

�

�

�

P i = 0. However, P

�

�

�

P � 0 due to the maximality of P

�

. Hence P

�

=

�

P . The rest

of the lemma is well known. 2

Underlying the elegant results summarized in Lemma 2.3 is the fact that in the non-singular

setting both primal and dual SDP's satisfy Slater's condition. To see this, note that P

0

= 0

is strictly feasible for the primal problem (as evident from L(P ) � 0 following (6), taking into

account Q � 0 and R � 0), while the dual is strictly feasible by virtue of the system in (2)

being stabilizable as discussed earlier. Hence complementary duality holds automatically in the

non-singular setting. This leads to a constructive way of solving the Riccati equation through

solving the SDP, for which e�cient interior point codes are available (e.g., [14]). However, with

the possible singularity of R, the situation becomes more complicated, as the primal problem

may no longer satisfy Slater's condition, and consequently, complementary duality may fail.

(Refer to Example 5.1 below.)

In contrast to Lemma 2.3, we have the following result, which will also be used later.

Proposition 2.4 Suppose Q � 0; R � 0. Then (P) has a unique optimal solution P

�

� 0.
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Proof. Consider the following perturbed problem of (P) along with its dual, where � > 0:

(P

�

) max hI; P i

s.t.

"

R+ �I; B

T

P

PB; Q+ �I +A

T

P + PA

#

� 0

and

(D

�

) min hR+ �I; Z

b

i+ hQ+ �I; Z

n

i

s.t. I + Z

T

u

B

T

+BZ

u

+ Z

n

A

T

+AZ

n

= 0

Z :=

"

Z

b

; Z

u

Z

T

u

; Z

n

#

� 0:

Both problems satisfy Slater's condition, and therefore complementary optimal solutions exist.

Observe that the feasible set of (D

�

) is independent of �. Take any dual feasible solution Z

0

.

By weak duality, we have

hI; P i � hR + �I; Z

0

b

i+ hQ+ �I; Z

0

n

i: (7)

Further, by Lemma 2.3, the unique optimal solution for (P

�

), denoted P

�

�

, is positive de�nite:

P

�

�

� 0. This, together with (7), implies in particular that P

�

�

is contained in a compact set,

where 0 � � � �

0

, and �

0

> 0 is a pre-determined constant. Now, take a convergent subsequence

such that

lim

i!1

P

�

�

i

= P

�

0

� 0;

with �

i

! 0 as i ! 1. Clearly, P

�

0

is a feasible solution of (P) since the feasible region of

(P

�

) monotonically shrinks as � # 0. Now it su�ces to show that P

�

0

= P

�

. Indeed, since P

�

is

feasible for (P

�

), and by Lemma 2.3 P

�

�

is the maximal solution to the corresponding Riccati

equation, we have P

�

�

� P

�

, resulting in P

�

0

� P

�

. But P

�

is optimal; hence, hI; P

�

i � hI; P

�

0

i.

Therefore, we have P

�

= P

�

0

� 0. The uniqueness is evident from the above argument. 2

3 Main Results

For the most part of this section we assume Q � 0. The following Theorem 3.1 summarizes

our main results. Towards the end of the section, in Theorem 3.6, we point out the necessary

modi�cations when allowing Q � 0.

Theorem 3.1 Suppose Q � 0. The following three statements are equivalent:

(A) (P) and (D) have complementary optimal solutions.

8



(B) (P) has an optimal solution P

�

which satis�es the generalized Riccati equation F (P ) = 0.

(C) (LQ) has an attainable optimal feedback control,

u

�

(t) = �R

+

B

T

P

�

x

�

(t); (8)

where P

�

is an optimal solution to (P).

As discussed earlier, in the non-singular setting when Q � 0 and R � 0, complementary

duality, and hence (A) is automatically satis�ed. Therefore, Theorem 3.1 reduces to Lemma

2.3.

Among the three equivalent conditions in the above theorem, (C) concerns the original

(LQ) problem, whereas (A) and (B) are easy to verify numerically | via SDP. (Notice that

(B) does not require solving the generalized Riccati equation, which could be a di�cult task;

rather, it only veri�es if an optimal solution to (P) satis�es the Riccati equation.)

From another angle, Theorem 3.1 puts verifying complementary duality of the SDP on

the same footing as solving the original (LQ) problem; whereas (B) is a kind of intermediary

between the two, with the generalized Riccati equation substituting for the dual SDP. Note that

computationally (B) is not needed, as most SDP codes are primal-dual based, which directly

solves (veri�es) (A).

To prove Theorem 3.1, we �rst show (A))(B), which asserts that complementary duality

is the key for the primal SDP solution to satisfy the generalized Riccati equation.

Theorem 3.2 If (P) and (D) have complementary optimal solutions P

�

and Z

�

, respectively,

then P

�

must satisfy the generalized Riccati equation: F (P

�

) = 0.

Proof. By Lemma 2.1, we have (I �RR

+

)B

T

P

�

= 0. Thus, the following Schur decomposi-

tion holds true:

L(P

�

) =

"

I; 0

P

�

BR

+

; I

# "

R; 0

0; F (P

�

)

# "

I; R

+

B

T

P

�

0; I

#

: (9)

From the relation L(P

�

)Z

�

= 0, it follows that

"

R; 0

0; F (P

�

)

# "

I; R

+

B

T

P

�

0; I

# "

Z

�

b

; Z

�

u

(Z

�

u

)

T

; Z

�

n

#

=

"

R(Z

�

b

+R

+

B

T

P

�

(Z

�

u

)

T

); R(Z

�

u

+R

+

B

T

P

�

Z

�

n

)

F (P

�

)(Z

�

u

)

T

; F (P

�

)Z

�

n

#

=

"

0; 0

0; 0

#

:

9



Therefore

F (P

�

)(Z

�

u

)

T

= 0 and F (P

�

)Z

�

n

= 0;

and hence,

Z

�

u

F (P

�

) = 0 and Z

�

n

F (P

�

) = 0:

Since Z

�

is dual feasible, we have

I + (Z

�

u

)

T

B

T

+BZ

�

u

+ Z

�

n

A

T

+AZ

�

n

= 0:

Multiplying F (P

�

) on both sides above yields

0 = F (P

�

)(I + (Z

�

u

)

T

B

T

+BZ

�

u

+ Z

�

n

A

T

+AZ

�

n

)F (P

�

)

= F (P

�

)

2

;

which implies F (P

�

) = 0. 2

Next, we establish (B))(C), which relates the SDP to the original (LQ) problem.

Theorem 3.3 If (P) has an optimal solution P

�

satisfying F (P

�

) = 0, then (LQ) has an

attainable optimal feedback control as determined by (8).

Proof. To start with, consider any primal feasible solution P , and any admissible (therefore

stabilizing) control u(�) 2 U

x

0

. We have,

d

dt

(x(t)

T

Px(t)) = (Ax(t) +Bu(t))

T

Px(t) + x(t)

T

P (Ax(t) +Bu(t))

= x(t)

T

(A

T

P + PA)x(t) + 2u(t)

T

B

T

Px(t): (10)

Integrating (10) over [0;1) and making use of the fact that x(t)

T

Px(t)! 0 as t!1, we have

0 = x

T

0

Px

0

+

Z

1

0

h

x(t)

T

(A

T

P + PA)x(t) + 2u(t)

T

B

T

Px(t)

i

dt:

Therefore,

J(x

0

; u(�))

=

Z

1

0

h

x(t)

T

Qx(t) + u(t)

T

Ru(t)

i

dt

= x

T

0

Px

0

+

Z

1

0

h

x(t)

T

(A

T

P + PA+Q)x(t) + 2u(t)

T

B

T

Px(t) + u(t)

T

Ru(t)

i

dt

= x

T

0

Px

0

+

Z

1

0

h

(u(t) +R

+

B

T

Px(t))

T

R(u(t) +R

+

B

T

Px(t)) + x(t)

T

F (P )x(t)

i

dt: (11)

10



Since P is feasible, we have F (P ) � 0. This means

J(x

0

; u(�)) � x

T

0

Px

0

; (12)

for any P feasible to (P) and for any admissible control u(�) 2 U

x

0

. On the other hand, under

the feedback control u

�

(t) = �R

+

B

T

P

�

x(t), taking into account P

�

� 0 (Proposition 2.4), we

have

0 � J(x

0

; u

�

(�))

=

Z

1

0

h

x(t)

T

Qx(t) + u

�

(t)

T

Ru

�

(t)

i

dt

= lim

t!1

Z

t

0

h

x(�)

T

Qx(�) + u

�

(�)

T

Ru

�

(�)

i

d�

= lim

t!1

fx

T

0

P

�

x

0

� x(t)

T

P

�

x(t)

+

Z

t

0

h

x(�)

T

(A

T

P

�

+ P

�

A+Q)x(�) + 2u(�)

T

B

T

P

�

x(�) + u

�

(�)

T

Ru

�

(�)

i

d�g

� x

T

0

P

�

x

0

+ lim

t!1

Z

t

0

h

(u

�

(�) +R

+

B

T

P

�

x(�))

T

R(u

�

(�) +R

+

B

T

P

�

x(�)) + x(�)

T

F (P

�

)x(�)

i

d�

= x

T

0

P

�

x

0

: (13)

First of all the above shows that the feedback control u

�

(�) incurs a �nite cost (w.r.t.

any initial state x

0

), then it must be stabilizing (and hence admissible). This is because a

�nite cost in (1) implies lim

t!+1

x

�

(t)

T

Qx

�

(t) = 0, where x

�

(�) is the corresponding state

trajectory; and since Q � 0, we must have lim

t!+1

x

�

(t) = 0. On the other hand, (13) yields

J(x

0

; u

�

(�)) � x

T

0

P

�

x

0

: Thus, in view of (12) we conclude that u

�

(�) is an optimal control. 2

The last piece in establishing the equivalence relations in Theorem 3.1 is to show (C))(A).

To do so, we need to �rst establish another result, which is useful in its own right. We want to

show that (A) is, in fact, implied by a weaker version of (B). That is, complementary duality

is actually necessary for any non-negative and feasible (as opposed to optimal) solution of (P)

to satisfy the generalized Riccati equation.

Theorem 3.4 If (P) has a feasible solution P

�

satisfying P

�

� 0 and F (P

�

) = 0, then there

exist complementary optimal solutions to (P) and (D); and in particular, P

�

is optimal to (P).

Proof. Denote K := �R

+

B

T

P

�

. First we show that the feedback control given by u(t) =

Kx(t) must be stabilizing. Indeed, going through the same calculation as (13) and noting the

assumption that P

�

� 0, we conclude that u(�) incurs a �nite cost with respect to any initial

11



state. Hence it must be stabilizing (as shown in the proof of Theorem 3.3). It follows that the

following Lyapunov equation

(A+BK)Y + Y (A+BK)

T

+ I = 0

has a positive solution; let it be Y

�

� 0. Let

Z

�

n

= Y

�

; Z

�

u

= KY

�

; Z

�

b

= KY

�

K

T

:

By this construction, we can easily verify the following:

"

Z

�

b

; Z

�

u

(Z

�

u

)

T

; Z

�

n

#

=

"

I; K

0; I

# "

0; 0

0; Z

�

n

# "

I; 0

K

T

; I

#

� 0;

and

I + (Z

�

u

)

T

B

T

+BZ

�

u

+ Z

�

n

A

T

+AZ

�

n

= 0:

Therefore, Z

�

is a feasible solution of (D). Moreover,

L(P

�

)

"

Z

�

b

; Z

�

u

(Z

�

u

)

T

; Z

�

n

#

=

"

I; 0

�K

T

; I

# "

R; 0

0; F (P

�

)

# "

I; �K

0; I

# "

Z

�

b

; Z

�

u

(Z

�

u

)

T

; Z

�

n

#

=

"

I; 0

�K

T

; I

# "

R(Z

�

b

�K(Z

�

u

)

T

); R(Z

�

u

�KZ

�

n

)

F (P

�

)(Z

�

u

)

T

; F (P

�

)Z

�

n

#

=

"

0; 0

0; 0

#

:

This means that P

�

and Z

�

are complementary solutions. In particular, P

�

is optimal to (P).

2

We are now ready to close the loop of equivalence, to show (C))(A), which indicates that

complementary duality is not only su�cient but also necessary for solving (LQ).

Theorem 3.5 If (LQ) has an attainable optimal control w.r.t. any initial condition x

0

, then

(P) and (D) must have complementary optimal solutions.

Proof. Since (LQ) has an attainable optimal control w.r.t. any initial condition x

0

, it is known

([2, p.21]) that there exists M � 0 such that

inf

u(�)2U

x

0

J(x

0

; u(�)) = x

T

0

Mx

0

:

12



For the time being, suppose the matrix M is a feasible solution to (P). Fix an initial x

0

and

let u

�

(�) be the optimal control w.r.t. x

0

. Since M is feasible to (P), using (11), we obtain the

following identity:

J(x

0

; u

�

(�)) = x

T

0

Mx

0

+

Z

1

0

h

(u

�

(t) +R

+

B

T

Mx(t))

T

R(u

�

(t) +R

+

B

T

Mx(t)) + x(t)

T

F (M)x(t)

i

dt:

Since J(x

0

; u

�

(�)) = x

T

0

Mx

0

, we have

Z

1

0

h

(u

�

(t) +R

+

B

T

Mx(t))

T

R(u

�

(t) +R

+

B

T

Mx(t)) + x(t)

T

F (M)x(t)

i

dt = 0:

Thus, x(t)

T

F (M)x(t) = 0 for all t 2 [0;1). Since x

0

can be chosen arbitrarily, we conclude

that F (M) = 0. The desired result then follows from Theorem 3.4. Furthermore, we know M

must be optimal to (P).

What remains is to show the primal feasibility of M . To this end we consider the perturbed

problem (P

�

) and its dual (D

�

) introduced in the proof of Proposition 2.4. For the optimal

solution of (P

�

), denoted P

�

�

, there is a convergent subsequence such that

lim

i!1

P

�

�

i

= P

�

0

;

with �

i

! 0 as i!1. Clearly, P

�

0

is a feasible solution of (P), since the feasible region of (P

�

)

shrinks as �! 0. We now show that P

�

0

=M .

First, it follows from Lemma 2.3 that

inf

u(�)2U

x

0

J

�

i

(x

0

; u(�)) = x

T

0

P

�

�

i

x

0

for all i, where

J

�

(x

0

; u(�)) =

Z

1

0

[x(t)

T

(Q+ �I)x(t) + u(t)

T

(R + �I)u(t)]dt:

Let �u(�) be the optimal control of (LQ) w.r.t. x

0

and �x(�) be the corresponding state. Then, we

have

0 � inf

u(�)2U

x

0

J

�

(x

0

; u(�)) � inf

u(�)2U

x

0

J(x

0

; u(�))

= inf

u(�)2U

x

0

J

�

(x

0

; u(�)) � J(x

0

; �u(�))

� J

�

(x

0

; �u(�)) � J(x

0

; �u(�))

= �

Z

1

0

(k�x(t)k

2

+ k�u(t)k

2

)dt:

It then follows that

lim

i!1

x

T

0

P

�

�

i

x

0

� lim

i!1

inf

u(�)2U

x

0

J

�

i

(x

0

; u(�)) = inf

u(�)2U

x

0

J(x

0

; u(�)) � x

T

0

Mx

0

:

13



The above yields

x

T

0

P

�

0

x

0

= x

T

0

Mx

0

for all x

0

, implying M = P

�

0

. This shows that M is indeed a primal feasible solution, and

consequently (P) and (D) have complementary optimal solutions as we discussed before. 2

To conclude this section we discuss the more general case that Q � 0. The key advantage

with a nonsingularQ, as we observed above, is that for any primal feasible solution P

�

satisfying

P

�

� 0 and F (P

�

) = 0, the control in (8) is automatically stabilizing (see the proof of Theorem

3.3). This stability is no longer guaranteed when Q is possibly singular (see Example 5.3 below).

Theorem 3.6 Suppose Q � 0.

(i) If (P) and (D) have complementary optimal solutions P

�

and Z

�

, respectively, then P

�

must satisfy the generalized Riccati equation, F (P ) = 0, and u(t) = �R

+

B

T

P

�

x(t) is

the optimal control that solves (LQ).

(ii) If (P) has a feasible solution P

�

satisfying P

�

� 0 and F (P

�

) = 0, and if the control

u(t) = �R

+

B

T

P

�

x(t) is stabilizing, then it must be the optimal solution to (LQ).

(iii) If (LQ) has an attainable optimal control, w.r.t. any initial condition x

0

, then (P) must

have an optimal solution P

�

satisfying F (P

�

) = 0. Moreover, if the feedback control

u(t) = �R

+

B

T

P

�

x(t) is stabilizing, then (P) and (D) must have complementary optimal

solutions.

Proof. (i) This follows from Theorem 3.2, as the proof there does not require Q to be non-

singular.

(ii) In the proof of Theorem 3.3, we established that the control in (8) is stabilizing due to

Q being non-singular. Here, the stability of the control is assumed. On the other hand, note

that the proof of Theorem 3.3 does not require the optimality of P

�

; it only utilizes the fact

that P

�

� 0 (which is implied by the optimality of P

�

via Proposition 2.4). Hence the proof of

Theorem 3.3 applies to the present case.

(iii) The proof of Theorem 3.5 implies that there is a primal feasible solution M with

inf

u(�)2U

x

0

J(x

0

; u(�)) = x

T

0

Mx

0

; and F (M) = 0:

On the other hand, in view of (12), we have

x

T

0

Mx

0

� inf

u(�)2U

x

0

J(x

0

; u(�)) � x

T

0

Px

0

;

14



for any P feasible to (P). Hence M is optimal for (P). Let P

�

= M . However, a priori, we

do not know whether the control u(t) = �R

+

B

T

P

�

x(t) is necessarily the the optimal control

for (LQ); hence, its assumed stabilizing property is needed to guarantee the complementary

optimal solutions. (Note, in Theorem 3.4, this stabilizing property is automatic, since Q � 0.)

2

4 Regularization and Asymptotic Optimality

Complementary duality, as discussed in the last section, plays a central role in linking the SDP

to the original (LQ) problem. Here, we further examine cases in which complementary duality

holds or fails.

First, consider the case when complementary duality holds. Further, suppose Q � 0. Ac-

cording to Theorem 3.1, in this case there exists an optimal control to (LQ). Here, we further

demonstrate that the (LQ) problem can be transformed into one with a non-singular R matrix.

Notice that R 2 S

m�m

can be diagonalized by an orthonormal transformation as follows:

R =W

T

�

r

W

where W

T

W = I and �

r

denotes a diagonal matrix whose �rst r diagonal components are

positive and whose last m� r components are zeros, with r being the rank of R.

Theorem 4.1 Suppose Q � 0; and suppose (P) and (D) have complementary optimal so-

lutions. Suppose R 2 S

m�m

, and rank(R)=r; and write R = W

T

�

r

W as an orthonormal

transformation. Then, the last m� r columns of the matrix BW must be zero vectors.

Proof. By Theorem 3.1, the existence of a pair of complementary optimal solutions for (P)

and (D), P

�

and Z

�

, implies that

F (P

�

) = Q+A

T

P

�

+ P

�

A� P

�

BR

+

B

T

P

�

= 0:

Furthermore, we claim that P

�

cannot be singular. To see this, consider any � satisfying

P

�

� = 0. Pre- and post-multiplying �

T

and � on both sides of the above equation yields

�

T

Q� = 0, and consequently � = 0, due to Q � 0. This shows that P

�

is non-singular.

Once again observe F (P

�

) = 0 where P

�

is primal optimal. It follows from (9) that

rank(L(P

�

)) = rank(R) = r. Observe that

"

W; 0

0; I

#

L(P

�

)

"

W

T

; 0

0; I

#

=

"

�

r

; WB

T

P

�

P

�

BW

T

; Q+A

T

P

�

+ P

�

A

#

:
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This implies that

rank([�

r

;WB

T

P

�

]) = r;

and hence the last m� r rows of WB

T

P

�

must be zero vectors. Because P

�

is non-singular as

argued above, we conclude that the last m� r rows of WB

T

must all be zero vectors too. 2

Theorem 4.1 implies that in the case when R is singular and when the SDP identi�es

complementary dual solutions, by a transformation on the control variables, �u(t) := W

T

u(t),

the last m�r control variables, �u

r+1

(t); � � � ; �u

m

(t), will vanish from both the cost objective and

the system dynamics. Hence, they can be removed from the problem. The new LQ problem

becomes one with a nonsingular cost matrix that is the non-zero diagonal block of �

r

.

Whereas the orthonormal transformation can always be applied to R no matter what, the

key to the above analysis lies in identifying the complementary dual solutions. Without the

existence of these solutions, (LQ) does not possess an optimal contorl, as stipulated in Theorem

3.1, and the orthonormal transformation becomes quite meaningless.

Next, we consider the case when complementary duality fails. Following Theorem 3.1, we

know there is no optimal solution to the original LQ problem. In this case, we propose to

consider the perturbed problem, (LQ

�

), obtained by keeping all the data A and B unchanged,

and letting Q

�

= Q + �I (this transformation is not necessary when Q is non-singular) and

R

�

= R + �I with � > 0. The corresponding perturbed SDP's have already appeared in the

proof of Theorem 3.5.

By Lemma 2.3, (LQ

�

) has an optimal feedback control for each � > 0; and both (P

�

) and

(D

�

) satisfy Slater's condition.

Theorem 4.2 Suppose Q � 0. Let J

�

�

(x

0

) and J

�

(x

0

) be the optimal values of (LQ

�

) and

(LQ), respectively. Then,

lim

�#0

J

�

�

(x

0

) = J

�

(x

0

):

Proof. Let the optimal solution of (P

�

) be P

�

�

. Following Lemma 2.3, we know that

u

�

(t) = �(R+ �I)

�1

B

T

P

�

�

x

�

(t) (14)

is optimal for (LQ

�

), with the corresponding optimal objective value equal to J

�

�

(x

0

) = x

T

0

P

�

�

x

0

.

Following the same argument as in the proof of Proposition 2.4, we know that P

�

�

is contained

in a compact set, with 0 < � � 1. Moreover, since by de�nition J

�

�

(x

0

) decreases monotonically

as � # 0, so does P

�

�

. Therefore, P

�

�

itself also converges as � # 0.

What remains is to show that x

T

0

P

�

0

x

0

is equal to the true in�mum of (LQ), now denoted

as J

�

(x

0

). To this end, �rst note that

x

T

0

P

�

�

x

0

= J

�

�

(x

0

) � J

�

(x

0

);
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where the inequality is due to the positive perturbation in (P

�

). Letting �! 0, we obtain

x

T

0

P

�

0

x

0

� J

�

(x

0

):

On the other hand, since P

�

0

is feasible to (P) (see the proof of Proposition 2.4), it follows from

(12) that

J

�

(x

0

) = inf

u(�)2U

x

0

J(x

0

; u(�)) � x

T

0

P

�

0

x

0

:

This completes the proof. 2

The above theorem says that the optimal values of the original and the perturbed problems

are very close to each other or, more precisely, they are the same asymptotically. The next

result is concerned with the asymptotically optimal feedback control of the original LQ problem.

Theorem 4.3 The feedback control u

�

(�) constructed by (14) is asymptotically optimal for

(LQ), namely,

lim

�#0

J(x

0

; u

�

(�)) = J

�

(x

0

):

Proof. Denote by J

�

(x

0

; u(�)) the cost of the perturbed problem (LQ

�

) under an admissible

control u(�) 2 U

x

0

w.r.t. the initial state x

0

. Then for any � > 0, there is an �

0

such that when

0 < � < �

0

:

J

�

(x

0

) � J(x

0

; u

�

(�))

� J

�

(x

0

; u

�

(�))

= J

�

�

(x

0

)

� J

�

(x

0

) + �;

where the last inequality is due to Theorem 4.2. This proves our claim. 2

5 Examples

In this section we present several examples including the two in x1 to illustrate our results.

The �rst two examples demonstrate that in the absence of complementary duality, the LQ

control has no solution. The third example illustrates that when Q is singular, the stability of

the feedback control is not guaranteed. The fourth example is a positive one that illustrates

how the SDP approach identi�es the optimal feedback control when R is singular. All these

examples are beyond the scope of the classical Riccati approach; whereas the SDP approach

developed here completely solves the problems: it either identi�es the optimal control or declares

that no solution exists. The last two examples illustrate the use of regularization and the �-

approximation scheme presented in x4.
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Example 5.1 Consider the problem in Example 1.1, where A = �1, B = 1, Q = 1 and R = 0

(hence R

+

= 0). The corresponding SDP reads:

(P

1

) max p

s.t.

"

0; p

p; 1� 2p

#

� 0:

This problem has a unique feasible solution p = 0, which is hence optimal. The generalized

Riccati equation in this case is F (p) = 1� 2p = 0. So the optimal solution does not satisfy the

generalized Riccati equation.

In view of Theorem 3.2, we expect complementary duality to fail. Consider the dual of (P

1

),

(D

1

) inf z

n

s.t. 1 + 2z

u

� 2z

n

= 0

z :=

"

z

b

; z

u

z

u

; z

n

#

� 0:

This problem is feasible and satis�es Slater's condition. Moreover, it has a �nite optimal

value equal to 0, which, however, is not attainable. Because whenever z

n

= 0 we must have

z

u

= �1=2, violating z � 0.

Example 5.2 Consider a two-dimensional problem with

A =

"

1; 0

1; �1

#

; B =

"

1; 0

0; 1

#

;

and

Q =

"

1; �

1

2

�

1

2

; 1

#

� 0; R =

"

1; 0

0; 0

#

� 0:

Note that R

+

= R. It is easy to see that the system is stabilizable (for example, (u

1

(t); u

2

(t) =

(�2x

1

(t); 0) is a stabilizing control). The generalized Riccati equation is:

Q+A

T

P + PA� PRP = 0: (15)

If P =

"

p

1

; p

3

p

3

; p

2

#

2 S

2�2

is a feasible solution to the primal SDP (P), then by Lemma 2.1, it

is necessary that (I � RR

+

)B

T

P = 0. This leads to p

2

= p

3

= 0. Thus P must be singular.

Because Q is non-singular, similar to the argument in the proof of Theorem 4.1 we know that

the generalized Riccati equation cannot be satis�ed, and therefore by Theorem 3.1 the LQ

problem does not have any attainable optimal control. In addition, by Theorem 3.2, there is

no complementary dual solutions to (P) and (D). (One can also verify this directly; details are

left to the reader.).
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Example 5.3 Consider a 2-dimensional problem with

A =

"

0; 1

1; 0

#

; B =

"

1; 1

1; 1

#

;

and

Q =

"

2; �2

�2; 2

#

� 0; R =

"

1; 0

0; 0

#

� 0:

This system is easily seen to be stabilizable as A�B = �I. On the other hand, one can verify

that

P

�

=

"

1; �1

�1; 1

#

� 0

is feasible to the primal SDP and satis�es the generalized Riccati equation. However,

A�BR

+

B

T

P

�

� A;

which has an eigenvalue 1. Hence the feedback control u

�

(t) = �R

+

B

T

P

�

x

�

(t) is not stabilizing.

Example 5.4 Consider Example 1.2. Here

A =

"

1; 1

4; 1

#

; B =

"

1; 1

1; �2

#

;

and

Q =

"

12; 6

6; 3

#

� 0; R =

"

1; 0

0; 0

#

� 0:

Again this system is easily seen to be stabilizable. To identify a non-negative feasible solution

P

�

to (P) with F (P

�

) = 0, �rst consider the constraint (I � RR

+

)B

T

P

�

= 0 as stipulated by

Lemma 2.1. This gives rise to

P

�

=

"

2p; p

p;

p

2

#

for some p. Substituting the above into the generalized Riccati equation yields

A

T

P

�

+ P

�

A+Q� P

�

BR

+

B

T

P

�

�

"

�9p

2

+ 12p+ 12; �

9

2

p

2

+ 6p+ 6

�

9

2

p

2

+ 6p+ 6 �

9

4

p

2

+ 3p+ 3

#

= 0:

Solving for p leads to p = 2. Thus,

P

�

=

"

4; 2

2; 1

#

� 0

is a primal feasible solution that satis�es F (P ) = 0. On the other hand, in this case

A�BR

+

B

T

P

�

=

"

�5; �2

�2; �2

#

;

which has eigenvalues �1 and �6. Hence u

�

(t) = �R

+

B

T

P

�

x

�

(t) is stabilizing. By Theorem

3.6-(ii), this control must be optimal.
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Example 5.5 Consider a 2-dimensional problem with

A =

"

0; 1

1; 0

#

; B =

"

2; 2

2; 2

#

;

and

Q =

"

1; 0

0; 1

#

� 0; R =

"

1; 1

1; 1

#

� 0:

Similar to Example 5.3, this problem is stabilizable. Solving the primal SDP problem (P) yields

P

�

=

"

1=2; 0

0; 1=2

#

which satis�es the generalized Riccati equation F (P ) = 0. By Theorem 3.3, the following is

the optimal feedback control:

u

�

(t) = �R

+

B

T

P

�

x

�

(t) = �

1

2

"

1; 1

1; 1

#

x

�

(t);

or,

u

�

1

(t) = �

1

2

x

�

1

(t)�

1

2

x

�

2

(t); u

�

2

(t) = �

1

2

x

�

1

(t)�

1

2

x

�

2

(t):

Clearly, by a variable transformation �u(t) :=

p

2

2

(u

1

(t) + u

2

(t)) the original problem will be

regularized as Theorem 4.1 asserts.

Example 5.6 Continue with Example 5.1. With perturbation, the primal SDP becomes

(P

�

) max p

s.t.

"

�; p

p; 1� 2p

#

� 0:

The optimal solution is:

p

�

�

=

p

�

2

+ �� �:

Clearly, p

�

�

= O(

p

�), and hence the optimal value, p

�

�

x

2

0

, converges to 0 as � # 0. Further, to

obtain an asymptotic optimal feedback control for the original problem, we apply the same

feedback law

u

�

(t) = �(

r

1 +

1

�

� 1)x

�

(t);

which is optimal to the perturbed problem, to the original problem. It is straightforward to

check that the corresponding cost under this control is

J(x

0

; u

�

(�)) =

p

�

2

p

1 + �

x

2

0

;

which converges to 0 as � # 0.
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6 Concluding remarks

We have developed an SDP-based approach to the deterministic LQ control problem where

the control cost matrix is possibly singular. Whereas the classical Riccati approach does not

apply, our approach gives a complete solution to the problem: it either derives the optimal

feedback control or determines that there is no optimal control for the problem. Speci�cally,

we solve a pair of primal-dual SDP problems; if complementary dual solutions exist, then an

optimal feedback control is explicitly constructed (based on the primal solution); otherwise,

if complementary duality fails, we are guaranteed that there is no optimal control for the LQ

problem. In the latter case, we have developed a convergent approximation scheme that achieves

asymptotic optimality.
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